SurfaceFlinger.cpp revision 722b98f9dfe8f04de8734630198b99a6cd024118
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/SurfaceTextureClient.h>
43
44#include <ui/GraphicBufferAllocator.h>
45#include <ui/PixelFormat.h>
46#include <ui/UiConfig.h>
47
48#include <utils/misc.h>
49#include <utils/String8.h>
50#include <utils/String16.h>
51#include <utils/StopWatch.h>
52#include <utils/Trace.h>
53
54#include <private/android_filesystem_config.h>
55
56#include "clz.h"
57#include "DdmConnection.h"
58#include "DisplayDevice.h"
59#include "Client.h"
60#include "EventThread.h"
61#include "GLExtensions.h"
62#include "Layer.h"
63#include "LayerDim.h"
64#include "LayerScreenshot.h"
65#include "SurfaceFlinger.h"
66
67#include "DisplayHardware/FramebufferSurface.h"
68#include "DisplayHardware/GraphicBufferAlloc.h"
69#include "DisplayHardware/HWComposer.h"
70
71
72#define EGL_VERSION_HW_ANDROID  0x3143
73
74#define DISPLAY_COUNT       1
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransationPending(false),
90        mLayersRemoved(false),
91        mRepaintEverything(0),
92        mBootTime(systemTime()),
93        mVisibleRegionsDirty(false),
94        mHwWorkListDirty(false),
95        mDebugRegion(0),
96        mDebugDDMS(0),
97        mDebugDisableHWC(0),
98        mDebugDisableTransformHint(0),
99        mDebugInSwapBuffers(0),
100        mLastSwapBufferTime(0),
101        mDebugInTransaction(0),
102        mLastTransactionTime(0),
103        mBootFinished(false)
104{
105    ALOGI("SurfaceFlinger is starting");
106
107    // debugging stuff...
108    char value[PROPERTY_VALUE_MAX];
109
110    property_get("debug.sf.showupdates", value, "0");
111    mDebugRegion = atoi(value);
112
113    property_get("debug.sf.ddms", value, "0");
114    mDebugDDMS = atoi(value);
115    if (mDebugDDMS) {
116        if (!startDdmConnection()) {
117            // start failed, and DDMS debugging not enabled
118            mDebugDDMS = 0;
119        }
120    }
121    ALOGI_IF(mDebugRegion, "showupdates enabled");
122    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
123}
124
125void SurfaceFlinger::onFirstRef()
126{
127    mEventQueue.init(this);
128
129    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
130
131    // Wait for the main thread to be done with its initialization
132    mReadyToRunBarrier.wait();
133}
134
135
136SurfaceFlinger::~SurfaceFlinger()
137{
138    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
139    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
140    eglTerminate(display);
141}
142
143void SurfaceFlinger::binderDied(const wp<IBinder>& who)
144{
145    // the window manager died on us. prepare its eulogy.
146
147    // restore initial conditions (default device unblank, etc)
148    initializeDisplays();
149
150    // restart the boot-animation
151    startBootAnim();
152}
153
154sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
155{
156    sp<ISurfaceComposerClient> bclient;
157    sp<Client> client(new Client(this));
158    status_t err = client->initCheck();
159    if (err == NO_ERROR) {
160        bclient = client;
161    }
162    return bclient;
163}
164
165sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName)
166{
167    class DisplayToken : public BBinder {
168        sp<SurfaceFlinger> flinger;
169        virtual ~DisplayToken() {
170             // no more references, this display must be terminated
171             Mutex::Autolock _l(flinger->mStateLock);
172             flinger->mCurrentState.displays.removeItem(this);
173             flinger->setTransactionFlags(eDisplayTransactionNeeded);
174         }
175     public:
176        DisplayToken(const sp<SurfaceFlinger>& flinger)
177            : flinger(flinger) {
178        }
179    };
180
181    sp<BBinder> token = new DisplayToken(this);
182
183    Mutex::Autolock _l(mStateLock);
184    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
185    info.displayName = displayName;
186    mCurrentState.displays.add(token, info);
187
188    return token;
189}
190
191sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
192    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
193        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
194        return NULL;
195    }
196    return mDefaultDisplays[id];
197}
198
199sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
200{
201    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
202    return gba;
203}
204
205void SurfaceFlinger::bootFinished()
206{
207    const nsecs_t now = systemTime();
208    const nsecs_t duration = now - mBootTime;
209    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
210    mBootFinished = true;
211
212    // wait patiently for the window manager death
213    const String16 name("window");
214    sp<IBinder> window(defaultServiceManager()->getService(name));
215    if (window != 0) {
216        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
217    }
218
219    // stop boot animation
220    // formerly we would just kill the process, but we now ask it to exit so it
221    // can choose where to stop the animation.
222    property_set("service.bootanim.exit", "1");
223}
224
225void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
226    class MessageDestroyGLTexture : public MessageBase {
227        GLuint texture;
228    public:
229        MessageDestroyGLTexture(GLuint texture)
230            : texture(texture) {
231        }
232        virtual bool handler() {
233            glDeleteTextures(1, &texture);
234            return true;
235        }
236    };
237    postMessageAsync(new MessageDestroyGLTexture(texture));
238}
239
240status_t SurfaceFlinger::selectConfigForAttribute(
241        EGLDisplay dpy,
242        EGLint const* attrs,
243        EGLint attribute, EGLint wanted,
244        EGLConfig* outConfig)
245{
246    EGLConfig config = NULL;
247    EGLint numConfigs = -1, n=0;
248    eglGetConfigs(dpy, NULL, 0, &numConfigs);
249    EGLConfig* const configs = new EGLConfig[numConfigs];
250    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
251
252    if (n) {
253        if (attribute != EGL_NONE) {
254            for (int i=0 ; i<n ; i++) {
255                EGLint value = 0;
256                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
257                if (wanted == value) {
258                    *outConfig = configs[i];
259                    delete [] configs;
260                    return NO_ERROR;
261                }
262            }
263        } else {
264            // just pick the first one
265            *outConfig = configs[0];
266            delete [] configs;
267            return NO_ERROR;
268        }
269    }
270    delete [] configs;
271    return NAME_NOT_FOUND;
272}
273
274class EGLAttributeVector {
275    struct Attribute;
276    class Adder;
277    friend class Adder;
278    KeyedVector<Attribute, EGLint> mList;
279    struct Attribute {
280        Attribute() {};
281        Attribute(EGLint v) : v(v) { }
282        EGLint v;
283        bool operator < (const Attribute& other) const {
284            // this places EGL_NONE at the end
285            EGLint lhs(v);
286            EGLint rhs(other.v);
287            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
288            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
289            return lhs < rhs;
290        }
291    };
292    class Adder {
293        friend class EGLAttributeVector;
294        EGLAttributeVector& v;
295        EGLint attribute;
296        Adder(EGLAttributeVector& v, EGLint attribute)
297            : v(v), attribute(attribute) {
298        }
299    public:
300        void operator = (EGLint value) {
301            if (attribute != EGL_NONE) {
302                v.mList.add(attribute, value);
303            }
304        }
305        operator EGLint () const { return v.mList[attribute]; }
306    };
307public:
308    EGLAttributeVector() {
309        mList.add(EGL_NONE, EGL_NONE);
310    }
311    void remove(EGLint attribute) {
312        if (attribute != EGL_NONE) {
313            mList.removeItem(attribute);
314        }
315    }
316    Adder operator [] (EGLint attribute) {
317        return Adder(*this, attribute);
318    }
319    EGLint operator [] (EGLint attribute) const {
320       return mList[attribute];
321    }
322    // cast-operator to (EGLint const*)
323    operator EGLint const* () const { return &mList.keyAt(0).v; }
324};
325
326EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
327    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
328    // it is to be used with WIFI displays
329    EGLConfig config;
330    EGLint dummy;
331    status_t err;
332
333    EGLAttributeVector attribs;
334    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
335    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
336    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
337    attribs[EGL_RED_SIZE]                   = 8;
338    attribs[EGL_GREEN_SIZE]                 = 8;
339    attribs[EGL_BLUE_SIZE]                  = 8;
340
341    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
342    if (!err)
343        goto success;
344
345    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
346    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
347    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
348    err = selectConfigForAttribute(display, attribs,
349            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
350    if (!err)
351        goto success;
352
353    // maybe we failed because of EGL_RECORDABLE_ANDROID
354    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
355    attribs.remove(EGL_RECORDABLE_ANDROID);
356    err = selectConfigForAttribute(display, attribs,
357            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
358    if (!err)
359        goto success;
360
361    // allow less than 24-bit color; the non-gpu-accelerated emulator only
362    // supports 16-bit color
363    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
364    attribs.remove(EGL_RED_SIZE);
365    attribs.remove(EGL_GREEN_SIZE);
366    attribs.remove(EGL_BLUE_SIZE);
367    err = selectConfigForAttribute(display, attribs,
368            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
369    if (!err)
370        goto success;
371
372    // this EGL is too lame for Android
373    ALOGE("no suitable EGLConfig found, giving up");
374
375    return 0;
376
377success:
378    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
379        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
380    return config;
381}
382
383EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
384    // Also create our EGLContext
385    EGLint contextAttributes[] = {
386#ifdef EGL_IMG_context_priority
387#ifdef HAS_CONTEXT_PRIORITY
388#warning "using EGL_IMG_context_priority"
389            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
390#endif
391#endif
392            EGL_NONE, EGL_NONE
393    };
394    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
395    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
396    return ctxt;
397}
398
399void SurfaceFlinger::initializeGL(EGLDisplay display) {
400    GLExtensions& extensions(GLExtensions::getInstance());
401    extensions.initWithGLStrings(
402            glGetString(GL_VENDOR),
403            glGetString(GL_RENDERER),
404            glGetString(GL_VERSION),
405            glGetString(GL_EXTENSIONS),
406            eglQueryString(display, EGL_VENDOR),
407            eglQueryString(display, EGL_VERSION),
408            eglQueryString(display, EGL_EXTENSIONS));
409
410    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
411    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
412
413    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
414    glPixelStorei(GL_PACK_ALIGNMENT, 4);
415    glEnableClientState(GL_VERTEX_ARRAY);
416    glShadeModel(GL_FLAT);
417    glDisable(GL_DITHER);
418    glDisable(GL_CULL_FACE);
419
420    struct pack565 {
421        inline uint16_t operator() (int r, int g, int b) const {
422            return (r<<11)|(g<<5)|b;
423        }
424    } pack565;
425
426    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
427    glGenTextures(1, &mProtectedTexName);
428    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
429    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
430    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
431    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
432    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
433    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
434            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
435
436    // print some debugging info
437    EGLint r,g,b,a;
438    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
439    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
440    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
441    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
442    ALOGI("EGL informations:");
443    ALOGI("vendor    : %s", extensions.getEglVendor());
444    ALOGI("version   : %s", extensions.getEglVersion());
445    ALOGI("extensions: %s", extensions.getEglExtension());
446    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
447    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
448    ALOGI("OpenGL ES informations:");
449    ALOGI("vendor    : %s", extensions.getVendor());
450    ALOGI("renderer  : %s", extensions.getRenderer());
451    ALOGI("version   : %s", extensions.getVersion());
452    ALOGI("extensions: %s", extensions.getExtension());
453    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
454    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
455}
456
457status_t SurfaceFlinger::readyToRun()
458{
459    ALOGI(  "SurfaceFlinger's main thread ready to run. "
460            "Initializing graphics H/W...");
461
462    // initialize EGL for the default display
463    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
464    eglInitialize(mEGLDisplay, NULL, NULL);
465
466    // Initialize the H/W composer object.  There may or may not be an
467    // actual hardware composer underneath.
468    mHwc = new HWComposer(this,
469            *static_cast<HWComposer::EventHandler *>(this));
470
471    // initialize the config and context
472    EGLint format = mHwc->getVisualID();
473    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
474    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
475
476    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
477            "couldn't create EGLContext");
478
479    // initialize our non-virtual displays
480    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
481        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
482        mDefaultDisplays[i] = new BBinder();
483        wp<IBinder> token = mDefaultDisplays[i];
484
485        // set-up the displays that are already connected
486        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
487            mCurrentState.displays.add(token, DisplayDeviceState(type));
488            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
489            sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
490                        static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
491            sp<DisplayDevice> hw = new DisplayDevice(this,
492                    type, token, stc, fbs, mEGLConfig);
493
494            if (i > DisplayDevice::DISPLAY_PRIMARY) {
495                // FIXME: currently we don't really handle blank/unblank
496                // for displays other than the main display, so we always
497                // assume a connected display is unblanked.
498                hw->acquireScreen();
499            }
500            mDisplays.add(token, hw);
501        }
502    }
503
504    //  we need a GL context current in a few places, when initializing
505    //  OpenGL ES (see below), or creating a layer,
506    //  or when a texture is (asynchronously) destroyed, and for that
507    //  we need a valid surface, so it's convenient to use the main display
508    //  for that.
509    sp<const DisplayDevice> hw = getDefaultDisplayDevice();
510
511    //  initialize OpenGL ES
512    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
513    initializeGL(mEGLDisplay);
514
515    // start the EventThread
516    mEventThread = new EventThread(this);
517    mEventQueue.setEventThread(mEventThread);
518
519    // initialize our drawing state
520    mDrawingState = mCurrentState;
521
522
523    // We're now ready to accept clients...
524    mReadyToRunBarrier.open();
525
526    // set initial conditions (e.g. unblank default device)
527    initializeDisplays();
528
529    // start boot animation
530    startBootAnim();
531
532    return NO_ERROR;
533}
534
535int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
536    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
537            type : mHwc->allocateDisplayId();
538}
539
540void SurfaceFlinger::startBootAnim() {
541    // start boot animation
542    property_set("service.bootanim.exit", "0");
543    property_set("ctl.start", "bootanim");
544}
545
546uint32_t SurfaceFlinger::getMaxTextureSize() const {
547    return mMaxTextureSize;
548}
549
550uint32_t SurfaceFlinger::getMaxViewportDims() const {
551    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
552            mMaxViewportDims[0] : mMaxViewportDims[1];
553}
554
555// ----------------------------------------------------------------------------
556
557bool SurfaceFlinger::authenticateSurfaceTexture(
558        const sp<ISurfaceTexture>& surfaceTexture) const {
559    Mutex::Autolock _l(mStateLock);
560    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
561
562    // Check the visible layer list for the ISurface
563    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
564    size_t count = currentLayers.size();
565    for (size_t i=0 ; i<count ; i++) {
566        const sp<LayerBase>& layer(currentLayers[i]);
567        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
568        if (lbc != NULL) {
569            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
570            if (lbcBinder == surfaceTextureBinder) {
571                return true;
572            }
573        }
574    }
575
576    // Check the layers in the purgatory.  This check is here so that if a
577    // SurfaceTexture gets destroyed before all the clients are done using it,
578    // the error will not be reported as "surface XYZ is not authenticated", but
579    // will instead fail later on when the client tries to use the surface,
580    // which should be reported as "surface XYZ returned an -ENODEV".  The
581    // purgatorized layers are no less authentic than the visible ones, so this
582    // should not cause any harm.
583    size_t purgatorySize =  mLayerPurgatory.size();
584    for (size_t i=0 ; i<purgatorySize ; i++) {
585        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
586        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
587        if (lbc != NULL) {
588            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
589            if (lbcBinder == surfaceTextureBinder) {
590                return true;
591            }
592        }
593    }
594
595    return false;
596}
597
598status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
599    int32_t type = BAD_VALUE;
600    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
601        if (display == mDefaultDisplays[i]) {
602            type = i;
603            break;
604        }
605    }
606
607    if (type < 0) {
608        return type;
609    }
610
611    const HWComposer& hwc(getHwComposer());
612    if (!hwc.isConnected(type)) {
613        return NAME_NOT_FOUND;
614    }
615
616    float xdpi = hwc.getDpiX(type);
617    float ydpi = hwc.getDpiY(type);
618
619    // TODO: Not sure if display density should handled by SF any longer
620    class Density {
621        static int getDensityFromProperty(char const* propName) {
622            char property[PROPERTY_VALUE_MAX];
623            int density = 0;
624            if (property_get(propName, property, NULL) > 0) {
625                density = atoi(property);
626            }
627            return density;
628        }
629    public:
630        static int getEmuDensity() {
631            return getDensityFromProperty("qemu.sf.lcd_density"); }
632        static int getBuildDensity()  {
633            return getDensityFromProperty("ro.sf.lcd_density"); }
634    };
635
636    if (type == DisplayDevice::DISPLAY_PRIMARY) {
637        // The density of the device is provided by a build property
638        float density = Density::getBuildDensity() / 160.0f;
639        if (density == 0) {
640            // the build doesn't provide a density -- this is wrong!
641            // use xdpi instead
642            ALOGE("ro.sf.lcd_density must be defined as a build property");
643            density = xdpi / 160.0f;
644        }
645        if (Density::getEmuDensity()) {
646            // if "qemu.sf.lcd_density" is specified, it overrides everything
647            xdpi = ydpi = density = Density::getEmuDensity();
648            density /= 160.0f;
649        }
650        info->density = density;
651
652        // TODO: this needs to go away (currently needed only by webkit)
653        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
654        info->orientation = hw->getOrientation();
655        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
656    } else {
657        // TODO: where should this value come from?
658        static const int TV_DENSITY = 213;
659        info->density = TV_DENSITY / 160.0f;
660        info->orientation = 0;
661    }
662
663    info->w = hwc.getWidth(type);
664    info->h = hwc.getHeight(type);
665    info->xdpi = xdpi;
666    info->ydpi = ydpi;
667    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
668    return NO_ERROR;
669}
670
671// ----------------------------------------------------------------------------
672
673sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
674    return mEventThread->createEventConnection();
675}
676
677void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
678
679    sp<IBinder> token;
680    { // scope for the lock
681        Mutex::Autolock _l(mStateLock);
682        token = mExtDisplayToken;
683    }
684
685    if (token == 0) {
686        token = createDisplay(String8("Display from connectDisplay"));
687    }
688
689    { // scope for the lock
690        Mutex::Autolock _l(mStateLock);
691        if (surface == 0) {
692            // release our current display. we're guarantee to have
693            // a reference to it (token), while we hold the lock
694            mExtDisplayToken = 0;
695        } else {
696            mExtDisplayToken = token;
697        }
698
699        DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
700        info.surface = surface;
701        setTransactionFlags(eDisplayTransactionNeeded);
702    }
703}
704
705// ----------------------------------------------------------------------------
706
707void SurfaceFlinger::waitForEvent() {
708    mEventQueue.waitMessage();
709}
710
711void SurfaceFlinger::signalTransaction() {
712    mEventQueue.invalidate();
713}
714
715void SurfaceFlinger::signalLayerUpdate() {
716    mEventQueue.invalidate();
717}
718
719void SurfaceFlinger::signalRefresh() {
720    mEventQueue.refresh();
721}
722
723status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
724        nsecs_t reltime, uint32_t flags) {
725    return mEventQueue.postMessage(msg, reltime);
726}
727
728status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
729        nsecs_t reltime, uint32_t flags) {
730    status_t res = mEventQueue.postMessage(msg, reltime);
731    if (res == NO_ERROR) {
732        msg->wait();
733    }
734    return res;
735}
736
737bool SurfaceFlinger::threadLoop() {
738    waitForEvent();
739    return true;
740}
741
742void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
743    if (mEventThread == NULL) {
744        // This is a temporary workaround for b/7145521.  A non-null pointer
745        // does not mean EventThread has finished initializing, so this
746        // is not a correct fix.
747        ALOGW("WARNING: EventThread not started, ignoring vsync");
748        return;
749    }
750    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
751        // we should only receive DisplayDevice::DisplayType from the vsync callback
752        mEventThread->onVSyncReceived(type, timestamp);
753    }
754}
755
756void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
757    if (mEventThread == NULL) {
758        // This is a temporary workaround for b/7145521.  A non-null pointer
759        // does not mean EventThread has finished initializing, so this
760        // is not a correct fix.
761        ALOGW("WARNING: EventThread not started, ignoring hotplug");
762        return;
763    }
764
765    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
766        Mutex::Autolock _l(mStateLock);
767        if (connected == false) {
768            mCurrentState.displays.removeItem(mDefaultDisplays[type]);
769        } else {
770            DisplayDeviceState info((DisplayDevice::DisplayType)type);
771            mCurrentState.displays.add(mDefaultDisplays[type], info);
772        }
773        setTransactionFlags(eDisplayTransactionNeeded);
774
775        // we should only receive DisplayDevice::DisplayType from the vsync callback
776        mEventThread->onHotplugReceived(type, connected);
777    }
778}
779
780void SurfaceFlinger::eventControl(int event, int enabled) {
781    getHwComposer().eventControl(event, enabled);
782}
783
784void SurfaceFlinger::onMessageReceived(int32_t what) {
785    ATRACE_CALL();
786    switch (what) {
787    case MessageQueue::INVALIDATE:
788        handleMessageTransaction();
789        handleMessageInvalidate();
790        signalRefresh();
791        break;
792    case MessageQueue::REFRESH:
793        handleMessageRefresh();
794        break;
795    }
796}
797
798void SurfaceFlinger::handleMessageTransaction() {
799    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
800    if (transactionFlags) {
801        handleTransaction(transactionFlags);
802    }
803}
804
805void SurfaceFlinger::handleMessageInvalidate() {
806    ATRACE_CALL();
807    handlePageFlip();
808}
809
810void SurfaceFlinger::handleMessageRefresh() {
811    ATRACE_CALL();
812    preComposition();
813    rebuildLayerStacks();
814    setUpHWComposer();
815    doDebugFlashRegions();
816    doComposition();
817    postComposition();
818}
819
820void SurfaceFlinger::doDebugFlashRegions()
821{
822    // is debugging enabled
823    if (CC_LIKELY(!mDebugRegion))
824        return;
825
826    const bool repaintEverything = mRepaintEverything;
827    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
828        const sp<DisplayDevice>& hw(mDisplays[dpy]);
829        if (hw->canDraw()) {
830            // transform the dirty region into this screen's coordinate space
831            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
832            if (!dirtyRegion.isEmpty()) {
833                // redraw the whole screen
834                doComposeSurfaces(hw, Region(hw->bounds()));
835
836                // and draw the dirty region
837                glDisable(GL_TEXTURE_EXTERNAL_OES);
838                glDisable(GL_TEXTURE_2D);
839                glDisable(GL_BLEND);
840                glColor4f(1, 0, 1, 1);
841                const int32_t height = hw->getHeight();
842                Region::const_iterator it = dirtyRegion.begin();
843                Region::const_iterator const end = dirtyRegion.end();
844                while (it != end) {
845                    const Rect& r = *it++;
846                    GLfloat vertices[][2] = {
847                            { r.left,  height - r.top },
848                            { r.left,  height - r.bottom },
849                            { r.right, height - r.bottom },
850                            { r.right, height - r.top }
851                    };
852                    glVertexPointer(2, GL_FLOAT, 0, vertices);
853                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
854                }
855                hw->compositionComplete();
856                hw->swapBuffers(getHwComposer());
857            }
858        }
859    }
860
861    postFramebuffer();
862
863    if (mDebugRegion > 1) {
864        usleep(mDebugRegion * 1000);
865    }
866
867    HWComposer& hwc(getHwComposer());
868    if (hwc.initCheck() == NO_ERROR) {
869        status_t err = hwc.prepare();
870        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
871    }
872}
873
874void SurfaceFlinger::preComposition()
875{
876    bool needExtraInvalidate = false;
877    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
878    const size_t count = currentLayers.size();
879    for (size_t i=0 ; i<count ; i++) {
880        if (currentLayers[i]->onPreComposition()) {
881            needExtraInvalidate = true;
882        }
883    }
884    if (needExtraInvalidate) {
885        signalLayerUpdate();
886    }
887}
888
889void SurfaceFlinger::postComposition()
890{
891    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
892    const size_t count = currentLayers.size();
893    for (size_t i=0 ; i<count ; i++) {
894        currentLayers[i]->onPostComposition();
895    }
896}
897
898void SurfaceFlinger::rebuildLayerStacks() {
899    // rebuild the visible layer list per screen
900    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
901        ATRACE_CALL();
902        mVisibleRegionsDirty = false;
903        invalidateHwcGeometry();
904
905        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
906        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
907            Region opaqueRegion;
908            Region dirtyRegion;
909            Vector< sp<LayerBase> > layersSortedByZ;
910            const sp<DisplayDevice>& hw(mDisplays[dpy]);
911            const Transform& tr(hw->getTransform());
912            const Rect bounds(hw->getBounds());
913            if (hw->canDraw()) {
914                SurfaceFlinger::computeVisibleRegions(currentLayers,
915                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
916
917                const size_t count = currentLayers.size();
918                for (size_t i=0 ; i<count ; i++) {
919                    const sp<LayerBase>& layer(currentLayers[i]);
920                    const Layer::State& s(layer->drawingState());
921                    if (s.layerStack == hw->getLayerStack()) {
922                        Region visibleRegion(tr.transform(layer->visibleRegion));
923                        visibleRegion.andSelf(bounds);
924                        if (!visibleRegion.isEmpty()) {
925                            layersSortedByZ.add(layer);
926                        }
927                    }
928                }
929            }
930            hw->setVisibleLayersSortedByZ(layersSortedByZ);
931            hw->undefinedRegion.set(bounds);
932            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
933            hw->dirtyRegion.orSelf(dirtyRegion);
934        }
935    }
936}
937
938void SurfaceFlinger::setUpHWComposer() {
939    HWComposer& hwc(getHwComposer());
940    if (hwc.initCheck() == NO_ERROR) {
941        // build the h/w work list
942        const bool workListsDirty = mHwWorkListDirty;
943        mHwWorkListDirty = false;
944        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
945            sp<const DisplayDevice> hw(mDisplays[dpy]);
946            const int32_t id = hw->getHwcDisplayId();
947            if (id >= 0) {
948                const Vector< sp<LayerBase> >& currentLayers(
949                    hw->getVisibleLayersSortedByZ());
950                const size_t count = currentLayers.size();
951                if (hwc.createWorkList(id, count) >= 0) {
952                    HWComposer::LayerListIterator cur = hwc.begin(id);
953                    const HWComposer::LayerListIterator end = hwc.end(id);
954                    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
955                        const sp<LayerBase>& layer(currentLayers[i]);
956
957                        if (CC_UNLIKELY(workListsDirty)) {
958                            layer->setGeometry(hw, *cur);
959                            if (mDebugDisableHWC || mDebugRegion) {
960                                cur->setSkip(true);
961                            }
962                        }
963
964                        /*
965                         * update the per-frame h/w composer data for each layer
966                         * and build the transparent region of the FB
967                         */
968                        layer->setPerFrameData(hw, *cur);
969                    }
970                }
971            }
972        }
973        status_t err = hwc.prepare();
974        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
975    }
976}
977
978void SurfaceFlinger::doComposition() {
979    ATRACE_CALL();
980    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
981    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
982        const sp<DisplayDevice>& hw(mDisplays[dpy]);
983        if (hw->canDraw()) {
984            // transform the dirty region into this screen's coordinate space
985            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
986            if (!dirtyRegion.isEmpty()) {
987                // repaint the framebuffer (if needed)
988                doDisplayComposition(hw, dirtyRegion);
989            }
990            hw->dirtyRegion.clear();
991            hw->flip(hw->swapRegion);
992            hw->swapRegion.clear();
993        }
994        // inform the h/w that we're done compositing
995        hw->compositionComplete();
996    }
997    postFramebuffer();
998}
999
1000void SurfaceFlinger::postFramebuffer()
1001{
1002    ATRACE_CALL();
1003
1004    const nsecs_t now = systemTime();
1005    mDebugInSwapBuffers = now;
1006
1007    HWComposer& hwc(getHwComposer());
1008    if (hwc.initCheck() == NO_ERROR) {
1009        if (!hwc.supportsFramebufferTarget()) {
1010            // EGL spec says:
1011            //   "surface must be bound to the calling thread's current context,
1012            //    for the current rendering API."
1013            DisplayDevice::makeCurrent(mEGLDisplay,
1014                    getDefaultDisplayDevice(), mEGLContext);
1015        }
1016        hwc.commit();
1017    }
1018
1019    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1020        sp<const DisplayDevice> hw(mDisplays[dpy]);
1021        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1022        hw->onSwapBuffersCompleted(hwc);
1023        const size_t count = currentLayers.size();
1024        int32_t id = hw->getHwcDisplayId();
1025        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1026            HWComposer::LayerListIterator cur = hwc.begin(id);
1027            const HWComposer::LayerListIterator end = hwc.end(id);
1028            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1029                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1030            }
1031        } else {
1032            for (size_t i = 0; i < count; i++) {
1033                currentLayers[i]->onLayerDisplayed(hw, NULL);
1034            }
1035        }
1036    }
1037
1038    mLastSwapBufferTime = systemTime() - now;
1039    mDebugInSwapBuffers = 0;
1040}
1041
1042void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1043{
1044    ATRACE_CALL();
1045
1046    Mutex::Autolock _l(mStateLock);
1047    const nsecs_t now = systemTime();
1048    mDebugInTransaction = now;
1049
1050    // Here we're guaranteed that some transaction flags are set
1051    // so we can call handleTransactionLocked() unconditionally.
1052    // We call getTransactionFlags(), which will also clear the flags,
1053    // with mStateLock held to guarantee that mCurrentState won't change
1054    // until the transaction is committed.
1055
1056    transactionFlags = getTransactionFlags(eTransactionMask);
1057    handleTransactionLocked(transactionFlags);
1058
1059    mLastTransactionTime = systemTime() - now;
1060    mDebugInTransaction = 0;
1061    invalidateHwcGeometry();
1062    // here the transaction has been committed
1063}
1064
1065void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1066{
1067    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1068    const size_t count = currentLayers.size();
1069
1070    /*
1071     * Traversal of the children
1072     * (perform the transaction for each of them if needed)
1073     */
1074
1075    if (transactionFlags & eTraversalNeeded) {
1076        for (size_t i=0 ; i<count ; i++) {
1077            const sp<LayerBase>& layer = currentLayers[i];
1078            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1079            if (!trFlags) continue;
1080
1081            const uint32_t flags = layer->doTransaction(0);
1082            if (flags & Layer::eVisibleRegion)
1083                mVisibleRegionsDirty = true;
1084        }
1085    }
1086
1087    /*
1088     * Perform display own transactions if needed
1089     */
1090
1091    if (transactionFlags & eDisplayTransactionNeeded) {
1092        // here we take advantage of Vector's copy-on-write semantics to
1093        // improve performance by skipping the transaction entirely when
1094        // know that the lists are identical
1095        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1096        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1097        if (!curr.isIdenticalTo(draw)) {
1098            mVisibleRegionsDirty = true;
1099            const size_t cc = curr.size();
1100                  size_t dc = draw.size();
1101
1102            // find the displays that were removed
1103            // (ie: in drawing state but not in current state)
1104            // also handle displays that changed
1105            // (ie: displays that are in both lists)
1106            for (size_t i=0 ; i<dc ; i++) {
1107                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1108                if (j < 0) {
1109                    // in drawing state but not in current state
1110                    if (!draw[i].isMainDisplay()) {
1111                        mDisplays.removeItem(draw.keyAt(i));
1112                    } else {
1113                        ALOGW("trying to remove the main display");
1114                    }
1115                } else {
1116                    // this display is in both lists. see if something changed.
1117                    const DisplayDeviceState& state(curr[j]);
1118                    const wp<IBinder>& display(curr.keyAt(j));
1119                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1120                        // changing the surface is like destroying and
1121                        // recreating the DisplayDevice, so we just remove it
1122                        // from the drawing state, so that it get re-added
1123                        // below.
1124                        mDisplays.removeItem(display);
1125                        mDrawingState.displays.removeItemsAt(i);
1126                        dc--; i--;
1127                        // at this point we must loop to the next item
1128                        continue;
1129                    }
1130
1131                    const sp<DisplayDevice>& disp(getDisplayDevice(display));
1132                    if (disp != NULL) {
1133                        if (state.layerStack != draw[i].layerStack) {
1134                            disp->setLayerStack(state.layerStack);
1135                        }
1136                        if ((state.orientation != draw[i].orientation)
1137                                || (state.viewport != draw[i].viewport)
1138                                || (state.frame != draw[i].frame))
1139                        {
1140                            disp->setProjection(state.orientation,
1141                                    state.viewport, state.frame);
1142                        }
1143
1144                        // Walk through all the layers in currentLayers,
1145                        // and update their transform hint.
1146                        //
1147                        // TODO: we could be much more clever about which
1148                        // layers we touch and how often we do these updates
1149                        // (e.g. only touch the layers associated with this
1150                        // display, and only on a rotation).
1151                        for (size_t i = 0; i < count; i++) {
1152                            const sp<LayerBase>& layerBase = currentLayers[i];
1153                            layerBase->updateTransformHint();
1154                        }
1155                    }
1156                }
1157            }
1158
1159            // find displays that were added
1160            // (ie: in current state but not in drawing state)
1161            for (size_t i=0 ; i<cc ; i++) {
1162                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1163                    const DisplayDeviceState& state(curr[i]);
1164
1165                    sp<FramebufferSurface> fbs;
1166                    sp<SurfaceTextureClient> stc;
1167                    if (!state.isVirtualDisplay()) {
1168
1169                        ALOGE_IF(state.surface!=NULL,
1170                                "adding a supported display, but rendering "
1171                                "surface is provided (%p), ignoring it",
1172                                state.surface.get());
1173
1174                        // for supported (by hwc) displays we provide our
1175                        // own rendering surface
1176                        fbs = new FramebufferSurface(*mHwc, state.type);
1177                        stc = new SurfaceTextureClient(
1178                                static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
1179                    } else {
1180                        if (state.surface != NULL) {
1181                            stc = new SurfaceTextureClient(state.surface);
1182                        }
1183                    }
1184
1185                    const wp<IBinder>& display(curr.keyAt(i));
1186                    if (stc != NULL) {
1187                        sp<DisplayDevice> hw = new DisplayDevice(this,
1188                                state.type, display, stc, fbs, mEGLConfig);
1189                        hw->setLayerStack(state.layerStack);
1190                        hw->setProjection(state.orientation,
1191                                state.viewport, state.frame);
1192                        hw->setDisplayName(state.displayName);
1193                        mDisplays.add(display, hw);
1194                        if (hw->getDisplayType() < DisplayDevice::NUM_DISPLAY_TYPES) {
1195                            // notify the system that this display is now up
1196                            // (note onScreenAcquired() is safe to call from
1197                            // here because we're in the main thread)
1198                            onScreenAcquired(hw);
1199                        }
1200                    }
1201                }
1202            }
1203        }
1204    }
1205
1206    /*
1207     * Perform our own transaction if needed
1208     */
1209
1210    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1211    if (currentLayers.size() > previousLayers.size()) {
1212        // layers have been added
1213        mVisibleRegionsDirty = true;
1214    }
1215
1216    // some layers might have been removed, so
1217    // we need to update the regions they're exposing.
1218    if (mLayersRemoved) {
1219        mLayersRemoved = false;
1220        mVisibleRegionsDirty = true;
1221        const size_t count = previousLayers.size();
1222        for (size_t i=0 ; i<count ; i++) {
1223            const sp<LayerBase>& layer(previousLayers[i]);
1224            if (currentLayers.indexOf(layer) < 0) {
1225                // this layer is not visible anymore
1226                // TODO: we could traverse the tree from front to back and
1227                //       compute the actual visible region
1228                // TODO: we could cache the transformed region
1229                const Layer::State& s(layer->drawingState());
1230                Region visibleReg = s.transform.transform(
1231                        Region(Rect(s.active.w, s.active.h)));
1232                invalidateLayerStack(s.layerStack, visibleReg);
1233            }
1234        }
1235    }
1236
1237    commitTransaction();
1238}
1239
1240void SurfaceFlinger::commitTransaction()
1241{
1242    if (!mLayersPendingRemoval.isEmpty()) {
1243        // Notify removed layers now that they can't be drawn from
1244        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1245            mLayersPendingRemoval[i]->onRemoved();
1246        }
1247        mLayersPendingRemoval.clear();
1248    }
1249
1250    mDrawingState = mCurrentState;
1251    mTransationPending = false;
1252    mTransactionCV.broadcast();
1253}
1254
1255void SurfaceFlinger::computeVisibleRegions(
1256        const LayerVector& currentLayers, uint32_t layerStack,
1257        Region& outDirtyRegion, Region& outOpaqueRegion)
1258{
1259    ATRACE_CALL();
1260
1261    Region aboveOpaqueLayers;
1262    Region aboveCoveredLayers;
1263    Region dirty;
1264
1265    outDirtyRegion.clear();
1266
1267    size_t i = currentLayers.size();
1268    while (i--) {
1269        const sp<LayerBase>& layer = currentLayers[i];
1270
1271        // start with the whole surface at its current location
1272        const Layer::State& s(layer->drawingState());
1273
1274        // only consider the layers on the given later stack
1275        if (s.layerStack != layerStack)
1276            continue;
1277
1278        /*
1279         * opaqueRegion: area of a surface that is fully opaque.
1280         */
1281        Region opaqueRegion;
1282
1283        /*
1284         * visibleRegion: area of a surface that is visible on screen
1285         * and not fully transparent. This is essentially the layer's
1286         * footprint minus the opaque regions above it.
1287         * Areas covered by a translucent surface are considered visible.
1288         */
1289        Region visibleRegion;
1290
1291        /*
1292         * coveredRegion: area of a surface that is covered by all
1293         * visible regions above it (which includes the translucent areas).
1294         */
1295        Region coveredRegion;
1296
1297
1298        // handle hidden surfaces by setting the visible region to empty
1299        if (CC_LIKELY(layer->isVisible())) {
1300            const bool translucent = !layer->isOpaque();
1301            Rect bounds(layer->computeBounds());
1302            visibleRegion.set(bounds);
1303            if (!visibleRegion.isEmpty()) {
1304                // Remove the transparent area from the visible region
1305                if (translucent) {
1306                    Region transparentRegionScreen;
1307                    const Transform tr(s.transform);
1308                    if (tr.transformed()) {
1309                        if (tr.preserveRects()) {
1310                            // transform the transparent region
1311                            transparentRegionScreen = tr.transform(s.transparentRegion);
1312                        } else {
1313                            // transformation too complex, can't do the
1314                            // transparent region optimization.
1315                            transparentRegionScreen.clear();
1316                        }
1317                    } else {
1318                        transparentRegionScreen = s.transparentRegion;
1319                    }
1320                    visibleRegion.subtractSelf(transparentRegionScreen);
1321                }
1322
1323                // compute the opaque region
1324                const int32_t layerOrientation = s.transform.getOrientation();
1325                if (s.alpha==255 && !translucent &&
1326                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1327                    // the opaque region is the layer's footprint
1328                    opaqueRegion = visibleRegion;
1329                }
1330            }
1331        }
1332
1333        // Clip the covered region to the visible region
1334        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1335
1336        // Update aboveCoveredLayers for next (lower) layer
1337        aboveCoveredLayers.orSelf(visibleRegion);
1338
1339        // subtract the opaque region covered by the layers above us
1340        visibleRegion.subtractSelf(aboveOpaqueLayers);
1341
1342        // compute this layer's dirty region
1343        if (layer->contentDirty) {
1344            // we need to invalidate the whole region
1345            dirty = visibleRegion;
1346            // as well, as the old visible region
1347            dirty.orSelf(layer->visibleRegion);
1348            layer->contentDirty = false;
1349        } else {
1350            /* compute the exposed region:
1351             *   the exposed region consists of two components:
1352             *   1) what's VISIBLE now and was COVERED before
1353             *   2) what's EXPOSED now less what was EXPOSED before
1354             *
1355             * note that (1) is conservative, we start with the whole
1356             * visible region but only keep what used to be covered by
1357             * something -- which mean it may have been exposed.
1358             *
1359             * (2) handles areas that were not covered by anything but got
1360             * exposed because of a resize.
1361             */
1362            const Region newExposed = visibleRegion - coveredRegion;
1363            const Region oldVisibleRegion = layer->visibleRegion;
1364            const Region oldCoveredRegion = layer->coveredRegion;
1365            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1366            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1367        }
1368        dirty.subtractSelf(aboveOpaqueLayers);
1369
1370        // accumulate to the screen dirty region
1371        outDirtyRegion.orSelf(dirty);
1372
1373        // Update aboveOpaqueLayers for next (lower) layer
1374        aboveOpaqueLayers.orSelf(opaqueRegion);
1375
1376        // Store the visible region is screen space
1377        layer->setVisibleRegion(visibleRegion);
1378        layer->setCoveredRegion(coveredRegion);
1379    }
1380
1381    outOpaqueRegion = aboveOpaqueLayers;
1382}
1383
1384void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1385        const Region& dirty) {
1386    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1387        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1388        if (hw->getLayerStack() == layerStack) {
1389            hw->dirtyRegion.orSelf(dirty);
1390        }
1391    }
1392}
1393
1394void SurfaceFlinger::handlePageFlip()
1395{
1396    Region dirtyRegion;
1397
1398    bool visibleRegions = false;
1399    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1400    const size_t count = currentLayers.size();
1401    for (size_t i=0 ; i<count ; i++) {
1402        const sp<LayerBase>& layer(currentLayers[i]);
1403        const Region dirty(layer->latchBuffer(visibleRegions));
1404        const Layer::State& s(layer->drawingState());
1405        invalidateLayerStack(s.layerStack, dirty);
1406    }
1407
1408    mVisibleRegionsDirty |= visibleRegions;
1409}
1410
1411void SurfaceFlinger::invalidateHwcGeometry()
1412{
1413    mHwWorkListDirty = true;
1414}
1415
1416
1417void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1418        const Region& inDirtyRegion)
1419{
1420    Region dirtyRegion(inDirtyRegion);
1421
1422    // compute the invalid region
1423    hw->swapRegion.orSelf(dirtyRegion);
1424
1425    uint32_t flags = hw->getFlags();
1426    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1427        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1428        // takes a rectangle, we must make sure to update that whole
1429        // rectangle in that case
1430        dirtyRegion.set(hw->swapRegion.bounds());
1431    } else {
1432        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1433            // We need to redraw the rectangle that will be updated
1434            // (pushed to the framebuffer).
1435            // This is needed because PARTIAL_UPDATES only takes one
1436            // rectangle instead of a region (see DisplayDevice::flip())
1437            dirtyRegion.set(hw->swapRegion.bounds());
1438        } else {
1439            // we need to redraw everything (the whole screen)
1440            dirtyRegion.set(hw->bounds());
1441            hw->swapRegion = dirtyRegion;
1442        }
1443    }
1444
1445    doComposeSurfaces(hw, dirtyRegion);
1446
1447    // update the swap region and clear the dirty region
1448    hw->swapRegion.orSelf(dirtyRegion);
1449
1450    // swap buffers (presentation)
1451    hw->swapBuffers(getHwComposer());
1452}
1453
1454void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1455{
1456    const int32_t id = hw->getHwcDisplayId();
1457    HWComposer& hwc(getHwComposer());
1458    HWComposer::LayerListIterator cur = hwc.begin(id);
1459    const HWComposer::LayerListIterator end = hwc.end(id);
1460
1461    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1462    if (hasGlesComposition) {
1463        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1464
1465        // set the frame buffer
1466        glMatrixMode(GL_MODELVIEW);
1467        glLoadIdentity();
1468
1469        // Never touch the framebuffer if we don't have any framebuffer layers
1470        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1471        if (hasHwcComposition) {
1472            // when using overlays, we assume a fully transparent framebuffer
1473            // NOTE: we could reduce how much we need to clear, for instance
1474            // remove where there are opaque FB layers. however, on some
1475            // GPUs doing a "clean slate" glClear might be more efficient.
1476            // We'll revisit later if needed.
1477            glClearColor(0, 0, 0, 0);
1478            glClear(GL_COLOR_BUFFER_BIT);
1479        } else {
1480            const Region region(hw->undefinedRegion.intersect(dirty));
1481            // screen is already cleared here
1482            if (!region.isEmpty()) {
1483                // can happen with SurfaceView
1484                drawWormhole(hw, region);
1485            }
1486        }
1487    }
1488
1489    /*
1490     * and then, render the layers targeted at the framebuffer
1491     */
1492
1493    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1494    const size_t count = layers.size();
1495    const Transform& tr = hw->getTransform();
1496    if (cur != end) {
1497        // we're using h/w composer
1498        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1499            const sp<LayerBase>& layer(layers[i]);
1500            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1501            if (!clip.isEmpty()) {
1502                switch (cur->getCompositionType()) {
1503                    case HWC_OVERLAY: {
1504                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1505                                && i
1506                                && layer->isOpaque()
1507                                && hasGlesComposition) {
1508                            // never clear the very first layer since we're
1509                            // guaranteed the FB is already cleared
1510                            layer->clearWithOpenGL(hw, clip);
1511                        }
1512                        break;
1513                    }
1514                    case HWC_FRAMEBUFFER: {
1515                        layer->draw(hw, clip);
1516                        break;
1517                    }
1518                    case HWC_FRAMEBUFFER_TARGET: {
1519                        // this should not happen as the iterator shouldn't
1520                        // let us get there.
1521                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1522                        break;
1523                    }
1524                }
1525            }
1526            layer->setAcquireFence(hw, *cur);
1527        }
1528    } else {
1529        // we're not using h/w composer
1530        for (size_t i=0 ; i<count ; ++i) {
1531            const sp<LayerBase>& layer(layers[i]);
1532            const Region clip(dirty.intersect(
1533                    tr.transform(layer->visibleRegion)));
1534            if (!clip.isEmpty()) {
1535                layer->draw(hw, clip);
1536            }
1537        }
1538    }
1539}
1540
1541void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1542        const Region& region) const
1543{
1544    glDisable(GL_TEXTURE_EXTERNAL_OES);
1545    glDisable(GL_TEXTURE_2D);
1546    glDisable(GL_BLEND);
1547    glColor4f(0,0,0,0);
1548
1549    const int32_t height = hw->getHeight();
1550    Region::const_iterator it = region.begin();
1551    Region::const_iterator const end = region.end();
1552    while (it != end) {
1553        const Rect& r = *it++;
1554        GLfloat vertices[][2] = {
1555                { r.left,  height - r.top },
1556                { r.left,  height - r.bottom },
1557                { r.right, height - r.bottom },
1558                { r.right, height - r.top }
1559        };
1560        glVertexPointer(2, GL_FLOAT, 0, vertices);
1561        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1562    }
1563}
1564
1565ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1566        const sp<LayerBaseClient>& lbc)
1567{
1568    // attach this layer to the client
1569    size_t name = client->attachLayer(lbc);
1570
1571    // add this layer to the current state list
1572    Mutex::Autolock _l(mStateLock);
1573    mCurrentState.layersSortedByZ.add(lbc);
1574
1575    return ssize_t(name);
1576}
1577
1578status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1579{
1580    Mutex::Autolock _l(mStateLock);
1581    status_t err = purgatorizeLayer_l(layer);
1582    if (err == NO_ERROR)
1583        setTransactionFlags(eTransactionNeeded);
1584    return err;
1585}
1586
1587status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1588{
1589    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1590    if (index >= 0) {
1591        mLayersRemoved = true;
1592        return NO_ERROR;
1593    }
1594    return status_t(index);
1595}
1596
1597status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1598{
1599    // First add the layer to the purgatory list, which makes sure it won't
1600    // go away, then remove it from the main list (through a transaction).
1601    ssize_t err = removeLayer_l(layerBase);
1602    if (err >= 0) {
1603        mLayerPurgatory.add(layerBase);
1604    }
1605
1606    mLayersPendingRemoval.push(layerBase);
1607
1608    // it's possible that we don't find a layer, because it might
1609    // have been destroyed already -- this is not technically an error
1610    // from the user because there is a race between Client::destroySurface(),
1611    // ~Client() and ~ISurface().
1612    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1613}
1614
1615uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1616{
1617    return android_atomic_release_load(&mTransactionFlags);
1618}
1619
1620uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1621{
1622    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1623}
1624
1625uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1626{
1627    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1628    if ((old & flags)==0) { // wake the server up
1629        signalTransaction();
1630    }
1631    return old;
1632}
1633
1634void SurfaceFlinger::setTransactionState(
1635        const Vector<ComposerState>& state,
1636        const Vector<DisplayState>& displays,
1637        uint32_t flags)
1638{
1639    Mutex::Autolock _l(mStateLock);
1640    uint32_t transactionFlags = 0;
1641
1642    size_t count = displays.size();
1643    for (size_t i=0 ; i<count ; i++) {
1644        const DisplayState& s(displays[i]);
1645        transactionFlags |= setDisplayStateLocked(s);
1646    }
1647
1648    count = state.size();
1649    for (size_t i=0 ; i<count ; i++) {
1650        const ComposerState& s(state[i]);
1651        sp<Client> client( static_cast<Client *>(s.client.get()) );
1652        transactionFlags |= setClientStateLocked(client, s.state);
1653    }
1654
1655    if (transactionFlags) {
1656        // this triggers the transaction
1657        setTransactionFlags(transactionFlags);
1658
1659        // if this is a synchronous transaction, wait for it to take effect
1660        // before returning.
1661        if (flags & eSynchronous) {
1662            mTransationPending = true;
1663        }
1664        while (mTransationPending) {
1665            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1666            if (CC_UNLIKELY(err != NO_ERROR)) {
1667                // just in case something goes wrong in SF, return to the
1668                // called after a few seconds.
1669                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1670                mTransationPending = false;
1671                break;
1672            }
1673        }
1674    }
1675}
1676
1677uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1678{
1679    uint32_t flags = 0;
1680    DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1681    if (disp.isValid()) {
1682        const uint32_t what = s.what;
1683        if (what & DisplayState::eSurfaceChanged) {
1684            if (disp.surface->asBinder() != s.surface->asBinder()) {
1685                disp.surface = s.surface;
1686                flags |= eDisplayTransactionNeeded;
1687            }
1688        }
1689        if (what & DisplayState::eLayerStackChanged) {
1690            if (disp.layerStack != s.layerStack) {
1691                disp.layerStack = s.layerStack;
1692                flags |= eDisplayTransactionNeeded;
1693            }
1694        }
1695        if (what & DisplayState::eDisplayProjectionChanged) {
1696            if (disp.orientation != s.orientation) {
1697                disp.orientation = s.orientation;
1698                flags |= eDisplayTransactionNeeded;
1699            }
1700            if (disp.frame != s.frame) {
1701                disp.frame = s.frame;
1702                flags |= eDisplayTransactionNeeded;
1703            }
1704            if (disp.viewport != s.viewport) {
1705                disp.viewport = s.viewport;
1706                flags |= eDisplayTransactionNeeded;
1707            }
1708        }
1709    }
1710    return flags;
1711}
1712
1713uint32_t SurfaceFlinger::setClientStateLocked(
1714        const sp<Client>& client,
1715        const layer_state_t& s)
1716{
1717    uint32_t flags = 0;
1718    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1719    if (layer != 0) {
1720        const uint32_t what = s.what;
1721        if (what & layer_state_t::ePositionChanged) {
1722            if (layer->setPosition(s.x, s.y))
1723                flags |= eTraversalNeeded;
1724        }
1725        if (what & layer_state_t::eLayerChanged) {
1726            // NOTE: index needs to be calculated before we update the state
1727            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1728            if (layer->setLayer(s.z)) {
1729                mCurrentState.layersSortedByZ.removeAt(idx);
1730                mCurrentState.layersSortedByZ.add(layer);
1731                // we need traversal (state changed)
1732                // AND transaction (list changed)
1733                flags |= eTransactionNeeded|eTraversalNeeded;
1734            }
1735        }
1736        if (what & layer_state_t::eSizeChanged) {
1737            if (layer->setSize(s.w, s.h)) {
1738                flags |= eTraversalNeeded;
1739            }
1740        }
1741        if (what & layer_state_t::eAlphaChanged) {
1742            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1743                flags |= eTraversalNeeded;
1744        }
1745        if (what & layer_state_t::eMatrixChanged) {
1746            if (layer->setMatrix(s.matrix))
1747                flags |= eTraversalNeeded;
1748        }
1749        if (what & layer_state_t::eTransparentRegionChanged) {
1750            if (layer->setTransparentRegionHint(s.transparentRegion))
1751                flags |= eTraversalNeeded;
1752        }
1753        if (what & layer_state_t::eVisibilityChanged) {
1754            if (layer->setFlags(s.flags, s.mask))
1755                flags |= eTraversalNeeded;
1756        }
1757        if (what & layer_state_t::eCropChanged) {
1758            if (layer->setCrop(s.crop))
1759                flags |= eTraversalNeeded;
1760        }
1761        if (what & layer_state_t::eLayerStackChanged) {
1762            // NOTE: index needs to be calculated before we update the state
1763            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1764            if (layer->setLayerStack(s.layerStack)) {
1765                mCurrentState.layersSortedByZ.removeAt(idx);
1766                mCurrentState.layersSortedByZ.add(layer);
1767                // we need traversal (state changed)
1768                // AND transaction (list changed)
1769                flags |= eTransactionNeeded|eTraversalNeeded;
1770            }
1771        }
1772    }
1773    return flags;
1774}
1775
1776sp<ISurface> SurfaceFlinger::createLayer(
1777        ISurfaceComposerClient::surface_data_t* params,
1778        const String8& name,
1779        const sp<Client>& client,
1780       uint32_t w, uint32_t h, PixelFormat format,
1781        uint32_t flags)
1782{
1783    sp<LayerBaseClient> layer;
1784    sp<ISurface> surfaceHandle;
1785
1786    if (int32_t(w|h) < 0) {
1787        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1788                int(w), int(h));
1789        return surfaceHandle;
1790    }
1791
1792    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1793    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1794        case ISurfaceComposerClient::eFXSurfaceNormal:
1795            layer = createNormalLayer(client, w, h, flags, format);
1796            break;
1797        case ISurfaceComposerClient::eFXSurfaceBlur:
1798        case ISurfaceComposerClient::eFXSurfaceDim:
1799            layer = createDimLayer(client, w, h, flags);
1800            break;
1801        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1802            layer = createScreenshotLayer(client, w, h, flags);
1803            break;
1804    }
1805
1806    if (layer != 0) {
1807        layer->initStates(w, h, flags);
1808        layer->setName(name);
1809        ssize_t token = addClientLayer(client, layer);
1810        surfaceHandle = layer->getSurface();
1811        if (surfaceHandle != 0) {
1812            params->token = token;
1813            params->identity = layer->getIdentity();
1814        }
1815        setTransactionFlags(eTransactionNeeded);
1816    }
1817
1818    return surfaceHandle;
1819}
1820
1821sp<Layer> SurfaceFlinger::createNormalLayer(
1822        const sp<Client>& client,
1823        uint32_t w, uint32_t h, uint32_t flags,
1824        PixelFormat& format)
1825{
1826    // initialize the surfaces
1827    switch (format) {
1828    case PIXEL_FORMAT_TRANSPARENT:
1829    case PIXEL_FORMAT_TRANSLUCENT:
1830        format = PIXEL_FORMAT_RGBA_8888;
1831        break;
1832    case PIXEL_FORMAT_OPAQUE:
1833#ifdef NO_RGBX_8888
1834        format = PIXEL_FORMAT_RGB_565;
1835#else
1836        format = PIXEL_FORMAT_RGBX_8888;
1837#endif
1838        break;
1839    }
1840
1841#ifdef NO_RGBX_8888
1842    if (format == PIXEL_FORMAT_RGBX_8888)
1843        format = PIXEL_FORMAT_RGBA_8888;
1844#endif
1845
1846    sp<Layer> layer = new Layer(this, client);
1847    status_t err = layer->setBuffers(w, h, format, flags);
1848    if (CC_LIKELY(err != NO_ERROR)) {
1849        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1850        layer.clear();
1851    }
1852    return layer;
1853}
1854
1855sp<LayerDim> SurfaceFlinger::createDimLayer(
1856        const sp<Client>& client,
1857        uint32_t w, uint32_t h, uint32_t flags)
1858{
1859    sp<LayerDim> layer = new LayerDim(this, client);
1860    return layer;
1861}
1862
1863sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1864        const sp<Client>& client,
1865        uint32_t w, uint32_t h, uint32_t flags)
1866{
1867    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1868    return layer;
1869}
1870
1871status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1872{
1873    /*
1874     * called by the window manager, when a surface should be marked for
1875     * destruction.
1876     *
1877     * The surface is removed from the current and drawing lists, but placed
1878     * in the purgatory queue, so it's not destroyed right-away (we need
1879     * to wait for all client's references to go away first).
1880     */
1881
1882    status_t err = NAME_NOT_FOUND;
1883    Mutex::Autolock _l(mStateLock);
1884    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1885
1886    if (layer != 0) {
1887        err = purgatorizeLayer_l(layer);
1888        if (err == NO_ERROR) {
1889            setTransactionFlags(eTransactionNeeded);
1890        }
1891    }
1892    return err;
1893}
1894
1895status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1896{
1897    // called by ~ISurface() when all references are gone
1898    status_t err = NO_ERROR;
1899    sp<LayerBaseClient> l(layer.promote());
1900    if (l != NULL) {
1901        Mutex::Autolock _l(mStateLock);
1902        err = removeLayer_l(l);
1903        if (err == NAME_NOT_FOUND) {
1904            // The surface wasn't in the current list, which means it was
1905            // removed already, which means it is in the purgatory,
1906            // and need to be removed from there.
1907            ssize_t idx = mLayerPurgatory.remove(l);
1908            ALOGE_IF(idx < 0,
1909                    "layer=%p is not in the purgatory list", l.get());
1910        }
1911        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1912                "error removing layer=%p (%s)", l.get(), strerror(-err));
1913    }
1914    return err;
1915}
1916
1917// ---------------------------------------------------------------------------
1918
1919void SurfaceFlinger::onInitializeDisplays() {
1920    // reset screen orientation
1921    Vector<ComposerState> state;
1922    Vector<DisplayState> displays;
1923    DisplayState d;
1924    d.what = DisplayState::eDisplayProjectionChanged;
1925    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1926    d.orientation = DisplayState::eOrientationDefault;
1927    d.frame.makeInvalid();
1928    d.viewport.makeInvalid();
1929    displays.add(d);
1930    setTransactionState(state, displays, 0);
1931    onScreenAcquired(getDefaultDisplayDevice());
1932}
1933
1934void SurfaceFlinger::initializeDisplays() {
1935    class MessageScreenInitialized : public MessageBase {
1936        SurfaceFlinger* flinger;
1937    public:
1938        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1939        virtual bool handler() {
1940            flinger->onInitializeDisplays();
1941            return true;
1942        }
1943    };
1944    sp<MessageBase> msg = new MessageScreenInitialized(this);
1945    postMessageAsync(msg);  // we may be called from main thread, use async message
1946}
1947
1948
1949void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
1950    ALOGD("Screen about to return, flinger = %p", this);
1951    getHwComposer().acquire();
1952    hw->acquireScreen();
1953    if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1954        // FIXME: eventthread only knows about the main display right now
1955        mEventThread->onScreenAcquired();
1956    }
1957    mVisibleRegionsDirty = true;
1958    repaintEverything();
1959}
1960
1961void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
1962    ALOGD("About to give-up screen, flinger = %p", this);
1963    if (hw->isScreenAcquired()) {
1964        if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1965            // FIXME: eventthread only knows about the main display right now
1966            mEventThread->onScreenReleased();
1967        }
1968        hw->releaseScreen();
1969        getHwComposer().release();
1970        mVisibleRegionsDirty = true;
1971        // from this point on, SF will stop drawing
1972    }
1973}
1974
1975void SurfaceFlinger::unblank() {
1976    class MessageScreenAcquired : public MessageBase {
1977        SurfaceFlinger* flinger;
1978    public:
1979        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1980        virtual bool handler() {
1981            // FIXME: should this be per-display?
1982            flinger->onScreenAcquired(flinger->getDefaultDisplayDevice());
1983            return true;
1984        }
1985    };
1986    sp<MessageBase> msg = new MessageScreenAcquired(this);
1987    postMessageSync(msg);
1988}
1989
1990void SurfaceFlinger::blank() {
1991    class MessageScreenReleased : public MessageBase {
1992        SurfaceFlinger* flinger;
1993    public:
1994        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1995        virtual bool handler() {
1996            // FIXME: should this be per-display?
1997            flinger->onScreenReleased(flinger->getDefaultDisplayDevice());
1998            return true;
1999        }
2000    };
2001    sp<MessageBase> msg = new MessageScreenReleased(this);
2002    postMessageSync(msg);
2003}
2004
2005// ---------------------------------------------------------------------------
2006
2007status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2008{
2009    const size_t SIZE = 4096;
2010    char buffer[SIZE];
2011    String8 result;
2012
2013    if (!PermissionCache::checkCallingPermission(sDump)) {
2014        snprintf(buffer, SIZE, "Permission Denial: "
2015                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2016                IPCThreadState::self()->getCallingPid(),
2017                IPCThreadState::self()->getCallingUid());
2018        result.append(buffer);
2019    } else {
2020        // Try to get the main lock, but don't insist if we can't
2021        // (this would indicate SF is stuck, but we want to be able to
2022        // print something in dumpsys).
2023        int retry = 3;
2024        while (mStateLock.tryLock()<0 && --retry>=0) {
2025            usleep(1000000);
2026        }
2027        const bool locked(retry >= 0);
2028        if (!locked) {
2029            snprintf(buffer, SIZE,
2030                    "SurfaceFlinger appears to be unresponsive, "
2031                    "dumping anyways (no locks held)\n");
2032            result.append(buffer);
2033        }
2034
2035        bool dumpAll = true;
2036        size_t index = 0;
2037        size_t numArgs = args.size();
2038        if (numArgs) {
2039            if ((index < numArgs) &&
2040                    (args[index] == String16("--list"))) {
2041                index++;
2042                listLayersLocked(args, index, result, buffer, SIZE);
2043                dumpAll = false;
2044            }
2045
2046            if ((index < numArgs) &&
2047                    (args[index] == String16("--latency"))) {
2048                index++;
2049                dumpStatsLocked(args, index, result, buffer, SIZE);
2050                dumpAll = false;
2051            }
2052
2053            if ((index < numArgs) &&
2054                    (args[index] == String16("--latency-clear"))) {
2055                index++;
2056                clearStatsLocked(args, index, result, buffer, SIZE);
2057                dumpAll = false;
2058            }
2059        }
2060
2061        if (dumpAll) {
2062            dumpAllLocked(result, buffer, SIZE);
2063        }
2064
2065        if (locked) {
2066            mStateLock.unlock();
2067        }
2068    }
2069    write(fd, result.string(), result.size());
2070    return NO_ERROR;
2071}
2072
2073void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2074        String8& result, char* buffer, size_t SIZE) const
2075{
2076    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2077    const size_t count = currentLayers.size();
2078    for (size_t i=0 ; i<count ; i++) {
2079        const sp<LayerBase>& layer(currentLayers[i]);
2080        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2081        result.append(buffer);
2082    }
2083}
2084
2085void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2086        String8& result, char* buffer, size_t SIZE) const
2087{
2088    String8 name;
2089    if (index < args.size()) {
2090        name = String8(args[index]);
2091        index++;
2092    }
2093
2094    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2095    const size_t count = currentLayers.size();
2096    for (size_t i=0 ; i<count ; i++) {
2097        const sp<LayerBase>& layer(currentLayers[i]);
2098        if (name.isEmpty()) {
2099            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2100            result.append(buffer);
2101        }
2102        if (name.isEmpty() || (name == layer->getName())) {
2103            layer->dumpStats(result, buffer, SIZE);
2104        }
2105    }
2106}
2107
2108void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2109        String8& result, char* buffer, size_t SIZE) const
2110{
2111    String8 name;
2112    if (index < args.size()) {
2113        name = String8(args[index]);
2114        index++;
2115    }
2116
2117    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2118    const size_t count = currentLayers.size();
2119    for (size_t i=0 ; i<count ; i++) {
2120        const sp<LayerBase>& layer(currentLayers[i]);
2121        if (name.isEmpty() || (name == layer->getName())) {
2122            layer->clearStats();
2123        }
2124    }
2125}
2126
2127/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2128{
2129    static const char* config =
2130            " [sf"
2131#ifdef NO_RGBX_8888
2132            " NO_RGBX_8888"
2133#endif
2134#ifdef HAS_CONTEXT_PRIORITY
2135            " HAS_CONTEXT_PRIORITY"
2136#endif
2137#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2138            " NEVER_DEFAULT_TO_ASYNC_MODE"
2139#endif
2140#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2141            " TARGET_DISABLE_TRIPLE_BUFFERING"
2142#endif
2143            "]";
2144    result.append(config);
2145}
2146
2147void SurfaceFlinger::dumpAllLocked(
2148        String8& result, char* buffer, size_t SIZE) const
2149{
2150    // figure out if we're stuck somewhere
2151    const nsecs_t now = systemTime();
2152    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2153    const nsecs_t inTransaction(mDebugInTransaction);
2154    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2155    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2156
2157    /*
2158     * Dump library configuration.
2159     */
2160    result.append("Build configuration:");
2161    appendSfConfigString(result);
2162    appendUiConfigString(result);
2163    appendGuiConfigString(result);
2164    result.append("\n");
2165
2166    /*
2167     * Dump the visible layer list
2168     */
2169    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2170    const size_t count = currentLayers.size();
2171    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2172    result.append(buffer);
2173    for (size_t i=0 ; i<count ; i++) {
2174        const sp<LayerBase>& layer(currentLayers[i]);
2175        layer->dump(result, buffer, SIZE);
2176    }
2177
2178    /*
2179     * Dump the layers in the purgatory
2180     */
2181
2182    const size_t purgatorySize = mLayerPurgatory.size();
2183    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2184    result.append(buffer);
2185    for (size_t i=0 ; i<purgatorySize ; i++) {
2186        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2187        layer->shortDump(result, buffer, SIZE);
2188    }
2189
2190    /*
2191     * Dump Display state
2192     */
2193
2194    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2195    result.append(buffer);
2196    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2197        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2198        hw->dump(result, buffer, SIZE);
2199    }
2200
2201    /*
2202     * Dump SurfaceFlinger global state
2203     */
2204
2205    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2206    result.append(buffer);
2207
2208    HWComposer& hwc(getHwComposer());
2209    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2210    const GLExtensions& extensions(GLExtensions::getInstance());
2211    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2212            extensions.getVendor(),
2213            extensions.getRenderer(),
2214            extensions.getVersion());
2215    result.append(buffer);
2216
2217    snprintf(buffer, SIZE, "EGL : %s\n",
2218            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2219    result.append(buffer);
2220
2221    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2222    result.append(buffer);
2223
2224    hw->undefinedRegion.dump(result, "undefinedRegion");
2225    snprintf(buffer, SIZE,
2226            "  orientation=%d, canDraw=%d\n",
2227            hw->getOrientation(), hw->canDraw());
2228    result.append(buffer);
2229    snprintf(buffer, SIZE,
2230            "  last eglSwapBuffers() time: %f us\n"
2231            "  last transaction time     : %f us\n"
2232            "  transaction-flags         : %08x\n"
2233            "  refresh-rate              : %f fps\n"
2234            "  x-dpi                     : %f\n"
2235            "  y-dpi                     : %f\n",
2236            mLastSwapBufferTime/1000.0,
2237            mLastTransactionTime/1000.0,
2238            mTransactionFlags,
2239            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2240            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2241            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2242    result.append(buffer);
2243
2244    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2245            inSwapBuffersDuration/1000.0);
2246    result.append(buffer);
2247
2248    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2249            inTransactionDuration/1000.0);
2250    result.append(buffer);
2251
2252    /*
2253     * VSYNC state
2254     */
2255    mEventThread->dump(result, buffer, SIZE);
2256
2257    /*
2258     * Dump HWComposer state
2259     */
2260    snprintf(buffer, SIZE, "h/w composer state:\n");
2261    result.append(buffer);
2262    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2263            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2264                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2265    result.append(buffer);
2266    hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2267
2268    /*
2269     * Dump gralloc state
2270     */
2271    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2272    alloc.dump(result);
2273}
2274
2275bool SurfaceFlinger::startDdmConnection()
2276{
2277    void* libddmconnection_dso =
2278            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2279    if (!libddmconnection_dso) {
2280        return false;
2281    }
2282    void (*DdmConnection_start)(const char* name);
2283    DdmConnection_start =
2284            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2285    if (!DdmConnection_start) {
2286        dlclose(libddmconnection_dso);
2287        return false;
2288    }
2289    (*DdmConnection_start)(getServiceName());
2290    return true;
2291}
2292
2293status_t SurfaceFlinger::onTransact(
2294    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2295{
2296    switch (code) {
2297        case CREATE_CONNECTION:
2298        case SET_TRANSACTION_STATE:
2299        case BOOT_FINISHED:
2300        case BLANK:
2301        case UNBLANK:
2302        {
2303            // codes that require permission check
2304            IPCThreadState* ipc = IPCThreadState::self();
2305            const int pid = ipc->getCallingPid();
2306            const int uid = ipc->getCallingUid();
2307            if ((uid != AID_GRAPHICS) &&
2308                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2309                ALOGE("Permission Denial: "
2310                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2311                return PERMISSION_DENIED;
2312            }
2313            break;
2314        }
2315        case CAPTURE_SCREEN:
2316        {
2317            // codes that require permission check
2318            IPCThreadState* ipc = IPCThreadState::self();
2319            const int pid = ipc->getCallingPid();
2320            const int uid = ipc->getCallingUid();
2321            if ((uid != AID_GRAPHICS) &&
2322                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2323                ALOGE("Permission Denial: "
2324                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2325                return PERMISSION_DENIED;
2326            }
2327            break;
2328        }
2329    }
2330
2331    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2332    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2333        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2334        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2335            IPCThreadState* ipc = IPCThreadState::self();
2336            const int pid = ipc->getCallingPid();
2337            const int uid = ipc->getCallingUid();
2338            ALOGE("Permission Denial: "
2339                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2340            return PERMISSION_DENIED;
2341        }
2342        int n;
2343        switch (code) {
2344            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2345            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2346                return NO_ERROR;
2347            case 1002:  // SHOW_UPDATES
2348                n = data.readInt32();
2349                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2350                invalidateHwcGeometry();
2351                repaintEverything();
2352                return NO_ERROR;
2353            case 1004:{ // repaint everything
2354                repaintEverything();
2355                return NO_ERROR;
2356            }
2357            case 1005:{ // force transaction
2358                setTransactionFlags(
2359                        eTransactionNeeded|
2360                        eDisplayTransactionNeeded|
2361                        eTraversalNeeded);
2362                return NO_ERROR;
2363            }
2364            case 1006:{ // send empty update
2365                signalRefresh();
2366                return NO_ERROR;
2367            }
2368            case 1008:  // toggle use of hw composer
2369                n = data.readInt32();
2370                mDebugDisableHWC = n ? 1 : 0;
2371                invalidateHwcGeometry();
2372                repaintEverything();
2373                return NO_ERROR;
2374            case 1009:  // toggle use of transform hint
2375                n = data.readInt32();
2376                mDebugDisableTransformHint = n ? 1 : 0;
2377                invalidateHwcGeometry();
2378                repaintEverything();
2379                return NO_ERROR;
2380            case 1010:  // interrogate.
2381                reply->writeInt32(0);
2382                reply->writeInt32(0);
2383                reply->writeInt32(mDebugRegion);
2384                reply->writeInt32(0);
2385                reply->writeInt32(mDebugDisableHWC);
2386                return NO_ERROR;
2387            case 1013: {
2388                Mutex::Autolock _l(mStateLock);
2389                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2390                reply->writeInt32(hw->getPageFlipCount());
2391            }
2392            return NO_ERROR;
2393        }
2394    }
2395    return err;
2396}
2397
2398void SurfaceFlinger::repaintEverything() {
2399    android_atomic_or(1, &mRepaintEverything);
2400    signalTransaction();
2401}
2402
2403// ---------------------------------------------------------------------------
2404
2405status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2406        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2407{
2408    Mutex::Autolock _l(mStateLock);
2409    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2410}
2411
2412status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2413        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2414{
2415    ATRACE_CALL();
2416
2417    if (!GLExtensions::getInstance().haveFramebufferObject())
2418        return INVALID_OPERATION;
2419
2420    // get screen geometry
2421    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2422    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2423    const uint32_t hw_w = hw->getWidth();
2424    const uint32_t hw_h = hw->getHeight();
2425    GLfloat u = 1;
2426    GLfloat v = 1;
2427
2428    // make sure to clear all GL error flags
2429    while ( glGetError() != GL_NO_ERROR ) ;
2430
2431    // create a FBO
2432    GLuint name, tname;
2433    glGenTextures(1, &tname);
2434    glBindTexture(GL_TEXTURE_2D, tname);
2435    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2436    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2437    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2438            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2439    if (glGetError() != GL_NO_ERROR) {
2440        while ( glGetError() != GL_NO_ERROR ) ;
2441        GLint tw = (2 << (31 - clz(hw_w)));
2442        GLint th = (2 << (31 - clz(hw_h)));
2443        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2444                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2445        u = GLfloat(hw_w) / tw;
2446        v = GLfloat(hw_h) / th;
2447    }
2448    glGenFramebuffersOES(1, &name);
2449    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2450    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2451            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2452
2453    // redraw the screen entirely...
2454    glDisable(GL_TEXTURE_EXTERNAL_OES);
2455    glDisable(GL_TEXTURE_2D);
2456    glClearColor(0,0,0,1);
2457    glClear(GL_COLOR_BUFFER_BIT);
2458    glMatrixMode(GL_MODELVIEW);
2459    glLoadIdentity();
2460    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2461    const size_t count = layers.size();
2462    for (size_t i=0 ; i<count ; ++i) {
2463        const sp<LayerBase>& layer(layers[i]);
2464        layer->draw(hw);
2465    }
2466
2467    hw->compositionComplete();
2468
2469    // back to main framebuffer
2470    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2471    glDeleteFramebuffersOES(1, &name);
2472
2473    *textureName = tname;
2474    *uOut = u;
2475    *vOut = v;
2476    return NO_ERROR;
2477}
2478
2479// ---------------------------------------------------------------------------
2480
2481status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2482        sp<IMemoryHeap>* heap,
2483        uint32_t* w, uint32_t* h, PixelFormat* f,
2484        uint32_t sw, uint32_t sh,
2485        uint32_t minLayerZ, uint32_t maxLayerZ)
2486{
2487    ATRACE_CALL();
2488
2489    status_t result = PERMISSION_DENIED;
2490
2491    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2492        return INVALID_OPERATION;
2493    }
2494
2495    // get screen geometry
2496    sp<const DisplayDevice> hw(getDisplayDevice(display));
2497    const uint32_t hw_w = hw->getWidth();
2498    const uint32_t hw_h = hw->getHeight();
2499
2500    // if we have secure windows on this display, never allow the screen capture
2501    if (hw->getSecureLayerVisible()) {
2502        ALOGW("FB is protected: PERMISSION_DENIED");
2503        return PERMISSION_DENIED;
2504    }
2505
2506    if ((sw > hw_w) || (sh > hw_h)) {
2507        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2508        return BAD_VALUE;
2509    }
2510
2511    sw = (!sw) ? hw_w : sw;
2512    sh = (!sh) ? hw_h : sh;
2513    const size_t size = sw * sh * 4;
2514    const bool filtering = sw != hw_w || sh != hw_h;
2515
2516//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2517//            sw, sh, minLayerZ, maxLayerZ);
2518
2519    // make sure to clear all GL error flags
2520    while ( glGetError() != GL_NO_ERROR ) ;
2521
2522    // create a FBO
2523    GLuint name, tname;
2524    glGenRenderbuffersOES(1, &tname);
2525    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2526    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2527
2528    glGenFramebuffersOES(1, &name);
2529    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2530    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2531            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2532
2533    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2534
2535    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2536
2537        // invert everything, b/c glReadPixel() below will invert the FB
2538        glViewport(0, 0, sw, sh);
2539        glMatrixMode(GL_PROJECTION);
2540        glPushMatrix();
2541        glLoadIdentity();
2542        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2543        glMatrixMode(GL_MODELVIEW);
2544
2545        // redraw the screen entirely...
2546        glClearColor(0,0,0,1);
2547        glClear(GL_COLOR_BUFFER_BIT);
2548
2549        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2550        const size_t count = layers.size();
2551        for (size_t i=0 ; i<count ; ++i) {
2552            const sp<LayerBase>& layer(layers[i]);
2553            const uint32_t z = layer->drawingState().z;
2554            if (z >= minLayerZ && z <= maxLayerZ) {
2555                if (filtering) layer->setFiltering(true);
2556                layer->draw(hw);
2557                if (filtering) layer->setFiltering(false);
2558            }
2559        }
2560
2561        // check for errors and return screen capture
2562        if (glGetError() != GL_NO_ERROR) {
2563            // error while rendering
2564            result = INVALID_OPERATION;
2565        } else {
2566            // allocate shared memory large enough to hold the
2567            // screen capture
2568            sp<MemoryHeapBase> base(
2569                    new MemoryHeapBase(size, 0, "screen-capture") );
2570            void* const ptr = base->getBase();
2571            if (ptr != MAP_FAILED) {
2572                // capture the screen with glReadPixels()
2573                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2574                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2575                if (glGetError() == GL_NO_ERROR) {
2576                    *heap = base;
2577                    *w = sw;
2578                    *h = sh;
2579                    *f = PIXEL_FORMAT_RGBA_8888;
2580                    result = NO_ERROR;
2581                }
2582            } else {
2583                result = NO_MEMORY;
2584            }
2585        }
2586        glViewport(0, 0, hw_w, hw_h);
2587        glMatrixMode(GL_PROJECTION);
2588        glPopMatrix();
2589        glMatrixMode(GL_MODELVIEW);
2590    } else {
2591        result = BAD_VALUE;
2592    }
2593
2594    // release FBO resources
2595    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2596    glDeleteRenderbuffersOES(1, &tname);
2597    glDeleteFramebuffersOES(1, &name);
2598
2599    hw->compositionComplete();
2600
2601//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2602
2603    return result;
2604}
2605
2606
2607status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2608        sp<IMemoryHeap>* heap,
2609        uint32_t* width, uint32_t* height, PixelFormat* format,
2610        uint32_t sw, uint32_t sh,
2611        uint32_t minLayerZ, uint32_t maxLayerZ)
2612{
2613    if (CC_UNLIKELY(display == 0))
2614        return BAD_VALUE;
2615
2616    if (!GLExtensions::getInstance().haveFramebufferObject())
2617        return INVALID_OPERATION;
2618
2619    class MessageCaptureScreen : public MessageBase {
2620        SurfaceFlinger* flinger;
2621        sp<IBinder> display;
2622        sp<IMemoryHeap>* heap;
2623        uint32_t* w;
2624        uint32_t* h;
2625        PixelFormat* f;
2626        uint32_t sw;
2627        uint32_t sh;
2628        uint32_t minLayerZ;
2629        uint32_t maxLayerZ;
2630        status_t result;
2631    public:
2632        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2633                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2634                uint32_t sw, uint32_t sh,
2635                uint32_t minLayerZ, uint32_t maxLayerZ)
2636            : flinger(flinger), display(display),
2637              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2638              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2639              result(PERMISSION_DENIED)
2640        {
2641        }
2642        status_t getResult() const {
2643            return result;
2644        }
2645        virtual bool handler() {
2646            Mutex::Autolock _l(flinger->mStateLock);
2647            result = flinger->captureScreenImplLocked(display,
2648                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2649            return true;
2650        }
2651    };
2652
2653    sp<MessageBase> msg = new MessageCaptureScreen(this,
2654            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2655    status_t res = postMessageSync(msg);
2656    if (res == NO_ERROR) {
2657        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2658    }
2659    return res;
2660}
2661
2662// ---------------------------------------------------------------------------
2663
2664SurfaceFlinger::LayerVector::LayerVector() {
2665}
2666
2667SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2668    : SortedVector<sp<LayerBase> >(rhs) {
2669}
2670
2671int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2672    const void* rhs) const
2673{
2674    // sort layers per layer-stack, then by z-order and finally by sequence
2675    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2676    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2677
2678    uint32_t ls = l->currentState().layerStack;
2679    uint32_t rs = r->currentState().layerStack;
2680    if (ls != rs)
2681        return ls - rs;
2682
2683    uint32_t lz = l->currentState().z;
2684    uint32_t rz = r->currentState().z;
2685    if (lz != rz)
2686        return lz - rz;
2687
2688    return l->sequence - r->sequence;
2689}
2690
2691// ---------------------------------------------------------------------------
2692
2693SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2694    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2695}
2696
2697SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2698    : type(type), layerStack(0), orientation(0) {
2699    viewport.makeInvalid();
2700    frame.makeInvalid();
2701}
2702
2703// ---------------------------------------------------------------------------
2704
2705}; // namespace android
2706