SurfaceFlinger.cpp revision 2788a3526d7abb9afc64d10118a03734327a89e7
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/SurfaceTextureClient.h>
43
44#include <ui/GraphicBufferAllocator.h>
45#include <ui/PixelFormat.h>
46#include <ui/UiConfig.h>
47
48#include <utils/misc.h>
49#include <utils/String8.h>
50#include <utils/String16.h>
51#include <utils/StopWatch.h>
52#include <utils/Trace.h>
53
54#include <private/android_filesystem_config.h>
55
56#include "clz.h"
57#include "DdmConnection.h"
58#include "DisplayDevice.h"
59#include "Client.h"
60#include "EventThread.h"
61#include "GLExtensions.h"
62#include "Layer.h"
63#include "LayerDim.h"
64#include "LayerScreenshot.h"
65#include "SurfaceFlinger.h"
66
67#include "DisplayHardware/FramebufferSurface.h"
68#include "DisplayHardware/GraphicBufferAlloc.h"
69#include "DisplayHardware/HWComposer.h"
70
71
72#define EGL_VERSION_HW_ANDROID  0x3143
73
74#define DISPLAY_COUNT       1
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mDebugRegion(0),
97        mDebugDDMS(0),
98        mDebugDisableHWC(0),
99        mDebugDisableTransformHint(0),
100        mDebugInSwapBuffers(0),
101        mLastSwapBufferTime(0),
102        mDebugInTransaction(0),
103        mLastTransactionTime(0),
104        mBootFinished(false)
105{
106    ALOGI("SurfaceFlinger is starting");
107
108    // debugging stuff...
109    char value[PROPERTY_VALUE_MAX];
110
111    property_get("debug.sf.showupdates", value, "0");
112    mDebugRegion = atoi(value);
113
114    property_get("debug.sf.ddms", value, "0");
115    mDebugDDMS = atoi(value);
116    if (mDebugDDMS) {
117        if (!startDdmConnection()) {
118            // start failed, and DDMS debugging not enabled
119            mDebugDDMS = 0;
120        }
121    }
122    ALOGI_IF(mDebugRegion, "showupdates enabled");
123    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
124}
125
126void SurfaceFlinger::onFirstRef()
127{
128    mEventQueue.init(this);
129
130    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
131
132    // Wait for the main thread to be done with its initialization
133    mReadyToRunBarrier.wait();
134}
135
136
137SurfaceFlinger::~SurfaceFlinger()
138{
139    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
140    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
141    eglTerminate(display);
142}
143
144void SurfaceFlinger::binderDied(const wp<IBinder>& who)
145{
146    // the window manager died on us. prepare its eulogy.
147
148    // restore initial conditions (default device unblank, etc)
149    initializeDisplays();
150
151    // restart the boot-animation
152    startBootAnim();
153}
154
155sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
156{
157    sp<ISurfaceComposerClient> bclient;
158    sp<Client> client(new Client(this));
159    status_t err = client->initCheck();
160    if (err == NO_ERROR) {
161        bclient = client;
162    }
163    return bclient;
164}
165
166sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
167        bool secure)
168{
169    class DisplayToken : public BBinder {
170        sp<SurfaceFlinger> flinger;
171        virtual ~DisplayToken() {
172             // no more references, this display must be terminated
173             Mutex::Autolock _l(flinger->mStateLock);
174             flinger->mCurrentState.displays.removeItem(this);
175             flinger->setTransactionFlags(eDisplayTransactionNeeded);
176         }
177     public:
178        DisplayToken(const sp<SurfaceFlinger>& flinger)
179            : flinger(flinger) {
180        }
181    };
182
183    sp<BBinder> token = new DisplayToken(this);
184
185    Mutex::Autolock _l(mStateLock);
186    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
187    info.displayName = displayName;
188    info.isSecure = secure;
189    mCurrentState.displays.add(token, info);
190
191    return token;
192}
193
194sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
195    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
196        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
197        return NULL;
198    }
199    return mDefaultDisplays[id];
200}
201
202sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
203{
204    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
205    return gba;
206}
207
208void SurfaceFlinger::bootFinished()
209{
210    const nsecs_t now = systemTime();
211    const nsecs_t duration = now - mBootTime;
212    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
213    mBootFinished = true;
214
215    // wait patiently for the window manager death
216    const String16 name("window");
217    sp<IBinder> window(defaultServiceManager()->getService(name));
218    if (window != 0) {
219        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
220    }
221
222    // stop boot animation
223    // formerly we would just kill the process, but we now ask it to exit so it
224    // can choose where to stop the animation.
225    property_set("service.bootanim.exit", "1");
226}
227
228void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
229    class MessageDestroyGLTexture : public MessageBase {
230        GLuint texture;
231    public:
232        MessageDestroyGLTexture(GLuint texture)
233            : texture(texture) {
234        }
235        virtual bool handler() {
236            glDeleteTextures(1, &texture);
237            return true;
238        }
239    };
240    postMessageAsync(new MessageDestroyGLTexture(texture));
241}
242
243status_t SurfaceFlinger::selectConfigForAttribute(
244        EGLDisplay dpy,
245        EGLint const* attrs,
246        EGLint attribute, EGLint wanted,
247        EGLConfig* outConfig)
248{
249    EGLConfig config = NULL;
250    EGLint numConfigs = -1, n=0;
251    eglGetConfigs(dpy, NULL, 0, &numConfigs);
252    EGLConfig* const configs = new EGLConfig[numConfigs];
253    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
254
255    if (n) {
256        if (attribute != EGL_NONE) {
257            for (int i=0 ; i<n ; i++) {
258                EGLint value = 0;
259                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
260                if (wanted == value) {
261                    *outConfig = configs[i];
262                    delete [] configs;
263                    return NO_ERROR;
264                }
265            }
266        } else {
267            // just pick the first one
268            *outConfig = configs[0];
269            delete [] configs;
270            return NO_ERROR;
271        }
272    }
273    delete [] configs;
274    return NAME_NOT_FOUND;
275}
276
277class EGLAttributeVector {
278    struct Attribute;
279    class Adder;
280    friend class Adder;
281    KeyedVector<Attribute, EGLint> mList;
282    struct Attribute {
283        Attribute() {};
284        Attribute(EGLint v) : v(v) { }
285        EGLint v;
286        bool operator < (const Attribute& other) const {
287            // this places EGL_NONE at the end
288            EGLint lhs(v);
289            EGLint rhs(other.v);
290            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
291            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
292            return lhs < rhs;
293        }
294    };
295    class Adder {
296        friend class EGLAttributeVector;
297        EGLAttributeVector& v;
298        EGLint attribute;
299        Adder(EGLAttributeVector& v, EGLint attribute)
300            : v(v), attribute(attribute) {
301        }
302    public:
303        void operator = (EGLint value) {
304            if (attribute != EGL_NONE) {
305                v.mList.add(attribute, value);
306            }
307        }
308        operator EGLint () const { return v.mList[attribute]; }
309    };
310public:
311    EGLAttributeVector() {
312        mList.add(EGL_NONE, EGL_NONE);
313    }
314    void remove(EGLint attribute) {
315        if (attribute != EGL_NONE) {
316            mList.removeItem(attribute);
317        }
318    }
319    Adder operator [] (EGLint attribute) {
320        return Adder(*this, attribute);
321    }
322    EGLint operator [] (EGLint attribute) const {
323       return mList[attribute];
324    }
325    // cast-operator to (EGLint const*)
326    operator EGLint const* () const { return &mList.keyAt(0).v; }
327};
328
329EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
330    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
331    // it is to be used with WIFI displays
332    EGLConfig config;
333    EGLint dummy;
334    status_t err;
335
336    EGLAttributeVector attribs;
337    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
338    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
339    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
340    attribs[EGL_RED_SIZE]                   = 8;
341    attribs[EGL_GREEN_SIZE]                 = 8;
342    attribs[EGL_BLUE_SIZE]                  = 8;
343
344    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
345    if (!err)
346        goto success;
347
348    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
349    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
350    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
351    err = selectConfigForAttribute(display, attribs,
352            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
353    if (!err)
354        goto success;
355
356    // maybe we failed because of EGL_RECORDABLE_ANDROID
357    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
358    attribs.remove(EGL_RECORDABLE_ANDROID);
359    err = selectConfigForAttribute(display, attribs,
360            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
361    if (!err)
362        goto success;
363
364    // allow less than 24-bit color; the non-gpu-accelerated emulator only
365    // supports 16-bit color
366    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
367    attribs.remove(EGL_RED_SIZE);
368    attribs.remove(EGL_GREEN_SIZE);
369    attribs.remove(EGL_BLUE_SIZE);
370    err = selectConfigForAttribute(display, attribs,
371            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
372    if (!err)
373        goto success;
374
375    // this EGL is too lame for Android
376    ALOGE("no suitable EGLConfig found, giving up");
377
378    return 0;
379
380success:
381    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
382        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
383    return config;
384}
385
386EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
387    // Also create our EGLContext
388    EGLint contextAttributes[] = {
389#ifdef EGL_IMG_context_priority
390#ifdef HAS_CONTEXT_PRIORITY
391#warning "using EGL_IMG_context_priority"
392            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
393#endif
394#endif
395            EGL_NONE, EGL_NONE
396    };
397    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
398    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
399    return ctxt;
400}
401
402void SurfaceFlinger::initializeGL(EGLDisplay display) {
403    GLExtensions& extensions(GLExtensions::getInstance());
404    extensions.initWithGLStrings(
405            glGetString(GL_VENDOR),
406            glGetString(GL_RENDERER),
407            glGetString(GL_VERSION),
408            glGetString(GL_EXTENSIONS),
409            eglQueryString(display, EGL_VENDOR),
410            eglQueryString(display, EGL_VERSION),
411            eglQueryString(display, EGL_EXTENSIONS));
412
413    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
414    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
415
416    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
417    glPixelStorei(GL_PACK_ALIGNMENT, 4);
418    glEnableClientState(GL_VERTEX_ARRAY);
419    glShadeModel(GL_FLAT);
420    glDisable(GL_DITHER);
421    glDisable(GL_CULL_FACE);
422
423    struct pack565 {
424        inline uint16_t operator() (int r, int g, int b) const {
425            return (r<<11)|(g<<5)|b;
426        }
427    } pack565;
428
429    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
430    glGenTextures(1, &mProtectedTexName);
431    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
432    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
433    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
434    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
435    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
436    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
437            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
438
439    // print some debugging info
440    EGLint r,g,b,a;
441    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
442    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
443    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
444    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
445    ALOGI("EGL informations:");
446    ALOGI("vendor    : %s", extensions.getEglVendor());
447    ALOGI("version   : %s", extensions.getEglVersion());
448    ALOGI("extensions: %s", extensions.getEglExtension());
449    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
450    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
451    ALOGI("OpenGL ES informations:");
452    ALOGI("vendor    : %s", extensions.getVendor());
453    ALOGI("renderer  : %s", extensions.getRenderer());
454    ALOGI("version   : %s", extensions.getVersion());
455    ALOGI("extensions: %s", extensions.getExtension());
456    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
457    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
458}
459
460status_t SurfaceFlinger::readyToRun()
461{
462    ALOGI(  "SurfaceFlinger's main thread ready to run. "
463            "Initializing graphics H/W...");
464
465    // initialize EGL for the default display
466    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
467    eglInitialize(mEGLDisplay, NULL, NULL);
468
469    // Initialize the H/W composer object.  There may or may not be an
470    // actual hardware composer underneath.
471    mHwc = new HWComposer(this,
472            *static_cast<HWComposer::EventHandler *>(this));
473
474    // initialize the config and context
475    EGLint format = mHwc->getVisualID();
476    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
477    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
478
479    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
480            "couldn't create EGLContext");
481
482    // initialize our non-virtual displays
483    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
484        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
485        mDefaultDisplays[i] = new BBinder();
486        wp<IBinder> token = mDefaultDisplays[i];
487
488        // set-up the displays that are already connected
489        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
490            // All non-virtual displays are currently considered secure.
491            bool isSecure = true;
492            mCurrentState.displays.add(token, DisplayDeviceState(type));
493            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
494            sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
495                        static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
496            sp<DisplayDevice> hw = new DisplayDevice(this,
497                    type, isSecure, token, stc, fbs, mEGLConfig);
498            if (i > DisplayDevice::DISPLAY_PRIMARY) {
499                // FIXME: currently we don't get blank/unblank requests
500                // for displays other than the main display, so we always
501                // assume a connected display is unblanked.
502                ALOGD("marking display %d as acquired/unblanked", i);
503                hw->acquireScreen();
504            }
505            mDisplays.add(token, hw);
506        }
507    }
508
509    //  we need a GL context current in a few places, when initializing
510    //  OpenGL ES (see below), or creating a layer,
511    //  or when a texture is (asynchronously) destroyed, and for that
512    //  we need a valid surface, so it's convenient to use the main display
513    //  for that.
514    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
515
516    //  initialize OpenGL ES
517    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
518    initializeGL(mEGLDisplay);
519
520    // start the EventThread
521    mEventThread = new EventThread(this);
522    mEventQueue.setEventThread(mEventThread);
523
524    // initialize our drawing state
525    mDrawingState = mCurrentState;
526
527
528    // We're now ready to accept clients...
529    mReadyToRunBarrier.open();
530
531    // set initial conditions (e.g. unblank default device)
532    initializeDisplays();
533
534    // start boot animation
535    startBootAnim();
536
537    return NO_ERROR;
538}
539
540int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
541    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
542            type : mHwc->allocateDisplayId();
543}
544
545void SurfaceFlinger::startBootAnim() {
546    // start boot animation
547    property_set("service.bootanim.exit", "0");
548    property_set("ctl.start", "bootanim");
549}
550
551uint32_t SurfaceFlinger::getMaxTextureSize() const {
552    return mMaxTextureSize;
553}
554
555uint32_t SurfaceFlinger::getMaxViewportDims() const {
556    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
557            mMaxViewportDims[0] : mMaxViewportDims[1];
558}
559
560// ----------------------------------------------------------------------------
561
562bool SurfaceFlinger::authenticateSurfaceTexture(
563        const sp<ISurfaceTexture>& surfaceTexture) const {
564    Mutex::Autolock _l(mStateLock);
565    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
566
567    // Check the visible layer list for the ISurface
568    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
569    size_t count = currentLayers.size();
570    for (size_t i=0 ; i<count ; i++) {
571        const sp<LayerBase>& layer(currentLayers[i]);
572        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
573        if (lbc != NULL) {
574            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
575            if (lbcBinder == surfaceTextureBinder) {
576                return true;
577            }
578        }
579    }
580
581    // Check the layers in the purgatory.  This check is here so that if a
582    // SurfaceTexture gets destroyed before all the clients are done using it,
583    // the error will not be reported as "surface XYZ is not authenticated", but
584    // will instead fail later on when the client tries to use the surface,
585    // which should be reported as "surface XYZ returned an -ENODEV".  The
586    // purgatorized layers are no less authentic than the visible ones, so this
587    // should not cause any harm.
588    size_t purgatorySize =  mLayerPurgatory.size();
589    for (size_t i=0 ; i<purgatorySize ; i++) {
590        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
591        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
592        if (lbc != NULL) {
593            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
594            if (lbcBinder == surfaceTextureBinder) {
595                return true;
596            }
597        }
598    }
599
600    return false;
601}
602
603status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
604    int32_t type = BAD_VALUE;
605    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
606        if (display == mDefaultDisplays[i]) {
607            type = i;
608            break;
609        }
610    }
611
612    if (type < 0) {
613        return type;
614    }
615
616    const HWComposer& hwc(getHwComposer());
617    if (!hwc.isConnected(type)) {
618        return NAME_NOT_FOUND;
619    }
620
621    float xdpi = hwc.getDpiX(type);
622    float ydpi = hwc.getDpiY(type);
623
624    // TODO: Not sure if display density should handled by SF any longer
625    class Density {
626        static int getDensityFromProperty(char const* propName) {
627            char property[PROPERTY_VALUE_MAX];
628            int density = 0;
629            if (property_get(propName, property, NULL) > 0) {
630                density = atoi(property);
631            }
632            return density;
633        }
634    public:
635        static int getEmuDensity() {
636            return getDensityFromProperty("qemu.sf.lcd_density"); }
637        static int getBuildDensity()  {
638            return getDensityFromProperty("ro.sf.lcd_density"); }
639    };
640
641    if (type == DisplayDevice::DISPLAY_PRIMARY) {
642        // The density of the device is provided by a build property
643        float density = Density::getBuildDensity() / 160.0f;
644        if (density == 0) {
645            // the build doesn't provide a density -- this is wrong!
646            // use xdpi instead
647            ALOGE("ro.sf.lcd_density must be defined as a build property");
648            density = xdpi / 160.0f;
649        }
650        if (Density::getEmuDensity()) {
651            // if "qemu.sf.lcd_density" is specified, it overrides everything
652            xdpi = ydpi = density = Density::getEmuDensity();
653            density /= 160.0f;
654        }
655        info->density = density;
656
657        // TODO: this needs to go away (currently needed only by webkit)
658        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
659        info->orientation = hw->getOrientation();
660        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
661    } else {
662        // TODO: where should this value come from?
663        static const int TV_DENSITY = 213;
664        info->density = TV_DENSITY / 160.0f;
665        info->orientation = 0;
666    }
667
668    info->w = hwc.getWidth(type);
669    info->h = hwc.getHeight(type);
670    info->xdpi = xdpi;
671    info->ydpi = ydpi;
672    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
673
674    // All non-virtual displays are currently considered secure.
675    info->secure = true;
676
677    return NO_ERROR;
678}
679
680// ----------------------------------------------------------------------------
681
682sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
683    return mEventThread->createEventConnection();
684}
685
686// ----------------------------------------------------------------------------
687
688void SurfaceFlinger::waitForEvent() {
689    mEventQueue.waitMessage();
690}
691
692void SurfaceFlinger::signalTransaction() {
693    mEventQueue.invalidate();
694}
695
696void SurfaceFlinger::signalLayerUpdate() {
697    mEventQueue.invalidate();
698}
699
700void SurfaceFlinger::signalRefresh() {
701    mEventQueue.refresh();
702}
703
704status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
705        nsecs_t reltime, uint32_t flags) {
706    return mEventQueue.postMessage(msg, reltime);
707}
708
709status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
710        nsecs_t reltime, uint32_t flags) {
711    status_t res = mEventQueue.postMessage(msg, reltime);
712    if (res == NO_ERROR) {
713        msg->wait();
714    }
715    return res;
716}
717
718bool SurfaceFlinger::threadLoop() {
719    waitForEvent();
720    return true;
721}
722
723void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
724    if (mEventThread == NULL) {
725        // This is a temporary workaround for b/7145521.  A non-null pointer
726        // does not mean EventThread has finished initializing, so this
727        // is not a correct fix.
728        ALOGW("WARNING: EventThread not started, ignoring vsync");
729        return;
730    }
731    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
732        // we should only receive DisplayDevice::DisplayType from the vsync callback
733        mEventThread->onVSyncReceived(type, timestamp);
734    }
735}
736
737void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
738    if (mEventThread == NULL) {
739        // This is a temporary workaround for b/7145521.  A non-null pointer
740        // does not mean EventThread has finished initializing, so this
741        // is not a correct fix.
742        ALOGW("WARNING: EventThread not started, ignoring hotplug");
743        return;
744    }
745
746    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
747        Mutex::Autolock _l(mStateLock);
748        if (connected == false) {
749            mCurrentState.displays.removeItem(mDefaultDisplays[type]);
750        } else {
751            DisplayDeviceState info((DisplayDevice::DisplayType)type);
752            mCurrentState.displays.add(mDefaultDisplays[type], info);
753        }
754        setTransactionFlags(eDisplayTransactionNeeded);
755
756        // Defer EventThread notification until SF has updated mDisplays.
757    }
758}
759
760void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
761    getHwComposer().eventControl(disp, event, enabled);
762}
763
764void SurfaceFlinger::onMessageReceived(int32_t what) {
765    ATRACE_CALL();
766    switch (what) {
767    case MessageQueue::INVALIDATE:
768        handleMessageTransaction();
769        handleMessageInvalidate();
770        signalRefresh();
771        break;
772    case MessageQueue::REFRESH:
773        handleMessageRefresh();
774        break;
775    }
776}
777
778void SurfaceFlinger::handleMessageTransaction() {
779    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
780    if (transactionFlags) {
781        handleTransaction(transactionFlags);
782    }
783}
784
785void SurfaceFlinger::handleMessageInvalidate() {
786    ATRACE_CALL();
787    handlePageFlip();
788}
789
790void SurfaceFlinger::handleMessageRefresh() {
791    ATRACE_CALL();
792    preComposition();
793    rebuildLayerStacks();
794    setUpHWComposer();
795    doDebugFlashRegions();
796    doComposition();
797    postComposition();
798}
799
800void SurfaceFlinger::doDebugFlashRegions()
801{
802    // is debugging enabled
803    if (CC_LIKELY(!mDebugRegion))
804        return;
805
806    const bool repaintEverything = mRepaintEverything;
807    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
808        const sp<DisplayDevice>& hw(mDisplays[dpy]);
809        if (hw->canDraw()) {
810            // transform the dirty region into this screen's coordinate space
811            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
812            if (!dirtyRegion.isEmpty()) {
813                // redraw the whole screen
814                doComposeSurfaces(hw, Region(hw->bounds()));
815
816                // and draw the dirty region
817                glDisable(GL_TEXTURE_EXTERNAL_OES);
818                glDisable(GL_TEXTURE_2D);
819                glDisable(GL_BLEND);
820                glColor4f(1, 0, 1, 1);
821                const int32_t height = hw->getHeight();
822                Region::const_iterator it = dirtyRegion.begin();
823                Region::const_iterator const end = dirtyRegion.end();
824                while (it != end) {
825                    const Rect& r = *it++;
826                    GLfloat vertices[][2] = {
827                            { r.left,  height - r.top },
828                            { r.left,  height - r.bottom },
829                            { r.right, height - r.bottom },
830                            { r.right, height - r.top }
831                    };
832                    glVertexPointer(2, GL_FLOAT, 0, vertices);
833                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
834                }
835                hw->compositionComplete();
836                hw->swapBuffers(getHwComposer());
837            }
838        }
839    }
840
841    postFramebuffer();
842
843    if (mDebugRegion > 1) {
844        usleep(mDebugRegion * 1000);
845    }
846
847    HWComposer& hwc(getHwComposer());
848    if (hwc.initCheck() == NO_ERROR) {
849        status_t err = hwc.prepare();
850        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
851    }
852}
853
854void SurfaceFlinger::preComposition()
855{
856    bool needExtraInvalidate = false;
857    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
858    const size_t count = currentLayers.size();
859    for (size_t i=0 ; i<count ; i++) {
860        if (currentLayers[i]->onPreComposition()) {
861            needExtraInvalidate = true;
862        }
863    }
864    if (needExtraInvalidate) {
865        signalLayerUpdate();
866    }
867}
868
869void SurfaceFlinger::postComposition()
870{
871    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
872    const size_t count = currentLayers.size();
873    for (size_t i=0 ; i<count ; i++) {
874        currentLayers[i]->onPostComposition();
875    }
876}
877
878void SurfaceFlinger::rebuildLayerStacks() {
879    // rebuild the visible layer list per screen
880    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
881        ATRACE_CALL();
882        mVisibleRegionsDirty = false;
883        invalidateHwcGeometry();
884
885        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
886        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
887            Region opaqueRegion;
888            Region dirtyRegion;
889            Vector< sp<LayerBase> > layersSortedByZ;
890            const sp<DisplayDevice>& hw(mDisplays[dpy]);
891            const Transform& tr(hw->getTransform());
892            const Rect bounds(hw->getBounds());
893            if (hw->canDraw()) {
894                SurfaceFlinger::computeVisibleRegions(currentLayers,
895                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
896
897                const size_t count = currentLayers.size();
898                for (size_t i=0 ; i<count ; i++) {
899                    const sp<LayerBase>& layer(currentLayers[i]);
900                    const Layer::State& s(layer->drawingState());
901                    if (s.layerStack == hw->getLayerStack()) {
902                        Region drawRegion(tr.transform(
903                                layer->visibleNonTransparentRegion));
904                        drawRegion.andSelf(bounds);
905                        if (!drawRegion.isEmpty()) {
906                            layersSortedByZ.add(layer);
907                        }
908                    }
909                }
910            }
911            hw->setVisibleLayersSortedByZ(layersSortedByZ);
912            hw->undefinedRegion.set(bounds);
913            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
914            hw->dirtyRegion.orSelf(dirtyRegion);
915        }
916    }
917}
918
919void SurfaceFlinger::setUpHWComposer() {
920    HWComposer& hwc(getHwComposer());
921    if (hwc.initCheck() == NO_ERROR) {
922        // build the h/w work list
923        if (CC_UNLIKELY(mHwWorkListDirty)) {
924            mHwWorkListDirty = false;
925            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
926                sp<const DisplayDevice> hw(mDisplays[dpy]);
927                const int32_t id = hw->getHwcDisplayId();
928                if (id >= 0) {
929                    const Vector< sp<LayerBase> >& currentLayers(
930                        hw->getVisibleLayersSortedByZ());
931                    const size_t count = currentLayers.size();
932                    if (hwc.createWorkList(id, count) == NO_ERROR) {
933                        HWComposer::LayerListIterator cur = hwc.begin(id);
934                        const HWComposer::LayerListIterator end = hwc.end(id);
935                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
936                            const sp<LayerBase>& layer(currentLayers[i]);
937                            layer->setGeometry(hw, *cur);
938                            if (mDebugDisableHWC || mDebugRegion) {
939                                cur->setSkip(true);
940                            }
941                        }
942                    }
943                }
944            }
945        }
946
947        // set the per-frame data
948        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
949            sp<const DisplayDevice> hw(mDisplays[dpy]);
950            const int32_t id = hw->getHwcDisplayId();
951            if (id >= 0) {
952                const Vector< sp<LayerBase> >& currentLayers(
953                    hw->getVisibleLayersSortedByZ());
954                const size_t count = currentLayers.size();
955                HWComposer::LayerListIterator cur = hwc.begin(id);
956                const HWComposer::LayerListIterator end = hwc.end(id);
957                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
958                    /*
959                     * update the per-frame h/w composer data for each layer
960                     * and build the transparent region of the FB
961                     */
962                    const sp<LayerBase>& layer(currentLayers[i]);
963                    layer->setPerFrameData(hw, *cur);
964                }
965            }
966        }
967
968        status_t err = hwc.prepare();
969        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
970    }
971}
972
973void SurfaceFlinger::doComposition() {
974    ATRACE_CALL();
975    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
976    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
977        const sp<DisplayDevice>& hw(mDisplays[dpy]);
978        if (hw->canDraw()) {
979            // transform the dirty region into this screen's coordinate space
980            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
981
982            // repaint the framebuffer (if needed)
983            doDisplayComposition(hw, dirtyRegion);
984
985            hw->dirtyRegion.clear();
986            hw->flip(hw->swapRegion);
987            hw->swapRegion.clear();
988        }
989        // inform the h/w that we're done compositing
990        hw->compositionComplete();
991    }
992    postFramebuffer();
993}
994
995void SurfaceFlinger::postFramebuffer()
996{
997    ATRACE_CALL();
998
999    const nsecs_t now = systemTime();
1000    mDebugInSwapBuffers = now;
1001
1002    HWComposer& hwc(getHwComposer());
1003    if (hwc.initCheck() == NO_ERROR) {
1004        if (!hwc.supportsFramebufferTarget()) {
1005            // EGL spec says:
1006            //   "surface must be bound to the calling thread's current context,
1007            //    for the current rendering API."
1008            DisplayDevice::makeCurrent(mEGLDisplay,
1009                    getDefaultDisplayDevice(), mEGLContext);
1010        }
1011        hwc.commit();
1012    }
1013
1014    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1015        sp<const DisplayDevice> hw(mDisplays[dpy]);
1016        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1017        hw->onSwapBuffersCompleted(hwc);
1018        const size_t count = currentLayers.size();
1019        int32_t id = hw->getHwcDisplayId();
1020        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1021            HWComposer::LayerListIterator cur = hwc.begin(id);
1022            const HWComposer::LayerListIterator end = hwc.end(id);
1023            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1024                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1025            }
1026        } else {
1027            for (size_t i = 0; i < count; i++) {
1028                currentLayers[i]->onLayerDisplayed(hw, NULL);
1029            }
1030        }
1031    }
1032
1033    mLastSwapBufferTime = systemTime() - now;
1034    mDebugInSwapBuffers = 0;
1035}
1036
1037void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1038{
1039    ATRACE_CALL();
1040
1041    Mutex::Autolock _l(mStateLock);
1042    const nsecs_t now = systemTime();
1043    mDebugInTransaction = now;
1044
1045    // Here we're guaranteed that some transaction flags are set
1046    // so we can call handleTransactionLocked() unconditionally.
1047    // We call getTransactionFlags(), which will also clear the flags,
1048    // with mStateLock held to guarantee that mCurrentState won't change
1049    // until the transaction is committed.
1050
1051    transactionFlags = getTransactionFlags(eTransactionMask);
1052    handleTransactionLocked(transactionFlags);
1053
1054    mLastTransactionTime = systemTime() - now;
1055    mDebugInTransaction = 0;
1056    invalidateHwcGeometry();
1057    // here the transaction has been committed
1058}
1059
1060void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1061{
1062    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1063    const size_t count = currentLayers.size();
1064
1065    /*
1066     * Traversal of the children
1067     * (perform the transaction for each of them if needed)
1068     */
1069
1070    if (transactionFlags & eTraversalNeeded) {
1071        for (size_t i=0 ; i<count ; i++) {
1072            const sp<LayerBase>& layer = currentLayers[i];
1073            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1074            if (!trFlags) continue;
1075
1076            const uint32_t flags = layer->doTransaction(0);
1077            if (flags & Layer::eVisibleRegion)
1078                mVisibleRegionsDirty = true;
1079        }
1080    }
1081
1082    /*
1083     * Perform display own transactions if needed
1084     */
1085
1086    if (transactionFlags & eDisplayTransactionNeeded) {
1087        // here we take advantage of Vector's copy-on-write semantics to
1088        // improve performance by skipping the transaction entirely when
1089        // know that the lists are identical
1090        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1091        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1092        if (!curr.isIdenticalTo(draw)) {
1093            mVisibleRegionsDirty = true;
1094            const size_t cc = curr.size();
1095                  size_t dc = draw.size();
1096
1097            // find the displays that were removed
1098            // (ie: in drawing state but not in current state)
1099            // also handle displays that changed
1100            // (ie: displays that are in both lists)
1101            for (size_t i=0 ; i<dc ; i++) {
1102                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1103                if (j < 0) {
1104                    // in drawing state but not in current state
1105                    if (!draw[i].isMainDisplay()) {
1106                        // Call makeCurrent() on the primary display so we can
1107                        // be sure that nothing associated with this display
1108                        // is current.
1109                        const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1110                        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1111                        mDisplays.removeItem(draw.keyAt(i));
1112                        getHwComposer().disconnectDisplay(draw[i].type);
1113                        mEventThread->onHotplugReceived(draw[i].type, false);
1114                    } else {
1115                        ALOGW("trying to remove the main display");
1116                    }
1117                } else {
1118                    // this display is in both lists. see if something changed.
1119                    const DisplayDeviceState& state(curr[j]);
1120                    const wp<IBinder>& display(curr.keyAt(j));
1121                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1122                        // changing the surface is like destroying and
1123                        // recreating the DisplayDevice, so we just remove it
1124                        // from the drawing state, so that it get re-added
1125                        // below.
1126                        mDisplays.removeItem(display);
1127                        mDrawingState.displays.removeItemsAt(i);
1128                        dc--; i--;
1129                        // at this point we must loop to the next item
1130                        continue;
1131                    }
1132
1133                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1134                    if (disp != NULL) {
1135                        if (state.layerStack != draw[i].layerStack) {
1136                            disp->setLayerStack(state.layerStack);
1137                        }
1138                        if ((state.orientation != draw[i].orientation)
1139                                || (state.viewport != draw[i].viewport)
1140                                || (state.frame != draw[i].frame))
1141                        {
1142                            disp->setProjection(state.orientation,
1143                                    state.viewport, state.frame);
1144                        }
1145
1146                        // Walk through all the layers in currentLayers,
1147                        // and update their transform hint.
1148                        //
1149                        // TODO: we could be much more clever about which
1150                        // layers we touch and how often we do these updates
1151                        // (e.g. only touch the layers associated with this
1152                        // display, and only on a rotation).
1153                        for (size_t i = 0; i < count; i++) {
1154                            const sp<LayerBase>& layerBase = currentLayers[i];
1155                            layerBase->updateTransformHint();
1156                        }
1157                    }
1158                }
1159            }
1160
1161            // find displays that were added
1162            // (ie: in current state but not in drawing state)
1163            for (size_t i=0 ; i<cc ; i++) {
1164                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1165                    const DisplayDeviceState& state(curr[i]);
1166                    bool isSecure = false;
1167
1168                    sp<FramebufferSurface> fbs;
1169                    sp<SurfaceTextureClient> stc;
1170                    if (!state.isVirtualDisplay()) {
1171
1172                        ALOGE_IF(state.surface!=NULL,
1173                                "adding a supported display, but rendering "
1174                                "surface is provided (%p), ignoring it",
1175                                state.surface.get());
1176
1177                        // All non-virtual displays are currently considered
1178                        // secure.
1179                        isSecure = true;
1180
1181                        // for supported (by hwc) displays we provide our
1182                        // own rendering surface
1183                        fbs = new FramebufferSurface(*mHwc, state.type);
1184                        stc = new SurfaceTextureClient(
1185                                static_cast< sp<ISurfaceTexture> >(
1186                                        fbs->getBufferQueue()));
1187                    } else {
1188                        if (state.surface != NULL) {
1189                            stc = new SurfaceTextureClient(state.surface);
1190                        }
1191                        isSecure = state.isSecure;
1192                    }
1193
1194                    const wp<IBinder>& display(curr.keyAt(i));
1195                    if (stc != NULL) {
1196                        sp<DisplayDevice> hw = new DisplayDevice(this,
1197                                state.type, isSecure, display, stc, fbs,
1198                                mEGLConfig);
1199                        hw->setLayerStack(state.layerStack);
1200                        hw->setProjection(state.orientation,
1201                                state.viewport, state.frame);
1202                        hw->setDisplayName(state.displayName);
1203                        mDisplays.add(display, hw);
1204                        mEventThread->onHotplugReceived(state.type, true);
1205                    }
1206                }
1207            }
1208        }
1209    }
1210
1211    /*
1212     * Perform our own transaction if needed
1213     */
1214
1215    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1216    if (currentLayers.size() > previousLayers.size()) {
1217        // layers have been added
1218        mVisibleRegionsDirty = true;
1219    }
1220
1221    // some layers might have been removed, so
1222    // we need to update the regions they're exposing.
1223    if (mLayersRemoved) {
1224        mLayersRemoved = false;
1225        mVisibleRegionsDirty = true;
1226        const size_t count = previousLayers.size();
1227        for (size_t i=0 ; i<count ; i++) {
1228            const sp<LayerBase>& layer(previousLayers[i]);
1229            if (currentLayers.indexOf(layer) < 0) {
1230                // this layer is not visible anymore
1231                // TODO: we could traverse the tree from front to back and
1232                //       compute the actual visible region
1233                // TODO: we could cache the transformed region
1234                const Layer::State& s(layer->drawingState());
1235                Region visibleReg = s.transform.transform(
1236                        Region(Rect(s.active.w, s.active.h)));
1237                invalidateLayerStack(s.layerStack, visibleReg);
1238            }
1239        }
1240    }
1241
1242    commitTransaction();
1243}
1244
1245void SurfaceFlinger::commitTransaction()
1246{
1247    if (!mLayersPendingRemoval.isEmpty()) {
1248        // Notify removed layers now that they can't be drawn from
1249        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1250            mLayersPendingRemoval[i]->onRemoved();
1251        }
1252        mLayersPendingRemoval.clear();
1253    }
1254
1255    mDrawingState = mCurrentState;
1256    mTransactionPending = false;
1257    mAnimTransactionPending = false;
1258    mTransactionCV.broadcast();
1259}
1260
1261void SurfaceFlinger::computeVisibleRegions(
1262        const LayerVector& currentLayers, uint32_t layerStack,
1263        Region& outDirtyRegion, Region& outOpaqueRegion)
1264{
1265    ATRACE_CALL();
1266
1267    Region aboveOpaqueLayers;
1268    Region aboveCoveredLayers;
1269    Region dirty;
1270
1271    outDirtyRegion.clear();
1272
1273    size_t i = currentLayers.size();
1274    while (i--) {
1275        const sp<LayerBase>& layer = currentLayers[i];
1276
1277        // start with the whole surface at its current location
1278        const Layer::State& s(layer->drawingState());
1279
1280        // only consider the layers on the given later stack
1281        if (s.layerStack != layerStack)
1282            continue;
1283
1284        /*
1285         * opaqueRegion: area of a surface that is fully opaque.
1286         */
1287        Region opaqueRegion;
1288
1289        /*
1290         * visibleRegion: area of a surface that is visible on screen
1291         * and not fully transparent. This is essentially the layer's
1292         * footprint minus the opaque regions above it.
1293         * Areas covered by a translucent surface are considered visible.
1294         */
1295        Region visibleRegion;
1296
1297        /*
1298         * coveredRegion: area of a surface that is covered by all
1299         * visible regions above it (which includes the translucent areas).
1300         */
1301        Region coveredRegion;
1302
1303        /*
1304         * transparentRegion: area of a surface that is hinted to be completely
1305         * transparent. This is only used to tell when the layer has no visible
1306         * non-transparent regions and can be removed from the layer list. It
1307         * does not affect the visibleRegion of this layer or any layers
1308         * beneath it. The hint may not be correct if apps don't respect the
1309         * SurfaceView restrictions (which, sadly, some don't).
1310         */
1311        Region transparentRegion;
1312
1313
1314        // handle hidden surfaces by setting the visible region to empty
1315        if (CC_LIKELY(layer->isVisible())) {
1316            const bool translucent = !layer->isOpaque();
1317            Rect bounds(layer->computeBounds());
1318            visibleRegion.set(bounds);
1319            if (!visibleRegion.isEmpty()) {
1320                // Remove the transparent area from the visible region
1321                if (translucent) {
1322                    const Transform tr(s.transform);
1323                    if (tr.transformed()) {
1324                        if (tr.preserveRects()) {
1325                            // transform the transparent region
1326                            transparentRegion = tr.transform(s.transparentRegion);
1327                        } else {
1328                            // transformation too complex, can't do the
1329                            // transparent region optimization.
1330                            transparentRegion.clear();
1331                        }
1332                    } else {
1333                        transparentRegion = s.transparentRegion;
1334                    }
1335                }
1336
1337                // compute the opaque region
1338                const int32_t layerOrientation = s.transform.getOrientation();
1339                if (s.alpha==255 && !translucent &&
1340                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1341                    // the opaque region is the layer's footprint
1342                    opaqueRegion = visibleRegion;
1343                }
1344            }
1345        }
1346
1347        // Clip the covered region to the visible region
1348        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1349
1350        // Update aboveCoveredLayers for next (lower) layer
1351        aboveCoveredLayers.orSelf(visibleRegion);
1352
1353        // subtract the opaque region covered by the layers above us
1354        visibleRegion.subtractSelf(aboveOpaqueLayers);
1355
1356        // compute this layer's dirty region
1357        if (layer->contentDirty) {
1358            // we need to invalidate the whole region
1359            dirty = visibleRegion;
1360            // as well, as the old visible region
1361            dirty.orSelf(layer->visibleRegion);
1362            layer->contentDirty = false;
1363        } else {
1364            /* compute the exposed region:
1365             *   the exposed region consists of two components:
1366             *   1) what's VISIBLE now and was COVERED before
1367             *   2) what's EXPOSED now less what was EXPOSED before
1368             *
1369             * note that (1) is conservative, we start with the whole
1370             * visible region but only keep what used to be covered by
1371             * something -- which mean it may have been exposed.
1372             *
1373             * (2) handles areas that were not covered by anything but got
1374             * exposed because of a resize.
1375             */
1376            const Region newExposed = visibleRegion - coveredRegion;
1377            const Region oldVisibleRegion = layer->visibleRegion;
1378            const Region oldCoveredRegion = layer->coveredRegion;
1379            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1380            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1381        }
1382        dirty.subtractSelf(aboveOpaqueLayers);
1383
1384        // accumulate to the screen dirty region
1385        outDirtyRegion.orSelf(dirty);
1386
1387        // Update aboveOpaqueLayers for next (lower) layer
1388        aboveOpaqueLayers.orSelf(opaqueRegion);
1389
1390        // Store the visible region in screen space
1391        layer->setVisibleRegion(visibleRegion);
1392        layer->setCoveredRegion(coveredRegion);
1393        layer->setVisibleNonTransparentRegion(
1394                visibleRegion.subtract(transparentRegion));
1395    }
1396
1397    outOpaqueRegion = aboveOpaqueLayers;
1398}
1399
1400void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1401        const Region& dirty) {
1402    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1403        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1404        if (hw->getLayerStack() == layerStack) {
1405            hw->dirtyRegion.orSelf(dirty);
1406        }
1407    }
1408}
1409
1410void SurfaceFlinger::handlePageFlip()
1411{
1412    Region dirtyRegion;
1413
1414    bool visibleRegions = false;
1415    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1416    const size_t count = currentLayers.size();
1417    for (size_t i=0 ; i<count ; i++) {
1418        const sp<LayerBase>& layer(currentLayers[i]);
1419        const Region dirty(layer->latchBuffer(visibleRegions));
1420        const Layer::State& s(layer->drawingState());
1421        invalidateLayerStack(s.layerStack, dirty);
1422    }
1423
1424    mVisibleRegionsDirty |= visibleRegions;
1425}
1426
1427void SurfaceFlinger::invalidateHwcGeometry()
1428{
1429    mHwWorkListDirty = true;
1430}
1431
1432
1433void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1434        const Region& inDirtyRegion)
1435{
1436    Region dirtyRegion(inDirtyRegion);
1437
1438    // compute the invalid region
1439    hw->swapRegion.orSelf(dirtyRegion);
1440
1441    uint32_t flags = hw->getFlags();
1442    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1443        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1444        // takes a rectangle, we must make sure to update that whole
1445        // rectangle in that case
1446        dirtyRegion.set(hw->swapRegion.bounds());
1447    } else {
1448        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1449            // We need to redraw the rectangle that will be updated
1450            // (pushed to the framebuffer).
1451            // This is needed because PARTIAL_UPDATES only takes one
1452            // rectangle instead of a region (see DisplayDevice::flip())
1453            dirtyRegion.set(hw->swapRegion.bounds());
1454        } else {
1455            // we need to redraw everything (the whole screen)
1456            dirtyRegion.set(hw->bounds());
1457            hw->swapRegion = dirtyRegion;
1458        }
1459    }
1460
1461    doComposeSurfaces(hw, dirtyRegion);
1462
1463    // update the swap region and clear the dirty region
1464    hw->swapRegion.orSelf(dirtyRegion);
1465
1466    // swap buffers (presentation)
1467    hw->swapBuffers(getHwComposer());
1468}
1469
1470void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1471{
1472    const int32_t id = hw->getHwcDisplayId();
1473    HWComposer& hwc(getHwComposer());
1474    HWComposer::LayerListIterator cur = hwc.begin(id);
1475    const HWComposer::LayerListIterator end = hwc.end(id);
1476
1477    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1478    if (hasGlesComposition) {
1479        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1480
1481        // set the frame buffer
1482        glMatrixMode(GL_MODELVIEW);
1483        glLoadIdentity();
1484
1485        // Never touch the framebuffer if we don't have any framebuffer layers
1486        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1487        if (hasHwcComposition) {
1488            // when using overlays, we assume a fully transparent framebuffer
1489            // NOTE: we could reduce how much we need to clear, for instance
1490            // remove where there are opaque FB layers. however, on some
1491            // GPUs doing a "clean slate" glClear might be more efficient.
1492            // We'll revisit later if needed.
1493            glClearColor(0, 0, 0, 0);
1494            glClear(GL_COLOR_BUFFER_BIT);
1495        } else {
1496            // we start with the whole screen area
1497            const Region bounds(hw->getBounds());
1498
1499            // we remove the scissor part
1500            // we're left with the letterbox region
1501            // (common case is that letterbox ends-up being empty)
1502            const Region letterbox(bounds.subtract(hw->getScissor()));
1503
1504            // compute the area to clear
1505            Region region(hw->undefinedRegion.merge(letterbox));
1506
1507            // but limit it to the dirty region
1508            region.andSelf(dirty);
1509
1510            // screen is already cleared here
1511            if (!region.isEmpty()) {
1512                // can happen with SurfaceView
1513                drawWormhole(hw, region);
1514            }
1515        }
1516
1517        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1518            // just to be on the safe side, we don't set the
1519            // scissor on the main display. It should never be needed
1520            // anyways (though in theory it could since the API allows it).
1521            const Rect& bounds(hw->getBounds());
1522            const Rect& scissor(hw->getScissor());
1523            if (scissor != bounds) {
1524                // scissor doesn't match the screen's dimensions, so we
1525                // need to clear everything outside of it and enable
1526                // the GL scissor so we don't draw anything where we shouldn't
1527                const GLint height = hw->getHeight();
1528                glScissor(scissor.left, height - scissor.bottom,
1529                        scissor.getWidth(), scissor.getHeight());
1530                // enable scissor for this frame
1531                glEnable(GL_SCISSOR_TEST);
1532            }
1533        }
1534    }
1535
1536    /*
1537     * and then, render the layers targeted at the framebuffer
1538     */
1539
1540    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1541    const size_t count = layers.size();
1542    const Transform& tr = hw->getTransform();
1543    if (cur != end) {
1544        // we're using h/w composer
1545        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1546            const sp<LayerBase>& layer(layers[i]);
1547            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1548            if (!clip.isEmpty()) {
1549                switch (cur->getCompositionType()) {
1550                    case HWC_OVERLAY: {
1551                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1552                                && i
1553                                && layer->isOpaque()
1554                                && hasGlesComposition) {
1555                            // never clear the very first layer since we're
1556                            // guaranteed the FB is already cleared
1557                            layer->clearWithOpenGL(hw, clip);
1558                        }
1559                        break;
1560                    }
1561                    case HWC_FRAMEBUFFER: {
1562                        layer->draw(hw, clip);
1563                        break;
1564                    }
1565                    case HWC_FRAMEBUFFER_TARGET: {
1566                        // this should not happen as the iterator shouldn't
1567                        // let us get there.
1568                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1569                        break;
1570                    }
1571                }
1572            }
1573            layer->setAcquireFence(hw, *cur);
1574        }
1575    } else {
1576        // we're not using h/w composer
1577        for (size_t i=0 ; i<count ; ++i) {
1578            const sp<LayerBase>& layer(layers[i]);
1579            const Region clip(dirty.intersect(
1580                    tr.transform(layer->visibleRegion)));
1581            if (!clip.isEmpty()) {
1582                layer->draw(hw, clip);
1583            }
1584        }
1585    }
1586
1587    // disable scissor at the end of the frame
1588    glDisable(GL_SCISSOR_TEST);
1589}
1590
1591void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1592        const Region& region) const
1593{
1594    glDisable(GL_TEXTURE_EXTERNAL_OES);
1595    glDisable(GL_TEXTURE_2D);
1596    glDisable(GL_BLEND);
1597    glColor4f(0,0,0,0);
1598
1599    const int32_t height = hw->getHeight();
1600    Region::const_iterator it = region.begin();
1601    Region::const_iterator const end = region.end();
1602    while (it != end) {
1603        const Rect& r = *it++;
1604        GLfloat vertices[][2] = {
1605                { r.left,  height - r.top },
1606                { r.left,  height - r.bottom },
1607                { r.right, height - r.bottom },
1608                { r.right, height - r.top }
1609        };
1610        glVertexPointer(2, GL_FLOAT, 0, vertices);
1611        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1612    }
1613}
1614
1615ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1616        const sp<LayerBaseClient>& lbc)
1617{
1618    // attach this layer to the client
1619    size_t name = client->attachLayer(lbc);
1620
1621    // add this layer to the current state list
1622    Mutex::Autolock _l(mStateLock);
1623    mCurrentState.layersSortedByZ.add(lbc);
1624
1625    return ssize_t(name);
1626}
1627
1628status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1629{
1630    Mutex::Autolock _l(mStateLock);
1631    status_t err = purgatorizeLayer_l(layer);
1632    if (err == NO_ERROR)
1633        setTransactionFlags(eTransactionNeeded);
1634    return err;
1635}
1636
1637status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1638{
1639    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1640    if (index >= 0) {
1641        mLayersRemoved = true;
1642        return NO_ERROR;
1643    }
1644    return status_t(index);
1645}
1646
1647status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1648{
1649    // First add the layer to the purgatory list, which makes sure it won't
1650    // go away, then remove it from the main list (through a transaction).
1651    ssize_t err = removeLayer_l(layerBase);
1652    if (err >= 0) {
1653        mLayerPurgatory.add(layerBase);
1654    }
1655
1656    mLayersPendingRemoval.push(layerBase);
1657
1658    // it's possible that we don't find a layer, because it might
1659    // have been destroyed already -- this is not technically an error
1660    // from the user because there is a race between Client::destroySurface(),
1661    // ~Client() and ~ISurface().
1662    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1663}
1664
1665uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1666{
1667    return android_atomic_release_load(&mTransactionFlags);
1668}
1669
1670uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1671{
1672    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1673}
1674
1675uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1676{
1677    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1678    if ((old & flags)==0) { // wake the server up
1679        signalTransaction();
1680    }
1681    return old;
1682}
1683
1684void SurfaceFlinger::setTransactionState(
1685        const Vector<ComposerState>& state,
1686        const Vector<DisplayState>& displays,
1687        uint32_t flags)
1688{
1689    ATRACE_CALL();
1690    Mutex::Autolock _l(mStateLock);
1691    uint32_t transactionFlags = 0;
1692
1693    if (flags & eAnimation) {
1694        // For window updates that are part of an animation we must wait for
1695        // previous animation "frames" to be handled.
1696        while (mAnimTransactionPending) {
1697            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1698            if (CC_UNLIKELY(err != NO_ERROR)) {
1699                // just in case something goes wrong in SF, return to the
1700                // caller after a few seconds.
1701                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1702                        "waiting for previous animation frame");
1703                mAnimTransactionPending = false;
1704                break;
1705            }
1706        }
1707    }
1708
1709    size_t count = displays.size();
1710    for (size_t i=0 ; i<count ; i++) {
1711        const DisplayState& s(displays[i]);
1712        transactionFlags |= setDisplayStateLocked(s);
1713    }
1714
1715    count = state.size();
1716    for (size_t i=0 ; i<count ; i++) {
1717        const ComposerState& s(state[i]);
1718        // Here we need to check that the interface we're given is indeed
1719        // one of our own. A malicious client could give us a NULL
1720        // IInterface, or one of its own or even one of our own but a
1721        // different type. All these situations would cause us to crash.
1722        //
1723        // NOTE: it would be better to use RTTI as we could directly check
1724        // that we have a Client*. however, RTTI is disabled in Android.
1725        if (s.client != NULL) {
1726            sp<IBinder> binder = s.client->asBinder();
1727            if (binder != NULL) {
1728                String16 desc(binder->getInterfaceDescriptor());
1729                if (desc == ISurfaceComposerClient::descriptor) {
1730                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1731                    transactionFlags |= setClientStateLocked(client, s.state);
1732                }
1733            }
1734        }
1735    }
1736
1737    if (transactionFlags) {
1738        // this triggers the transaction
1739        setTransactionFlags(transactionFlags);
1740
1741        // if this is a synchronous transaction, wait for it to take effect
1742        // before returning.
1743        if (flags & eSynchronous) {
1744            mTransactionPending = true;
1745        }
1746        if (flags & eAnimation) {
1747            mAnimTransactionPending = true;
1748        }
1749        while (mTransactionPending) {
1750            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1751            if (CC_UNLIKELY(err != NO_ERROR)) {
1752                // just in case something goes wrong in SF, return to the
1753                // called after a few seconds.
1754                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1755                mTransactionPending = false;
1756                break;
1757            }
1758        }
1759    }
1760}
1761
1762uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1763{
1764    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1765    if (dpyIdx < 0)
1766        return 0;
1767
1768    uint32_t flags = 0;
1769    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1770    if (disp.isValid()) {
1771        const uint32_t what = s.what;
1772        if (what & DisplayState::eSurfaceChanged) {
1773            if (disp.surface->asBinder() != s.surface->asBinder()) {
1774                disp.surface = s.surface;
1775                flags |= eDisplayTransactionNeeded;
1776            }
1777        }
1778        if (what & DisplayState::eLayerStackChanged) {
1779            if (disp.layerStack != s.layerStack) {
1780                disp.layerStack = s.layerStack;
1781                flags |= eDisplayTransactionNeeded;
1782            }
1783        }
1784        if (what & DisplayState::eDisplayProjectionChanged) {
1785            if (disp.orientation != s.orientation) {
1786                disp.orientation = s.orientation;
1787                flags |= eDisplayTransactionNeeded;
1788            }
1789            if (disp.frame != s.frame) {
1790                disp.frame = s.frame;
1791                flags |= eDisplayTransactionNeeded;
1792            }
1793            if (disp.viewport != s.viewport) {
1794                disp.viewport = s.viewport;
1795                flags |= eDisplayTransactionNeeded;
1796            }
1797        }
1798    }
1799    return flags;
1800}
1801
1802uint32_t SurfaceFlinger::setClientStateLocked(
1803        const sp<Client>& client,
1804        const layer_state_t& s)
1805{
1806    uint32_t flags = 0;
1807    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1808    if (layer != 0) {
1809        const uint32_t what = s.what;
1810        if (what & layer_state_t::ePositionChanged) {
1811            if (layer->setPosition(s.x, s.y))
1812                flags |= eTraversalNeeded;
1813        }
1814        if (what & layer_state_t::eLayerChanged) {
1815            // NOTE: index needs to be calculated before we update the state
1816            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1817            if (layer->setLayer(s.z)) {
1818                mCurrentState.layersSortedByZ.removeAt(idx);
1819                mCurrentState.layersSortedByZ.add(layer);
1820                // we need traversal (state changed)
1821                // AND transaction (list changed)
1822                flags |= eTransactionNeeded|eTraversalNeeded;
1823            }
1824        }
1825        if (what & layer_state_t::eSizeChanged) {
1826            if (layer->setSize(s.w, s.h)) {
1827                flags |= eTraversalNeeded;
1828            }
1829        }
1830        if (what & layer_state_t::eAlphaChanged) {
1831            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1832                flags |= eTraversalNeeded;
1833        }
1834        if (what & layer_state_t::eMatrixChanged) {
1835            if (layer->setMatrix(s.matrix))
1836                flags |= eTraversalNeeded;
1837        }
1838        if (what & layer_state_t::eTransparentRegionChanged) {
1839            if (layer->setTransparentRegionHint(s.transparentRegion))
1840                flags |= eTraversalNeeded;
1841        }
1842        if (what & layer_state_t::eVisibilityChanged) {
1843            if (layer->setFlags(s.flags, s.mask))
1844                flags |= eTraversalNeeded;
1845        }
1846        if (what & layer_state_t::eCropChanged) {
1847            if (layer->setCrop(s.crop))
1848                flags |= eTraversalNeeded;
1849        }
1850        if (what & layer_state_t::eLayerStackChanged) {
1851            // NOTE: index needs to be calculated before we update the state
1852            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1853            if (layer->setLayerStack(s.layerStack)) {
1854                mCurrentState.layersSortedByZ.removeAt(idx);
1855                mCurrentState.layersSortedByZ.add(layer);
1856                // we need traversal (state changed)
1857                // AND transaction (list changed)
1858                flags |= eTransactionNeeded|eTraversalNeeded;
1859            }
1860        }
1861    }
1862    return flags;
1863}
1864
1865sp<ISurface> SurfaceFlinger::createLayer(
1866        ISurfaceComposerClient::surface_data_t* params,
1867        const String8& name,
1868        const sp<Client>& client,
1869       uint32_t w, uint32_t h, PixelFormat format,
1870        uint32_t flags)
1871{
1872    sp<LayerBaseClient> layer;
1873    sp<ISurface> surfaceHandle;
1874
1875    if (int32_t(w|h) < 0) {
1876        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1877                int(w), int(h));
1878        return surfaceHandle;
1879    }
1880
1881    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1882    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1883        case ISurfaceComposerClient::eFXSurfaceNormal:
1884            layer = createNormalLayer(client, w, h, flags, format);
1885            break;
1886        case ISurfaceComposerClient::eFXSurfaceBlur:
1887        case ISurfaceComposerClient::eFXSurfaceDim:
1888            layer = createDimLayer(client, w, h, flags);
1889            break;
1890        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1891            layer = createScreenshotLayer(client, w, h, flags);
1892            break;
1893    }
1894
1895    if (layer != 0) {
1896        layer->initStates(w, h, flags);
1897        layer->setName(name);
1898        ssize_t token = addClientLayer(client, layer);
1899        surfaceHandle = layer->getSurface();
1900        if (surfaceHandle != 0) {
1901            params->token = token;
1902            params->identity = layer->getIdentity();
1903        }
1904        setTransactionFlags(eTransactionNeeded);
1905    }
1906
1907    return surfaceHandle;
1908}
1909
1910sp<Layer> SurfaceFlinger::createNormalLayer(
1911        const sp<Client>& client,
1912        uint32_t w, uint32_t h, uint32_t flags,
1913        PixelFormat& format)
1914{
1915    // initialize the surfaces
1916    switch (format) {
1917    case PIXEL_FORMAT_TRANSPARENT:
1918    case PIXEL_FORMAT_TRANSLUCENT:
1919        format = PIXEL_FORMAT_RGBA_8888;
1920        break;
1921    case PIXEL_FORMAT_OPAQUE:
1922#ifdef NO_RGBX_8888
1923        format = PIXEL_FORMAT_RGB_565;
1924#else
1925        format = PIXEL_FORMAT_RGBX_8888;
1926#endif
1927        break;
1928    }
1929
1930#ifdef NO_RGBX_8888
1931    if (format == PIXEL_FORMAT_RGBX_8888)
1932        format = PIXEL_FORMAT_RGBA_8888;
1933#endif
1934
1935    sp<Layer> layer = new Layer(this, client);
1936    status_t err = layer->setBuffers(w, h, format, flags);
1937    if (CC_LIKELY(err != NO_ERROR)) {
1938        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1939        layer.clear();
1940    }
1941    return layer;
1942}
1943
1944sp<LayerDim> SurfaceFlinger::createDimLayer(
1945        const sp<Client>& client,
1946        uint32_t w, uint32_t h, uint32_t flags)
1947{
1948    sp<LayerDim> layer = new LayerDim(this, client);
1949    return layer;
1950}
1951
1952sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1953        const sp<Client>& client,
1954        uint32_t w, uint32_t h, uint32_t flags)
1955{
1956    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1957    return layer;
1958}
1959
1960status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1961{
1962    /*
1963     * called by the window manager, when a surface should be marked for
1964     * destruction.
1965     *
1966     * The surface is removed from the current and drawing lists, but placed
1967     * in the purgatory queue, so it's not destroyed right-away (we need
1968     * to wait for all client's references to go away first).
1969     */
1970
1971    status_t err = NAME_NOT_FOUND;
1972    Mutex::Autolock _l(mStateLock);
1973    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1974
1975    if (layer != 0) {
1976        err = purgatorizeLayer_l(layer);
1977        if (err == NO_ERROR) {
1978            setTransactionFlags(eTransactionNeeded);
1979        }
1980    }
1981    return err;
1982}
1983
1984status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1985{
1986    // called by ~ISurface() when all references are gone
1987    status_t err = NO_ERROR;
1988    sp<LayerBaseClient> l(layer.promote());
1989    if (l != NULL) {
1990        Mutex::Autolock _l(mStateLock);
1991        err = removeLayer_l(l);
1992        if (err == NAME_NOT_FOUND) {
1993            // The surface wasn't in the current list, which means it was
1994            // removed already, which means it is in the purgatory,
1995            // and need to be removed from there.
1996            ssize_t idx = mLayerPurgatory.remove(l);
1997            ALOGE_IF(idx < 0,
1998                    "layer=%p is not in the purgatory list", l.get());
1999        }
2000        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2001                "error removing layer=%p (%s)", l.get(), strerror(-err));
2002    }
2003    return err;
2004}
2005
2006// ---------------------------------------------------------------------------
2007
2008void SurfaceFlinger::onInitializeDisplays() {
2009    // reset screen orientation
2010    Vector<ComposerState> state;
2011    Vector<DisplayState> displays;
2012    DisplayState d;
2013    d.what = DisplayState::eDisplayProjectionChanged;
2014    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
2015    d.orientation = DisplayState::eOrientationDefault;
2016    d.frame.makeInvalid();
2017    d.viewport.makeInvalid();
2018    displays.add(d);
2019    setTransactionState(state, displays, 0);
2020    onScreenAcquired(getDefaultDisplayDevice());
2021}
2022
2023void SurfaceFlinger::initializeDisplays() {
2024    class MessageScreenInitialized : public MessageBase {
2025        SurfaceFlinger* flinger;
2026    public:
2027        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2028        virtual bool handler() {
2029            flinger->onInitializeDisplays();
2030            return true;
2031        }
2032    };
2033    sp<MessageBase> msg = new MessageScreenInitialized(this);
2034    postMessageAsync(msg);  // we may be called from main thread, use async message
2035}
2036
2037
2038void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2039    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2040    if (hw->isScreenAcquired()) {
2041        // this is expected, e.g. when power manager wakes up during boot
2042        ALOGD(" screen was previously acquired");
2043        return;
2044    }
2045
2046    hw->acquireScreen();
2047    int32_t type = hw->getDisplayType();
2048    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2049        // built-in display, tell the HWC
2050        getHwComposer().acquire(type);
2051
2052        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2053            // FIXME: eventthread only knows about the main display right now
2054            mEventThread->onScreenAcquired();
2055        }
2056    }
2057    mVisibleRegionsDirty = true;
2058    repaintEverything();
2059}
2060
2061void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2062    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2063    if (!hw->isScreenAcquired()) {
2064        ALOGD(" screen was previously released");
2065        return;
2066    }
2067
2068    hw->releaseScreen();
2069    int32_t type = hw->getDisplayType();
2070    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2071        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2072            // FIXME: eventthread only knows about the main display right now
2073            mEventThread->onScreenReleased();
2074        }
2075
2076        // built-in display, tell the HWC
2077        getHwComposer().release(type);
2078    }
2079    mVisibleRegionsDirty = true;
2080    // from this point on, SF will stop drawing on this display
2081}
2082
2083void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2084    class MessageScreenAcquired : public MessageBase {
2085        SurfaceFlinger& mFlinger;
2086        sp<IBinder> mDisplay;
2087    public:
2088        MessageScreenAcquired(SurfaceFlinger& flinger,
2089                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2090        virtual bool handler() {
2091            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2092            if (hw == NULL) {
2093                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2094            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2095                ALOGW("Attempt to unblank virtual display");
2096            } else {
2097                mFlinger.onScreenAcquired(hw);
2098            }
2099            return true;
2100        }
2101    };
2102    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2103    postMessageSync(msg);
2104}
2105
2106void SurfaceFlinger::blank(const sp<IBinder>& display) {
2107    class MessageScreenReleased : public MessageBase {
2108        SurfaceFlinger& mFlinger;
2109        sp<IBinder> mDisplay;
2110    public:
2111        MessageScreenReleased(SurfaceFlinger& flinger,
2112                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2113        virtual bool handler() {
2114            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2115            if (hw == NULL) {
2116                ALOGE("Attempt to blank null display %p", mDisplay.get());
2117            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2118                ALOGW("Attempt to blank virtual display");
2119            } else {
2120                mFlinger.onScreenReleased(hw);
2121            }
2122            return true;
2123        }
2124    };
2125    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2126    postMessageSync(msg);
2127}
2128
2129// ---------------------------------------------------------------------------
2130
2131status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2132{
2133    const size_t SIZE = 4096;
2134    char buffer[SIZE];
2135    String8 result;
2136
2137    if (!PermissionCache::checkCallingPermission(sDump)) {
2138        snprintf(buffer, SIZE, "Permission Denial: "
2139                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2140                IPCThreadState::self()->getCallingPid(),
2141                IPCThreadState::self()->getCallingUid());
2142        result.append(buffer);
2143    } else {
2144        // Try to get the main lock, but don't insist if we can't
2145        // (this would indicate SF is stuck, but we want to be able to
2146        // print something in dumpsys).
2147        int retry = 3;
2148        while (mStateLock.tryLock()<0 && --retry>=0) {
2149            usleep(1000000);
2150        }
2151        const bool locked(retry >= 0);
2152        if (!locked) {
2153            snprintf(buffer, SIZE,
2154                    "SurfaceFlinger appears to be unresponsive, "
2155                    "dumping anyways (no locks held)\n");
2156            result.append(buffer);
2157        }
2158
2159        bool dumpAll = true;
2160        size_t index = 0;
2161        size_t numArgs = args.size();
2162        if (numArgs) {
2163            if ((index < numArgs) &&
2164                    (args[index] == String16("--list"))) {
2165                index++;
2166                listLayersLocked(args, index, result, buffer, SIZE);
2167                dumpAll = false;
2168            }
2169
2170            if ((index < numArgs) &&
2171                    (args[index] == String16("--latency"))) {
2172                index++;
2173                dumpStatsLocked(args, index, result, buffer, SIZE);
2174                dumpAll = false;
2175            }
2176
2177            if ((index < numArgs) &&
2178                    (args[index] == String16("--latency-clear"))) {
2179                index++;
2180                clearStatsLocked(args, index, result, buffer, SIZE);
2181                dumpAll = false;
2182            }
2183        }
2184
2185        if (dumpAll) {
2186            dumpAllLocked(result, buffer, SIZE);
2187        }
2188
2189        if (locked) {
2190            mStateLock.unlock();
2191        }
2192    }
2193    write(fd, result.string(), result.size());
2194    return NO_ERROR;
2195}
2196
2197void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2198        String8& result, char* buffer, size_t SIZE) const
2199{
2200    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2201    const size_t count = currentLayers.size();
2202    for (size_t i=0 ; i<count ; i++) {
2203        const sp<LayerBase>& layer(currentLayers[i]);
2204        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2205        result.append(buffer);
2206    }
2207}
2208
2209void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2210        String8& result, char* buffer, size_t SIZE) const
2211{
2212    String8 name;
2213    if (index < args.size()) {
2214        name = String8(args[index]);
2215        index++;
2216    }
2217
2218    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2219    const size_t count = currentLayers.size();
2220    for (size_t i=0 ; i<count ; i++) {
2221        const sp<LayerBase>& layer(currentLayers[i]);
2222        if (name.isEmpty()) {
2223            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2224            result.append(buffer);
2225        }
2226        if (name.isEmpty() || (name == layer->getName())) {
2227            layer->dumpStats(result, buffer, SIZE);
2228        }
2229    }
2230}
2231
2232void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2233        String8& result, char* buffer, size_t SIZE) const
2234{
2235    String8 name;
2236    if (index < args.size()) {
2237        name = String8(args[index]);
2238        index++;
2239    }
2240
2241    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2242    const size_t count = currentLayers.size();
2243    for (size_t i=0 ; i<count ; i++) {
2244        const sp<LayerBase>& layer(currentLayers[i]);
2245        if (name.isEmpty() || (name == layer->getName())) {
2246            layer->clearStats();
2247        }
2248    }
2249}
2250
2251/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2252{
2253    static const char* config =
2254            " [sf"
2255#ifdef NO_RGBX_8888
2256            " NO_RGBX_8888"
2257#endif
2258#ifdef HAS_CONTEXT_PRIORITY
2259            " HAS_CONTEXT_PRIORITY"
2260#endif
2261#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2262            " NEVER_DEFAULT_TO_ASYNC_MODE"
2263#endif
2264#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2265            " TARGET_DISABLE_TRIPLE_BUFFERING"
2266#endif
2267            "]";
2268    result.append(config);
2269}
2270
2271void SurfaceFlinger::dumpAllLocked(
2272        String8& result, char* buffer, size_t SIZE) const
2273{
2274    // figure out if we're stuck somewhere
2275    const nsecs_t now = systemTime();
2276    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2277    const nsecs_t inTransaction(mDebugInTransaction);
2278    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2279    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2280
2281    /*
2282     * Dump library configuration.
2283     */
2284    result.append("Build configuration:");
2285    appendSfConfigString(result);
2286    appendUiConfigString(result);
2287    appendGuiConfigString(result);
2288    result.append("\n");
2289
2290    /*
2291     * Dump the visible layer list
2292     */
2293    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2294    const size_t count = currentLayers.size();
2295    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2296    result.append(buffer);
2297    for (size_t i=0 ; i<count ; i++) {
2298        const sp<LayerBase>& layer(currentLayers[i]);
2299        layer->dump(result, buffer, SIZE);
2300    }
2301
2302    /*
2303     * Dump the layers in the purgatory
2304     */
2305
2306    const size_t purgatorySize = mLayerPurgatory.size();
2307    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2308    result.append(buffer);
2309    for (size_t i=0 ; i<purgatorySize ; i++) {
2310        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2311        layer->shortDump(result, buffer, SIZE);
2312    }
2313
2314    /*
2315     * Dump Display state
2316     */
2317
2318    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2319    result.append(buffer);
2320    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2321        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2322        hw->dump(result, buffer, SIZE);
2323    }
2324
2325    /*
2326     * Dump SurfaceFlinger global state
2327     */
2328
2329    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2330    result.append(buffer);
2331
2332    HWComposer& hwc(getHwComposer());
2333    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2334    const GLExtensions& extensions(GLExtensions::getInstance());
2335    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2336            extensions.getVendor(),
2337            extensions.getRenderer(),
2338            extensions.getVersion());
2339    result.append(buffer);
2340
2341    snprintf(buffer, SIZE, "EGL : %s\n",
2342            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2343    result.append(buffer);
2344
2345    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2346    result.append(buffer);
2347
2348    hw->undefinedRegion.dump(result, "undefinedRegion");
2349    snprintf(buffer, SIZE,
2350            "  orientation=%d, canDraw=%d\n",
2351            hw->getOrientation(), hw->canDraw());
2352    result.append(buffer);
2353    snprintf(buffer, SIZE,
2354            "  last eglSwapBuffers() time: %f us\n"
2355            "  last transaction time     : %f us\n"
2356            "  transaction-flags         : %08x\n"
2357            "  refresh-rate              : %f fps\n"
2358            "  x-dpi                     : %f\n"
2359            "  y-dpi                     : %f\n",
2360            mLastSwapBufferTime/1000.0,
2361            mLastTransactionTime/1000.0,
2362            mTransactionFlags,
2363            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2364            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2365            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2366    result.append(buffer);
2367
2368    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2369            inSwapBuffersDuration/1000.0);
2370    result.append(buffer);
2371
2372    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2373            inTransactionDuration/1000.0);
2374    result.append(buffer);
2375
2376    /*
2377     * VSYNC state
2378     */
2379    mEventThread->dump(result, buffer, SIZE);
2380
2381    /*
2382     * Dump HWComposer state
2383     */
2384    snprintf(buffer, SIZE, "h/w composer state:\n");
2385    result.append(buffer);
2386    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2387            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2388                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2389    result.append(buffer);
2390    hwc.dump(result, buffer, SIZE);
2391
2392    /*
2393     * Dump gralloc state
2394     */
2395    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2396    alloc.dump(result);
2397}
2398
2399const Vector< sp<LayerBase> >&
2400SurfaceFlinger::getLayerSortedByZForHwcDisplay(int disp) {
2401    // Note: mStateLock is held here
2402    return getDisplayDevice( getBuiltInDisplay(disp) )->getVisibleLayersSortedByZ();
2403}
2404
2405bool SurfaceFlinger::startDdmConnection()
2406{
2407    void* libddmconnection_dso =
2408            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2409    if (!libddmconnection_dso) {
2410        return false;
2411    }
2412    void (*DdmConnection_start)(const char* name);
2413    DdmConnection_start =
2414            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2415    if (!DdmConnection_start) {
2416        dlclose(libddmconnection_dso);
2417        return false;
2418    }
2419    (*DdmConnection_start)(getServiceName());
2420    return true;
2421}
2422
2423status_t SurfaceFlinger::onTransact(
2424    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2425{
2426    switch (code) {
2427        case CREATE_CONNECTION:
2428        case SET_TRANSACTION_STATE:
2429        case BOOT_FINISHED:
2430        case BLANK:
2431        case UNBLANK:
2432        {
2433            // codes that require permission check
2434            IPCThreadState* ipc = IPCThreadState::self();
2435            const int pid = ipc->getCallingPid();
2436            const int uid = ipc->getCallingUid();
2437            if ((uid != AID_GRAPHICS) &&
2438                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2439                ALOGE("Permission Denial: "
2440                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2441                return PERMISSION_DENIED;
2442            }
2443            break;
2444        }
2445        case CAPTURE_SCREEN:
2446        {
2447            // codes that require permission check
2448            IPCThreadState* ipc = IPCThreadState::self();
2449            const int pid = ipc->getCallingPid();
2450            const int uid = ipc->getCallingUid();
2451            if ((uid != AID_GRAPHICS) &&
2452                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2453                ALOGE("Permission Denial: "
2454                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2455                return PERMISSION_DENIED;
2456            }
2457            break;
2458        }
2459    }
2460
2461    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2462    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2463        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2464        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2465            IPCThreadState* ipc = IPCThreadState::self();
2466            const int pid = ipc->getCallingPid();
2467            const int uid = ipc->getCallingUid();
2468            ALOGE("Permission Denial: "
2469                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2470            return PERMISSION_DENIED;
2471        }
2472        int n;
2473        switch (code) {
2474            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2475            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2476                return NO_ERROR;
2477            case 1002:  // SHOW_UPDATES
2478                n = data.readInt32();
2479                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2480                invalidateHwcGeometry();
2481                repaintEverything();
2482                return NO_ERROR;
2483            case 1004:{ // repaint everything
2484                repaintEverything();
2485                return NO_ERROR;
2486            }
2487            case 1005:{ // force transaction
2488                setTransactionFlags(
2489                        eTransactionNeeded|
2490                        eDisplayTransactionNeeded|
2491                        eTraversalNeeded);
2492                return NO_ERROR;
2493            }
2494            case 1006:{ // send empty update
2495                signalRefresh();
2496                return NO_ERROR;
2497            }
2498            case 1008:  // toggle use of hw composer
2499                n = data.readInt32();
2500                mDebugDisableHWC = n ? 1 : 0;
2501                invalidateHwcGeometry();
2502                repaintEverything();
2503                return NO_ERROR;
2504            case 1009:  // toggle use of transform hint
2505                n = data.readInt32();
2506                mDebugDisableTransformHint = n ? 1 : 0;
2507                invalidateHwcGeometry();
2508                repaintEverything();
2509                return NO_ERROR;
2510            case 1010:  // interrogate.
2511                reply->writeInt32(0);
2512                reply->writeInt32(0);
2513                reply->writeInt32(mDebugRegion);
2514                reply->writeInt32(0);
2515                reply->writeInt32(mDebugDisableHWC);
2516                return NO_ERROR;
2517            case 1013: {
2518                Mutex::Autolock _l(mStateLock);
2519                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2520                reply->writeInt32(hw->getPageFlipCount());
2521            }
2522            return NO_ERROR;
2523        }
2524    }
2525    return err;
2526}
2527
2528void SurfaceFlinger::repaintEverything() {
2529    android_atomic_or(1, &mRepaintEverything);
2530    signalTransaction();
2531}
2532
2533// ---------------------------------------------------------------------------
2534
2535status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2536        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2537{
2538    Mutex::Autolock _l(mStateLock);
2539    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2540}
2541
2542status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2543        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2544{
2545    ATRACE_CALL();
2546
2547    if (!GLExtensions::getInstance().haveFramebufferObject())
2548        return INVALID_OPERATION;
2549
2550    // get screen geometry
2551    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2552    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2553    const uint32_t hw_w = hw->getWidth();
2554    const uint32_t hw_h = hw->getHeight();
2555    GLfloat u = 1;
2556    GLfloat v = 1;
2557
2558    // make sure to clear all GL error flags
2559    while ( glGetError() != GL_NO_ERROR ) ;
2560
2561    // create a FBO
2562    GLuint name, tname;
2563    glGenTextures(1, &tname);
2564    glBindTexture(GL_TEXTURE_2D, tname);
2565    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2566    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2567    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2568            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2569    if (glGetError() != GL_NO_ERROR) {
2570        while ( glGetError() != GL_NO_ERROR ) ;
2571        GLint tw = (2 << (31 - clz(hw_w)));
2572        GLint th = (2 << (31 - clz(hw_h)));
2573        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2574                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2575        u = GLfloat(hw_w) / tw;
2576        v = GLfloat(hw_h) / th;
2577    }
2578    glGenFramebuffersOES(1, &name);
2579    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2580    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2581            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2582
2583    DisplayDevice::setViewportAndProjection(hw);
2584
2585    // redraw the screen entirely...
2586    glDisable(GL_TEXTURE_EXTERNAL_OES);
2587    glDisable(GL_TEXTURE_2D);
2588    glClearColor(0,0,0,1);
2589    glClear(GL_COLOR_BUFFER_BIT);
2590    glMatrixMode(GL_MODELVIEW);
2591    glLoadIdentity();
2592    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2593    const size_t count = layers.size();
2594    for (size_t i=0 ; i<count ; ++i) {
2595        const sp<LayerBase>& layer(layers[i]);
2596        layer->draw(hw);
2597    }
2598
2599    hw->compositionComplete();
2600
2601    // back to main framebuffer
2602    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2603    glDeleteFramebuffersOES(1, &name);
2604
2605    *textureName = tname;
2606    *uOut = u;
2607    *vOut = v;
2608    return NO_ERROR;
2609}
2610
2611// ---------------------------------------------------------------------------
2612
2613status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2614        sp<IMemoryHeap>* heap,
2615        uint32_t* w, uint32_t* h, PixelFormat* f,
2616        uint32_t sw, uint32_t sh,
2617        uint32_t minLayerZ, uint32_t maxLayerZ)
2618{
2619    ATRACE_CALL();
2620
2621    status_t result = PERMISSION_DENIED;
2622
2623    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2624        return INVALID_OPERATION;
2625    }
2626
2627    // get screen geometry
2628    sp<const DisplayDevice> hw(getDisplayDevice(display));
2629    const uint32_t hw_w = hw->getWidth();
2630    const uint32_t hw_h = hw->getHeight();
2631
2632    // if we have secure windows on this display, never allow the screen capture
2633    if (hw->getSecureLayerVisible()) {
2634        ALOGW("FB is protected: PERMISSION_DENIED");
2635        return PERMISSION_DENIED;
2636    }
2637
2638    if ((sw > hw_w) || (sh > hw_h)) {
2639        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2640        return BAD_VALUE;
2641    }
2642
2643    sw = (!sw) ? hw_w : sw;
2644    sh = (!sh) ? hw_h : sh;
2645    const size_t size = sw * sh * 4;
2646    const bool filtering = sw != hw_w || sh != hw_h;
2647
2648//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2649//            sw, sh, minLayerZ, maxLayerZ);
2650
2651    // make sure to clear all GL error flags
2652    while ( glGetError() != GL_NO_ERROR ) ;
2653
2654    // create a FBO
2655    GLuint name, tname;
2656    glGenRenderbuffersOES(1, &tname);
2657    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2658    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2659
2660    glGenFramebuffersOES(1, &name);
2661    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2662    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2663            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2664
2665    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2666
2667    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2668
2669        // invert everything, b/c glReadPixel() below will invert the FB
2670        GLint  viewport[4];
2671        glGetIntegerv(GL_VIEWPORT, viewport);
2672        glViewport(0, 0, sw, sh);
2673        glMatrixMode(GL_PROJECTION);
2674        glPushMatrix();
2675        glLoadIdentity();
2676        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2677        glMatrixMode(GL_MODELVIEW);
2678
2679        // redraw the screen entirely...
2680        glClearColor(0,0,0,1);
2681        glClear(GL_COLOR_BUFFER_BIT);
2682
2683        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2684        const size_t count = layers.size();
2685        for (size_t i=0 ; i<count ; ++i) {
2686            const sp<LayerBase>& layer(layers[i]);
2687            const uint32_t z = layer->drawingState().z;
2688            if (z >= minLayerZ && z <= maxLayerZ) {
2689                if (filtering) layer->setFiltering(true);
2690                layer->draw(hw);
2691                if (filtering) layer->setFiltering(false);
2692            }
2693        }
2694
2695        // check for errors and return screen capture
2696        if (glGetError() != GL_NO_ERROR) {
2697            // error while rendering
2698            result = INVALID_OPERATION;
2699        } else {
2700            // allocate shared memory large enough to hold the
2701            // screen capture
2702            sp<MemoryHeapBase> base(
2703                    new MemoryHeapBase(size, 0, "screen-capture") );
2704            void* const ptr = base->getBase();
2705            if (ptr != MAP_FAILED) {
2706                // capture the screen with glReadPixels()
2707                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2708                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2709                if (glGetError() == GL_NO_ERROR) {
2710                    *heap = base;
2711                    *w = sw;
2712                    *h = sh;
2713                    *f = PIXEL_FORMAT_RGBA_8888;
2714                    result = NO_ERROR;
2715                }
2716            } else {
2717                result = NO_MEMORY;
2718            }
2719        }
2720        glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
2721        glMatrixMode(GL_PROJECTION);
2722        glPopMatrix();
2723        glMatrixMode(GL_MODELVIEW);
2724    } else {
2725        result = BAD_VALUE;
2726    }
2727
2728    // release FBO resources
2729    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2730    glDeleteRenderbuffersOES(1, &tname);
2731    glDeleteFramebuffersOES(1, &name);
2732
2733    hw->compositionComplete();
2734
2735//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2736
2737    return result;
2738}
2739
2740
2741status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2742        sp<IMemoryHeap>* heap,
2743        uint32_t* width, uint32_t* height, PixelFormat* format,
2744        uint32_t sw, uint32_t sh,
2745        uint32_t minLayerZ, uint32_t maxLayerZ)
2746{
2747    if (CC_UNLIKELY(display == 0))
2748        return BAD_VALUE;
2749
2750    if (!GLExtensions::getInstance().haveFramebufferObject())
2751        return INVALID_OPERATION;
2752
2753    class MessageCaptureScreen : public MessageBase {
2754        SurfaceFlinger* flinger;
2755        sp<IBinder> display;
2756        sp<IMemoryHeap>* heap;
2757        uint32_t* w;
2758        uint32_t* h;
2759        PixelFormat* f;
2760        uint32_t sw;
2761        uint32_t sh;
2762        uint32_t minLayerZ;
2763        uint32_t maxLayerZ;
2764        status_t result;
2765    public:
2766        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2767                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2768                uint32_t sw, uint32_t sh,
2769                uint32_t minLayerZ, uint32_t maxLayerZ)
2770            : flinger(flinger), display(display),
2771              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2772              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2773              result(PERMISSION_DENIED)
2774        {
2775        }
2776        status_t getResult() const {
2777            return result;
2778        }
2779        virtual bool handler() {
2780            Mutex::Autolock _l(flinger->mStateLock);
2781            result = flinger->captureScreenImplLocked(display,
2782                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2783            return true;
2784        }
2785    };
2786
2787    sp<MessageBase> msg = new MessageCaptureScreen(this,
2788            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2789    status_t res = postMessageSync(msg);
2790    if (res == NO_ERROR) {
2791        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2792    }
2793    return res;
2794}
2795
2796// ---------------------------------------------------------------------------
2797
2798SurfaceFlinger::LayerVector::LayerVector() {
2799}
2800
2801SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2802    : SortedVector<sp<LayerBase> >(rhs) {
2803}
2804
2805int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2806    const void* rhs) const
2807{
2808    // sort layers per layer-stack, then by z-order and finally by sequence
2809    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2810    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2811
2812    uint32_t ls = l->currentState().layerStack;
2813    uint32_t rs = r->currentState().layerStack;
2814    if (ls != rs)
2815        return ls - rs;
2816
2817    uint32_t lz = l->currentState().z;
2818    uint32_t rz = r->currentState().z;
2819    if (lz != rz)
2820        return lz - rz;
2821
2822    return l->sequence - r->sequence;
2823}
2824
2825// ---------------------------------------------------------------------------
2826
2827SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2828    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2829}
2830
2831SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2832    : type(type), layerStack(0), orientation(0) {
2833    viewport.makeInvalid();
2834    frame.makeInvalid();
2835}
2836
2837// ---------------------------------------------------------------------------
2838
2839}; // namespace android
2840