SurfaceFlinger.cpp revision 1c569c4d45f89ec05abf8f8fe3a560e68bf39a8e
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/Surface.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56#include <private/gui/SyncFeatures.h>
57
58#include "clz.h"
59#include "DdmConnection.h"
60#include "DisplayDevice.h"
61#include "Client.h"
62#include "EventThread.h"
63#include "GLExtensions.h"
64#include "Layer.h"
65#include "LayerDim.h"
66#include "SurfaceFlinger.h"
67
68#include "DisplayHardware/FramebufferSurface.h"
69#include "DisplayHardware/HWComposer.h"
70#include "DisplayHardware/VirtualDisplaySurface.h"
71
72#define DISPLAY_COUNT       1
73
74EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mAnimCompositionPending(false),
97        mDebugRegion(0),
98        mDebugDDMS(0),
99        mDebugDisableHWC(0),
100        mDebugDisableTransformHint(0),
101        mDebugInSwapBuffers(0),
102        mLastSwapBufferTime(0),
103        mDebugInTransaction(0),
104        mLastTransactionTime(0),
105        mBootFinished(false)
106{
107    ALOGI("SurfaceFlinger is starting");
108
109    // debugging stuff...
110    char value[PROPERTY_VALUE_MAX];
111
112    property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
113    mGpuToCpuSupported = !atoi(value);
114
115    property_get("debug.sf.showupdates", value, "0");
116    mDebugRegion = atoi(value);
117
118    property_get("debug.sf.ddms", value, "0");
119    mDebugDDMS = atoi(value);
120    if (mDebugDDMS) {
121        if (!startDdmConnection()) {
122            // start failed, and DDMS debugging not enabled
123            mDebugDDMS = 0;
124        }
125    }
126    ALOGI_IF(mDebugRegion, "showupdates enabled");
127    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
128}
129
130void SurfaceFlinger::onFirstRef()
131{
132    mEventQueue.init(this);
133
134    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
135
136    // Wait for the main thread to be done with its initialization
137    mReadyToRunBarrier.wait();
138}
139
140
141SurfaceFlinger::~SurfaceFlinger()
142{
143    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
144    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
145    eglTerminate(display);
146}
147
148void SurfaceFlinger::binderDied(const wp<IBinder>& who)
149{
150    // the window manager died on us. prepare its eulogy.
151
152    // restore initial conditions (default device unblank, etc)
153    initializeDisplays();
154
155    // restart the boot-animation
156    startBootAnim();
157}
158
159sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
160{
161    sp<ISurfaceComposerClient> bclient;
162    sp<Client> client(new Client(this));
163    status_t err = client->initCheck();
164    if (err == NO_ERROR) {
165        bclient = client;
166    }
167    return bclient;
168}
169
170sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
171        bool secure)
172{
173    class DisplayToken : public BBinder {
174        sp<SurfaceFlinger> flinger;
175        virtual ~DisplayToken() {
176             // no more references, this display must be terminated
177             Mutex::Autolock _l(flinger->mStateLock);
178             flinger->mCurrentState.displays.removeItem(this);
179             flinger->setTransactionFlags(eDisplayTransactionNeeded);
180         }
181     public:
182        DisplayToken(const sp<SurfaceFlinger>& flinger)
183            : flinger(flinger) {
184        }
185    };
186
187    sp<BBinder> token = new DisplayToken(this);
188
189    Mutex::Autolock _l(mStateLock);
190    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
191    info.displayName = displayName;
192    info.isSecure = secure;
193    mCurrentState.displays.add(token, info);
194
195    return token;
196}
197
198void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
199    ALOGW_IF(mBuiltinDisplays[type],
200            "Overwriting display token for display type %d", type);
201    mBuiltinDisplays[type] = new BBinder();
202    DisplayDeviceState info(type);
203    // All non-virtual displays are currently considered secure.
204    info.isSecure = true;
205    mCurrentState.displays.add(mBuiltinDisplays[type], info);
206}
207
208sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
209    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
210        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
211        return NULL;
212    }
213    return mBuiltinDisplays[id];
214}
215
216sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
217{
218    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
219    return gba;
220}
221
222void SurfaceFlinger::bootFinished()
223{
224    const nsecs_t now = systemTime();
225    const nsecs_t duration = now - mBootTime;
226    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
227    mBootFinished = true;
228
229    // wait patiently for the window manager death
230    const String16 name("window");
231    sp<IBinder> window(defaultServiceManager()->getService(name));
232    if (window != 0) {
233        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
234    }
235
236    // stop boot animation
237    // formerly we would just kill the process, but we now ask it to exit so it
238    // can choose where to stop the animation.
239    property_set("service.bootanim.exit", "1");
240}
241
242void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
243    class MessageDestroyGLTexture : public MessageBase {
244        GLuint texture;
245    public:
246        MessageDestroyGLTexture(GLuint texture)
247            : texture(texture) {
248        }
249        virtual bool handler() {
250            glDeleteTextures(1, &texture);
251            return true;
252        }
253    };
254    postMessageAsync(new MessageDestroyGLTexture(texture));
255}
256
257status_t SurfaceFlinger::selectConfigForAttribute(
258        EGLDisplay dpy,
259        EGLint const* attrs,
260        EGLint attribute, EGLint wanted,
261        EGLConfig* outConfig)
262{
263    EGLConfig config = NULL;
264    EGLint numConfigs = -1, n=0;
265    eglGetConfigs(dpy, NULL, 0, &numConfigs);
266    EGLConfig* const configs = new EGLConfig[numConfigs];
267    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
268
269    if (n) {
270        if (attribute != EGL_NONE) {
271            for (int i=0 ; i<n ; i++) {
272                EGLint value = 0;
273                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
274                if (wanted == value) {
275                    *outConfig = configs[i];
276                    delete [] configs;
277                    return NO_ERROR;
278                }
279            }
280        } else {
281            // just pick the first one
282            *outConfig = configs[0];
283            delete [] configs;
284            return NO_ERROR;
285        }
286    }
287    delete [] configs;
288    return NAME_NOT_FOUND;
289}
290
291class EGLAttributeVector {
292    struct Attribute;
293    class Adder;
294    friend class Adder;
295    KeyedVector<Attribute, EGLint> mList;
296    struct Attribute {
297        Attribute() {};
298        Attribute(EGLint v) : v(v) { }
299        EGLint v;
300        bool operator < (const Attribute& other) const {
301            // this places EGL_NONE at the end
302            EGLint lhs(v);
303            EGLint rhs(other.v);
304            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
305            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
306            return lhs < rhs;
307        }
308    };
309    class Adder {
310        friend class EGLAttributeVector;
311        EGLAttributeVector& v;
312        EGLint attribute;
313        Adder(EGLAttributeVector& v, EGLint attribute)
314            : v(v), attribute(attribute) {
315        }
316    public:
317        void operator = (EGLint value) {
318            if (attribute != EGL_NONE) {
319                v.mList.add(attribute, value);
320            }
321        }
322        operator EGLint () const { return v.mList[attribute]; }
323    };
324public:
325    EGLAttributeVector() {
326        mList.add(EGL_NONE, EGL_NONE);
327    }
328    void remove(EGLint attribute) {
329        if (attribute != EGL_NONE) {
330            mList.removeItem(attribute);
331        }
332    }
333    Adder operator [] (EGLint attribute) {
334        return Adder(*this, attribute);
335    }
336    EGLint operator [] (EGLint attribute) const {
337       return mList[attribute];
338    }
339    // cast-operator to (EGLint const*)
340    operator EGLint const* () const { return &mList.keyAt(0).v; }
341};
342
343EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
344    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
345    // it is to be used with WIFI displays
346    EGLConfig config;
347    EGLint dummy;
348    status_t err;
349
350    EGLAttributeVector attribs;
351    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
352    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
353    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
354    attribs[EGL_RED_SIZE]                   = 8;
355    attribs[EGL_GREEN_SIZE]                 = 8;
356    attribs[EGL_BLUE_SIZE]                  = 8;
357
358    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
359    if (!err)
360        goto success;
361
362    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
363    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
364    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
365    err = selectConfigForAttribute(display, attribs,
366            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
367    if (!err)
368        goto success;
369
370    // maybe we failed because of EGL_RECORDABLE_ANDROID
371    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
372    attribs.remove(EGL_RECORDABLE_ANDROID);
373    err = selectConfigForAttribute(display, attribs,
374            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
375    if (!err)
376        goto success;
377
378    // allow less than 24-bit color; the non-gpu-accelerated emulator only
379    // supports 16-bit color
380    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
381    attribs.remove(EGL_RED_SIZE);
382    attribs.remove(EGL_GREEN_SIZE);
383    attribs.remove(EGL_BLUE_SIZE);
384    err = selectConfigForAttribute(display, attribs,
385            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
386    if (!err)
387        goto success;
388
389    // this EGL is too lame for Android
390    ALOGE("no suitable EGLConfig found, giving up");
391
392    return 0;
393
394success:
395    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
396        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
397    return config;
398}
399
400EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
401    // Also create our EGLContext
402    EGLint contextAttributes[] = {
403#ifdef EGL_IMG_context_priority
404#ifdef HAS_CONTEXT_PRIORITY
405#warning "using EGL_IMG_context_priority"
406            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
407#endif
408#endif
409            EGL_NONE, EGL_NONE
410    };
411    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
412    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
413    return ctxt;
414}
415
416void SurfaceFlinger::initializeGL(EGLDisplay display) {
417    GLExtensions& extensions(GLExtensions::getInstance());
418    extensions.initWithGLStrings(
419            glGetString(GL_VENDOR),
420            glGetString(GL_RENDERER),
421            glGetString(GL_VERSION),
422            glGetString(GL_EXTENSIONS),
423            eglQueryString(display, EGL_VENDOR),
424            eglQueryString(display, EGL_VERSION),
425            eglQueryString(display, EGL_EXTENSIONS));
426
427    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
428    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
429
430    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
431    glPixelStorei(GL_PACK_ALIGNMENT, 4);
432    glEnableClientState(GL_VERTEX_ARRAY);
433    glShadeModel(GL_FLAT);
434    glDisable(GL_DITHER);
435    glDisable(GL_CULL_FACE);
436
437    struct pack565 {
438        inline uint16_t operator() (int r, int g, int b) const {
439            return (r<<11)|(g<<5)|b;
440        }
441    } pack565;
442
443    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
444    glGenTextures(1, &mProtectedTexName);
445    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
446    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
447    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
448    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
449    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
450    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
451            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
452
453    // print some debugging info
454    EGLint r,g,b,a;
455    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
456    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
457    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
458    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
459    ALOGI("EGL informations:");
460    ALOGI("vendor    : %s", extensions.getEglVendor());
461    ALOGI("version   : %s", extensions.getEglVersion());
462    ALOGI("extensions: %s", extensions.getEglExtension());
463    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
464    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
465    ALOGI("OpenGL ES informations:");
466    ALOGI("vendor    : %s", extensions.getVendor());
467    ALOGI("renderer  : %s", extensions.getRenderer());
468    ALOGI("version   : %s", extensions.getVersion());
469    ALOGI("extensions: %s", extensions.getExtension());
470    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
471    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
472}
473
474status_t SurfaceFlinger::readyToRun()
475{
476    ALOGI(  "SurfaceFlinger's main thread ready to run. "
477            "Initializing graphics H/W...");
478
479    Mutex::Autolock _l(mStateLock);
480
481    // initialize EGL for the default display
482    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
483    eglInitialize(mEGLDisplay, NULL, NULL);
484
485    // Initialize the H/W composer object.  There may or may not be an
486    // actual hardware composer underneath.
487    mHwc = new HWComposer(this,
488            *static_cast<HWComposer::EventHandler *>(this));
489
490    // initialize the config and context
491    EGLint format = mHwc->getVisualID();
492    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
493    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
494
495    // figure out which format we got
496    eglGetConfigAttrib(mEGLDisplay, mEGLConfig,
497            EGL_NATIVE_VISUAL_ID, &mEGLNativeVisualId);
498
499    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
500            "couldn't create EGLContext");
501
502    // initialize our non-virtual displays
503    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
504        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
505        // set-up the displays that are already connected
506        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
507            // All non-virtual displays are currently considered secure.
508            bool isSecure = true;
509            createBuiltinDisplayLocked(type);
510            wp<IBinder> token = mBuiltinDisplays[i];
511
512            sp<DisplayDevice> hw = new DisplayDevice(this,
513                    type, allocateHwcDisplayId(type), isSecure, token,
514                    new FramebufferSurface(*mHwc, i),
515                    mEGLConfig);
516            if (i > DisplayDevice::DISPLAY_PRIMARY) {
517                // FIXME: currently we don't get blank/unblank requests
518                // for displays other than the main display, so we always
519                // assume a connected display is unblanked.
520                ALOGD("marking display %d as acquired/unblanked", i);
521                hw->acquireScreen();
522            }
523            mDisplays.add(token, hw);
524        }
525    }
526
527    //  we need a GL context current in a few places, when initializing
528    //  OpenGL ES (see below), or creating a layer,
529    //  or when a texture is (asynchronously) destroyed, and for that
530    //  we need a valid surface, so it's convenient to use the main display
531    //  for that.
532    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
533
534    //  initialize OpenGL ES
535    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
536    initializeGL(mEGLDisplay);
537
538    // start the EventThread
539    mEventThread = new EventThread(this);
540    mEventQueue.setEventThread(mEventThread);
541
542    // initialize our drawing state
543    mDrawingState = mCurrentState;
544
545
546    // We're now ready to accept clients...
547    mReadyToRunBarrier.open();
548
549    // set initial conditions (e.g. unblank default device)
550    initializeDisplays();
551
552    // start boot animation
553    startBootAnim();
554
555    return NO_ERROR;
556}
557
558int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
559    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
560            type : mHwc->allocateDisplayId();
561}
562
563void SurfaceFlinger::startBootAnim() {
564    // start boot animation
565    property_set("service.bootanim.exit", "0");
566    property_set("ctl.start", "bootanim");
567}
568
569uint32_t SurfaceFlinger::getMaxTextureSize() const {
570    return mMaxTextureSize;
571}
572
573uint32_t SurfaceFlinger::getMaxViewportDims() const {
574    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
575            mMaxViewportDims[0] : mMaxViewportDims[1];
576}
577
578// ----------------------------------------------------------------------------
579
580bool SurfaceFlinger::authenticateSurfaceTexture(
581        const sp<IGraphicBufferProducer>& bufferProducer) const {
582    Mutex::Autolock _l(mStateLock);
583    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
584    return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
585}
586
587status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
588    int32_t type = NAME_NOT_FOUND;
589    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
590        if (display == mBuiltinDisplays[i]) {
591            type = i;
592            break;
593        }
594    }
595
596    if (type < 0) {
597        return type;
598    }
599
600    const HWComposer& hwc(getHwComposer());
601    float xdpi = hwc.getDpiX(type);
602    float ydpi = hwc.getDpiY(type);
603
604    // TODO: Not sure if display density should handled by SF any longer
605    class Density {
606        static int getDensityFromProperty(char const* propName) {
607            char property[PROPERTY_VALUE_MAX];
608            int density = 0;
609            if (property_get(propName, property, NULL) > 0) {
610                density = atoi(property);
611            }
612            return density;
613        }
614    public:
615        static int getEmuDensity() {
616            return getDensityFromProperty("qemu.sf.lcd_density"); }
617        static int getBuildDensity()  {
618            return getDensityFromProperty("ro.sf.lcd_density"); }
619    };
620
621    if (type == DisplayDevice::DISPLAY_PRIMARY) {
622        // The density of the device is provided by a build property
623        float density = Density::getBuildDensity() / 160.0f;
624        if (density == 0) {
625            // the build doesn't provide a density -- this is wrong!
626            // use xdpi instead
627            ALOGE("ro.sf.lcd_density must be defined as a build property");
628            density = xdpi / 160.0f;
629        }
630        if (Density::getEmuDensity()) {
631            // if "qemu.sf.lcd_density" is specified, it overrides everything
632            xdpi = ydpi = density = Density::getEmuDensity();
633            density /= 160.0f;
634        }
635        info->density = density;
636
637        // TODO: this needs to go away (currently needed only by webkit)
638        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
639        info->orientation = hw->getOrientation();
640        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
641    } else {
642        // TODO: where should this value come from?
643        static const int TV_DENSITY = 213;
644        info->density = TV_DENSITY / 160.0f;
645        info->orientation = 0;
646    }
647
648    info->w = hwc.getWidth(type);
649    info->h = hwc.getHeight(type);
650    info->xdpi = xdpi;
651    info->ydpi = ydpi;
652    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
653
654    // All non-virtual displays are currently considered secure.
655    info->secure = true;
656
657    return NO_ERROR;
658}
659
660// ----------------------------------------------------------------------------
661
662sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
663    return mEventThread->createEventConnection();
664}
665
666// ----------------------------------------------------------------------------
667
668void SurfaceFlinger::waitForEvent() {
669    mEventQueue.waitMessage();
670}
671
672void SurfaceFlinger::signalTransaction() {
673    mEventQueue.invalidate();
674}
675
676void SurfaceFlinger::signalLayerUpdate() {
677    mEventQueue.invalidate();
678}
679
680void SurfaceFlinger::signalRefresh() {
681    mEventQueue.refresh();
682}
683
684status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
685        nsecs_t reltime, uint32_t flags) {
686    return mEventQueue.postMessage(msg, reltime);
687}
688
689status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
690        nsecs_t reltime, uint32_t flags) {
691    status_t res = mEventQueue.postMessage(msg, reltime);
692    if (res == NO_ERROR) {
693        msg->wait();
694    }
695    return res;
696}
697
698bool SurfaceFlinger::threadLoop() {
699    waitForEvent();
700    return true;
701}
702
703void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
704    if (mEventThread == NULL) {
705        // This is a temporary workaround for b/7145521.  A non-null pointer
706        // does not mean EventThread has finished initializing, so this
707        // is not a correct fix.
708        ALOGW("WARNING: EventThread not started, ignoring vsync");
709        return;
710    }
711    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
712        // we should only receive DisplayDevice::DisplayType from the vsync callback
713        mEventThread->onVSyncReceived(type, timestamp);
714    }
715}
716
717void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
718    if (mEventThread == NULL) {
719        // This is a temporary workaround for b/7145521.  A non-null pointer
720        // does not mean EventThread has finished initializing, so this
721        // is not a correct fix.
722        ALOGW("WARNING: EventThread not started, ignoring hotplug");
723        return;
724    }
725
726    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
727        Mutex::Autolock _l(mStateLock);
728        if (connected) {
729            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
730        } else {
731            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
732            mBuiltinDisplays[type].clear();
733        }
734        setTransactionFlags(eDisplayTransactionNeeded);
735
736        // Defer EventThread notification until SF has updated mDisplays.
737    }
738}
739
740void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
741    getHwComposer().eventControl(disp, event, enabled);
742}
743
744void SurfaceFlinger::onMessageReceived(int32_t what) {
745    ATRACE_CALL();
746    switch (what) {
747    case MessageQueue::INVALIDATE:
748        handleMessageTransaction();
749        handleMessageInvalidate();
750        signalRefresh();
751        break;
752    case MessageQueue::REFRESH:
753        handleMessageRefresh();
754        break;
755    }
756}
757
758void SurfaceFlinger::handleMessageTransaction() {
759    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
760    if (transactionFlags) {
761        handleTransaction(transactionFlags);
762    }
763}
764
765void SurfaceFlinger::handleMessageInvalidate() {
766    ATRACE_CALL();
767    handlePageFlip();
768}
769
770void SurfaceFlinger::handleMessageRefresh() {
771    ATRACE_CALL();
772    preComposition();
773    rebuildLayerStacks();
774    setUpHWComposer();
775    doDebugFlashRegions();
776    doComposition();
777    postComposition();
778}
779
780void SurfaceFlinger::doDebugFlashRegions()
781{
782    // is debugging enabled
783    if (CC_LIKELY(!mDebugRegion))
784        return;
785
786    const bool repaintEverything = mRepaintEverything;
787    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
788        const sp<DisplayDevice>& hw(mDisplays[dpy]);
789        if (hw->canDraw()) {
790            // transform the dirty region into this screen's coordinate space
791            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
792            if (!dirtyRegion.isEmpty()) {
793                // redraw the whole screen
794                doComposeSurfaces(hw, Region(hw->bounds()));
795
796                // and draw the dirty region
797                glDisable(GL_TEXTURE_EXTERNAL_OES);
798                glDisable(GL_TEXTURE_2D);
799                glDisable(GL_BLEND);
800                glColor4f(1, 0, 1, 1);
801                const int32_t height = hw->getHeight();
802                Region::const_iterator it = dirtyRegion.begin();
803                Region::const_iterator const end = dirtyRegion.end();
804                while (it != end) {
805                    const Rect& r = *it++;
806                    GLfloat vertices[][2] = {
807                            { (GLfloat) r.left,  (GLfloat) (height - r.top) },
808                            { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
809                            { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
810                            { (GLfloat) r.right, (GLfloat) (height - r.top) }
811                    };
812                    glVertexPointer(2, GL_FLOAT, 0, vertices);
813                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
814                }
815                hw->compositionComplete();
816                hw->swapBuffers(getHwComposer());
817            }
818        }
819    }
820
821    postFramebuffer();
822
823    if (mDebugRegion > 1) {
824        usleep(mDebugRegion * 1000);
825    }
826
827    HWComposer& hwc(getHwComposer());
828    if (hwc.initCheck() == NO_ERROR) {
829        status_t err = hwc.prepare();
830        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
831    }
832}
833
834void SurfaceFlinger::preComposition()
835{
836    bool needExtraInvalidate = false;
837    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
838    const size_t count = currentLayers.size();
839    for (size_t i=0 ; i<count ; i++) {
840        if (currentLayers[i]->onPreComposition()) {
841            needExtraInvalidate = true;
842        }
843    }
844    if (needExtraInvalidate) {
845        signalLayerUpdate();
846    }
847}
848
849void SurfaceFlinger::postComposition()
850{
851    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
852    const size_t count = currentLayers.size();
853    for (size_t i=0 ; i<count ; i++) {
854        currentLayers[i]->onPostComposition();
855    }
856
857    if (mAnimCompositionPending) {
858        mAnimCompositionPending = false;
859
860        const HWComposer& hwc = getHwComposer();
861        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
862        if (presentFence->isValid()) {
863            mAnimFrameTracker.setActualPresentFence(presentFence);
864        } else {
865            // The HWC doesn't support present fences, so use the refresh
866            // timestamp instead.
867            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
868            mAnimFrameTracker.setActualPresentTime(presentTime);
869        }
870        mAnimFrameTracker.advanceFrame();
871    }
872}
873
874void SurfaceFlinger::rebuildLayerStacks() {
875    // rebuild the visible layer list per screen
876    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
877        ATRACE_CALL();
878        mVisibleRegionsDirty = false;
879        invalidateHwcGeometry();
880
881        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
882        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
883            Region opaqueRegion;
884            Region dirtyRegion;
885            Vector< sp<Layer> > layersSortedByZ;
886            const sp<DisplayDevice>& hw(mDisplays[dpy]);
887            const Transform& tr(hw->getTransform());
888            const Rect bounds(hw->getBounds());
889            if (hw->canDraw()) {
890                SurfaceFlinger::computeVisibleRegions(currentLayers,
891                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
892
893                const size_t count = currentLayers.size();
894                for (size_t i=0 ; i<count ; i++) {
895                    const sp<Layer>& layer(currentLayers[i]);
896                    const Layer::State& s(layer->drawingState());
897                    if (s.layerStack == hw->getLayerStack()) {
898                        Region drawRegion(tr.transform(
899                                layer->visibleNonTransparentRegion));
900                        drawRegion.andSelf(bounds);
901                        if (!drawRegion.isEmpty()) {
902                            layersSortedByZ.add(layer);
903                        }
904                    }
905                }
906            }
907            hw->setVisibleLayersSortedByZ(layersSortedByZ);
908            hw->undefinedRegion.set(bounds);
909            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
910            hw->dirtyRegion.orSelf(dirtyRegion);
911        }
912    }
913}
914
915void SurfaceFlinger::setUpHWComposer() {
916    HWComposer& hwc(getHwComposer());
917    if (hwc.initCheck() == NO_ERROR) {
918        // build the h/w work list
919        if (CC_UNLIKELY(mHwWorkListDirty)) {
920            mHwWorkListDirty = false;
921            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
922                sp<const DisplayDevice> hw(mDisplays[dpy]);
923                const int32_t id = hw->getHwcDisplayId();
924                if (id >= 0) {
925                    const Vector< sp<Layer> >& currentLayers(
926                        hw->getVisibleLayersSortedByZ());
927                    const size_t count = currentLayers.size();
928                    if (hwc.createWorkList(id, count) == NO_ERROR) {
929                        HWComposer::LayerListIterator cur = hwc.begin(id);
930                        const HWComposer::LayerListIterator end = hwc.end(id);
931                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
932                            const sp<Layer>& layer(currentLayers[i]);
933                            layer->setGeometry(hw, *cur);
934                            if (mDebugDisableHWC || mDebugRegion) {
935                                cur->setSkip(true);
936                            }
937                        }
938                    }
939                }
940            }
941        }
942
943        // set the per-frame data
944        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
945            sp<const DisplayDevice> hw(mDisplays[dpy]);
946            const int32_t id = hw->getHwcDisplayId();
947            if (id >= 0) {
948                const Vector< sp<Layer> >& currentLayers(
949                    hw->getVisibleLayersSortedByZ());
950                const size_t count = currentLayers.size();
951                HWComposer::LayerListIterator cur = hwc.begin(id);
952                const HWComposer::LayerListIterator end = hwc.end(id);
953                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
954                    /*
955                     * update the per-frame h/w composer data for each layer
956                     * and build the transparent region of the FB
957                     */
958                    const sp<Layer>& layer(currentLayers[i]);
959                    layer->setPerFrameData(hw, *cur);
960                }
961            }
962        }
963
964        status_t err = hwc.prepare();
965        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
966    }
967}
968
969void SurfaceFlinger::doComposition() {
970    ATRACE_CALL();
971    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
972    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
973        const sp<DisplayDevice>& hw(mDisplays[dpy]);
974        if (hw->canDraw()) {
975            // transform the dirty region into this screen's coordinate space
976            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
977
978            // repaint the framebuffer (if needed)
979            doDisplayComposition(hw, dirtyRegion);
980
981            hw->dirtyRegion.clear();
982            hw->flip(hw->swapRegion);
983            hw->swapRegion.clear();
984        }
985        // inform the h/w that we're done compositing
986        hw->compositionComplete();
987    }
988    postFramebuffer();
989}
990
991void SurfaceFlinger::postFramebuffer()
992{
993    ATRACE_CALL();
994
995    const nsecs_t now = systemTime();
996    mDebugInSwapBuffers = now;
997
998    HWComposer& hwc(getHwComposer());
999    if (hwc.initCheck() == NO_ERROR) {
1000        if (!hwc.supportsFramebufferTarget()) {
1001            // EGL spec says:
1002            //   "surface must be bound to the calling thread's current context,
1003            //    for the current rendering API."
1004            DisplayDevice::makeCurrent(mEGLDisplay,
1005                    getDefaultDisplayDevice(), mEGLContext);
1006        }
1007        hwc.commit();
1008    }
1009
1010    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1011        sp<const DisplayDevice> hw(mDisplays[dpy]);
1012        const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
1013        hw->onSwapBuffersCompleted(hwc);
1014        const size_t count = currentLayers.size();
1015        int32_t id = hw->getHwcDisplayId();
1016        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1017            HWComposer::LayerListIterator cur = hwc.begin(id);
1018            const HWComposer::LayerListIterator end = hwc.end(id);
1019            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1020                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1021            }
1022        } else {
1023            for (size_t i = 0; i < count; i++) {
1024                currentLayers[i]->onLayerDisplayed(hw, NULL);
1025            }
1026        }
1027    }
1028
1029    mLastSwapBufferTime = systemTime() - now;
1030    mDebugInSwapBuffers = 0;
1031}
1032
1033void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1034{
1035    ATRACE_CALL();
1036
1037    Mutex::Autolock _l(mStateLock);
1038    const nsecs_t now = systemTime();
1039    mDebugInTransaction = now;
1040
1041    // Here we're guaranteed that some transaction flags are set
1042    // so we can call handleTransactionLocked() unconditionally.
1043    // We call getTransactionFlags(), which will also clear the flags,
1044    // with mStateLock held to guarantee that mCurrentState won't change
1045    // until the transaction is committed.
1046
1047    transactionFlags = getTransactionFlags(eTransactionMask);
1048    handleTransactionLocked(transactionFlags);
1049
1050    mLastTransactionTime = systemTime() - now;
1051    mDebugInTransaction = 0;
1052    invalidateHwcGeometry();
1053    // here the transaction has been committed
1054}
1055
1056void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1057{
1058    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1059    const size_t count = currentLayers.size();
1060
1061    /*
1062     * Traversal of the children
1063     * (perform the transaction for each of them if needed)
1064     */
1065
1066    if (transactionFlags & eTraversalNeeded) {
1067        for (size_t i=0 ; i<count ; i++) {
1068            const sp<Layer>& layer(currentLayers[i]);
1069            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1070            if (!trFlags) continue;
1071
1072            const uint32_t flags = layer->doTransaction(0);
1073            if (flags & Layer::eVisibleRegion)
1074                mVisibleRegionsDirty = true;
1075        }
1076    }
1077
1078    /*
1079     * Perform display own transactions if needed
1080     */
1081
1082    if (transactionFlags & eDisplayTransactionNeeded) {
1083        // here we take advantage of Vector's copy-on-write semantics to
1084        // improve performance by skipping the transaction entirely when
1085        // know that the lists are identical
1086        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1087        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1088        if (!curr.isIdenticalTo(draw)) {
1089            mVisibleRegionsDirty = true;
1090            const size_t cc = curr.size();
1091                  size_t dc = draw.size();
1092
1093            // find the displays that were removed
1094            // (ie: in drawing state but not in current state)
1095            // also handle displays that changed
1096            // (ie: displays that are in both lists)
1097            for (size_t i=0 ; i<dc ; i++) {
1098                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1099                if (j < 0) {
1100                    // in drawing state but not in current state
1101                    if (!draw[i].isMainDisplay()) {
1102                        // Call makeCurrent() on the primary display so we can
1103                        // be sure that nothing associated with this display
1104                        // is current.
1105                        const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice());
1106                        DisplayDevice::makeCurrent(mEGLDisplay, defaultDisplay, mEGLContext);
1107                        sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i)));
1108                        if (hw != NULL)
1109                            hw->disconnect(getHwComposer());
1110                        if (draw[i].type < DisplayDevice::NUM_DISPLAY_TYPES)
1111                            mEventThread->onHotplugReceived(draw[i].type, false);
1112                        mDisplays.removeItem(draw.keyAt(i));
1113                    } else {
1114                        ALOGW("trying to remove the main display");
1115                    }
1116                } else {
1117                    // this display is in both lists. see if something changed.
1118                    const DisplayDeviceState& state(curr[j]);
1119                    const wp<IBinder>& display(curr.keyAt(j));
1120                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1121                        // changing the surface is like destroying and
1122                        // recreating the DisplayDevice, so we just remove it
1123                        // from the drawing state, so that it get re-added
1124                        // below.
1125                        sp<DisplayDevice> hw(getDisplayDevice(display));
1126                        if (hw != NULL)
1127                            hw->disconnect(getHwComposer());
1128                        mDisplays.removeItem(display);
1129                        mDrawingState.displays.removeItemsAt(i);
1130                        dc--; i--;
1131                        // at this point we must loop to the next item
1132                        continue;
1133                    }
1134
1135                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1136                    if (disp != NULL) {
1137                        if (state.layerStack != draw[i].layerStack) {
1138                            disp->setLayerStack(state.layerStack);
1139                        }
1140                        if ((state.orientation != draw[i].orientation)
1141                                || (state.viewport != draw[i].viewport)
1142                                || (state.frame != draw[i].frame))
1143                        {
1144                            disp->setProjection(state.orientation,
1145                                    state.viewport, state.frame);
1146                        }
1147                    }
1148                }
1149            }
1150
1151            // find displays that were added
1152            // (ie: in current state but not in drawing state)
1153            for (size_t i=0 ; i<cc ; i++) {
1154                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1155                    const DisplayDeviceState& state(curr[i]);
1156
1157                    sp<DisplaySurface> dispSurface;
1158                    int32_t hwcDisplayId = -1;
1159                    if (state.isVirtualDisplay()) {
1160                        // Virtual displays without a surface are dormant:
1161                        // they have external state (layer stack, projection,
1162                        // etc.) but no internal state (i.e. a DisplayDevice).
1163                        if (state.surface != NULL) {
1164                            hwcDisplayId = allocateHwcDisplayId(state.type);
1165                            dispSurface = new VirtualDisplaySurface(
1166                                    *mHwc, hwcDisplayId, state.surface,
1167                                    state.displayName);
1168                        }
1169                    } else {
1170                        ALOGE_IF(state.surface!=NULL,
1171                                "adding a supported display, but rendering "
1172                                "surface is provided (%p), ignoring it",
1173                                state.surface.get());
1174                        hwcDisplayId = allocateHwcDisplayId(state.type);
1175                        // for supported (by hwc) displays we provide our
1176                        // own rendering surface
1177                        dispSurface = new FramebufferSurface(*mHwc, state.type);
1178                    }
1179
1180                    const wp<IBinder>& display(curr.keyAt(i));
1181                    if (dispSurface != NULL) {
1182                        sp<DisplayDevice> hw = new DisplayDevice(this,
1183                                state.type, hwcDisplayId, state.isSecure,
1184                                display, dispSurface, mEGLConfig);
1185                        hw->setLayerStack(state.layerStack);
1186                        hw->setProjection(state.orientation,
1187                                state.viewport, state.frame);
1188                        hw->setDisplayName(state.displayName);
1189                        mDisplays.add(display, hw);
1190                        if (state.isVirtualDisplay()) {
1191                            if (hwcDisplayId >= 0) {
1192                                mHwc->setVirtualDisplayProperties(hwcDisplayId,
1193                                        hw->getWidth(), hw->getHeight(),
1194                                        hw->getFormat());
1195                            }
1196                        } else {
1197                            mEventThread->onHotplugReceived(state.type, true);
1198                        }
1199                    }
1200                }
1201            }
1202        }
1203    }
1204
1205    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1206        // The transform hint might have changed for some layers
1207        // (either because a display has changed, or because a layer
1208        // as changed).
1209        //
1210        // Walk through all the layers in currentLayers,
1211        // and update their transform hint.
1212        //
1213        // If a layer is visible only on a single display, then that
1214        // display is used to calculate the hint, otherwise we use the
1215        // default display.
1216        //
1217        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1218        // the hint is set before we acquire a buffer from the surface texture.
1219        //
1220        // NOTE: layer transactions have taken place already, so we use their
1221        // drawing state. However, SurfaceFlinger's own transaction has not
1222        // happened yet, so we must use the current state layer list
1223        // (soon to become the drawing state list).
1224        //
1225        sp<const DisplayDevice> disp;
1226        uint32_t currentlayerStack = 0;
1227        for (size_t i=0; i<count; i++) {
1228            // NOTE: we rely on the fact that layers are sorted by
1229            // layerStack first (so we don't have to traverse the list
1230            // of displays for every layer).
1231            const sp<Layer>& layer(currentLayers[i]);
1232            uint32_t layerStack = layer->drawingState().layerStack;
1233            if (i==0 || currentlayerStack != layerStack) {
1234                currentlayerStack = layerStack;
1235                // figure out if this layerstack is mirrored
1236                // (more than one display) if so, pick the default display,
1237                // if not, pick the only display it's on.
1238                disp.clear();
1239                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1240                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1241                    if (hw->getLayerStack() == currentlayerStack) {
1242                        if (disp == NULL) {
1243                            disp = hw;
1244                        } else {
1245                            disp = getDefaultDisplayDevice();
1246                            break;
1247                        }
1248                    }
1249                }
1250            }
1251            if (disp != NULL) {
1252                // presumably this means this layer is using a layerStack
1253                // that is not visible on any display
1254                layer->updateTransformHint(disp);
1255            }
1256        }
1257    }
1258
1259
1260    /*
1261     * Perform our own transaction if needed
1262     */
1263
1264    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1265    if (currentLayers.size() > previousLayers.size()) {
1266        // layers have been added
1267        mVisibleRegionsDirty = true;
1268    }
1269
1270    // some layers might have been removed, so
1271    // we need to update the regions they're exposing.
1272    if (mLayersRemoved) {
1273        mLayersRemoved = false;
1274        mVisibleRegionsDirty = true;
1275        const size_t count = previousLayers.size();
1276        for (size_t i=0 ; i<count ; i++) {
1277            const sp<Layer>& layer(previousLayers[i]);
1278            if (currentLayers.indexOf(layer) < 0) {
1279                // this layer is not visible anymore
1280                // TODO: we could traverse the tree from front to back and
1281                //       compute the actual visible region
1282                // TODO: we could cache the transformed region
1283                const Layer::State& s(layer->drawingState());
1284                Region visibleReg = s.transform.transform(
1285                        Region(Rect(s.active.w, s.active.h)));
1286                invalidateLayerStack(s.layerStack, visibleReg);
1287            }
1288        }
1289    }
1290
1291    commitTransaction();
1292}
1293
1294void SurfaceFlinger::commitTransaction()
1295{
1296    if (!mLayersPendingRemoval.isEmpty()) {
1297        // Notify removed layers now that they can't be drawn from
1298        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1299            mLayersPendingRemoval[i]->onRemoved();
1300        }
1301        mLayersPendingRemoval.clear();
1302    }
1303
1304    // If this transaction is part of a window animation then the next frame
1305    // we composite should be considered an animation as well.
1306    mAnimCompositionPending = mAnimTransactionPending;
1307
1308    mDrawingState = mCurrentState;
1309    mTransactionPending = false;
1310    mAnimTransactionPending = false;
1311    mTransactionCV.broadcast();
1312}
1313
1314void SurfaceFlinger::computeVisibleRegions(
1315        const LayerVector& currentLayers, uint32_t layerStack,
1316        Region& outDirtyRegion, Region& outOpaqueRegion)
1317{
1318    ATRACE_CALL();
1319
1320    Region aboveOpaqueLayers;
1321    Region aboveCoveredLayers;
1322    Region dirty;
1323
1324    outDirtyRegion.clear();
1325
1326    size_t i = currentLayers.size();
1327    while (i--) {
1328        const sp<Layer>& layer = currentLayers[i];
1329
1330        // start with the whole surface at its current location
1331        const Layer::State& s(layer->drawingState());
1332
1333        // only consider the layers on the given layer stack
1334        if (s.layerStack != layerStack)
1335            continue;
1336
1337        /*
1338         * opaqueRegion: area of a surface that is fully opaque.
1339         */
1340        Region opaqueRegion;
1341
1342        /*
1343         * visibleRegion: area of a surface that is visible on screen
1344         * and not fully transparent. This is essentially the layer's
1345         * footprint minus the opaque regions above it.
1346         * Areas covered by a translucent surface are considered visible.
1347         */
1348        Region visibleRegion;
1349
1350        /*
1351         * coveredRegion: area of a surface that is covered by all
1352         * visible regions above it (which includes the translucent areas).
1353         */
1354        Region coveredRegion;
1355
1356        /*
1357         * transparentRegion: area of a surface that is hinted to be completely
1358         * transparent. This is only used to tell when the layer has no visible
1359         * non-transparent regions and can be removed from the layer list. It
1360         * does not affect the visibleRegion of this layer or any layers
1361         * beneath it. The hint may not be correct if apps don't respect the
1362         * SurfaceView restrictions (which, sadly, some don't).
1363         */
1364        Region transparentRegion;
1365
1366
1367        // handle hidden surfaces by setting the visible region to empty
1368        if (CC_LIKELY(layer->isVisible())) {
1369            const bool translucent = !layer->isOpaque();
1370            Rect bounds(s.transform.transform(layer->computeBounds()));
1371            visibleRegion.set(bounds);
1372            if (!visibleRegion.isEmpty()) {
1373                // Remove the transparent area from the visible region
1374                if (translucent) {
1375                    const Transform tr(s.transform);
1376                    if (tr.transformed()) {
1377                        if (tr.preserveRects()) {
1378                            // transform the transparent region
1379                            transparentRegion = tr.transform(s.activeTransparentRegion);
1380                        } else {
1381                            // transformation too complex, can't do the
1382                            // transparent region optimization.
1383                            transparentRegion.clear();
1384                        }
1385                    } else {
1386                        transparentRegion = s.activeTransparentRegion;
1387                    }
1388                }
1389
1390                // compute the opaque region
1391                const int32_t layerOrientation = s.transform.getOrientation();
1392                if (s.alpha==255 && !translucent &&
1393                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1394                    // the opaque region is the layer's footprint
1395                    opaqueRegion = visibleRegion;
1396                }
1397            }
1398        }
1399
1400        // Clip the covered region to the visible region
1401        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1402
1403        // Update aboveCoveredLayers for next (lower) layer
1404        aboveCoveredLayers.orSelf(visibleRegion);
1405
1406        // subtract the opaque region covered by the layers above us
1407        visibleRegion.subtractSelf(aboveOpaqueLayers);
1408
1409        // compute this layer's dirty region
1410        if (layer->contentDirty) {
1411            // we need to invalidate the whole region
1412            dirty = visibleRegion;
1413            // as well, as the old visible region
1414            dirty.orSelf(layer->visibleRegion);
1415            layer->contentDirty = false;
1416        } else {
1417            /* compute the exposed region:
1418             *   the exposed region consists of two components:
1419             *   1) what's VISIBLE now and was COVERED before
1420             *   2) what's EXPOSED now less what was EXPOSED before
1421             *
1422             * note that (1) is conservative, we start with the whole
1423             * visible region but only keep what used to be covered by
1424             * something -- which mean it may have been exposed.
1425             *
1426             * (2) handles areas that were not covered by anything but got
1427             * exposed because of a resize.
1428             */
1429            const Region newExposed = visibleRegion - coveredRegion;
1430            const Region oldVisibleRegion = layer->visibleRegion;
1431            const Region oldCoveredRegion = layer->coveredRegion;
1432            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1433            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1434        }
1435        dirty.subtractSelf(aboveOpaqueLayers);
1436
1437        // accumulate to the screen dirty region
1438        outDirtyRegion.orSelf(dirty);
1439
1440        // Update aboveOpaqueLayers for next (lower) layer
1441        aboveOpaqueLayers.orSelf(opaqueRegion);
1442
1443        // Store the visible region in screen space
1444        layer->setVisibleRegion(visibleRegion);
1445        layer->setCoveredRegion(coveredRegion);
1446        layer->setVisibleNonTransparentRegion(
1447                visibleRegion.subtract(transparentRegion));
1448    }
1449
1450    outOpaqueRegion = aboveOpaqueLayers;
1451}
1452
1453void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1454        const Region& dirty) {
1455    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1456        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1457        if (hw->getLayerStack() == layerStack) {
1458            hw->dirtyRegion.orSelf(dirty);
1459        }
1460    }
1461}
1462
1463void SurfaceFlinger::handlePageFlip()
1464{
1465    Region dirtyRegion;
1466
1467    bool visibleRegions = false;
1468    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1469    const size_t count = currentLayers.size();
1470    for (size_t i=0 ; i<count ; i++) {
1471        const sp<Layer>& layer(currentLayers[i]);
1472        const Region dirty(layer->latchBuffer(visibleRegions));
1473        const Layer::State& s(layer->drawingState());
1474        invalidateLayerStack(s.layerStack, dirty);
1475    }
1476
1477    mVisibleRegionsDirty |= visibleRegions;
1478}
1479
1480void SurfaceFlinger::invalidateHwcGeometry()
1481{
1482    mHwWorkListDirty = true;
1483}
1484
1485
1486void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1487        const Region& inDirtyRegion)
1488{
1489    Region dirtyRegion(inDirtyRegion);
1490
1491    // compute the invalid region
1492    hw->swapRegion.orSelf(dirtyRegion);
1493
1494    uint32_t flags = hw->getFlags();
1495    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1496        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1497        // takes a rectangle, we must make sure to update that whole
1498        // rectangle in that case
1499        dirtyRegion.set(hw->swapRegion.bounds());
1500    } else {
1501        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1502            // We need to redraw the rectangle that will be updated
1503            // (pushed to the framebuffer).
1504            // This is needed because PARTIAL_UPDATES only takes one
1505            // rectangle instead of a region (see DisplayDevice::flip())
1506            dirtyRegion.set(hw->swapRegion.bounds());
1507        } else {
1508            // we need to redraw everything (the whole screen)
1509            dirtyRegion.set(hw->bounds());
1510            hw->swapRegion = dirtyRegion;
1511        }
1512    }
1513
1514    doComposeSurfaces(hw, dirtyRegion);
1515
1516    // update the swap region and clear the dirty region
1517    hw->swapRegion.orSelf(dirtyRegion);
1518
1519    // swap buffers (presentation)
1520    hw->swapBuffers(getHwComposer());
1521}
1522
1523void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1524{
1525    const int32_t id = hw->getHwcDisplayId();
1526    HWComposer& hwc(getHwComposer());
1527    HWComposer::LayerListIterator cur = hwc.begin(id);
1528    const HWComposer::LayerListIterator end = hwc.end(id);
1529
1530    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1531    if (hasGlesComposition) {
1532        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1533
1534        // set the frame buffer
1535        glMatrixMode(GL_MODELVIEW);
1536        glLoadIdentity();
1537
1538        // Never touch the framebuffer if we don't have any framebuffer layers
1539        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1540        if (hasHwcComposition) {
1541            // when using overlays, we assume a fully transparent framebuffer
1542            // NOTE: we could reduce how much we need to clear, for instance
1543            // remove where there are opaque FB layers. however, on some
1544            // GPUs doing a "clean slate" glClear might be more efficient.
1545            // We'll revisit later if needed.
1546            glClearColor(0, 0, 0, 0);
1547            glClear(GL_COLOR_BUFFER_BIT);
1548        } else {
1549            // we start with the whole screen area
1550            const Region bounds(hw->getBounds());
1551
1552            // we remove the scissor part
1553            // we're left with the letterbox region
1554            // (common case is that letterbox ends-up being empty)
1555            const Region letterbox(bounds.subtract(hw->getScissor()));
1556
1557            // compute the area to clear
1558            Region region(hw->undefinedRegion.merge(letterbox));
1559
1560            // but limit it to the dirty region
1561            region.andSelf(dirty);
1562
1563            // screen is already cleared here
1564            if (!region.isEmpty()) {
1565                // can happen with SurfaceView
1566                drawWormhole(hw, region);
1567            }
1568        }
1569
1570        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1571            // just to be on the safe side, we don't set the
1572            // scissor on the main display. It should never be needed
1573            // anyways (though in theory it could since the API allows it).
1574            const Rect& bounds(hw->getBounds());
1575            const Rect& scissor(hw->getScissor());
1576            if (scissor != bounds) {
1577                // scissor doesn't match the screen's dimensions, so we
1578                // need to clear everything outside of it and enable
1579                // the GL scissor so we don't draw anything where we shouldn't
1580                const GLint height = hw->getHeight();
1581                glScissor(scissor.left, height - scissor.bottom,
1582                        scissor.getWidth(), scissor.getHeight());
1583                // enable scissor for this frame
1584                glEnable(GL_SCISSOR_TEST);
1585            }
1586        }
1587    }
1588
1589    /*
1590     * and then, render the layers targeted at the framebuffer
1591     */
1592
1593    const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
1594    const size_t count = layers.size();
1595    const Transform& tr = hw->getTransform();
1596    if (cur != end) {
1597        // we're using h/w composer
1598        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1599            const sp<Layer>& layer(layers[i]);
1600            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1601            if (!clip.isEmpty()) {
1602                switch (cur->getCompositionType()) {
1603                    case HWC_OVERLAY: {
1604                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1605                                && i
1606                                && layer->isOpaque()
1607                                && hasGlesComposition) {
1608                            // never clear the very first layer since we're
1609                            // guaranteed the FB is already cleared
1610                            layer->clearWithOpenGL(hw, clip);
1611                        }
1612                        break;
1613                    }
1614                    case HWC_FRAMEBUFFER: {
1615                        layer->draw(hw, clip);
1616                        break;
1617                    }
1618                    case HWC_FRAMEBUFFER_TARGET: {
1619                        // this should not happen as the iterator shouldn't
1620                        // let us get there.
1621                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1622                        break;
1623                    }
1624                }
1625            }
1626            layer->setAcquireFence(hw, *cur);
1627        }
1628    } else {
1629        // we're not using h/w composer
1630        for (size_t i=0 ; i<count ; ++i) {
1631            const sp<Layer>& layer(layers[i]);
1632            const Region clip(dirty.intersect(
1633                    tr.transform(layer->visibleRegion)));
1634            if (!clip.isEmpty()) {
1635                layer->draw(hw, clip);
1636            }
1637        }
1638    }
1639
1640    // disable scissor at the end of the frame
1641    glDisable(GL_SCISSOR_TEST);
1642}
1643
1644void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1645        const Region& region) const
1646{
1647    glDisable(GL_TEXTURE_EXTERNAL_OES);
1648    glDisable(GL_TEXTURE_2D);
1649    glDisable(GL_BLEND);
1650    glColor4f(0,0,0,0);
1651
1652    const int32_t height = hw->getHeight();
1653    Region::const_iterator it = region.begin();
1654    Region::const_iterator const end = region.end();
1655    while (it != end) {
1656        const Rect& r = *it++;
1657        GLfloat vertices[][2] = {
1658                { (GLfloat) r.left,  (GLfloat) (height - r.top) },
1659                { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
1660                { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
1661                { (GLfloat) r.right, (GLfloat) (height - r.top) }
1662        };
1663        glVertexPointer(2, GL_FLOAT, 0, vertices);
1664        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1665    }
1666}
1667
1668void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1669        const sp<IBinder>& handle,
1670        const sp<IGraphicBufferProducer>& gbc,
1671        const sp<Layer>& lbc)
1672{
1673    // attach this layer to the client
1674    client->attachLayer(handle, lbc);
1675
1676    // add this layer to the current state list
1677    Mutex::Autolock _l(mStateLock);
1678    mCurrentState.layersSortedByZ.add(lbc);
1679    mGraphicBufferProducerList.add(gbc->asBinder());
1680}
1681
1682status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer)
1683{
1684    Mutex::Autolock _l(mStateLock);
1685    ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
1686    if (index >= 0) {
1687        mLayersPendingRemoval.push(layer);
1688        mLayersRemoved = true;
1689        setTransactionFlags(eTransactionNeeded);
1690        return NO_ERROR;
1691    }
1692    return status_t(index);
1693}
1694
1695uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1696{
1697    return android_atomic_release_load(&mTransactionFlags);
1698}
1699
1700uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1701{
1702    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1703}
1704
1705uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1706{
1707    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1708    if ((old & flags)==0) { // wake the server up
1709        signalTransaction();
1710    }
1711    return old;
1712}
1713
1714void SurfaceFlinger::setTransactionState(
1715        const Vector<ComposerState>& state,
1716        const Vector<DisplayState>& displays,
1717        uint32_t flags)
1718{
1719    ATRACE_CALL();
1720    Mutex::Autolock _l(mStateLock);
1721    uint32_t transactionFlags = 0;
1722
1723    if (flags & eAnimation) {
1724        // For window updates that are part of an animation we must wait for
1725        // previous animation "frames" to be handled.
1726        while (mAnimTransactionPending) {
1727            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1728            if (CC_UNLIKELY(err != NO_ERROR)) {
1729                // just in case something goes wrong in SF, return to the
1730                // caller after a few seconds.
1731                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1732                        "waiting for previous animation frame");
1733                mAnimTransactionPending = false;
1734                break;
1735            }
1736        }
1737    }
1738
1739    size_t count = displays.size();
1740    for (size_t i=0 ; i<count ; i++) {
1741        const DisplayState& s(displays[i]);
1742        transactionFlags |= setDisplayStateLocked(s);
1743    }
1744
1745    count = state.size();
1746    for (size_t i=0 ; i<count ; i++) {
1747        const ComposerState& s(state[i]);
1748        // Here we need to check that the interface we're given is indeed
1749        // one of our own. A malicious client could give us a NULL
1750        // IInterface, or one of its own or even one of our own but a
1751        // different type. All these situations would cause us to crash.
1752        //
1753        // NOTE: it would be better to use RTTI as we could directly check
1754        // that we have a Client*. however, RTTI is disabled in Android.
1755        if (s.client != NULL) {
1756            sp<IBinder> binder = s.client->asBinder();
1757            if (binder != NULL) {
1758                String16 desc(binder->getInterfaceDescriptor());
1759                if (desc == ISurfaceComposerClient::descriptor) {
1760                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1761                    transactionFlags |= setClientStateLocked(client, s.state);
1762                }
1763            }
1764        }
1765    }
1766
1767    if (transactionFlags) {
1768        // this triggers the transaction
1769        setTransactionFlags(transactionFlags);
1770
1771        // if this is a synchronous transaction, wait for it to take effect
1772        // before returning.
1773        if (flags & eSynchronous) {
1774            mTransactionPending = true;
1775        }
1776        if (flags & eAnimation) {
1777            mAnimTransactionPending = true;
1778        }
1779        while (mTransactionPending) {
1780            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1781            if (CC_UNLIKELY(err != NO_ERROR)) {
1782                // just in case something goes wrong in SF, return to the
1783                // called after a few seconds.
1784                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1785                mTransactionPending = false;
1786                break;
1787            }
1788        }
1789    }
1790}
1791
1792uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1793{
1794    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1795    if (dpyIdx < 0)
1796        return 0;
1797
1798    uint32_t flags = 0;
1799    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1800    if (disp.isValid()) {
1801        const uint32_t what = s.what;
1802        if (what & DisplayState::eSurfaceChanged) {
1803            if (disp.surface->asBinder() != s.surface->asBinder()) {
1804                disp.surface = s.surface;
1805                flags |= eDisplayTransactionNeeded;
1806            }
1807        }
1808        if (what & DisplayState::eLayerStackChanged) {
1809            if (disp.layerStack != s.layerStack) {
1810                disp.layerStack = s.layerStack;
1811                flags |= eDisplayTransactionNeeded;
1812            }
1813        }
1814        if (what & DisplayState::eDisplayProjectionChanged) {
1815            if (disp.orientation != s.orientation) {
1816                disp.orientation = s.orientation;
1817                flags |= eDisplayTransactionNeeded;
1818            }
1819            if (disp.frame != s.frame) {
1820                disp.frame = s.frame;
1821                flags |= eDisplayTransactionNeeded;
1822            }
1823            if (disp.viewport != s.viewport) {
1824                disp.viewport = s.viewport;
1825                flags |= eDisplayTransactionNeeded;
1826            }
1827        }
1828    }
1829    return flags;
1830}
1831
1832uint32_t SurfaceFlinger::setClientStateLocked(
1833        const sp<Client>& client,
1834        const layer_state_t& s)
1835{
1836    uint32_t flags = 0;
1837    sp<Layer> layer(client->getLayerUser(s.surface));
1838    if (layer != 0) {
1839        const uint32_t what = s.what;
1840        if (what & layer_state_t::ePositionChanged) {
1841            if (layer->setPosition(s.x, s.y))
1842                flags |= eTraversalNeeded;
1843        }
1844        if (what & layer_state_t::eLayerChanged) {
1845            // NOTE: index needs to be calculated before we update the state
1846            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1847            if (layer->setLayer(s.z)) {
1848                mCurrentState.layersSortedByZ.removeAt(idx);
1849                mCurrentState.layersSortedByZ.add(layer);
1850                // we need traversal (state changed)
1851                // AND transaction (list changed)
1852                flags |= eTransactionNeeded|eTraversalNeeded;
1853            }
1854        }
1855        if (what & layer_state_t::eSizeChanged) {
1856            if (layer->setSize(s.w, s.h)) {
1857                flags |= eTraversalNeeded;
1858            }
1859        }
1860        if (what & layer_state_t::eAlphaChanged) {
1861            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1862                flags |= eTraversalNeeded;
1863        }
1864        if (what & layer_state_t::eMatrixChanged) {
1865            if (layer->setMatrix(s.matrix))
1866                flags |= eTraversalNeeded;
1867        }
1868        if (what & layer_state_t::eTransparentRegionChanged) {
1869            if (layer->setTransparentRegionHint(s.transparentRegion))
1870                flags |= eTraversalNeeded;
1871        }
1872        if (what & layer_state_t::eVisibilityChanged) {
1873            if (layer->setFlags(s.flags, s.mask))
1874                flags |= eTraversalNeeded;
1875        }
1876        if (what & layer_state_t::eCropChanged) {
1877            if (layer->setCrop(s.crop))
1878                flags |= eTraversalNeeded;
1879        }
1880        if (what & layer_state_t::eLayerStackChanged) {
1881            // NOTE: index needs to be calculated before we update the state
1882            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1883            if (layer->setLayerStack(s.layerStack)) {
1884                mCurrentState.layersSortedByZ.removeAt(idx);
1885                mCurrentState.layersSortedByZ.add(layer);
1886                // we need traversal (state changed)
1887                // AND transaction (list changed)
1888                flags |= eTransactionNeeded|eTraversalNeeded;
1889            }
1890        }
1891    }
1892    return flags;
1893}
1894
1895status_t SurfaceFlinger::createLayer(
1896        const String8& name,
1897        const sp<Client>& client,
1898        uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
1899        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
1900{
1901    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1902    if (int32_t(w|h) < 0) {
1903        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1904                int(w), int(h));
1905        return BAD_VALUE;
1906    }
1907
1908    status_t result = NO_ERROR;
1909
1910    sp<Layer> layer;
1911
1912    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1913        case ISurfaceComposerClient::eFXSurfaceNormal:
1914            result = createNormalLayer(client,
1915                    name, w, h, flags, format,
1916                    handle, gbp, &layer);
1917            break;
1918        case ISurfaceComposerClient::eFXSurfaceDim:
1919            result = createDimLayer(client,
1920                    name, w, h, flags,
1921                    handle, gbp, &layer);
1922            break;
1923        default:
1924            result = BAD_VALUE;
1925            break;
1926    }
1927
1928    if (result == NO_ERROR) {
1929        addClientLayer(client, *handle, *gbp, layer);
1930        setTransactionFlags(eTransactionNeeded);
1931    }
1932    return result;
1933}
1934
1935status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
1936        const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
1937        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1938{
1939    // initialize the surfaces
1940    switch (format) {
1941    case PIXEL_FORMAT_TRANSPARENT:
1942    case PIXEL_FORMAT_TRANSLUCENT:
1943        format = PIXEL_FORMAT_RGBA_8888;
1944        break;
1945    case PIXEL_FORMAT_OPAQUE:
1946#ifdef NO_RGBX_8888
1947        format = PIXEL_FORMAT_RGB_565;
1948#else
1949        format = PIXEL_FORMAT_RGBX_8888;
1950#endif
1951        break;
1952    }
1953
1954#ifdef NO_RGBX_8888
1955    if (format == PIXEL_FORMAT_RGBX_8888)
1956        format = PIXEL_FORMAT_RGBA_8888;
1957#endif
1958
1959    *outLayer = new Layer(this, client, name, w, h, flags);
1960    status_t err = (*outLayer)->setBuffers(w, h, format, flags);
1961    if (err == NO_ERROR) {
1962        *handle = (*outLayer)->getHandle();
1963        *gbp = (*outLayer)->getBufferQueue();
1964    }
1965
1966    ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
1967    return err;
1968}
1969
1970status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
1971        const String8& name, uint32_t w, uint32_t h, uint32_t flags,
1972        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1973{
1974    *outLayer = new LayerDim(this, client, name, w, h, flags);
1975    *handle = (*outLayer)->getHandle();
1976    *gbp = (*outLayer)->getBufferQueue();
1977    return NO_ERROR;
1978}
1979
1980status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
1981{
1982    // called by the window manager when it wants to remove a Layer
1983    status_t err = NO_ERROR;
1984    sp<Layer> l(client->getLayerUser(handle));
1985    if (l != NULL) {
1986        err = removeLayer(l);
1987        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1988                "error removing layer=%p (%s)", l.get(), strerror(-err));
1989    }
1990    return err;
1991}
1992
1993status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
1994{
1995    // called by ~LayerCleaner() when all references to the IBinder (handle)
1996    // are gone
1997    status_t err = NO_ERROR;
1998    sp<Layer> l(layer.promote());
1999    if (l != NULL) {
2000        err = removeLayer(l);
2001        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2002                "error removing layer=%p (%s)", l.get(), strerror(-err));
2003    }
2004    return err;
2005}
2006
2007// ---------------------------------------------------------------------------
2008
2009void SurfaceFlinger::onInitializeDisplays() {
2010    // reset screen orientation and use primary layer stack
2011    Vector<ComposerState> state;
2012    Vector<DisplayState> displays;
2013    DisplayState d;
2014    d.what = DisplayState::eDisplayProjectionChanged |
2015             DisplayState::eLayerStackChanged;
2016    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2017    d.layerStack = 0;
2018    d.orientation = DisplayState::eOrientationDefault;
2019    d.frame.makeInvalid();
2020    d.viewport.makeInvalid();
2021    displays.add(d);
2022    setTransactionState(state, displays, 0);
2023    onScreenAcquired(getDefaultDisplayDevice());
2024}
2025
2026void SurfaceFlinger::initializeDisplays() {
2027    class MessageScreenInitialized : public MessageBase {
2028        SurfaceFlinger* flinger;
2029    public:
2030        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2031        virtual bool handler() {
2032            flinger->onInitializeDisplays();
2033            return true;
2034        }
2035    };
2036    sp<MessageBase> msg = new MessageScreenInitialized(this);
2037    postMessageAsync(msg);  // we may be called from main thread, use async message
2038}
2039
2040
2041void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2042    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2043    if (hw->isScreenAcquired()) {
2044        // this is expected, e.g. when power manager wakes up during boot
2045        ALOGD(" screen was previously acquired");
2046        return;
2047    }
2048
2049    hw->acquireScreen();
2050    int32_t type = hw->getDisplayType();
2051    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2052        // built-in display, tell the HWC
2053        getHwComposer().acquire(type);
2054
2055        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2056            // FIXME: eventthread only knows about the main display right now
2057            mEventThread->onScreenAcquired();
2058        }
2059    }
2060    mVisibleRegionsDirty = true;
2061    repaintEverything();
2062}
2063
2064void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2065    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2066    if (!hw->isScreenAcquired()) {
2067        ALOGD(" screen was previously released");
2068        return;
2069    }
2070
2071    hw->releaseScreen();
2072    int32_t type = hw->getDisplayType();
2073    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2074        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2075            // FIXME: eventthread only knows about the main display right now
2076            mEventThread->onScreenReleased();
2077        }
2078
2079        // built-in display, tell the HWC
2080        getHwComposer().release(type);
2081    }
2082    mVisibleRegionsDirty = true;
2083    // from this point on, SF will stop drawing on this display
2084}
2085
2086void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2087    class MessageScreenAcquired : public MessageBase {
2088        SurfaceFlinger& mFlinger;
2089        sp<IBinder> mDisplay;
2090    public:
2091        MessageScreenAcquired(SurfaceFlinger& flinger,
2092                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2093        virtual bool handler() {
2094            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2095            if (hw == NULL) {
2096                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2097            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2098                ALOGW("Attempt to unblank virtual display");
2099            } else {
2100                mFlinger.onScreenAcquired(hw);
2101            }
2102            return true;
2103        }
2104    };
2105    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2106    postMessageSync(msg);
2107}
2108
2109void SurfaceFlinger::blank(const sp<IBinder>& display) {
2110    class MessageScreenReleased : public MessageBase {
2111        SurfaceFlinger& mFlinger;
2112        sp<IBinder> mDisplay;
2113    public:
2114        MessageScreenReleased(SurfaceFlinger& flinger,
2115                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2116        virtual bool handler() {
2117            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2118            if (hw == NULL) {
2119                ALOGE("Attempt to blank null display %p", mDisplay.get());
2120            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2121                ALOGW("Attempt to blank virtual display");
2122            } else {
2123                mFlinger.onScreenReleased(hw);
2124            }
2125            return true;
2126        }
2127    };
2128    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2129    postMessageSync(msg);
2130}
2131
2132// ---------------------------------------------------------------------------
2133
2134status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2135{
2136    const size_t SIZE = 4096;
2137    char buffer[SIZE];
2138    String8 result;
2139
2140    if (!PermissionCache::checkCallingPermission(sDump)) {
2141        snprintf(buffer, SIZE, "Permission Denial: "
2142                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2143                IPCThreadState::self()->getCallingPid(),
2144                IPCThreadState::self()->getCallingUid());
2145        result.append(buffer);
2146    } else {
2147        // Try to get the main lock, but don't insist if we can't
2148        // (this would indicate SF is stuck, but we want to be able to
2149        // print something in dumpsys).
2150        int retry = 3;
2151        while (mStateLock.tryLock()<0 && --retry>=0) {
2152            usleep(1000000);
2153        }
2154        const bool locked(retry >= 0);
2155        if (!locked) {
2156            snprintf(buffer, SIZE,
2157                    "SurfaceFlinger appears to be unresponsive, "
2158                    "dumping anyways (no locks held)\n");
2159            result.append(buffer);
2160        }
2161
2162        bool dumpAll = true;
2163        size_t index = 0;
2164        size_t numArgs = args.size();
2165        if (numArgs) {
2166            if ((index < numArgs) &&
2167                    (args[index] == String16("--list"))) {
2168                index++;
2169                listLayersLocked(args, index, result, buffer, SIZE);
2170                dumpAll = false;
2171            }
2172
2173            if ((index < numArgs) &&
2174                    (args[index] == String16("--latency"))) {
2175                index++;
2176                dumpStatsLocked(args, index, result, buffer, SIZE);
2177                dumpAll = false;
2178            }
2179
2180            if ((index < numArgs) &&
2181                    (args[index] == String16("--latency-clear"))) {
2182                index++;
2183                clearStatsLocked(args, index, result, buffer, SIZE);
2184                dumpAll = false;
2185            }
2186        }
2187
2188        if (dumpAll) {
2189            dumpAllLocked(result, buffer, SIZE);
2190        }
2191
2192        if (locked) {
2193            mStateLock.unlock();
2194        }
2195    }
2196    write(fd, result.string(), result.size());
2197    return NO_ERROR;
2198}
2199
2200void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2201        String8& result, char* buffer, size_t SIZE) const
2202{
2203    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2204    const size_t count = currentLayers.size();
2205    for (size_t i=0 ; i<count ; i++) {
2206        const sp<Layer>& layer(currentLayers[i]);
2207        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2208        result.append(buffer);
2209    }
2210}
2211
2212void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2213        String8& result, char* buffer, size_t SIZE) const
2214{
2215    String8 name;
2216    if (index < args.size()) {
2217        name = String8(args[index]);
2218        index++;
2219    }
2220
2221    const nsecs_t period =
2222            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2223    result.appendFormat("%lld\n", period);
2224
2225    if (name.isEmpty()) {
2226        mAnimFrameTracker.dump(result);
2227    } else {
2228        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2229        const size_t count = currentLayers.size();
2230        for (size_t i=0 ; i<count ; i++) {
2231            const sp<Layer>& layer(currentLayers[i]);
2232            if (name == layer->getName()) {
2233                layer->dumpStats(result, buffer, SIZE);
2234            }
2235        }
2236    }
2237}
2238
2239void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2240        String8& result, char* buffer, size_t SIZE)
2241{
2242    String8 name;
2243    if (index < args.size()) {
2244        name = String8(args[index]);
2245        index++;
2246    }
2247
2248    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2249    const size_t count = currentLayers.size();
2250    for (size_t i=0 ; i<count ; i++) {
2251        const sp<Layer>& layer(currentLayers[i]);
2252        if (name.isEmpty() || (name == layer->getName())) {
2253            layer->clearStats();
2254        }
2255    }
2256
2257    mAnimFrameTracker.clear();
2258}
2259
2260/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2261{
2262    static const char* config =
2263            " [sf"
2264#ifdef NO_RGBX_8888
2265            " NO_RGBX_8888"
2266#endif
2267#ifdef HAS_CONTEXT_PRIORITY
2268            " HAS_CONTEXT_PRIORITY"
2269#endif
2270#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2271            " NEVER_DEFAULT_TO_ASYNC_MODE"
2272#endif
2273#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2274            " TARGET_DISABLE_TRIPLE_BUFFERING"
2275#endif
2276            "]";
2277    result.append(config);
2278}
2279
2280void SurfaceFlinger::dumpAllLocked(
2281        String8& result, char* buffer, size_t SIZE) const
2282{
2283    // figure out if we're stuck somewhere
2284    const nsecs_t now = systemTime();
2285    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2286    const nsecs_t inTransaction(mDebugInTransaction);
2287    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2288    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2289
2290    /*
2291     * Dump library configuration.
2292     */
2293    result.append("Build configuration:");
2294    appendSfConfigString(result);
2295    appendUiConfigString(result);
2296    appendGuiConfigString(result);
2297    result.append("\n");
2298
2299    result.append("Sync configuration: ");
2300    result.append(SyncFeatures::getInstance().toString());
2301    result.append("\n");
2302
2303    /*
2304     * Dump the visible layer list
2305     */
2306    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2307    const size_t count = currentLayers.size();
2308    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2309    result.append(buffer);
2310    for (size_t i=0 ; i<count ; i++) {
2311        const sp<Layer>& layer(currentLayers[i]);
2312        layer->dump(result, buffer, SIZE);
2313    }
2314
2315    /*
2316     * Dump Display state
2317     */
2318
2319    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2320    result.append(buffer);
2321    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2322        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2323        hw->dump(result, buffer, SIZE);
2324    }
2325
2326    /*
2327     * Dump SurfaceFlinger global state
2328     */
2329
2330    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2331    result.append(buffer);
2332
2333    HWComposer& hwc(getHwComposer());
2334    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2335    const GLExtensions& extensions(GLExtensions::getInstance());
2336
2337    snprintf(buffer, SIZE, "EGL implementation : %s\n",
2338            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
2339    result.append(buffer);
2340    snprintf(buffer, SIZE, "%s\n",
2341            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
2342    result.append(buffer);
2343
2344    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2345            extensions.getVendor(),
2346            extensions.getRenderer(),
2347            extensions.getVersion());
2348    result.append(buffer);
2349    snprintf(buffer, SIZE, "%s\n", extensions.getExtension());
2350    result.append(buffer);
2351
2352    hw->undefinedRegion.dump(result, "undefinedRegion");
2353    snprintf(buffer, SIZE,
2354            "  orientation=%d, canDraw=%d\n",
2355            hw->getOrientation(), hw->canDraw());
2356    result.append(buffer);
2357    snprintf(buffer, SIZE,
2358            "  last eglSwapBuffers() time: %f us\n"
2359            "  last transaction time     : %f us\n"
2360            "  transaction-flags         : %08x\n"
2361            "  refresh-rate              : %f fps\n"
2362            "  x-dpi                     : %f\n"
2363            "  y-dpi                     : %f\n"
2364            "  EGL_NATIVE_VISUAL_ID      : %d\n"
2365            "  gpu_to_cpu_unsupported    : %d\n"
2366            ,
2367            mLastSwapBufferTime/1000.0,
2368            mLastTransactionTime/1000.0,
2369            mTransactionFlags,
2370            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2371            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2372            hwc.getDpiY(HWC_DISPLAY_PRIMARY),
2373            mEGLNativeVisualId,
2374            !mGpuToCpuSupported);
2375    result.append(buffer);
2376
2377    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2378            inSwapBuffersDuration/1000.0);
2379    result.append(buffer);
2380
2381    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2382            inTransactionDuration/1000.0);
2383    result.append(buffer);
2384
2385    /*
2386     * VSYNC state
2387     */
2388    mEventThread->dump(result, buffer, SIZE);
2389
2390    /*
2391     * Dump HWComposer state
2392     */
2393    snprintf(buffer, SIZE, "h/w composer state:\n");
2394    result.append(buffer);
2395    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2396            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2397                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2398    result.append(buffer);
2399    hwc.dump(result, buffer, SIZE);
2400
2401    /*
2402     * Dump gralloc state
2403     */
2404    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2405    alloc.dump(result);
2406}
2407
2408const Vector< sp<Layer> >&
2409SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
2410    // Note: mStateLock is held here
2411    wp<IBinder> dpy;
2412    for (size_t i=0 ; i<mDisplays.size() ; i++) {
2413        if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
2414            dpy = mDisplays.keyAt(i);
2415            break;
2416        }
2417    }
2418    if (dpy == NULL) {
2419        ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
2420        // Just use the primary display so we have something to return
2421        dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
2422    }
2423    return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
2424}
2425
2426bool SurfaceFlinger::startDdmConnection()
2427{
2428    void* libddmconnection_dso =
2429            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2430    if (!libddmconnection_dso) {
2431        return false;
2432    }
2433    void (*DdmConnection_start)(const char* name);
2434    DdmConnection_start =
2435            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2436    if (!DdmConnection_start) {
2437        dlclose(libddmconnection_dso);
2438        return false;
2439    }
2440    (*DdmConnection_start)(getServiceName());
2441    return true;
2442}
2443
2444status_t SurfaceFlinger::onTransact(
2445    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2446{
2447    switch (code) {
2448        case CREATE_CONNECTION:
2449        case CREATE_DISPLAY:
2450        case SET_TRANSACTION_STATE:
2451        case BOOT_FINISHED:
2452        case BLANK:
2453        case UNBLANK:
2454        {
2455            // codes that require permission check
2456            IPCThreadState* ipc = IPCThreadState::self();
2457            const int pid = ipc->getCallingPid();
2458            const int uid = ipc->getCallingUid();
2459            if ((uid != AID_GRAPHICS) &&
2460                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2461                ALOGE("Permission Denial: "
2462                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2463                return PERMISSION_DENIED;
2464            }
2465            break;
2466        }
2467        case CAPTURE_SCREEN:
2468        {
2469            // codes that require permission check
2470            IPCThreadState* ipc = IPCThreadState::self();
2471            const int pid = ipc->getCallingPid();
2472            const int uid = ipc->getCallingUid();
2473            if ((uid != AID_GRAPHICS) &&
2474                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2475                ALOGE("Permission Denial: "
2476                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2477                return PERMISSION_DENIED;
2478            }
2479            break;
2480        }
2481    }
2482
2483    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2484    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2485        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2486        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2487            IPCThreadState* ipc = IPCThreadState::self();
2488            const int pid = ipc->getCallingPid();
2489            const int uid = ipc->getCallingUid();
2490            ALOGE("Permission Denial: "
2491                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2492            return PERMISSION_DENIED;
2493        }
2494        int n;
2495        switch (code) {
2496            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2497            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2498                return NO_ERROR;
2499            case 1002:  // SHOW_UPDATES
2500                n = data.readInt32();
2501                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2502                invalidateHwcGeometry();
2503                repaintEverything();
2504                return NO_ERROR;
2505            case 1004:{ // repaint everything
2506                repaintEverything();
2507                return NO_ERROR;
2508            }
2509            case 1005:{ // force transaction
2510                setTransactionFlags(
2511                        eTransactionNeeded|
2512                        eDisplayTransactionNeeded|
2513                        eTraversalNeeded);
2514                return NO_ERROR;
2515            }
2516            case 1006:{ // send empty update
2517                signalRefresh();
2518                return NO_ERROR;
2519            }
2520            case 1008:  // toggle use of hw composer
2521                n = data.readInt32();
2522                mDebugDisableHWC = n ? 1 : 0;
2523                invalidateHwcGeometry();
2524                repaintEverything();
2525                return NO_ERROR;
2526            case 1009:  // toggle use of transform hint
2527                n = data.readInt32();
2528                mDebugDisableTransformHint = n ? 1 : 0;
2529                invalidateHwcGeometry();
2530                repaintEverything();
2531                return NO_ERROR;
2532            case 1010:  // interrogate.
2533                reply->writeInt32(0);
2534                reply->writeInt32(0);
2535                reply->writeInt32(mDebugRegion);
2536                reply->writeInt32(0);
2537                reply->writeInt32(mDebugDisableHWC);
2538                return NO_ERROR;
2539            case 1013: {
2540                Mutex::Autolock _l(mStateLock);
2541                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2542                reply->writeInt32(hw->getPageFlipCount());
2543            }
2544            return NO_ERROR;
2545        }
2546    }
2547    return err;
2548}
2549
2550void SurfaceFlinger::repaintEverything() {
2551    android_atomic_or(1, &mRepaintEverything);
2552    signalTransaction();
2553}
2554
2555// ---------------------------------------------------------------------------
2556// Capture screen into an IGraphiBufferProducer
2557// ---------------------------------------------------------------------------
2558
2559status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2560        const sp<IGraphicBufferProducer>& producer,
2561        uint32_t reqWidth, uint32_t reqHeight,
2562        uint32_t minLayerZ, uint32_t maxLayerZ,
2563        bool isCpuConsumer) {
2564
2565    if (CC_UNLIKELY(display == 0))
2566        return BAD_VALUE;
2567
2568    if (CC_UNLIKELY(producer == 0))
2569        return BAD_VALUE;
2570
2571    class MessageCaptureScreen : public MessageBase {
2572        SurfaceFlinger* flinger;
2573        sp<IBinder> display;
2574        sp<IGraphicBufferProducer> producer;
2575        uint32_t reqWidth, reqHeight;
2576        uint32_t minLayerZ,maxLayerZ;
2577        bool isCpuConsumer;
2578        status_t result;
2579    public:
2580        MessageCaptureScreen(SurfaceFlinger* flinger,
2581                const sp<IBinder>& display,
2582                const sp<IGraphicBufferProducer>& producer,
2583                uint32_t reqWidth, uint32_t reqHeight,
2584                uint32_t minLayerZ, uint32_t maxLayerZ, bool isCpuConsumer)
2585            : flinger(flinger), display(display), producer(producer),
2586              reqWidth(reqWidth), reqHeight(reqHeight),
2587              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2588              isCpuConsumer(isCpuConsumer),
2589              result(PERMISSION_DENIED)
2590        {
2591        }
2592        status_t getResult() const {
2593            return result;
2594        }
2595        virtual bool handler() {
2596            Mutex::Autolock _l(flinger->mStateLock);
2597            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2598
2599            bool useReadPixels = false;
2600            if (isCpuConsumer) {
2601                bool formatSupportedBytBitmap =
2602                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBA_8888) ||
2603                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBX_8888);
2604                if (formatSupportedBytBitmap == false) {
2605                    // the pixel format we have is not compatible with
2606                    // Bitmap.java, which is the likely client of this API,
2607                    // so we just revert to glReadPixels() in that case.
2608                    useReadPixels = true;
2609                }
2610                if (flinger->mGpuToCpuSupported == false) {
2611                    // When we know the GL->CPU path works, we can call
2612                    // captureScreenImplLocked() directly, instead of using the
2613                    // glReadPixels() workaround.
2614                    useReadPixels = true;
2615                }
2616            }
2617
2618            if (!useReadPixels) {
2619                result = flinger->captureScreenImplLocked(hw,
2620                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2621            } else {
2622                result = flinger->captureScreenImplCpuConsumerLocked(hw,
2623                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2624            }
2625            return true;
2626        }
2627    };
2628
2629    sp<MessageBase> msg = new MessageCaptureScreen(this,
2630            display, producer, reqWidth, reqHeight, minLayerZ, maxLayerZ,
2631            isCpuConsumer);
2632    status_t res = postMessageSync(msg);
2633    if (res == NO_ERROR) {
2634        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2635    }
2636    return res;
2637}
2638
2639status_t SurfaceFlinger::captureScreenImplLocked(
2640        const sp<const DisplayDevice>& hw,
2641        const sp<IGraphicBufferProducer>& producer,
2642        uint32_t reqWidth, uint32_t reqHeight,
2643        uint32_t minLayerZ, uint32_t maxLayerZ)
2644{
2645    ATRACE_CALL();
2646
2647    // get screen geometry
2648    const uint32_t hw_w = hw->getWidth();
2649    const uint32_t hw_h = hw->getHeight();
2650
2651    // if we have secure windows on this display, never allow the screen capture
2652    if (hw->getSecureLayerVisible()) {
2653        ALOGW("FB is protected: PERMISSION_DENIED");
2654        return PERMISSION_DENIED;
2655    }
2656
2657    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2658        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2659                reqWidth, reqHeight, hw_w, hw_h);
2660        return BAD_VALUE;
2661    }
2662
2663    reqWidth = (!reqWidth) ? hw_w : reqWidth;
2664    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2665    const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
2666
2667    // Create a surface to render into
2668    sp<Surface> surface = new Surface(producer);
2669    ANativeWindow* const window = surface.get();
2670
2671    // set the buffer size to what the user requested
2672    native_window_set_buffers_user_dimensions(window, reqWidth, reqHeight);
2673
2674    // and create the corresponding EGLSurface
2675    EGLSurface eglSurface = eglCreateWindowSurface(
2676            mEGLDisplay, mEGLConfig, window, NULL);
2677    if (eglSurface == EGL_NO_SURFACE) {
2678        ALOGE("captureScreenImplLocked: eglCreateWindowSurface() failed 0x%4x",
2679                eglGetError());
2680        return BAD_VALUE;
2681    }
2682
2683    if (!eglMakeCurrent(mEGLDisplay, eglSurface, eglSurface, mEGLContext)) {
2684        ALOGE("captureScreenImplLocked: eglMakeCurrent() failed 0x%4x",
2685                eglGetError());
2686        eglDestroySurface(mEGLDisplay, eglSurface);
2687        return BAD_VALUE;
2688    }
2689
2690    // make sure to clear all GL error flags
2691    while ( glGetError() != GL_NO_ERROR ) ;
2692
2693    // set-up our viewport
2694    glViewport(0, 0, reqWidth, reqHeight);
2695    glMatrixMode(GL_PROJECTION);
2696    glLoadIdentity();
2697    glOrthof(0, hw_w, 0, hw_h, 0, 1);
2698    glMatrixMode(GL_MODELVIEW);
2699    glLoadIdentity();
2700
2701    // redraw the screen entirely...
2702    glDisable(GL_TEXTURE_EXTERNAL_OES);
2703    glDisable(GL_TEXTURE_2D);
2704    glClearColor(0,0,0,1);
2705    glClear(GL_COLOR_BUFFER_BIT);
2706
2707    const LayerVector& layers( mDrawingState.layersSortedByZ );
2708    const size_t count = layers.size();
2709    for (size_t i=0 ; i<count ; ++i) {
2710        const sp<Layer>& layer(layers[i]);
2711        const Layer::State& state(layer->drawingState());
2712        if (state.layerStack == hw->getLayerStack()) {
2713            if (state.z >= minLayerZ && state.z <= maxLayerZ) {
2714                if (layer->isVisible()) {
2715                    if (filtering) layer->setFiltering(true);
2716                    layer->draw(hw);
2717                    if (filtering) layer->setFiltering(false);
2718                }
2719            }
2720        }
2721    }
2722
2723    // compositionComplete is needed for older driver
2724    hw->compositionComplete();
2725
2726    // and finishing things up...
2727    if (eglSwapBuffers(mEGLDisplay, eglSurface) != EGL_TRUE) {
2728        ALOGE("captureScreenImplLocked: eglSwapBuffers() failed 0x%4x",
2729                eglGetError());
2730        eglDestroySurface(mEGLDisplay, eglSurface);
2731        return BAD_VALUE;
2732    }
2733
2734    eglDestroySurface(mEGLDisplay, eglSurface);
2735
2736    return NO_ERROR;
2737}
2738
2739
2740status_t SurfaceFlinger::captureScreenImplCpuConsumerLocked(
2741        const sp<const DisplayDevice>& hw,
2742        const sp<IGraphicBufferProducer>& producer,
2743        uint32_t reqWidth, uint32_t reqHeight,
2744        uint32_t minLayerZ, uint32_t maxLayerZ)
2745{
2746    ATRACE_CALL();
2747
2748    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2749        return INVALID_OPERATION;
2750    }
2751
2752    // create the texture that will receive the screenshot, later we'll
2753    // attach a FBO to it so we can call glReadPixels().
2754    GLuint tname;
2755    glGenTextures(1, &tname);
2756    glBindTexture(GL_TEXTURE_2D, tname);
2757    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2758    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2759
2760    // the GLConsumer will provide the BufferQueue
2761    sp<GLConsumer> consumer = new GLConsumer(tname, true, GL_TEXTURE_2D);
2762    consumer->getBufferQueue()->setDefaultBufferFormat(HAL_PIXEL_FORMAT_RGBA_8888);
2763
2764    // call the new screenshot taking code, passing a BufferQueue to it
2765    status_t result = captureScreenImplLocked(hw,
2766            consumer->getBufferQueue(), reqWidth, reqHeight, minLayerZ, maxLayerZ);
2767
2768    if (result == NO_ERROR) {
2769        result = consumer->updateTexImage();
2770        if (result == NO_ERROR) {
2771            // create a FBO
2772            GLuint name;
2773            glGenFramebuffersOES(1, &name);
2774            glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2775            glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2776                    GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2777
2778            reqWidth = consumer->getCurrentBuffer()->getWidth();
2779            reqHeight = consumer->getCurrentBuffer()->getHeight();
2780
2781            {
2782                // in this block we render the screenshot into the
2783                // CpuConsumer using glReadPixels from our GLConsumer,
2784                // Some older drivers don't support the GL->CPU path so
2785                // have to wrap it with a CPU->CPU path, which is what
2786                // glReadPixels essentially is
2787
2788                sp<Surface> sur = new Surface(producer);
2789                ANativeWindow* window = sur.get();
2790                ANativeWindowBuffer* buffer;
2791                void* vaddr;
2792
2793                if (native_window_api_connect(window,
2794                        NATIVE_WINDOW_API_CPU) == NO_ERROR) {
2795                    int err = 0;
2796                    err = native_window_set_buffers_dimensions(window,
2797                            reqWidth, reqHeight);
2798                    err |= native_window_set_buffers_format(window,
2799                            HAL_PIXEL_FORMAT_RGBA_8888);
2800                    err |= native_window_set_usage(window,
2801                            GRALLOC_USAGE_SW_READ_OFTEN |
2802                            GRALLOC_USAGE_SW_WRITE_OFTEN);
2803
2804                    if (err == NO_ERROR) {
2805                        if (native_window_dequeue_buffer_and_wait(window,
2806                                &buffer) == NO_ERROR) {
2807                            sp<GraphicBuffer> buf =
2808                                    static_cast<GraphicBuffer*>(buffer);
2809                            if (buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN,
2810                                    &vaddr) == NO_ERROR) {
2811                                if (buffer->stride != int(reqWidth)) {
2812                                    // we're unlucky here, glReadPixels is
2813                                    // not able to deal with a stride not
2814                                    // equal to the width.
2815                                    uint32_t* tmp = new uint32_t[reqWidth*reqHeight];
2816                                    if (tmp != NULL) {
2817                                        glReadPixels(0, 0, reqWidth, reqHeight,
2818                                                GL_RGBA, GL_UNSIGNED_BYTE, tmp);
2819                                        for (size_t y=0 ; y<reqHeight ; y++) {
2820                                            memcpy((uint32_t*)vaddr + y*buffer->stride,
2821                                                    tmp + y*reqWidth, reqWidth*4);
2822                                        }
2823                                        delete [] tmp;
2824                                    }
2825                                } else {
2826                                    glReadPixels(0, 0, reqWidth, reqHeight,
2827                                            GL_RGBA, GL_UNSIGNED_BYTE, vaddr);
2828                                }
2829                                buf->unlock();
2830                            }
2831                            window->queueBuffer(window, buffer, -1);
2832                        }
2833                    }
2834                    native_window_api_disconnect(window, NATIVE_WINDOW_API_CPU);
2835                }
2836            }
2837
2838            // back to main framebuffer
2839            glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2840            glDeleteFramebuffersOES(1, &name);
2841        }
2842    }
2843
2844    glDeleteTextures(1, &tname);
2845
2846    DisplayDevice::makeCurrent(mEGLDisplay,
2847            getDefaultDisplayDevice(), mEGLContext);
2848
2849    return result;
2850}
2851
2852// ---------------------------------------------------------------------------
2853
2854SurfaceFlinger::LayerVector::LayerVector() {
2855}
2856
2857SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2858    : SortedVector<sp<Layer> >(rhs) {
2859}
2860
2861int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2862    const void* rhs) const
2863{
2864    // sort layers per layer-stack, then by z-order and finally by sequence
2865    const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
2866    const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
2867
2868    uint32_t ls = l->currentState().layerStack;
2869    uint32_t rs = r->currentState().layerStack;
2870    if (ls != rs)
2871        return ls - rs;
2872
2873    uint32_t lz = l->currentState().z;
2874    uint32_t rz = r->currentState().z;
2875    if (lz != rz)
2876        return lz - rz;
2877
2878    return l->sequence - r->sequence;
2879}
2880
2881// ---------------------------------------------------------------------------
2882
2883SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2884    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2885}
2886
2887SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2888    : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) {
2889    viewport.makeInvalid();
2890    frame.makeInvalid();
2891}
2892
2893// ---------------------------------------------------------------------------
2894
2895}; // namespace android
2896