SurfaceFlinger.cpp revision 8785578391eacd4192333d7b0ce3afedd7d163e6
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23
24#include <EGL/egl.h>
25#include <GLES/gl.h>
26
27#include <cutils/log.h>
28#include <cutils/properties.h>
29
30#include <binder/IPCThreadState.h>
31#include <binder/IServiceManager.h>
32#include <binder/MemoryHeapBase.h>
33#include <binder/PermissionCache.h>
34
35#include <gui/IDisplayEventConnection.h>
36#include <gui/BitTube.h>
37#include <gui/SurfaceTextureClient.h>
38
39#include <ui/GraphicBufferAllocator.h>
40#include <ui/PixelFormat.h>
41
42#include <utils/String8.h>
43#include <utils/String16.h>
44#include <utils/StopWatch.h>
45#include <utils/Trace.h>
46
47#include <private/android_filesystem_config.h>
48#include <private/gui/SharedBufferStack.h>
49
50#include "clz.h"
51#include "DdmConnection.h"
52#include "DisplayHardware.h"
53#include "Client.h"
54#include "EventThread.h"
55#include "GLExtensions.h"
56#include "Layer.h"
57#include "LayerDim.h"
58#include "LayerScreenshot.h"
59#include "SurfaceFlinger.h"
60
61#include "DisplayHardware/FramebufferSurface.h"
62#include "DisplayHardware/HWComposer.h"
63
64
65#define EGL_VERSION_HW_ANDROID  0x3143
66
67#define DISPLAY_COUNT       1
68
69namespace android {
70// ---------------------------------------------------------------------------
71
72const String16 sHardwareTest("android.permission.HARDWARE_TEST");
73const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
74const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
75const String16 sDump("android.permission.DUMP");
76
77// ---------------------------------------------------------------------------
78
79SurfaceFlinger::SurfaceFlinger()
80    :   BnSurfaceComposer(), Thread(false),
81        mTransactionFlags(0),
82        mTransationPending(false),
83        mLayersRemoved(false),
84        mBootTime(systemTime()),
85        mVisibleRegionsDirty(false),
86        mHwWorkListDirty(false),
87        mElectronBeamAnimationMode(0),
88        mDebugRegion(0),
89        mDebugDDMS(0),
90        mDebugDisableHWC(0),
91        mDebugDisableTransformHint(0),
92        mDebugInSwapBuffers(0),
93        mLastSwapBufferTime(0),
94        mDebugInTransaction(0),
95        mLastTransactionTime(0),
96        mBootFinished(false),
97        mExternalDisplaySurface(EGL_NO_SURFACE)
98{
99    ALOGI("SurfaceFlinger is starting");
100
101    // debugging stuff...
102    char value[PROPERTY_VALUE_MAX];
103
104    property_get("debug.sf.showupdates", value, "0");
105    mDebugRegion = atoi(value);
106
107#ifdef DDMS_DEBUGGING
108    property_get("debug.sf.ddms", value, "0");
109    mDebugDDMS = atoi(value);
110    if (mDebugDDMS) {
111        DdmConnection::start(getServiceName());
112    }
113#else
114#warning "DDMS_DEBUGGING disabled"
115#endif
116
117    ALOGI_IF(mDebugRegion,       "showupdates enabled");
118    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
119}
120
121void SurfaceFlinger::onFirstRef()
122{
123    mEventQueue.init(this);
124
125    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
126
127    // Wait for the main thread to be done with its initialization
128    mReadyToRunBarrier.wait();
129}
130
131
132SurfaceFlinger::~SurfaceFlinger()
133{
134    glDeleteTextures(1, &mWormholeTexName);
135    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
136    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
137    eglTerminate(display);
138}
139
140void SurfaceFlinger::binderDied(const wp<IBinder>& who)
141{
142    // the window manager died on us. prepare its eulogy.
143
144    // reset screen orientation
145    Vector<ComposerState> state;
146    Vector<DisplayState> displays;
147    DisplayState d;
148    d.orientation = eOrientationDefault;
149    displays.add(d);
150    setTransactionState(state, displays, 0);
151
152    // restart the boot-animation
153    startBootAnim();
154}
155
156sp<IMemoryHeap> SurfaceFlinger::getCblk() const
157{
158    return mServerHeap;
159}
160
161sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
162{
163    sp<ISurfaceComposerClient> bclient;
164    sp<Client> client(new Client(this));
165    status_t err = client->initCheck();
166    if (err == NO_ERROR) {
167        bclient = client;
168    }
169    return bclient;
170}
171
172sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
173{
174    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
175    return gba;
176}
177
178void SurfaceFlinger::bootFinished()
179{
180    const nsecs_t now = systemTime();
181    const nsecs_t duration = now - mBootTime;
182    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
183    mBootFinished = true;
184
185    // wait patiently for the window manager death
186    const String16 name("window");
187    sp<IBinder> window(defaultServiceManager()->getService(name));
188    if (window != 0) {
189        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
190    }
191
192    // stop boot animation
193    // formerly we would just kill the process, but we now ask it to exit so it
194    // can choose where to stop the animation.
195    property_set("service.bootanim.exit", "1");
196}
197
198void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
199    class MessageDestroyGLTexture : public MessageBase {
200        GLuint texture;
201    public:
202        MessageDestroyGLTexture(GLuint texture)
203            : texture(texture) {
204        }
205        virtual bool handler() {
206            glDeleteTextures(1, &texture);
207            return true;
208        }
209    };
210    postMessageAsync(new MessageDestroyGLTexture(texture));
211}
212
213status_t SurfaceFlinger::selectConfigForPixelFormat(
214        EGLDisplay dpy,
215        EGLint const* attrs,
216        PixelFormat format,
217        EGLConfig* outConfig)
218{
219    EGLConfig config = NULL;
220    EGLint numConfigs = -1, n=0;
221    eglGetConfigs(dpy, NULL, 0, &numConfigs);
222    EGLConfig* const configs = new EGLConfig[numConfigs];
223    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
224    for (int i=0 ; i<n ; i++) {
225        EGLint nativeVisualId = 0;
226        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
227        if (nativeVisualId>0 && format == nativeVisualId) {
228            *outConfig = configs[i];
229            delete [] configs;
230            return NO_ERROR;
231        }
232    }
233    delete [] configs;
234    return NAME_NOT_FOUND;
235}
236
237EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
238    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
239    // it is to be used with WIFI displays
240    EGLConfig config;
241    EGLint dummy;
242    status_t err;
243    EGLint attribs[] = {
244            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
245            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
246            EGL_NONE
247    };
248    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
249    if (err) {
250        // maybe we failed because of EGL_RECORDABLE_ANDROID
251        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
252        attribs[2] = EGL_NONE;
253        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
254    }
255    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
256    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
257        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
258    }
259    return config;
260}
261
262EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
263    // Also create our EGLContext
264    EGLint contextAttributes[] = {
265#ifdef EGL_IMG_context_priority
266#ifdef HAS_CONTEXT_PRIORITY
267#warning "using EGL_IMG_context_priority"
268            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
269#endif
270#endif
271            EGL_NONE, EGL_NONE
272    };
273    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
274    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
275    return ctxt;
276}
277
278void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
279    EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
280    if (!result) {
281        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
282        exit(0);
283    }
284
285    GLExtensions& extensions(GLExtensions::getInstance());
286    extensions.initWithGLStrings(
287            glGetString(GL_VENDOR),
288            glGetString(GL_RENDERER),
289            glGetString(GL_VERSION),
290            glGetString(GL_EXTENSIONS),
291            eglQueryString(display, EGL_VENDOR),
292            eglQueryString(display, EGL_VERSION),
293            eglQueryString(display, EGL_EXTENSIONS));
294
295    EGLint w, h;
296    eglQuerySurface(display, surface, EGL_WIDTH,  &w);
297    eglQuerySurface(display, surface, EGL_HEIGHT, &h);
298
299    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
300    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
301
302    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
303    glPixelStorei(GL_PACK_ALIGNMENT, 4);
304    glEnableClientState(GL_VERTEX_ARRAY);
305    glShadeModel(GL_FLAT);
306    glDisable(GL_DITHER);
307    glDisable(GL_CULL_FACE);
308
309    struct pack565 {
310        inline uint16_t operator() (int r, int g, int b) const {
311            return (r<<11)|(g<<5)|b;
312        }
313    } pack565;
314
315    const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
316    const uint16_t g1 = pack565(0x17,0x2f,0x17);
317    const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
318    glGenTextures(1, &mWormholeTexName);
319    glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
320    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
321    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
322    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
323    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
324    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
325            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
326
327    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
328    glGenTextures(1, &mProtectedTexName);
329    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
330    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
331    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
332    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
333    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
334    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
335            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
336
337    glViewport(0, 0, w, h);
338    glMatrixMode(GL_PROJECTION);
339    glLoadIdentity();
340    // put the origin in the left-bottom corner
341    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
342
343    // print some debugging info
344    EGLint r,g,b,a;
345    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
346    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
347    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
348    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
349    ALOGI("EGL informations:");
350    ALOGI("vendor    : %s", extensions.getEglVendor());
351    ALOGI("version   : %s", extensions.getEglVersion());
352    ALOGI("extensions: %s", extensions.getEglExtension());
353    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
354    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
355    ALOGI("OpenGL ES informations:");
356    ALOGI("vendor    : %s", extensions.getVendor());
357    ALOGI("renderer  : %s", extensions.getRenderer());
358    ALOGI("version   : %s", extensions.getVersion());
359    ALOGI("extensions: %s", extensions.getExtension());
360    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
361    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
362}
363
364surface_flinger_cblk_t* SurfaceFlinger::getControlBlock() const {
365    return mServerCblk;
366}
367
368status_t SurfaceFlinger::readyToRun()
369{
370    ALOGI(  "SurfaceFlinger's main thread ready to run. "
371            "Initializing graphics H/W...");
372
373    // create the shared control-block
374    mServerHeap = new MemoryHeapBase(4096,
375            MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
376    ALOGE_IF(mServerHeap==0, "can't create shared memory dealer");
377    mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
378    ALOGE_IF(mServerCblk==0, "can't get to shared control block's address");
379    new(mServerCblk) surface_flinger_cblk_t;
380
381
382    // initialize EGL
383    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
384    eglInitialize(display, NULL, NULL);
385
386    // Initialize the main display
387    // create native window to main display
388    sp<FramebufferSurface> anw = FramebufferSurface::create();
389    ANativeWindow* const window = anw.get();
390    if (!window) {
391        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
392        exit(0);
393    }
394
395    // initialize the config and context
396    int format;
397    window->query(window, NATIVE_WINDOW_FORMAT, &format);
398    mEGLConfig  = selectEGLConfig(display, format);
399    mEGLContext = createGLContext(display, mEGLConfig);
400
401    // initialize our main display hardware
402    DisplayHardware* const hw = new DisplayHardware(this, 0, anw, mEGLConfig);
403    mDisplayHardwares[0] = hw;
404
405    //  initialize OpenGL ES
406    EGLSurface surface = hw->getEGLSurface();
407    initializeGL(display, surface);
408
409    // start the EventThread
410    mEventThread = new EventThread(this);
411    mEventQueue.setEventThread(mEventThread);
412
413    // We're now ready to accept clients...
414    mReadyToRunBarrier.open();
415
416    // start boot animation
417    startBootAnim();
418
419    return NO_ERROR;
420}
421
422void SurfaceFlinger::startBootAnim() {
423    // start boot animation
424    property_set("service.bootanim.exit", "0");
425    property_set("ctl.start", "bootanim");
426}
427
428uint32_t SurfaceFlinger::getMaxTextureSize() const {
429    return mMaxTextureSize;
430}
431
432uint32_t SurfaceFlinger::getMaxViewportDims() const {
433    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
434            mMaxViewportDims[0] : mMaxViewportDims[1];
435}
436
437// ----------------------------------------------------------------------------
438
439bool SurfaceFlinger::authenticateSurfaceTexture(
440        const sp<ISurfaceTexture>& surfaceTexture) const {
441    Mutex::Autolock _l(mStateLock);
442    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
443
444    // Check the visible layer list for the ISurface
445    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
446    size_t count = currentLayers.size();
447    for (size_t i=0 ; i<count ; i++) {
448        const sp<LayerBase>& layer(currentLayers[i]);
449        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
450        if (lbc != NULL) {
451            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
452            if (lbcBinder == surfaceTextureBinder) {
453                return true;
454            }
455        }
456    }
457
458    // Check the layers in the purgatory.  This check is here so that if a
459    // SurfaceTexture gets destroyed before all the clients are done using it,
460    // the error will not be reported as "surface XYZ is not authenticated", but
461    // will instead fail later on when the client tries to use the surface,
462    // which should be reported as "surface XYZ returned an -ENODEV".  The
463    // purgatorized layers are no less authentic than the visible ones, so this
464    // should not cause any harm.
465    size_t purgatorySize =  mLayerPurgatory.size();
466    for (size_t i=0 ; i<purgatorySize ; i++) {
467        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
468        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
469        if (lbc != NULL) {
470            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
471            if (lbcBinder == surfaceTextureBinder) {
472                return true;
473            }
474        }
475    }
476
477    return false;
478}
479
480// ----------------------------------------------------------------------------
481
482sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
483    return mEventThread->createEventConnection();
484}
485
486void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
487    const DisplayHardware& hw(getDefaultDisplayHardware());
488    EGLSurface result = EGL_NO_SURFACE;
489    EGLSurface old_surface = EGL_NO_SURFACE;
490    sp<SurfaceTextureClient> stc;
491
492    if (display != NULL) {
493        stc = new SurfaceTextureClient(display);
494        result = eglCreateWindowSurface(hw.getEGLDisplay(),
495                mEGLConfig, (EGLNativeWindowType)stc.get(), NULL);
496        ALOGE_IF(result == EGL_NO_SURFACE,
497                "eglCreateWindowSurface failed (ISurfaceTexture=%p)",
498                display.get());
499    }
500
501    { // scope for the lock
502        Mutex::Autolock _l(mStateLock);
503        old_surface = mExternalDisplaySurface;
504        mExternalDisplayNativeWindow = stc;
505        mExternalDisplaySurface = result;
506        ALOGD("mExternalDisplaySurface = %p", result);
507    }
508
509    if (old_surface != EGL_NO_SURFACE) {
510        // Note: EGL allows to destroy an object while its current
511        // it will fail to become current next time though.
512        eglDestroySurface(hw.getEGLDisplay(), old_surface);
513    }
514}
515
516EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
517    Mutex::Autolock _l(mStateLock);
518    return mExternalDisplaySurface;
519}
520
521// ----------------------------------------------------------------------------
522
523void SurfaceFlinger::waitForEvent() {
524    mEventQueue.waitMessage();
525}
526
527void SurfaceFlinger::signalTransaction() {
528    mEventQueue.invalidate();
529}
530
531void SurfaceFlinger::signalLayerUpdate() {
532    mEventQueue.invalidate();
533}
534
535void SurfaceFlinger::signalRefresh() {
536    mEventQueue.refresh();
537}
538
539status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
540        nsecs_t reltime, uint32_t flags) {
541    return mEventQueue.postMessage(msg, reltime);
542}
543
544status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
545        nsecs_t reltime, uint32_t flags) {
546    status_t res = mEventQueue.postMessage(msg, reltime);
547    if (res == NO_ERROR) {
548        msg->wait();
549    }
550    return res;
551}
552
553bool SurfaceFlinger::threadLoop() {
554    waitForEvent();
555    return true;
556}
557
558void SurfaceFlinger::onMessageReceived(int32_t what) {
559    ATRACE_CALL();
560    switch (what) {
561    case MessageQueue::INVALIDATE:
562        handleMessageTransaction();
563        handleMessageInvalidate();
564        signalRefresh();
565        break;
566    case MessageQueue::REFRESH:
567        handleMessageRefresh();
568        break;
569    }
570}
571
572void SurfaceFlinger::handleMessageTransaction() {
573    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
574    uint32_t transactionFlags = peekTransactionFlags(mask);
575    if (transactionFlags) {
576        Region dirtyRegion;
577        dirtyRegion = handleTransaction(transactionFlags);
578        // XXX: dirtyRegion should be per screen
579        mDirtyRegion |= dirtyRegion;
580    }
581}
582
583void SurfaceFlinger::handleMessageInvalidate() {
584    Region dirtyRegion;
585    dirtyRegion = handlePageFlip();
586    // XXX: dirtyRegion should be per screen
587    mDirtyRegion |= dirtyRegion;
588}
589
590void SurfaceFlinger::handleMessageRefresh() {
591    handleRefresh();
592
593    if (mVisibleRegionsDirty) {
594        Region opaqueRegion;
595        Region dirtyRegion;
596        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
597        computeVisibleRegions(currentLayers, dirtyRegion, opaqueRegion);
598        mDirtyRegion.orSelf(dirtyRegion);
599
600        /*
601         *  rebuild the visible layer list per screen
602         */
603
604        // TODO: iterate through all displays
605        DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(0)));
606
607        Vector< sp<LayerBase> > layersSortedByZ;
608        const size_t count = currentLayers.size();
609        for (size_t i=0 ; i<count ; i++) {
610            if (!currentLayers[i]->visibleRegion.isEmpty()) {
611                // TODO: also check that this layer is associated to this display
612                layersSortedByZ.add(currentLayers[i]);
613            }
614        }
615        hw.setVisibleLayersSortedByZ(layersSortedByZ);
616
617
618        // FIXME: mWormholeRegion needs to be calculated per screen
619        //const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: we can't keep that here
620        mWormholeRegion = Region(hw.getBounds()).subtract(
621                hw.getTransform().transform(opaqueRegion) );
622        mVisibleRegionsDirty = false;
623        invalidateHwcGeometry();
624    }
625
626
627    // XXX: dirtyRegion should be per screen, we should check all of them
628    if (mDirtyRegion.isEmpty()) {
629        return;
630    }
631
632    // TODO: iterate through all displays
633    const DisplayHardware& hw(getDisplayHardware(0));
634
635    // XXX: dirtyRegion should be per screen
636    // transform the dirty region into this screen's coordinate space
637    const Transform& planeTransform(hw.getTransform());
638    mDirtyRegion = planeTransform.transform(mDirtyRegion);
639    mDirtyRegion.orSelf(getAndClearInvalidateRegion());
640    mDirtyRegion.andSelf(hw.bounds());
641
642
643    if (CC_UNLIKELY(mHwWorkListDirty)) {
644        // build the h/w work list
645        handleWorkList(hw);
646    }
647
648    if (CC_LIKELY(hw.canDraw())) {
649        // repaint the framebuffer (if needed)
650        handleRepaint(hw);
651        // inform the h/w that we're done compositing
652        hw.compositionComplete();
653        postFramebuffer();
654    } else {
655        // pretend we did the post
656        hw.compositionComplete();
657    }
658
659    // render to the external display if we have one
660    EGLSurface externalDisplaySurface = getExternalDisplaySurface();
661    if (externalDisplaySurface != EGL_NO_SURFACE) {
662        EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
663        EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
664                externalDisplaySurface, externalDisplaySurface,
665                eglGetCurrentContext());
666
667        ALOGE_IF(!success, "eglMakeCurrent -> external failed");
668
669        if (success) {
670            // redraw the screen entirely...
671            glDisable(GL_TEXTURE_EXTERNAL_OES);
672            glDisable(GL_TEXTURE_2D);
673            glClearColor(0,0,0,1);
674            glClear(GL_COLOR_BUFFER_BIT);
675            glMatrixMode(GL_MODELVIEW);
676            glLoadIdentity();
677
678            const Vector< sp<LayerBase> >& layers( hw.getVisibleLayersSortedByZ() );
679            const size_t count = layers.size();
680            for (size_t i=0 ; i<count ; ++i) {
681                const sp<LayerBase>& layer(layers[i]);
682                layer->drawForSreenShot(hw);
683            }
684
685            success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
686            ALOGE_IF(!success, "external display eglSwapBuffers failed");
687
688            hw.compositionComplete();
689        }
690
691        success = eglMakeCurrent(eglGetCurrentDisplay(),
692                cur, cur, eglGetCurrentContext());
693
694        ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
695    }
696
697}
698
699void SurfaceFlinger::postFramebuffer()
700{
701    ATRACE_CALL();
702    // mSwapRegion can be empty here is some cases, for instance if a hidden
703    // or fully transparent window is updating.
704    // in that case, we need to flip anyways to not risk a deadlock with
705    // h/w composer.
706
707    const DisplayHardware& hw(getDefaultDisplayHardware());
708    HWComposer& hwc(hw.getHwComposer());
709    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
710    size_t numLayers = layers.size();
711    const nsecs_t now = systemTime();
712    mDebugInSwapBuffers = now;
713
714    if (hwc.initCheck() == NO_ERROR) {
715        HWComposer::LayerListIterator cur = hwc.begin();
716        const HWComposer::LayerListIterator end = hwc.end();
717        for (size_t i = 0; cur != end && i < numLayers; ++i, ++cur) {
718            if (cur->getCompositionType() == HWC_OVERLAY) {
719                layers[i]->setAcquireFence(*cur);
720            } else {
721                cur->setAcquireFenceFd(-1);
722            }
723        }
724    }
725
726    hw.flip(mSwapRegion);
727
728    if (hwc.initCheck() == NO_ERROR) {
729        HWComposer::LayerListIterator cur = hwc.begin();
730        const HWComposer::LayerListIterator end = hwc.end();
731        for (size_t i = 0; cur != end && i < numLayers; ++i, ++cur) {
732            layers[i]->onLayerDisplayed(&*cur);
733        }
734    } else {
735        for (size_t i = 0; i < numLayers; i++) {
736            layers[i]->onLayerDisplayed(NULL);
737        }
738    }
739
740    mLastSwapBufferTime = systemTime() - now;
741    mDebugInSwapBuffers = 0;
742    mSwapRegion.clear();
743}
744
745Region SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
746{
747    ATRACE_CALL();
748
749    Region dirtyRegion;
750
751    Mutex::Autolock _l(mStateLock);
752    const nsecs_t now = systemTime();
753    mDebugInTransaction = now;
754
755    // Here we're guaranteed that some transaction flags are set
756    // so we can call handleTransactionLocked() unconditionally.
757    // We call getTransactionFlags(), which will also clear the flags,
758    // with mStateLock held to guarantee that mCurrentState won't change
759    // until the transaction is committed.
760
761    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
762    transactionFlags = getTransactionFlags(mask);
763    dirtyRegion = handleTransactionLocked(transactionFlags);
764
765    mLastTransactionTime = systemTime() - now;
766    mDebugInTransaction = 0;
767    invalidateHwcGeometry();
768    // here the transaction has been committed
769
770    return dirtyRegion;
771}
772
773Region SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
774{
775    Region dirtyRegion;
776    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
777    const size_t count = currentLayers.size();
778
779    /*
780     * Traversal of the children
781     * (perform the transaction for each of them if needed)
782     */
783
784    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
785    if (layersNeedTransaction) {
786        for (size_t i=0 ; i<count ; i++) {
787            const sp<LayerBase>& layer = currentLayers[i];
788            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
789            if (!trFlags) continue;
790
791            const uint32_t flags = layer->doTransaction(0);
792            if (flags & Layer::eVisibleRegion)
793                mVisibleRegionsDirty = true;
794        }
795    }
796
797    /*
798     * Perform our own transaction if needed
799     */
800
801    if (transactionFlags & eTransactionNeeded) {
802        if (mCurrentState.orientation != mDrawingState.orientation) {
803            // the orientation has changed, recompute all visible regions
804            // and invalidate everything.
805
806            const int dpy = 0; // TODO: should be a parameter
807            DisplayHardware& hw(const_cast<DisplayHardware&>(getDisplayHardware(dpy)));
808            const int orientation = mCurrentState.orientation;
809            hw.setOrientation(orientation);
810
811            // update the shared control block
812            volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
813            dcblk->orientation = orientation;
814            dcblk->w = hw.getUserWidth();
815            dcblk->h = hw.getUserHeight();
816
817            // FIXME: mVisibleRegionsDirty & mDirtyRegion should this be per DisplayHardware?
818            mVisibleRegionsDirty = true;
819            mDirtyRegion.set(hw.bounds());
820        }
821
822        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
823            // layers have been added
824            mVisibleRegionsDirty = true;
825        }
826
827        // some layers might have been removed, so
828        // we need to update the regions they're exposing.
829        if (mLayersRemoved) {
830            mLayersRemoved = false;
831            mVisibleRegionsDirty = true;
832            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
833            const size_t count = previousLayers.size();
834            for (size_t i=0 ; i<count ; i++) {
835                const sp<LayerBase>& layer(previousLayers[i]);
836                if (currentLayers.indexOf( layer ) < 0) {
837                    // this layer is not visible anymore
838                    // TODO: we could traverse the tree from front to back and compute the actual visible region
839                    // TODO: we could cache the transformed region
840                    Layer::State front(layer->drawingState());
841                    Region visibleReg = front.transform.transform(
842                            Region(Rect(front.active.w, front.active.h)));
843                    dirtyRegion.orSelf(visibleReg);
844                }
845            }
846        }
847    }
848
849    commitTransaction();
850    return dirtyRegion;
851}
852
853void SurfaceFlinger::commitTransaction()
854{
855    if (!mLayersPendingRemoval.isEmpty()) {
856        // Notify removed layers now that they can't be drawn from
857        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
858            mLayersPendingRemoval[i]->onRemoved();
859        }
860        mLayersPendingRemoval.clear();
861    }
862
863    mDrawingState = mCurrentState;
864    mTransationPending = false;
865    mTransactionCV.broadcast();
866}
867
868void SurfaceFlinger::computeVisibleRegions(
869    const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
870{
871    ATRACE_CALL();
872
873    Region aboveOpaqueLayers;
874    Region aboveCoveredLayers;
875    Region dirty;
876
877    dirtyRegion.clear();
878
879    size_t i = currentLayers.size();
880    while (i--) {
881        const sp<LayerBase>& layer = currentLayers[i];
882
883        // start with the whole surface at its current location
884        const Layer::State& s(layer->drawingState());
885
886        /*
887         * opaqueRegion: area of a surface that is fully opaque.
888         */
889        Region opaqueRegion;
890
891        /*
892         * visibleRegion: area of a surface that is visible on screen
893         * and not fully transparent. This is essentially the layer's
894         * footprint minus the opaque regions above it.
895         * Areas covered by a translucent surface are considered visible.
896         */
897        Region visibleRegion;
898
899        /*
900         * coveredRegion: area of a surface that is covered by all
901         * visible regions above it (which includes the translucent areas).
902         */
903        Region coveredRegion;
904
905
906        // handle hidden surfaces by setting the visible region to empty
907        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
908            const bool translucent = !layer->isOpaque();
909            Rect bounds(layer->computeBounds());
910            visibleRegion.set(bounds);
911            if (!visibleRegion.isEmpty()) {
912                // Remove the transparent area from the visible region
913                if (translucent) {
914                    Region transparentRegionScreen;
915                    const Transform tr(s.transform);
916                    if (tr.transformed()) {
917                        if (tr.preserveRects()) {
918                            // transform the transparent region
919                            transparentRegionScreen = tr.transform(s.transparentRegion);
920                        } else {
921                            // transformation too complex, can't do the
922                            // transparent region optimization.
923                            transparentRegionScreen.clear();
924                        }
925                    } else {
926                        transparentRegionScreen = s.transparentRegion;
927                    }
928                    visibleRegion.subtractSelf(transparentRegionScreen);
929                }
930
931                // compute the opaque region
932                const int32_t layerOrientation = s.transform.getOrientation();
933                if (s.alpha==255 && !translucent &&
934                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
935                    // the opaque region is the layer's footprint
936                    opaqueRegion = visibleRegion;
937                }
938            }
939        }
940
941        // Clip the covered region to the visible region
942        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
943
944        // Update aboveCoveredLayers for next (lower) layer
945        aboveCoveredLayers.orSelf(visibleRegion);
946
947        // subtract the opaque region covered by the layers above us
948        visibleRegion.subtractSelf(aboveOpaqueLayers);
949
950        // compute this layer's dirty region
951        if (layer->contentDirty) {
952            // we need to invalidate the whole region
953            dirty = visibleRegion;
954            // as well, as the old visible region
955            dirty.orSelf(layer->visibleRegion);
956            layer->contentDirty = false;
957        } else {
958            /* compute the exposed region:
959             *   the exposed region consists of two components:
960             *   1) what's VISIBLE now and was COVERED before
961             *   2) what's EXPOSED now less what was EXPOSED before
962             *
963             * note that (1) is conservative, we start with the whole
964             * visible region but only keep what used to be covered by
965             * something -- which mean it may have been exposed.
966             *
967             * (2) handles areas that were not covered by anything but got
968             * exposed because of a resize.
969             */
970            const Region newExposed = visibleRegion - coveredRegion;
971            const Region oldVisibleRegion = layer->visibleRegion;
972            const Region oldCoveredRegion = layer->coveredRegion;
973            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
974            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
975        }
976        dirty.subtractSelf(aboveOpaqueLayers);
977
978        // accumulate to the screen dirty region
979        dirtyRegion.orSelf(dirty);
980
981        // Update aboveOpaqueLayers for next (lower) layer
982        aboveOpaqueLayers.orSelf(opaqueRegion);
983
984        // Store the visible region is screen space
985        layer->setVisibleRegion(visibleRegion);
986        layer->setCoveredRegion(coveredRegion);
987    }
988
989    opaqueRegion = aboveOpaqueLayers;
990}
991
992Region SurfaceFlinger::handlePageFlip()
993{
994    ATRACE_CALL();
995    Region dirtyRegion;
996
997    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
998
999    bool visibleRegions = false;
1000    const size_t count = currentLayers.size();
1001    sp<LayerBase> const* layers = currentLayers.array();
1002    for (size_t i=0 ; i<count ; i++) {
1003        const sp<LayerBase>& layer(layers[i]);
1004        dirtyRegion.orSelf( layer->latchBuffer(visibleRegions) );
1005    }
1006
1007    mVisibleRegionsDirty |= visibleRegions;
1008
1009    return dirtyRegion;
1010}
1011
1012void SurfaceFlinger::invalidateHwcGeometry()
1013{
1014    mHwWorkListDirty = true;
1015}
1016
1017void SurfaceFlinger::handleRefresh()
1018{
1019    bool needInvalidate = false;
1020    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1021    const size_t count = currentLayers.size();
1022    for (size_t i=0 ; i<count ; i++) {
1023        const sp<LayerBase>& layer(currentLayers[i]);
1024        if (layer->onPreComposition()) {
1025            needInvalidate = true;
1026        }
1027    }
1028    if (needInvalidate) {
1029        signalLayerUpdate();
1030    }
1031}
1032
1033
1034void SurfaceFlinger::handleWorkList(const DisplayHardware& hw)
1035{
1036    mHwWorkListDirty = false;
1037    HWComposer& hwc(hw.getHwComposer());
1038    if (hwc.initCheck() == NO_ERROR) {
1039        const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
1040        const size_t count = currentLayers.size();
1041        hwc.createWorkList(count);
1042
1043        HWComposer::LayerListIterator cur = hwc.begin();
1044        const HWComposer::LayerListIterator end = hwc.end();
1045        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1046            currentLayers[i]->setGeometry(hw, *cur);
1047            if (mDebugDisableHWC || mDebugRegion) {
1048                cur->setSkip(true);
1049            }
1050        }
1051    }
1052}
1053
1054void SurfaceFlinger::handleRepaint(const DisplayHardware& hw)
1055{
1056    ATRACE_CALL();
1057
1058    // compute the invalid region
1059    mSwapRegion.orSelf(mDirtyRegion);
1060
1061    if (CC_UNLIKELY(mDebugRegion)) {
1062        debugFlashRegions(hw);
1063    }
1064
1065    // set the frame buffer
1066    glMatrixMode(GL_MODELVIEW);
1067    glLoadIdentity();
1068
1069    uint32_t flags = hw.getFlags();
1070    if (flags & DisplayHardware::SWAP_RECTANGLE) {
1071        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1072        // takes a rectangle, we must make sure to update that whole
1073        // rectangle in that case
1074        mDirtyRegion.set(mSwapRegion.bounds());
1075    } else {
1076        if (flags & DisplayHardware::PARTIAL_UPDATES) {
1077            // We need to redraw the rectangle that will be updated
1078            // (pushed to the framebuffer).
1079            // This is needed because PARTIAL_UPDATES only takes one
1080            // rectangle instead of a region (see DisplayHardware::flip())
1081            mDirtyRegion.set(mSwapRegion.bounds());
1082        } else {
1083            // we need to redraw everything (the whole screen)
1084            mDirtyRegion.set(hw.bounds());
1085            mSwapRegion = mDirtyRegion;
1086        }
1087    }
1088
1089    setupHardwareComposer(hw);
1090    composeSurfaces(hw, mDirtyRegion);
1091
1092    // update the swap region and clear the dirty region
1093    mSwapRegion.orSelf(mDirtyRegion);
1094    mDirtyRegion.clear();
1095}
1096
1097void SurfaceFlinger::setupHardwareComposer(const DisplayHardware& hw)
1098{
1099    HWComposer& hwc(hw.getHwComposer());
1100    HWComposer::LayerListIterator cur = hwc.begin();
1101    const HWComposer::LayerListIterator end = hwc.end();
1102    if (cur == end) {
1103        return;
1104    }
1105
1106    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1107    size_t count = layers.size();
1108
1109    ALOGE_IF(hwc.getNumLayers() != count,
1110            "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
1111            hwc.getNumLayers(), count);
1112
1113    // just to be extra-safe, use the smallest count
1114    if (hwc.initCheck() == NO_ERROR) {
1115        count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
1116    }
1117
1118    /*
1119     *  update the per-frame h/w composer data for each layer
1120     *  and build the transparent region of the FB
1121     */
1122    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
1123        const sp<LayerBase>& layer(layers[i]);
1124        layer->setPerFrameData(*cur);
1125    }
1126    status_t err = hwc.prepare();
1127    ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
1128}
1129
1130void SurfaceFlinger::composeSurfaces(const DisplayHardware& hw, const Region& dirty)
1131{
1132    HWComposer& hwc(hw.getHwComposer());
1133    HWComposer::LayerListIterator cur = hwc.begin();
1134    const HWComposer::LayerListIterator end = hwc.end();
1135
1136    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
1137    if (cur==end || fbLayerCount) {
1138        // Never touch the framebuffer if we don't have any framebuffer layers
1139
1140        if (hwc.getLayerCount(HWC_OVERLAY)) {
1141            // when using overlays, we assume a fully transparent framebuffer
1142            // NOTE: we could reduce how much we need to clear, for instance
1143            // remove where there are opaque FB layers. however, on some
1144            // GPUs doing a "clean slate" glClear might be more efficient.
1145            // We'll revisit later if needed.
1146            glClearColor(0, 0, 0, 0);
1147            glClear(GL_COLOR_BUFFER_BIT);
1148        } else {
1149            // screen is already cleared here
1150            if (!mWormholeRegion.isEmpty()) {
1151                // can happen with SurfaceView
1152                drawWormhole();
1153            }
1154        }
1155
1156        /*
1157         * and then, render the layers targeted at the framebuffer
1158         */
1159
1160        const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1161        const size_t count = layers.size();
1162        const Transform& tr = hw.getTransform();
1163        for (size_t i=0 ; i<count ; ++i) {
1164            const sp<LayerBase>& layer(layers[i]);
1165            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1166            if (!clip.isEmpty()) {
1167                if (cur != end && cur->getCompositionType() == HWC_OVERLAY) {
1168                    if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
1169                            && layer->isOpaque()) {
1170                        // never clear the very first layer since we're
1171                        // guaranteed the FB is already cleared
1172                        layer->clearWithOpenGL(hw, clip);
1173                    }
1174                    ++cur;
1175                    continue;
1176                }
1177                // render the layer
1178                layer->draw(hw, clip);
1179            }
1180            if (cur != end) {
1181                ++cur;
1182            }
1183        }
1184    }
1185}
1186
1187void SurfaceFlinger::debugFlashRegions(const DisplayHardware& hw)
1188{
1189    const uint32_t flags = hw.getFlags();
1190    const int32_t height = hw.getHeight();
1191    if (mSwapRegion.isEmpty()) {
1192        return;
1193    }
1194
1195    if (!(flags & DisplayHardware::SWAP_RECTANGLE)) {
1196        const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
1197                mDirtyRegion.bounds() : hw.bounds());
1198        composeSurfaces(hw, repaint);
1199    }
1200
1201    glDisable(GL_TEXTURE_EXTERNAL_OES);
1202    glDisable(GL_TEXTURE_2D);
1203    glDisable(GL_BLEND);
1204
1205    static int toggle = 0;
1206    toggle = 1 - toggle;
1207    if (toggle) {
1208        glColor4f(1, 0, 1, 1);
1209    } else {
1210        glColor4f(1, 1, 0, 1);
1211    }
1212
1213    Region::const_iterator it = mDirtyRegion.begin();
1214    Region::const_iterator const end = mDirtyRegion.end();
1215    while (it != end) {
1216        const Rect& r = *it++;
1217        GLfloat vertices[][2] = {
1218                { r.left,  height - r.top },
1219                { r.left,  height - r.bottom },
1220                { r.right, height - r.bottom },
1221                { r.right, height - r.top }
1222        };
1223        glVertexPointer(2, GL_FLOAT, 0, vertices);
1224        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1225    }
1226
1227    hw.flip(mSwapRegion);
1228
1229    if (mDebugRegion > 1)
1230        usleep(mDebugRegion * 1000);
1231}
1232
1233void SurfaceFlinger::drawWormhole() const
1234{
1235    const Region region(mWormholeRegion.intersect(mDirtyRegion));
1236    if (region.isEmpty())
1237        return;
1238
1239    glDisable(GL_TEXTURE_EXTERNAL_OES);
1240    glDisable(GL_TEXTURE_2D);
1241    glDisable(GL_BLEND);
1242    glColor4f(0,0,0,0);
1243
1244    GLfloat vertices[4][2];
1245    glVertexPointer(2, GL_FLOAT, 0, vertices);
1246    Region::const_iterator it = region.begin();
1247    Region::const_iterator const end = region.end();
1248    while (it != end) {
1249        const Rect& r = *it++;
1250        vertices[0][0] = r.left;
1251        vertices[0][1] = r.top;
1252        vertices[1][0] = r.right;
1253        vertices[1][1] = r.top;
1254        vertices[2][0] = r.right;
1255        vertices[2][1] = r.bottom;
1256        vertices[3][0] = r.left;
1257        vertices[3][1] = r.bottom;
1258        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1259    }
1260}
1261
1262ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1263        const sp<LayerBaseClient>& lbc)
1264{
1265    // attach this layer to the client
1266    size_t name = client->attachLayer(lbc);
1267
1268    // add this layer to the current state list
1269    Mutex::Autolock _l(mStateLock);
1270    mCurrentState.layersSortedByZ.add(lbc);
1271
1272    return ssize_t(name);
1273}
1274
1275status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1276{
1277    Mutex::Autolock _l(mStateLock);
1278    status_t err = purgatorizeLayer_l(layer);
1279    if (err == NO_ERROR)
1280        setTransactionFlags(eTransactionNeeded);
1281    return err;
1282}
1283
1284status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1285{
1286    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1287    if (index >= 0) {
1288        mLayersRemoved = true;
1289        return NO_ERROR;
1290    }
1291    return status_t(index);
1292}
1293
1294status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1295{
1296    // First add the layer to the purgatory list, which makes sure it won't
1297    // go away, then remove it from the main list (through a transaction).
1298    ssize_t err = removeLayer_l(layerBase);
1299    if (err >= 0) {
1300        mLayerPurgatory.add(layerBase);
1301    }
1302
1303    mLayersPendingRemoval.push(layerBase);
1304
1305    // it's possible that we don't find a layer, because it might
1306    // have been destroyed already -- this is not technically an error
1307    // from the user because there is a race between Client::destroySurface(),
1308    // ~Client() and ~ISurface().
1309    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1310}
1311
1312uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1313{
1314    return android_atomic_release_load(&mTransactionFlags);
1315}
1316
1317uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1318{
1319    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1320}
1321
1322uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1323{
1324    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1325    if ((old & flags)==0) { // wake the server up
1326        signalTransaction();
1327    }
1328    return old;
1329}
1330
1331
1332void SurfaceFlinger::setTransactionState(
1333        const Vector<ComposerState>& state,
1334        const Vector<DisplayState>& displays,
1335        uint32_t flags)
1336{
1337    Mutex::Autolock _l(mStateLock);
1338
1339    int orientation = eOrientationUnchanged;
1340    if (displays.size()) {
1341        // TODO: handle all displays
1342        orientation = displays[0].orientation;
1343    }
1344
1345    uint32_t transactionFlags = 0;
1346    if (mCurrentState.orientation != orientation) {
1347        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1348            mCurrentState.orientation = orientation;
1349            transactionFlags |= eTransactionNeeded;
1350        } else if (orientation != eOrientationUnchanged) {
1351            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1352                    orientation);
1353        }
1354    }
1355
1356    const size_t count = state.size();
1357    for (size_t i=0 ; i<count ; i++) {
1358        const ComposerState& s(state[i]);
1359        sp<Client> client( static_cast<Client *>(s.client.get()) );
1360        transactionFlags |= setClientStateLocked(client, s.state);
1361    }
1362
1363    if (transactionFlags) {
1364        // this triggers the transaction
1365        setTransactionFlags(transactionFlags);
1366
1367        // if this is a synchronous transaction, wait for it to take effect
1368        // before returning.
1369        if (flags & eSynchronous) {
1370            mTransationPending = true;
1371        }
1372        while (mTransationPending) {
1373            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1374            if (CC_UNLIKELY(err != NO_ERROR)) {
1375                // just in case something goes wrong in SF, return to the
1376                // called after a few seconds.
1377                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1378                mTransationPending = false;
1379                break;
1380            }
1381        }
1382    }
1383}
1384
1385sp<ISurface> SurfaceFlinger::createLayer(
1386        ISurfaceComposerClient::surface_data_t* params,
1387        const String8& name,
1388        const sp<Client>& client,
1389        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1390        uint32_t flags)
1391{
1392    sp<LayerBaseClient> layer;
1393    sp<ISurface> surfaceHandle;
1394
1395    if (int32_t(w|h) < 0) {
1396        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1397                int(w), int(h));
1398        return surfaceHandle;
1399    }
1400
1401    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1402    switch (flags & eFXSurfaceMask) {
1403        case eFXSurfaceNormal:
1404            layer = createNormalLayer(client, d, w, h, flags, format);
1405            break;
1406        case eFXSurfaceBlur:
1407            // for now we treat Blur as Dim, until we can implement it
1408            // efficiently.
1409        case eFXSurfaceDim:
1410            layer = createDimLayer(client, d, w, h, flags);
1411            break;
1412        case eFXSurfaceScreenshot:
1413            layer = createScreenshotLayer(client, d, w, h, flags);
1414            break;
1415    }
1416
1417    if (layer != 0) {
1418        layer->initStates(w, h, flags);
1419        layer->setName(name);
1420        ssize_t token = addClientLayer(client, layer);
1421        surfaceHandle = layer->getSurface();
1422        if (surfaceHandle != 0) {
1423            params->token = token;
1424            params->identity = layer->getIdentity();
1425        }
1426        setTransactionFlags(eTransactionNeeded);
1427    }
1428
1429    return surfaceHandle;
1430}
1431
1432sp<Layer> SurfaceFlinger::createNormalLayer(
1433        const sp<Client>& client, DisplayID display,
1434        uint32_t w, uint32_t h, uint32_t flags,
1435        PixelFormat& format)
1436{
1437    // initialize the surfaces
1438    switch (format) { // TODO: take h/w into account
1439    case PIXEL_FORMAT_TRANSPARENT:
1440    case PIXEL_FORMAT_TRANSLUCENT:
1441        format = PIXEL_FORMAT_RGBA_8888;
1442        break;
1443    case PIXEL_FORMAT_OPAQUE:
1444#ifdef NO_RGBX_8888
1445        format = PIXEL_FORMAT_RGB_565;
1446#else
1447        format = PIXEL_FORMAT_RGBX_8888;
1448#endif
1449        break;
1450    }
1451
1452#ifdef NO_RGBX_8888
1453    if (format == PIXEL_FORMAT_RGBX_8888)
1454        format = PIXEL_FORMAT_RGBA_8888;
1455#endif
1456
1457    sp<Layer> layer = new Layer(this, display, client);
1458    status_t err = layer->setBuffers(w, h, format, flags);
1459    if (CC_LIKELY(err != NO_ERROR)) {
1460        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1461        layer.clear();
1462    }
1463    return layer;
1464}
1465
1466sp<LayerDim> SurfaceFlinger::createDimLayer(
1467        const sp<Client>& client, DisplayID display,
1468        uint32_t w, uint32_t h, uint32_t flags)
1469{
1470    sp<LayerDim> layer = new LayerDim(this, display, client);
1471    return layer;
1472}
1473
1474sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1475        const sp<Client>& client, DisplayID display,
1476        uint32_t w, uint32_t h, uint32_t flags)
1477{
1478    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1479    return layer;
1480}
1481
1482status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1483{
1484    /*
1485     * called by the window manager, when a surface should be marked for
1486     * destruction.
1487     *
1488     * The surface is removed from the current and drawing lists, but placed
1489     * in the purgatory queue, so it's not destroyed right-away (we need
1490     * to wait for all client's references to go away first).
1491     */
1492
1493    status_t err = NAME_NOT_FOUND;
1494    Mutex::Autolock _l(mStateLock);
1495    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1496
1497    if (layer != 0) {
1498        err = purgatorizeLayer_l(layer);
1499        if (err == NO_ERROR) {
1500            setTransactionFlags(eTransactionNeeded);
1501        }
1502    }
1503    return err;
1504}
1505
1506status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1507{
1508    // called by ~ISurface() when all references are gone
1509    status_t err = NO_ERROR;
1510    sp<LayerBaseClient> l(layer.promote());
1511    if (l != NULL) {
1512        Mutex::Autolock _l(mStateLock);
1513        err = removeLayer_l(l);
1514        if (err == NAME_NOT_FOUND) {
1515            // The surface wasn't in the current list, which means it was
1516            // removed already, which means it is in the purgatory,
1517            // and need to be removed from there.
1518            ssize_t idx = mLayerPurgatory.remove(l);
1519            ALOGE_IF(idx < 0,
1520                    "layer=%p is not in the purgatory list", l.get());
1521        }
1522        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1523                "error removing layer=%p (%s)", l.get(), strerror(-err));
1524    }
1525    return err;
1526}
1527
1528uint32_t SurfaceFlinger::setClientStateLocked(
1529        const sp<Client>& client,
1530        const layer_state_t& s)
1531{
1532    uint32_t flags = 0;
1533    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1534    if (layer != 0) {
1535        const uint32_t what = s.what;
1536        if (what & ePositionChanged) {
1537            if (layer->setPosition(s.x, s.y))
1538                flags |= eTraversalNeeded;
1539        }
1540        if (what & eLayerChanged) {
1541            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1542            if (layer->setLayer(s.z)) {
1543                mCurrentState.layersSortedByZ.removeAt(idx);
1544                mCurrentState.layersSortedByZ.add(layer);
1545                // we need traversal (state changed)
1546                // AND transaction (list changed)
1547                flags |= eTransactionNeeded|eTraversalNeeded;
1548            }
1549        }
1550        if (what & eSizeChanged) {
1551            if (layer->setSize(s.w, s.h)) {
1552                flags |= eTraversalNeeded;
1553            }
1554        }
1555        if (what & eAlphaChanged) {
1556            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1557                flags |= eTraversalNeeded;
1558        }
1559        if (what & eMatrixChanged) {
1560            if (layer->setMatrix(s.matrix))
1561                flags |= eTraversalNeeded;
1562        }
1563        if (what & eTransparentRegionChanged) {
1564            if (layer->setTransparentRegionHint(s.transparentRegion))
1565                flags |= eTraversalNeeded;
1566        }
1567        if (what & eVisibilityChanged) {
1568            if (layer->setFlags(s.flags, s.mask))
1569                flags |= eTraversalNeeded;
1570        }
1571        if (what & eCropChanged) {
1572            if (layer->setCrop(s.crop))
1573                flags |= eTraversalNeeded;
1574        }
1575        if (what & eLayerStackChanged) {
1576            if (layer->setLayerStack(s.layerStack))
1577                flags |= eTraversalNeeded;
1578        }
1579    }
1580    return flags;
1581}
1582
1583// ---------------------------------------------------------------------------
1584
1585void SurfaceFlinger::onScreenAcquired() {
1586    ALOGD("Screen about to return, flinger = %p", this);
1587    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1588    hw.acquireScreen();
1589    mEventThread->onScreenAcquired();
1590    // this is a temporary work-around, eventually this should be called
1591    // by the power-manager
1592    SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
1593    // from this point on, SF will process updates again
1594    repaintEverything();
1595}
1596
1597void SurfaceFlinger::onScreenReleased() {
1598    ALOGD("About to give-up screen, flinger = %p", this);
1599    const DisplayHardware& hw(getDefaultDisplayHardware()); // XXX: this should be per DisplayHardware
1600    if (hw.isScreenAcquired()) {
1601        mEventThread->onScreenReleased();
1602        hw.releaseScreen();
1603        // from this point on, SF will stop drawing
1604    }
1605}
1606
1607void SurfaceFlinger::unblank() {
1608    class MessageScreenAcquired : public MessageBase {
1609        SurfaceFlinger* flinger;
1610    public:
1611        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1612        virtual bool handler() {
1613            flinger->onScreenAcquired();
1614            return true;
1615        }
1616    };
1617    sp<MessageBase> msg = new MessageScreenAcquired(this);
1618    postMessageSync(msg);
1619}
1620
1621void SurfaceFlinger::blank() {
1622    class MessageScreenReleased : public MessageBase {
1623        SurfaceFlinger* flinger;
1624    public:
1625        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1626        virtual bool handler() {
1627            flinger->onScreenReleased();
1628            return true;
1629        }
1630    };
1631    sp<MessageBase> msg = new MessageScreenReleased(this);
1632    postMessageSync(msg);
1633}
1634
1635// ---------------------------------------------------------------------------
1636
1637status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1638{
1639    const size_t SIZE = 4096;
1640    char buffer[SIZE];
1641    String8 result;
1642
1643    if (!PermissionCache::checkCallingPermission(sDump)) {
1644        snprintf(buffer, SIZE, "Permission Denial: "
1645                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1646                IPCThreadState::self()->getCallingPid(),
1647                IPCThreadState::self()->getCallingUid());
1648        result.append(buffer);
1649    } else {
1650        // Try to get the main lock, but don't insist if we can't
1651        // (this would indicate SF is stuck, but we want to be able to
1652        // print something in dumpsys).
1653        int retry = 3;
1654        while (mStateLock.tryLock()<0 && --retry>=0) {
1655            usleep(1000000);
1656        }
1657        const bool locked(retry >= 0);
1658        if (!locked) {
1659            snprintf(buffer, SIZE,
1660                    "SurfaceFlinger appears to be unresponsive, "
1661                    "dumping anyways (no locks held)\n");
1662            result.append(buffer);
1663        }
1664
1665        bool dumpAll = true;
1666        size_t index = 0;
1667        size_t numArgs = args.size();
1668        if (numArgs) {
1669            if ((index < numArgs) &&
1670                    (args[index] == String16("--list"))) {
1671                index++;
1672                listLayersLocked(args, index, result, buffer, SIZE);
1673                dumpAll = false;
1674            }
1675
1676            if ((index < numArgs) &&
1677                    (args[index] == String16("--latency"))) {
1678                index++;
1679                dumpStatsLocked(args, index, result, buffer, SIZE);
1680                dumpAll = false;
1681            }
1682
1683            if ((index < numArgs) &&
1684                    (args[index] == String16("--latency-clear"))) {
1685                index++;
1686                clearStatsLocked(args, index, result, buffer, SIZE);
1687                dumpAll = false;
1688            }
1689        }
1690
1691        if (dumpAll) {
1692            dumpAllLocked(result, buffer, SIZE);
1693        }
1694
1695        if (locked) {
1696            mStateLock.unlock();
1697        }
1698    }
1699    write(fd, result.string(), result.size());
1700    return NO_ERROR;
1701}
1702
1703void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1704        String8& result, char* buffer, size_t SIZE) const
1705{
1706    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1707    const size_t count = currentLayers.size();
1708    for (size_t i=0 ; i<count ; i++) {
1709        const sp<LayerBase>& layer(currentLayers[i]);
1710        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1711        result.append(buffer);
1712    }
1713}
1714
1715void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1716        String8& result, char* buffer, size_t SIZE) const
1717{
1718    String8 name;
1719    if (index < args.size()) {
1720        name = String8(args[index]);
1721        index++;
1722    }
1723
1724    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1725    const size_t count = currentLayers.size();
1726    for (size_t i=0 ; i<count ; i++) {
1727        const sp<LayerBase>& layer(currentLayers[i]);
1728        if (name.isEmpty()) {
1729            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1730            result.append(buffer);
1731        }
1732        if (name.isEmpty() || (name == layer->getName())) {
1733            layer->dumpStats(result, buffer, SIZE);
1734        }
1735    }
1736}
1737
1738void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1739        String8& result, char* buffer, size_t SIZE) const
1740{
1741    String8 name;
1742    if (index < args.size()) {
1743        name = String8(args[index]);
1744        index++;
1745    }
1746
1747    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1748    const size_t count = currentLayers.size();
1749    for (size_t i=0 ; i<count ; i++) {
1750        const sp<LayerBase>& layer(currentLayers[i]);
1751        if (name.isEmpty() || (name == layer->getName())) {
1752            layer->clearStats();
1753        }
1754    }
1755}
1756
1757void SurfaceFlinger::dumpAllLocked(
1758        String8& result, char* buffer, size_t SIZE) const
1759{
1760    // figure out if we're stuck somewhere
1761    const nsecs_t now = systemTime();
1762    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1763    const nsecs_t inTransaction(mDebugInTransaction);
1764    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1765    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1766
1767    /*
1768     * Dump the visible layer list
1769     */
1770    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1771    const size_t count = currentLayers.size();
1772    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1773    result.append(buffer);
1774    for (size_t i=0 ; i<count ; i++) {
1775        const sp<LayerBase>& layer(currentLayers[i]);
1776        layer->dump(result, buffer, SIZE);
1777    }
1778
1779    /*
1780     * Dump the layers in the purgatory
1781     */
1782
1783    const size_t purgatorySize = mLayerPurgatory.size();
1784    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1785    result.append(buffer);
1786    for (size_t i=0 ; i<purgatorySize ; i++) {
1787        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1788        layer->shortDump(result, buffer, SIZE);
1789    }
1790
1791    /*
1792     * Dump SurfaceFlinger global state
1793     */
1794
1795    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1796    result.append(buffer);
1797
1798    const DisplayHardware& hw(getDefaultDisplayHardware());
1799    const GLExtensions& extensions(GLExtensions::getInstance());
1800    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1801            extensions.getVendor(),
1802            extensions.getRenderer(),
1803            extensions.getVersion());
1804    result.append(buffer);
1805
1806    snprintf(buffer, SIZE, "EGL : %s\n",
1807            eglQueryString(hw.getEGLDisplay(),
1808                    EGL_VERSION_HW_ANDROID));
1809    result.append(buffer);
1810
1811    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1812    result.append(buffer);
1813
1814    mWormholeRegion.dump(result, "WormholeRegion");
1815    snprintf(buffer, SIZE,
1816            "  orientation=%d, canDraw=%d\n",
1817            mCurrentState.orientation, hw.canDraw());
1818    result.append(buffer);
1819    snprintf(buffer, SIZE,
1820            "  last eglSwapBuffers() time: %f us\n"
1821            "  last transaction time     : %f us\n"
1822            "  transaction-flags         : %08x\n"
1823            "  refresh-rate              : %f fps\n"
1824            "  x-dpi                     : %f\n"
1825            "  y-dpi                     : %f\n"
1826            "  density                   : %f\n",
1827            mLastSwapBufferTime/1000.0,
1828            mLastTransactionTime/1000.0,
1829            mTransactionFlags,
1830            hw.getRefreshRate(),
1831            hw.getDpiX(),
1832            hw.getDpiY(),
1833            hw.getDensity());
1834    result.append(buffer);
1835
1836    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1837            inSwapBuffersDuration/1000.0);
1838    result.append(buffer);
1839
1840    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1841            inTransactionDuration/1000.0);
1842    result.append(buffer);
1843
1844    /*
1845     * VSYNC state
1846     */
1847    mEventThread->dump(result, buffer, SIZE);
1848
1849    /*
1850     * Dump HWComposer state
1851     */
1852    HWComposer& hwc(hw.getHwComposer());
1853    snprintf(buffer, SIZE, "h/w composer state:\n");
1854    result.append(buffer);
1855    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1856            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1857                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1858    result.append(buffer);
1859    hwc.dump(result, buffer, SIZE, hw.getVisibleLayersSortedByZ());
1860
1861    /*
1862     * Dump gralloc state
1863     */
1864    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1865    alloc.dump(result);
1866    hw.dump(result);
1867}
1868
1869status_t SurfaceFlinger::onTransact(
1870    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1871{
1872    switch (code) {
1873        case CREATE_CONNECTION:
1874        case SET_TRANSACTION_STATE:
1875        case SET_ORIENTATION:
1876        case BOOT_FINISHED:
1877        case TURN_ELECTRON_BEAM_OFF:
1878        case TURN_ELECTRON_BEAM_ON:
1879        case BLANK:
1880        case UNBLANK:
1881        {
1882            // codes that require permission check
1883            IPCThreadState* ipc = IPCThreadState::self();
1884            const int pid = ipc->getCallingPid();
1885            const int uid = ipc->getCallingUid();
1886            if ((uid != AID_GRAPHICS) &&
1887                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1888                ALOGE("Permission Denial: "
1889                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1890                return PERMISSION_DENIED;
1891            }
1892            break;
1893        }
1894        case CAPTURE_SCREEN:
1895        {
1896            // codes that require permission check
1897            IPCThreadState* ipc = IPCThreadState::self();
1898            const int pid = ipc->getCallingPid();
1899            const int uid = ipc->getCallingUid();
1900            if ((uid != AID_GRAPHICS) &&
1901                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1902                ALOGE("Permission Denial: "
1903                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1904                return PERMISSION_DENIED;
1905            }
1906            break;
1907        }
1908    }
1909
1910    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1911    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1912        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1913        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1914            IPCThreadState* ipc = IPCThreadState::self();
1915            const int pid = ipc->getCallingPid();
1916            const int uid = ipc->getCallingUid();
1917            ALOGE("Permission Denial: "
1918                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1919            return PERMISSION_DENIED;
1920        }
1921        int n;
1922        switch (code) {
1923            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1924            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1925                return NO_ERROR;
1926            case 1002:  // SHOW_UPDATES
1927                n = data.readInt32();
1928                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1929                invalidateHwcGeometry();
1930                repaintEverything();
1931                return NO_ERROR;
1932            case 1004:{ // repaint everything
1933                repaintEverything();
1934                return NO_ERROR;
1935            }
1936            case 1005:{ // force transaction
1937                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1938                return NO_ERROR;
1939            }
1940            case 1006:{ // send empty update
1941                signalRefresh();
1942                return NO_ERROR;
1943            }
1944            case 1008:  // toggle use of hw composer
1945                n = data.readInt32();
1946                mDebugDisableHWC = n ? 1 : 0;
1947                invalidateHwcGeometry();
1948                repaintEverything();
1949                return NO_ERROR;
1950            case 1009:  // toggle use of transform hint
1951                n = data.readInt32();
1952                mDebugDisableTransformHint = n ? 1 : 0;
1953                invalidateHwcGeometry();
1954                repaintEverything();
1955                return NO_ERROR;
1956            case 1010:  // interrogate.
1957                reply->writeInt32(0);
1958                reply->writeInt32(0);
1959                reply->writeInt32(mDebugRegion);
1960                reply->writeInt32(0);
1961                reply->writeInt32(mDebugDisableHWC);
1962                return NO_ERROR;
1963            case 1013: {
1964                Mutex::Autolock _l(mStateLock);
1965                const DisplayHardware& hw(getDefaultDisplayHardware());
1966                reply->writeInt32(hw.getPageFlipCount());
1967            }
1968            return NO_ERROR;
1969        }
1970    }
1971    return err;
1972}
1973
1974void SurfaceFlinger::repaintEverything() {
1975    const DisplayHardware& hw(getDefaultDisplayHardware()); // FIXME: this cannot be bound the default display
1976    const Rect bounds(hw.getBounds());
1977    setInvalidateRegion(Region(bounds));
1978    signalTransaction();
1979}
1980
1981void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1982    Mutex::Autolock _l(mInvalidateLock);
1983    mInvalidateRegion = reg;
1984}
1985
1986Region SurfaceFlinger::getAndClearInvalidateRegion() {
1987    Mutex::Autolock _l(mInvalidateLock);
1988    Region reg(mInvalidateRegion);
1989    mInvalidateRegion.clear();
1990    return reg;
1991}
1992
1993// ---------------------------------------------------------------------------
1994
1995status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1996        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1997{
1998    Mutex::Autolock _l(mStateLock);
1999    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
2000}
2001
2002status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
2003        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2004{
2005    ATRACE_CALL();
2006
2007    if (!GLExtensions::getInstance().haveFramebufferObject())
2008        return INVALID_OPERATION;
2009
2010    // get screen geometry
2011    const DisplayHardware& hw(getDisplayHardware(dpy));
2012    const uint32_t hw_w = hw.getWidth();
2013    const uint32_t hw_h = hw.getHeight();
2014    GLfloat u = 1;
2015    GLfloat v = 1;
2016
2017    // make sure to clear all GL error flags
2018    while ( glGetError() != GL_NO_ERROR ) ;
2019
2020    // create a FBO
2021    GLuint name, tname;
2022    glGenTextures(1, &tname);
2023    glBindTexture(GL_TEXTURE_2D, tname);
2024    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2025    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2026    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2027            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2028    if (glGetError() != GL_NO_ERROR) {
2029        while ( glGetError() != GL_NO_ERROR ) ;
2030        GLint tw = (2 << (31 - clz(hw_w)));
2031        GLint th = (2 << (31 - clz(hw_h)));
2032        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2033                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2034        u = GLfloat(hw_w) / tw;
2035        v = GLfloat(hw_h) / th;
2036    }
2037    glGenFramebuffersOES(1, &name);
2038    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2039    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2040            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2041
2042    // redraw the screen entirely...
2043    glDisable(GL_TEXTURE_EXTERNAL_OES);
2044    glDisable(GL_TEXTURE_2D);
2045    glClearColor(0,0,0,1);
2046    glClear(GL_COLOR_BUFFER_BIT);
2047    glMatrixMode(GL_MODELVIEW);
2048    glLoadIdentity();
2049    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
2050    const size_t count = layers.size();
2051    for (size_t i=0 ; i<count ; ++i) {
2052        const sp<LayerBase>& layer(layers[i]);
2053        layer->drawForSreenShot(hw);
2054    }
2055
2056    hw.compositionComplete();
2057
2058    // back to main framebuffer
2059    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2060    glDeleteFramebuffersOES(1, &name);
2061
2062    *textureName = tname;
2063    *uOut = u;
2064    *vOut = v;
2065    return NO_ERROR;
2066}
2067
2068// ---------------------------------------------------------------------------
2069
2070class VSyncWaiter {
2071    DisplayEventReceiver::Event buffer[4];
2072    sp<Looper> looper;
2073    sp<IDisplayEventConnection> events;
2074    sp<BitTube> eventTube;
2075public:
2076    VSyncWaiter(const sp<EventThread>& eventThread) {
2077        looper = new Looper(true);
2078        events = eventThread->createEventConnection();
2079        eventTube = events->getDataChannel();
2080        looper->addFd(eventTube->getFd(), 0, ALOOPER_EVENT_INPUT, 0, 0);
2081        events->requestNextVsync();
2082    }
2083
2084    void wait() {
2085        ssize_t n;
2086
2087        looper->pollOnce(-1);
2088        // we don't handle any errors here, it doesn't matter
2089        // and we don't want to take the risk to get stuck.
2090
2091        // drain the events...
2092        while ((n = DisplayEventReceiver::getEvents(
2093                eventTube, buffer, 4)) > 0) ;
2094
2095        events->requestNextVsync();
2096    }
2097};
2098
2099status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
2100{
2101    // get screen geometry
2102    const DisplayHardware& hw(getDefaultDisplayHardware());
2103    const uint32_t hw_w = hw.getWidth();
2104    const uint32_t hw_h = hw.getHeight();
2105    const Region screenBounds(hw.getBounds());
2106
2107    GLfloat u, v;
2108    GLuint tname;
2109    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
2110    if (result != NO_ERROR) {
2111        return result;
2112    }
2113
2114    GLfloat vtx[8];
2115    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
2116    glBindTexture(GL_TEXTURE_2D, tname);
2117    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
2118    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2119    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2120    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2121    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2122    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2123    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2124    glVertexPointer(2, GL_FLOAT, 0, vtx);
2125
2126    /*
2127     * Texture coordinate mapping
2128     *
2129     *                 u
2130     *    1 +----------+---+
2131     *      |     |    |   |  image is inverted
2132     *      |     V    |   |  w.r.t. the texture
2133     *  1-v +----------+   |  coordinates
2134     *      |              |
2135     *      |              |
2136     *      |              |
2137     *    0 +--------------+
2138     *      0              1
2139     *
2140     */
2141
2142    class s_curve_interpolator {
2143        const float nbFrames, s, v;
2144    public:
2145        s_curve_interpolator(int nbFrames, float s)
2146        : nbFrames(1.0f / (nbFrames-1)), s(s),
2147          v(1.0f + expf(-s + 0.5f*s)) {
2148        }
2149        float operator()(int f) {
2150            const float x = f * nbFrames;
2151            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2152        }
2153    };
2154
2155    class v_stretch {
2156        const GLfloat hw_w, hw_h;
2157    public:
2158        v_stretch(uint32_t hw_w, uint32_t hw_h)
2159        : hw_w(hw_w), hw_h(hw_h) {
2160        }
2161        void operator()(GLfloat* vtx, float v) {
2162            const GLfloat w = hw_w + (hw_w * v);
2163            const GLfloat h = hw_h - (hw_h * v);
2164            const GLfloat x = (hw_w - w) * 0.5f;
2165            const GLfloat y = (hw_h - h) * 0.5f;
2166            vtx[0] = x;         vtx[1] = y;
2167            vtx[2] = x;         vtx[3] = y + h;
2168            vtx[4] = x + w;     vtx[5] = y + h;
2169            vtx[6] = x + w;     vtx[7] = y;
2170        }
2171    };
2172
2173    class h_stretch {
2174        const GLfloat hw_w, hw_h;
2175    public:
2176        h_stretch(uint32_t hw_w, uint32_t hw_h)
2177        : hw_w(hw_w), hw_h(hw_h) {
2178        }
2179        void operator()(GLfloat* vtx, float v) {
2180            const GLfloat w = hw_w - (hw_w * v);
2181            const GLfloat h = 1.0f;
2182            const GLfloat x = (hw_w - w) * 0.5f;
2183            const GLfloat y = (hw_h - h) * 0.5f;
2184            vtx[0] = x;         vtx[1] = y;
2185            vtx[2] = x;         vtx[3] = y + h;
2186            vtx[4] = x + w;     vtx[5] = y + h;
2187            vtx[6] = x + w;     vtx[7] = y;
2188        }
2189    };
2190
2191    VSyncWaiter vsync(mEventThread);
2192
2193    // the full animation is 24 frames
2194    char value[PROPERTY_VALUE_MAX];
2195    property_get("debug.sf.electron_frames", value, "24");
2196    int nbFrames = (atoi(value) + 1) >> 1;
2197    if (nbFrames <= 0) // just in case
2198        nbFrames = 24;
2199
2200    s_curve_interpolator itr(nbFrames, 7.5f);
2201    s_curve_interpolator itg(nbFrames, 8.0f);
2202    s_curve_interpolator itb(nbFrames, 8.5f);
2203
2204    v_stretch vverts(hw_w, hw_h);
2205
2206    glMatrixMode(GL_TEXTURE);
2207    glLoadIdentity();
2208    glMatrixMode(GL_MODELVIEW);
2209    glLoadIdentity();
2210
2211    glEnable(GL_BLEND);
2212    glBlendFunc(GL_ONE, GL_ONE);
2213    for (int i=0 ; i<nbFrames ; i++) {
2214        float x, y, w, h;
2215        const float vr = itr(i);
2216        const float vg = itg(i);
2217        const float vb = itb(i);
2218
2219        // wait for vsync
2220        vsync.wait();
2221
2222        // clear screen
2223        glColorMask(1,1,1,1);
2224        glClear(GL_COLOR_BUFFER_BIT);
2225        glEnable(GL_TEXTURE_2D);
2226
2227        // draw the red plane
2228        vverts(vtx, vr);
2229        glColorMask(1,0,0,1);
2230        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2231
2232        // draw the green plane
2233        vverts(vtx, vg);
2234        glColorMask(0,1,0,1);
2235        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2236
2237        // draw the blue plane
2238        vverts(vtx, vb);
2239        glColorMask(0,0,1,1);
2240        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2241
2242        // draw the white highlight (we use the last vertices)
2243        glDisable(GL_TEXTURE_2D);
2244        glColorMask(1,1,1,1);
2245        glColor4f(vg, vg, vg, 1);
2246        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2247        hw.flip(screenBounds);
2248    }
2249
2250    h_stretch hverts(hw_w, hw_h);
2251    glDisable(GL_BLEND);
2252    glDisable(GL_TEXTURE_2D);
2253    glColorMask(1,1,1,1);
2254    for (int i=0 ; i<nbFrames ; i++) {
2255        const float v = itg(i);
2256        hverts(vtx, v);
2257
2258        // wait for vsync
2259        vsync.wait();
2260
2261        glClear(GL_COLOR_BUFFER_BIT);
2262        glColor4f(1-v, 1-v, 1-v, 1);
2263        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2264        hw.flip(screenBounds);
2265    }
2266
2267    glColorMask(1,1,1,1);
2268    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2269    glDeleteTextures(1, &tname);
2270    glDisable(GL_TEXTURE_2D);
2271    glDisable(GL_BLEND);
2272    return NO_ERROR;
2273}
2274
2275status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2276{
2277    status_t result = PERMISSION_DENIED;
2278
2279    if (!GLExtensions::getInstance().haveFramebufferObject())
2280        return INVALID_OPERATION;
2281
2282
2283    // get screen geometry
2284    const DisplayHardware& hw(getDefaultDisplayHardware());
2285    const uint32_t hw_w = hw.getWidth();
2286    const uint32_t hw_h = hw.getHeight();
2287    const Region screenBounds(hw.bounds());
2288
2289    GLfloat u, v;
2290    GLuint tname;
2291    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2292    if (result != NO_ERROR) {
2293        return result;
2294    }
2295
2296    GLfloat vtx[8];
2297    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2298    glBindTexture(GL_TEXTURE_2D, tname);
2299    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2300    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2301    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2302    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2303    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2304    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2305    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2306    glVertexPointer(2, GL_FLOAT, 0, vtx);
2307
2308    class s_curve_interpolator {
2309        const float nbFrames, s, v;
2310    public:
2311        s_curve_interpolator(int nbFrames, float s)
2312        : nbFrames(1.0f / (nbFrames-1)), s(s),
2313          v(1.0f + expf(-s + 0.5f*s)) {
2314        }
2315        float operator()(int f) {
2316            const float x = f * nbFrames;
2317            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2318        }
2319    };
2320
2321    class v_stretch {
2322        const GLfloat hw_w, hw_h;
2323    public:
2324        v_stretch(uint32_t hw_w, uint32_t hw_h)
2325        : hw_w(hw_w), hw_h(hw_h) {
2326        }
2327        void operator()(GLfloat* vtx, float v) {
2328            const GLfloat w = hw_w + (hw_w * v);
2329            const GLfloat h = hw_h - (hw_h * v);
2330            const GLfloat x = (hw_w - w) * 0.5f;
2331            const GLfloat y = (hw_h - h) * 0.5f;
2332            vtx[0] = x;         vtx[1] = y;
2333            vtx[2] = x;         vtx[3] = y + h;
2334            vtx[4] = x + w;     vtx[5] = y + h;
2335            vtx[6] = x + w;     vtx[7] = y;
2336        }
2337    };
2338
2339    class h_stretch {
2340        const GLfloat hw_w, hw_h;
2341    public:
2342        h_stretch(uint32_t hw_w, uint32_t hw_h)
2343        : hw_w(hw_w), hw_h(hw_h) {
2344        }
2345        void operator()(GLfloat* vtx, float v) {
2346            const GLfloat w = hw_w - (hw_w * v);
2347            const GLfloat h = 1.0f;
2348            const GLfloat x = (hw_w - w) * 0.5f;
2349            const GLfloat y = (hw_h - h) * 0.5f;
2350            vtx[0] = x;         vtx[1] = y;
2351            vtx[2] = x;         vtx[3] = y + h;
2352            vtx[4] = x + w;     vtx[5] = y + h;
2353            vtx[6] = x + w;     vtx[7] = y;
2354        }
2355    };
2356
2357    VSyncWaiter vsync(mEventThread);
2358
2359    // the full animation is 12 frames
2360    int nbFrames = 8;
2361    s_curve_interpolator itr(nbFrames, 7.5f);
2362    s_curve_interpolator itg(nbFrames, 8.0f);
2363    s_curve_interpolator itb(nbFrames, 8.5f);
2364
2365    h_stretch hverts(hw_w, hw_h);
2366    glDisable(GL_BLEND);
2367    glDisable(GL_TEXTURE_2D);
2368    glColorMask(1,1,1,1);
2369    for (int i=nbFrames-1 ; i>=0 ; i--) {
2370        const float v = itg(i);
2371        hverts(vtx, v);
2372
2373        // wait for vsync
2374        vsync.wait();
2375
2376        glClear(GL_COLOR_BUFFER_BIT);
2377        glColor4f(1-v, 1-v, 1-v, 1);
2378        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2379        hw.flip(screenBounds);
2380    }
2381
2382    nbFrames = 4;
2383    v_stretch vverts(hw_w, hw_h);
2384    glEnable(GL_BLEND);
2385    glBlendFunc(GL_ONE, GL_ONE);
2386    for (int i=nbFrames-1 ; i>=0 ; i--) {
2387        float x, y, w, h;
2388        const float vr = itr(i);
2389        const float vg = itg(i);
2390        const float vb = itb(i);
2391
2392        // wait for vsync
2393        vsync.wait();
2394
2395        // clear screen
2396        glColorMask(1,1,1,1);
2397        glClear(GL_COLOR_BUFFER_BIT);
2398        glEnable(GL_TEXTURE_2D);
2399
2400        // draw the red plane
2401        vverts(vtx, vr);
2402        glColorMask(1,0,0,1);
2403        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2404
2405        // draw the green plane
2406        vverts(vtx, vg);
2407        glColorMask(0,1,0,1);
2408        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2409
2410        // draw the blue plane
2411        vverts(vtx, vb);
2412        glColorMask(0,0,1,1);
2413        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2414
2415        hw.flip(screenBounds);
2416    }
2417
2418    glColorMask(1,1,1,1);
2419    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2420    glDeleteTextures(1, &tname);
2421    glDisable(GL_TEXTURE_2D);
2422    glDisable(GL_BLEND);
2423
2424    return NO_ERROR;
2425}
2426
2427// ---------------------------------------------------------------------------
2428
2429status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2430{
2431    ATRACE_CALL();
2432
2433    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2434    if (!hw.canDraw()) {
2435        // we're already off
2436        return NO_ERROR;
2437    }
2438
2439    // turn off hwc while we're doing the animation
2440    hw.getHwComposer().disable();
2441    // and make sure to turn it back on (if needed) next time we compose
2442    invalidateHwcGeometry();
2443
2444    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2445        electronBeamOffAnimationImplLocked();
2446    }
2447
2448    // always clear the whole screen at the end of the animation
2449    glClearColor(0,0,0,1);
2450    glClear(GL_COLOR_BUFFER_BIT);
2451    hw.flip( Region(hw.bounds()) );
2452
2453    return NO_ERROR;
2454}
2455
2456status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2457{
2458    class MessageTurnElectronBeamOff : public MessageBase {
2459        SurfaceFlinger* flinger;
2460        int32_t mode;
2461        status_t result;
2462    public:
2463        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2464            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2465        }
2466        status_t getResult() const {
2467            return result;
2468        }
2469        virtual bool handler() {
2470            Mutex::Autolock _l(flinger->mStateLock);
2471            result = flinger->turnElectronBeamOffImplLocked(mode);
2472            return true;
2473        }
2474    };
2475
2476    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2477    status_t res = postMessageSync(msg);
2478    if (res == NO_ERROR) {
2479        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2480
2481        // work-around: when the power-manager calls us we activate the
2482        // animation. eventually, the "on" animation will be called
2483        // by the power-manager itself
2484        mElectronBeamAnimationMode = mode;
2485    }
2486    return res;
2487}
2488
2489// ---------------------------------------------------------------------------
2490
2491status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2492{
2493    DisplayHardware& hw(const_cast<DisplayHardware&>(getDefaultDisplayHardware()));
2494    if (hw.canDraw()) {
2495        // we're already on
2496        return NO_ERROR;
2497    }
2498    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2499        electronBeamOnAnimationImplLocked();
2500    }
2501
2502    // make sure to redraw the whole screen when the animation is done
2503    mDirtyRegion.set(hw.bounds());
2504    signalTransaction();
2505
2506    return NO_ERROR;
2507}
2508
2509status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2510{
2511    class MessageTurnElectronBeamOn : public MessageBase {
2512        SurfaceFlinger* flinger;
2513        int32_t mode;
2514        status_t result;
2515    public:
2516        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2517            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2518        }
2519        status_t getResult() const {
2520            return result;
2521        }
2522        virtual bool handler() {
2523            Mutex::Autolock _l(flinger->mStateLock);
2524            result = flinger->turnElectronBeamOnImplLocked(mode);
2525            return true;
2526        }
2527    };
2528
2529    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2530    return NO_ERROR;
2531}
2532
2533// ---------------------------------------------------------------------------
2534
2535status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2536        sp<IMemoryHeap>* heap,
2537        uint32_t* w, uint32_t* h, PixelFormat* f,
2538        uint32_t sw, uint32_t sh,
2539        uint32_t minLayerZ, uint32_t maxLayerZ)
2540{
2541    ATRACE_CALL();
2542
2543    status_t result = PERMISSION_DENIED;
2544
2545    // only one display supported for now
2546    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
2547        return BAD_VALUE;
2548    }
2549
2550    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2551        return INVALID_OPERATION;
2552    }
2553
2554    // get screen geometry
2555    const DisplayHardware& hw(getDisplayHardware(dpy));
2556    const uint32_t hw_w = hw.getWidth();
2557    const uint32_t hw_h = hw.getHeight();
2558
2559    // if we have secure windows on this display, never allow the screen capture
2560    if (hw.getSecureLayerVisible()) {
2561        return PERMISSION_DENIED;
2562    }
2563
2564    if ((sw > hw_w) || (sh > hw_h)) {
2565        return BAD_VALUE;
2566    }
2567
2568    sw = (!sw) ? hw_w : sw;
2569    sh = (!sh) ? hw_h : sh;
2570    const size_t size = sw * sh * 4;
2571
2572    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2573    //        sw, sh, minLayerZ, maxLayerZ);
2574
2575    // make sure to clear all GL error flags
2576    while ( glGetError() != GL_NO_ERROR ) ;
2577
2578    // create a FBO
2579    GLuint name, tname;
2580    glGenRenderbuffersOES(1, &tname);
2581    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2582    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2583
2584    glGenFramebuffersOES(1, &name);
2585    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2586    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2587            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2588
2589    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2590
2591    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2592
2593        // invert everything, b/c glReadPixel() below will invert the FB
2594        glViewport(0, 0, sw, sh);
2595        glMatrixMode(GL_PROJECTION);
2596        glPushMatrix();
2597        glLoadIdentity();
2598        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2599        glMatrixMode(GL_MODELVIEW);
2600
2601        // redraw the screen entirely...
2602        glClearColor(0,0,0,1);
2603        glClear(GL_COLOR_BUFFER_BIT);
2604
2605        const LayerVector& layers(mDrawingState.layersSortedByZ);
2606        const size_t count = layers.size();
2607        for (size_t i=0 ; i<count ; ++i) {
2608            const sp<LayerBase>& layer(layers[i]);
2609            const uint32_t flags = layer->drawingState().flags;
2610            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2611                const uint32_t z = layer->drawingState().z;
2612                if (z >= minLayerZ && z <= maxLayerZ) {
2613                    layer->drawForSreenShot(hw);
2614                }
2615            }
2616        }
2617
2618        // check for errors and return screen capture
2619        if (glGetError() != GL_NO_ERROR) {
2620            // error while rendering
2621            result = INVALID_OPERATION;
2622        } else {
2623            // allocate shared memory large enough to hold the
2624            // screen capture
2625            sp<MemoryHeapBase> base(
2626                    new MemoryHeapBase(size, 0, "screen-capture") );
2627            void* const ptr = base->getBase();
2628            if (ptr) {
2629                // capture the screen with glReadPixels()
2630                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2631                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2632                if (glGetError() == GL_NO_ERROR) {
2633                    *heap = base;
2634                    *w = sw;
2635                    *h = sh;
2636                    *f = PIXEL_FORMAT_RGBA_8888;
2637                    result = NO_ERROR;
2638                }
2639            } else {
2640                result = NO_MEMORY;
2641            }
2642        }
2643        glViewport(0, 0, hw_w, hw_h);
2644        glMatrixMode(GL_PROJECTION);
2645        glPopMatrix();
2646        glMatrixMode(GL_MODELVIEW);
2647    } else {
2648        result = BAD_VALUE;
2649    }
2650
2651    // release FBO resources
2652    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2653    glDeleteRenderbuffersOES(1, &tname);
2654    glDeleteFramebuffersOES(1, &name);
2655
2656    hw.compositionComplete();
2657
2658    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2659
2660    return result;
2661}
2662
2663
2664status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2665        sp<IMemoryHeap>* heap,
2666        uint32_t* width, uint32_t* height, PixelFormat* format,
2667        uint32_t sw, uint32_t sh,
2668        uint32_t minLayerZ, uint32_t maxLayerZ)
2669{
2670    // only one display supported for now
2671    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2672        return BAD_VALUE;
2673
2674    if (!GLExtensions::getInstance().haveFramebufferObject())
2675        return INVALID_OPERATION;
2676
2677    class MessageCaptureScreen : public MessageBase {
2678        SurfaceFlinger* flinger;
2679        DisplayID dpy;
2680        sp<IMemoryHeap>* heap;
2681        uint32_t* w;
2682        uint32_t* h;
2683        PixelFormat* f;
2684        uint32_t sw;
2685        uint32_t sh;
2686        uint32_t minLayerZ;
2687        uint32_t maxLayerZ;
2688        status_t result;
2689    public:
2690        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2691                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2692                uint32_t sw, uint32_t sh,
2693                uint32_t minLayerZ, uint32_t maxLayerZ)
2694            : flinger(flinger), dpy(dpy),
2695              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2696              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2697              result(PERMISSION_DENIED)
2698        {
2699        }
2700        status_t getResult() const {
2701            return result;
2702        }
2703        virtual bool handler() {
2704            Mutex::Autolock _l(flinger->mStateLock);
2705            result = flinger->captureScreenImplLocked(dpy,
2706                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2707            return true;
2708        }
2709    };
2710
2711    sp<MessageBase> msg = new MessageCaptureScreen(this,
2712            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2713    status_t res = postMessageSync(msg);
2714    if (res == NO_ERROR) {
2715        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2716    }
2717    return res;
2718}
2719
2720// ---------------------------------------------------------------------------
2721
2722SurfaceFlinger::LayerVector::LayerVector() {
2723}
2724
2725SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2726    : SortedVector<sp<LayerBase> >(rhs) {
2727}
2728
2729int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2730    const void* rhs) const
2731{
2732    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2733    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2734    // sort layers by Z order
2735    uint32_t lz = l->currentState().z;
2736    uint32_t rz = r->currentState().z;
2737    // then by sequence, so we get a stable ordering
2738    return (lz != rz) ? (lz - rz) : (l->sequence - r->sequence);
2739}
2740
2741// ---------------------------------------------------------------------------
2742
2743SurfaceFlinger::State::State()
2744    : orientation(ISurfaceComposer::eOrientationDefault),
2745      orientationFlags(0) {
2746}
2747
2748// ---------------------------------------------------------------------------
2749
2750GraphicBufferAlloc::GraphicBufferAlloc() {}
2751
2752GraphicBufferAlloc::~GraphicBufferAlloc() {}
2753
2754sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2755        PixelFormat format, uint32_t usage, status_t* error) {
2756    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2757    status_t err = graphicBuffer->initCheck();
2758    *error = err;
2759    if (err != 0 || graphicBuffer->handle == 0) {
2760        if (err == NO_MEMORY) {
2761            GraphicBuffer::dumpAllocationsToSystemLog();
2762        }
2763        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2764             "failed (%s), handle=%p",
2765                w, h, strerror(-err), graphicBuffer->handle);
2766        return 0;
2767    }
2768    return graphicBuffer;
2769}
2770
2771// ---------------------------------------------------------------------------
2772
2773}; // namespace android
2774