SurfaceFlinger.cpp revision 34a09ba1efd706323a15633da5044b352988eb5f
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23
24#include <EGL/egl.h>
25#include <GLES/gl.h>
26
27#include <cutils/log.h>
28#include <cutils/properties.h>
29
30#include <binder/IPCThreadState.h>
31#include <binder/IServiceManager.h>
32#include <binder/MemoryHeapBase.h>
33#include <binder/PermissionCache.h>
34
35#include <ui/DisplayInfo.h>
36
37#include <gui/IDisplayEventConnection.h>
38#include <gui/BitTube.h>
39#include <gui/SurfaceTextureClient.h>
40
41#include <ui/GraphicBufferAllocator.h>
42#include <ui/PixelFormat.h>
43
44#include <utils/String8.h>
45#include <utils/String16.h>
46#include <utils/StopWatch.h>
47#include <utils/Trace.h>
48
49#include <private/android_filesystem_config.h>
50
51#include "clz.h"
52#include "DdmConnection.h"
53#include "DisplayHardware.h"
54#include "Client.h"
55#include "EventThread.h"
56#include "GLExtensions.h"
57#include "Layer.h"
58#include "LayerDim.h"
59#include "LayerScreenshot.h"
60#include "SurfaceFlinger.h"
61
62#include "DisplayHardware/FramebufferSurface.h"
63#include "DisplayHardware/HWComposer.h"
64
65
66#define EGL_VERSION_HW_ANDROID  0x3143
67
68#define DISPLAY_COUNT       1
69
70namespace android {
71// ---------------------------------------------------------------------------
72
73const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76const String16 sDump("android.permission.DUMP");
77
78// ---------------------------------------------------------------------------
79
80SurfaceFlinger::SurfaceFlinger()
81    :   BnSurfaceComposer(), Thread(false),
82        mTransactionFlags(0),
83        mTransationPending(false),
84        mLayersRemoved(false),
85        mBootTime(systemTime()),
86        mVisibleRegionsDirty(false),
87        mHwWorkListDirty(false),
88        mElectronBeamAnimationMode(0),
89        mDebugRegion(0),
90        mDebugDDMS(0),
91        mDebugDisableHWC(0),
92        mDebugDisableTransformHint(0),
93        mDebugInSwapBuffers(0),
94        mLastSwapBufferTime(0),
95        mDebugInTransaction(0),
96        mLastTransactionTime(0),
97        mBootFinished(false),
98        mExternalDisplaySurface(EGL_NO_SURFACE)
99{
100    ALOGI("SurfaceFlinger is starting");
101
102    // debugging stuff...
103    char value[PROPERTY_VALUE_MAX];
104
105    property_get("debug.sf.showupdates", value, "0");
106    mDebugRegion = atoi(value);
107
108#ifdef DDMS_DEBUGGING
109    property_get("debug.sf.ddms", value, "0");
110    mDebugDDMS = atoi(value);
111    if (mDebugDDMS) {
112        DdmConnection::start(getServiceName());
113    }
114#else
115#warning "DDMS_DEBUGGING disabled"
116#endif
117
118    ALOGI_IF(mDebugRegion,       "showupdates enabled");
119    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
120}
121
122void SurfaceFlinger::onFirstRef()
123{
124    mEventQueue.init(this);
125
126    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
127
128    // Wait for the main thread to be done with its initialization
129    mReadyToRunBarrier.wait();
130}
131
132
133SurfaceFlinger::~SurfaceFlinger()
134{
135    glDeleteTextures(1, &mWormholeTexName);
136    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
137    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
138    eglTerminate(display);
139}
140
141void SurfaceFlinger::binderDied(const wp<IBinder>& who)
142{
143    // the window manager died on us. prepare its eulogy.
144
145    // reset screen orientation
146    Vector<ComposerState> state;
147    Vector<DisplayState> displays;
148    DisplayState d;
149    d.orientation = eOrientationDefault;
150    displays.add(d);
151    setTransactionState(state, displays, 0);
152
153    // restart the boot-animation
154    startBootAnim();
155}
156
157sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
158{
159    sp<ISurfaceComposerClient> bclient;
160    sp<Client> client(new Client(this));
161    status_t err = client->initCheck();
162    if (err == NO_ERROR) {
163        bclient = client;
164    }
165    return bclient;
166}
167
168sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
169{
170    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
171    return gba;
172}
173
174void SurfaceFlinger::bootFinished()
175{
176    const nsecs_t now = systemTime();
177    const nsecs_t duration = now - mBootTime;
178    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
179    mBootFinished = true;
180
181    // wait patiently for the window manager death
182    const String16 name("window");
183    sp<IBinder> window(defaultServiceManager()->getService(name));
184    if (window != 0) {
185        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
186    }
187
188    // stop boot animation
189    // formerly we would just kill the process, but we now ask it to exit so it
190    // can choose where to stop the animation.
191    property_set("service.bootanim.exit", "1");
192}
193
194void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
195    class MessageDestroyGLTexture : public MessageBase {
196        GLuint texture;
197    public:
198        MessageDestroyGLTexture(GLuint texture)
199            : texture(texture) {
200        }
201        virtual bool handler() {
202            glDeleteTextures(1, &texture);
203            return true;
204        }
205    };
206    postMessageAsync(new MessageDestroyGLTexture(texture));
207}
208
209status_t SurfaceFlinger::selectConfigForPixelFormat(
210        EGLDisplay dpy,
211        EGLint const* attrs,
212        PixelFormat format,
213        EGLConfig* outConfig)
214{
215    EGLConfig config = NULL;
216    EGLint numConfigs = -1, n=0;
217    eglGetConfigs(dpy, NULL, 0, &numConfigs);
218    EGLConfig* const configs = new EGLConfig[numConfigs];
219    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
220    for (int i=0 ; i<n ; i++) {
221        EGLint nativeVisualId = 0;
222        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
223        if (nativeVisualId>0 && format == nativeVisualId) {
224            *outConfig = configs[i];
225            delete [] configs;
226            return NO_ERROR;
227        }
228    }
229    delete [] configs;
230    return NAME_NOT_FOUND;
231}
232
233EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
234    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
235    // it is to be used with WIFI displays
236    EGLConfig config;
237    EGLint dummy;
238    status_t err;
239    EGLint attribs[] = {
240            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
241            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
242            EGL_NONE
243    };
244    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
245    if (err) {
246        // maybe we failed because of EGL_RECORDABLE_ANDROID
247        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
248        attribs[2] = EGL_NONE;
249        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
250    }
251    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
252    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
253        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
254    }
255    return config;
256}
257
258EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
259    // Also create our EGLContext
260    EGLint contextAttributes[] = {
261#ifdef EGL_IMG_context_priority
262#ifdef HAS_CONTEXT_PRIORITY
263#warning "using EGL_IMG_context_priority"
264            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
265#endif
266#endif
267            EGL_NONE, EGL_NONE
268    };
269    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
270    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
271    return ctxt;
272}
273
274void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
275    EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
276    if (!result) {
277        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
278        exit(0);
279    }
280
281    GLExtensions& extensions(GLExtensions::getInstance());
282    extensions.initWithGLStrings(
283            glGetString(GL_VENDOR),
284            glGetString(GL_RENDERER),
285            glGetString(GL_VERSION),
286            glGetString(GL_EXTENSIONS),
287            eglQueryString(display, EGL_VENDOR),
288            eglQueryString(display, EGL_VERSION),
289            eglQueryString(display, EGL_EXTENSIONS));
290
291    EGLint w, h;
292    eglQuerySurface(display, surface, EGL_WIDTH,  &w);
293    eglQuerySurface(display, surface, EGL_HEIGHT, &h);
294
295    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
296    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
297
298    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
299    glPixelStorei(GL_PACK_ALIGNMENT, 4);
300    glEnableClientState(GL_VERTEX_ARRAY);
301    glShadeModel(GL_FLAT);
302    glDisable(GL_DITHER);
303    glDisable(GL_CULL_FACE);
304
305    struct pack565 {
306        inline uint16_t operator() (int r, int g, int b) const {
307            return (r<<11)|(g<<5)|b;
308        }
309    } pack565;
310
311    const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
312    const uint16_t g1 = pack565(0x17,0x2f,0x17);
313    const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
314    glGenTextures(1, &mWormholeTexName);
315    glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
316    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
317    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
318    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
319    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
320    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
321            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
322
323    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
324    glGenTextures(1, &mProtectedTexName);
325    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
326    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
327    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
328    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
329    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
330    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
331            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
332
333    glViewport(0, 0, w, h);
334    glMatrixMode(GL_PROJECTION);
335    glLoadIdentity();
336    // put the origin in the left-bottom corner
337    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
338
339    // print some debugging info
340    EGLint r,g,b,a;
341    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
342    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
343    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
344    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
345    ALOGI("EGL informations:");
346    ALOGI("vendor    : %s", extensions.getEglVendor());
347    ALOGI("version   : %s", extensions.getEglVersion());
348    ALOGI("extensions: %s", extensions.getEglExtension());
349    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
350    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
351    ALOGI("OpenGL ES informations:");
352    ALOGI("vendor    : %s", extensions.getVendor());
353    ALOGI("renderer  : %s", extensions.getRenderer());
354    ALOGI("version   : %s", extensions.getVersion());
355    ALOGI("extensions: %s", extensions.getExtension());
356    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
357    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
358}
359
360status_t SurfaceFlinger::readyToRun()
361{
362    ALOGI(  "SurfaceFlinger's main thread ready to run. "
363            "Initializing graphics H/W...");
364
365    // initialize EGL
366    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
367    eglInitialize(mEGLDisplay, NULL, NULL);
368
369    // Initialize the main display
370    // create native window to main display
371    sp<FramebufferSurface> anw = FramebufferSurface::create();
372    ANativeWindow* const window = anw.get();
373    if (!window) {
374        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
375        exit(0);
376    }
377
378    // initialize the config and context
379    int format;
380    window->query(window, NATIVE_WINDOW_FORMAT, &format);
381    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
382    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
383
384    // initialize our main display hardware
385    DisplayHardware* const hw = new DisplayHardware(this, 0, anw, mEGLConfig);
386    mDisplayHardwares[0] = hw;
387
388    //  initialize OpenGL ES
389    EGLSurface surface = hw->getEGLSurface();
390    initializeGL(mEGLDisplay, surface);
391
392    // start the EventThread
393    mEventThread = new EventThread(this);
394    mEventQueue.setEventThread(mEventThread);
395
396    // initialize the H/W composer
397    mHwc = new HWComposer(this,
398            *static_cast<HWComposer::EventHandler *>(this),
399            hw->getRefreshPeriod());
400
401    // We're now ready to accept clients...
402    mReadyToRunBarrier.open();
403
404    // start boot animation
405    startBootAnim();
406
407    return NO_ERROR;
408}
409
410void SurfaceFlinger::startBootAnim() {
411    // start boot animation
412    property_set("service.bootanim.exit", "0");
413    property_set("ctl.start", "bootanim");
414}
415
416uint32_t SurfaceFlinger::getMaxTextureSize() const {
417    return mMaxTextureSize;
418}
419
420uint32_t SurfaceFlinger::getMaxViewportDims() const {
421    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
422            mMaxViewportDims[0] : mMaxViewportDims[1];
423}
424
425// ----------------------------------------------------------------------------
426
427bool SurfaceFlinger::authenticateSurfaceTexture(
428        const sp<ISurfaceTexture>& surfaceTexture) const {
429    Mutex::Autolock _l(mStateLock);
430    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
431
432    // Check the visible layer list for the ISurface
433    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
434    size_t count = currentLayers.size();
435    for (size_t i=0 ; i<count ; i++) {
436        const sp<LayerBase>& layer(currentLayers[i]);
437        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
438        if (lbc != NULL) {
439            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
440            if (lbcBinder == surfaceTextureBinder) {
441                return true;
442            }
443        }
444    }
445
446    // Check the layers in the purgatory.  This check is here so that if a
447    // SurfaceTexture gets destroyed before all the clients are done using it,
448    // the error will not be reported as "surface XYZ is not authenticated", but
449    // will instead fail later on when the client tries to use the surface,
450    // which should be reported as "surface XYZ returned an -ENODEV".  The
451    // purgatorized layers are no less authentic than the visible ones, so this
452    // should not cause any harm.
453    size_t purgatorySize =  mLayerPurgatory.size();
454    for (size_t i=0 ; i<purgatorySize ; i++) {
455        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
456        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
457        if (lbc != NULL) {
458            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
459            if (lbcBinder == surfaceTextureBinder) {
460                return true;
461            }
462        }
463    }
464
465    return false;
466}
467
468status_t SurfaceFlinger::getDisplayInfo(DisplayID dpy, DisplayInfo* info) {
469    if (uint32_t(dpy) >= 2) {
470        return BAD_INDEX;
471    }
472    const DisplayHardware& hw(getDefaultDisplayHardware());
473    return hw.getInfo(info);
474}
475
476// ----------------------------------------------------------------------------
477
478sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
479    return mEventThread->createEventConnection();
480}
481
482void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
483    const DisplayHardware& hw(getDefaultDisplayHardware());
484    EGLSurface result = EGL_NO_SURFACE;
485    EGLSurface old_surface = EGL_NO_SURFACE;
486    sp<SurfaceTextureClient> stc;
487
488    if (display != NULL) {
489        stc = new SurfaceTextureClient(display);
490        result = eglCreateWindowSurface(hw.getEGLDisplay(),
491                mEGLConfig, (EGLNativeWindowType)stc.get(), NULL);
492        ALOGE_IF(result == EGL_NO_SURFACE,
493                "eglCreateWindowSurface failed (ISurfaceTexture=%p)",
494                display.get());
495    }
496
497    { // scope for the lock
498        Mutex::Autolock _l(mStateLock);
499        old_surface = mExternalDisplaySurface;
500        mExternalDisplayNativeWindow = stc;
501        mExternalDisplaySurface = result;
502        ALOGD("mExternalDisplaySurface = %p", result);
503    }
504
505    if (old_surface != EGL_NO_SURFACE) {
506        // Note: EGL allows to destroy an object while its current
507        // it will fail to become current next time though.
508        eglDestroySurface(hw.getEGLDisplay(), old_surface);
509    }
510}
511
512EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
513    Mutex::Autolock _l(mStateLock);
514    return mExternalDisplaySurface;
515}
516
517// ----------------------------------------------------------------------------
518
519void SurfaceFlinger::waitForEvent() {
520    mEventQueue.waitMessage();
521}
522
523void SurfaceFlinger::signalTransaction() {
524    mEventQueue.invalidate();
525}
526
527void SurfaceFlinger::signalLayerUpdate() {
528    mEventQueue.invalidate();
529}
530
531void SurfaceFlinger::signalRefresh() {
532    mEventQueue.refresh();
533}
534
535status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
536        nsecs_t reltime, uint32_t flags) {
537    return mEventQueue.postMessage(msg, reltime);
538}
539
540status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
541        nsecs_t reltime, uint32_t flags) {
542    status_t res = mEventQueue.postMessage(msg, reltime);
543    if (res == NO_ERROR) {
544        msg->wait();
545    }
546    return res;
547}
548
549bool SurfaceFlinger::threadLoop() {
550    waitForEvent();
551    return true;
552}
553
554void SurfaceFlinger::onVSyncReceived(int dpy, nsecs_t timestamp) {
555    DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
556    hw.onVSyncReceived(timestamp);
557    mEventThread->onVSyncReceived(dpy, timestamp);
558}
559
560void SurfaceFlinger::eventControl(int event, int enabled) {
561    getHwComposer().eventControl(event, enabled);
562}
563
564void SurfaceFlinger::onMessageReceived(int32_t what) {
565    ATRACE_CALL();
566    switch (what) {
567    case MessageQueue::INVALIDATE:
568        handleMessageTransaction();
569        handleMessageInvalidate();
570        signalRefresh();
571        break;
572    case MessageQueue::REFRESH:
573        handleMessageRefresh();
574        break;
575    }
576}
577
578void SurfaceFlinger::handleMessageTransaction() {
579    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
580    uint32_t transactionFlags = peekTransactionFlags(mask);
581    if (transactionFlags) {
582        Region dirtyRegion;
583        dirtyRegion = handleTransaction(transactionFlags);
584        // XXX: dirtyRegion should be per screen
585        mDirtyRegion |= dirtyRegion;
586    }
587}
588
589void SurfaceFlinger::handleMessageInvalidate() {
590    Region dirtyRegion;
591    dirtyRegion = handlePageFlip();
592    // XXX: dirtyRegion should be per screen
593    mDirtyRegion |= dirtyRegion;
594}
595
596void SurfaceFlinger::handleMessageRefresh() {
597    handleRefresh();
598
599    if (mVisibleRegionsDirty) {
600        Region opaqueRegion;
601        Region dirtyRegion;
602        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
603        computeVisibleRegions(currentLayers, dirtyRegion, opaqueRegion);
604        mDirtyRegion.orSelf(dirtyRegion);
605
606        /*
607         *  rebuild the visible layer list per screen
608         */
609
610        // TODO: iterate through all displays
611        DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(0)));
612
613        Vector< sp<LayerBase> > layersSortedByZ;
614        const size_t count = currentLayers.size();
615        for (size_t i=0 ; i<count ; i++) {
616            if (!currentLayers[i]->visibleRegion.isEmpty()) {
617                // TODO: also check that this layer is associated to this display
618                layersSortedByZ.add(currentLayers[i]);
619            }
620        }
621        hw.setVisibleLayersSortedByZ(layersSortedByZ);
622
623
624        // FIXME: mWormholeRegion needs to be calculated per screen
625        //const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: we can't keep that here
626        mWormholeRegion = Region(hw.getBounds()).subtract(
627                hw.getTransform().transform(opaqueRegion) );
628        mVisibleRegionsDirty = false;
629        invalidateHwcGeometry();
630    }
631
632
633    // XXX: dirtyRegion should be per screen, we should check all of them
634    if (mDirtyRegion.isEmpty()) {
635        return;
636    }
637
638    // TODO: iterate through all displays
639    const DisplayHardware& hw(getDisplayHardware(0));
640
641    // XXX: dirtyRegion should be per screen
642    // transform the dirty region into this screen's coordinate space
643    const Transform& planeTransform(hw.getTransform());
644    mDirtyRegion = planeTransform.transform(mDirtyRegion);
645    mDirtyRegion.orSelf(getAndClearInvalidateRegion());
646    mDirtyRegion.andSelf(hw.bounds());
647
648
649    if (CC_UNLIKELY(mHwWorkListDirty)) {
650        // build the h/w work list
651        handleWorkList(hw);
652    }
653
654    if (CC_LIKELY(hw.canDraw())) {
655        // repaint the framebuffer (if needed)
656        handleRepaint(hw);
657        // inform the h/w that we're done compositing
658        hw.compositionComplete();
659        postFramebuffer();
660    } else {
661        // pretend we did the post
662        hw.compositionComplete();
663    }
664
665    // render to the external display if we have one
666    EGLSurface externalDisplaySurface = getExternalDisplaySurface();
667    if (externalDisplaySurface != EGL_NO_SURFACE) {
668        EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
669        EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
670                externalDisplaySurface, externalDisplaySurface,
671                eglGetCurrentContext());
672
673        ALOGE_IF(!success, "eglMakeCurrent -> external failed");
674
675        if (success) {
676            // redraw the screen entirely...
677            glDisable(GL_TEXTURE_EXTERNAL_OES);
678            glDisable(GL_TEXTURE_2D);
679            glClearColor(0,0,0,1);
680            glClear(GL_COLOR_BUFFER_BIT);
681            glMatrixMode(GL_MODELVIEW);
682            glLoadIdentity();
683
684            const Vector< sp<LayerBase> >& layers( hw.getVisibleLayersSortedByZ() );
685            const size_t count = layers.size();
686            for (size_t i=0 ; i<count ; ++i) {
687                const sp<LayerBase>& layer(layers[i]);
688                layer->drawForSreenShot(hw);
689            }
690
691            success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
692            ALOGE_IF(!success, "external display eglSwapBuffers failed");
693
694            hw.compositionComplete();
695        }
696
697        success = eglMakeCurrent(eglGetCurrentDisplay(),
698                cur, cur, eglGetCurrentContext());
699
700        ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
701    }
702
703}
704
705void SurfaceFlinger::postFramebuffer()
706{
707    ATRACE_CALL();
708    // mSwapRegion can be empty here is some cases, for instance if a hidden
709    // or fully transparent window is updating.
710    // in that case, we need to flip anyways to not risk a deadlock with
711    // h/w composer.
712
713    const DisplayHardware& hw(getDefaultDisplayHardware());
714    HWComposer& hwc(getHwComposer());
715    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
716    size_t numLayers = layers.size();
717    const nsecs_t now = systemTime();
718    mDebugInSwapBuffers = now;
719
720    if (hwc.initCheck() == NO_ERROR) {
721        HWComposer::LayerListIterator cur = hwc.begin();
722        const HWComposer::LayerListIterator end = hwc.end();
723        for (size_t i = 0; cur != end && i < numLayers; ++i, ++cur) {
724            if (cur->getCompositionType() == HWC_OVERLAY) {
725                layers[i]->setAcquireFence(*cur);
726            } else {
727                cur->setAcquireFenceFd(-1);
728            }
729        }
730    }
731
732    hw.flip(mSwapRegion);
733
734    if (hwc.initCheck() == NO_ERROR) {
735        hwc.commit(mEGLDisplay, hw.getEGLSurface());
736        HWComposer::LayerListIterator cur = hwc.begin();
737        const HWComposer::LayerListIterator end = hwc.end();
738        for (size_t i = 0; cur != end && i < numLayers; ++i, ++cur) {
739            layers[i]->onLayerDisplayed(&*cur);
740        }
741    } else {
742        eglSwapBuffers(mEGLDisplay, hw.getEGLSurface());
743        for (size_t i = 0; i < numLayers; i++) {
744            layers[i]->onLayerDisplayed(NULL);
745        }
746    }
747
748    mLastSwapBufferTime = systemTime() - now;
749    mDebugInSwapBuffers = 0;
750    mSwapRegion.clear();
751}
752
753Region SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
754{
755    ATRACE_CALL();
756
757    Region dirtyRegion;
758
759    Mutex::Autolock _l(mStateLock);
760    const nsecs_t now = systemTime();
761    mDebugInTransaction = now;
762
763    // Here we're guaranteed that some transaction flags are set
764    // so we can call handleTransactionLocked() unconditionally.
765    // We call getTransactionFlags(), which will also clear the flags,
766    // with mStateLock held to guarantee that mCurrentState won't change
767    // until the transaction is committed.
768
769    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
770    transactionFlags = getTransactionFlags(mask);
771    dirtyRegion = handleTransactionLocked(transactionFlags);
772
773    mLastTransactionTime = systemTime() - now;
774    mDebugInTransaction = 0;
775    invalidateHwcGeometry();
776    // here the transaction has been committed
777
778    return dirtyRegion;
779}
780
781Region SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
782{
783    Region dirtyRegion;
784    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
785    const size_t count = currentLayers.size();
786
787    /*
788     * Traversal of the children
789     * (perform the transaction for each of them if needed)
790     */
791
792    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
793    if (layersNeedTransaction) {
794        for (size_t i=0 ; i<count ; i++) {
795            const sp<LayerBase>& layer = currentLayers[i];
796            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
797            if (!trFlags) continue;
798
799            const uint32_t flags = layer->doTransaction(0);
800            if (flags & Layer::eVisibleRegion)
801                mVisibleRegionsDirty = true;
802        }
803    }
804
805    /*
806     * Perform our own transaction if needed
807     */
808
809    if (transactionFlags & eTransactionNeeded) {
810        if (mCurrentState.orientation != mDrawingState.orientation) {
811            // the orientation has changed, recompute all visible regions
812            // and invalidate everything.
813
814            const int dpy = 0; // TODO: should be a parameter
815            DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
816            hw.setOrientation(mCurrentState.orientation);
817
818            // FIXME: mVisibleRegionsDirty & mDirtyRegion should this be per DisplayHardware?
819            mVisibleRegionsDirty = true;
820            mDirtyRegion.set(hw.bounds());
821        }
822
823        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
824            // layers have been added
825            mVisibleRegionsDirty = true;
826        }
827
828        // some layers might have been removed, so
829        // we need to update the regions they're exposing.
830        if (mLayersRemoved) {
831            mLayersRemoved = false;
832            mVisibleRegionsDirty = true;
833            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
834            const size_t count = previousLayers.size();
835            for (size_t i=0 ; i<count ; i++) {
836                const sp<LayerBase>& layer(previousLayers[i]);
837                if (currentLayers.indexOf( layer ) < 0) {
838                    // this layer is not visible anymore
839                    // TODO: we could traverse the tree from front to back and compute the actual visible region
840                    // TODO: we could cache the transformed region
841                    Layer::State front(layer->drawingState());
842                    Region visibleReg = front.transform.transform(
843                            Region(Rect(front.active.w, front.active.h)));
844                    dirtyRegion.orSelf(visibleReg);
845                }
846            }
847        }
848    }
849
850    commitTransaction();
851    return dirtyRegion;
852}
853
854void SurfaceFlinger::commitTransaction()
855{
856    if (!mLayersPendingRemoval.isEmpty()) {
857        // Notify removed layers now that they can't be drawn from
858        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
859            mLayersPendingRemoval[i]->onRemoved();
860        }
861        mLayersPendingRemoval.clear();
862    }
863
864    mDrawingState = mCurrentState;
865    mTransationPending = false;
866    mTransactionCV.broadcast();
867}
868
869void SurfaceFlinger::computeVisibleRegions(
870    const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
871{
872    ATRACE_CALL();
873
874    Region aboveOpaqueLayers;
875    Region aboveCoveredLayers;
876    Region dirty;
877
878    dirtyRegion.clear();
879
880    size_t i = currentLayers.size();
881    while (i--) {
882        const sp<LayerBase>& layer = currentLayers[i];
883
884        // start with the whole surface at its current location
885        const Layer::State& s(layer->drawingState());
886
887        /*
888         * opaqueRegion: area of a surface that is fully opaque.
889         */
890        Region opaqueRegion;
891
892        /*
893         * visibleRegion: area of a surface that is visible on screen
894         * and not fully transparent. This is essentially the layer's
895         * footprint minus the opaque regions above it.
896         * Areas covered by a translucent surface are considered visible.
897         */
898        Region visibleRegion;
899
900        /*
901         * coveredRegion: area of a surface that is covered by all
902         * visible regions above it (which includes the translucent areas).
903         */
904        Region coveredRegion;
905
906
907        // handle hidden surfaces by setting the visible region to empty
908        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
909            const bool translucent = !layer->isOpaque();
910            Rect bounds(layer->computeBounds());
911            visibleRegion.set(bounds);
912            if (!visibleRegion.isEmpty()) {
913                // Remove the transparent area from the visible region
914                if (translucent) {
915                    Region transparentRegionScreen;
916                    const Transform tr(s.transform);
917                    if (tr.transformed()) {
918                        if (tr.preserveRects()) {
919                            // transform the transparent region
920                            transparentRegionScreen = tr.transform(s.transparentRegion);
921                        } else {
922                            // transformation too complex, can't do the
923                            // transparent region optimization.
924                            transparentRegionScreen.clear();
925                        }
926                    } else {
927                        transparentRegionScreen = s.transparentRegion;
928                    }
929                    visibleRegion.subtractSelf(transparentRegionScreen);
930                }
931
932                // compute the opaque region
933                const int32_t layerOrientation = s.transform.getOrientation();
934                if (s.alpha==255 && !translucent &&
935                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
936                    // the opaque region is the layer's footprint
937                    opaqueRegion = visibleRegion;
938                }
939            }
940        }
941
942        // Clip the covered region to the visible region
943        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
944
945        // Update aboveCoveredLayers for next (lower) layer
946        aboveCoveredLayers.orSelf(visibleRegion);
947
948        // subtract the opaque region covered by the layers above us
949        visibleRegion.subtractSelf(aboveOpaqueLayers);
950
951        // compute this layer's dirty region
952        if (layer->contentDirty) {
953            // we need to invalidate the whole region
954            dirty = visibleRegion;
955            // as well, as the old visible region
956            dirty.orSelf(layer->visibleRegion);
957            layer->contentDirty = false;
958        } else {
959            /* compute the exposed region:
960             *   the exposed region consists of two components:
961             *   1) what's VISIBLE now and was COVERED before
962             *   2) what's EXPOSED now less what was EXPOSED before
963             *
964             * note that (1) is conservative, we start with the whole
965             * visible region but only keep what used to be covered by
966             * something -- which mean it may have been exposed.
967             *
968             * (2) handles areas that were not covered by anything but got
969             * exposed because of a resize.
970             */
971            const Region newExposed = visibleRegion - coveredRegion;
972            const Region oldVisibleRegion = layer->visibleRegion;
973            const Region oldCoveredRegion = layer->coveredRegion;
974            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
975            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
976        }
977        dirty.subtractSelf(aboveOpaqueLayers);
978
979        // accumulate to the screen dirty region
980        dirtyRegion.orSelf(dirty);
981
982        // Update aboveOpaqueLayers for next (lower) layer
983        aboveOpaqueLayers.orSelf(opaqueRegion);
984
985        // Store the visible region is screen space
986        layer->setVisibleRegion(visibleRegion);
987        layer->setCoveredRegion(coveredRegion);
988    }
989
990    opaqueRegion = aboveOpaqueLayers;
991}
992
993Region SurfaceFlinger::handlePageFlip()
994{
995    ATRACE_CALL();
996    Region dirtyRegion;
997
998    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
999
1000    bool visibleRegions = false;
1001    const size_t count = currentLayers.size();
1002    sp<LayerBase> const* layers = currentLayers.array();
1003    for (size_t i=0 ; i<count ; i++) {
1004        const sp<LayerBase>& layer(layers[i]);
1005        dirtyRegion.orSelf( layer->latchBuffer(visibleRegions) );
1006    }
1007
1008    mVisibleRegionsDirty |= visibleRegions;
1009
1010    return dirtyRegion;
1011}
1012
1013void SurfaceFlinger::invalidateHwcGeometry()
1014{
1015    mHwWorkListDirty = true;
1016}
1017
1018void SurfaceFlinger::handleRefresh()
1019{
1020    bool needInvalidate = false;
1021    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1022    const size_t count = currentLayers.size();
1023    for (size_t i=0 ; i<count ; i++) {
1024        const sp<LayerBase>& layer(currentLayers[i]);
1025        if (layer->onPreComposition()) {
1026            needInvalidate = true;
1027        }
1028    }
1029    if (needInvalidate) {
1030        signalLayerUpdate();
1031    }
1032}
1033
1034
1035void SurfaceFlinger::handleWorkList(const DisplayHardware& hw)
1036{
1037    mHwWorkListDirty = false;
1038    HWComposer& hwc(getHwComposer());
1039    if (hwc.initCheck() == NO_ERROR) {
1040        const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
1041        const size_t count = currentLayers.size();
1042        hwc.createWorkList(count);
1043
1044        HWComposer::LayerListIterator cur = hwc.begin();
1045        const HWComposer::LayerListIterator end = hwc.end();
1046        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1047            currentLayers[i]->setGeometry(hw, *cur);
1048            if (mDebugDisableHWC || mDebugRegion) {
1049                cur->setSkip(true);
1050            }
1051        }
1052    }
1053}
1054
1055void SurfaceFlinger::handleRepaint(const DisplayHardware& hw)
1056{
1057    ATRACE_CALL();
1058
1059    // compute the invalid region
1060    mSwapRegion.orSelf(mDirtyRegion);
1061
1062    if (CC_UNLIKELY(mDebugRegion)) {
1063        debugFlashRegions(hw);
1064    }
1065
1066    // set the frame buffer
1067    glMatrixMode(GL_MODELVIEW);
1068    glLoadIdentity();
1069
1070    uint32_t flags = hw.getFlags();
1071    if (flags & DisplayHardware::SWAP_RECTANGLE) {
1072        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1073        // takes a rectangle, we must make sure to update that whole
1074        // rectangle in that case
1075        mDirtyRegion.set(mSwapRegion.bounds());
1076    } else {
1077        if (flags & DisplayHardware::PARTIAL_UPDATES) {
1078            // We need to redraw the rectangle that will be updated
1079            // (pushed to the framebuffer).
1080            // This is needed because PARTIAL_UPDATES only takes one
1081            // rectangle instead of a region (see DisplayHardware::flip())
1082            mDirtyRegion.set(mSwapRegion.bounds());
1083        } else {
1084            // we need to redraw everything (the whole screen)
1085            mDirtyRegion.set(hw.bounds());
1086            mSwapRegion = mDirtyRegion;
1087        }
1088    }
1089
1090    setupHardwareComposer(hw);
1091    composeSurfaces(hw, mDirtyRegion);
1092
1093    // update the swap region and clear the dirty region
1094    mSwapRegion.orSelf(mDirtyRegion);
1095    mDirtyRegion.clear();
1096}
1097
1098void SurfaceFlinger::setupHardwareComposer(const DisplayHardware& hw)
1099{
1100    HWComposer& hwc(getHwComposer());
1101    HWComposer::LayerListIterator cur = hwc.begin();
1102    const HWComposer::LayerListIterator end = hwc.end();
1103    if (cur == end) {
1104        return;
1105    }
1106
1107    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1108    size_t count = layers.size();
1109
1110    ALOGE_IF(hwc.getNumLayers() != count,
1111            "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
1112            hwc.getNumLayers(), count);
1113
1114    // just to be extra-safe, use the smallest count
1115    if (hwc.initCheck() == NO_ERROR) {
1116        count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
1117    }
1118
1119    /*
1120     *  update the per-frame h/w composer data for each layer
1121     *  and build the transparent region of the FB
1122     */
1123    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1124        const sp<LayerBase>& layer(layers[i]);
1125        layer->setPerFrameData(*cur);
1126    }
1127    status_t err = hwc.prepare();
1128    ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
1129}
1130
1131void SurfaceFlinger::composeSurfaces(const DisplayHardware& hw, const Region& dirty)
1132{
1133    HWComposer& hwc(getHwComposer());
1134    HWComposer::LayerListIterator cur = hwc.begin();
1135    const HWComposer::LayerListIterator end = hwc.end();
1136
1137    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
1138    if (cur==end || fbLayerCount) {
1139        // Never touch the framebuffer if we don't have any framebuffer layers
1140
1141        if (hwc.getLayerCount(HWC_OVERLAY)) {
1142            // when using overlays, we assume a fully transparent framebuffer
1143            // NOTE: we could reduce how much we need to clear, for instance
1144            // remove where there are opaque FB layers. however, on some
1145            // GPUs doing a "clean slate" glClear might be more efficient.
1146            // We'll revisit later if needed.
1147            glClearColor(0, 0, 0, 0);
1148            glClear(GL_COLOR_BUFFER_BIT);
1149        } else {
1150            // screen is already cleared here
1151            if (!mWormholeRegion.isEmpty()) {
1152                // can happen with SurfaceView
1153                drawWormhole();
1154            }
1155        }
1156
1157        /*
1158         * and then, render the layers targeted at the framebuffer
1159         */
1160
1161        const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1162        const size_t count = layers.size();
1163        const Transform& tr = hw.getTransform();
1164        for (size_t i=0 ; i<count ; ++i) {
1165            const sp<LayerBase>& layer(layers[i]);
1166            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1167            if (!clip.isEmpty()) {
1168                if (cur != end && cur->getCompositionType() == HWC_OVERLAY) {
1169                    if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
1170                            && layer->isOpaque()) {
1171                        // never clear the very first layer since we're
1172                        // guaranteed the FB is already cleared
1173                        layer->clearWithOpenGL(hw, clip);
1174                    }
1175                    ++cur;
1176                    continue;
1177                }
1178                // render the layer
1179                layer->draw(hw, clip);
1180            }
1181            if (cur != end) {
1182                ++cur;
1183            }
1184        }
1185    }
1186}
1187
1188void SurfaceFlinger::debugFlashRegions(const DisplayHardware& hw)
1189{
1190    const uint32_t flags = hw.getFlags();
1191    const int32_t height = hw.getHeight();
1192    if (mSwapRegion.isEmpty()) {
1193        return;
1194    }
1195
1196    if (!(flags & DisplayHardware::SWAP_RECTANGLE)) {
1197        const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1198                mDirtyRegion.bounds() : hw.bounds());
1199        composeSurfaces(hw, repaint);
1200    }
1201
1202    glDisable(GL_TEXTURE_EXTERNAL_OES);
1203    glDisable(GL_TEXTURE_2D);
1204    glDisable(GL_BLEND);
1205
1206    static int toggle = 0;
1207    toggle = 1 - toggle;
1208    if (toggle) {
1209        glColor4f(1, 0, 1, 1);
1210    } else {
1211        glColor4f(1, 1, 0, 1);
1212    }
1213
1214    Region::const_iterator it = mDirtyRegion.begin();
1215    Region::const_iterator const end = mDirtyRegion.end();
1216    while (it != end) {
1217        const Rect& r = *it++;
1218        GLfloat vertices[][2] = {
1219                { r.left,  height - r.top },
1220                { r.left,  height - r.bottom },
1221                { r.right, height - r.bottom },
1222                { r.right, height - r.top }
1223        };
1224        glVertexPointer(2, GL_FLOAT, 0, vertices);
1225        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1226    }
1227
1228    hw.flip(mSwapRegion);
1229
1230    if (mDebugRegion > 1)
1231        usleep(mDebugRegion * 1000);
1232}
1233
1234void SurfaceFlinger::drawWormhole() const
1235{
1236    const Region region(mWormholeRegion.intersect(mDirtyRegion));
1237    if (region.isEmpty())
1238        return;
1239
1240    glDisable(GL_TEXTURE_EXTERNAL_OES);
1241    glDisable(GL_TEXTURE_2D);
1242    glDisable(GL_BLEND);
1243    glColor4f(0,0,0,0);
1244
1245    GLfloat vertices[4][2];
1246    glVertexPointer(2, GL_FLOAT, 0, vertices);
1247    Region::const_iterator it = region.begin();
1248    Region::const_iterator const end = region.end();
1249    while (it != end) {
1250        const Rect& r = *it++;
1251        vertices[0][0] = r.left;
1252        vertices[0][1] = r.top;
1253        vertices[1][0] = r.right;
1254        vertices[1][1] = r.top;
1255        vertices[2][0] = r.right;
1256        vertices[2][1] = r.bottom;
1257        vertices[3][0] = r.left;
1258        vertices[3][1] = r.bottom;
1259        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1260    }
1261}
1262
1263ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1264        const sp<LayerBaseClient>& lbc)
1265{
1266    // attach this layer to the client
1267    size_t name = client->attachLayer(lbc);
1268
1269    // add this layer to the current state list
1270    Mutex::Autolock _l(mStateLock);
1271    mCurrentState.layersSortedByZ.add(lbc);
1272
1273    return ssize_t(name);
1274}
1275
1276status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1277{
1278    Mutex::Autolock _l(mStateLock);
1279    status_t err = purgatorizeLayer_l(layer);
1280    if (err == NO_ERROR)
1281        setTransactionFlags(eTransactionNeeded);
1282    return err;
1283}
1284
1285status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1286{
1287    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1288    if (index >= 0) {
1289        mLayersRemoved = true;
1290        return NO_ERROR;
1291    }
1292    return status_t(index);
1293}
1294
1295status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1296{
1297    // First add the layer to the purgatory list, which makes sure it won't
1298    // go away, then remove it from the main list (through a transaction).
1299    ssize_t err = removeLayer_l(layerBase);
1300    if (err >= 0) {
1301        mLayerPurgatory.add(layerBase);
1302    }
1303
1304    mLayersPendingRemoval.push(layerBase);
1305
1306    // it's possible that we don't find a layer, because it might
1307    // have been destroyed already -- this is not technically an error
1308    // from the user because there is a race between Client::destroySurface(),
1309    // ~Client() and ~ISurface().
1310    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1311}
1312
1313uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1314{
1315    return android_atomic_release_load(&mTransactionFlags);
1316}
1317
1318uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1319{
1320    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1321}
1322
1323uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1324{
1325    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1326    if ((old & flags)==0) { // wake the server up
1327        signalTransaction();
1328    }
1329    return old;
1330}
1331
1332
1333void SurfaceFlinger::setTransactionState(
1334        const Vector<ComposerState>& state,
1335        const Vector<DisplayState>& displays,
1336        uint32_t flags)
1337{
1338    Mutex::Autolock _l(mStateLock);
1339
1340    int orientation = eOrientationUnchanged;
1341    if (displays.size()) {
1342        // TODO: handle all displays
1343        orientation = displays[0].orientation;
1344    }
1345
1346    uint32_t transactionFlags = 0;
1347    if (mCurrentState.orientation != orientation) {
1348        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1349            mCurrentState.orientation = orientation;
1350            transactionFlags |= eTransactionNeeded;
1351        } else if (orientation != eOrientationUnchanged) {
1352            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1353                    orientation);
1354        }
1355    }
1356
1357    const size_t count = state.size();
1358    for (size_t i=0 ; i<count ; i++) {
1359        const ComposerState& s(state[i]);
1360        sp<Client> client( static_cast<Client *>(s.client.get()) );
1361        transactionFlags |= setClientStateLocked(client, s.state);
1362    }
1363
1364    if (transactionFlags) {
1365        // this triggers the transaction
1366        setTransactionFlags(transactionFlags);
1367
1368        // if this is a synchronous transaction, wait for it to take effect
1369        // before returning.
1370        if (flags & eSynchronous) {
1371            mTransationPending = true;
1372        }
1373        while (mTransationPending) {
1374            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1375            if (CC_UNLIKELY(err != NO_ERROR)) {
1376                // just in case something goes wrong in SF, return to the
1377                // called after a few seconds.
1378                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1379                mTransationPending = false;
1380                break;
1381            }
1382        }
1383    }
1384}
1385
1386sp<ISurface> SurfaceFlinger::createLayer(
1387        ISurfaceComposerClient::surface_data_t* params,
1388        const String8& name,
1389        const sp<Client>& client,
1390        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1391        uint32_t flags)
1392{
1393    sp<LayerBaseClient> layer;
1394    sp<ISurface> surfaceHandle;
1395
1396    if (int32_t(w|h) < 0) {
1397        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1398                int(w), int(h));
1399        return surfaceHandle;
1400    }
1401
1402    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1403    switch (flags & eFXSurfaceMask) {
1404        case eFXSurfaceNormal:
1405            layer = createNormalLayer(client, d, w, h, flags, format);
1406            break;
1407        case eFXSurfaceBlur:
1408            // for now we treat Blur as Dim, until we can implement it
1409            // efficiently.
1410        case eFXSurfaceDim:
1411            layer = createDimLayer(client, d, w, h, flags);
1412            break;
1413        case eFXSurfaceScreenshot:
1414            layer = createScreenshotLayer(client, d, w, h, flags);
1415            break;
1416    }
1417
1418    if (layer != 0) {
1419        layer->initStates(w, h, flags);
1420        layer->setName(name);
1421        ssize_t token = addClientLayer(client, layer);
1422        surfaceHandle = layer->getSurface();
1423        if (surfaceHandle != 0) {
1424            params->token = token;
1425            params->identity = layer->getIdentity();
1426        }
1427        setTransactionFlags(eTransactionNeeded);
1428    }
1429
1430    return surfaceHandle;
1431}
1432
1433sp<Layer> SurfaceFlinger::createNormalLayer(
1434        const sp<Client>& client, DisplayID display,
1435        uint32_t w, uint32_t h, uint32_t flags,
1436        PixelFormat& format)
1437{
1438    // initialize the surfaces
1439    switch (format) { // TODO: take h/w into account
1440    case PIXEL_FORMAT_TRANSPARENT:
1441    case PIXEL_FORMAT_TRANSLUCENT:
1442        format = PIXEL_FORMAT_RGBA_8888;
1443        break;
1444    case PIXEL_FORMAT_OPAQUE:
1445#ifdef NO_RGBX_8888
1446        format = PIXEL_FORMAT_RGB_565;
1447#else
1448        format = PIXEL_FORMAT_RGBX_8888;
1449#endif
1450        break;
1451    }
1452
1453#ifdef NO_RGBX_8888
1454    if (format == PIXEL_FORMAT_RGBX_8888)
1455        format = PIXEL_FORMAT_RGBA_8888;
1456#endif
1457
1458    sp<Layer> layer = new Layer(this, display, client);
1459    status_t err = layer->setBuffers(w, h, format, flags);
1460    if (CC_LIKELY(err != NO_ERROR)) {
1461        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1462        layer.clear();
1463    }
1464    return layer;
1465}
1466
1467sp<LayerDim> SurfaceFlinger::createDimLayer(
1468        const sp<Client>& client, DisplayID display,
1469        uint32_t w, uint32_t h, uint32_t flags)
1470{
1471    sp<LayerDim> layer = new LayerDim(this, display, client);
1472    return layer;
1473}
1474
1475sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1476        const sp<Client>& client, DisplayID display,
1477        uint32_t w, uint32_t h, uint32_t flags)
1478{
1479    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1480    return layer;
1481}
1482
1483status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1484{
1485    /*
1486     * called by the window manager, when a surface should be marked for
1487     * destruction.
1488     *
1489     * The surface is removed from the current and drawing lists, but placed
1490     * in the purgatory queue, so it's not destroyed right-away (we need
1491     * to wait for all client's references to go away first).
1492     */
1493
1494    status_t err = NAME_NOT_FOUND;
1495    Mutex::Autolock _l(mStateLock);
1496    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1497
1498    if (layer != 0) {
1499        err = purgatorizeLayer_l(layer);
1500        if (err == NO_ERROR) {
1501            setTransactionFlags(eTransactionNeeded);
1502        }
1503    }
1504    return err;
1505}
1506
1507status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1508{
1509    // called by ~ISurface() when all references are gone
1510    status_t err = NO_ERROR;
1511    sp<LayerBaseClient> l(layer.promote());
1512    if (l != NULL) {
1513        Mutex::Autolock _l(mStateLock);
1514        err = removeLayer_l(l);
1515        if (err == NAME_NOT_FOUND) {
1516            // The surface wasn't in the current list, which means it was
1517            // removed already, which means it is in the purgatory,
1518            // and need to be removed from there.
1519            ssize_t idx = mLayerPurgatory.remove(l);
1520            ALOGE_IF(idx < 0,
1521                    "layer=%p is not in the purgatory list", l.get());
1522        }
1523        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1524                "error removing layer=%p (%s)", l.get(), strerror(-err));
1525    }
1526    return err;
1527}
1528
1529uint32_t SurfaceFlinger::setClientStateLocked(
1530        const sp<Client>& client,
1531        const layer_state_t& s)
1532{
1533    uint32_t flags = 0;
1534    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1535    if (layer != 0) {
1536        const uint32_t what = s.what;
1537        if (what & ePositionChanged) {
1538            if (layer->setPosition(s.x, s.y))
1539                flags |= eTraversalNeeded;
1540        }
1541        if (what & eLayerChanged) {
1542            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1543            if (layer->setLayer(s.z)) {
1544                mCurrentState.layersSortedByZ.removeAt(idx);
1545                mCurrentState.layersSortedByZ.add(layer);
1546                // we need traversal (state changed)
1547                // AND transaction (list changed)
1548                flags |= eTransactionNeeded|eTraversalNeeded;
1549            }
1550        }
1551        if (what & eSizeChanged) {
1552            if (layer->setSize(s.w, s.h)) {
1553                flags |= eTraversalNeeded;
1554            }
1555        }
1556        if (what & eAlphaChanged) {
1557            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1558                flags |= eTraversalNeeded;
1559        }
1560        if (what & eMatrixChanged) {
1561            if (layer->setMatrix(s.matrix))
1562                flags |= eTraversalNeeded;
1563        }
1564        if (what & eTransparentRegionChanged) {
1565            if (layer->setTransparentRegionHint(s.transparentRegion))
1566                flags |= eTraversalNeeded;
1567        }
1568        if (what & eVisibilityChanged) {
1569            if (layer->setFlags(s.flags, s.mask))
1570                flags |= eTraversalNeeded;
1571        }
1572        if (what & eCropChanged) {
1573            if (layer->setCrop(s.crop))
1574                flags |= eTraversalNeeded;
1575        }
1576        if (what & eLayerStackChanged) {
1577            if (layer->setLayerStack(s.layerStack))
1578                flags |= eTraversalNeeded;
1579        }
1580    }
1581    return flags;
1582}
1583
1584// ---------------------------------------------------------------------------
1585
1586void SurfaceFlinger::onScreenAcquired() {
1587    ALOGD("Screen about to return, flinger = %p", this);
1588    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1589    getHwComposer().acquire();
1590    hw.acquireScreen();
1591    mEventThread->onScreenAcquired();
1592    // this is a temporary work-around, eventually this should be called
1593    // by the power-manager
1594    SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
1595    // from this point on, SF will process updates again
1596    repaintEverything();
1597}
1598
1599void SurfaceFlinger::onScreenReleased() {
1600    ALOGD("About to give-up screen, flinger = %p", this);
1601    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1602    if (hw.isScreenAcquired()) {
1603        mEventThread->onScreenReleased();
1604        hw.releaseScreen();
1605        getHwComposer().release();
1606        // from this point on, SF will stop drawing
1607    }
1608}
1609
1610void SurfaceFlinger::unblank() {
1611    class MessageScreenAcquired : public MessageBase {
1612        SurfaceFlinger* flinger;
1613    public:
1614        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1615        virtual bool handler() {
1616            flinger->onScreenAcquired();
1617            return true;
1618        }
1619    };
1620    sp<MessageBase> msg = new MessageScreenAcquired(this);
1621    postMessageSync(msg);
1622}
1623
1624void SurfaceFlinger::blank() {
1625    class MessageScreenReleased : public MessageBase {
1626        SurfaceFlinger* flinger;
1627    public:
1628        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1629        virtual bool handler() {
1630            flinger->onScreenReleased();
1631            return true;
1632        }
1633    };
1634    sp<MessageBase> msg = new MessageScreenReleased(this);
1635    postMessageSync(msg);
1636}
1637
1638// ---------------------------------------------------------------------------
1639
1640status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1641{
1642    const size_t SIZE = 4096;
1643    char buffer[SIZE];
1644    String8 result;
1645
1646    if (!PermissionCache::checkCallingPermission(sDump)) {
1647        snprintf(buffer, SIZE, "Permission Denial: "
1648                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1649                IPCThreadState::self()->getCallingPid(),
1650                IPCThreadState::self()->getCallingUid());
1651        result.append(buffer);
1652    } else {
1653        // Try to get the main lock, but don't insist if we can't
1654        // (this would indicate SF is stuck, but we want to be able to
1655        // print something in dumpsys).
1656        int retry = 3;
1657        while (mStateLock.tryLock()<0 && --retry>=0) {
1658            usleep(1000000);
1659        }
1660        const bool locked(retry >= 0);
1661        if (!locked) {
1662            snprintf(buffer, SIZE,
1663                    "SurfaceFlinger appears to be unresponsive, "
1664                    "dumping anyways (no locks held)\n");
1665            result.append(buffer);
1666        }
1667
1668        bool dumpAll = true;
1669        size_t index = 0;
1670        size_t numArgs = args.size();
1671        if (numArgs) {
1672            if ((index < numArgs) &&
1673                    (args[index] == String16("--list"))) {
1674                index++;
1675                listLayersLocked(args, index, result, buffer, SIZE);
1676                dumpAll = false;
1677            }
1678
1679            if ((index < numArgs) &&
1680                    (args[index] == String16("--latency"))) {
1681                index++;
1682                dumpStatsLocked(args, index, result, buffer, SIZE);
1683                dumpAll = false;
1684            }
1685
1686            if ((index < numArgs) &&
1687                    (args[index] == String16("--latency-clear"))) {
1688                index++;
1689                clearStatsLocked(args, index, result, buffer, SIZE);
1690                dumpAll = false;
1691            }
1692        }
1693
1694        if (dumpAll) {
1695            dumpAllLocked(result, buffer, SIZE);
1696        }
1697
1698        if (locked) {
1699            mStateLock.unlock();
1700        }
1701    }
1702    write(fd, result.string(), result.size());
1703    return NO_ERROR;
1704}
1705
1706void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1707        String8& result, char* buffer, size_t SIZE) const
1708{
1709    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1710    const size_t count = currentLayers.size();
1711    for (size_t i=0 ; i<count ; i++) {
1712        const sp<LayerBase>& layer(currentLayers[i]);
1713        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1714        result.append(buffer);
1715    }
1716}
1717
1718void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1719        String8& result, char* buffer, size_t SIZE) const
1720{
1721    String8 name;
1722    if (index < args.size()) {
1723        name = String8(args[index]);
1724        index++;
1725    }
1726
1727    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1728    const size_t count = currentLayers.size();
1729    for (size_t i=0 ; i<count ; i++) {
1730        const sp<LayerBase>& layer(currentLayers[i]);
1731        if (name.isEmpty()) {
1732            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1733            result.append(buffer);
1734        }
1735        if (name.isEmpty() || (name == layer->getName())) {
1736            layer->dumpStats(result, buffer, SIZE);
1737        }
1738    }
1739}
1740
1741void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1742        String8& result, char* buffer, size_t SIZE) const
1743{
1744    String8 name;
1745    if (index < args.size()) {
1746        name = String8(args[index]);
1747        index++;
1748    }
1749
1750    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1751    const size_t count = currentLayers.size();
1752    for (size_t i=0 ; i<count ; i++) {
1753        const sp<LayerBase>& layer(currentLayers[i]);
1754        if (name.isEmpty() || (name == layer->getName())) {
1755            layer->clearStats();
1756        }
1757    }
1758}
1759
1760void SurfaceFlinger::dumpAllLocked(
1761        String8& result, char* buffer, size_t SIZE) const
1762{
1763    // figure out if we're stuck somewhere
1764    const nsecs_t now = systemTime();
1765    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1766    const nsecs_t inTransaction(mDebugInTransaction);
1767    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1768    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1769
1770    /*
1771     * Dump the visible layer list
1772     */
1773    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1774    const size_t count = currentLayers.size();
1775    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1776    result.append(buffer);
1777    for (size_t i=0 ; i<count ; i++) {
1778        const sp<LayerBase>& layer(currentLayers[i]);
1779        layer->dump(result, buffer, SIZE);
1780    }
1781
1782    /*
1783     * Dump the layers in the purgatory
1784     */
1785
1786    const size_t purgatorySize = mLayerPurgatory.size();
1787    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1788    result.append(buffer);
1789    for (size_t i=0 ; i<purgatorySize ; i++) {
1790        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1791        layer->shortDump(result, buffer, SIZE);
1792    }
1793
1794    /*
1795     * Dump SurfaceFlinger global state
1796     */
1797
1798    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1799    result.append(buffer);
1800
1801    const DisplayHardware& hw(getDefaultDisplayHardware());
1802    const GLExtensions& extensions(GLExtensions::getInstance());
1803    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1804            extensions.getVendor(),
1805            extensions.getRenderer(),
1806            extensions.getVersion());
1807    result.append(buffer);
1808
1809    snprintf(buffer, SIZE, "EGL : %s\n",
1810            eglQueryString(hw.getEGLDisplay(),
1811                    EGL_VERSION_HW_ANDROID));
1812    result.append(buffer);
1813
1814    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1815    result.append(buffer);
1816
1817    mWormholeRegion.dump(result, "WormholeRegion");
1818    snprintf(buffer, SIZE,
1819            "  orientation=%d, canDraw=%d\n",
1820            mCurrentState.orientation, hw.canDraw());
1821    result.append(buffer);
1822    snprintf(buffer, SIZE,
1823            "  last eglSwapBuffers() time: %f us\n"
1824            "  last transaction time     : %f us\n"
1825            "  transaction-flags         : %08x\n"
1826            "  refresh-rate              : %f fps\n"
1827            "  x-dpi                     : %f\n"
1828            "  y-dpi                     : %f\n"
1829            "  density                   : %f\n",
1830            mLastSwapBufferTime/1000.0,
1831            mLastTransactionTime/1000.0,
1832            mTransactionFlags,
1833            hw.getRefreshRate(),
1834            hw.getDpiX(),
1835            hw.getDpiY(),
1836            hw.getDensity());
1837    result.append(buffer);
1838
1839    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1840            inSwapBuffersDuration/1000.0);
1841    result.append(buffer);
1842
1843    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1844            inTransactionDuration/1000.0);
1845    result.append(buffer);
1846
1847    /*
1848     * VSYNC state
1849     */
1850    mEventThread->dump(result, buffer, SIZE);
1851
1852    /*
1853     * Dump HWComposer state
1854     */
1855    HWComposer& hwc(getHwComposer());
1856    snprintf(buffer, SIZE, "h/w composer state:\n");
1857    result.append(buffer);
1858    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1859            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1860                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1861    result.append(buffer);
1862    hwc.dump(result, buffer, SIZE, hw.getVisibleLayersSortedByZ());
1863
1864    /*
1865     * Dump gralloc state
1866     */
1867    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1868    alloc.dump(result);
1869    hw.dump(result);
1870}
1871
1872status_t SurfaceFlinger::onTransact(
1873    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1874{
1875    switch (code) {
1876        case CREATE_CONNECTION:
1877        case SET_TRANSACTION_STATE:
1878        case SET_ORIENTATION:
1879        case BOOT_FINISHED:
1880        case TURN_ELECTRON_BEAM_OFF:
1881        case TURN_ELECTRON_BEAM_ON:
1882        case BLANK:
1883        case UNBLANK:
1884        {
1885            // codes that require permission check
1886            IPCThreadState* ipc = IPCThreadState::self();
1887            const int pid = ipc->getCallingPid();
1888            const int uid = ipc->getCallingUid();
1889            if ((uid != AID_GRAPHICS) &&
1890                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1891                ALOGE("Permission Denial: "
1892                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1893                return PERMISSION_DENIED;
1894            }
1895            break;
1896        }
1897        case CAPTURE_SCREEN:
1898        {
1899            // codes that require permission check
1900            IPCThreadState* ipc = IPCThreadState::self();
1901            const int pid = ipc->getCallingPid();
1902            const int uid = ipc->getCallingUid();
1903            if ((uid != AID_GRAPHICS) &&
1904                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1905                ALOGE("Permission Denial: "
1906                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1907                return PERMISSION_DENIED;
1908            }
1909            break;
1910        }
1911    }
1912
1913    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1914    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1915        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1916        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1917            IPCThreadState* ipc = IPCThreadState::self();
1918            const int pid = ipc->getCallingPid();
1919            const int uid = ipc->getCallingUid();
1920            ALOGE("Permission Denial: "
1921                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1922            return PERMISSION_DENIED;
1923        }
1924        int n;
1925        switch (code) {
1926            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1927            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1928                return NO_ERROR;
1929            case 1002:  // SHOW_UPDATES
1930                n = data.readInt32();
1931                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1932                invalidateHwcGeometry();
1933                repaintEverything();
1934                return NO_ERROR;
1935            case 1004:{ // repaint everything
1936                repaintEverything();
1937                return NO_ERROR;
1938            }
1939            case 1005:{ // force transaction
1940                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1941                return NO_ERROR;
1942            }
1943            case 1006:{ // send empty update
1944                signalRefresh();
1945                return NO_ERROR;
1946            }
1947            case 1008:  // toggle use of hw composer
1948                n = data.readInt32();
1949                mDebugDisableHWC = n ? 1 : 0;
1950                invalidateHwcGeometry();
1951                repaintEverything();
1952                return NO_ERROR;
1953            case 1009:  // toggle use of transform hint
1954                n = data.readInt32();
1955                mDebugDisableTransformHint = n ? 1 : 0;
1956                invalidateHwcGeometry();
1957                repaintEverything();
1958                return NO_ERROR;
1959            case 1010:  // interrogate.
1960                reply->writeInt32(0);
1961                reply->writeInt32(0);
1962                reply->writeInt32(mDebugRegion);
1963                reply->writeInt32(0);
1964                reply->writeInt32(mDebugDisableHWC);
1965                return NO_ERROR;
1966            case 1013: {
1967                Mutex::Autolock _l(mStateLock);
1968                const DisplayHardware& hw(getDefaultDisplayHardware());
1969                reply->writeInt32(hw.getPageFlipCount());
1970            }
1971            return NO_ERROR;
1972        }
1973    }
1974    return err;
1975}
1976
1977void SurfaceFlinger::repaintEverything() {
1978    const DisplayHardware& hw(getDefaultDisplayHardware()); // FIXME: this cannot be bound the default display
1979    const Rect bounds(hw.getBounds());
1980    setInvalidateRegion(Region(bounds));
1981    signalTransaction();
1982}
1983
1984void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1985    Mutex::Autolock _l(mInvalidateLock);
1986    mInvalidateRegion = reg;
1987}
1988
1989Region SurfaceFlinger::getAndClearInvalidateRegion() {
1990    Mutex::Autolock _l(mInvalidateLock);
1991    Region reg(mInvalidateRegion);
1992    mInvalidateRegion.clear();
1993    return reg;
1994}
1995
1996// ---------------------------------------------------------------------------
1997
1998status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1999        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2000{
2001    Mutex::Autolock _l(mStateLock);
2002    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
2003}
2004
2005status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
2006        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2007{
2008    ATRACE_CALL();
2009
2010    if (!GLExtensions::getInstance().haveFramebufferObject())
2011        return INVALID_OPERATION;
2012
2013    // get screen geometry
2014    const DisplayHardware& hw(getDisplayHardware(dpy));
2015    const uint32_t hw_w = hw.getWidth();
2016    const uint32_t hw_h = hw.getHeight();
2017    GLfloat u = 1;
2018    GLfloat v = 1;
2019
2020    // make sure to clear all GL error flags
2021    while ( glGetError() != GL_NO_ERROR ) ;
2022
2023    // create a FBO
2024    GLuint name, tname;
2025    glGenTextures(1, &tname);
2026    glBindTexture(GL_TEXTURE_2D, tname);
2027    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2028    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2029    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2030            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2031    if (glGetError() != GL_NO_ERROR) {
2032        while ( glGetError() != GL_NO_ERROR ) ;
2033        GLint tw = (2 << (31 - clz(hw_w)));
2034        GLint th = (2 << (31 - clz(hw_h)));
2035        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2036                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2037        u = GLfloat(hw_w) / tw;
2038        v = GLfloat(hw_h) / th;
2039    }
2040    glGenFramebuffersOES(1, &name);
2041    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2042    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2043            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2044
2045    // redraw the screen entirely...
2046    glDisable(GL_TEXTURE_EXTERNAL_OES);
2047    glDisable(GL_TEXTURE_2D);
2048    glClearColor(0,0,0,1);
2049    glClear(GL_COLOR_BUFFER_BIT);
2050    glMatrixMode(GL_MODELVIEW);
2051    glLoadIdentity();
2052    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
2053    const size_t count = layers.size();
2054    for (size_t i=0 ; i<count ; ++i) {
2055        const sp<LayerBase>& layer(layers[i]);
2056        layer->drawForSreenShot(hw);
2057    }
2058
2059    hw.compositionComplete();
2060
2061    // back to main framebuffer
2062    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2063    glDeleteFramebuffersOES(1, &name);
2064
2065    *textureName = tname;
2066    *uOut = u;
2067    *vOut = v;
2068    return NO_ERROR;
2069}
2070
2071// ---------------------------------------------------------------------------
2072
2073class VSyncWaiter {
2074    DisplayEventReceiver::Event buffer[4];
2075    sp<Looper> looper;
2076    sp<IDisplayEventConnection> events;
2077    sp<BitTube> eventTube;
2078public:
2079    VSyncWaiter(const sp<EventThread>& eventThread) {
2080        looper = new Looper(true);
2081        events = eventThread->createEventConnection();
2082        eventTube = events->getDataChannel();
2083        looper->addFd(eventTube->getFd(), 0, ALOOPER_EVENT_INPUT, 0, 0);
2084        events->requestNextVsync();
2085    }
2086
2087    void wait() {
2088        ssize_t n;
2089
2090        looper->pollOnce(-1);
2091        // we don't handle any errors here, it doesn't matter
2092        // and we don't want to take the risk to get stuck.
2093
2094        // drain the events...
2095        while ((n = DisplayEventReceiver::getEvents(
2096                eventTube, buffer, 4)) > 0) ;
2097
2098        events->requestNextVsync();
2099    }
2100};
2101
2102status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
2103{
2104    // get screen geometry
2105    const DisplayHardware& hw(getDefaultDisplayHardware());
2106    const uint32_t hw_w = hw.getWidth();
2107    const uint32_t hw_h = hw.getHeight();
2108    const Region screenBounds(hw.getBounds());
2109
2110    GLfloat u, v;
2111    GLuint tname;
2112    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
2113    if (result != NO_ERROR) {
2114        return result;
2115    }
2116
2117    GLfloat vtx[8];
2118    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
2119    glBindTexture(GL_TEXTURE_2D, tname);
2120    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
2121    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2122    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2123    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2124    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2125    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2126    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2127    glVertexPointer(2, GL_FLOAT, 0, vtx);
2128
2129    /*
2130     * Texture coordinate mapping
2131     *
2132     *                 u
2133     *    1 +----------+---+
2134     *      |     |    |   |  image is inverted
2135     *      |     V    |   |  w.r.t. the texture
2136     *  1-v +----------+   |  coordinates
2137     *      |              |
2138     *      |              |
2139     *      |              |
2140     *    0 +--------------+
2141     *      0              1
2142     *
2143     */
2144
2145    class s_curve_interpolator {
2146        const float nbFrames, s, v;
2147    public:
2148        s_curve_interpolator(int nbFrames, float s)
2149        : nbFrames(1.0f / (nbFrames-1)), s(s),
2150          v(1.0f + expf(-s + 0.5f*s)) {
2151        }
2152        float operator()(int f) {
2153            const float x = f * nbFrames;
2154            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2155        }
2156    };
2157
2158    class v_stretch {
2159        const GLfloat hw_w, hw_h;
2160    public:
2161        v_stretch(uint32_t hw_w, uint32_t hw_h)
2162        : hw_w(hw_w), hw_h(hw_h) {
2163        }
2164        void operator()(GLfloat* vtx, float v) {
2165            const GLfloat w = hw_w + (hw_w * v);
2166            const GLfloat h = hw_h - (hw_h * v);
2167            const GLfloat x = (hw_w - w) * 0.5f;
2168            const GLfloat y = (hw_h - h) * 0.5f;
2169            vtx[0] = x;         vtx[1] = y;
2170            vtx[2] = x;         vtx[3] = y + h;
2171            vtx[4] = x + w;     vtx[5] = y + h;
2172            vtx[6] = x + w;     vtx[7] = y;
2173        }
2174    };
2175
2176    class h_stretch {
2177        const GLfloat hw_w, hw_h;
2178    public:
2179        h_stretch(uint32_t hw_w, uint32_t hw_h)
2180        : hw_w(hw_w), hw_h(hw_h) {
2181        }
2182        void operator()(GLfloat* vtx, float v) {
2183            const GLfloat w = hw_w - (hw_w * v);
2184            const GLfloat h = 1.0f;
2185            const GLfloat x = (hw_w - w) * 0.5f;
2186            const GLfloat y = (hw_h - h) * 0.5f;
2187            vtx[0] = x;         vtx[1] = y;
2188            vtx[2] = x;         vtx[3] = y + h;
2189            vtx[4] = x + w;     vtx[5] = y + h;
2190            vtx[6] = x + w;     vtx[7] = y;
2191        }
2192    };
2193
2194    VSyncWaiter vsync(mEventThread);
2195
2196    // the full animation is 24 frames
2197    char value[PROPERTY_VALUE_MAX];
2198    property_get("debug.sf.electron_frames", value, "24");
2199    int nbFrames = (atoi(value) + 1) >> 1;
2200    if (nbFrames <= 0) // just in case
2201        nbFrames = 24;
2202
2203    s_curve_interpolator itr(nbFrames, 7.5f);
2204    s_curve_interpolator itg(nbFrames, 8.0f);
2205    s_curve_interpolator itb(nbFrames, 8.5f);
2206
2207    v_stretch vverts(hw_w, hw_h);
2208
2209    glMatrixMode(GL_TEXTURE);
2210    glLoadIdentity();
2211    glMatrixMode(GL_MODELVIEW);
2212    glLoadIdentity();
2213
2214    glEnable(GL_BLEND);
2215    glBlendFunc(GL_ONE, GL_ONE);
2216    for (int i=0 ; i<nbFrames ; i++) {
2217        float x, y, w, h;
2218        const float vr = itr(i);
2219        const float vg = itg(i);
2220        const float vb = itb(i);
2221
2222        // wait for vsync
2223        vsync.wait();
2224
2225        // clear screen
2226        glColorMask(1,1,1,1);
2227        glClear(GL_COLOR_BUFFER_BIT);
2228        glEnable(GL_TEXTURE_2D);
2229
2230        // draw the red plane
2231        vverts(vtx, vr);
2232        glColorMask(1,0,0,1);
2233        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2234
2235        // draw the green plane
2236        vverts(vtx, vg);
2237        glColorMask(0,1,0,1);
2238        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2239
2240        // draw the blue plane
2241        vverts(vtx, vb);
2242        glColorMask(0,0,1,1);
2243        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2244
2245        // draw the white highlight (we use the last vertices)
2246        glDisable(GL_TEXTURE_2D);
2247        glColorMask(1,1,1,1);
2248        glColor4f(vg, vg, vg, 1);
2249        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2250        hw.flip(screenBounds);
2251    }
2252
2253    h_stretch hverts(hw_w, hw_h);
2254    glDisable(GL_BLEND);
2255    glDisable(GL_TEXTURE_2D);
2256    glColorMask(1,1,1,1);
2257    for (int i=0 ; i<nbFrames ; i++) {
2258        const float v = itg(i);
2259        hverts(vtx, v);
2260
2261        // wait for vsync
2262        vsync.wait();
2263
2264        glClear(GL_COLOR_BUFFER_BIT);
2265        glColor4f(1-v, 1-v, 1-v, 1);
2266        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2267        hw.flip(screenBounds);
2268    }
2269
2270    glColorMask(1,1,1,1);
2271    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2272    glDeleteTextures(1, &tname);
2273    glDisable(GL_TEXTURE_2D);
2274    glDisable(GL_BLEND);
2275    return NO_ERROR;
2276}
2277
2278status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2279{
2280    status_t result = PERMISSION_DENIED;
2281
2282    if (!GLExtensions::getInstance().haveFramebufferObject())
2283        return INVALID_OPERATION;
2284
2285
2286    // get screen geometry
2287    const DisplayHardware& hw(getDefaultDisplayHardware());
2288    const uint32_t hw_w = hw.getWidth();
2289    const uint32_t hw_h = hw.getHeight();
2290    const Region screenBounds(hw.bounds());
2291
2292    GLfloat u, v;
2293    GLuint tname;
2294    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2295    if (result != NO_ERROR) {
2296        return result;
2297    }
2298
2299    GLfloat vtx[8];
2300    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2301    glBindTexture(GL_TEXTURE_2D, tname);
2302    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2303    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2304    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2305    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2306    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2307    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2308    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2309    glVertexPointer(2, GL_FLOAT, 0, vtx);
2310
2311    class s_curve_interpolator {
2312        const float nbFrames, s, v;
2313    public:
2314        s_curve_interpolator(int nbFrames, float s)
2315        : nbFrames(1.0f / (nbFrames-1)), s(s),
2316          v(1.0f + expf(-s + 0.5f*s)) {
2317        }
2318        float operator()(int f) {
2319            const float x = f * nbFrames;
2320            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2321        }
2322    };
2323
2324    class v_stretch {
2325        const GLfloat hw_w, hw_h;
2326    public:
2327        v_stretch(uint32_t hw_w, uint32_t hw_h)
2328        : hw_w(hw_w), hw_h(hw_h) {
2329        }
2330        void operator()(GLfloat* vtx, float v) {
2331            const GLfloat w = hw_w + (hw_w * v);
2332            const GLfloat h = hw_h - (hw_h * v);
2333            const GLfloat x = (hw_w - w) * 0.5f;
2334            const GLfloat y = (hw_h - h) * 0.5f;
2335            vtx[0] = x;         vtx[1] = y;
2336            vtx[2] = x;         vtx[3] = y + h;
2337            vtx[4] = x + w;     vtx[5] = y + h;
2338            vtx[6] = x + w;     vtx[7] = y;
2339        }
2340    };
2341
2342    class h_stretch {
2343        const GLfloat hw_w, hw_h;
2344    public:
2345        h_stretch(uint32_t hw_w, uint32_t hw_h)
2346        : hw_w(hw_w), hw_h(hw_h) {
2347        }
2348        void operator()(GLfloat* vtx, float v) {
2349            const GLfloat w = hw_w - (hw_w * v);
2350            const GLfloat h = 1.0f;
2351            const GLfloat x = (hw_w - w) * 0.5f;
2352            const GLfloat y = (hw_h - h) * 0.5f;
2353            vtx[0] = x;         vtx[1] = y;
2354            vtx[2] = x;         vtx[3] = y + h;
2355            vtx[4] = x + w;     vtx[5] = y + h;
2356            vtx[6] = x + w;     vtx[7] = y;
2357        }
2358    };
2359
2360    VSyncWaiter vsync(mEventThread);
2361
2362    // the full animation is 12 frames
2363    int nbFrames = 8;
2364    s_curve_interpolator itr(nbFrames, 7.5f);
2365    s_curve_interpolator itg(nbFrames, 8.0f);
2366    s_curve_interpolator itb(nbFrames, 8.5f);
2367
2368    h_stretch hverts(hw_w, hw_h);
2369    glDisable(GL_BLEND);
2370    glDisable(GL_TEXTURE_2D);
2371    glColorMask(1,1,1,1);
2372    for (int i=nbFrames-1 ; i>=0 ; i--) {
2373        const float v = itg(i);
2374        hverts(vtx, v);
2375
2376        // wait for vsync
2377        vsync.wait();
2378
2379        glClear(GL_COLOR_BUFFER_BIT);
2380        glColor4f(1-v, 1-v, 1-v, 1);
2381        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2382        hw.flip(screenBounds);
2383    }
2384
2385    nbFrames = 4;
2386    v_stretch vverts(hw_w, hw_h);
2387    glEnable(GL_BLEND);
2388    glBlendFunc(GL_ONE, GL_ONE);
2389    for (int i=nbFrames-1 ; i>=0 ; i--) {
2390        float x, y, w, h;
2391        const float vr = itr(i);
2392        const float vg = itg(i);
2393        const float vb = itb(i);
2394
2395        // wait for vsync
2396        vsync.wait();
2397
2398        // clear screen
2399        glColorMask(1,1,1,1);
2400        glClear(GL_COLOR_BUFFER_BIT);
2401        glEnable(GL_TEXTURE_2D);
2402
2403        // draw the red plane
2404        vverts(vtx, vr);
2405        glColorMask(1,0,0,1);
2406        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2407
2408        // draw the green plane
2409        vverts(vtx, vg);
2410        glColorMask(0,1,0,1);
2411        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2412
2413        // draw the blue plane
2414        vverts(vtx, vb);
2415        glColorMask(0,0,1,1);
2416        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2417
2418        hw.flip(screenBounds);
2419    }
2420
2421    glColorMask(1,1,1,1);
2422    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2423    glDeleteTextures(1, &tname);
2424    glDisable(GL_TEXTURE_2D);
2425    glDisable(GL_BLEND);
2426
2427    return NO_ERROR;
2428}
2429
2430// ---------------------------------------------------------------------------
2431
2432status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2433{
2434    ATRACE_CALL();
2435
2436    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2437    if (!hw.canDraw()) {
2438        // we're already off
2439        return NO_ERROR;
2440    }
2441
2442    // turn off hwc while we're doing the animation
2443    getHwComposer().disable();
2444    // and make sure to turn it back on (if needed) next time we compose
2445    invalidateHwcGeometry();
2446
2447    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2448        electronBeamOffAnimationImplLocked();
2449    }
2450
2451    // always clear the whole screen at the end of the animation
2452    glClearColor(0,0,0,1);
2453    glClear(GL_COLOR_BUFFER_BIT);
2454    hw.flip( Region(hw.bounds()) );
2455
2456    return NO_ERROR;
2457}
2458
2459status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2460{
2461    class MessageTurnElectronBeamOff : public MessageBase {
2462        SurfaceFlinger* flinger;
2463        int32_t mode;
2464        status_t result;
2465    public:
2466        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2467            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2468        }
2469        status_t getResult() const {
2470            return result;
2471        }
2472        virtual bool handler() {
2473            Mutex::Autolock _l(flinger->mStateLock);
2474            result = flinger->turnElectronBeamOffImplLocked(mode);
2475            return true;
2476        }
2477    };
2478
2479    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2480    status_t res = postMessageSync(msg);
2481    if (res == NO_ERROR) {
2482        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2483
2484        // work-around: when the power-manager calls us we activate the
2485        // animation. eventually, the "on" animation will be called
2486        // by the power-manager itself
2487        mElectronBeamAnimationMode = mode;
2488    }
2489    return res;
2490}
2491
2492// ---------------------------------------------------------------------------
2493
2494status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2495{
2496    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2497    if (hw.canDraw()) {
2498        // we're already on
2499        return NO_ERROR;
2500    }
2501    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2502        electronBeamOnAnimationImplLocked();
2503    }
2504
2505    // make sure to redraw the whole screen when the animation is done
2506    mDirtyRegion.set(hw.bounds());
2507    signalTransaction();
2508
2509    return NO_ERROR;
2510}
2511
2512status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2513{
2514    class MessageTurnElectronBeamOn : public MessageBase {
2515        SurfaceFlinger* flinger;
2516        int32_t mode;
2517        status_t result;
2518    public:
2519        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2520            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2521        }
2522        status_t getResult() const {
2523            return result;
2524        }
2525        virtual bool handler() {
2526            Mutex::Autolock _l(flinger->mStateLock);
2527            result = flinger->turnElectronBeamOnImplLocked(mode);
2528            return true;
2529        }
2530    };
2531
2532    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2533    return NO_ERROR;
2534}
2535
2536// ---------------------------------------------------------------------------
2537
2538status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2539        sp<IMemoryHeap>* heap,
2540        uint32_t* w, uint32_t* h, PixelFormat* f,
2541        uint32_t sw, uint32_t sh,
2542        uint32_t minLayerZ, uint32_t maxLayerZ)
2543{
2544    ATRACE_CALL();
2545
2546    status_t result = PERMISSION_DENIED;
2547
2548    // only one display supported for now
2549    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
2550        return BAD_VALUE;
2551    }
2552
2553    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2554        return INVALID_OPERATION;
2555    }
2556
2557    // get screen geometry
2558    const DisplayHardware& hw(getDisplayHardware(dpy));
2559    const uint32_t hw_w = hw.getWidth();
2560    const uint32_t hw_h = hw.getHeight();
2561
2562    // if we have secure windows on this display, never allow the screen capture
2563    if (hw.getSecureLayerVisible()) {
2564        return PERMISSION_DENIED;
2565    }
2566
2567    if ((sw > hw_w) || (sh > hw_h)) {
2568        return BAD_VALUE;
2569    }
2570
2571    sw = (!sw) ? hw_w : sw;
2572    sh = (!sh) ? hw_h : sh;
2573    const size_t size = sw * sh * 4;
2574
2575    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2576    //        sw, sh, minLayerZ, maxLayerZ);
2577
2578    // make sure to clear all GL error flags
2579    while ( glGetError() != GL_NO_ERROR ) ;
2580
2581    // create a FBO
2582    GLuint name, tname;
2583    glGenRenderbuffersOES(1, &tname);
2584    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2585    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2586
2587    glGenFramebuffersOES(1, &name);
2588    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2589    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2590            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2591
2592    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2593
2594    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2595
2596        // invert everything, b/c glReadPixel() below will invert the FB
2597        glViewport(0, 0, sw, sh);
2598        glMatrixMode(GL_PROJECTION);
2599        glPushMatrix();
2600        glLoadIdentity();
2601        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2602        glMatrixMode(GL_MODELVIEW);
2603
2604        // redraw the screen entirely...
2605        glClearColor(0,0,0,1);
2606        glClear(GL_COLOR_BUFFER_BIT);
2607
2608        const LayerVector& layers(mDrawingState.layersSortedByZ);
2609        const size_t count = layers.size();
2610        for (size_t i=0 ; i<count ; ++i) {
2611            const sp<LayerBase>& layer(layers[i]);
2612            const uint32_t flags = layer->drawingState().flags;
2613            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2614                const uint32_t z = layer->drawingState().z;
2615                if (z >= minLayerZ && z <= maxLayerZ) {
2616                    layer->drawForSreenShot(hw);
2617                }
2618            }
2619        }
2620
2621        // check for errors and return screen capture
2622        if (glGetError() != GL_NO_ERROR) {
2623            // error while rendering
2624            result = INVALID_OPERATION;
2625        } else {
2626            // allocate shared memory large enough to hold the
2627            // screen capture
2628            sp<MemoryHeapBase> base(
2629                    new MemoryHeapBase(size, 0, "screen-capture") );
2630            void* const ptr = base->getBase();
2631            if (ptr) {
2632                // capture the screen with glReadPixels()
2633                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2634                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2635                if (glGetError() == GL_NO_ERROR) {
2636                    *heap = base;
2637                    *w = sw;
2638                    *h = sh;
2639                    *f = PIXEL_FORMAT_RGBA_8888;
2640                    result = NO_ERROR;
2641                }
2642            } else {
2643                result = NO_MEMORY;
2644            }
2645        }
2646        glViewport(0, 0, hw_w, hw_h);
2647        glMatrixMode(GL_PROJECTION);
2648        glPopMatrix();
2649        glMatrixMode(GL_MODELVIEW);
2650    } else {
2651        result = BAD_VALUE;
2652    }
2653
2654    // release FBO resources
2655    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2656    glDeleteRenderbuffersOES(1, &tname);
2657    glDeleteFramebuffersOES(1, &name);
2658
2659    hw.compositionComplete();
2660
2661    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2662
2663    return result;
2664}
2665
2666
2667status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2668        sp<IMemoryHeap>* heap,
2669        uint32_t* width, uint32_t* height, PixelFormat* format,
2670        uint32_t sw, uint32_t sh,
2671        uint32_t minLayerZ, uint32_t maxLayerZ)
2672{
2673    // only one display supported for now
2674    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2675        return BAD_VALUE;
2676
2677    if (!GLExtensions::getInstance().haveFramebufferObject())
2678        return INVALID_OPERATION;
2679
2680    class MessageCaptureScreen : public MessageBase {
2681        SurfaceFlinger* flinger;
2682        DisplayID dpy;
2683        sp<IMemoryHeap>* heap;
2684        uint32_t* w;
2685        uint32_t* h;
2686        PixelFormat* f;
2687        uint32_t sw;
2688        uint32_t sh;
2689        uint32_t minLayerZ;
2690        uint32_t maxLayerZ;
2691        status_t result;
2692    public:
2693        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2694                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2695                uint32_t sw, uint32_t sh,
2696                uint32_t minLayerZ, uint32_t maxLayerZ)
2697            : flinger(flinger), dpy(dpy),
2698              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2699              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2700              result(PERMISSION_DENIED)
2701        {
2702        }
2703        status_t getResult() const {
2704            return result;
2705        }
2706        virtual bool handler() {
2707            Mutex::Autolock _l(flinger->mStateLock);
2708            result = flinger->captureScreenImplLocked(dpy,
2709                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2710            return true;
2711        }
2712    };
2713
2714    sp<MessageBase> msg = new MessageCaptureScreen(this,
2715            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2716    status_t res = postMessageSync(msg);
2717    if (res == NO_ERROR) {
2718        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2719    }
2720    return res;
2721}
2722
2723// ---------------------------------------------------------------------------
2724
2725SurfaceFlinger::LayerVector::LayerVector() {
2726}
2727
2728SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2729    : SortedVector<sp<LayerBase> >(rhs) {
2730}
2731
2732int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2733    const void* rhs) const
2734{
2735    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2736    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2737    // sort layers by Z order
2738    uint32_t lz = l->currentState().z;
2739    uint32_t rz = r->currentState().z;
2740    // then by sequence, so we get a stable ordering
2741    return (lz != rz) ? (lz - rz) : (l->sequence - r->sequence);
2742}
2743
2744// ---------------------------------------------------------------------------
2745
2746SurfaceFlinger::State::State()
2747    : orientation(ISurfaceComposer::eOrientationDefault),
2748      orientationFlags(0) {
2749}
2750
2751// ---------------------------------------------------------------------------
2752
2753GraphicBufferAlloc::GraphicBufferAlloc() {}
2754
2755GraphicBufferAlloc::~GraphicBufferAlloc() {}
2756
2757sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2758        PixelFormat format, uint32_t usage, status_t* error) {
2759    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2760    status_t err = graphicBuffer->initCheck();
2761    *error = err;
2762    if (err != 0 || graphicBuffer->handle == 0) {
2763        if (err == NO_MEMORY) {
2764            GraphicBuffer::dumpAllocationsToSystemLog();
2765        }
2766        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2767             "failed (%s), handle=%p",
2768                w, h, strerror(-err), graphicBuffer->handle);
2769        return 0;
2770    }
2771    return graphicBuffer;
2772}
2773
2774// ---------------------------------------------------------------------------
2775
2776}; // namespace android
2777