SurfaceFlinger.cpp revision 29c3f352797d9d2ddf055d8f888e7694ef8b3947
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/Surface.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56#include <private/gui/SyncFeatures.h>
57
58#include "Client.h"
59#include "clz.h"
60#include "Colorizer.h"
61#include "DdmConnection.h"
62#include "DisplayDevice.h"
63#include "EventThread.h"
64#include "GLExtensions.h"
65#include "Layer.h"
66#include "LayerDim.h"
67#include "SurfaceFlinger.h"
68
69#include "DisplayHardware/FramebufferSurface.h"
70#include "DisplayHardware/HWComposer.h"
71#include "DisplayHardware/VirtualDisplaySurface.h"
72
73#define DISPLAY_COUNT       1
74
75EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
76
77namespace android {
78// ---------------------------------------------------------------------------
79
80const String16 sHardwareTest("android.permission.HARDWARE_TEST");
81const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
82const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
83const String16 sDump("android.permission.DUMP");
84
85// ---------------------------------------------------------------------------
86
87SurfaceFlinger::SurfaceFlinger()
88    :   BnSurfaceComposer(), Thread(false),
89        mTransactionFlags(0),
90        mTransactionPending(false),
91        mAnimTransactionPending(false),
92        mLayersRemoved(false),
93        mRepaintEverything(0),
94        mBootTime(systemTime()),
95        mVisibleRegionsDirty(false),
96        mHwWorkListDirty(false),
97        mAnimCompositionPending(false),
98        mDebugRegion(0),
99        mDebugDDMS(0),
100        mDebugDisableHWC(0),
101        mDebugDisableTransformHint(0),
102        mDebugInSwapBuffers(0),
103        mLastSwapBufferTime(0),
104        mDebugInTransaction(0),
105        mLastTransactionTime(0),
106        mBootFinished(false)
107{
108    ALOGI("SurfaceFlinger is starting");
109
110    // debugging stuff...
111    char value[PROPERTY_VALUE_MAX];
112
113    property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
114    mGpuToCpuSupported = !atoi(value);
115
116    property_get("debug.sf.showupdates", value, "0");
117    mDebugRegion = atoi(value);
118
119    property_get("debug.sf.ddms", value, "0");
120    mDebugDDMS = atoi(value);
121    if (mDebugDDMS) {
122        if (!startDdmConnection()) {
123            // start failed, and DDMS debugging not enabled
124            mDebugDDMS = 0;
125        }
126    }
127    ALOGI_IF(mDebugRegion, "showupdates enabled");
128    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
129}
130
131void SurfaceFlinger::onFirstRef()
132{
133    mEventQueue.init(this);
134
135    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
136
137    // Wait for the main thread to be done with its initialization
138    mReadyToRunBarrier.wait();
139}
140
141
142SurfaceFlinger::~SurfaceFlinger()
143{
144    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
145    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
146    eglTerminate(display);
147}
148
149void SurfaceFlinger::binderDied(const wp<IBinder>& who)
150{
151    // the window manager died on us. prepare its eulogy.
152
153    // restore initial conditions (default device unblank, etc)
154    initializeDisplays();
155
156    // restart the boot-animation
157    startBootAnim();
158}
159
160sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
161{
162    sp<ISurfaceComposerClient> bclient;
163    sp<Client> client(new Client(this));
164    status_t err = client->initCheck();
165    if (err == NO_ERROR) {
166        bclient = client;
167    }
168    return bclient;
169}
170
171sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
172        bool secure)
173{
174    class DisplayToken : public BBinder {
175        sp<SurfaceFlinger> flinger;
176        virtual ~DisplayToken() {
177             // no more references, this display must be terminated
178             Mutex::Autolock _l(flinger->mStateLock);
179             flinger->mCurrentState.displays.removeItem(this);
180             flinger->setTransactionFlags(eDisplayTransactionNeeded);
181         }
182     public:
183        DisplayToken(const sp<SurfaceFlinger>& flinger)
184            : flinger(flinger) {
185        }
186    };
187
188    sp<BBinder> token = new DisplayToken(this);
189
190    Mutex::Autolock _l(mStateLock);
191    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
192    info.displayName = displayName;
193    info.isSecure = secure;
194    mCurrentState.displays.add(token, info);
195
196    return token;
197}
198
199void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
200    ALOGW_IF(mBuiltinDisplays[type],
201            "Overwriting display token for display type %d", type);
202    mBuiltinDisplays[type] = new BBinder();
203    DisplayDeviceState info(type);
204    // All non-virtual displays are currently considered secure.
205    info.isSecure = true;
206    mCurrentState.displays.add(mBuiltinDisplays[type], info);
207}
208
209sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
210    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
211        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
212        return NULL;
213    }
214    return mBuiltinDisplays[id];
215}
216
217sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
218{
219    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
220    return gba;
221}
222
223void SurfaceFlinger::bootFinished()
224{
225    const nsecs_t now = systemTime();
226    const nsecs_t duration = now - mBootTime;
227    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
228    mBootFinished = true;
229
230    // wait patiently for the window manager death
231    const String16 name("window");
232    sp<IBinder> window(defaultServiceManager()->getService(name));
233    if (window != 0) {
234        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
235    }
236
237    // stop boot animation
238    // formerly we would just kill the process, but we now ask it to exit so it
239    // can choose where to stop the animation.
240    property_set("service.bootanim.exit", "1");
241}
242
243void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
244    class MessageDestroyGLTexture : public MessageBase {
245        GLuint texture;
246    public:
247        MessageDestroyGLTexture(GLuint texture)
248            : texture(texture) {
249        }
250        virtual bool handler() {
251            glDeleteTextures(1, &texture);
252            return true;
253        }
254    };
255    postMessageAsync(new MessageDestroyGLTexture(texture));
256}
257
258status_t SurfaceFlinger::selectConfigForAttribute(
259        EGLDisplay dpy,
260        EGLint const* attrs,
261        EGLint attribute, EGLint wanted,
262        EGLConfig* outConfig)
263{
264    EGLConfig config = NULL;
265    EGLint numConfigs = -1, n=0;
266    eglGetConfigs(dpy, NULL, 0, &numConfigs);
267    EGLConfig* const configs = new EGLConfig[numConfigs];
268    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
269
270    if (n) {
271        if (attribute != EGL_NONE) {
272            for (int i=0 ; i<n ; i++) {
273                EGLint value = 0;
274                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
275                if (wanted == value) {
276                    *outConfig = configs[i];
277                    delete [] configs;
278                    return NO_ERROR;
279                }
280            }
281        } else {
282            // just pick the first one
283            *outConfig = configs[0];
284            delete [] configs;
285            return NO_ERROR;
286        }
287    }
288    delete [] configs;
289    return NAME_NOT_FOUND;
290}
291
292class EGLAttributeVector {
293    struct Attribute;
294    class Adder;
295    friend class Adder;
296    KeyedVector<Attribute, EGLint> mList;
297    struct Attribute {
298        Attribute() {};
299        Attribute(EGLint v) : v(v) { }
300        EGLint v;
301        bool operator < (const Attribute& other) const {
302            // this places EGL_NONE at the end
303            EGLint lhs(v);
304            EGLint rhs(other.v);
305            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
306            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
307            return lhs < rhs;
308        }
309    };
310    class Adder {
311        friend class EGLAttributeVector;
312        EGLAttributeVector& v;
313        EGLint attribute;
314        Adder(EGLAttributeVector& v, EGLint attribute)
315            : v(v), attribute(attribute) {
316        }
317    public:
318        void operator = (EGLint value) {
319            if (attribute != EGL_NONE) {
320                v.mList.add(attribute, value);
321            }
322        }
323        operator EGLint () const { return v.mList[attribute]; }
324    };
325public:
326    EGLAttributeVector() {
327        mList.add(EGL_NONE, EGL_NONE);
328    }
329    void remove(EGLint attribute) {
330        if (attribute != EGL_NONE) {
331            mList.removeItem(attribute);
332        }
333    }
334    Adder operator [] (EGLint attribute) {
335        return Adder(*this, attribute);
336    }
337    EGLint operator [] (EGLint attribute) const {
338       return mList[attribute];
339    }
340    // cast-operator to (EGLint const*)
341    operator EGLint const* () const { return &mList.keyAt(0).v; }
342};
343
344EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
345    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
346    // it is to be used with WIFI displays
347    EGLConfig config;
348    EGLint dummy;
349    status_t err;
350
351    EGLAttributeVector attribs;
352    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
353    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
354    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
355    attribs[EGL_RED_SIZE]                   = 8;
356    attribs[EGL_GREEN_SIZE]                 = 8;
357    attribs[EGL_BLUE_SIZE]                  = 8;
358
359    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
360    if (!err)
361        goto success;
362
363    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
364    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
365    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
366    err = selectConfigForAttribute(display, attribs,
367            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
368    if (!err)
369        goto success;
370
371    // maybe we failed because of EGL_RECORDABLE_ANDROID
372    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
373    attribs.remove(EGL_RECORDABLE_ANDROID);
374    err = selectConfigForAttribute(display, attribs,
375            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
376    if (!err)
377        goto success;
378
379    // allow less than 24-bit color; the non-gpu-accelerated emulator only
380    // supports 16-bit color
381    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
382    attribs.remove(EGL_RED_SIZE);
383    attribs.remove(EGL_GREEN_SIZE);
384    attribs.remove(EGL_BLUE_SIZE);
385    err = selectConfigForAttribute(display, attribs,
386            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
387    if (!err)
388        goto success;
389
390    // this EGL is too lame for Android
391    ALOGE("no suitable EGLConfig found, giving up");
392
393    return 0;
394
395success:
396    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
397        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
398    return config;
399}
400
401EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
402    // Also create our EGLContext
403    EGLint contextAttributes[] = {
404#ifdef EGL_IMG_context_priority
405#ifdef HAS_CONTEXT_PRIORITY
406#warning "using EGL_IMG_context_priority"
407            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
408#endif
409#endif
410            EGL_NONE, EGL_NONE
411    };
412    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
413    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
414    return ctxt;
415}
416
417static GlesVersion parseGlesVersion(const char* str) {
418    int major, minor;
419    if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) {
420        ALOGW("Unable to parse GL_VERSION string: \"%s\"", str);
421        return GLES_VERSION_1_0;
422    }
423
424    if (major == 1 && minor == 0) return GLES_VERSION_1_0;
425    if (major == 1 && minor >= 1) return GLES_VERSION_1_1;
426    if (major == 2 && minor >= 0) return GLES_VERSION_2_0;
427    if (major == 3 && minor >= 0) return GLES_VERSION_3_0;
428
429    ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor);
430    return GLES_VERSION_1_0;
431}
432
433void SurfaceFlinger::initializeGL(EGLDisplay display) {
434    GLExtensions& extensions(GLExtensions::getInstance());
435    extensions.initWithGLStrings(
436            glGetString(GL_VENDOR),
437            glGetString(GL_RENDERER),
438            glGetString(GL_VERSION),
439            glGetString(GL_EXTENSIONS),
440            eglQueryString(display, EGL_VENDOR),
441            eglQueryString(display, EGL_VERSION),
442            eglQueryString(display, EGL_EXTENSIONS));
443
444    mGlesVersion = parseGlesVersion(extensions.getVersion());
445
446    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
447    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
448
449    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
450    glPixelStorei(GL_PACK_ALIGNMENT, 4);
451    glEnableClientState(GL_VERTEX_ARRAY);
452    glShadeModel(GL_FLAT);
453    glDisable(GL_DITHER);
454    glDisable(GL_CULL_FACE);
455
456    struct pack565 {
457        inline uint16_t operator() (int r, int g, int b) const {
458            return (r<<11)|(g<<5)|b;
459        }
460    } pack565;
461
462    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
463    glGenTextures(1, &mProtectedTexName);
464    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
465    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
466    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
467    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
468    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
469    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
470            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
471
472    // print some debugging info
473    EGLint r,g,b,a;
474    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
475    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
476    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
477    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
478    ALOGI("EGL informations:");
479    ALOGI("vendor    : %s", extensions.getEglVendor());
480    ALOGI("version   : %s", extensions.getEglVersion());
481    ALOGI("extensions: %s", extensions.getEglExtension());
482    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
483    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
484    ALOGI("OpenGL ES informations:");
485    ALOGI("vendor    : %s", extensions.getVendor());
486    ALOGI("renderer  : %s", extensions.getRenderer());
487    ALOGI("version   : %s", extensions.getVersion());
488    ALOGI("extensions: %s", extensions.getExtension());
489    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
490    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
491}
492
493status_t SurfaceFlinger::readyToRun()
494{
495    ALOGI(  "SurfaceFlinger's main thread ready to run. "
496            "Initializing graphics H/W...");
497
498    Mutex::Autolock _l(mStateLock);
499
500    // initialize EGL for the default display
501    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
502    eglInitialize(mEGLDisplay, NULL, NULL);
503
504    // Initialize the H/W composer object.  There may or may not be an
505    // actual hardware composer underneath.
506    mHwc = new HWComposer(this,
507            *static_cast<HWComposer::EventHandler *>(this));
508
509    // initialize the config and context
510    EGLint format = mHwc->getVisualID();
511    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
512    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
513
514    // figure out which format we got
515    eglGetConfigAttrib(mEGLDisplay, mEGLConfig,
516            EGL_NATIVE_VISUAL_ID, &mEGLNativeVisualId);
517
518    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
519            "couldn't create EGLContext");
520
521    // initialize our non-virtual displays
522    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
523        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
524        // set-up the displays that are already connected
525        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
526            // All non-virtual displays are currently considered secure.
527            bool isSecure = true;
528            createBuiltinDisplayLocked(type);
529            wp<IBinder> token = mBuiltinDisplays[i];
530
531            sp<DisplayDevice> hw = new DisplayDevice(this,
532                    type, allocateHwcDisplayId(type), isSecure, token,
533                    new FramebufferSurface(*mHwc, i),
534                    mEGLConfig);
535            if (i > DisplayDevice::DISPLAY_PRIMARY) {
536                // FIXME: currently we don't get blank/unblank requests
537                // for displays other than the main display, so we always
538                // assume a connected display is unblanked.
539                ALOGD("marking display %d as acquired/unblanked", i);
540                hw->acquireScreen();
541            }
542            mDisplays.add(token, hw);
543        }
544    }
545
546    //  we need a GL context current in a few places, when initializing
547    //  OpenGL ES (see below), or creating a layer,
548    //  or when a texture is (asynchronously) destroyed, and for that
549    //  we need a valid surface, so it's convenient to use the main display
550    //  for that.
551    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
552
553    //  initialize OpenGL ES
554    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
555    initializeGL(mEGLDisplay);
556
557    // start the EventThread
558    mEventThread = new EventThread(this);
559    mEventQueue.setEventThread(mEventThread);
560
561    // initialize our drawing state
562    mDrawingState = mCurrentState;
563
564
565    // We're now ready to accept clients...
566    mReadyToRunBarrier.open();
567
568    // set initial conditions (e.g. unblank default device)
569    initializeDisplays();
570
571    // start boot animation
572    startBootAnim();
573
574    return NO_ERROR;
575}
576
577int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
578    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
579            type : mHwc->allocateDisplayId();
580}
581
582void SurfaceFlinger::startBootAnim() {
583    // start boot animation
584    property_set("service.bootanim.exit", "0");
585    property_set("ctl.start", "bootanim");
586}
587
588uint32_t SurfaceFlinger::getMaxTextureSize() const {
589    return mMaxTextureSize;
590}
591
592uint32_t SurfaceFlinger::getMaxViewportDims() const {
593    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
594            mMaxViewportDims[0] : mMaxViewportDims[1];
595}
596
597// ----------------------------------------------------------------------------
598
599bool SurfaceFlinger::authenticateSurfaceTexture(
600        const sp<IGraphicBufferProducer>& bufferProducer) const {
601    Mutex::Autolock _l(mStateLock);
602    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
603    return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
604}
605
606status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
607    int32_t type = NAME_NOT_FOUND;
608    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
609        if (display == mBuiltinDisplays[i]) {
610            type = i;
611            break;
612        }
613    }
614
615    if (type < 0) {
616        return type;
617    }
618
619    const HWComposer& hwc(getHwComposer());
620    float xdpi = hwc.getDpiX(type);
621    float ydpi = hwc.getDpiY(type);
622
623    // TODO: Not sure if display density should handled by SF any longer
624    class Density {
625        static int getDensityFromProperty(char const* propName) {
626            char property[PROPERTY_VALUE_MAX];
627            int density = 0;
628            if (property_get(propName, property, NULL) > 0) {
629                density = atoi(property);
630            }
631            return density;
632        }
633    public:
634        static int getEmuDensity() {
635            return getDensityFromProperty("qemu.sf.lcd_density"); }
636        static int getBuildDensity()  {
637            return getDensityFromProperty("ro.sf.lcd_density"); }
638    };
639
640    if (type == DisplayDevice::DISPLAY_PRIMARY) {
641        // The density of the device is provided by a build property
642        float density = Density::getBuildDensity() / 160.0f;
643        if (density == 0) {
644            // the build doesn't provide a density -- this is wrong!
645            // use xdpi instead
646            ALOGE("ro.sf.lcd_density must be defined as a build property");
647            density = xdpi / 160.0f;
648        }
649        if (Density::getEmuDensity()) {
650            // if "qemu.sf.lcd_density" is specified, it overrides everything
651            xdpi = ydpi = density = Density::getEmuDensity();
652            density /= 160.0f;
653        }
654        info->density = density;
655
656        // TODO: this needs to go away (currently needed only by webkit)
657        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
658        info->orientation = hw->getOrientation();
659        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
660    } else {
661        // TODO: where should this value come from?
662        static const int TV_DENSITY = 213;
663        info->density = TV_DENSITY / 160.0f;
664        info->orientation = 0;
665    }
666
667    info->w = hwc.getWidth(type);
668    info->h = hwc.getHeight(type);
669    info->xdpi = xdpi;
670    info->ydpi = ydpi;
671    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
672
673    // All non-virtual displays are currently considered secure.
674    info->secure = true;
675
676    return NO_ERROR;
677}
678
679// ----------------------------------------------------------------------------
680
681sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
682    return mEventThread->createEventConnection();
683}
684
685// ----------------------------------------------------------------------------
686
687void SurfaceFlinger::waitForEvent() {
688    mEventQueue.waitMessage();
689}
690
691void SurfaceFlinger::signalTransaction() {
692    mEventQueue.invalidate();
693}
694
695void SurfaceFlinger::signalLayerUpdate() {
696    mEventQueue.invalidate();
697}
698
699void SurfaceFlinger::signalRefresh() {
700    mEventQueue.refresh();
701}
702
703status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
704        nsecs_t reltime, uint32_t flags) {
705    return mEventQueue.postMessage(msg, reltime);
706}
707
708status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
709        nsecs_t reltime, uint32_t flags) {
710    status_t res = mEventQueue.postMessage(msg, reltime);
711    if (res == NO_ERROR) {
712        msg->wait();
713    }
714    return res;
715}
716
717bool SurfaceFlinger::threadLoop() {
718    waitForEvent();
719    return true;
720}
721
722void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
723    if (mEventThread == NULL) {
724        // This is a temporary workaround for b/7145521.  A non-null pointer
725        // does not mean EventThread has finished initializing, so this
726        // is not a correct fix.
727        ALOGW("WARNING: EventThread not started, ignoring vsync");
728        return;
729    }
730    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
731        // we should only receive DisplayDevice::DisplayType from the vsync callback
732        mEventThread->onVSyncReceived(type, timestamp);
733    }
734}
735
736void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
737    if (mEventThread == NULL) {
738        // This is a temporary workaround for b/7145521.  A non-null pointer
739        // does not mean EventThread has finished initializing, so this
740        // is not a correct fix.
741        ALOGW("WARNING: EventThread not started, ignoring hotplug");
742        return;
743    }
744
745    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
746        Mutex::Autolock _l(mStateLock);
747        if (connected) {
748            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
749        } else {
750            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
751            mBuiltinDisplays[type].clear();
752        }
753        setTransactionFlags(eDisplayTransactionNeeded);
754
755        // Defer EventThread notification until SF has updated mDisplays.
756    }
757}
758
759void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
760    getHwComposer().eventControl(disp, event, enabled);
761}
762
763void SurfaceFlinger::onMessageReceived(int32_t what) {
764    ATRACE_CALL();
765    switch (what) {
766    case MessageQueue::TRANSACTION:
767        handleMessageTransaction();
768        break;
769    case MessageQueue::INVALIDATE:
770        handleMessageTransaction();
771        handleMessageInvalidate();
772        signalRefresh();
773        break;
774    case MessageQueue::REFRESH:
775        handleMessageRefresh();
776        break;
777    }
778}
779
780void SurfaceFlinger::handleMessageTransaction() {
781    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
782    if (transactionFlags) {
783        handleTransaction(transactionFlags);
784    }
785}
786
787void SurfaceFlinger::handleMessageInvalidate() {
788    ATRACE_CALL();
789    handlePageFlip();
790}
791
792void SurfaceFlinger::handleMessageRefresh() {
793    ATRACE_CALL();
794    preComposition();
795    rebuildLayerStacks();
796    setUpHWComposer();
797    doDebugFlashRegions();
798    doComposition();
799    postComposition();
800}
801
802void SurfaceFlinger::doDebugFlashRegions()
803{
804    // is debugging enabled
805    if (CC_LIKELY(!mDebugRegion))
806        return;
807
808    const bool repaintEverything = mRepaintEverything;
809    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
810        const sp<DisplayDevice>& hw(mDisplays[dpy]);
811        if (hw->canDraw()) {
812            // transform the dirty region into this screen's coordinate space
813            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
814            if (!dirtyRegion.isEmpty()) {
815                // redraw the whole screen
816                doComposeSurfaces(hw, Region(hw->bounds()));
817
818                // and draw the dirty region
819                glDisable(GL_TEXTURE_EXTERNAL_OES);
820                glDisable(GL_TEXTURE_2D);
821                glDisable(GL_BLEND);
822                glColor4f(1, 0, 1, 1);
823                const int32_t height = hw->getHeight();
824                Region::const_iterator it = dirtyRegion.begin();
825                Region::const_iterator const end = dirtyRegion.end();
826                while (it != end) {
827                    const Rect& r = *it++;
828                    GLfloat vertices[][2] = {
829                            { (GLfloat) r.left,  (GLfloat) (height - r.top) },
830                            { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
831                            { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
832                            { (GLfloat) r.right, (GLfloat) (height - r.top) }
833                    };
834                    glVertexPointer(2, GL_FLOAT, 0, vertices);
835                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
836                }
837                hw->compositionComplete();
838                hw->swapBuffers(getHwComposer());
839            }
840        }
841    }
842
843    postFramebuffer();
844
845    if (mDebugRegion > 1) {
846        usleep(mDebugRegion * 1000);
847    }
848
849    HWComposer& hwc(getHwComposer());
850    if (hwc.initCheck() == NO_ERROR) {
851        status_t err = hwc.prepare();
852        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
853    }
854}
855
856void SurfaceFlinger::preComposition()
857{
858    bool needExtraInvalidate = false;
859    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
860    const size_t count = currentLayers.size();
861    for (size_t i=0 ; i<count ; i++) {
862        if (currentLayers[i]->onPreComposition()) {
863            needExtraInvalidate = true;
864        }
865    }
866    if (needExtraInvalidate) {
867        signalLayerUpdate();
868    }
869}
870
871void SurfaceFlinger::postComposition()
872{
873    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
874    const size_t count = currentLayers.size();
875    for (size_t i=0 ; i<count ; i++) {
876        currentLayers[i]->onPostComposition();
877    }
878
879    if (mAnimCompositionPending) {
880        mAnimCompositionPending = false;
881
882        const HWComposer& hwc = getHwComposer();
883        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
884        if (presentFence->isValid()) {
885            mAnimFrameTracker.setActualPresentFence(presentFence);
886        } else {
887            // The HWC doesn't support present fences, so use the refresh
888            // timestamp instead.
889            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
890            mAnimFrameTracker.setActualPresentTime(presentTime);
891        }
892        mAnimFrameTracker.advanceFrame();
893    }
894}
895
896void SurfaceFlinger::rebuildLayerStacks() {
897    // rebuild the visible layer list per screen
898    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
899        ATRACE_CALL();
900        mVisibleRegionsDirty = false;
901        invalidateHwcGeometry();
902
903        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
904        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
905            Region opaqueRegion;
906            Region dirtyRegion;
907            Vector< sp<Layer> > layersSortedByZ;
908            const sp<DisplayDevice>& hw(mDisplays[dpy]);
909            const Transform& tr(hw->getTransform());
910            const Rect bounds(hw->getBounds());
911            if (hw->canDraw()) {
912                SurfaceFlinger::computeVisibleRegions(currentLayers,
913                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
914
915                const size_t count = currentLayers.size();
916                for (size_t i=0 ; i<count ; i++) {
917                    const sp<Layer>& layer(currentLayers[i]);
918                    const Layer::State& s(layer->drawingState());
919                    if (s.layerStack == hw->getLayerStack()) {
920                        Region drawRegion(tr.transform(
921                                layer->visibleNonTransparentRegion));
922                        drawRegion.andSelf(bounds);
923                        if (!drawRegion.isEmpty()) {
924                            layersSortedByZ.add(layer);
925                        }
926                    }
927                }
928            }
929            hw->setVisibleLayersSortedByZ(layersSortedByZ);
930            hw->undefinedRegion.set(bounds);
931            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
932            hw->dirtyRegion.orSelf(dirtyRegion);
933        }
934    }
935}
936
937void SurfaceFlinger::setUpHWComposer() {
938    HWComposer& hwc(getHwComposer());
939    if (hwc.initCheck() == NO_ERROR) {
940        // build the h/w work list
941        if (CC_UNLIKELY(mHwWorkListDirty)) {
942            mHwWorkListDirty = false;
943            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
944                sp<const DisplayDevice> hw(mDisplays[dpy]);
945                const int32_t id = hw->getHwcDisplayId();
946                if (id >= 0) {
947                    const Vector< sp<Layer> >& currentLayers(
948                        hw->getVisibleLayersSortedByZ());
949                    const size_t count = currentLayers.size();
950                    if (hwc.createWorkList(id, count) == NO_ERROR) {
951                        HWComposer::LayerListIterator cur = hwc.begin(id);
952                        const HWComposer::LayerListIterator end = hwc.end(id);
953                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
954                            const sp<Layer>& layer(currentLayers[i]);
955                            layer->setGeometry(hw, *cur);
956                            if (mDebugDisableHWC || mDebugRegion) {
957                                cur->setSkip(true);
958                            }
959                        }
960                    }
961                }
962            }
963        }
964
965        // set the per-frame data
966        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
967            sp<const DisplayDevice> hw(mDisplays[dpy]);
968            const int32_t id = hw->getHwcDisplayId();
969            if (id >= 0) {
970                const Vector< sp<Layer> >& currentLayers(
971                    hw->getVisibleLayersSortedByZ());
972                const size_t count = currentLayers.size();
973                HWComposer::LayerListIterator cur = hwc.begin(id);
974                const HWComposer::LayerListIterator end = hwc.end(id);
975                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
976                    /*
977                     * update the per-frame h/w composer data for each layer
978                     * and build the transparent region of the FB
979                     */
980                    const sp<Layer>& layer(currentLayers[i]);
981                    layer->setPerFrameData(hw, *cur);
982                }
983            }
984        }
985
986        status_t err = hwc.prepare();
987        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
988    }
989}
990
991void SurfaceFlinger::doComposition() {
992    ATRACE_CALL();
993    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
994    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
995        const sp<DisplayDevice>& hw(mDisplays[dpy]);
996        if (hw->canDraw()) {
997            // transform the dirty region into this screen's coordinate space
998            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
999
1000            // repaint the framebuffer (if needed)
1001            doDisplayComposition(hw, dirtyRegion);
1002
1003            hw->dirtyRegion.clear();
1004            hw->flip(hw->swapRegion);
1005            hw->swapRegion.clear();
1006        }
1007        // inform the h/w that we're done compositing
1008        hw->compositionComplete();
1009    }
1010    postFramebuffer();
1011}
1012
1013void SurfaceFlinger::postFramebuffer()
1014{
1015    ATRACE_CALL();
1016
1017    const nsecs_t now = systemTime();
1018    mDebugInSwapBuffers = now;
1019
1020    HWComposer& hwc(getHwComposer());
1021    if (hwc.initCheck() == NO_ERROR) {
1022        if (!hwc.supportsFramebufferTarget()) {
1023            // EGL spec says:
1024            //   "surface must be bound to the calling thread's current context,
1025            //    for the current rendering API."
1026            DisplayDevice::makeCurrent(mEGLDisplay,
1027                    getDefaultDisplayDevice(), mEGLContext);
1028        }
1029        hwc.commit();
1030    }
1031
1032    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1033        sp<const DisplayDevice> hw(mDisplays[dpy]);
1034        const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
1035        hw->onSwapBuffersCompleted(hwc);
1036        const size_t count = currentLayers.size();
1037        int32_t id = hw->getHwcDisplayId();
1038        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1039            HWComposer::LayerListIterator cur = hwc.begin(id);
1040            const HWComposer::LayerListIterator end = hwc.end(id);
1041            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1042                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1043            }
1044        } else {
1045            for (size_t i = 0; i < count; i++) {
1046                currentLayers[i]->onLayerDisplayed(hw, NULL);
1047            }
1048        }
1049    }
1050
1051    mLastSwapBufferTime = systemTime() - now;
1052    mDebugInSwapBuffers = 0;
1053}
1054
1055void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1056{
1057    ATRACE_CALL();
1058
1059    Mutex::Autolock _l(mStateLock);
1060    const nsecs_t now = systemTime();
1061    mDebugInTransaction = now;
1062
1063    // Here we're guaranteed that some transaction flags are set
1064    // so we can call handleTransactionLocked() unconditionally.
1065    // We call getTransactionFlags(), which will also clear the flags,
1066    // with mStateLock held to guarantee that mCurrentState won't change
1067    // until the transaction is committed.
1068
1069    transactionFlags = getTransactionFlags(eTransactionMask);
1070    handleTransactionLocked(transactionFlags);
1071
1072    mLastTransactionTime = systemTime() - now;
1073    mDebugInTransaction = 0;
1074    invalidateHwcGeometry();
1075    // here the transaction has been committed
1076}
1077
1078void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1079{
1080    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1081    const size_t count = currentLayers.size();
1082
1083    /*
1084     * Traversal of the children
1085     * (perform the transaction for each of them if needed)
1086     */
1087
1088    if (transactionFlags & eTraversalNeeded) {
1089        for (size_t i=0 ; i<count ; i++) {
1090            const sp<Layer>& layer(currentLayers[i]);
1091            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1092            if (!trFlags) continue;
1093
1094            const uint32_t flags = layer->doTransaction(0);
1095            if (flags & Layer::eVisibleRegion)
1096                mVisibleRegionsDirty = true;
1097        }
1098    }
1099
1100    /*
1101     * Perform display own transactions if needed
1102     */
1103
1104    if (transactionFlags & eDisplayTransactionNeeded) {
1105        // here we take advantage of Vector's copy-on-write semantics to
1106        // improve performance by skipping the transaction entirely when
1107        // know that the lists are identical
1108        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1109        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1110        if (!curr.isIdenticalTo(draw)) {
1111            mVisibleRegionsDirty = true;
1112            const size_t cc = curr.size();
1113                  size_t dc = draw.size();
1114
1115            // find the displays that were removed
1116            // (ie: in drawing state but not in current state)
1117            // also handle displays that changed
1118            // (ie: displays that are in both lists)
1119            for (size_t i=0 ; i<dc ; i++) {
1120                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1121                if (j < 0) {
1122                    // in drawing state but not in current state
1123                    if (!draw[i].isMainDisplay()) {
1124                        // Call makeCurrent() on the primary display so we can
1125                        // be sure that nothing associated with this display
1126                        // is current.
1127                        const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice());
1128                        DisplayDevice::makeCurrent(mEGLDisplay, defaultDisplay, mEGLContext);
1129                        sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i)));
1130                        if (hw != NULL)
1131                            hw->disconnect(getHwComposer());
1132                        if (draw[i].type < DisplayDevice::NUM_DISPLAY_TYPES)
1133                            mEventThread->onHotplugReceived(draw[i].type, false);
1134                        mDisplays.removeItem(draw.keyAt(i));
1135                    } else {
1136                        ALOGW("trying to remove the main display");
1137                    }
1138                } else {
1139                    // this display is in both lists. see if something changed.
1140                    const DisplayDeviceState& state(curr[j]);
1141                    const wp<IBinder>& display(curr.keyAt(j));
1142                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1143                        // changing the surface is like destroying and
1144                        // recreating the DisplayDevice, so we just remove it
1145                        // from the drawing state, so that it get re-added
1146                        // below.
1147                        sp<DisplayDevice> hw(getDisplayDevice(display));
1148                        if (hw != NULL)
1149                            hw->disconnect(getHwComposer());
1150                        mDisplays.removeItem(display);
1151                        mDrawingState.displays.removeItemsAt(i);
1152                        dc--; i--;
1153                        // at this point we must loop to the next item
1154                        continue;
1155                    }
1156
1157                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1158                    if (disp != NULL) {
1159                        if (state.layerStack != draw[i].layerStack) {
1160                            disp->setLayerStack(state.layerStack);
1161                        }
1162                        if ((state.orientation != draw[i].orientation)
1163                                || (state.viewport != draw[i].viewport)
1164                                || (state.frame != draw[i].frame))
1165                        {
1166                            disp->setProjection(state.orientation,
1167                                    state.viewport, state.frame);
1168                        }
1169                    }
1170                }
1171            }
1172
1173            // find displays that were added
1174            // (ie: in current state but not in drawing state)
1175            for (size_t i=0 ; i<cc ; i++) {
1176                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1177                    const DisplayDeviceState& state(curr[i]);
1178
1179                    sp<DisplaySurface> dispSurface;
1180                    int32_t hwcDisplayId = -1;
1181                    if (state.isVirtualDisplay()) {
1182                        // Virtual displays without a surface are dormant:
1183                        // they have external state (layer stack, projection,
1184                        // etc.) but no internal state (i.e. a DisplayDevice).
1185                        if (state.surface != NULL) {
1186                            hwcDisplayId = allocateHwcDisplayId(state.type);
1187                            dispSurface = new VirtualDisplaySurface(
1188                                    *mHwc, hwcDisplayId, state.surface,
1189                                    state.displayName);
1190                        }
1191                    } else {
1192                        ALOGE_IF(state.surface!=NULL,
1193                                "adding a supported display, but rendering "
1194                                "surface is provided (%p), ignoring it",
1195                                state.surface.get());
1196                        hwcDisplayId = allocateHwcDisplayId(state.type);
1197                        // for supported (by hwc) displays we provide our
1198                        // own rendering surface
1199                        dispSurface = new FramebufferSurface(*mHwc, state.type);
1200                    }
1201
1202                    const wp<IBinder>& display(curr.keyAt(i));
1203                    if (dispSurface != NULL) {
1204                        sp<DisplayDevice> hw = new DisplayDevice(this,
1205                                state.type, hwcDisplayId, state.isSecure,
1206                                display, dispSurface, mEGLConfig);
1207                        hw->setLayerStack(state.layerStack);
1208                        hw->setProjection(state.orientation,
1209                                state.viewport, state.frame);
1210                        hw->setDisplayName(state.displayName);
1211                        mDisplays.add(display, hw);
1212                        if (state.isVirtualDisplay()) {
1213                            if (hwcDisplayId >= 0) {
1214                                mHwc->setVirtualDisplayProperties(hwcDisplayId,
1215                                        hw->getWidth(), hw->getHeight(),
1216                                        hw->getFormat());
1217                            }
1218                        } else {
1219                            mEventThread->onHotplugReceived(state.type, true);
1220                        }
1221                    }
1222                }
1223            }
1224        }
1225    }
1226
1227    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1228        // The transform hint might have changed for some layers
1229        // (either because a display has changed, or because a layer
1230        // as changed).
1231        //
1232        // Walk through all the layers in currentLayers,
1233        // and update their transform hint.
1234        //
1235        // If a layer is visible only on a single display, then that
1236        // display is used to calculate the hint, otherwise we use the
1237        // default display.
1238        //
1239        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1240        // the hint is set before we acquire a buffer from the surface texture.
1241        //
1242        // NOTE: layer transactions have taken place already, so we use their
1243        // drawing state. However, SurfaceFlinger's own transaction has not
1244        // happened yet, so we must use the current state layer list
1245        // (soon to become the drawing state list).
1246        //
1247        sp<const DisplayDevice> disp;
1248        uint32_t currentlayerStack = 0;
1249        for (size_t i=0; i<count; i++) {
1250            // NOTE: we rely on the fact that layers are sorted by
1251            // layerStack first (so we don't have to traverse the list
1252            // of displays for every layer).
1253            const sp<Layer>& layer(currentLayers[i]);
1254            uint32_t layerStack = layer->drawingState().layerStack;
1255            if (i==0 || currentlayerStack != layerStack) {
1256                currentlayerStack = layerStack;
1257                // figure out if this layerstack is mirrored
1258                // (more than one display) if so, pick the default display,
1259                // if not, pick the only display it's on.
1260                disp.clear();
1261                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1262                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1263                    if (hw->getLayerStack() == currentlayerStack) {
1264                        if (disp == NULL) {
1265                            disp = hw;
1266                        } else {
1267                            disp = NULL;
1268                            break;
1269                        }
1270                    }
1271                }
1272            }
1273            if (disp == NULL) {
1274                // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
1275                // redraw after transform hint changes. See bug 8508397.
1276
1277                // could be null when this layer is using a layerStack
1278                // that is not visible on any display. Also can occur at
1279                // screen off/on times.
1280                disp = getDefaultDisplayDevice();
1281            }
1282            layer->updateTransformHint(disp);
1283        }
1284    }
1285
1286
1287    /*
1288     * Perform our own transaction if needed
1289     */
1290
1291    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1292    if (currentLayers.size() > previousLayers.size()) {
1293        // layers have been added
1294        mVisibleRegionsDirty = true;
1295    }
1296
1297    // some layers might have been removed, so
1298    // we need to update the regions they're exposing.
1299    if (mLayersRemoved) {
1300        mLayersRemoved = false;
1301        mVisibleRegionsDirty = true;
1302        const size_t count = previousLayers.size();
1303        for (size_t i=0 ; i<count ; i++) {
1304            const sp<Layer>& layer(previousLayers[i]);
1305            if (currentLayers.indexOf(layer) < 0) {
1306                // this layer is not visible anymore
1307                // TODO: we could traverse the tree from front to back and
1308                //       compute the actual visible region
1309                // TODO: we could cache the transformed region
1310                const Layer::State& s(layer->drawingState());
1311                Region visibleReg = s.transform.transform(
1312                        Region(Rect(s.active.w, s.active.h)));
1313                invalidateLayerStack(s.layerStack, visibleReg);
1314            }
1315        }
1316    }
1317
1318    commitTransaction();
1319}
1320
1321void SurfaceFlinger::commitTransaction()
1322{
1323    if (!mLayersPendingRemoval.isEmpty()) {
1324        // Notify removed layers now that they can't be drawn from
1325        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1326            mLayersPendingRemoval[i]->onRemoved();
1327        }
1328        mLayersPendingRemoval.clear();
1329    }
1330
1331    // If this transaction is part of a window animation then the next frame
1332    // we composite should be considered an animation as well.
1333    mAnimCompositionPending = mAnimTransactionPending;
1334
1335    mDrawingState = mCurrentState;
1336    mTransactionPending = false;
1337    mAnimTransactionPending = false;
1338    mTransactionCV.broadcast();
1339}
1340
1341void SurfaceFlinger::computeVisibleRegions(
1342        const LayerVector& currentLayers, uint32_t layerStack,
1343        Region& outDirtyRegion, Region& outOpaqueRegion)
1344{
1345    ATRACE_CALL();
1346
1347    Region aboveOpaqueLayers;
1348    Region aboveCoveredLayers;
1349    Region dirty;
1350
1351    outDirtyRegion.clear();
1352
1353    size_t i = currentLayers.size();
1354    while (i--) {
1355        const sp<Layer>& layer = currentLayers[i];
1356
1357        // start with the whole surface at its current location
1358        const Layer::State& s(layer->drawingState());
1359
1360        // only consider the layers on the given layer stack
1361        if (s.layerStack != layerStack)
1362            continue;
1363
1364        /*
1365         * opaqueRegion: area of a surface that is fully opaque.
1366         */
1367        Region opaqueRegion;
1368
1369        /*
1370         * visibleRegion: area of a surface that is visible on screen
1371         * and not fully transparent. This is essentially the layer's
1372         * footprint minus the opaque regions above it.
1373         * Areas covered by a translucent surface are considered visible.
1374         */
1375        Region visibleRegion;
1376
1377        /*
1378         * coveredRegion: area of a surface that is covered by all
1379         * visible regions above it (which includes the translucent areas).
1380         */
1381        Region coveredRegion;
1382
1383        /*
1384         * transparentRegion: area of a surface that is hinted to be completely
1385         * transparent. This is only used to tell when the layer has no visible
1386         * non-transparent regions and can be removed from the layer list. It
1387         * does not affect the visibleRegion of this layer or any layers
1388         * beneath it. The hint may not be correct if apps don't respect the
1389         * SurfaceView restrictions (which, sadly, some don't).
1390         */
1391        Region transparentRegion;
1392
1393
1394        // handle hidden surfaces by setting the visible region to empty
1395        if (CC_LIKELY(layer->isVisible())) {
1396            const bool translucent = !layer->isOpaque();
1397            Rect bounds(s.transform.transform(layer->computeBounds()));
1398            visibleRegion.set(bounds);
1399            if (!visibleRegion.isEmpty()) {
1400                // Remove the transparent area from the visible region
1401                if (translucent) {
1402                    const Transform tr(s.transform);
1403                    if (tr.transformed()) {
1404                        if (tr.preserveRects()) {
1405                            // transform the transparent region
1406                            transparentRegion = tr.transform(s.activeTransparentRegion);
1407                        } else {
1408                            // transformation too complex, can't do the
1409                            // transparent region optimization.
1410                            transparentRegion.clear();
1411                        }
1412                    } else {
1413                        transparentRegion = s.activeTransparentRegion;
1414                    }
1415                }
1416
1417                // compute the opaque region
1418                const int32_t layerOrientation = s.transform.getOrientation();
1419                if (s.alpha==255 && !translucent &&
1420                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1421                    // the opaque region is the layer's footprint
1422                    opaqueRegion = visibleRegion;
1423                }
1424            }
1425        }
1426
1427        // Clip the covered region to the visible region
1428        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1429
1430        // Update aboveCoveredLayers for next (lower) layer
1431        aboveCoveredLayers.orSelf(visibleRegion);
1432
1433        // subtract the opaque region covered by the layers above us
1434        visibleRegion.subtractSelf(aboveOpaqueLayers);
1435
1436        // compute this layer's dirty region
1437        if (layer->contentDirty) {
1438            // we need to invalidate the whole region
1439            dirty = visibleRegion;
1440            // as well, as the old visible region
1441            dirty.orSelf(layer->visibleRegion);
1442            layer->contentDirty = false;
1443        } else {
1444            /* compute the exposed region:
1445             *   the exposed region consists of two components:
1446             *   1) what's VISIBLE now and was COVERED before
1447             *   2) what's EXPOSED now less what was EXPOSED before
1448             *
1449             * note that (1) is conservative, we start with the whole
1450             * visible region but only keep what used to be covered by
1451             * something -- which mean it may have been exposed.
1452             *
1453             * (2) handles areas that were not covered by anything but got
1454             * exposed because of a resize.
1455             */
1456            const Region newExposed = visibleRegion - coveredRegion;
1457            const Region oldVisibleRegion = layer->visibleRegion;
1458            const Region oldCoveredRegion = layer->coveredRegion;
1459            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1460            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1461        }
1462        dirty.subtractSelf(aboveOpaqueLayers);
1463
1464        // accumulate to the screen dirty region
1465        outDirtyRegion.orSelf(dirty);
1466
1467        // Update aboveOpaqueLayers for next (lower) layer
1468        aboveOpaqueLayers.orSelf(opaqueRegion);
1469
1470        // Store the visible region in screen space
1471        layer->setVisibleRegion(visibleRegion);
1472        layer->setCoveredRegion(coveredRegion);
1473        layer->setVisibleNonTransparentRegion(
1474                visibleRegion.subtract(transparentRegion));
1475    }
1476
1477    outOpaqueRegion = aboveOpaqueLayers;
1478}
1479
1480void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1481        const Region& dirty) {
1482    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1483        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1484        if (hw->getLayerStack() == layerStack) {
1485            hw->dirtyRegion.orSelf(dirty);
1486        }
1487    }
1488}
1489
1490void SurfaceFlinger::handlePageFlip()
1491{
1492    Region dirtyRegion;
1493
1494    bool visibleRegions = false;
1495    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1496    const size_t count = currentLayers.size();
1497    for (size_t i=0 ; i<count ; i++) {
1498        const sp<Layer>& layer(currentLayers[i]);
1499        const Region dirty(layer->latchBuffer(visibleRegions));
1500        const Layer::State& s(layer->drawingState());
1501        invalidateLayerStack(s.layerStack, dirty);
1502    }
1503
1504    mVisibleRegionsDirty |= visibleRegions;
1505}
1506
1507void SurfaceFlinger::invalidateHwcGeometry()
1508{
1509    mHwWorkListDirty = true;
1510}
1511
1512
1513void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1514        const Region& inDirtyRegion)
1515{
1516    Region dirtyRegion(inDirtyRegion);
1517
1518    // compute the invalid region
1519    hw->swapRegion.orSelf(dirtyRegion);
1520
1521    uint32_t flags = hw->getFlags();
1522    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1523        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1524        // takes a rectangle, we must make sure to update that whole
1525        // rectangle in that case
1526        dirtyRegion.set(hw->swapRegion.bounds());
1527    } else {
1528        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1529            // We need to redraw the rectangle that will be updated
1530            // (pushed to the framebuffer).
1531            // This is needed because PARTIAL_UPDATES only takes one
1532            // rectangle instead of a region (see DisplayDevice::flip())
1533            dirtyRegion.set(hw->swapRegion.bounds());
1534        } else {
1535            // we need to redraw everything (the whole screen)
1536            dirtyRegion.set(hw->bounds());
1537            hw->swapRegion = dirtyRegion;
1538        }
1539    }
1540
1541    doComposeSurfaces(hw, dirtyRegion);
1542
1543    // update the swap region and clear the dirty region
1544    hw->swapRegion.orSelf(dirtyRegion);
1545
1546    // swap buffers (presentation)
1547    hw->swapBuffers(getHwComposer());
1548}
1549
1550void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1551{
1552    const int32_t id = hw->getHwcDisplayId();
1553    HWComposer& hwc(getHwComposer());
1554    HWComposer::LayerListIterator cur = hwc.begin(id);
1555    const HWComposer::LayerListIterator end = hwc.end(id);
1556
1557    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1558    if (hasGlesComposition) {
1559        if (!DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext)) {
1560            ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
1561                  hw->getDisplayName().string());
1562            return;
1563        }
1564
1565        // set the frame buffer
1566        glMatrixMode(GL_MODELVIEW);
1567        glLoadIdentity();
1568
1569        // Never touch the framebuffer if we don't have any framebuffer layers
1570        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1571        if (hasHwcComposition) {
1572            // when using overlays, we assume a fully transparent framebuffer
1573            // NOTE: we could reduce how much we need to clear, for instance
1574            // remove where there are opaque FB layers. however, on some
1575            // GPUs doing a "clean slate" glClear might be more efficient.
1576            // We'll revisit later if needed.
1577            glClearColor(0, 0, 0, 0);
1578            glClear(GL_COLOR_BUFFER_BIT);
1579        } else {
1580            // we start with the whole screen area
1581            const Region bounds(hw->getBounds());
1582
1583            // we remove the scissor part
1584            // we're left with the letterbox region
1585            // (common case is that letterbox ends-up being empty)
1586            const Region letterbox(bounds.subtract(hw->getScissor()));
1587
1588            // compute the area to clear
1589            Region region(hw->undefinedRegion.merge(letterbox));
1590
1591            // but limit it to the dirty region
1592            region.andSelf(dirty);
1593
1594            // screen is already cleared here
1595            if (!region.isEmpty()) {
1596                // can happen with SurfaceView
1597                drawWormhole(hw, region);
1598            }
1599        }
1600
1601        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1602            // just to be on the safe side, we don't set the
1603            // scissor on the main display. It should never be needed
1604            // anyways (though in theory it could since the API allows it).
1605            const Rect& bounds(hw->getBounds());
1606            const Rect& scissor(hw->getScissor());
1607            if (scissor != bounds) {
1608                // scissor doesn't match the screen's dimensions, so we
1609                // need to clear everything outside of it and enable
1610                // the GL scissor so we don't draw anything where we shouldn't
1611                const GLint height = hw->getHeight();
1612                glScissor(scissor.left, height - scissor.bottom,
1613                        scissor.getWidth(), scissor.getHeight());
1614                // enable scissor for this frame
1615                glEnable(GL_SCISSOR_TEST);
1616            }
1617        }
1618    }
1619
1620    /*
1621     * and then, render the layers targeted at the framebuffer
1622     */
1623
1624    const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
1625    const size_t count = layers.size();
1626    const Transform& tr = hw->getTransform();
1627    if (cur != end) {
1628        // we're using h/w composer
1629        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1630            const sp<Layer>& layer(layers[i]);
1631            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1632            if (!clip.isEmpty()) {
1633                switch (cur->getCompositionType()) {
1634                    case HWC_OVERLAY: {
1635                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1636                                && i
1637                                && layer->isOpaque()
1638                                && hasGlesComposition) {
1639                            // never clear the very first layer since we're
1640                            // guaranteed the FB is already cleared
1641                            layer->clearWithOpenGL(hw, clip);
1642                        }
1643                        break;
1644                    }
1645                    case HWC_FRAMEBUFFER: {
1646                        layer->draw(hw, clip);
1647                        break;
1648                    }
1649                    case HWC_FRAMEBUFFER_TARGET: {
1650                        // this should not happen as the iterator shouldn't
1651                        // let us get there.
1652                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1653                        break;
1654                    }
1655                }
1656            }
1657            layer->setAcquireFence(hw, *cur);
1658        }
1659    } else {
1660        // we're not using h/w composer
1661        for (size_t i=0 ; i<count ; ++i) {
1662            const sp<Layer>& layer(layers[i]);
1663            const Region clip(dirty.intersect(
1664                    tr.transform(layer->visibleRegion)));
1665            if (!clip.isEmpty()) {
1666                layer->draw(hw, clip);
1667            }
1668        }
1669    }
1670
1671    // disable scissor at the end of the frame
1672    glDisable(GL_SCISSOR_TEST);
1673}
1674
1675void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1676        const Region& region) const
1677{
1678    glDisable(GL_TEXTURE_EXTERNAL_OES);
1679    glDisable(GL_TEXTURE_2D);
1680    glDisable(GL_BLEND);
1681    glColor4f(0,0,0,0);
1682
1683    const int32_t height = hw->getHeight();
1684    Region::const_iterator it = region.begin();
1685    Region::const_iterator const end = region.end();
1686    while (it != end) {
1687        const Rect& r = *it++;
1688        GLfloat vertices[][2] = {
1689                { (GLfloat) r.left,  (GLfloat) (height - r.top) },
1690                { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
1691                { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
1692                { (GLfloat) r.right, (GLfloat) (height - r.top) }
1693        };
1694        glVertexPointer(2, GL_FLOAT, 0, vertices);
1695        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1696    }
1697}
1698
1699void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1700        const sp<IBinder>& handle,
1701        const sp<IGraphicBufferProducer>& gbc,
1702        const sp<Layer>& lbc)
1703{
1704    // attach this layer to the client
1705    client->attachLayer(handle, lbc);
1706
1707    // add this layer to the current state list
1708    Mutex::Autolock _l(mStateLock);
1709    mCurrentState.layersSortedByZ.add(lbc);
1710    mGraphicBufferProducerList.add(gbc->asBinder());
1711}
1712
1713status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer)
1714{
1715    Mutex::Autolock _l(mStateLock);
1716    ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
1717    if (index >= 0) {
1718        mLayersPendingRemoval.push(layer);
1719        mLayersRemoved = true;
1720        setTransactionFlags(eTransactionNeeded);
1721        return NO_ERROR;
1722    }
1723    return status_t(index);
1724}
1725
1726uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1727{
1728    return android_atomic_release_load(&mTransactionFlags);
1729}
1730
1731uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1732{
1733    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1734}
1735
1736uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1737{
1738    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1739    if ((old & flags)==0) { // wake the server up
1740        signalTransaction();
1741    }
1742    return old;
1743}
1744
1745void SurfaceFlinger::setTransactionState(
1746        const Vector<ComposerState>& state,
1747        const Vector<DisplayState>& displays,
1748        uint32_t flags)
1749{
1750    ATRACE_CALL();
1751    Mutex::Autolock _l(mStateLock);
1752    uint32_t transactionFlags = 0;
1753
1754    if (flags & eAnimation) {
1755        // For window updates that are part of an animation we must wait for
1756        // previous animation "frames" to be handled.
1757        while (mAnimTransactionPending) {
1758            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1759            if (CC_UNLIKELY(err != NO_ERROR)) {
1760                // just in case something goes wrong in SF, return to the
1761                // caller after a few seconds.
1762                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1763                        "waiting for previous animation frame");
1764                mAnimTransactionPending = false;
1765                break;
1766            }
1767        }
1768    }
1769
1770    size_t count = displays.size();
1771    for (size_t i=0 ; i<count ; i++) {
1772        const DisplayState& s(displays[i]);
1773        transactionFlags |= setDisplayStateLocked(s);
1774    }
1775
1776    count = state.size();
1777    for (size_t i=0 ; i<count ; i++) {
1778        const ComposerState& s(state[i]);
1779        // Here we need to check that the interface we're given is indeed
1780        // one of our own. A malicious client could give us a NULL
1781        // IInterface, or one of its own or even one of our own but a
1782        // different type. All these situations would cause us to crash.
1783        //
1784        // NOTE: it would be better to use RTTI as we could directly check
1785        // that we have a Client*. however, RTTI is disabled in Android.
1786        if (s.client != NULL) {
1787            sp<IBinder> binder = s.client->asBinder();
1788            if (binder != NULL) {
1789                String16 desc(binder->getInterfaceDescriptor());
1790                if (desc == ISurfaceComposerClient::descriptor) {
1791                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1792                    transactionFlags |= setClientStateLocked(client, s.state);
1793                }
1794            }
1795        }
1796    }
1797
1798    if (transactionFlags) {
1799        // this triggers the transaction
1800        setTransactionFlags(transactionFlags);
1801
1802        // if this is a synchronous transaction, wait for it to take effect
1803        // before returning.
1804        if (flags & eSynchronous) {
1805            mTransactionPending = true;
1806        }
1807        if (flags & eAnimation) {
1808            mAnimTransactionPending = true;
1809        }
1810        while (mTransactionPending) {
1811            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1812            if (CC_UNLIKELY(err != NO_ERROR)) {
1813                // just in case something goes wrong in SF, return to the
1814                // called after a few seconds.
1815                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1816                mTransactionPending = false;
1817                break;
1818            }
1819        }
1820    }
1821}
1822
1823uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1824{
1825    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1826    if (dpyIdx < 0)
1827        return 0;
1828
1829    uint32_t flags = 0;
1830    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1831    if (disp.isValid()) {
1832        const uint32_t what = s.what;
1833        if (what & DisplayState::eSurfaceChanged) {
1834            if (disp.surface->asBinder() != s.surface->asBinder()) {
1835                disp.surface = s.surface;
1836                flags |= eDisplayTransactionNeeded;
1837            }
1838        }
1839        if (what & DisplayState::eLayerStackChanged) {
1840            if (disp.layerStack != s.layerStack) {
1841                disp.layerStack = s.layerStack;
1842                flags |= eDisplayTransactionNeeded;
1843            }
1844        }
1845        if (what & DisplayState::eDisplayProjectionChanged) {
1846            if (disp.orientation != s.orientation) {
1847                disp.orientation = s.orientation;
1848                flags |= eDisplayTransactionNeeded;
1849            }
1850            if (disp.frame != s.frame) {
1851                disp.frame = s.frame;
1852                flags |= eDisplayTransactionNeeded;
1853            }
1854            if (disp.viewport != s.viewport) {
1855                disp.viewport = s.viewport;
1856                flags |= eDisplayTransactionNeeded;
1857            }
1858        }
1859    }
1860    return flags;
1861}
1862
1863uint32_t SurfaceFlinger::setClientStateLocked(
1864        const sp<Client>& client,
1865        const layer_state_t& s)
1866{
1867    uint32_t flags = 0;
1868    sp<Layer> layer(client->getLayerUser(s.surface));
1869    if (layer != 0) {
1870        const uint32_t what = s.what;
1871        if (what & layer_state_t::ePositionChanged) {
1872            if (layer->setPosition(s.x, s.y))
1873                flags |= eTraversalNeeded;
1874        }
1875        if (what & layer_state_t::eLayerChanged) {
1876            // NOTE: index needs to be calculated before we update the state
1877            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1878            if (layer->setLayer(s.z)) {
1879                mCurrentState.layersSortedByZ.removeAt(idx);
1880                mCurrentState.layersSortedByZ.add(layer);
1881                // we need traversal (state changed)
1882                // AND transaction (list changed)
1883                flags |= eTransactionNeeded|eTraversalNeeded;
1884            }
1885        }
1886        if (what & layer_state_t::eSizeChanged) {
1887            if (layer->setSize(s.w, s.h)) {
1888                flags |= eTraversalNeeded;
1889            }
1890        }
1891        if (what & layer_state_t::eAlphaChanged) {
1892            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1893                flags |= eTraversalNeeded;
1894        }
1895        if (what & layer_state_t::eMatrixChanged) {
1896            if (layer->setMatrix(s.matrix))
1897                flags |= eTraversalNeeded;
1898        }
1899        if (what & layer_state_t::eTransparentRegionChanged) {
1900            if (layer->setTransparentRegionHint(s.transparentRegion))
1901                flags |= eTraversalNeeded;
1902        }
1903        if (what & layer_state_t::eVisibilityChanged) {
1904            if (layer->setFlags(s.flags, s.mask))
1905                flags |= eTraversalNeeded;
1906        }
1907        if (what & layer_state_t::eCropChanged) {
1908            if (layer->setCrop(s.crop))
1909                flags |= eTraversalNeeded;
1910        }
1911        if (what & layer_state_t::eLayerStackChanged) {
1912            // NOTE: index needs to be calculated before we update the state
1913            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1914            if (layer->setLayerStack(s.layerStack)) {
1915                mCurrentState.layersSortedByZ.removeAt(idx);
1916                mCurrentState.layersSortedByZ.add(layer);
1917                // we need traversal (state changed)
1918                // AND transaction (list changed)
1919                flags |= eTransactionNeeded|eTraversalNeeded;
1920            }
1921        }
1922    }
1923    return flags;
1924}
1925
1926status_t SurfaceFlinger::createLayer(
1927        const String8& name,
1928        const sp<Client>& client,
1929        uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
1930        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
1931{
1932    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1933    if (int32_t(w|h) < 0) {
1934        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1935                int(w), int(h));
1936        return BAD_VALUE;
1937    }
1938
1939    status_t result = NO_ERROR;
1940
1941    sp<Layer> layer;
1942
1943    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1944        case ISurfaceComposerClient::eFXSurfaceNormal:
1945            result = createNormalLayer(client,
1946                    name, w, h, flags, format,
1947                    handle, gbp, &layer);
1948            break;
1949        case ISurfaceComposerClient::eFXSurfaceDim:
1950            result = createDimLayer(client,
1951                    name, w, h, flags,
1952                    handle, gbp, &layer);
1953            break;
1954        default:
1955            result = BAD_VALUE;
1956            break;
1957    }
1958
1959    if (result == NO_ERROR) {
1960        addClientLayer(client, *handle, *gbp, layer);
1961        setTransactionFlags(eTransactionNeeded);
1962    }
1963    return result;
1964}
1965
1966status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
1967        const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
1968        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1969{
1970    // initialize the surfaces
1971    switch (format) {
1972    case PIXEL_FORMAT_TRANSPARENT:
1973    case PIXEL_FORMAT_TRANSLUCENT:
1974        format = PIXEL_FORMAT_RGBA_8888;
1975        break;
1976    case PIXEL_FORMAT_OPAQUE:
1977#ifdef NO_RGBX_8888
1978        format = PIXEL_FORMAT_RGB_565;
1979#else
1980        format = PIXEL_FORMAT_RGBX_8888;
1981#endif
1982        break;
1983    }
1984
1985#ifdef NO_RGBX_8888
1986    if (format == PIXEL_FORMAT_RGBX_8888)
1987        format = PIXEL_FORMAT_RGBA_8888;
1988#endif
1989
1990    *outLayer = new Layer(this, client, name, w, h, flags);
1991    status_t err = (*outLayer)->setBuffers(w, h, format, flags);
1992    if (err == NO_ERROR) {
1993        *handle = (*outLayer)->getHandle();
1994        *gbp = (*outLayer)->getBufferQueue();
1995    }
1996
1997    ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
1998    return err;
1999}
2000
2001status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
2002        const String8& name, uint32_t w, uint32_t h, uint32_t flags,
2003        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
2004{
2005    *outLayer = new LayerDim(this, client, name, w, h, flags);
2006    *handle = (*outLayer)->getHandle();
2007    *gbp = (*outLayer)->getBufferQueue();
2008    return NO_ERROR;
2009}
2010
2011status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
2012{
2013    // called by the window manager when it wants to remove a Layer
2014    status_t err = NO_ERROR;
2015    sp<Layer> l(client->getLayerUser(handle));
2016    if (l != NULL) {
2017        err = removeLayer(l);
2018        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2019                "error removing layer=%p (%s)", l.get(), strerror(-err));
2020    }
2021    return err;
2022}
2023
2024status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
2025{
2026    // called by ~LayerCleaner() when all references to the IBinder (handle)
2027    // are gone
2028    status_t err = NO_ERROR;
2029    sp<Layer> l(layer.promote());
2030    if (l != NULL) {
2031        err = removeLayer(l);
2032        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2033                "error removing layer=%p (%s)", l.get(), strerror(-err));
2034    }
2035    return err;
2036}
2037
2038// ---------------------------------------------------------------------------
2039
2040void SurfaceFlinger::onInitializeDisplays() {
2041    // reset screen orientation and use primary layer stack
2042    Vector<ComposerState> state;
2043    Vector<DisplayState> displays;
2044    DisplayState d;
2045    d.what = DisplayState::eDisplayProjectionChanged |
2046             DisplayState::eLayerStackChanged;
2047    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2048    d.layerStack = 0;
2049    d.orientation = DisplayState::eOrientationDefault;
2050    d.frame.makeInvalid();
2051    d.viewport.makeInvalid();
2052    displays.add(d);
2053    setTransactionState(state, displays, 0);
2054    onScreenAcquired(getDefaultDisplayDevice());
2055}
2056
2057void SurfaceFlinger::initializeDisplays() {
2058    class MessageScreenInitialized : public MessageBase {
2059        SurfaceFlinger* flinger;
2060    public:
2061        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2062        virtual bool handler() {
2063            flinger->onInitializeDisplays();
2064            return true;
2065        }
2066    };
2067    sp<MessageBase> msg = new MessageScreenInitialized(this);
2068    postMessageAsync(msg);  // we may be called from main thread, use async message
2069}
2070
2071
2072void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2073    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2074    if (hw->isScreenAcquired()) {
2075        // this is expected, e.g. when power manager wakes up during boot
2076        ALOGD(" screen was previously acquired");
2077        return;
2078    }
2079
2080    hw->acquireScreen();
2081    int32_t type = hw->getDisplayType();
2082    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2083        // built-in display, tell the HWC
2084        getHwComposer().acquire(type);
2085
2086        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2087            // FIXME: eventthread only knows about the main display right now
2088            mEventThread->onScreenAcquired();
2089        }
2090    }
2091    mVisibleRegionsDirty = true;
2092    repaintEverything();
2093}
2094
2095void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2096    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2097    if (!hw->isScreenAcquired()) {
2098        ALOGD(" screen was previously released");
2099        return;
2100    }
2101
2102    hw->releaseScreen();
2103    int32_t type = hw->getDisplayType();
2104    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2105        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2106            // FIXME: eventthread only knows about the main display right now
2107            mEventThread->onScreenReleased();
2108        }
2109
2110        // built-in display, tell the HWC
2111        getHwComposer().release(type);
2112    }
2113    mVisibleRegionsDirty = true;
2114    // from this point on, SF will stop drawing on this display
2115}
2116
2117void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2118    class MessageScreenAcquired : public MessageBase {
2119        SurfaceFlinger& mFlinger;
2120        sp<IBinder> mDisplay;
2121    public:
2122        MessageScreenAcquired(SurfaceFlinger& flinger,
2123                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2124        virtual bool handler() {
2125            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2126            if (hw == NULL) {
2127                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2128            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2129                ALOGW("Attempt to unblank virtual display");
2130            } else {
2131                mFlinger.onScreenAcquired(hw);
2132            }
2133            return true;
2134        }
2135    };
2136    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2137    postMessageSync(msg);
2138}
2139
2140void SurfaceFlinger::blank(const sp<IBinder>& display) {
2141    class MessageScreenReleased : public MessageBase {
2142        SurfaceFlinger& mFlinger;
2143        sp<IBinder> mDisplay;
2144    public:
2145        MessageScreenReleased(SurfaceFlinger& flinger,
2146                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2147        virtual bool handler() {
2148            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2149            if (hw == NULL) {
2150                ALOGE("Attempt to blank null display %p", mDisplay.get());
2151            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2152                ALOGW("Attempt to blank virtual display");
2153            } else {
2154                mFlinger.onScreenReleased(hw);
2155            }
2156            return true;
2157        }
2158    };
2159    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2160    postMessageSync(msg);
2161}
2162
2163// ---------------------------------------------------------------------------
2164
2165status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2166{
2167    String8 result;
2168
2169    IPCThreadState* ipc = IPCThreadState::self();
2170    const int pid = ipc->getCallingPid();
2171    const int uid = ipc->getCallingUid();
2172    if ((uid != AID_SHELL) &&
2173            !PermissionCache::checkPermission(sDump, pid, uid)) {
2174        result.appendFormat("Permission Denial: "
2175                "can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
2176    } else {
2177        // Try to get the main lock, but don't insist if we can't
2178        // (this would indicate SF is stuck, but we want to be able to
2179        // print something in dumpsys).
2180        int retry = 3;
2181        while (mStateLock.tryLock()<0 && --retry>=0) {
2182            usleep(1000000);
2183        }
2184        const bool locked(retry >= 0);
2185        if (!locked) {
2186            result.append(
2187                    "SurfaceFlinger appears to be unresponsive, "
2188                    "dumping anyways (no locks held)\n");
2189        }
2190
2191        bool dumpAll = true;
2192        size_t index = 0;
2193        size_t numArgs = args.size();
2194        if (numArgs) {
2195            if ((index < numArgs) &&
2196                    (args[index] == String16("--list"))) {
2197                index++;
2198                listLayersLocked(args, index, result);
2199                dumpAll = false;
2200            }
2201
2202            if ((index < numArgs) &&
2203                    (args[index] == String16("--latency"))) {
2204                index++;
2205                dumpStatsLocked(args, index, result);
2206                dumpAll = false;
2207            }
2208
2209            if ((index < numArgs) &&
2210                    (args[index] == String16("--latency-clear"))) {
2211                index++;
2212                clearStatsLocked(args, index, result);
2213                dumpAll = false;
2214            }
2215        }
2216
2217        if (dumpAll) {
2218            dumpAllLocked(args, index, result);
2219        }
2220
2221        if (locked) {
2222            mStateLock.unlock();
2223        }
2224    }
2225    write(fd, result.string(), result.size());
2226    return NO_ERROR;
2227}
2228
2229void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2230        String8& result) const
2231{
2232    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2233    const size_t count = currentLayers.size();
2234    for (size_t i=0 ; i<count ; i++) {
2235        const sp<Layer>& layer(currentLayers[i]);
2236        result.appendFormat("%s\n", layer->getName().string());
2237    }
2238}
2239
2240void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2241        String8& result) const
2242{
2243    String8 name;
2244    if (index < args.size()) {
2245        name = String8(args[index]);
2246        index++;
2247    }
2248
2249    const nsecs_t period =
2250            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2251    result.appendFormat("%lld\n", period);
2252
2253    if (name.isEmpty()) {
2254        mAnimFrameTracker.dump(result);
2255    } else {
2256        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2257        const size_t count = currentLayers.size();
2258        for (size_t i=0 ; i<count ; i++) {
2259            const sp<Layer>& layer(currentLayers[i]);
2260            if (name == layer->getName()) {
2261                layer->dumpStats(result);
2262            }
2263        }
2264    }
2265}
2266
2267void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2268        String8& result)
2269{
2270    String8 name;
2271    if (index < args.size()) {
2272        name = String8(args[index]);
2273        index++;
2274    }
2275
2276    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2277    const size_t count = currentLayers.size();
2278    for (size_t i=0 ; i<count ; i++) {
2279        const sp<Layer>& layer(currentLayers[i]);
2280        if (name.isEmpty() || (name == layer->getName())) {
2281            layer->clearStats();
2282        }
2283    }
2284
2285    mAnimFrameTracker.clear();
2286}
2287
2288/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2289{
2290    static const char* config =
2291            " [sf"
2292#ifdef NO_RGBX_8888
2293            " NO_RGBX_8888"
2294#endif
2295#ifdef HAS_CONTEXT_PRIORITY
2296            " HAS_CONTEXT_PRIORITY"
2297#endif
2298#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2299            " NEVER_DEFAULT_TO_ASYNC_MODE"
2300#endif
2301#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2302            " TARGET_DISABLE_TRIPLE_BUFFERING"
2303#endif
2304            "]";
2305    result.append(config);
2306}
2307
2308void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index,
2309        String8& result) const
2310{
2311    bool colorize = false;
2312    if (index < args.size()
2313            && (args[index] == String16("--color"))) {
2314        colorize = true;
2315        index++;
2316    }
2317
2318    Colorizer colorizer(colorize);
2319
2320    // figure out if we're stuck somewhere
2321    const nsecs_t now = systemTime();
2322    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2323    const nsecs_t inTransaction(mDebugInTransaction);
2324    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2325    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2326
2327    /*
2328     * Dump library configuration.
2329     */
2330
2331    colorizer.bold(result);
2332    result.append("Build configuration:");
2333    colorizer.reset(result);
2334    appendSfConfigString(result);
2335    appendUiConfigString(result);
2336    appendGuiConfigString(result);
2337    result.append("\n");
2338
2339    colorizer.bold(result);
2340    result.append("Sync configuration: ");
2341    colorizer.reset(result);
2342    result.append(SyncFeatures::getInstance().toString());
2343    result.append("\n");
2344
2345    /*
2346     * Dump the visible layer list
2347     */
2348    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2349    const size_t count = currentLayers.size();
2350    colorizer.bold(result);
2351    result.appendFormat("Visible layers (count = %d)\n", count);
2352    colorizer.reset(result);
2353    for (size_t i=0 ; i<count ; i++) {
2354        const sp<Layer>& layer(currentLayers[i]);
2355        layer->dump(result, colorizer);
2356    }
2357
2358    /*
2359     * Dump Display state
2360     */
2361
2362    colorizer.bold(result);
2363    result.appendFormat("Displays (%d entries)\n", mDisplays.size());
2364    colorizer.reset(result);
2365    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2366        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2367        hw->dump(result);
2368    }
2369
2370    /*
2371     * Dump SurfaceFlinger global state
2372     */
2373
2374    colorizer.bold(result);
2375    result.append("SurfaceFlinger global state:\n");
2376    colorizer.reset(result);
2377
2378    HWComposer& hwc(getHwComposer());
2379    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2380    const GLExtensions& extensions(GLExtensions::getInstance());
2381
2382    colorizer.bold(result);
2383    result.appendFormat("EGL implementation : %s\n",
2384            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
2385    colorizer.reset(result);
2386    result.appendFormat("%s\n",
2387            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
2388
2389    colorizer.bold(result);
2390    result.appendFormat("GLES: %s, %s, %s\n",
2391            extensions.getVendor(),
2392            extensions.getRenderer(),
2393            extensions.getVersion());
2394    colorizer.reset(result);
2395    result.appendFormat("%s\n", extensions.getExtension());
2396
2397    hw->undefinedRegion.dump(result, "undefinedRegion");
2398    result.appendFormat("  orientation=%d, canDraw=%d\n",
2399            hw->getOrientation(), hw->canDraw());
2400    result.appendFormat(
2401            "  last eglSwapBuffers() time: %f us\n"
2402            "  last transaction time     : %f us\n"
2403            "  transaction-flags         : %08x\n"
2404            "  refresh-rate              : %f fps\n"
2405            "  x-dpi                     : %f\n"
2406            "  y-dpi                     : %f\n"
2407            "  EGL_NATIVE_VISUAL_ID      : %d\n"
2408            "  gpu_to_cpu_unsupported    : %d\n"
2409            ,
2410            mLastSwapBufferTime/1000.0,
2411            mLastTransactionTime/1000.0,
2412            mTransactionFlags,
2413            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2414            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2415            hwc.getDpiY(HWC_DISPLAY_PRIMARY),
2416            mEGLNativeVisualId,
2417            !mGpuToCpuSupported);
2418
2419    result.appendFormat("  eglSwapBuffers time: %f us\n",
2420            inSwapBuffersDuration/1000.0);
2421
2422    result.appendFormat("  transaction time: %f us\n",
2423            inTransactionDuration/1000.0);
2424
2425    /*
2426     * VSYNC state
2427     */
2428    mEventThread->dump(result);
2429
2430    /*
2431     * Dump HWComposer state
2432     */
2433    colorizer.bold(result);
2434    result.append("h/w composer state:\n");
2435    colorizer.reset(result);
2436    result.appendFormat("  h/w composer %s and %s\n",
2437            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2438                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2439    hwc.dump(result);
2440
2441    /*
2442     * Dump gralloc state
2443     */
2444    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2445    alloc.dump(result);
2446}
2447
2448const Vector< sp<Layer> >&
2449SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
2450    // Note: mStateLock is held here
2451    wp<IBinder> dpy;
2452    for (size_t i=0 ; i<mDisplays.size() ; i++) {
2453        if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
2454            dpy = mDisplays.keyAt(i);
2455            break;
2456        }
2457    }
2458    if (dpy == NULL) {
2459        ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
2460        // Just use the primary display so we have something to return
2461        dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
2462    }
2463    return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
2464}
2465
2466bool SurfaceFlinger::startDdmConnection()
2467{
2468    void* libddmconnection_dso =
2469            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2470    if (!libddmconnection_dso) {
2471        return false;
2472    }
2473    void (*DdmConnection_start)(const char* name);
2474    DdmConnection_start =
2475            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2476    if (!DdmConnection_start) {
2477        dlclose(libddmconnection_dso);
2478        return false;
2479    }
2480    (*DdmConnection_start)(getServiceName());
2481    return true;
2482}
2483
2484status_t SurfaceFlinger::onTransact(
2485    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2486{
2487    switch (code) {
2488        case CREATE_CONNECTION:
2489        case CREATE_DISPLAY:
2490        case SET_TRANSACTION_STATE:
2491        case BOOT_FINISHED:
2492        case BLANK:
2493        case UNBLANK:
2494        {
2495            // codes that require permission check
2496            IPCThreadState* ipc = IPCThreadState::self();
2497            const int pid = ipc->getCallingPid();
2498            const int uid = ipc->getCallingUid();
2499            if ((uid != AID_GRAPHICS) &&
2500                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2501                ALOGE("Permission Denial: "
2502                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2503                return PERMISSION_DENIED;
2504            }
2505            break;
2506        }
2507        case CAPTURE_SCREEN:
2508        {
2509            // codes that require permission check
2510            IPCThreadState* ipc = IPCThreadState::self();
2511            const int pid = ipc->getCallingPid();
2512            const int uid = ipc->getCallingUid();
2513            if ((uid != AID_GRAPHICS) &&
2514                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2515                ALOGE("Permission Denial: "
2516                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2517                return PERMISSION_DENIED;
2518            }
2519            break;
2520        }
2521    }
2522
2523    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2524    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2525        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2526        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2527            IPCThreadState* ipc = IPCThreadState::self();
2528            const int pid = ipc->getCallingPid();
2529            const int uid = ipc->getCallingUid();
2530            ALOGE("Permission Denial: "
2531                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2532            return PERMISSION_DENIED;
2533        }
2534        int n;
2535        switch (code) {
2536            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2537            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2538                return NO_ERROR;
2539            case 1002:  // SHOW_UPDATES
2540                n = data.readInt32();
2541                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2542                invalidateHwcGeometry();
2543                repaintEverything();
2544                return NO_ERROR;
2545            case 1004:{ // repaint everything
2546                repaintEverything();
2547                return NO_ERROR;
2548            }
2549            case 1005:{ // force transaction
2550                setTransactionFlags(
2551                        eTransactionNeeded|
2552                        eDisplayTransactionNeeded|
2553                        eTraversalNeeded);
2554                return NO_ERROR;
2555            }
2556            case 1006:{ // send empty update
2557                signalRefresh();
2558                return NO_ERROR;
2559            }
2560            case 1008:  // toggle use of hw composer
2561                n = data.readInt32();
2562                mDebugDisableHWC = n ? 1 : 0;
2563                invalidateHwcGeometry();
2564                repaintEverything();
2565                return NO_ERROR;
2566            case 1009:  // toggle use of transform hint
2567                n = data.readInt32();
2568                mDebugDisableTransformHint = n ? 1 : 0;
2569                invalidateHwcGeometry();
2570                repaintEverything();
2571                return NO_ERROR;
2572            case 1010:  // interrogate.
2573                reply->writeInt32(0);
2574                reply->writeInt32(0);
2575                reply->writeInt32(mDebugRegion);
2576                reply->writeInt32(0);
2577                reply->writeInt32(mDebugDisableHWC);
2578                return NO_ERROR;
2579            case 1013: {
2580                Mutex::Autolock _l(mStateLock);
2581                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2582                reply->writeInt32(hw->getPageFlipCount());
2583            }
2584            return NO_ERROR;
2585        }
2586    }
2587    return err;
2588}
2589
2590void SurfaceFlinger::repaintEverything() {
2591    android_atomic_or(1, &mRepaintEverything);
2592    signalTransaction();
2593}
2594
2595// ---------------------------------------------------------------------------
2596// Capture screen into an IGraphiBufferProducer
2597// ---------------------------------------------------------------------------
2598
2599status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2600        const sp<IGraphicBufferProducer>& producer,
2601        uint32_t reqWidth, uint32_t reqHeight,
2602        uint32_t minLayerZ, uint32_t maxLayerZ,
2603        bool isCpuConsumer) {
2604
2605    if (CC_UNLIKELY(display == 0))
2606        return BAD_VALUE;
2607
2608    if (CC_UNLIKELY(producer == 0))
2609        return BAD_VALUE;
2610
2611    class MessageCaptureScreen : public MessageBase {
2612        SurfaceFlinger* flinger;
2613        sp<IBinder> display;
2614        sp<IGraphicBufferProducer> producer;
2615        uint32_t reqWidth, reqHeight;
2616        uint32_t minLayerZ,maxLayerZ;
2617        bool isCpuConsumer;
2618        status_t result;
2619    public:
2620        MessageCaptureScreen(SurfaceFlinger* flinger,
2621                const sp<IBinder>& display,
2622                const sp<IGraphicBufferProducer>& producer,
2623                uint32_t reqWidth, uint32_t reqHeight,
2624                uint32_t minLayerZ, uint32_t maxLayerZ, bool isCpuConsumer)
2625            : flinger(flinger), display(display), producer(producer),
2626              reqWidth(reqWidth), reqHeight(reqHeight),
2627              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2628              isCpuConsumer(isCpuConsumer),
2629              result(PERMISSION_DENIED)
2630        {
2631        }
2632        status_t getResult() const {
2633            return result;
2634        }
2635        virtual bool handler() {
2636            Mutex::Autolock _l(flinger->mStateLock);
2637            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2638            bool useReadPixels = isCpuConsumer && !flinger->mGpuToCpuSupported;
2639            result = flinger->captureScreenImplLocked(hw,
2640                    producer, reqWidth, reqHeight, minLayerZ, maxLayerZ,
2641                    useReadPixels);
2642
2643            return true;
2644        }
2645    };
2646
2647    // make sure to process transactions before screenshots -- a transaction
2648    // might already be pending but scheduled for VSYNC; this guarantees we
2649    // will handle it before the screenshot. When VSYNC finally arrives
2650    // the scheduled transaction will be a no-op. If no transactions are
2651    // scheduled at this time, this will end-up being a no-op as well.
2652    mEventQueue.invalidateTransactionNow();
2653
2654    sp<MessageBase> msg = new MessageCaptureScreen(this,
2655            display, producer, reqWidth, reqHeight, minLayerZ, maxLayerZ,
2656            isCpuConsumer);
2657    status_t res = postMessageSync(msg);
2658    if (res == NO_ERROR) {
2659        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2660    }
2661    return res;
2662}
2663
2664
2665void SurfaceFlinger::renderScreenImplLocked(
2666        const sp<const DisplayDevice>& hw,
2667        uint32_t reqWidth, uint32_t reqHeight,
2668        uint32_t minLayerZ, uint32_t maxLayerZ,
2669        bool yswap)
2670{
2671    ATRACE_CALL();
2672
2673    // get screen geometry
2674    const uint32_t hw_w = hw->getWidth();
2675    const uint32_t hw_h = hw->getHeight();
2676
2677    const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
2678
2679    // make sure to clear all GL error flags
2680    while ( glGetError() != GL_NO_ERROR ) ;
2681
2682    // set-up our viewport
2683    glViewport(0, 0, reqWidth, reqHeight);
2684    glMatrixMode(GL_PROJECTION);
2685    glLoadIdentity();
2686    if (yswap)  glOrthof(0, hw_w, hw_h, 0, 0, 1);
2687    else        glOrthof(0, hw_w, 0, hw_h, 0, 1);
2688    glMatrixMode(GL_MODELVIEW);
2689    glLoadIdentity();
2690
2691    // redraw the screen entirely...
2692    glDisable(GL_SCISSOR_TEST);
2693    glClearColor(0,0,0,1);
2694    glClear(GL_COLOR_BUFFER_BIT);
2695    glDisable(GL_TEXTURE_EXTERNAL_OES);
2696    glDisable(GL_TEXTURE_2D);
2697
2698    const LayerVector& layers( mDrawingState.layersSortedByZ );
2699    const size_t count = layers.size();
2700    for (size_t i=0 ; i<count ; ++i) {
2701        const sp<Layer>& layer(layers[i]);
2702        const Layer::State& state(layer->drawingState());
2703        if (state.layerStack == hw->getLayerStack()) {
2704            if (state.z >= minLayerZ && state.z <= maxLayerZ) {
2705                if (layer->isVisible()) {
2706                    if (filtering) layer->setFiltering(true);
2707                    layer->draw(hw);
2708                    if (filtering) layer->setFiltering(false);
2709                }
2710            }
2711        }
2712    }
2713
2714    // compositionComplete is needed for older driver
2715    hw->compositionComplete();
2716}
2717
2718
2719status_t SurfaceFlinger::captureScreenImplLocked(
2720        const sp<const DisplayDevice>& hw,
2721        const sp<IGraphicBufferProducer>& producer,
2722        uint32_t reqWidth, uint32_t reqHeight,
2723        uint32_t minLayerZ, uint32_t maxLayerZ,
2724        bool useReadPixels)
2725{
2726    ATRACE_CALL();
2727
2728    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2729        return INVALID_OPERATION;
2730    }
2731
2732    // get screen geometry
2733    const uint32_t hw_w = hw->getWidth();
2734    const uint32_t hw_h = hw->getHeight();
2735
2736    // if we have secure windows on this display, never allow the screen capture
2737    if (hw->getSecureLayerVisible()) {
2738        ALOGW("FB is protected: PERMISSION_DENIED");
2739        return PERMISSION_DENIED;
2740    }
2741
2742    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2743        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2744                reqWidth, reqHeight, hw_w, hw_h);
2745        return BAD_VALUE;
2746    }
2747
2748    reqWidth  = (!reqWidth)  ? hw_w : reqWidth;
2749    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2750
2751    // create a surface (because we're a producer, and we need to
2752    // dequeue/queue a buffer)
2753    sp<Surface> sur = new Surface(producer);
2754    ANativeWindow* window = sur.get();
2755
2756    status_t result = NO_ERROR;
2757    if (native_window_api_connect(window, NATIVE_WINDOW_API_EGL) == NO_ERROR) {
2758        uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN;
2759        if (!useReadPixels) {
2760            usage = GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
2761        }
2762
2763        int err = 0;
2764        err = native_window_set_buffers_dimensions(window, reqWidth, reqHeight);
2765        err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
2766        err |= native_window_set_usage(window, usage);
2767
2768        if (err == NO_ERROR) {
2769            ANativeWindowBuffer* buffer;
2770            /* TODO: Once we have the sync framework everywhere this can use
2771             * server-side waits on the fence that dequeueBuffer returns.
2772             */
2773            result = native_window_dequeue_buffer_and_wait(window,  &buffer);
2774            if (result == NO_ERROR) {
2775                // create an EGLImage from the buffer so we can later
2776                // turn it into a texture
2777                EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT,
2778                        EGL_NATIVE_BUFFER_ANDROID, buffer, NULL);
2779                if (image != EGL_NO_IMAGE_KHR) {
2780                    GLuint tname, name;
2781                    if (!useReadPixels) {
2782                        // turn our EGLImage into a texture
2783                        glGenTextures(1, &tname);
2784                        glBindTexture(GL_TEXTURE_2D, tname);
2785                        glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)image);
2786                        // create a Framebuffer Object to render into
2787                        glGenFramebuffersOES(1, &name);
2788                        glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2789                        glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2790                                GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tname, 0);
2791                    } else {
2792                        // since we're going to use glReadPixels() anyways,
2793                        // use an intermediate renderbuffer instead
2794                        glGenRenderbuffersOES(1, &tname);
2795                        glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2796                        glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, reqWidth, reqHeight);
2797                        // create a FBO to render into
2798                        glGenFramebuffersOES(1, &name);
2799                        glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2800                        glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2801                                GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2802                    }
2803
2804                    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2805                    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2806                        // this will in fact render into our dequeued buffer
2807                        // via an FBO, which means we didn't have to create
2808                        // an EGLSurface and therefore we're not
2809                        // dependent on the context's EGLConfig.
2810                        renderScreenImplLocked(hw, reqWidth, reqHeight,
2811                                minLayerZ, maxLayerZ, true);
2812
2813                        if (useReadPixels) {
2814                            sp<GraphicBuffer> buf = static_cast<GraphicBuffer*>(buffer);
2815                            void* vaddr;
2816                            if (buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, &vaddr) == NO_ERROR) {
2817                                glReadPixels(0, 0, buffer->stride, reqHeight,
2818                                        GL_RGBA, GL_UNSIGNED_BYTE, vaddr);
2819                                buf->unlock();
2820                            }
2821                        }
2822                    } else {
2823                        ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES error while taking screenshot");
2824                        result = INVALID_OPERATION;
2825                    }
2826
2827                    // back to main framebuffer
2828                    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2829                    glDeleteFramebuffersOES(1, &name);
2830                    if (!useReadPixels) {
2831                        glDeleteTextures(1, &tname);
2832                    } else {
2833                        glDeleteRenderbuffersOES(1, &tname);
2834                    }
2835                    // destroy our image
2836                    eglDestroyImageKHR(mEGLDisplay, image);
2837                } else {
2838                    result = BAD_VALUE;
2839                }
2840                window->queueBuffer(window, buffer, -1);
2841            }
2842        } else {
2843            result = BAD_VALUE;
2844        }
2845        native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
2846    }
2847
2848    DisplayDevice::setViewportAndProjection(hw);
2849
2850    return result;
2851}
2852
2853// ---------------------------------------------------------------------------
2854
2855SurfaceFlinger::LayerVector::LayerVector() {
2856}
2857
2858SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2859    : SortedVector<sp<Layer> >(rhs) {
2860}
2861
2862int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2863    const void* rhs) const
2864{
2865    // sort layers per layer-stack, then by z-order and finally by sequence
2866    const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
2867    const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
2868
2869    uint32_t ls = l->currentState().layerStack;
2870    uint32_t rs = r->currentState().layerStack;
2871    if (ls != rs)
2872        return ls - rs;
2873
2874    uint32_t lz = l->currentState().z;
2875    uint32_t rz = r->currentState().z;
2876    if (lz != rz)
2877        return lz - rz;
2878
2879    return l->sequence - r->sequence;
2880}
2881
2882// ---------------------------------------------------------------------------
2883
2884SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2885    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2886}
2887
2888SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2889    : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) {
2890    viewport.makeInvalid();
2891    frame.makeInvalid();
2892}
2893
2894// ---------------------------------------------------------------------------
2895
2896}; // namespace android
2897