SurfaceFlinger.cpp revision 52bbb1ae239c8a4d05543a23fa8c08467d09c3b2
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23
24#include <EGL/egl.h>
25#include <GLES/gl.h>
26
27#include <cutils/log.h>
28#include <cutils/properties.h>
29
30#include <binder/IPCThreadState.h>
31#include <binder/IServiceManager.h>
32#include <binder/MemoryHeapBase.h>
33#include <binder/PermissionCache.h>
34
35#include <ui/DisplayInfo.h>
36
37#include <gui/IDisplayEventConnection.h>
38#include <gui/BitTube.h>
39#include <gui/SurfaceTextureClient.h>
40
41#include <ui/GraphicBufferAllocator.h>
42#include <ui/PixelFormat.h>
43
44#include <utils/String8.h>
45#include <utils/String16.h>
46#include <utils/StopWatch.h>
47#include <utils/Trace.h>
48
49#include <private/android_filesystem_config.h>
50
51#include "clz.h"
52#include "DdmConnection.h"
53#include "DisplayHardware.h"
54#include "Client.h"
55#include "EventThread.h"
56#include "GLExtensions.h"
57#include "Layer.h"
58#include "LayerDim.h"
59#include "LayerScreenshot.h"
60#include "SurfaceFlinger.h"
61
62#include "DisplayHardware/FramebufferSurface.h"
63#include "DisplayHardware/HWComposer.h"
64
65
66#define EGL_VERSION_HW_ANDROID  0x3143
67
68#define DISPLAY_COUNT       1
69
70namespace android {
71// ---------------------------------------------------------------------------
72
73const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76const String16 sDump("android.permission.DUMP");
77
78// ---------------------------------------------------------------------------
79
80SurfaceFlinger::SurfaceFlinger()
81    :   BnSurfaceComposer(), Thread(false),
82        mTransactionFlags(0),
83        mTransationPending(false),
84        mLayersRemoved(false),
85        mRepaintEverything(0),
86        mBootTime(systemTime()),
87        mVisibleRegionsDirty(false),
88        mHwWorkListDirty(false),
89        mElectronBeamAnimationMode(0),
90        mDebugRegion(0),
91        mDebugDDMS(0),
92        mDebugDisableHWC(0),
93        mDebugDisableTransformHint(0),
94        mDebugInSwapBuffers(0),
95        mLastSwapBufferTime(0),
96        mDebugInTransaction(0),
97        mLastTransactionTime(0),
98        mBootFinished(false),
99        mExternalDisplaySurface(EGL_NO_SURFACE)
100{
101    ALOGI("SurfaceFlinger is starting");
102
103    // debugging stuff...
104    char value[PROPERTY_VALUE_MAX];
105
106    property_get("debug.sf.showupdates", value, "0");
107    mDebugRegion = atoi(value);
108
109#ifdef DDMS_DEBUGGING
110    property_get("debug.sf.ddms", value, "0");
111    mDebugDDMS = atoi(value);
112    if (mDebugDDMS) {
113        DdmConnection::start(getServiceName());
114    }
115#else
116#warning "DDMS_DEBUGGING disabled"
117#endif
118
119    ALOGI_IF(mDebugRegion,       "showupdates enabled");
120    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
121}
122
123void SurfaceFlinger::onFirstRef()
124{
125    mEventQueue.init(this);
126
127    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
128
129    // Wait for the main thread to be done with its initialization
130    mReadyToRunBarrier.wait();
131}
132
133
134SurfaceFlinger::~SurfaceFlinger()
135{
136    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
137    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
138    eglTerminate(display);
139}
140
141void SurfaceFlinger::binderDied(const wp<IBinder>& who)
142{
143    // the window manager died on us. prepare its eulogy.
144
145    // reset screen orientation
146    Vector<ComposerState> state;
147    Vector<DisplayState> displays;
148    DisplayState d;
149    d.orientation = eOrientationDefault;
150    displays.add(d);
151    setTransactionState(state, displays, 0);
152
153    // restart the boot-animation
154    startBootAnim();
155}
156
157sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
158{
159    sp<ISurfaceComposerClient> bclient;
160    sp<Client> client(new Client(this));
161    status_t err = client->initCheck();
162    if (err == NO_ERROR) {
163        bclient = client;
164    }
165    return bclient;
166}
167
168sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
169{
170    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
171    return gba;
172}
173
174void SurfaceFlinger::bootFinished()
175{
176    const nsecs_t now = systemTime();
177    const nsecs_t duration = now - mBootTime;
178    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
179    mBootFinished = true;
180
181    // wait patiently for the window manager death
182    const String16 name("window");
183    sp<IBinder> window(defaultServiceManager()->getService(name));
184    if (window != 0) {
185        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
186    }
187
188    // stop boot animation
189    // formerly we would just kill the process, but we now ask it to exit so it
190    // can choose where to stop the animation.
191    property_set("service.bootanim.exit", "1");
192}
193
194void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
195    class MessageDestroyGLTexture : public MessageBase {
196        GLuint texture;
197    public:
198        MessageDestroyGLTexture(GLuint texture)
199            : texture(texture) {
200        }
201        virtual bool handler() {
202            glDeleteTextures(1, &texture);
203            return true;
204        }
205    };
206    postMessageAsync(new MessageDestroyGLTexture(texture));
207}
208
209status_t SurfaceFlinger::selectConfigForPixelFormat(
210        EGLDisplay dpy,
211        EGLint const* attrs,
212        PixelFormat format,
213        EGLConfig* outConfig)
214{
215    EGLConfig config = NULL;
216    EGLint numConfigs = -1, n=0;
217    eglGetConfigs(dpy, NULL, 0, &numConfigs);
218    EGLConfig* const configs = new EGLConfig[numConfigs];
219    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
220    for (int i=0 ; i<n ; i++) {
221        EGLint nativeVisualId = 0;
222        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
223        if (nativeVisualId>0 && format == nativeVisualId) {
224            *outConfig = configs[i];
225            delete [] configs;
226            return NO_ERROR;
227        }
228    }
229    delete [] configs;
230    return NAME_NOT_FOUND;
231}
232
233EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
234    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
235    // it is to be used with WIFI displays
236    EGLConfig config;
237    EGLint dummy;
238    status_t err;
239    EGLint attribs[] = {
240            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
241            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
242            EGL_NONE
243    };
244    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
245    if (err) {
246        // maybe we failed because of EGL_RECORDABLE_ANDROID
247        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
248        attribs[2] = EGL_NONE;
249        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
250    }
251    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
252    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
253        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
254    }
255    return config;
256}
257
258EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
259    // Also create our EGLContext
260    EGLint contextAttributes[] = {
261#ifdef EGL_IMG_context_priority
262#ifdef HAS_CONTEXT_PRIORITY
263#warning "using EGL_IMG_context_priority"
264            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
265#endif
266#endif
267            EGL_NONE, EGL_NONE
268    };
269    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
270    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
271    return ctxt;
272}
273
274void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
275    EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
276    if (!result) {
277        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
278        exit(0);
279    }
280
281    GLExtensions& extensions(GLExtensions::getInstance());
282    extensions.initWithGLStrings(
283            glGetString(GL_VENDOR),
284            glGetString(GL_RENDERER),
285            glGetString(GL_VERSION),
286            glGetString(GL_EXTENSIONS),
287            eglQueryString(display, EGL_VENDOR),
288            eglQueryString(display, EGL_VERSION),
289            eglQueryString(display, EGL_EXTENSIONS));
290
291    EGLint w, h;
292    eglQuerySurface(display, surface, EGL_WIDTH,  &w);
293    eglQuerySurface(display, surface, EGL_HEIGHT, &h);
294
295    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
296    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
297
298    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
299    glPixelStorei(GL_PACK_ALIGNMENT, 4);
300    glEnableClientState(GL_VERTEX_ARRAY);
301    glShadeModel(GL_FLAT);
302    glDisable(GL_DITHER);
303    glDisable(GL_CULL_FACE);
304
305    struct pack565 {
306        inline uint16_t operator() (int r, int g, int b) const {
307            return (r<<11)|(g<<5)|b;
308        }
309    } pack565;
310
311    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
312    glGenTextures(1, &mProtectedTexName);
313    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
314    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
315    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
316    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
317    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
318    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
319            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
320
321    glViewport(0, 0, w, h);
322    glMatrixMode(GL_PROJECTION);
323    glLoadIdentity();
324    // put the origin in the left-bottom corner
325    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
326
327    // print some debugging info
328    EGLint r,g,b,a;
329    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
330    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
331    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
332    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
333    ALOGI("EGL informations:");
334    ALOGI("vendor    : %s", extensions.getEglVendor());
335    ALOGI("version   : %s", extensions.getEglVersion());
336    ALOGI("extensions: %s", extensions.getEglExtension());
337    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
338    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
339    ALOGI("OpenGL ES informations:");
340    ALOGI("vendor    : %s", extensions.getVendor());
341    ALOGI("renderer  : %s", extensions.getRenderer());
342    ALOGI("version   : %s", extensions.getVersion());
343    ALOGI("extensions: %s", extensions.getExtension());
344    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
345    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
346}
347
348status_t SurfaceFlinger::readyToRun()
349{
350    ALOGI(  "SurfaceFlinger's main thread ready to run. "
351            "Initializing graphics H/W...");
352
353    // initialize EGL
354    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
355    eglInitialize(mEGLDisplay, NULL, NULL);
356
357    // Initialize the main display
358    // create native window to main display
359    sp<FramebufferSurface> anw = FramebufferSurface::create();
360    ANativeWindow* const window = anw.get();
361    if (!window) {
362        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
363        exit(0);
364    }
365
366    // initialize the config and context
367    int format;
368    window->query(window, NATIVE_WINDOW_FORMAT, &format);
369    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
370    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
371
372    // initialize our main display hardware
373    DisplayHardware* const hw = new DisplayHardware(this, 0, anw, mEGLConfig);
374    mDisplayHardwares[0] = hw;
375
376    //  initialize OpenGL ES
377    EGLSurface surface = hw->getEGLSurface();
378    initializeGL(mEGLDisplay, surface);
379
380    // start the EventThread
381    mEventThread = new EventThread(this);
382    mEventQueue.setEventThread(mEventThread);
383
384    // initialize the H/W composer
385    mHwc = new HWComposer(this,
386            *static_cast<HWComposer::EventHandler *>(this),
387            hw->getRefreshPeriod());
388
389    // We're now ready to accept clients...
390    mReadyToRunBarrier.open();
391
392    // start boot animation
393    startBootAnim();
394
395    return NO_ERROR;
396}
397
398void SurfaceFlinger::startBootAnim() {
399    // start boot animation
400    property_set("service.bootanim.exit", "0");
401    property_set("ctl.start", "bootanim");
402}
403
404uint32_t SurfaceFlinger::getMaxTextureSize() const {
405    return mMaxTextureSize;
406}
407
408uint32_t SurfaceFlinger::getMaxViewportDims() const {
409    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
410            mMaxViewportDims[0] : mMaxViewportDims[1];
411}
412
413// ----------------------------------------------------------------------------
414
415bool SurfaceFlinger::authenticateSurfaceTexture(
416        const sp<ISurfaceTexture>& surfaceTexture) const {
417    Mutex::Autolock _l(mStateLock);
418    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
419
420    // Check the visible layer list for the ISurface
421    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
422    size_t count = currentLayers.size();
423    for (size_t i=0 ; i<count ; i++) {
424        const sp<LayerBase>& layer(currentLayers[i]);
425        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
426        if (lbc != NULL) {
427            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
428            if (lbcBinder == surfaceTextureBinder) {
429                return true;
430            }
431        }
432    }
433
434    // Check the layers in the purgatory.  This check is here so that if a
435    // SurfaceTexture gets destroyed before all the clients are done using it,
436    // the error will not be reported as "surface XYZ is not authenticated", but
437    // will instead fail later on when the client tries to use the surface,
438    // which should be reported as "surface XYZ returned an -ENODEV".  The
439    // purgatorized layers are no less authentic than the visible ones, so this
440    // should not cause any harm.
441    size_t purgatorySize =  mLayerPurgatory.size();
442    for (size_t i=0 ; i<purgatorySize ; i++) {
443        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
444        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
445        if (lbc != NULL) {
446            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
447            if (lbcBinder == surfaceTextureBinder) {
448                return true;
449            }
450        }
451    }
452
453    return false;
454}
455
456status_t SurfaceFlinger::getDisplayInfo(DisplayID dpy, DisplayInfo* info) {
457    if (uint32_t(dpy) >= 2) {
458        return BAD_INDEX;
459    }
460    const DisplayHardware& hw(getDefaultDisplayHardware());
461    return hw.getInfo(info);
462}
463
464// ----------------------------------------------------------------------------
465
466sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
467    return mEventThread->createEventConnection();
468}
469
470void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
471    const DisplayHardware& hw(getDefaultDisplayHardware());
472    EGLSurface result = EGL_NO_SURFACE;
473    EGLSurface old_surface = EGL_NO_SURFACE;
474    sp<SurfaceTextureClient> stc;
475
476    if (display != NULL) {
477        stc = new SurfaceTextureClient(display);
478        result = eglCreateWindowSurface(hw.getEGLDisplay(),
479                mEGLConfig, (EGLNativeWindowType)stc.get(), NULL);
480        ALOGE_IF(result == EGL_NO_SURFACE,
481                "eglCreateWindowSurface failed (ISurfaceTexture=%p)",
482                display.get());
483    }
484
485    { // scope for the lock
486        Mutex::Autolock _l(mStateLock);
487        old_surface = mExternalDisplaySurface;
488        mExternalDisplayNativeWindow = stc;
489        mExternalDisplaySurface = result;
490        ALOGD("mExternalDisplaySurface = %p", result);
491    }
492
493    if (old_surface != EGL_NO_SURFACE) {
494        // Note: EGL allows to destroy an object while its current
495        // it will fail to become current next time though.
496        eglDestroySurface(hw.getEGLDisplay(), old_surface);
497    }
498}
499
500EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
501    Mutex::Autolock _l(mStateLock);
502    return mExternalDisplaySurface;
503}
504
505// ----------------------------------------------------------------------------
506
507void SurfaceFlinger::waitForEvent() {
508    mEventQueue.waitMessage();
509}
510
511void SurfaceFlinger::signalTransaction() {
512    mEventQueue.invalidate();
513}
514
515void SurfaceFlinger::signalLayerUpdate() {
516    mEventQueue.invalidate();
517}
518
519void SurfaceFlinger::signalRefresh() {
520    mEventQueue.refresh();
521}
522
523status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
524        nsecs_t reltime, uint32_t flags) {
525    return mEventQueue.postMessage(msg, reltime);
526}
527
528status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
529        nsecs_t reltime, uint32_t flags) {
530    status_t res = mEventQueue.postMessage(msg, reltime);
531    if (res == NO_ERROR) {
532        msg->wait();
533    }
534    return res;
535}
536
537bool SurfaceFlinger::threadLoop() {
538    waitForEvent();
539    return true;
540}
541
542void SurfaceFlinger::onVSyncReceived(int dpy, nsecs_t timestamp) {
543    DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
544    hw.onVSyncReceived(timestamp);
545    mEventThread->onVSyncReceived(dpy, timestamp);
546}
547
548void SurfaceFlinger::eventControl(int event, int enabled) {
549    getHwComposer().eventControl(event, enabled);
550}
551
552void SurfaceFlinger::onMessageReceived(int32_t what) {
553    ATRACE_CALL();
554    switch (what) {
555    case MessageQueue::INVALIDATE:
556        handleMessageTransaction();
557        handleMessageInvalidate();
558        signalRefresh();
559        break;
560    case MessageQueue::REFRESH:
561        handleMessageRefresh();
562        break;
563    }
564}
565
566void SurfaceFlinger::handleMessageTransaction() {
567    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
568    uint32_t transactionFlags = peekTransactionFlags(mask);
569    if (transactionFlags) {
570        handleTransaction(transactionFlags);
571    }
572}
573
574void SurfaceFlinger::handleMessageInvalidate() {
575    handlePageFlip();
576}
577
578void SurfaceFlinger::handleMessageRefresh() {
579    handleRefresh();
580
581    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
582        mVisibleRegionsDirty = false;
583        invalidateHwcGeometry();
584
585        /*
586         *  rebuild the visible layer list per screen
587         */
588
589        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
590        for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
591            DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
592
593            Region opaqueRegion;
594            Region dirtyRegion;
595            computeVisibleRegions(currentLayers,
596                    hw.getLayerStack(), dirtyRegion, opaqueRegion);
597            hw.dirtyRegion.orSelf(dirtyRegion);
598
599            Vector< sp<LayerBase> > layersSortedByZ;
600            const size_t count = currentLayers.size();
601            for (size_t i=0 ; i<count ; i++) {
602                const Layer::State& s(currentLayers[i]->drawingState());
603                if (s.layerStack == hw.getLayerStack()) {
604                    if (!currentLayers[i]->visibleRegion.isEmpty()) {
605                        layersSortedByZ.add(currentLayers[i]);
606                    }
607                }
608            }
609            hw.setVisibleLayersSortedByZ(layersSortedByZ);
610            hw.undefinedRegion.set(hw.getBounds());
611            hw.undefinedRegion.subtractSelf(hw.getTransform().transform(opaqueRegion));
612        }
613    }
614
615    HWComposer& hwc(getHwComposer());
616    if (hwc.initCheck() == NO_ERROR) {
617        // build the h/w work list
618        const bool workListsDirty = mHwWorkListDirty;
619        mHwWorkListDirty = false;
620        for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
621            DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
622            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
623            const size_t count = currentLayers.size();
624
625            hwc.createWorkList(count); // FIXME: the worklist should include enough space for all layer of all displays
626
627            HWComposer::LayerListIterator cur = hwc.begin();
628            const HWComposer::LayerListIterator end = hwc.end();
629            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
630                const sp<LayerBase>& layer(currentLayers[i]);
631
632                if (CC_UNLIKELY(workListsDirty)) {
633                    layer->setGeometry(hw, *cur);
634                    if (mDebugDisableHWC || mDebugRegion) {
635                        cur->setSkip(true);
636                    }
637                }
638
639                /*
640                 * update the per-frame h/w composer data for each layer
641                 * and build the transparent region of the FB
642                 */
643                layer->setPerFrameData(*cur);
644            }
645        }
646        status_t err = hwc.prepare();
647        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
648    }
649
650    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
651    for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
652        DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
653
654        // transform the dirty region into this screen's coordinate space
655        const Transform& planeTransform(hw.getTransform());
656        Region dirtyRegion;
657        if (repaintEverything) {
658            dirtyRegion.set(hw.bounds());
659        } else {
660            dirtyRegion = planeTransform.transform(hw.dirtyRegion);
661            dirtyRegion.andSelf(hw.bounds());
662        }
663        hw.dirtyRegion.clear();
664
665        if (!dirtyRegion.isEmpty()) {
666            if (hw.canDraw()) {
667                // repaint the framebuffer (if needed)
668                handleRepaint(hw, dirtyRegion);
669            }
670        }
671        // inform the h/w that we're done compositing
672        hw.compositionComplete();
673    }
674
675    postFramebuffer();
676
677
678#if 1
679    // render to the external display if we have one
680    EGLSurface externalDisplaySurface = getExternalDisplaySurface();
681    if (externalDisplaySurface != EGL_NO_SURFACE) {
682        EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
683        EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
684                externalDisplaySurface, externalDisplaySurface,
685                eglGetCurrentContext());
686
687        ALOGE_IF(!success, "eglMakeCurrent -> external failed");
688
689        if (success) {
690            // redraw the screen entirely...
691            glDisable(GL_TEXTURE_EXTERNAL_OES);
692            glDisable(GL_TEXTURE_2D);
693            glClearColor(0,0,0,1);
694            glClear(GL_COLOR_BUFFER_BIT);
695            glMatrixMode(GL_MODELVIEW);
696            glLoadIdentity();
697
698            DisplayHardware& hw(const_cast<DisplayDevice&>(getDisplayHardware(0)));
699            const Vector< sp<LayerBase> >& layers( hw.getVisibleLayersSortedByZ() );
700            const size_t count = layers.size();
701            for (size_t i=0 ; i<count ; ++i) {
702                const sp<LayerBase>& layer(layers[i]);
703                layer->drawForSreenShot(hw);
704            }
705
706            success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
707            ALOGE_IF(!success, "external display eglSwapBuffers failed");
708
709            hw.compositionComplete();
710        }
711
712        success = eglMakeCurrent(eglGetCurrentDisplay(),
713                cur, cur, eglGetCurrentContext());
714
715        ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
716    }
717#endif
718
719}
720
721void SurfaceFlinger::postFramebuffer()
722{
723    ATRACE_CALL();
724
725    const nsecs_t now = systemTime();
726    mDebugInSwapBuffers = now;
727
728    HWComposer& hwc(getHwComposer());
729
730    for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
731        DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
732        if (hwc.initCheck() == NO_ERROR) {
733            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
734            const size_t count = currentLayers.size();
735            HWComposer::LayerListIterator cur = hwc.begin();
736            const HWComposer::LayerListIterator end = hwc.end();
737            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
738                const sp<LayerBase>& layer(currentLayers[i]);
739                layer->setAcquireFence(*cur);
740            }
741        }
742        hw.flip(hw.swapRegion);
743        hw.swapRegion.clear();
744    }
745
746    if (hwc.initCheck() == NO_ERROR) {
747        // FIXME: eventually commit() won't take arguments
748        hwc.commit(mEGLDisplay, getDefaultDisplayHardware().getEGLSurface());
749    }
750
751    for (int dpy=0 ; dpy<1 ; dpy++) {  // TODO: iterate through all displays
752        DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
753        const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
754        const size_t count = currentLayers.size();
755        if (hwc.initCheck() == NO_ERROR) {
756            HWComposer::LayerListIterator cur = hwc.begin();
757            const HWComposer::LayerListIterator end = hwc.end();
758            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
759                currentLayers[i]->onLayerDisplayed(&*cur);
760            }
761        } else {
762            eglSwapBuffers(mEGLDisplay, hw.getEGLSurface());
763            for (size_t i = 0; i < count; i++) {
764                currentLayers[i]->onLayerDisplayed(NULL);
765            }
766        }
767
768        // FIXME: we need to call eglSwapBuffers() on displays that have GL composition
769    }
770
771    mLastSwapBufferTime = systemTime() - now;
772    mDebugInSwapBuffers = 0;
773}
774
775void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
776{
777    ATRACE_CALL();
778
779    Mutex::Autolock _l(mStateLock);
780    const nsecs_t now = systemTime();
781    mDebugInTransaction = now;
782
783    // Here we're guaranteed that some transaction flags are set
784    // so we can call handleTransactionLocked() unconditionally.
785    // We call getTransactionFlags(), which will also clear the flags,
786    // with mStateLock held to guarantee that mCurrentState won't change
787    // until the transaction is committed.
788
789    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
790    transactionFlags = getTransactionFlags(mask);
791    handleTransactionLocked(transactionFlags);
792
793    mLastTransactionTime = systemTime() - now;
794    mDebugInTransaction = 0;
795    invalidateHwcGeometry();
796    // here the transaction has been committed
797}
798
799void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
800{
801    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
802    const size_t count = currentLayers.size();
803
804    /*
805     * Traversal of the children
806     * (perform the transaction for each of them if needed)
807     */
808
809    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
810    if (layersNeedTransaction) {
811        for (size_t i=0 ; i<count ; i++) {
812            const sp<LayerBase>& layer = currentLayers[i];
813            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
814            if (!trFlags) continue;
815
816            const uint32_t flags = layer->doTransaction(0);
817            if (flags & Layer::eVisibleRegion)
818                mVisibleRegionsDirty = true;
819        }
820    }
821
822    /*
823     * Perform our own transaction if needed
824     */
825
826    if (transactionFlags & eTransactionNeeded) {
827        if (mCurrentState.orientation != mDrawingState.orientation) {
828            // the orientation has changed, recompute all visible regions
829            // and invalidate everything.
830
831            const int dpy = 0; // FIXME: should be a parameter
832            DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
833            hw.setOrientation(mCurrentState.orientation);
834            hw.dirtyRegion.set(hw.bounds());
835
836            mVisibleRegionsDirty = true;
837        }
838
839        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
840            // layers have been added
841            mVisibleRegionsDirty = true;
842        }
843
844        // some layers might have been removed, so
845        // we need to update the regions they're exposing.
846        if (mLayersRemoved) {
847            mLayersRemoved = false;
848            mVisibleRegionsDirty = true;
849            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
850            const size_t count = previousLayers.size();
851            for (size_t i=0 ; i<count ; i++) {
852                const sp<LayerBase>& layer(previousLayers[i]);
853                if (currentLayers.indexOf(layer) < 0) {
854                    // this layer is not visible anymore
855                    // TODO: we could traverse the tree from front to back and
856                    //       compute the actual visible region
857                    // TODO: we could cache the transformed region
858                    Layer::State front(layer->drawingState());
859                    Region visibleReg = front.transform.transform(
860                            Region(Rect(front.active.w, front.active.h)));
861                    invalidateLayerStack(front.layerStack, visibleReg);
862                }
863            }
864        }
865    }
866
867    commitTransaction();
868}
869
870void SurfaceFlinger::commitTransaction()
871{
872    if (!mLayersPendingRemoval.isEmpty()) {
873        // Notify removed layers now that they can't be drawn from
874        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
875            mLayersPendingRemoval[i]->onRemoved();
876        }
877        mLayersPendingRemoval.clear();
878    }
879
880    mDrawingState = mCurrentState;
881    mTransationPending = false;
882    mTransactionCV.broadcast();
883}
884
885void SurfaceFlinger::computeVisibleRegions(
886        const LayerVector& currentLayers, uint32_t layerStack,
887        Region& outDirtyRegion, Region& outOpaqueRegion)
888{
889    ATRACE_CALL();
890
891    Region aboveOpaqueLayers;
892    Region aboveCoveredLayers;
893    Region dirty;
894
895    outDirtyRegion.clear();
896
897    size_t i = currentLayers.size();
898    while (i--) {
899        const sp<LayerBase>& layer = currentLayers[i];
900
901        // start with the whole surface at its current location
902        const Layer::State& s(layer->drawingState());
903
904        // only consider the layers on the given later stack
905        if (s.layerStack != layerStack)
906            continue;
907
908        /*
909         * opaqueRegion: area of a surface that is fully opaque.
910         */
911        Region opaqueRegion;
912
913        /*
914         * visibleRegion: area of a surface that is visible on screen
915         * and not fully transparent. This is essentially the layer's
916         * footprint minus the opaque regions above it.
917         * Areas covered by a translucent surface are considered visible.
918         */
919        Region visibleRegion;
920
921        /*
922         * coveredRegion: area of a surface that is covered by all
923         * visible regions above it (which includes the translucent areas).
924         */
925        Region coveredRegion;
926
927
928        // handle hidden surfaces by setting the visible region to empty
929        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
930            const bool translucent = !layer->isOpaque();
931            Rect bounds(layer->computeBounds());
932            visibleRegion.set(bounds);
933            if (!visibleRegion.isEmpty()) {
934                // Remove the transparent area from the visible region
935                if (translucent) {
936                    Region transparentRegionScreen;
937                    const Transform tr(s.transform);
938                    if (tr.transformed()) {
939                        if (tr.preserveRects()) {
940                            // transform the transparent region
941                            transparentRegionScreen = tr.transform(s.transparentRegion);
942                        } else {
943                            // transformation too complex, can't do the
944                            // transparent region optimization.
945                            transparentRegionScreen.clear();
946                        }
947                    } else {
948                        transparentRegionScreen = s.transparentRegion;
949                    }
950                    visibleRegion.subtractSelf(transparentRegionScreen);
951                }
952
953                // compute the opaque region
954                const int32_t layerOrientation = s.transform.getOrientation();
955                if (s.alpha==255 && !translucent &&
956                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
957                    // the opaque region is the layer's footprint
958                    opaqueRegion = visibleRegion;
959                }
960            }
961        }
962
963        // Clip the covered region to the visible region
964        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
965
966        // Update aboveCoveredLayers for next (lower) layer
967        aboveCoveredLayers.orSelf(visibleRegion);
968
969        // subtract the opaque region covered by the layers above us
970        visibleRegion.subtractSelf(aboveOpaqueLayers);
971
972        // compute this layer's dirty region
973        if (layer->contentDirty) {
974            // we need to invalidate the whole region
975            dirty = visibleRegion;
976            // as well, as the old visible region
977            dirty.orSelf(layer->visibleRegion);
978            layer->contentDirty = false;
979        } else {
980            /* compute the exposed region:
981             *   the exposed region consists of two components:
982             *   1) what's VISIBLE now and was COVERED before
983             *   2) what's EXPOSED now less what was EXPOSED before
984             *
985             * note that (1) is conservative, we start with the whole
986             * visible region but only keep what used to be covered by
987             * something -- which mean it may have been exposed.
988             *
989             * (2) handles areas that were not covered by anything but got
990             * exposed because of a resize.
991             */
992            const Region newExposed = visibleRegion - coveredRegion;
993            const Region oldVisibleRegion = layer->visibleRegion;
994            const Region oldCoveredRegion = layer->coveredRegion;
995            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
996            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
997        }
998        dirty.subtractSelf(aboveOpaqueLayers);
999
1000        // accumulate to the screen dirty region
1001        outDirtyRegion.orSelf(dirty);
1002
1003        // Update aboveOpaqueLayers for next (lower) layer
1004        aboveOpaqueLayers.orSelf(opaqueRegion);
1005
1006        // Store the visible region is screen space
1007        layer->setVisibleRegion(visibleRegion);
1008        layer->setCoveredRegion(coveredRegion);
1009    }
1010
1011    outOpaqueRegion = aboveOpaqueLayers;
1012}
1013
1014void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1015        const Region& dirty) {
1016    // FIXME: update the dirty region of all displays
1017    // presenting this layer's layer stack.
1018    DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(0)));
1019    hw.dirtyRegion.orSelf(dirty);
1020}
1021
1022void SurfaceFlinger::handlePageFlip()
1023{
1024    ATRACE_CALL();
1025    Region dirtyRegion;
1026
1027    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1028
1029    bool visibleRegions = false;
1030    const size_t count = currentLayers.size();
1031    sp<LayerBase> const* layers = currentLayers.array();
1032    for (size_t i=0 ; i<count ; i++) {
1033        const sp<LayerBase>& layer(layers[i]);
1034        const Region dirty(layer->latchBuffer(visibleRegions));
1035        Layer::State s(layer->drawingState());
1036        invalidateLayerStack(s.layerStack, dirty);
1037    }
1038
1039    mVisibleRegionsDirty |= visibleRegions;
1040}
1041
1042void SurfaceFlinger::invalidateHwcGeometry()
1043{
1044    mHwWorkListDirty = true;
1045}
1046
1047void SurfaceFlinger::handleRefresh()
1048{
1049    bool needInvalidate = false;
1050    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1051    const size_t count = currentLayers.size();
1052    for (size_t i=0 ; i<count ; i++) {
1053        const sp<LayerBase>& layer(currentLayers[i]);
1054        if (layer->onPreComposition()) {
1055            needInvalidate = true;
1056        }
1057    }
1058    if (needInvalidate) {
1059        signalLayerUpdate();
1060    }
1061}
1062
1063void SurfaceFlinger::handleRepaint(const DisplayHardware& hw,
1064        const Region& inDirtyRegion)
1065{
1066    ATRACE_CALL();
1067
1068    Region dirtyRegion(inDirtyRegion);
1069
1070    // compute the invalid region
1071    hw.swapRegion.orSelf(dirtyRegion);
1072
1073    if (CC_UNLIKELY(mDebugRegion)) {
1074        debugFlashRegions(hw, dirtyRegion);
1075    }
1076
1077    uint32_t flags = hw.getFlags();
1078    if (flags & DisplayHardware::SWAP_RECTANGLE) {
1079        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1080        // takes a rectangle, we must make sure to update that whole
1081        // rectangle in that case
1082        dirtyRegion.set(hw.swapRegion.bounds());
1083    } else {
1084        if (flags & DisplayHardware::PARTIAL_UPDATES) {
1085            // We need to redraw the rectangle that will be updated
1086            // (pushed to the framebuffer).
1087            // This is needed because PARTIAL_UPDATES only takes one
1088            // rectangle instead of a region (see DisplayHardware::flip())
1089            dirtyRegion.set(hw.swapRegion.bounds());
1090        } else {
1091            // we need to redraw everything (the whole screen)
1092            dirtyRegion.set(hw.bounds());
1093            hw.swapRegion = dirtyRegion;
1094        }
1095    }
1096
1097    composeSurfaces(hw, dirtyRegion);
1098
1099    // update the swap region and clear the dirty region
1100    hw.swapRegion.orSelf(dirtyRegion);
1101}
1102
1103void SurfaceFlinger::composeSurfaces(const DisplayHardware& hw, const Region& dirty)
1104{
1105    HWComposer& hwc(getHwComposer());
1106    HWComposer::LayerListIterator cur = hwc.begin();
1107    const HWComposer::LayerListIterator end = hwc.end();
1108
1109    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);  // FIXME: this should be per display
1110    if (cur==end || fbLayerCount) {
1111
1112        DisplayHardware::makeCurrent(hw, mEGLContext);
1113
1114        // set the frame buffer
1115        glMatrixMode(GL_MODELVIEW);
1116        glLoadIdentity();
1117
1118        // Never touch the framebuffer if we don't have any framebuffer layers
1119        if (hwc.getLayerCount(HWC_OVERLAY)) { // FIXME: this should be per display
1120            // when using overlays, we assume a fully transparent framebuffer
1121            // NOTE: we could reduce how much we need to clear, for instance
1122            // remove where there are opaque FB layers. however, on some
1123            // GPUs doing a "clean slate" glClear might be more efficient.
1124            // We'll revisit later if needed.
1125            glClearColor(0, 0, 0, 0);
1126            glClear(GL_COLOR_BUFFER_BIT);
1127        } else {
1128            const Region region(hw.undefinedRegion.intersect(dirty));
1129            // screen is already cleared here
1130            if (!region.isEmpty()) {
1131                // can happen with SurfaceView
1132                drawWormhole(region);
1133            }
1134        }
1135
1136        /*
1137         * and then, render the layers targeted at the framebuffer
1138         */
1139
1140        const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1141        const size_t count = layers.size();
1142        const Transform& tr = hw.getTransform();
1143        for (size_t i=0 ; i<count ; ++i) {
1144            const sp<LayerBase>& layer(layers[i]);
1145            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1146            if (!clip.isEmpty()) {
1147                if (cur != end && cur->getCompositionType() == HWC_OVERLAY) {
1148                    if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
1149                            && layer->isOpaque()) {
1150                        // never clear the very first layer since we're
1151                        // guaranteed the FB is already cleared
1152                        layer->clearWithOpenGL(hw, clip);
1153                    }
1154                    ++cur;
1155                    continue;
1156                }
1157                // render the layer
1158                layer->draw(hw, clip);
1159            }
1160            if (cur != end) {
1161                ++cur;
1162            }
1163        }
1164    }
1165}
1166
1167void SurfaceFlinger::debugFlashRegions(const DisplayHardware& hw,
1168        const Region& dirtyRegion)
1169{
1170    const uint32_t flags = hw.getFlags();
1171    const int32_t height = hw.getHeight();
1172    if (hw.swapRegion.isEmpty()) {
1173        return;
1174    }
1175
1176    if (!(flags & DisplayHardware::SWAP_RECTANGLE)) {
1177        const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1178                dirtyRegion.bounds() : hw.bounds());
1179        composeSurfaces(hw, repaint);
1180    }
1181
1182    glDisable(GL_TEXTURE_EXTERNAL_OES);
1183    glDisable(GL_TEXTURE_2D);
1184    glDisable(GL_BLEND);
1185
1186    static int toggle = 0;
1187    toggle = 1 - toggle;
1188    if (toggle) {
1189        glColor4f(1, 0, 1, 1);
1190    } else {
1191        glColor4f(1, 1, 0, 1);
1192    }
1193
1194    Region::const_iterator it = dirtyRegion.begin();
1195    Region::const_iterator const end = dirtyRegion.end();
1196    while (it != end) {
1197        const Rect& r = *it++;
1198        GLfloat vertices[][2] = {
1199                { r.left,  height - r.top },
1200                { r.left,  height - r.bottom },
1201                { r.right, height - r.bottom },
1202                { r.right, height - r.top }
1203        };
1204        glVertexPointer(2, GL_FLOAT, 0, vertices);
1205        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1206    }
1207
1208    hw.flip(hw.swapRegion);
1209
1210    if (mDebugRegion > 1)
1211        usleep(mDebugRegion * 1000);
1212}
1213
1214void SurfaceFlinger::drawWormhole(const Region& region) const
1215{
1216    glDisable(GL_TEXTURE_EXTERNAL_OES);
1217    glDisable(GL_TEXTURE_2D);
1218    glDisable(GL_BLEND);
1219    glColor4f(0,0,0,0);
1220
1221    GLfloat vertices[4][2];
1222    glVertexPointer(2, GL_FLOAT, 0, vertices);
1223    Region::const_iterator it = region.begin();
1224    Region::const_iterator const end = region.end();
1225    while (it != end) {
1226        const Rect& r = *it++;
1227        vertices[0][0] = r.left;
1228        vertices[0][1] = r.top;
1229        vertices[1][0] = r.right;
1230        vertices[1][1] = r.top;
1231        vertices[2][0] = r.right;
1232        vertices[2][1] = r.bottom;
1233        vertices[3][0] = r.left;
1234        vertices[3][1] = r.bottom;
1235        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1236    }
1237}
1238
1239ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1240        const sp<LayerBaseClient>& lbc)
1241{
1242    // attach this layer to the client
1243    size_t name = client->attachLayer(lbc);
1244
1245    // add this layer to the current state list
1246    Mutex::Autolock _l(mStateLock);
1247    mCurrentState.layersSortedByZ.add(lbc);
1248
1249    return ssize_t(name);
1250}
1251
1252status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1253{
1254    Mutex::Autolock _l(mStateLock);
1255    status_t err = purgatorizeLayer_l(layer);
1256    if (err == NO_ERROR)
1257        setTransactionFlags(eTransactionNeeded);
1258    return err;
1259}
1260
1261status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1262{
1263    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1264    if (index >= 0) {
1265        mLayersRemoved = true;
1266        return NO_ERROR;
1267    }
1268    return status_t(index);
1269}
1270
1271status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1272{
1273    // First add the layer to the purgatory list, which makes sure it won't
1274    // go away, then remove it from the main list (through a transaction).
1275    ssize_t err = removeLayer_l(layerBase);
1276    if (err >= 0) {
1277        mLayerPurgatory.add(layerBase);
1278    }
1279
1280    mLayersPendingRemoval.push(layerBase);
1281
1282    // it's possible that we don't find a layer, because it might
1283    // have been destroyed already -- this is not technically an error
1284    // from the user because there is a race between Client::destroySurface(),
1285    // ~Client() and ~ISurface().
1286    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1287}
1288
1289uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1290{
1291    return android_atomic_release_load(&mTransactionFlags);
1292}
1293
1294uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1295{
1296    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1297}
1298
1299uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1300{
1301    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1302    if ((old & flags)==0) { // wake the server up
1303        signalTransaction();
1304    }
1305    return old;
1306}
1307
1308
1309void SurfaceFlinger::setTransactionState(
1310        const Vector<ComposerState>& state,
1311        const Vector<DisplayState>& displays,
1312        uint32_t flags)
1313{
1314    Mutex::Autolock _l(mStateLock);
1315
1316    int orientation = eOrientationUnchanged;
1317    if (displays.size()) {
1318        // TODO: handle all displays
1319        orientation = displays[0].orientation;
1320    }
1321
1322    uint32_t transactionFlags = 0;
1323    if (mCurrentState.orientation != orientation) {
1324        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1325            mCurrentState.orientation = orientation;
1326            transactionFlags |= eTransactionNeeded;
1327        } else if (orientation != eOrientationUnchanged) {
1328            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1329                    orientation);
1330        }
1331    }
1332
1333    const size_t count = state.size();
1334    for (size_t i=0 ; i<count ; i++) {
1335        const ComposerState& s(state[i]);
1336        sp<Client> client( static_cast<Client *>(s.client.get()) );
1337        transactionFlags |= setClientStateLocked(client, s.state);
1338    }
1339
1340    if (transactionFlags) {
1341        // this triggers the transaction
1342        setTransactionFlags(transactionFlags);
1343
1344        // if this is a synchronous transaction, wait for it to take effect
1345        // before returning.
1346        if (flags & eSynchronous) {
1347            mTransationPending = true;
1348        }
1349        while (mTransationPending) {
1350            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1351            if (CC_UNLIKELY(err != NO_ERROR)) {
1352                // just in case something goes wrong in SF, return to the
1353                // called after a few seconds.
1354                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1355                mTransationPending = false;
1356                break;
1357            }
1358        }
1359    }
1360}
1361
1362sp<ISurface> SurfaceFlinger::createLayer(
1363        ISurfaceComposerClient::surface_data_t* params,
1364        const String8& name,
1365        const sp<Client>& client,
1366        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1367        uint32_t flags)
1368{
1369    sp<LayerBaseClient> layer;
1370    sp<ISurface> surfaceHandle;
1371
1372    if (int32_t(w|h) < 0) {
1373        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1374                int(w), int(h));
1375        return surfaceHandle;
1376    }
1377
1378    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1379    switch (flags & eFXSurfaceMask) {
1380        case eFXSurfaceNormal:
1381            layer = createNormalLayer(client, d, w, h, flags, format);
1382            break;
1383        case eFXSurfaceBlur:
1384            // for now we treat Blur as Dim, until we can implement it
1385            // efficiently.
1386        case eFXSurfaceDim:
1387            layer = createDimLayer(client, d, w, h, flags);
1388            break;
1389        case eFXSurfaceScreenshot:
1390            layer = createScreenshotLayer(client, d, w, h, flags);
1391            break;
1392    }
1393
1394    if (layer != 0) {
1395        layer->initStates(w, h, flags);
1396        layer->setName(name);
1397        ssize_t token = addClientLayer(client, layer);
1398        surfaceHandle = layer->getSurface();
1399        if (surfaceHandle != 0) {
1400            params->token = token;
1401            params->identity = layer->getIdentity();
1402        }
1403        setTransactionFlags(eTransactionNeeded);
1404    }
1405
1406    return surfaceHandle;
1407}
1408
1409sp<Layer> SurfaceFlinger::createNormalLayer(
1410        const sp<Client>& client, DisplayID display,
1411        uint32_t w, uint32_t h, uint32_t flags,
1412        PixelFormat& format)
1413{
1414    // initialize the surfaces
1415    switch (format) { // TODO: take h/w into account
1416    case PIXEL_FORMAT_TRANSPARENT:
1417    case PIXEL_FORMAT_TRANSLUCENT:
1418        format = PIXEL_FORMAT_RGBA_8888;
1419        break;
1420    case PIXEL_FORMAT_OPAQUE:
1421#ifdef NO_RGBX_8888
1422        format = PIXEL_FORMAT_RGB_565;
1423#else
1424        format = PIXEL_FORMAT_RGBX_8888;
1425#endif
1426        break;
1427    }
1428
1429#ifdef NO_RGBX_8888
1430    if (format == PIXEL_FORMAT_RGBX_8888)
1431        format = PIXEL_FORMAT_RGBA_8888;
1432#endif
1433
1434    sp<Layer> layer = new Layer(this, display, client);
1435    status_t err = layer->setBuffers(w, h, format, flags);
1436    if (CC_LIKELY(err != NO_ERROR)) {
1437        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1438        layer.clear();
1439    }
1440    return layer;
1441}
1442
1443sp<LayerDim> SurfaceFlinger::createDimLayer(
1444        const sp<Client>& client, DisplayID display,
1445        uint32_t w, uint32_t h, uint32_t flags)
1446{
1447    sp<LayerDim> layer = new LayerDim(this, display, client);
1448    return layer;
1449}
1450
1451sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1452        const sp<Client>& client, DisplayID display,
1453        uint32_t w, uint32_t h, uint32_t flags)
1454{
1455    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1456    return layer;
1457}
1458
1459status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1460{
1461    /*
1462     * called by the window manager, when a surface should be marked for
1463     * destruction.
1464     *
1465     * The surface is removed from the current and drawing lists, but placed
1466     * in the purgatory queue, so it's not destroyed right-away (we need
1467     * to wait for all client's references to go away first).
1468     */
1469
1470    status_t err = NAME_NOT_FOUND;
1471    Mutex::Autolock _l(mStateLock);
1472    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1473
1474    if (layer != 0) {
1475        err = purgatorizeLayer_l(layer);
1476        if (err == NO_ERROR) {
1477            setTransactionFlags(eTransactionNeeded);
1478        }
1479    }
1480    return err;
1481}
1482
1483status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1484{
1485    // called by ~ISurface() when all references are gone
1486    status_t err = NO_ERROR;
1487    sp<LayerBaseClient> l(layer.promote());
1488    if (l != NULL) {
1489        Mutex::Autolock _l(mStateLock);
1490        err = removeLayer_l(l);
1491        if (err == NAME_NOT_FOUND) {
1492            // The surface wasn't in the current list, which means it was
1493            // removed already, which means it is in the purgatory,
1494            // and need to be removed from there.
1495            ssize_t idx = mLayerPurgatory.remove(l);
1496            ALOGE_IF(idx < 0,
1497                    "layer=%p is not in the purgatory list", l.get());
1498        }
1499        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1500                "error removing layer=%p (%s)", l.get(), strerror(-err));
1501    }
1502    return err;
1503}
1504
1505uint32_t SurfaceFlinger::setClientStateLocked(
1506        const sp<Client>& client,
1507        const layer_state_t& s)
1508{
1509    uint32_t flags = 0;
1510    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1511    if (layer != 0) {
1512        const uint32_t what = s.what;
1513        if (what & ePositionChanged) {
1514            if (layer->setPosition(s.x, s.y))
1515                flags |= eTraversalNeeded;
1516        }
1517        if (what & eLayerChanged) {
1518            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1519            if (layer->setLayer(s.z)) {
1520                mCurrentState.layersSortedByZ.removeAt(idx);
1521                mCurrentState.layersSortedByZ.add(layer);
1522                // we need traversal (state changed)
1523                // AND transaction (list changed)
1524                flags |= eTransactionNeeded|eTraversalNeeded;
1525            }
1526        }
1527        if (what & eSizeChanged) {
1528            if (layer->setSize(s.w, s.h)) {
1529                flags |= eTraversalNeeded;
1530            }
1531        }
1532        if (what & eAlphaChanged) {
1533            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1534                flags |= eTraversalNeeded;
1535        }
1536        if (what & eMatrixChanged) {
1537            if (layer->setMatrix(s.matrix))
1538                flags |= eTraversalNeeded;
1539        }
1540        if (what & eTransparentRegionChanged) {
1541            if (layer->setTransparentRegionHint(s.transparentRegion))
1542                flags |= eTraversalNeeded;
1543        }
1544        if (what & eVisibilityChanged) {
1545            if (layer->setFlags(s.flags, s.mask))
1546                flags |= eTraversalNeeded;
1547        }
1548        if (what & eCropChanged) {
1549            if (layer->setCrop(s.crop))
1550                flags |= eTraversalNeeded;
1551        }
1552        if (what & eLayerStackChanged) {
1553            if (layer->setLayerStack(s.layerStack))
1554                flags |= eTraversalNeeded;
1555        }
1556    }
1557    return flags;
1558}
1559
1560// ---------------------------------------------------------------------------
1561
1562void SurfaceFlinger::onScreenAcquired() {
1563    ALOGD("Screen about to return, flinger = %p", this);
1564    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1565    getHwComposer().acquire();
1566    hw.acquireScreen();
1567    mEventThread->onScreenAcquired();
1568    // this is a temporary work-around, eventually this should be called
1569    // by the power-manager
1570    SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
1571    // from this point on, SF will process updates again
1572    repaintEverything();
1573}
1574
1575void SurfaceFlinger::onScreenReleased() {
1576    ALOGD("About to give-up screen, flinger = %p", this);
1577    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1578    if (hw.isScreenAcquired()) {
1579        mEventThread->onScreenReleased();
1580        hw.releaseScreen();
1581        getHwComposer().release();
1582        // from this point on, SF will stop drawing
1583    }
1584}
1585
1586void SurfaceFlinger::unblank() {
1587    class MessageScreenAcquired : public MessageBase {
1588        SurfaceFlinger* flinger;
1589    public:
1590        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1591        virtual bool handler() {
1592            flinger->onScreenAcquired();
1593            return true;
1594        }
1595    };
1596    sp<MessageBase> msg = new MessageScreenAcquired(this);
1597    postMessageSync(msg);
1598}
1599
1600void SurfaceFlinger::blank() {
1601    class MessageScreenReleased : public MessageBase {
1602        SurfaceFlinger* flinger;
1603    public:
1604        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1605        virtual bool handler() {
1606            flinger->onScreenReleased();
1607            return true;
1608        }
1609    };
1610    sp<MessageBase> msg = new MessageScreenReleased(this);
1611    postMessageSync(msg);
1612}
1613
1614// ---------------------------------------------------------------------------
1615
1616status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1617{
1618    const size_t SIZE = 4096;
1619    char buffer[SIZE];
1620    String8 result;
1621
1622    if (!PermissionCache::checkCallingPermission(sDump)) {
1623        snprintf(buffer, SIZE, "Permission Denial: "
1624                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1625                IPCThreadState::self()->getCallingPid(),
1626                IPCThreadState::self()->getCallingUid());
1627        result.append(buffer);
1628    } else {
1629        // Try to get the main lock, but don't insist if we can't
1630        // (this would indicate SF is stuck, but we want to be able to
1631        // print something in dumpsys).
1632        int retry = 3;
1633        while (mStateLock.tryLock()<0 && --retry>=0) {
1634            usleep(1000000);
1635        }
1636        const bool locked(retry >= 0);
1637        if (!locked) {
1638            snprintf(buffer, SIZE,
1639                    "SurfaceFlinger appears to be unresponsive, "
1640                    "dumping anyways (no locks held)\n");
1641            result.append(buffer);
1642        }
1643
1644        bool dumpAll = true;
1645        size_t index = 0;
1646        size_t numArgs = args.size();
1647        if (numArgs) {
1648            if ((index < numArgs) &&
1649                    (args[index] == String16("--list"))) {
1650                index++;
1651                listLayersLocked(args, index, result, buffer, SIZE);
1652                dumpAll = false;
1653            }
1654
1655            if ((index < numArgs) &&
1656                    (args[index] == String16("--latency"))) {
1657                index++;
1658                dumpStatsLocked(args, index, result, buffer, SIZE);
1659                dumpAll = false;
1660            }
1661
1662            if ((index < numArgs) &&
1663                    (args[index] == String16("--latency-clear"))) {
1664                index++;
1665                clearStatsLocked(args, index, result, buffer, SIZE);
1666                dumpAll = false;
1667            }
1668        }
1669
1670        if (dumpAll) {
1671            dumpAllLocked(result, buffer, SIZE);
1672        }
1673
1674        if (locked) {
1675            mStateLock.unlock();
1676        }
1677    }
1678    write(fd, result.string(), result.size());
1679    return NO_ERROR;
1680}
1681
1682void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1683        String8& result, char* buffer, size_t SIZE) const
1684{
1685    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1686    const size_t count = currentLayers.size();
1687    for (size_t i=0 ; i<count ; i++) {
1688        const sp<LayerBase>& layer(currentLayers[i]);
1689        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1690        result.append(buffer);
1691    }
1692}
1693
1694void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1695        String8& result, char* buffer, size_t SIZE) const
1696{
1697    String8 name;
1698    if (index < args.size()) {
1699        name = String8(args[index]);
1700        index++;
1701    }
1702
1703    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1704    const size_t count = currentLayers.size();
1705    for (size_t i=0 ; i<count ; i++) {
1706        const sp<LayerBase>& layer(currentLayers[i]);
1707        if (name.isEmpty()) {
1708            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1709            result.append(buffer);
1710        }
1711        if (name.isEmpty() || (name == layer->getName())) {
1712            layer->dumpStats(result, buffer, SIZE);
1713        }
1714    }
1715}
1716
1717void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1718        String8& result, char* buffer, size_t SIZE) const
1719{
1720    String8 name;
1721    if (index < args.size()) {
1722        name = String8(args[index]);
1723        index++;
1724    }
1725
1726    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1727    const size_t count = currentLayers.size();
1728    for (size_t i=0 ; i<count ; i++) {
1729        const sp<LayerBase>& layer(currentLayers[i]);
1730        if (name.isEmpty() || (name == layer->getName())) {
1731            layer->clearStats();
1732        }
1733    }
1734}
1735
1736void SurfaceFlinger::dumpAllLocked(
1737        String8& result, char* buffer, size_t SIZE) const
1738{
1739    // figure out if we're stuck somewhere
1740    const nsecs_t now = systemTime();
1741    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1742    const nsecs_t inTransaction(mDebugInTransaction);
1743    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1744    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1745
1746    /*
1747     * Dump the visible layer list
1748     */
1749    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1750    const size_t count = currentLayers.size();
1751    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1752    result.append(buffer);
1753    for (size_t i=0 ; i<count ; i++) {
1754        const sp<LayerBase>& layer(currentLayers[i]);
1755        layer->dump(result, buffer, SIZE);
1756    }
1757
1758    /*
1759     * Dump the layers in the purgatory
1760     */
1761
1762    const size_t purgatorySize = mLayerPurgatory.size();
1763    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1764    result.append(buffer);
1765    for (size_t i=0 ; i<purgatorySize ; i++) {
1766        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1767        layer->shortDump(result, buffer, SIZE);
1768    }
1769
1770    /*
1771     * Dump SurfaceFlinger global state
1772     */
1773
1774    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1775    result.append(buffer);
1776
1777    const DisplayHardware& hw(getDefaultDisplayHardware());
1778    const GLExtensions& extensions(GLExtensions::getInstance());
1779    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1780            extensions.getVendor(),
1781            extensions.getRenderer(),
1782            extensions.getVersion());
1783    result.append(buffer);
1784
1785    snprintf(buffer, SIZE, "EGL : %s\n",
1786            eglQueryString(hw.getEGLDisplay(),
1787                    EGL_VERSION_HW_ANDROID));
1788    result.append(buffer);
1789
1790    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1791    result.append(buffer);
1792
1793    hw.undefinedRegion.dump(result, "undefinedRegion");
1794    snprintf(buffer, SIZE,
1795            "  orientation=%d, canDraw=%d\n",
1796            mCurrentState.orientation, hw.canDraw());
1797    result.append(buffer);
1798    snprintf(buffer, SIZE,
1799            "  last eglSwapBuffers() time: %f us\n"
1800            "  last transaction time     : %f us\n"
1801            "  transaction-flags         : %08x\n"
1802            "  refresh-rate              : %f fps\n"
1803            "  x-dpi                     : %f\n"
1804            "  y-dpi                     : %f\n"
1805            "  density                   : %f\n",
1806            mLastSwapBufferTime/1000.0,
1807            mLastTransactionTime/1000.0,
1808            mTransactionFlags,
1809            hw.getRefreshRate(),
1810            hw.getDpiX(),
1811            hw.getDpiY(),
1812            hw.getDensity());
1813    result.append(buffer);
1814
1815    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1816            inSwapBuffersDuration/1000.0);
1817    result.append(buffer);
1818
1819    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1820            inTransactionDuration/1000.0);
1821    result.append(buffer);
1822
1823    /*
1824     * VSYNC state
1825     */
1826    mEventThread->dump(result, buffer, SIZE);
1827
1828    /*
1829     * Dump HWComposer state
1830     */
1831    HWComposer& hwc(getHwComposer());
1832    snprintf(buffer, SIZE, "h/w composer state:\n");
1833    result.append(buffer);
1834    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1835            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1836                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1837    result.append(buffer);
1838    hwc.dump(result, buffer, SIZE, hw.getVisibleLayersSortedByZ());
1839
1840    /*
1841     * Dump gralloc state
1842     */
1843    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1844    alloc.dump(result);
1845    hw.dump(result);
1846}
1847
1848status_t SurfaceFlinger::onTransact(
1849    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1850{
1851    switch (code) {
1852        case CREATE_CONNECTION:
1853        case SET_TRANSACTION_STATE:
1854        case SET_ORIENTATION:
1855        case BOOT_FINISHED:
1856        case TURN_ELECTRON_BEAM_OFF:
1857        case TURN_ELECTRON_BEAM_ON:
1858        case BLANK:
1859        case UNBLANK:
1860        {
1861            // codes that require permission check
1862            IPCThreadState* ipc = IPCThreadState::self();
1863            const int pid = ipc->getCallingPid();
1864            const int uid = ipc->getCallingUid();
1865            if ((uid != AID_GRAPHICS) &&
1866                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1867                ALOGE("Permission Denial: "
1868                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1869                return PERMISSION_DENIED;
1870            }
1871            break;
1872        }
1873        case CAPTURE_SCREEN:
1874        {
1875            // codes that require permission check
1876            IPCThreadState* ipc = IPCThreadState::self();
1877            const int pid = ipc->getCallingPid();
1878            const int uid = ipc->getCallingUid();
1879            if ((uid != AID_GRAPHICS) &&
1880                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1881                ALOGE("Permission Denial: "
1882                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1883                return PERMISSION_DENIED;
1884            }
1885            break;
1886        }
1887    }
1888
1889    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1890    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1891        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1892        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1893            IPCThreadState* ipc = IPCThreadState::self();
1894            const int pid = ipc->getCallingPid();
1895            const int uid = ipc->getCallingUid();
1896            ALOGE("Permission Denial: "
1897                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1898            return PERMISSION_DENIED;
1899        }
1900        int n;
1901        switch (code) {
1902            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1903            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1904                return NO_ERROR;
1905            case 1002:  // SHOW_UPDATES
1906                n = data.readInt32();
1907                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1908                invalidateHwcGeometry();
1909                repaintEverything();
1910                return NO_ERROR;
1911            case 1004:{ // repaint everything
1912                repaintEverything();
1913                return NO_ERROR;
1914            }
1915            case 1005:{ // force transaction
1916                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1917                return NO_ERROR;
1918            }
1919            case 1006:{ // send empty update
1920                signalRefresh();
1921                return NO_ERROR;
1922            }
1923            case 1008:  // toggle use of hw composer
1924                n = data.readInt32();
1925                mDebugDisableHWC = n ? 1 : 0;
1926                invalidateHwcGeometry();
1927                repaintEverything();
1928                return NO_ERROR;
1929            case 1009:  // toggle use of transform hint
1930                n = data.readInt32();
1931                mDebugDisableTransformHint = n ? 1 : 0;
1932                invalidateHwcGeometry();
1933                repaintEverything();
1934                return NO_ERROR;
1935            case 1010:  // interrogate.
1936                reply->writeInt32(0);
1937                reply->writeInt32(0);
1938                reply->writeInt32(mDebugRegion);
1939                reply->writeInt32(0);
1940                reply->writeInt32(mDebugDisableHWC);
1941                return NO_ERROR;
1942            case 1013: {
1943                Mutex::Autolock _l(mStateLock);
1944                const DisplayHardware& hw(getDefaultDisplayHardware());
1945                reply->writeInt32(hw.getPageFlipCount());
1946            }
1947            return NO_ERROR;
1948        }
1949    }
1950    return err;
1951}
1952
1953void SurfaceFlinger::repaintEverything() {
1954    android_atomic_or(1, &mRepaintEverything);
1955    signalTransaction();
1956}
1957
1958// ---------------------------------------------------------------------------
1959
1960status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1961        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1962{
1963    Mutex::Autolock _l(mStateLock);
1964    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1965}
1966
1967status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1968        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1969{
1970    ATRACE_CALL();
1971
1972    if (!GLExtensions::getInstance().haveFramebufferObject())
1973        return INVALID_OPERATION;
1974
1975    // get screen geometry
1976    const DisplayHardware& hw(getDisplayHardware(dpy));
1977    const uint32_t hw_w = hw.getWidth();
1978    const uint32_t hw_h = hw.getHeight();
1979    GLfloat u = 1;
1980    GLfloat v = 1;
1981
1982    // make sure to clear all GL error flags
1983    while ( glGetError() != GL_NO_ERROR ) ;
1984
1985    // create a FBO
1986    GLuint name, tname;
1987    glGenTextures(1, &tname);
1988    glBindTexture(GL_TEXTURE_2D, tname);
1989    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1990    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1991    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1992            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1993    if (glGetError() != GL_NO_ERROR) {
1994        while ( glGetError() != GL_NO_ERROR ) ;
1995        GLint tw = (2 << (31 - clz(hw_w)));
1996        GLint th = (2 << (31 - clz(hw_h)));
1997        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1998                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1999        u = GLfloat(hw_w) / tw;
2000        v = GLfloat(hw_h) / th;
2001    }
2002    glGenFramebuffersOES(1, &name);
2003    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2004    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2005            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2006
2007    // redraw the screen entirely...
2008    glDisable(GL_TEXTURE_EXTERNAL_OES);
2009    glDisable(GL_TEXTURE_2D);
2010    glClearColor(0,0,0,1);
2011    glClear(GL_COLOR_BUFFER_BIT);
2012    glMatrixMode(GL_MODELVIEW);
2013    glLoadIdentity();
2014    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
2015    const size_t count = layers.size();
2016    for (size_t i=0 ; i<count ; ++i) {
2017        const sp<LayerBase>& layer(layers[i]);
2018        layer->drawForSreenShot(hw);
2019    }
2020
2021    hw.compositionComplete();
2022
2023    // back to main framebuffer
2024    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2025    glDeleteFramebuffersOES(1, &name);
2026
2027    *textureName = tname;
2028    *uOut = u;
2029    *vOut = v;
2030    return NO_ERROR;
2031}
2032
2033// ---------------------------------------------------------------------------
2034
2035class VSyncWaiter {
2036    DisplayEventReceiver::Event buffer[4];
2037    sp<Looper> looper;
2038    sp<IDisplayEventConnection> events;
2039    sp<BitTube> eventTube;
2040public:
2041    VSyncWaiter(const sp<EventThread>& eventThread) {
2042        looper = new Looper(true);
2043        events = eventThread->createEventConnection();
2044        eventTube = events->getDataChannel();
2045        looper->addFd(eventTube->getFd(), 0, ALOOPER_EVENT_INPUT, 0, 0);
2046        events->requestNextVsync();
2047    }
2048
2049    void wait() {
2050        ssize_t n;
2051
2052        looper->pollOnce(-1);
2053        // we don't handle any errors here, it doesn't matter
2054        // and we don't want to take the risk to get stuck.
2055
2056        // drain the events...
2057        while ((n = DisplayEventReceiver::getEvents(
2058                eventTube, buffer, 4)) > 0) ;
2059
2060        events->requestNextVsync();
2061    }
2062};
2063
2064status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
2065{
2066    // get screen geometry
2067    const DisplayHardware& hw(getDefaultDisplayHardware());
2068    const uint32_t hw_w = hw.getWidth();
2069    const uint32_t hw_h = hw.getHeight();
2070    const Region screenBounds(hw.getBounds());
2071
2072    GLfloat u, v;
2073    GLuint tname;
2074    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
2075    if (result != NO_ERROR) {
2076        return result;
2077    }
2078
2079    GLfloat vtx[8];
2080    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
2081    glBindTexture(GL_TEXTURE_2D, tname);
2082    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
2083    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2084    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2085    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2086    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2087    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2088    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2089    glVertexPointer(2, GL_FLOAT, 0, vtx);
2090
2091    /*
2092     * Texture coordinate mapping
2093     *
2094     *                 u
2095     *    1 +----------+---+
2096     *      |     |    |   |  image is inverted
2097     *      |     V    |   |  w.r.t. the texture
2098     *  1-v +----------+   |  coordinates
2099     *      |              |
2100     *      |              |
2101     *      |              |
2102     *    0 +--------------+
2103     *      0              1
2104     *
2105     */
2106
2107    class s_curve_interpolator {
2108        const float nbFrames, s, v;
2109    public:
2110        s_curve_interpolator(int nbFrames, float s)
2111        : nbFrames(1.0f / (nbFrames-1)), s(s),
2112          v(1.0f + expf(-s + 0.5f*s)) {
2113        }
2114        float operator()(int f) {
2115            const float x = f * nbFrames;
2116            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2117        }
2118    };
2119
2120    class v_stretch {
2121        const GLfloat hw_w, hw_h;
2122    public:
2123        v_stretch(uint32_t hw_w, uint32_t hw_h)
2124        : hw_w(hw_w), hw_h(hw_h) {
2125        }
2126        void operator()(GLfloat* vtx, float v) {
2127            const GLfloat w = hw_w + (hw_w * v);
2128            const GLfloat h = hw_h - (hw_h * v);
2129            const GLfloat x = (hw_w - w) * 0.5f;
2130            const GLfloat y = (hw_h - h) * 0.5f;
2131            vtx[0] = x;         vtx[1] = y;
2132            vtx[2] = x;         vtx[3] = y + h;
2133            vtx[4] = x + w;     vtx[5] = y + h;
2134            vtx[6] = x + w;     vtx[7] = y;
2135        }
2136    };
2137
2138    class h_stretch {
2139        const GLfloat hw_w, hw_h;
2140    public:
2141        h_stretch(uint32_t hw_w, uint32_t hw_h)
2142        : hw_w(hw_w), hw_h(hw_h) {
2143        }
2144        void operator()(GLfloat* vtx, float v) {
2145            const GLfloat w = hw_w - (hw_w * v);
2146            const GLfloat h = 1.0f;
2147            const GLfloat x = (hw_w - w) * 0.5f;
2148            const GLfloat y = (hw_h - h) * 0.5f;
2149            vtx[0] = x;         vtx[1] = y;
2150            vtx[2] = x;         vtx[3] = y + h;
2151            vtx[4] = x + w;     vtx[5] = y + h;
2152            vtx[6] = x + w;     vtx[7] = y;
2153        }
2154    };
2155
2156    VSyncWaiter vsync(mEventThread);
2157
2158    // the full animation is 24 frames
2159    char value[PROPERTY_VALUE_MAX];
2160    property_get("debug.sf.electron_frames", value, "24");
2161    int nbFrames = (atoi(value) + 1) >> 1;
2162    if (nbFrames <= 0) // just in case
2163        nbFrames = 24;
2164
2165    s_curve_interpolator itr(nbFrames, 7.5f);
2166    s_curve_interpolator itg(nbFrames, 8.0f);
2167    s_curve_interpolator itb(nbFrames, 8.5f);
2168
2169    v_stretch vverts(hw_w, hw_h);
2170
2171    glMatrixMode(GL_TEXTURE);
2172    glLoadIdentity();
2173    glMatrixMode(GL_MODELVIEW);
2174    glLoadIdentity();
2175
2176    glEnable(GL_BLEND);
2177    glBlendFunc(GL_ONE, GL_ONE);
2178    for (int i=0 ; i<nbFrames ; i++) {
2179        float x, y, w, h;
2180        const float vr = itr(i);
2181        const float vg = itg(i);
2182        const float vb = itb(i);
2183
2184        // wait for vsync
2185        vsync.wait();
2186
2187        // clear screen
2188        glColorMask(1,1,1,1);
2189        glClear(GL_COLOR_BUFFER_BIT);
2190        glEnable(GL_TEXTURE_2D);
2191
2192        // draw the red plane
2193        vverts(vtx, vr);
2194        glColorMask(1,0,0,1);
2195        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2196
2197        // draw the green plane
2198        vverts(vtx, vg);
2199        glColorMask(0,1,0,1);
2200        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2201
2202        // draw the blue plane
2203        vverts(vtx, vb);
2204        glColorMask(0,0,1,1);
2205        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2206
2207        // draw the white highlight (we use the last vertices)
2208        glDisable(GL_TEXTURE_2D);
2209        glColorMask(1,1,1,1);
2210        glColor4f(vg, vg, vg, 1);
2211        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2212        hw.flip(screenBounds);
2213    }
2214
2215    h_stretch hverts(hw_w, hw_h);
2216    glDisable(GL_BLEND);
2217    glDisable(GL_TEXTURE_2D);
2218    glColorMask(1,1,1,1);
2219    for (int i=0 ; i<nbFrames ; i++) {
2220        const float v = itg(i);
2221        hverts(vtx, v);
2222
2223        // wait for vsync
2224        vsync.wait();
2225
2226        glClear(GL_COLOR_BUFFER_BIT);
2227        glColor4f(1-v, 1-v, 1-v, 1);
2228        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2229        hw.flip(screenBounds);
2230    }
2231
2232    glColorMask(1,1,1,1);
2233    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2234    glDeleteTextures(1, &tname);
2235    glDisable(GL_TEXTURE_2D);
2236    glDisable(GL_BLEND);
2237    return NO_ERROR;
2238}
2239
2240status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2241{
2242    status_t result = PERMISSION_DENIED;
2243
2244    if (!GLExtensions::getInstance().haveFramebufferObject())
2245        return INVALID_OPERATION;
2246
2247
2248    // get screen geometry
2249    const DisplayHardware& hw(getDefaultDisplayHardware());
2250    const uint32_t hw_w = hw.getWidth();
2251    const uint32_t hw_h = hw.getHeight();
2252    const Region screenBounds(hw.bounds());
2253
2254    GLfloat u, v;
2255    GLuint tname;
2256    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2257    if (result != NO_ERROR) {
2258        return result;
2259    }
2260
2261    GLfloat vtx[8];
2262    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2263    glBindTexture(GL_TEXTURE_2D, tname);
2264    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2265    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2266    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2267    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2268    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2269    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2270    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2271    glVertexPointer(2, GL_FLOAT, 0, vtx);
2272
2273    class s_curve_interpolator {
2274        const float nbFrames, s, v;
2275    public:
2276        s_curve_interpolator(int nbFrames, float s)
2277        : nbFrames(1.0f / (nbFrames-1)), s(s),
2278          v(1.0f + expf(-s + 0.5f*s)) {
2279        }
2280        float operator()(int f) {
2281            const float x = f * nbFrames;
2282            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2283        }
2284    };
2285
2286    class v_stretch {
2287        const GLfloat hw_w, hw_h;
2288    public:
2289        v_stretch(uint32_t hw_w, uint32_t hw_h)
2290        : hw_w(hw_w), hw_h(hw_h) {
2291        }
2292        void operator()(GLfloat* vtx, float v) {
2293            const GLfloat w = hw_w + (hw_w * v);
2294            const GLfloat h = hw_h - (hw_h * v);
2295            const GLfloat x = (hw_w - w) * 0.5f;
2296            const GLfloat y = (hw_h - h) * 0.5f;
2297            vtx[0] = x;         vtx[1] = y;
2298            vtx[2] = x;         vtx[3] = y + h;
2299            vtx[4] = x + w;     vtx[5] = y + h;
2300            vtx[6] = x + w;     vtx[7] = y;
2301        }
2302    };
2303
2304    class h_stretch {
2305        const GLfloat hw_w, hw_h;
2306    public:
2307        h_stretch(uint32_t hw_w, uint32_t hw_h)
2308        : hw_w(hw_w), hw_h(hw_h) {
2309        }
2310        void operator()(GLfloat* vtx, float v) {
2311            const GLfloat w = hw_w - (hw_w * v);
2312            const GLfloat h = 1.0f;
2313            const GLfloat x = (hw_w - w) * 0.5f;
2314            const GLfloat y = (hw_h - h) * 0.5f;
2315            vtx[0] = x;         vtx[1] = y;
2316            vtx[2] = x;         vtx[3] = y + h;
2317            vtx[4] = x + w;     vtx[5] = y + h;
2318            vtx[6] = x + w;     vtx[7] = y;
2319        }
2320    };
2321
2322    VSyncWaiter vsync(mEventThread);
2323
2324    // the full animation is 12 frames
2325    int nbFrames = 8;
2326    s_curve_interpolator itr(nbFrames, 7.5f);
2327    s_curve_interpolator itg(nbFrames, 8.0f);
2328    s_curve_interpolator itb(nbFrames, 8.5f);
2329
2330    h_stretch hverts(hw_w, hw_h);
2331    glDisable(GL_BLEND);
2332    glDisable(GL_TEXTURE_2D);
2333    glColorMask(1,1,1,1);
2334    for (int i=nbFrames-1 ; i>=0 ; i--) {
2335        const float v = itg(i);
2336        hverts(vtx, v);
2337
2338        // wait for vsync
2339        vsync.wait();
2340
2341        glClear(GL_COLOR_BUFFER_BIT);
2342        glColor4f(1-v, 1-v, 1-v, 1);
2343        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2344        hw.flip(screenBounds);
2345    }
2346
2347    nbFrames = 4;
2348    v_stretch vverts(hw_w, hw_h);
2349    glEnable(GL_BLEND);
2350    glBlendFunc(GL_ONE, GL_ONE);
2351    for (int i=nbFrames-1 ; i>=0 ; i--) {
2352        float x, y, w, h;
2353        const float vr = itr(i);
2354        const float vg = itg(i);
2355        const float vb = itb(i);
2356
2357        // wait for vsync
2358        vsync.wait();
2359
2360        // clear screen
2361        glColorMask(1,1,1,1);
2362        glClear(GL_COLOR_BUFFER_BIT);
2363        glEnable(GL_TEXTURE_2D);
2364
2365        // draw the red plane
2366        vverts(vtx, vr);
2367        glColorMask(1,0,0,1);
2368        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2369
2370        // draw the green plane
2371        vverts(vtx, vg);
2372        glColorMask(0,1,0,1);
2373        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2374
2375        // draw the blue plane
2376        vverts(vtx, vb);
2377        glColorMask(0,0,1,1);
2378        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2379
2380        hw.flip(screenBounds);
2381    }
2382
2383    glColorMask(1,1,1,1);
2384    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2385    glDeleteTextures(1, &tname);
2386    glDisable(GL_TEXTURE_2D);
2387    glDisable(GL_BLEND);
2388
2389    return NO_ERROR;
2390}
2391
2392// ---------------------------------------------------------------------------
2393
2394status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2395{
2396    ATRACE_CALL();
2397
2398    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2399    if (!hw.canDraw()) {
2400        // we're already off
2401        return NO_ERROR;
2402    }
2403
2404    // turn off hwc while we're doing the animation
2405    getHwComposer().disable();
2406    // and make sure to turn it back on (if needed) next time we compose
2407    invalidateHwcGeometry();
2408
2409    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2410        electronBeamOffAnimationImplLocked();
2411    }
2412
2413    // always clear the whole screen at the end of the animation
2414    glClearColor(0,0,0,1);
2415    glClear(GL_COLOR_BUFFER_BIT);
2416    hw.flip( Region(hw.bounds()) );
2417
2418    return NO_ERROR;
2419}
2420
2421status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2422{
2423    class MessageTurnElectronBeamOff : public MessageBase {
2424        SurfaceFlinger* flinger;
2425        int32_t mode;
2426        status_t result;
2427    public:
2428        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2429            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2430        }
2431        status_t getResult() const {
2432            return result;
2433        }
2434        virtual bool handler() {
2435            Mutex::Autolock _l(flinger->mStateLock);
2436            result = flinger->turnElectronBeamOffImplLocked(mode);
2437            return true;
2438        }
2439    };
2440
2441    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2442    status_t res = postMessageSync(msg);
2443    if (res == NO_ERROR) {
2444        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2445
2446        // work-around: when the power-manager calls us we activate the
2447        // animation. eventually, the "on" animation will be called
2448        // by the power-manager itself
2449        mElectronBeamAnimationMode = mode;
2450    }
2451    return res;
2452}
2453
2454// ---------------------------------------------------------------------------
2455
2456status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2457{
2458    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2459    if (hw.canDraw()) {
2460        // we're already on
2461        return NO_ERROR;
2462    }
2463    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2464        electronBeamOnAnimationImplLocked();
2465    }
2466
2467    // make sure to redraw the whole screen when the animation is done
2468    hw.dirtyRegion.set(hw.bounds());
2469    signalTransaction();
2470
2471    return NO_ERROR;
2472}
2473
2474status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2475{
2476    class MessageTurnElectronBeamOn : public MessageBase {
2477        SurfaceFlinger* flinger;
2478        int32_t mode;
2479        status_t result;
2480    public:
2481        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2482            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2483        }
2484        status_t getResult() const {
2485            return result;
2486        }
2487        virtual bool handler() {
2488            Mutex::Autolock _l(flinger->mStateLock);
2489            result = flinger->turnElectronBeamOnImplLocked(mode);
2490            return true;
2491        }
2492    };
2493
2494    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2495    return NO_ERROR;
2496}
2497
2498// ---------------------------------------------------------------------------
2499
2500status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2501        sp<IMemoryHeap>* heap,
2502        uint32_t* w, uint32_t* h, PixelFormat* f,
2503        uint32_t sw, uint32_t sh,
2504        uint32_t minLayerZ, uint32_t maxLayerZ)
2505{
2506    ATRACE_CALL();
2507
2508    status_t result = PERMISSION_DENIED;
2509
2510    // only one display supported for now
2511    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
2512        return BAD_VALUE;
2513    }
2514
2515    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2516        return INVALID_OPERATION;
2517    }
2518
2519    // get screen geometry
2520    const DisplayHardware& hw(getDisplayHardware(dpy));
2521    const uint32_t hw_w = hw.getWidth();
2522    const uint32_t hw_h = hw.getHeight();
2523
2524    // if we have secure windows on this display, never allow the screen capture
2525    if (hw.getSecureLayerVisible()) {
2526        return PERMISSION_DENIED;
2527    }
2528
2529    if ((sw > hw_w) || (sh > hw_h)) {
2530        return BAD_VALUE;
2531    }
2532
2533    sw = (!sw) ? hw_w : sw;
2534    sh = (!sh) ? hw_h : sh;
2535    const size_t size = sw * sh * 4;
2536
2537    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2538    //        sw, sh, minLayerZ, maxLayerZ);
2539
2540    // make sure to clear all GL error flags
2541    while ( glGetError() != GL_NO_ERROR ) ;
2542
2543    // create a FBO
2544    GLuint name, tname;
2545    glGenRenderbuffersOES(1, &tname);
2546    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2547    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2548
2549    glGenFramebuffersOES(1, &name);
2550    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2551    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2552            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2553
2554    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2555
2556    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2557
2558        // invert everything, b/c glReadPixel() below will invert the FB
2559        glViewport(0, 0, sw, sh);
2560        glMatrixMode(GL_PROJECTION);
2561        glPushMatrix();
2562        glLoadIdentity();
2563        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2564        glMatrixMode(GL_MODELVIEW);
2565
2566        // redraw the screen entirely...
2567        glClearColor(0,0,0,1);
2568        glClear(GL_COLOR_BUFFER_BIT);
2569
2570        const LayerVector& layers(mDrawingState.layersSortedByZ);
2571        const size_t count = layers.size();
2572        for (size_t i=0 ; i<count ; ++i) {
2573            const sp<LayerBase>& layer(layers[i]);
2574            const uint32_t flags = layer->drawingState().flags;
2575            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2576                const uint32_t z = layer->drawingState().z;
2577                if (z >= minLayerZ && z <= maxLayerZ) {
2578                    layer->drawForSreenShot(hw);
2579                }
2580            }
2581        }
2582
2583        // check for errors and return screen capture
2584        if (glGetError() != GL_NO_ERROR) {
2585            // error while rendering
2586            result = INVALID_OPERATION;
2587        } else {
2588            // allocate shared memory large enough to hold the
2589            // screen capture
2590            sp<MemoryHeapBase> base(
2591                    new MemoryHeapBase(size, 0, "screen-capture") );
2592            void* const ptr = base->getBase();
2593            if (ptr) {
2594                // capture the screen with glReadPixels()
2595                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2596                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2597                if (glGetError() == GL_NO_ERROR) {
2598                    *heap = base;
2599                    *w = sw;
2600                    *h = sh;
2601                    *f = PIXEL_FORMAT_RGBA_8888;
2602                    result = NO_ERROR;
2603                }
2604            } else {
2605                result = NO_MEMORY;
2606            }
2607        }
2608        glViewport(0, 0, hw_w, hw_h);
2609        glMatrixMode(GL_PROJECTION);
2610        glPopMatrix();
2611        glMatrixMode(GL_MODELVIEW);
2612    } else {
2613        result = BAD_VALUE;
2614    }
2615
2616    // release FBO resources
2617    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2618    glDeleteRenderbuffersOES(1, &tname);
2619    glDeleteFramebuffersOES(1, &name);
2620
2621    hw.compositionComplete();
2622
2623    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2624
2625    return result;
2626}
2627
2628
2629status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2630        sp<IMemoryHeap>* heap,
2631        uint32_t* width, uint32_t* height, PixelFormat* format,
2632        uint32_t sw, uint32_t sh,
2633        uint32_t minLayerZ, uint32_t maxLayerZ)
2634{
2635    // only one display supported for now
2636    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2637        return BAD_VALUE;
2638
2639    if (!GLExtensions::getInstance().haveFramebufferObject())
2640        return INVALID_OPERATION;
2641
2642    class MessageCaptureScreen : public MessageBase {
2643        SurfaceFlinger* flinger;
2644        DisplayID dpy;
2645        sp<IMemoryHeap>* heap;
2646        uint32_t* w;
2647        uint32_t* h;
2648        PixelFormat* f;
2649        uint32_t sw;
2650        uint32_t sh;
2651        uint32_t minLayerZ;
2652        uint32_t maxLayerZ;
2653        status_t result;
2654    public:
2655        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2656                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2657                uint32_t sw, uint32_t sh,
2658                uint32_t minLayerZ, uint32_t maxLayerZ)
2659            : flinger(flinger), dpy(dpy),
2660              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2661              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2662              result(PERMISSION_DENIED)
2663        {
2664        }
2665        status_t getResult() const {
2666            return result;
2667        }
2668        virtual bool handler() {
2669            Mutex::Autolock _l(flinger->mStateLock);
2670            result = flinger->captureScreenImplLocked(dpy,
2671                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2672            return true;
2673        }
2674    };
2675
2676    sp<MessageBase> msg = new MessageCaptureScreen(this,
2677            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2678    status_t res = postMessageSync(msg);
2679    if (res == NO_ERROR) {
2680        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2681    }
2682    return res;
2683}
2684
2685// ---------------------------------------------------------------------------
2686
2687SurfaceFlinger::LayerVector::LayerVector() {
2688}
2689
2690SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2691    : SortedVector<sp<LayerBase> >(rhs) {
2692}
2693
2694int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2695    const void* rhs) const
2696{
2697    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2698    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2699    // sort layers by Z order
2700    uint32_t lz = l->currentState().z;
2701    uint32_t rz = r->currentState().z;
2702    // then by sequence, so we get a stable ordering
2703    return (lz != rz) ? (lz - rz) : (l->sequence - r->sequence);
2704}
2705
2706// ---------------------------------------------------------------------------
2707
2708SurfaceFlinger::State::State()
2709    : orientation(ISurfaceComposer::eOrientationDefault),
2710      orientationFlags(0) {
2711}
2712
2713// ---------------------------------------------------------------------------
2714
2715GraphicBufferAlloc::GraphicBufferAlloc() {}
2716
2717GraphicBufferAlloc::~GraphicBufferAlloc() {}
2718
2719sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2720        PixelFormat format, uint32_t usage, status_t* error) {
2721    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2722    status_t err = graphicBuffer->initCheck();
2723    *error = err;
2724    if (err != 0 || graphicBuffer->handle == 0) {
2725        if (err == NO_MEMORY) {
2726            GraphicBuffer::dumpAllocationsToSystemLog();
2727        }
2728        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2729             "failed (%s), handle=%p",
2730                w, h, strerror(-err), graphicBuffer->handle);
2731        return 0;
2732    }
2733    return graphicBuffer;
2734}
2735
2736// ---------------------------------------------------------------------------
2737
2738}; // namespace android
2739