SurfaceFlinger.cpp revision 92a979a92c34b7de609ce2b1662c73bb8a2728b9
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23
24#include <EGL/egl.h>
25#include <GLES/gl.h>
26
27#include <cutils/log.h>
28#include <cutils/properties.h>
29
30#include <binder/IPCThreadState.h>
31#include <binder/IServiceManager.h>
32#include <binder/MemoryHeapBase.h>
33#include <binder/PermissionCache.h>
34
35#include <ui/DisplayInfo.h>
36
37#include <gui/IDisplayEventConnection.h>
38#include <gui/BitTube.h>
39#include <gui/SurfaceTextureClient.h>
40
41#include <ui/GraphicBufferAllocator.h>
42#include <ui/PixelFormat.h>
43
44#include <utils/String8.h>
45#include <utils/String16.h>
46#include <utils/StopWatch.h>
47#include <utils/Trace.h>
48
49#include <private/android_filesystem_config.h>
50
51#include "clz.h"
52#include "DdmConnection.h"
53#include "DisplayDevice.h"
54#include "Client.h"
55#include "EventThread.h"
56#include "GLExtensions.h"
57#include "Layer.h"
58#include "LayerDim.h"
59#include "LayerScreenshot.h"
60#include "SurfaceFlinger.h"
61
62#include "DisplayHardware/FramebufferSurface.h"
63#include "DisplayHardware/HWComposer.h"
64
65
66#define EGL_VERSION_HW_ANDROID  0x3143
67
68#define DISPLAY_COUNT       1
69
70namespace android {
71// ---------------------------------------------------------------------------
72
73const String16 sHardwareTest("android.permission.HARDWARE_TEST");
74const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
75const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
76const String16 sDump("android.permission.DUMP");
77
78// ---------------------------------------------------------------------------
79
80SurfaceFlinger::SurfaceFlinger()
81    :   BnSurfaceComposer(), Thread(false),
82        mTransactionFlags(0),
83        mTransationPending(false),
84        mLayersRemoved(false),
85        mRepaintEverything(0),
86        mBootTime(systemTime()),
87        mVisibleRegionsDirty(false),
88        mHwWorkListDirty(false),
89        mElectronBeamAnimationMode(0),
90        mDebugRegion(0),
91        mDebugDDMS(0),
92        mDebugDisableHWC(0),
93        mDebugDisableTransformHint(0),
94        mDebugInSwapBuffers(0),
95        mLastSwapBufferTime(0),
96        mDebugInTransaction(0),
97        mLastTransactionTime(0),
98        mBootFinished(false),
99        mExternalDisplaySurface(EGL_NO_SURFACE)
100{
101    ALOGI("SurfaceFlinger is starting");
102
103    // debugging stuff...
104    char value[PROPERTY_VALUE_MAX];
105
106    property_get("debug.sf.showupdates", value, "0");
107    mDebugRegion = atoi(value);
108
109#ifdef DDMS_DEBUGGING
110    property_get("debug.sf.ddms", value, "0");
111    mDebugDDMS = atoi(value);
112    if (mDebugDDMS) {
113        DdmConnection::start(getServiceName());
114    }
115#else
116#warning "DDMS_DEBUGGING disabled"
117#endif
118
119    ALOGI_IF(mDebugRegion,       "showupdates enabled");
120    ALOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
121}
122
123void SurfaceFlinger::onFirstRef()
124{
125    mEventQueue.init(this);
126
127    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
128
129    // Wait for the main thread to be done with its initialization
130    mReadyToRunBarrier.wait();
131}
132
133
134SurfaceFlinger::~SurfaceFlinger()
135{
136    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
137    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
138    eglTerminate(display);
139}
140
141void SurfaceFlinger::binderDied(const wp<IBinder>& who)
142{
143    // the window manager died on us. prepare its eulogy.
144
145    // reset screen orientation
146    Vector<ComposerState> state;
147    Vector<DisplayState> displays;
148    DisplayState d;
149    d.orientation = eOrientationDefault;
150    displays.add(d);
151    setTransactionState(state, displays, 0);
152
153    // restart the boot-animation
154    startBootAnim();
155}
156
157sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
158{
159    sp<ISurfaceComposerClient> bclient;
160    sp<Client> client(new Client(this));
161    status_t err = client->initCheck();
162    if (err == NO_ERROR) {
163        bclient = client;
164    }
165    return bclient;
166}
167
168sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
169{
170    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
171    return gba;
172}
173
174void SurfaceFlinger::bootFinished()
175{
176    const nsecs_t now = systemTime();
177    const nsecs_t duration = now - mBootTime;
178    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
179    mBootFinished = true;
180
181    // wait patiently for the window manager death
182    const String16 name("window");
183    sp<IBinder> window(defaultServiceManager()->getService(name));
184    if (window != 0) {
185        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
186    }
187
188    // stop boot animation
189    // formerly we would just kill the process, but we now ask it to exit so it
190    // can choose where to stop the animation.
191    property_set("service.bootanim.exit", "1");
192}
193
194void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
195    class MessageDestroyGLTexture : public MessageBase {
196        GLuint texture;
197    public:
198        MessageDestroyGLTexture(GLuint texture)
199            : texture(texture) {
200        }
201        virtual bool handler() {
202            glDeleteTextures(1, &texture);
203            return true;
204        }
205    };
206    postMessageAsync(new MessageDestroyGLTexture(texture));
207}
208
209status_t SurfaceFlinger::selectConfigForPixelFormat(
210        EGLDisplay dpy,
211        EGLint const* attrs,
212        PixelFormat format,
213        EGLConfig* outConfig)
214{
215    EGLConfig config = NULL;
216    EGLint numConfigs = -1, n=0;
217    eglGetConfigs(dpy, NULL, 0, &numConfigs);
218    EGLConfig* const configs = new EGLConfig[numConfigs];
219    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
220    for (int i=0 ; i<n ; i++) {
221        EGLint nativeVisualId = 0;
222        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
223        if (nativeVisualId>0 && format == nativeVisualId) {
224            *outConfig = configs[i];
225            delete [] configs;
226            return NO_ERROR;
227        }
228    }
229    delete [] configs;
230    return NAME_NOT_FOUND;
231}
232
233EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
234    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
235    // it is to be used with WIFI displays
236    EGLConfig config;
237    EGLint dummy;
238    status_t err;
239    EGLint attribs[] = {
240            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
241            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
242            EGL_NONE
243    };
244    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
245    if (err) {
246        // maybe we failed because of EGL_RECORDABLE_ANDROID
247        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
248        attribs[2] = EGL_NONE;
249        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
250    }
251    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
252    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
253        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
254    }
255    return config;
256}
257
258EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
259    // Also create our EGLContext
260    EGLint contextAttributes[] = {
261#ifdef EGL_IMG_context_priority
262#ifdef HAS_CONTEXT_PRIORITY
263#warning "using EGL_IMG_context_priority"
264            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
265#endif
266#endif
267            EGL_NONE, EGL_NONE
268    };
269    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
270    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
271    return ctxt;
272}
273
274void SurfaceFlinger::initializeGL(EGLDisplay display, EGLSurface surface) {
275    EGLBoolean result = eglMakeCurrent(display, surface, surface, mEGLContext);
276    if (!result) {
277        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
278        exit(0);
279    }
280
281    GLExtensions& extensions(GLExtensions::getInstance());
282    extensions.initWithGLStrings(
283            glGetString(GL_VENDOR),
284            glGetString(GL_RENDERER),
285            glGetString(GL_VERSION),
286            glGetString(GL_EXTENSIONS),
287            eglQueryString(display, EGL_VENDOR),
288            eglQueryString(display, EGL_VERSION),
289            eglQueryString(display, EGL_EXTENSIONS));
290
291    EGLint w, h;
292    eglQuerySurface(display, surface, EGL_WIDTH,  &w);
293    eglQuerySurface(display, surface, EGL_HEIGHT, &h);
294
295    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
296    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
297
298    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
299    glPixelStorei(GL_PACK_ALIGNMENT, 4);
300    glEnableClientState(GL_VERTEX_ARRAY);
301    glShadeModel(GL_FLAT);
302    glDisable(GL_DITHER);
303    glDisable(GL_CULL_FACE);
304
305    struct pack565 {
306        inline uint16_t operator() (int r, int g, int b) const {
307            return (r<<11)|(g<<5)|b;
308        }
309    } pack565;
310
311    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
312    glGenTextures(1, &mProtectedTexName);
313    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
314    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
315    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
316    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
317    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
318    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
319            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
320
321    glViewport(0, 0, w, h);
322    glMatrixMode(GL_PROJECTION);
323    glLoadIdentity();
324    // put the origin in the left-bottom corner
325    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
326
327    // print some debugging info
328    EGLint r,g,b,a;
329    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
330    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
331    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
332    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
333    ALOGI("EGL informations:");
334    ALOGI("vendor    : %s", extensions.getEglVendor());
335    ALOGI("version   : %s", extensions.getEglVersion());
336    ALOGI("extensions: %s", extensions.getEglExtension());
337    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
338    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
339    ALOGI("OpenGL ES informations:");
340    ALOGI("vendor    : %s", extensions.getVendor());
341    ALOGI("renderer  : %s", extensions.getRenderer());
342    ALOGI("version   : %s", extensions.getVersion());
343    ALOGI("extensions: %s", extensions.getExtension());
344    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
345    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
346}
347
348status_t SurfaceFlinger::readyToRun()
349{
350    ALOGI(  "SurfaceFlinger's main thread ready to run. "
351            "Initializing graphics H/W...");
352
353    // initialize EGL
354    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
355    eglInitialize(mEGLDisplay, NULL, NULL);
356
357    // Initialize the main display
358    // create native window to main display
359    sp<FramebufferSurface> anw = FramebufferSurface::create();
360    ANativeWindow* const window = anw.get();
361    if (!window) {
362        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
363        exit(0);
364    }
365
366    // initialize the config and context
367    int format;
368    window->query(window, NATIVE_WINDOW_FORMAT, &format);
369    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
370    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
371
372    // initialize our main display hardware
373    mCurrentState.displays.add(DisplayDevice::DISPLAY_ID_MAIN, DisplayDeviceState());
374    DisplayDevice hw(this, DisplayDevice::DISPLAY_ID_MAIN, anw, mEGLConfig);
375    mDisplays.add(DisplayDevice::DISPLAY_ID_MAIN, hw);
376
377    //  initialize OpenGL ES
378    EGLSurface surface = hw.getEGLSurface();
379    initializeGL(mEGLDisplay, surface);
380
381    // start the EventThread
382    mEventThread = new EventThread(this);
383    mEventQueue.setEventThread(mEventThread);
384
385    // initialize the H/W composer
386    mHwc = new HWComposer(this,
387            *static_cast<HWComposer::EventHandler *>(this),
388            hw.getRefreshPeriod());
389
390    // initialize our drawing state
391    mDrawingState = mCurrentState;
392
393    // We're now ready to accept clients...
394    mReadyToRunBarrier.open();
395
396    // start boot animation
397    startBootAnim();
398
399    return NO_ERROR;
400}
401
402void SurfaceFlinger::startBootAnim() {
403    // start boot animation
404    property_set("service.bootanim.exit", "0");
405    property_set("ctl.start", "bootanim");
406}
407
408uint32_t SurfaceFlinger::getMaxTextureSize() const {
409    return mMaxTextureSize;
410}
411
412uint32_t SurfaceFlinger::getMaxViewportDims() const {
413    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
414            mMaxViewportDims[0] : mMaxViewportDims[1];
415}
416
417// ----------------------------------------------------------------------------
418
419bool SurfaceFlinger::authenticateSurfaceTexture(
420        const sp<ISurfaceTexture>& surfaceTexture) const {
421    Mutex::Autolock _l(mStateLock);
422    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
423
424    // Check the visible layer list for the ISurface
425    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
426    size_t count = currentLayers.size();
427    for (size_t i=0 ; i<count ; i++) {
428        const sp<LayerBase>& layer(currentLayers[i]);
429        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
430        if (lbc != NULL) {
431            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
432            if (lbcBinder == surfaceTextureBinder) {
433                return true;
434            }
435        }
436    }
437
438    // Check the layers in the purgatory.  This check is here so that if a
439    // SurfaceTexture gets destroyed before all the clients are done using it,
440    // the error will not be reported as "surface XYZ is not authenticated", but
441    // will instead fail later on when the client tries to use the surface,
442    // which should be reported as "surface XYZ returned an -ENODEV".  The
443    // purgatorized layers are no less authentic than the visible ones, so this
444    // should not cause any harm.
445    size_t purgatorySize =  mLayerPurgatory.size();
446    for (size_t i=0 ; i<purgatorySize ; i++) {
447        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
448        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
449        if (lbc != NULL) {
450            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
451            if (lbcBinder == surfaceTextureBinder) {
452                return true;
453            }
454        }
455    }
456
457    return false;
458}
459
460status_t SurfaceFlinger::getDisplayInfo(DisplayID dpy, DisplayInfo* info) {
461    if (uint32_t(dpy) >= 2) {
462        return BAD_INDEX;
463    }
464    const DisplayDevice& hw(getDefaultDisplayDevice());
465    return hw.getInfo(info);
466}
467
468// ----------------------------------------------------------------------------
469
470sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
471    return mEventThread->createEventConnection();
472}
473
474void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture> display) {
475    const DisplayDevice& hw(getDefaultDisplayDevice());
476    EGLSurface result = EGL_NO_SURFACE;
477    EGLSurface old_surface = EGL_NO_SURFACE;
478    sp<SurfaceTextureClient> stc;
479
480    if (display != NULL) {
481        stc = new SurfaceTextureClient(display);
482        result = eglCreateWindowSurface(mEGLDisplay,
483                mEGLConfig, (EGLNativeWindowType)stc.get(), NULL);
484        ALOGE_IF(result == EGL_NO_SURFACE,
485                "eglCreateWindowSurface failed (ISurfaceTexture=%p)",
486                display.get());
487    }
488
489    { // scope for the lock
490        Mutex::Autolock _l(mStateLock);
491        old_surface = mExternalDisplaySurface;
492        mExternalDisplayNativeWindow = stc;
493        mExternalDisplaySurface = result;
494        ALOGD("mExternalDisplaySurface = %p", result);
495    }
496
497    if (old_surface != EGL_NO_SURFACE) {
498        // Note: EGL allows to destroy an object while its current
499        // it will fail to become current next time though.
500        eglDestroySurface(mEGLDisplay, old_surface);
501    }
502}
503
504EGLSurface SurfaceFlinger::getExternalDisplaySurface() const {
505    Mutex::Autolock _l(mStateLock);
506    return mExternalDisplaySurface;
507}
508
509// ----------------------------------------------------------------------------
510
511void SurfaceFlinger::waitForEvent() {
512    mEventQueue.waitMessage();
513}
514
515void SurfaceFlinger::signalTransaction() {
516    mEventQueue.invalidate();
517}
518
519void SurfaceFlinger::signalLayerUpdate() {
520    mEventQueue.invalidate();
521}
522
523void SurfaceFlinger::signalRefresh() {
524    mEventQueue.refresh();
525}
526
527status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
528        nsecs_t reltime, uint32_t flags) {
529    return mEventQueue.postMessage(msg, reltime);
530}
531
532status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
533        nsecs_t reltime, uint32_t flags) {
534    status_t res = mEventQueue.postMessage(msg, reltime);
535    if (res == NO_ERROR) {
536        msg->wait();
537    }
538    return res;
539}
540
541bool SurfaceFlinger::threadLoop() {
542    waitForEvent();
543    return true;
544}
545
546void SurfaceFlinger::onVSyncReceived(int dpy, nsecs_t timestamp) {
547    mEventThread->onVSyncReceived(dpy, timestamp);
548}
549
550void SurfaceFlinger::eventControl(int event, int enabled) {
551    getHwComposer().eventControl(event, enabled);
552}
553
554void SurfaceFlinger::onMessageReceived(int32_t what) {
555    ATRACE_CALL();
556    switch (what) {
557    case MessageQueue::INVALIDATE:
558        handleMessageTransaction();
559        handleMessageInvalidate();
560        signalRefresh();
561        break;
562    case MessageQueue::REFRESH:
563        handleMessageRefresh();
564        break;
565    }
566}
567
568void SurfaceFlinger::handleMessageTransaction() {
569    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
570    uint32_t transactionFlags = peekTransactionFlags(mask);
571    if (transactionFlags) {
572        handleTransaction(transactionFlags);
573    }
574}
575
576void SurfaceFlinger::handleMessageInvalidate() {
577    handlePageFlip();
578}
579
580void SurfaceFlinger::handleMessageRefresh() {
581    handleRefresh();
582
583    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
584        mVisibleRegionsDirty = false;
585        invalidateHwcGeometry();
586
587        /*
588         *  rebuild the visible layer list per screen
589         */
590
591        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
592        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
593            DisplayDevice& hw(mDisplays.editValueAt(dpy));
594            Region opaqueRegion;
595            Region dirtyRegion;
596            computeVisibleRegions(currentLayers,
597                    hw.getLayerStack(), dirtyRegion, opaqueRegion);
598            hw.dirtyRegion.orSelf(dirtyRegion);
599
600            Vector< sp<LayerBase> > layersSortedByZ;
601            const size_t count = currentLayers.size();
602            for (size_t i=0 ; i<count ; i++) {
603                const Layer::State& s(currentLayers[i]->drawingState());
604                if (s.layerStack == hw.getLayerStack()) {
605                    if (!currentLayers[i]->visibleRegion.isEmpty()) {
606                        layersSortedByZ.add(currentLayers[i]);
607                    }
608                }
609            }
610            hw.setVisibleLayersSortedByZ(layersSortedByZ);
611            hw.undefinedRegion.set(hw.getBounds());
612            hw.undefinedRegion.subtractSelf(hw.getTransform().transform(opaqueRegion));
613        }
614    }
615
616    HWComposer& hwc(getHwComposer());
617    if (hwc.initCheck() == NO_ERROR) {
618        // build the h/w work list
619        const bool workListsDirty = mHwWorkListDirty;
620        mHwWorkListDirty = false;
621        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
622            const DisplayDevice& hw(mDisplays[dpy]);
623            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
624            const size_t count = currentLayers.size();
625
626            hwc.createWorkList(count); // FIXME: the worklist should include enough space for all layer of all displays
627
628            HWComposer::LayerListIterator cur = hwc.begin();
629            const HWComposer::LayerListIterator end = hwc.end();
630            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
631                const sp<LayerBase>& layer(currentLayers[i]);
632
633                if (CC_UNLIKELY(workListsDirty)) {
634                    layer->setGeometry(hw, *cur);
635                    if (mDebugDisableHWC || mDebugRegion) {
636                        cur->setSkip(true);
637                    }
638                }
639
640                /*
641                 * update the per-frame h/w composer data for each layer
642                 * and build the transparent region of the FB
643                 */
644                layer->setPerFrameData(hw, *cur);
645            }
646        }
647        status_t err = hwc.prepare();
648        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
649    }
650
651    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
652    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
653        DisplayDevice& hw(mDisplays.editValueAt(dpy));
654
655        // transform the dirty region into this screen's coordinate space
656        const Transform& planeTransform(hw.getTransform());
657        Region dirtyRegion;
658        if (repaintEverything) {
659            dirtyRegion.set(hw.bounds());
660        } else {
661            dirtyRegion = planeTransform.transform(hw.dirtyRegion);
662            dirtyRegion.andSelf(hw.bounds());
663        }
664        hw.dirtyRegion.clear();
665
666        if (!dirtyRegion.isEmpty()) {
667            if (hw.canDraw()) {
668                // repaint the framebuffer (if needed)
669                handleRepaint(hw, dirtyRegion);
670            }
671        }
672        // inform the h/w that we're done compositing
673        hw.compositionComplete();
674    }
675
676    postFramebuffer();
677
678
679#if 1
680    // render to the external display if we have one
681    EGLSurface externalDisplaySurface = getExternalDisplaySurface();
682    if (externalDisplaySurface != EGL_NO_SURFACE) {
683        EGLSurface cur = eglGetCurrentSurface(EGL_DRAW);
684        EGLBoolean success = eglMakeCurrent(eglGetCurrentDisplay(),
685                externalDisplaySurface, externalDisplaySurface,
686                eglGetCurrentContext());
687
688        ALOGE_IF(!success, "eglMakeCurrent -> external failed");
689
690        if (success) {
691            // redraw the screen entirely...
692            glDisable(GL_TEXTURE_EXTERNAL_OES);
693            glDisable(GL_TEXTURE_2D);
694            glClearColor(0,0,0,1);
695            glClear(GL_COLOR_BUFFER_BIT);
696            glMatrixMode(GL_MODELVIEW);
697            glLoadIdentity();
698
699            DisplayDevice& hw(const_cast<DisplayDevice&>(getDefaultDisplayDevice()));
700            const Vector< sp<LayerBase> >& layers( hw.getVisibleLayersSortedByZ() );
701            const size_t count = layers.size();
702            for (size_t i=0 ; i<count ; ++i) {
703                const sp<LayerBase>& layer(layers[i]);
704                layer->draw(hw);
705            }
706
707            success = eglSwapBuffers(eglGetCurrentDisplay(), externalDisplaySurface);
708            ALOGE_IF(!success, "external display eglSwapBuffers failed");
709
710            hw.compositionComplete();
711        }
712
713        success = eglMakeCurrent(eglGetCurrentDisplay(),
714                cur, cur, eglGetCurrentContext());
715
716        ALOGE_IF(!success, "eglMakeCurrent -> internal failed");
717    }
718#endif
719
720}
721
722void SurfaceFlinger::postFramebuffer()
723{
724    ATRACE_CALL();
725
726    const nsecs_t now = systemTime();
727    mDebugInSwapBuffers = now;
728
729    HWComposer& hwc(getHwComposer());
730
731    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
732        DisplayDevice& hw(mDisplays.editValueAt(dpy));
733        if (hwc.initCheck() == NO_ERROR) {
734            const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
735            const size_t count = currentLayers.size();
736            HWComposer::LayerListIterator cur = hwc.begin();
737            const HWComposer::LayerListIterator end = hwc.end();
738            for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
739                const sp<LayerBase>& layer(currentLayers[i]);
740                layer->setAcquireFence(hw, *cur);
741            }
742        }
743        hw.flip(hw.swapRegion);
744        hw.swapRegion.clear();
745    }
746
747    if (hwc.initCheck() == NO_ERROR) {
748        // FIXME: eventually commit() won't take arguments
749        hwc.commit(mEGLDisplay, getDefaultDisplayDevice().getEGLSurface());
750    }
751
752    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
753        const DisplayDevice& hw(mDisplays[dpy]);
754        const Vector< sp<LayerBase> >& currentLayers(hw.getVisibleLayersSortedByZ());
755        const size_t count = currentLayers.size();
756        if (hwc.initCheck() == NO_ERROR) {
757            HWComposer::LayerListIterator cur = hwc.begin();
758            const HWComposer::LayerListIterator end = hwc.end();
759            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
760                currentLayers[i]->onLayerDisplayed(hw, &*cur);
761            }
762        } else {
763            eglSwapBuffers(mEGLDisplay, hw.getEGLSurface());
764            for (size_t i = 0; i < count; i++) {
765                currentLayers[i]->onLayerDisplayed(hw, NULL);
766            }
767        }
768
769        // FIXME: we need to call eglSwapBuffers() on displays that have GL composition
770    }
771
772    mLastSwapBufferTime = systemTime() - now;
773    mDebugInSwapBuffers = 0;
774}
775
776void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
777{
778    ATRACE_CALL();
779
780    Mutex::Autolock _l(mStateLock);
781    const nsecs_t now = systemTime();
782    mDebugInTransaction = now;
783
784    // Here we're guaranteed that some transaction flags are set
785    // so we can call handleTransactionLocked() unconditionally.
786    // We call getTransactionFlags(), which will also clear the flags,
787    // with mStateLock held to guarantee that mCurrentState won't change
788    // until the transaction is committed.
789
790    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
791    transactionFlags = getTransactionFlags(mask);
792    handleTransactionLocked(transactionFlags);
793
794    mLastTransactionTime = systemTime() - now;
795    mDebugInTransaction = 0;
796    invalidateHwcGeometry();
797    // here the transaction has been committed
798}
799
800void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
801{
802    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
803    const size_t count = currentLayers.size();
804
805    /*
806     * Traversal of the children
807     * (perform the transaction for each of them if needed)
808     */
809
810    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
811    if (layersNeedTransaction) {
812        for (size_t i=0 ; i<count ; i++) {
813            const sp<LayerBase>& layer = currentLayers[i];
814            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
815            if (!trFlags) continue;
816
817            const uint32_t flags = layer->doTransaction(0);
818            if (flags & Layer::eVisibleRegion)
819                mVisibleRegionsDirty = true;
820        }
821    }
822
823    /*
824     * Perform our own transaction if needed
825     */
826
827    if (transactionFlags & eTransactionNeeded) {
828        // here we take advantage of Vector's copy-on-write semantics to
829        // improve performance by skipping the transaction entirely when
830        // know that the lists are identical
831        const KeyedVector<int32_t, DisplayDeviceState>& curr(mCurrentState.displays);
832        const KeyedVector<int32_t, DisplayDeviceState>& draw(mDrawingState.displays);
833        if (!curr.isIdenticalTo(draw)) {
834            mVisibleRegionsDirty = true;
835            const size_t cc = curr.size();
836            const size_t dc = draw.size();
837
838            // find the displays that were removed
839            // (ie: in drawing state but not in current state)
840            // also handle displays that changed
841            // (ie: displays that are in both lists)
842            for (size_t i=0 ; i<dc ; i++) {
843                if (curr.indexOfKey(draw[i].id) < 0) {
844                    // in drawing state but not in current state
845                    if (draw[i].id != DisplayDevice::DISPLAY_ID_MAIN) {
846                        mDisplays.editValueFor(draw[i].id).terminate();
847                        mDisplays.removeItem(draw[i].id);
848                    } else {
849                        ALOGW("trying to remove the main display");
850                    }
851                } else {
852                    // this display is in both lists. see if something changed.
853                    const DisplayDeviceState& state(curr[i]);
854                    if (state.layerStack != draw[i].layerStack) {
855                        DisplayDevice& disp(mDisplays.editValueFor(state.id));
856                        //disp.setLayerStack(state.layerStack);
857                    }
858                    if (curr[i].orientation != draw[i].orientation) {
859                        DisplayDevice& disp(mDisplays.editValueFor(state.id));
860                        disp.setOrientation(state.orientation);
861                    }
862                }
863            }
864
865            // find displays that were added
866            // (ie: in current state but not in drawing state)
867            for (size_t i=0 ; i<cc ; i++) {
868                if (mDrawingState.displays.indexOfKey(curr[i].id) < 0) {
869                    // FIXME: we need to pass the surface here
870                    DisplayDevice disp(this, curr[i].id, 0, mEGLConfig);
871                    mDisplays.add(curr[i].id, disp);
872                }
873            }
874        }
875
876        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
877            // layers have been added
878            mVisibleRegionsDirty = true;
879        }
880
881        // some layers might have been removed, so
882        // we need to update the regions they're exposing.
883        if (mLayersRemoved) {
884            mLayersRemoved = false;
885            mVisibleRegionsDirty = true;
886            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
887            const size_t count = previousLayers.size();
888            for (size_t i=0 ; i<count ; i++) {
889                const sp<LayerBase>& layer(previousLayers[i]);
890                if (currentLayers.indexOf(layer) < 0) {
891                    // this layer is not visible anymore
892                    // TODO: we could traverse the tree from front to back and
893                    //       compute the actual visible region
894                    // TODO: we could cache the transformed region
895                    Layer::State front(layer->drawingState());
896                    Region visibleReg = front.transform.transform(
897                            Region(Rect(front.active.w, front.active.h)));
898                    invalidateLayerStack(front.layerStack, visibleReg);
899                }
900            }
901        }
902    }
903
904    commitTransaction();
905}
906
907void SurfaceFlinger::commitTransaction()
908{
909    if (!mLayersPendingRemoval.isEmpty()) {
910        // Notify removed layers now that they can't be drawn from
911        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
912            mLayersPendingRemoval[i]->onRemoved();
913        }
914        mLayersPendingRemoval.clear();
915    }
916
917    mDrawingState = mCurrentState;
918    mTransationPending = false;
919    mTransactionCV.broadcast();
920}
921
922void SurfaceFlinger::computeVisibleRegions(
923        const LayerVector& currentLayers, uint32_t layerStack,
924        Region& outDirtyRegion, Region& outOpaqueRegion)
925{
926    ATRACE_CALL();
927
928    Region aboveOpaqueLayers;
929    Region aboveCoveredLayers;
930    Region dirty;
931
932    outDirtyRegion.clear();
933
934    size_t i = currentLayers.size();
935    while (i--) {
936        const sp<LayerBase>& layer = currentLayers[i];
937
938        // start with the whole surface at its current location
939        const Layer::State& s(layer->drawingState());
940
941        // only consider the layers on the given later stack
942        if (s.layerStack != layerStack)
943            continue;
944
945        /*
946         * opaqueRegion: area of a surface that is fully opaque.
947         */
948        Region opaqueRegion;
949
950        /*
951         * visibleRegion: area of a surface that is visible on screen
952         * and not fully transparent. This is essentially the layer's
953         * footprint minus the opaque regions above it.
954         * Areas covered by a translucent surface are considered visible.
955         */
956        Region visibleRegion;
957
958        /*
959         * coveredRegion: area of a surface that is covered by all
960         * visible regions above it (which includes the translucent areas).
961         */
962        Region coveredRegion;
963
964
965        // handle hidden surfaces by setting the visible region to empty
966        if (CC_LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
967            const bool translucent = !layer->isOpaque();
968            Rect bounds(layer->computeBounds());
969            visibleRegion.set(bounds);
970            if (!visibleRegion.isEmpty()) {
971                // Remove the transparent area from the visible region
972                if (translucent) {
973                    Region transparentRegionScreen;
974                    const Transform tr(s.transform);
975                    if (tr.transformed()) {
976                        if (tr.preserveRects()) {
977                            // transform the transparent region
978                            transparentRegionScreen = tr.transform(s.transparentRegion);
979                        } else {
980                            // transformation too complex, can't do the
981                            // transparent region optimization.
982                            transparentRegionScreen.clear();
983                        }
984                    } else {
985                        transparentRegionScreen = s.transparentRegion;
986                    }
987                    visibleRegion.subtractSelf(transparentRegionScreen);
988                }
989
990                // compute the opaque region
991                const int32_t layerOrientation = s.transform.getOrientation();
992                if (s.alpha==255 && !translucent &&
993                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
994                    // the opaque region is the layer's footprint
995                    opaqueRegion = visibleRegion;
996                }
997            }
998        }
999
1000        // Clip the covered region to the visible region
1001        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1002
1003        // Update aboveCoveredLayers for next (lower) layer
1004        aboveCoveredLayers.orSelf(visibleRegion);
1005
1006        // subtract the opaque region covered by the layers above us
1007        visibleRegion.subtractSelf(aboveOpaqueLayers);
1008
1009        // compute this layer's dirty region
1010        if (layer->contentDirty) {
1011            // we need to invalidate the whole region
1012            dirty = visibleRegion;
1013            // as well, as the old visible region
1014            dirty.orSelf(layer->visibleRegion);
1015            layer->contentDirty = false;
1016        } else {
1017            /* compute the exposed region:
1018             *   the exposed region consists of two components:
1019             *   1) what's VISIBLE now and was COVERED before
1020             *   2) what's EXPOSED now less what was EXPOSED before
1021             *
1022             * note that (1) is conservative, we start with the whole
1023             * visible region but only keep what used to be covered by
1024             * something -- which mean it may have been exposed.
1025             *
1026             * (2) handles areas that were not covered by anything but got
1027             * exposed because of a resize.
1028             */
1029            const Region newExposed = visibleRegion - coveredRegion;
1030            const Region oldVisibleRegion = layer->visibleRegion;
1031            const Region oldCoveredRegion = layer->coveredRegion;
1032            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1033            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1034        }
1035        dirty.subtractSelf(aboveOpaqueLayers);
1036
1037        // accumulate to the screen dirty region
1038        outDirtyRegion.orSelf(dirty);
1039
1040        // Update aboveOpaqueLayers for next (lower) layer
1041        aboveOpaqueLayers.orSelf(opaqueRegion);
1042
1043        // Store the visible region is screen space
1044        layer->setVisibleRegion(visibleRegion);
1045        layer->setCoveredRegion(coveredRegion);
1046    }
1047
1048    outOpaqueRegion = aboveOpaqueLayers;
1049}
1050
1051void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1052        const Region& dirty) {
1053    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1054        DisplayDevice& hw(mDisplays.editValueAt(dpy));
1055        if (hw.getLayerStack() == layerStack) {
1056            hw.dirtyRegion.orSelf(dirty);
1057        }
1058    }
1059}
1060
1061void SurfaceFlinger::handlePageFlip()
1062{
1063    ATRACE_CALL();
1064    Region dirtyRegion;
1065
1066    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1067
1068    bool visibleRegions = false;
1069    const size_t count = currentLayers.size();
1070    sp<LayerBase> const* layers = currentLayers.array();
1071    for (size_t i=0 ; i<count ; i++) {
1072        const sp<LayerBase>& layer(layers[i]);
1073        const Region dirty(layer->latchBuffer(visibleRegions));
1074        Layer::State s(layer->drawingState());
1075        invalidateLayerStack(s.layerStack, dirty);
1076    }
1077
1078    mVisibleRegionsDirty |= visibleRegions;
1079}
1080
1081void SurfaceFlinger::invalidateHwcGeometry()
1082{
1083    mHwWorkListDirty = true;
1084}
1085
1086void SurfaceFlinger::handleRefresh()
1087{
1088    bool needInvalidate = false;
1089    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1090    const size_t count = currentLayers.size();
1091    for (size_t i=0 ; i<count ; i++) {
1092        const sp<LayerBase>& layer(currentLayers[i]);
1093        if (layer->onPreComposition()) {
1094            needInvalidate = true;
1095        }
1096    }
1097    if (needInvalidate) {
1098        signalLayerUpdate();
1099    }
1100}
1101
1102void SurfaceFlinger::handleRepaint(const DisplayDevice& hw,
1103        const Region& inDirtyRegion)
1104{
1105    ATRACE_CALL();
1106
1107    Region dirtyRegion(inDirtyRegion);
1108
1109    // compute the invalid region
1110    hw.swapRegion.orSelf(dirtyRegion);
1111
1112    if (CC_UNLIKELY(mDebugRegion)) {
1113        debugFlashRegions(hw, dirtyRegion);
1114    }
1115
1116    uint32_t flags = hw.getFlags();
1117    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1118        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1119        // takes a rectangle, we must make sure to update that whole
1120        // rectangle in that case
1121        dirtyRegion.set(hw.swapRegion.bounds());
1122    } else {
1123        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1124            // We need to redraw the rectangle that will be updated
1125            // (pushed to the framebuffer).
1126            // This is needed because PARTIAL_UPDATES only takes one
1127            // rectangle instead of a region (see DisplayDevice::flip())
1128            dirtyRegion.set(hw.swapRegion.bounds());
1129        } else {
1130            // we need to redraw everything (the whole screen)
1131            dirtyRegion.set(hw.bounds());
1132            hw.swapRegion = dirtyRegion;
1133        }
1134    }
1135
1136    composeSurfaces(hw, dirtyRegion);
1137
1138    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1139    const size_t count = currentLayers.size();
1140    for (size_t i=0 ; i<count ; i++) {
1141        currentLayers[i]->onPostComposition();
1142    }
1143
1144    // update the swap region and clear the dirty region
1145    hw.swapRegion.orSelf(dirtyRegion);
1146}
1147
1148void SurfaceFlinger::composeSurfaces(const DisplayDevice& hw, const Region& dirty)
1149{
1150    HWComposer& hwc(getHwComposer());
1151    HWComposer::LayerListIterator cur = hwc.begin();
1152    const HWComposer::LayerListIterator end = hwc.end();
1153
1154    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);  // FIXME: this should be per display
1155    if (cur==end || fbLayerCount) {
1156
1157        DisplayDevice::makeCurrent(hw, mEGLContext);
1158
1159        // set the frame buffer
1160        glMatrixMode(GL_MODELVIEW);
1161        glLoadIdentity();
1162
1163        // Never touch the framebuffer if we don't have any framebuffer layers
1164        if (hwc.getLayerCount(HWC_OVERLAY)) { // FIXME: this should be per display
1165            // when using overlays, we assume a fully transparent framebuffer
1166            // NOTE: we could reduce how much we need to clear, for instance
1167            // remove where there are opaque FB layers. however, on some
1168            // GPUs doing a "clean slate" glClear might be more efficient.
1169            // We'll revisit later if needed.
1170            glClearColor(0, 0, 0, 0);
1171            glClear(GL_COLOR_BUFFER_BIT);
1172        } else {
1173            const Region region(hw.undefinedRegion.intersect(dirty));
1174            // screen is already cleared here
1175            if (!region.isEmpty()) {
1176                // can happen with SurfaceView
1177                drawWormhole(region);
1178            }
1179        }
1180
1181        /*
1182         * and then, render the layers targeted at the framebuffer
1183         */
1184
1185        const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
1186        const size_t count = layers.size();
1187        const Transform& tr = hw.getTransform();
1188        for (size_t i=0 ; i<count ; ++i) {
1189            const sp<LayerBase>& layer(layers[i]);
1190            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1191            if (!clip.isEmpty()) {
1192                if (cur != end && cur->getCompositionType() == HWC_OVERLAY) {
1193                    if (i && (cur->getHints() & HWC_HINT_CLEAR_FB)
1194                            && layer->isOpaque()) {
1195                        // never clear the very first layer since we're
1196                        // guaranteed the FB is already cleared
1197                        layer->clearWithOpenGL(hw, clip);
1198                    }
1199                    ++cur;
1200                    continue;
1201                }
1202                // render the layer
1203                layer->draw(hw, clip);
1204            }
1205            if (cur != end) {
1206                ++cur;
1207            }
1208        }
1209    }
1210}
1211
1212void SurfaceFlinger::debugFlashRegions(const DisplayDevice& hw,
1213        const Region& dirtyRegion)
1214{
1215    const uint32_t flags = hw.getFlags();
1216    const int32_t height = hw.getHeight();
1217    if (hw.swapRegion.isEmpty()) {
1218        return;
1219    }
1220
1221    if (!(flags & DisplayDevice::SWAP_RECTANGLE)) {
1222        const Region repaint((flags & DisplayDevice::PARTIAL_UPDATES) ?
1223                dirtyRegion.bounds() : hw.bounds());
1224        composeSurfaces(hw, repaint);
1225    }
1226
1227    glDisable(GL_TEXTURE_EXTERNAL_OES);
1228    glDisable(GL_TEXTURE_2D);
1229    glDisable(GL_BLEND);
1230
1231    static int toggle = 0;
1232    toggle = 1 - toggle;
1233    if (toggle) {
1234        glColor4f(1, 0, 1, 1);
1235    } else {
1236        glColor4f(1, 1, 0, 1);
1237    }
1238
1239    Region::const_iterator it = dirtyRegion.begin();
1240    Region::const_iterator const end = dirtyRegion.end();
1241    while (it != end) {
1242        const Rect& r = *it++;
1243        GLfloat vertices[][2] = {
1244                { r.left,  height - r.top },
1245                { r.left,  height - r.bottom },
1246                { r.right, height - r.bottom },
1247                { r.right, height - r.top }
1248        };
1249        glVertexPointer(2, GL_FLOAT, 0, vertices);
1250        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1251    }
1252
1253    hw.flip(hw.swapRegion);
1254
1255    if (mDebugRegion > 1)
1256        usleep(mDebugRegion * 1000);
1257}
1258
1259void SurfaceFlinger::drawWormhole(const Region& region) const
1260{
1261    glDisable(GL_TEXTURE_EXTERNAL_OES);
1262    glDisable(GL_TEXTURE_2D);
1263    glDisable(GL_BLEND);
1264    glColor4f(0,0,0,0);
1265
1266    GLfloat vertices[4][2];
1267    glVertexPointer(2, GL_FLOAT, 0, vertices);
1268    Region::const_iterator it = region.begin();
1269    Region::const_iterator const end = region.end();
1270    while (it != end) {
1271        const Rect& r = *it++;
1272        vertices[0][0] = r.left;
1273        vertices[0][1] = r.top;
1274        vertices[1][0] = r.right;
1275        vertices[1][1] = r.top;
1276        vertices[2][0] = r.right;
1277        vertices[2][1] = r.bottom;
1278        vertices[3][0] = r.left;
1279        vertices[3][1] = r.bottom;
1280        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1281    }
1282}
1283
1284ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1285        const sp<LayerBaseClient>& lbc)
1286{
1287    // attach this layer to the client
1288    size_t name = client->attachLayer(lbc);
1289
1290    // add this layer to the current state list
1291    Mutex::Autolock _l(mStateLock);
1292    mCurrentState.layersSortedByZ.add(lbc);
1293
1294    return ssize_t(name);
1295}
1296
1297status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1298{
1299    Mutex::Autolock _l(mStateLock);
1300    status_t err = purgatorizeLayer_l(layer);
1301    if (err == NO_ERROR)
1302        setTransactionFlags(eTransactionNeeded);
1303    return err;
1304}
1305
1306status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1307{
1308    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1309    if (index >= 0) {
1310        mLayersRemoved = true;
1311        return NO_ERROR;
1312    }
1313    return status_t(index);
1314}
1315
1316status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1317{
1318    // First add the layer to the purgatory list, which makes sure it won't
1319    // go away, then remove it from the main list (through a transaction).
1320    ssize_t err = removeLayer_l(layerBase);
1321    if (err >= 0) {
1322        mLayerPurgatory.add(layerBase);
1323    }
1324
1325    mLayersPendingRemoval.push(layerBase);
1326
1327    // it's possible that we don't find a layer, because it might
1328    // have been destroyed already -- this is not technically an error
1329    // from the user because there is a race between Client::destroySurface(),
1330    // ~Client() and ~ISurface().
1331    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1332}
1333
1334uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1335{
1336    return android_atomic_release_load(&mTransactionFlags);
1337}
1338
1339uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1340{
1341    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1342}
1343
1344uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1345{
1346    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1347    if ((old & flags)==0) { // wake the server up
1348        signalTransaction();
1349    }
1350    return old;
1351}
1352
1353
1354void SurfaceFlinger::setTransactionState(
1355        const Vector<ComposerState>& state,
1356        const Vector<DisplayState>& displays,
1357        uint32_t flags)
1358{
1359    Mutex::Autolock _l(mStateLock);
1360
1361    int orientation = eOrientationUnchanged;
1362    if (displays.size()) {
1363        // TODO: handle all displays
1364        orientation = displays[0].orientation;
1365    }
1366
1367    uint32_t transactionFlags = 0;
1368    // FIXME: don't hardcode display id here
1369    if (mCurrentState.displays.valueFor(0).orientation != orientation) {
1370        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1371            mCurrentState.displays.editValueFor(0).orientation = orientation;
1372            transactionFlags |= eTransactionNeeded;
1373        } else if (orientation != eOrientationUnchanged) {
1374            ALOGW("setTransactionState: ignoring unrecognized orientation: %d",
1375                    orientation);
1376        }
1377    }
1378
1379    const size_t count = state.size();
1380    for (size_t i=0 ; i<count ; i++) {
1381        const ComposerState& s(state[i]);
1382        sp<Client> client( static_cast<Client *>(s.client.get()) );
1383        transactionFlags |= setClientStateLocked(client, s.state);
1384    }
1385
1386    if (transactionFlags) {
1387        // this triggers the transaction
1388        setTransactionFlags(transactionFlags);
1389
1390        // if this is a synchronous transaction, wait for it to take effect
1391        // before returning.
1392        if (flags & eSynchronous) {
1393            mTransationPending = true;
1394        }
1395        while (mTransationPending) {
1396            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1397            if (CC_UNLIKELY(err != NO_ERROR)) {
1398                // just in case something goes wrong in SF, return to the
1399                // called after a few seconds.
1400                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1401                mTransationPending = false;
1402                break;
1403            }
1404        }
1405    }
1406}
1407
1408sp<ISurface> SurfaceFlinger::createLayer(
1409        ISurfaceComposerClient::surface_data_t* params,
1410        const String8& name,
1411        const sp<Client>& client,
1412        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1413        uint32_t flags)
1414{
1415    sp<LayerBaseClient> layer;
1416    sp<ISurface> surfaceHandle;
1417
1418    if (int32_t(w|h) < 0) {
1419        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1420                int(w), int(h));
1421        return surfaceHandle;
1422    }
1423
1424    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1425    switch (flags & eFXSurfaceMask) {
1426        case eFXSurfaceNormal:
1427            layer = createNormalLayer(client, d, w, h, flags, format);
1428            break;
1429        case eFXSurfaceBlur:
1430            // for now we treat Blur as Dim, until we can implement it
1431            // efficiently.
1432        case eFXSurfaceDim:
1433            layer = createDimLayer(client, d, w, h, flags);
1434            break;
1435        case eFXSurfaceScreenshot:
1436            layer = createScreenshotLayer(client, d, w, h, flags);
1437            break;
1438    }
1439
1440    if (layer != 0) {
1441        layer->initStates(w, h, flags);
1442        layer->setName(name);
1443        ssize_t token = addClientLayer(client, layer);
1444        surfaceHandle = layer->getSurface();
1445        if (surfaceHandle != 0) {
1446            params->token = token;
1447            params->identity = layer->getIdentity();
1448        }
1449        setTransactionFlags(eTransactionNeeded);
1450    }
1451
1452    return surfaceHandle;
1453}
1454
1455sp<Layer> SurfaceFlinger::createNormalLayer(
1456        const sp<Client>& client, DisplayID display,
1457        uint32_t w, uint32_t h, uint32_t flags,
1458        PixelFormat& format)
1459{
1460    // initialize the surfaces
1461    switch (format) {
1462    case PIXEL_FORMAT_TRANSPARENT:
1463    case PIXEL_FORMAT_TRANSLUCENT:
1464        format = PIXEL_FORMAT_RGBA_8888;
1465        break;
1466    case PIXEL_FORMAT_OPAQUE:
1467#ifdef NO_RGBX_8888
1468        format = PIXEL_FORMAT_RGB_565;
1469#else
1470        format = PIXEL_FORMAT_RGBX_8888;
1471#endif
1472        break;
1473    }
1474
1475#ifdef NO_RGBX_8888
1476    if (format == PIXEL_FORMAT_RGBX_8888)
1477        format = PIXEL_FORMAT_RGBA_8888;
1478#endif
1479
1480    sp<Layer> layer = new Layer(this, display, client);
1481    status_t err = layer->setBuffers(w, h, format, flags);
1482    if (CC_LIKELY(err != NO_ERROR)) {
1483        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1484        layer.clear();
1485    }
1486    return layer;
1487}
1488
1489sp<LayerDim> SurfaceFlinger::createDimLayer(
1490        const sp<Client>& client, DisplayID display,
1491        uint32_t w, uint32_t h, uint32_t flags)
1492{
1493    sp<LayerDim> layer = new LayerDim(this, display, client);
1494    return layer;
1495}
1496
1497sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1498        const sp<Client>& client, DisplayID display,
1499        uint32_t w, uint32_t h, uint32_t flags)
1500{
1501    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1502    return layer;
1503}
1504
1505status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1506{
1507    /*
1508     * called by the window manager, when a surface should be marked for
1509     * destruction.
1510     *
1511     * The surface is removed from the current and drawing lists, but placed
1512     * in the purgatory queue, so it's not destroyed right-away (we need
1513     * to wait for all client's references to go away first).
1514     */
1515
1516    status_t err = NAME_NOT_FOUND;
1517    Mutex::Autolock _l(mStateLock);
1518    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1519
1520    if (layer != 0) {
1521        err = purgatorizeLayer_l(layer);
1522        if (err == NO_ERROR) {
1523            setTransactionFlags(eTransactionNeeded);
1524        }
1525    }
1526    return err;
1527}
1528
1529status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1530{
1531    // called by ~ISurface() when all references are gone
1532    status_t err = NO_ERROR;
1533    sp<LayerBaseClient> l(layer.promote());
1534    if (l != NULL) {
1535        Mutex::Autolock _l(mStateLock);
1536        err = removeLayer_l(l);
1537        if (err == NAME_NOT_FOUND) {
1538            // The surface wasn't in the current list, which means it was
1539            // removed already, which means it is in the purgatory,
1540            // and need to be removed from there.
1541            ssize_t idx = mLayerPurgatory.remove(l);
1542            ALOGE_IF(idx < 0,
1543                    "layer=%p is not in the purgatory list", l.get());
1544        }
1545        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1546                "error removing layer=%p (%s)", l.get(), strerror(-err));
1547    }
1548    return err;
1549}
1550
1551uint32_t SurfaceFlinger::setClientStateLocked(
1552        const sp<Client>& client,
1553        const layer_state_t& s)
1554{
1555    uint32_t flags = 0;
1556    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1557    if (layer != 0) {
1558        const uint32_t what = s.what;
1559        if (what & ePositionChanged) {
1560            if (layer->setPosition(s.x, s.y))
1561                flags |= eTraversalNeeded;
1562        }
1563        if (what & eLayerChanged) {
1564            // NOTE: index needs to be calculated before we update the state
1565            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1566            if (layer->setLayer(s.z)) {
1567                mCurrentState.layersSortedByZ.removeAt(idx);
1568                mCurrentState.layersSortedByZ.add(layer);
1569                // we need traversal (state changed)
1570                // AND transaction (list changed)
1571                flags |= eTransactionNeeded|eTraversalNeeded;
1572            }
1573        }
1574        if (what & eSizeChanged) {
1575            if (layer->setSize(s.w, s.h)) {
1576                flags |= eTraversalNeeded;
1577            }
1578        }
1579        if (what & eAlphaChanged) {
1580            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1581                flags |= eTraversalNeeded;
1582        }
1583        if (what & eMatrixChanged) {
1584            if (layer->setMatrix(s.matrix))
1585                flags |= eTraversalNeeded;
1586        }
1587        if (what & eTransparentRegionChanged) {
1588            if (layer->setTransparentRegionHint(s.transparentRegion))
1589                flags |= eTraversalNeeded;
1590        }
1591        if (what & eVisibilityChanged) {
1592            if (layer->setFlags(s.flags, s.mask))
1593                flags |= eTraversalNeeded;
1594        }
1595        if (what & eCropChanged) {
1596            if (layer->setCrop(s.crop))
1597                flags |= eTraversalNeeded;
1598        }
1599        if (what & eLayerStackChanged) {
1600            // NOTE: index needs to be calculated before we update the state
1601            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1602            if (layer->setLayerStack(s.layerStack)) {
1603                mCurrentState.layersSortedByZ.removeAt(idx);
1604                mCurrentState.layersSortedByZ.add(layer);
1605                // we need traversal (state changed)
1606                // AND transaction (list changed)
1607                flags |= eTransactionNeeded|eTraversalNeeded;
1608            }
1609        }
1610    }
1611    return flags;
1612}
1613
1614// ---------------------------------------------------------------------------
1615
1616void SurfaceFlinger::onScreenAcquired() {
1617    ALOGD("Screen about to return, flinger = %p", this);
1618    const DisplayDevice& hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1619    getHwComposer().acquire();
1620    hw.acquireScreen();
1621    mEventThread->onScreenAcquired();
1622    // this is a temporary work-around, eventually this should be called
1623    // by the power-manager
1624    SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
1625    // from this point on, SF will process updates again
1626    repaintEverything();
1627}
1628
1629void SurfaceFlinger::onScreenReleased() {
1630    ALOGD("About to give-up screen, flinger = %p", this);
1631    const DisplayDevice& hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1632    if (hw.isScreenAcquired()) {
1633        mEventThread->onScreenReleased();
1634        hw.releaseScreen();
1635        getHwComposer().release();
1636        // from this point on, SF will stop drawing
1637    }
1638}
1639
1640void SurfaceFlinger::unblank() {
1641    class MessageScreenAcquired : public MessageBase {
1642        SurfaceFlinger* flinger;
1643    public:
1644        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1645        virtual bool handler() {
1646            flinger->onScreenAcquired();
1647            return true;
1648        }
1649    };
1650    sp<MessageBase> msg = new MessageScreenAcquired(this);
1651    postMessageSync(msg);
1652}
1653
1654void SurfaceFlinger::blank() {
1655    class MessageScreenReleased : public MessageBase {
1656        SurfaceFlinger* flinger;
1657    public:
1658        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1659        virtual bool handler() {
1660            flinger->onScreenReleased();
1661            return true;
1662        }
1663    };
1664    sp<MessageBase> msg = new MessageScreenReleased(this);
1665    postMessageSync(msg);
1666}
1667
1668// ---------------------------------------------------------------------------
1669
1670status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1671{
1672    const size_t SIZE = 4096;
1673    char buffer[SIZE];
1674    String8 result;
1675
1676    if (!PermissionCache::checkCallingPermission(sDump)) {
1677        snprintf(buffer, SIZE, "Permission Denial: "
1678                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1679                IPCThreadState::self()->getCallingPid(),
1680                IPCThreadState::self()->getCallingUid());
1681        result.append(buffer);
1682    } else {
1683        // Try to get the main lock, but don't insist if we can't
1684        // (this would indicate SF is stuck, but we want to be able to
1685        // print something in dumpsys).
1686        int retry = 3;
1687        while (mStateLock.tryLock()<0 && --retry>=0) {
1688            usleep(1000000);
1689        }
1690        const bool locked(retry >= 0);
1691        if (!locked) {
1692            snprintf(buffer, SIZE,
1693                    "SurfaceFlinger appears to be unresponsive, "
1694                    "dumping anyways (no locks held)\n");
1695            result.append(buffer);
1696        }
1697
1698        bool dumpAll = true;
1699        size_t index = 0;
1700        size_t numArgs = args.size();
1701        if (numArgs) {
1702            if ((index < numArgs) &&
1703                    (args[index] == String16("--list"))) {
1704                index++;
1705                listLayersLocked(args, index, result, buffer, SIZE);
1706                dumpAll = false;
1707            }
1708
1709            if ((index < numArgs) &&
1710                    (args[index] == String16("--latency"))) {
1711                index++;
1712                dumpStatsLocked(args, index, result, buffer, SIZE);
1713                dumpAll = false;
1714            }
1715
1716            if ((index < numArgs) &&
1717                    (args[index] == String16("--latency-clear"))) {
1718                index++;
1719                clearStatsLocked(args, index, result, buffer, SIZE);
1720                dumpAll = false;
1721            }
1722        }
1723
1724        if (dumpAll) {
1725            dumpAllLocked(result, buffer, SIZE);
1726        }
1727
1728        if (locked) {
1729            mStateLock.unlock();
1730        }
1731    }
1732    write(fd, result.string(), result.size());
1733    return NO_ERROR;
1734}
1735
1736void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1737        String8& result, char* buffer, size_t SIZE) const
1738{
1739    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1740    const size_t count = currentLayers.size();
1741    for (size_t i=0 ; i<count ; i++) {
1742        const sp<LayerBase>& layer(currentLayers[i]);
1743        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1744        result.append(buffer);
1745    }
1746}
1747
1748void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1749        String8& result, char* buffer, size_t SIZE) const
1750{
1751    String8 name;
1752    if (index < args.size()) {
1753        name = String8(args[index]);
1754        index++;
1755    }
1756
1757    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1758    const size_t count = currentLayers.size();
1759    for (size_t i=0 ; i<count ; i++) {
1760        const sp<LayerBase>& layer(currentLayers[i]);
1761        if (name.isEmpty()) {
1762            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1763            result.append(buffer);
1764        }
1765        if (name.isEmpty() || (name == layer->getName())) {
1766            layer->dumpStats(result, buffer, SIZE);
1767        }
1768    }
1769}
1770
1771void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1772        String8& result, char* buffer, size_t SIZE) const
1773{
1774    String8 name;
1775    if (index < args.size()) {
1776        name = String8(args[index]);
1777        index++;
1778    }
1779
1780    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1781    const size_t count = currentLayers.size();
1782    for (size_t i=0 ; i<count ; i++) {
1783        const sp<LayerBase>& layer(currentLayers[i]);
1784        if (name.isEmpty() || (name == layer->getName())) {
1785            layer->clearStats();
1786        }
1787    }
1788}
1789
1790void SurfaceFlinger::dumpAllLocked(
1791        String8& result, char* buffer, size_t SIZE) const
1792{
1793    // figure out if we're stuck somewhere
1794    const nsecs_t now = systemTime();
1795    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1796    const nsecs_t inTransaction(mDebugInTransaction);
1797    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1798    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1799
1800    /*
1801     * Dump the visible layer list
1802     */
1803    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1804    const size_t count = currentLayers.size();
1805    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1806    result.append(buffer);
1807    for (size_t i=0 ; i<count ; i++) {
1808        const sp<LayerBase>& layer(currentLayers[i]);
1809        layer->dump(result, buffer, SIZE);
1810    }
1811
1812    /*
1813     * Dump the layers in the purgatory
1814     */
1815
1816    const size_t purgatorySize = mLayerPurgatory.size();
1817    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1818    result.append(buffer);
1819    for (size_t i=0 ; i<purgatorySize ; i++) {
1820        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1821        layer->shortDump(result, buffer, SIZE);
1822    }
1823
1824    /*
1825     * Dump SurfaceFlinger global state
1826     */
1827
1828    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1829    result.append(buffer);
1830
1831    const DisplayDevice& hw(getDefaultDisplayDevice());
1832    const GLExtensions& extensions(GLExtensions::getInstance());
1833    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1834            extensions.getVendor(),
1835            extensions.getRenderer(),
1836            extensions.getVersion());
1837    result.append(buffer);
1838
1839    snprintf(buffer, SIZE, "EGL : %s\n",
1840            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
1841    result.append(buffer);
1842
1843    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1844    result.append(buffer);
1845
1846    hw.undefinedRegion.dump(result, "undefinedRegion");
1847    snprintf(buffer, SIZE,
1848            "  orientation=%d, canDraw=%d\n",
1849            hw.getOrientation(), hw.canDraw());
1850    result.append(buffer);
1851    snprintf(buffer, SIZE,
1852            "  last eglSwapBuffers() time: %f us\n"
1853            "  last transaction time     : %f us\n"
1854            "  transaction-flags         : %08x\n"
1855            "  refresh-rate              : %f fps\n"
1856            "  x-dpi                     : %f\n"
1857            "  y-dpi                     : %f\n"
1858            "  density                   : %f\n",
1859            mLastSwapBufferTime/1000.0,
1860            mLastTransactionTime/1000.0,
1861            mTransactionFlags,
1862            hw.getRefreshRate(),
1863            hw.getDpiX(),
1864            hw.getDpiY(),
1865            hw.getDensity());
1866    result.append(buffer);
1867
1868    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1869            inSwapBuffersDuration/1000.0);
1870    result.append(buffer);
1871
1872    snprintf(buffer, SIZE, "  transaction time: %f us\n",
1873            inTransactionDuration/1000.0);
1874    result.append(buffer);
1875
1876    /*
1877     * VSYNC state
1878     */
1879    mEventThread->dump(result, buffer, SIZE);
1880
1881    /*
1882     * Dump HWComposer state
1883     */
1884    HWComposer& hwc(getHwComposer());
1885    snprintf(buffer, SIZE, "h/w composer state:\n");
1886    result.append(buffer);
1887    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1888            hwc.initCheck()==NO_ERROR ? "present" : "not present",
1889                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1890    result.append(buffer);
1891    hwc.dump(result, buffer, SIZE, hw.getVisibleLayersSortedByZ());
1892
1893    /*
1894     * Dump gralloc state
1895     */
1896    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1897    alloc.dump(result);
1898    hw.dump(result);
1899}
1900
1901status_t SurfaceFlinger::onTransact(
1902    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1903{
1904    switch (code) {
1905        case CREATE_CONNECTION:
1906        case SET_TRANSACTION_STATE:
1907        case SET_ORIENTATION:
1908        case BOOT_FINISHED:
1909        case TURN_ELECTRON_BEAM_OFF:
1910        case TURN_ELECTRON_BEAM_ON:
1911        case BLANK:
1912        case UNBLANK:
1913        {
1914            // codes that require permission check
1915            IPCThreadState* ipc = IPCThreadState::self();
1916            const int pid = ipc->getCallingPid();
1917            const int uid = ipc->getCallingUid();
1918            if ((uid != AID_GRAPHICS) &&
1919                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1920                ALOGE("Permission Denial: "
1921                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1922                return PERMISSION_DENIED;
1923            }
1924            break;
1925        }
1926        case CAPTURE_SCREEN:
1927        {
1928            // codes that require permission check
1929            IPCThreadState* ipc = IPCThreadState::self();
1930            const int pid = ipc->getCallingPid();
1931            const int uid = ipc->getCallingUid();
1932            if ((uid != AID_GRAPHICS) &&
1933                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1934                ALOGE("Permission Denial: "
1935                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1936                return PERMISSION_DENIED;
1937            }
1938            break;
1939        }
1940    }
1941
1942    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1943    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1944        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1945        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1946            IPCThreadState* ipc = IPCThreadState::self();
1947            const int pid = ipc->getCallingPid();
1948            const int uid = ipc->getCallingUid();
1949            ALOGE("Permission Denial: "
1950                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1951            return PERMISSION_DENIED;
1952        }
1953        int n;
1954        switch (code) {
1955            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1956            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1957                return NO_ERROR;
1958            case 1002:  // SHOW_UPDATES
1959                n = data.readInt32();
1960                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1961                invalidateHwcGeometry();
1962                repaintEverything();
1963                return NO_ERROR;
1964            case 1004:{ // repaint everything
1965                repaintEverything();
1966                return NO_ERROR;
1967            }
1968            case 1005:{ // force transaction
1969                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1970                return NO_ERROR;
1971            }
1972            case 1006:{ // send empty update
1973                signalRefresh();
1974                return NO_ERROR;
1975            }
1976            case 1008:  // toggle use of hw composer
1977                n = data.readInt32();
1978                mDebugDisableHWC = n ? 1 : 0;
1979                invalidateHwcGeometry();
1980                repaintEverything();
1981                return NO_ERROR;
1982            case 1009:  // toggle use of transform hint
1983                n = data.readInt32();
1984                mDebugDisableTransformHint = n ? 1 : 0;
1985                invalidateHwcGeometry();
1986                repaintEverything();
1987                return NO_ERROR;
1988            case 1010:  // interrogate.
1989                reply->writeInt32(0);
1990                reply->writeInt32(0);
1991                reply->writeInt32(mDebugRegion);
1992                reply->writeInt32(0);
1993                reply->writeInt32(mDebugDisableHWC);
1994                return NO_ERROR;
1995            case 1013: {
1996                Mutex::Autolock _l(mStateLock);
1997                const DisplayDevice& hw(getDefaultDisplayDevice());
1998                reply->writeInt32(hw.getPageFlipCount());
1999            }
2000            return NO_ERROR;
2001        }
2002    }
2003    return err;
2004}
2005
2006void SurfaceFlinger::repaintEverything() {
2007    android_atomic_or(1, &mRepaintEverything);
2008    signalTransaction();
2009}
2010
2011// ---------------------------------------------------------------------------
2012
2013status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
2014        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2015{
2016    Mutex::Autolock _l(mStateLock);
2017    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
2018}
2019
2020status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
2021        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2022{
2023    ATRACE_CALL();
2024
2025    if (!GLExtensions::getInstance().haveFramebufferObject())
2026        return INVALID_OPERATION;
2027
2028    // get screen geometry
2029    const DisplayDevice& hw(getDisplayDevice(dpy));
2030    const uint32_t hw_w = hw.getWidth();
2031    const uint32_t hw_h = hw.getHeight();
2032    GLfloat u = 1;
2033    GLfloat v = 1;
2034
2035    // make sure to clear all GL error flags
2036    while ( glGetError() != GL_NO_ERROR ) ;
2037
2038    // create a FBO
2039    GLuint name, tname;
2040    glGenTextures(1, &tname);
2041    glBindTexture(GL_TEXTURE_2D, tname);
2042    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2043    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2044    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2045            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2046    if (glGetError() != GL_NO_ERROR) {
2047        while ( glGetError() != GL_NO_ERROR ) ;
2048        GLint tw = (2 << (31 - clz(hw_w)));
2049        GLint th = (2 << (31 - clz(hw_h)));
2050        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2051                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2052        u = GLfloat(hw_w) / tw;
2053        v = GLfloat(hw_h) / th;
2054    }
2055    glGenFramebuffersOES(1, &name);
2056    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2057    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2058            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2059
2060    // redraw the screen entirely...
2061    glDisable(GL_TEXTURE_EXTERNAL_OES);
2062    glDisable(GL_TEXTURE_2D);
2063    glClearColor(0,0,0,1);
2064    glClear(GL_COLOR_BUFFER_BIT);
2065    glMatrixMode(GL_MODELVIEW);
2066    glLoadIdentity();
2067    const Vector< sp<LayerBase> >& layers(hw.getVisibleLayersSortedByZ());
2068    const size_t count = layers.size();
2069    for (size_t i=0 ; i<count ; ++i) {
2070        const sp<LayerBase>& layer(layers[i]);
2071        layer->draw(hw);
2072    }
2073
2074    hw.compositionComplete();
2075
2076    // back to main framebuffer
2077    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2078    glDeleteFramebuffersOES(1, &name);
2079
2080    *textureName = tname;
2081    *uOut = u;
2082    *vOut = v;
2083    return NO_ERROR;
2084}
2085
2086// ---------------------------------------------------------------------------
2087
2088class VSyncWaiter {
2089    DisplayEventReceiver::Event buffer[4];
2090    sp<Looper> looper;
2091    sp<IDisplayEventConnection> events;
2092    sp<BitTube> eventTube;
2093public:
2094    VSyncWaiter(const sp<EventThread>& eventThread) {
2095        looper = new Looper(true);
2096        events = eventThread->createEventConnection();
2097        eventTube = events->getDataChannel();
2098        looper->addFd(eventTube->getFd(), 0, ALOOPER_EVENT_INPUT, 0, 0);
2099        events->requestNextVsync();
2100    }
2101
2102    void wait() {
2103        ssize_t n;
2104
2105        looper->pollOnce(-1);
2106        // we don't handle any errors here, it doesn't matter
2107        // and we don't want to take the risk to get stuck.
2108
2109        // drain the events...
2110        while ((n = DisplayEventReceiver::getEvents(
2111                eventTube, buffer, 4)) > 0) ;
2112
2113        events->requestNextVsync();
2114    }
2115};
2116
2117status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
2118{
2119    // get screen geometry
2120    const DisplayDevice& hw(getDefaultDisplayDevice());
2121    const uint32_t hw_w = hw.getWidth();
2122    const uint32_t hw_h = hw.getHeight();
2123    const Region screenBounds(hw.getBounds());
2124
2125    GLfloat u, v;
2126    GLuint tname;
2127    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
2128    if (result != NO_ERROR) {
2129        return result;
2130    }
2131
2132    GLfloat vtx[8];
2133    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
2134    glBindTexture(GL_TEXTURE_2D, tname);
2135    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
2136    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2137    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2138    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2139    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2140    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2141    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2142    glVertexPointer(2, GL_FLOAT, 0, vtx);
2143
2144    /*
2145     * Texture coordinate mapping
2146     *
2147     *                 u
2148     *    1 +----------+---+
2149     *      |     |    |   |  image is inverted
2150     *      |     V    |   |  w.r.t. the texture
2151     *  1-v +----------+   |  coordinates
2152     *      |              |
2153     *      |              |
2154     *      |              |
2155     *    0 +--------------+
2156     *      0              1
2157     *
2158     */
2159
2160    class s_curve_interpolator {
2161        const float nbFrames, s, v;
2162    public:
2163        s_curve_interpolator(int nbFrames, float s)
2164        : nbFrames(1.0f / (nbFrames-1)), s(s),
2165          v(1.0f + expf(-s + 0.5f*s)) {
2166        }
2167        float operator()(int f) {
2168            const float x = f * nbFrames;
2169            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2170        }
2171    };
2172
2173    class v_stretch {
2174        const GLfloat hw_w, hw_h;
2175    public:
2176        v_stretch(uint32_t hw_w, uint32_t hw_h)
2177        : hw_w(hw_w), hw_h(hw_h) {
2178        }
2179        void operator()(GLfloat* vtx, float v) {
2180            const GLfloat w = hw_w + (hw_w * v);
2181            const GLfloat h = hw_h - (hw_h * v);
2182            const GLfloat x = (hw_w - w) * 0.5f;
2183            const GLfloat y = (hw_h - h) * 0.5f;
2184            vtx[0] = x;         vtx[1] = y;
2185            vtx[2] = x;         vtx[3] = y + h;
2186            vtx[4] = x + w;     vtx[5] = y + h;
2187            vtx[6] = x + w;     vtx[7] = y;
2188        }
2189    };
2190
2191    class h_stretch {
2192        const GLfloat hw_w, hw_h;
2193    public:
2194        h_stretch(uint32_t hw_w, uint32_t hw_h)
2195        : hw_w(hw_w), hw_h(hw_h) {
2196        }
2197        void operator()(GLfloat* vtx, float v) {
2198            const GLfloat w = hw_w - (hw_w * v);
2199            const GLfloat h = 1.0f;
2200            const GLfloat x = (hw_w - w) * 0.5f;
2201            const GLfloat y = (hw_h - h) * 0.5f;
2202            vtx[0] = x;         vtx[1] = y;
2203            vtx[2] = x;         vtx[3] = y + h;
2204            vtx[4] = x + w;     vtx[5] = y + h;
2205            vtx[6] = x + w;     vtx[7] = y;
2206        }
2207    };
2208
2209    VSyncWaiter vsync(mEventThread);
2210
2211    // the full animation is 24 frames
2212    char value[PROPERTY_VALUE_MAX];
2213    property_get("debug.sf.electron_frames", value, "24");
2214    int nbFrames = (atoi(value) + 1) >> 1;
2215    if (nbFrames <= 0) // just in case
2216        nbFrames = 24;
2217
2218    s_curve_interpolator itr(nbFrames, 7.5f);
2219    s_curve_interpolator itg(nbFrames, 8.0f);
2220    s_curve_interpolator itb(nbFrames, 8.5f);
2221
2222    v_stretch vverts(hw_w, hw_h);
2223
2224    glMatrixMode(GL_TEXTURE);
2225    glLoadIdentity();
2226    glMatrixMode(GL_MODELVIEW);
2227    glLoadIdentity();
2228
2229    glEnable(GL_BLEND);
2230    glBlendFunc(GL_ONE, GL_ONE);
2231    for (int i=0 ; i<nbFrames ; i++) {
2232        float x, y, w, h;
2233        const float vr = itr(i);
2234        const float vg = itg(i);
2235        const float vb = itb(i);
2236
2237        // wait for vsync
2238        vsync.wait();
2239
2240        // clear screen
2241        glColorMask(1,1,1,1);
2242        glClear(GL_COLOR_BUFFER_BIT);
2243        glEnable(GL_TEXTURE_2D);
2244
2245        // draw the red plane
2246        vverts(vtx, vr);
2247        glColorMask(1,0,0,1);
2248        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2249
2250        // draw the green plane
2251        vverts(vtx, vg);
2252        glColorMask(0,1,0,1);
2253        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2254
2255        // draw the blue plane
2256        vverts(vtx, vb);
2257        glColorMask(0,0,1,1);
2258        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2259
2260        // draw the white highlight (we use the last vertices)
2261        glDisable(GL_TEXTURE_2D);
2262        glColorMask(1,1,1,1);
2263        glColor4f(vg, vg, vg, 1);
2264        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2265        hw.flip(screenBounds);
2266    }
2267
2268    h_stretch hverts(hw_w, hw_h);
2269    glDisable(GL_BLEND);
2270    glDisable(GL_TEXTURE_2D);
2271    glColorMask(1,1,1,1);
2272    for (int i=0 ; i<nbFrames ; i++) {
2273        const float v = itg(i);
2274        hverts(vtx, v);
2275
2276        // wait for vsync
2277        vsync.wait();
2278
2279        glClear(GL_COLOR_BUFFER_BIT);
2280        glColor4f(1-v, 1-v, 1-v, 1);
2281        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2282        hw.flip(screenBounds);
2283    }
2284
2285    glColorMask(1,1,1,1);
2286    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2287    glDeleteTextures(1, &tname);
2288    glDisable(GL_TEXTURE_2D);
2289    glDisable(GL_BLEND);
2290    return NO_ERROR;
2291}
2292
2293status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
2294{
2295    status_t result = PERMISSION_DENIED;
2296
2297    if (!GLExtensions::getInstance().haveFramebufferObject())
2298        return INVALID_OPERATION;
2299
2300
2301    // get screen geometry
2302    const DisplayDevice& hw(getDefaultDisplayDevice());
2303    const uint32_t hw_w = hw.getWidth();
2304    const uint32_t hw_h = hw.getHeight();
2305    const Region screenBounds(hw.bounds());
2306
2307    GLfloat u, v;
2308    GLuint tname;
2309    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2310    if (result != NO_ERROR) {
2311        return result;
2312    }
2313
2314    GLfloat vtx[8];
2315    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2316    glBindTexture(GL_TEXTURE_2D, tname);
2317    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2318    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2319    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2320    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2321    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2322    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2323    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2324    glVertexPointer(2, GL_FLOAT, 0, vtx);
2325
2326    class s_curve_interpolator {
2327        const float nbFrames, s, v;
2328    public:
2329        s_curve_interpolator(int nbFrames, float s)
2330        : nbFrames(1.0f / (nbFrames-1)), s(s),
2331          v(1.0f + expf(-s + 0.5f*s)) {
2332        }
2333        float operator()(int f) {
2334            const float x = f * nbFrames;
2335            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2336        }
2337    };
2338
2339    class v_stretch {
2340        const GLfloat hw_w, hw_h;
2341    public:
2342        v_stretch(uint32_t hw_w, uint32_t hw_h)
2343        : hw_w(hw_w), hw_h(hw_h) {
2344        }
2345        void operator()(GLfloat* vtx, float v) {
2346            const GLfloat w = hw_w + (hw_w * v);
2347            const GLfloat h = hw_h - (hw_h * v);
2348            const GLfloat x = (hw_w - w) * 0.5f;
2349            const GLfloat y = (hw_h - h) * 0.5f;
2350            vtx[0] = x;         vtx[1] = y;
2351            vtx[2] = x;         vtx[3] = y + h;
2352            vtx[4] = x + w;     vtx[5] = y + h;
2353            vtx[6] = x + w;     vtx[7] = y;
2354        }
2355    };
2356
2357    class h_stretch {
2358        const GLfloat hw_w, hw_h;
2359    public:
2360        h_stretch(uint32_t hw_w, uint32_t hw_h)
2361        : hw_w(hw_w), hw_h(hw_h) {
2362        }
2363        void operator()(GLfloat* vtx, float v) {
2364            const GLfloat w = hw_w - (hw_w * v);
2365            const GLfloat h = 1.0f;
2366            const GLfloat x = (hw_w - w) * 0.5f;
2367            const GLfloat y = (hw_h - h) * 0.5f;
2368            vtx[0] = x;         vtx[1] = y;
2369            vtx[2] = x;         vtx[3] = y + h;
2370            vtx[4] = x + w;     vtx[5] = y + h;
2371            vtx[6] = x + w;     vtx[7] = y;
2372        }
2373    };
2374
2375    VSyncWaiter vsync(mEventThread);
2376
2377    // the full animation is 12 frames
2378    int nbFrames = 8;
2379    s_curve_interpolator itr(nbFrames, 7.5f);
2380    s_curve_interpolator itg(nbFrames, 8.0f);
2381    s_curve_interpolator itb(nbFrames, 8.5f);
2382
2383    h_stretch hverts(hw_w, hw_h);
2384    glDisable(GL_BLEND);
2385    glDisable(GL_TEXTURE_2D);
2386    glColorMask(1,1,1,1);
2387    for (int i=nbFrames-1 ; i>=0 ; i--) {
2388        const float v = itg(i);
2389        hverts(vtx, v);
2390
2391        // wait for vsync
2392        vsync.wait();
2393
2394        glClear(GL_COLOR_BUFFER_BIT);
2395        glColor4f(1-v, 1-v, 1-v, 1);
2396        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2397        hw.flip(screenBounds);
2398    }
2399
2400    nbFrames = 4;
2401    v_stretch vverts(hw_w, hw_h);
2402    glEnable(GL_BLEND);
2403    glBlendFunc(GL_ONE, GL_ONE);
2404    for (int i=nbFrames-1 ; i>=0 ; i--) {
2405        float x, y, w, h;
2406        const float vr = itr(i);
2407        const float vg = itg(i);
2408        const float vb = itb(i);
2409
2410        // wait for vsync
2411        vsync.wait();
2412
2413        // clear screen
2414        glColorMask(1,1,1,1);
2415        glClear(GL_COLOR_BUFFER_BIT);
2416        glEnable(GL_TEXTURE_2D);
2417
2418        // draw the red plane
2419        vverts(vtx, vr);
2420        glColorMask(1,0,0,1);
2421        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2422
2423        // draw the green plane
2424        vverts(vtx, vg);
2425        glColorMask(0,1,0,1);
2426        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2427
2428        // draw the blue plane
2429        vverts(vtx, vb);
2430        glColorMask(0,0,1,1);
2431        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2432
2433        hw.flip(screenBounds);
2434    }
2435
2436    glColorMask(1,1,1,1);
2437    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2438    glDeleteTextures(1, &tname);
2439    glDisable(GL_TEXTURE_2D);
2440    glDisable(GL_BLEND);
2441
2442    return NO_ERROR;
2443}
2444
2445// ---------------------------------------------------------------------------
2446
2447status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2448{
2449    ATRACE_CALL();
2450
2451    DisplayDevice& hw(const_cast<DisplayDevice&>(getDefaultDisplayDevice()));
2452    if (!hw.canDraw()) {
2453        // we're already off
2454        return NO_ERROR;
2455    }
2456
2457    // turn off hwc while we're doing the animation
2458    getHwComposer().disable();
2459    // and make sure to turn it back on (if needed) next time we compose
2460    invalidateHwcGeometry();
2461
2462    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2463        electronBeamOffAnimationImplLocked();
2464    }
2465
2466    // always clear the whole screen at the end of the animation
2467    glClearColor(0,0,0,1);
2468    glClear(GL_COLOR_BUFFER_BIT);
2469    hw.flip( Region(hw.bounds()) );
2470
2471    return NO_ERROR;
2472}
2473
2474status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2475{
2476    class MessageTurnElectronBeamOff : public MessageBase {
2477        SurfaceFlinger* flinger;
2478        int32_t mode;
2479        status_t result;
2480    public:
2481        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2482            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2483        }
2484        status_t getResult() const {
2485            return result;
2486        }
2487        virtual bool handler() {
2488            Mutex::Autolock _l(flinger->mStateLock);
2489            result = flinger->turnElectronBeamOffImplLocked(mode);
2490            return true;
2491        }
2492    };
2493
2494    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2495    status_t res = postMessageSync(msg);
2496    if (res == NO_ERROR) {
2497        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2498
2499        // work-around: when the power-manager calls us we activate the
2500        // animation. eventually, the "on" animation will be called
2501        // by the power-manager itself
2502        mElectronBeamAnimationMode = mode;
2503    }
2504    return res;
2505}
2506
2507// ---------------------------------------------------------------------------
2508
2509status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2510{
2511    DisplayDevice& hw(const_cast<DisplayDevice&>(getDefaultDisplayDevice()));
2512    if (hw.canDraw()) {
2513        // we're already on
2514        return NO_ERROR;
2515    }
2516    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2517        electronBeamOnAnimationImplLocked();
2518    }
2519
2520    // make sure to redraw the whole screen when the animation is done
2521    hw.dirtyRegion.set(hw.bounds());
2522    signalTransaction();
2523
2524    return NO_ERROR;
2525}
2526
2527status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2528{
2529    class MessageTurnElectronBeamOn : public MessageBase {
2530        SurfaceFlinger* flinger;
2531        int32_t mode;
2532        status_t result;
2533    public:
2534        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2535            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2536        }
2537        status_t getResult() const {
2538            return result;
2539        }
2540        virtual bool handler() {
2541            Mutex::Autolock _l(flinger->mStateLock);
2542            result = flinger->turnElectronBeamOnImplLocked(mode);
2543            return true;
2544        }
2545    };
2546
2547    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2548    return NO_ERROR;
2549}
2550
2551// ---------------------------------------------------------------------------
2552
2553status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2554        sp<IMemoryHeap>* heap,
2555        uint32_t* w, uint32_t* h, PixelFormat* f,
2556        uint32_t sw, uint32_t sh,
2557        uint32_t minLayerZ, uint32_t maxLayerZ)
2558{
2559    ATRACE_CALL();
2560
2561    status_t result = PERMISSION_DENIED;
2562
2563    // only one display supported for now
2564    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT)) {
2565        return BAD_VALUE;
2566    }
2567
2568    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2569        return INVALID_OPERATION;
2570    }
2571
2572    // get screen geometry
2573    const DisplayDevice& hw(getDisplayDevice(dpy));
2574    const uint32_t hw_w = hw.getWidth();
2575    const uint32_t hw_h = hw.getHeight();
2576
2577    // if we have secure windows on this display, never allow the screen capture
2578    if (hw.getSecureLayerVisible()) {
2579        return PERMISSION_DENIED;
2580    }
2581
2582    if ((sw > hw_w) || (sh > hw_h)) {
2583        return BAD_VALUE;
2584    }
2585
2586    sw = (!sw) ? hw_w : sw;
2587    sh = (!sh) ? hw_h : sh;
2588    const size_t size = sw * sh * 4;
2589    const bool filtering = sw != hw_w || sh != hw_h;
2590
2591    //ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2592    //        sw, sh, minLayerZ, maxLayerZ);
2593
2594    // make sure to clear all GL error flags
2595    while ( glGetError() != GL_NO_ERROR ) ;
2596
2597    // create a FBO
2598    GLuint name, tname;
2599    glGenRenderbuffersOES(1, &tname);
2600    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2601    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2602
2603    glGenFramebuffersOES(1, &name);
2604    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2605    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2606            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2607
2608    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2609
2610    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2611
2612        // invert everything, b/c glReadPixel() below will invert the FB
2613        glViewport(0, 0, sw, sh);
2614        glMatrixMode(GL_PROJECTION);
2615        glPushMatrix();
2616        glLoadIdentity();
2617        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2618        glMatrixMode(GL_MODELVIEW);
2619
2620        // redraw the screen entirely...
2621        glClearColor(0,0,0,1);
2622        glClear(GL_COLOR_BUFFER_BIT);
2623
2624        const LayerVector& layers(mDrawingState.layersSortedByZ);
2625        const size_t count = layers.size();
2626        for (size_t i=0 ; i<count ; ++i) {
2627            const sp<LayerBase>& layer(layers[i]);
2628            const uint32_t flags = layer->drawingState().flags;
2629            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2630                const uint32_t z = layer->drawingState().z;
2631                if (z >= minLayerZ && z <= maxLayerZ) {
2632                    if (filtering) layer->setFiltering(true);
2633                    layer->draw(hw);
2634                    if (filtering) layer->setFiltering(false);
2635                }
2636            }
2637        }
2638
2639        // check for errors and return screen capture
2640        if (glGetError() != GL_NO_ERROR) {
2641            // error while rendering
2642            result = INVALID_OPERATION;
2643        } else {
2644            // allocate shared memory large enough to hold the
2645            // screen capture
2646            sp<MemoryHeapBase> base(
2647                    new MemoryHeapBase(size, 0, "screen-capture") );
2648            void* const ptr = base->getBase();
2649            if (ptr) {
2650                // capture the screen with glReadPixels()
2651                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2652                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2653                if (glGetError() == GL_NO_ERROR) {
2654                    *heap = base;
2655                    *w = sw;
2656                    *h = sh;
2657                    *f = PIXEL_FORMAT_RGBA_8888;
2658                    result = NO_ERROR;
2659                }
2660            } else {
2661                result = NO_MEMORY;
2662            }
2663        }
2664        glViewport(0, 0, hw_w, hw_h);
2665        glMatrixMode(GL_PROJECTION);
2666        glPopMatrix();
2667        glMatrixMode(GL_MODELVIEW);
2668    } else {
2669        result = BAD_VALUE;
2670    }
2671
2672    // release FBO resources
2673    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2674    glDeleteRenderbuffersOES(1, &tname);
2675    glDeleteFramebuffersOES(1, &name);
2676
2677    hw.compositionComplete();
2678
2679    // ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2680
2681    return result;
2682}
2683
2684
2685status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2686        sp<IMemoryHeap>* heap,
2687        uint32_t* width, uint32_t* height, PixelFormat* format,
2688        uint32_t sw, uint32_t sh,
2689        uint32_t minLayerZ, uint32_t maxLayerZ)
2690{
2691    // only one display supported for now
2692    if (CC_UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2693        return BAD_VALUE;
2694
2695    if (!GLExtensions::getInstance().haveFramebufferObject())
2696        return INVALID_OPERATION;
2697
2698    class MessageCaptureScreen : public MessageBase {
2699        SurfaceFlinger* flinger;
2700        DisplayID dpy;
2701        sp<IMemoryHeap>* heap;
2702        uint32_t* w;
2703        uint32_t* h;
2704        PixelFormat* f;
2705        uint32_t sw;
2706        uint32_t sh;
2707        uint32_t minLayerZ;
2708        uint32_t maxLayerZ;
2709        status_t result;
2710    public:
2711        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2712                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2713                uint32_t sw, uint32_t sh,
2714                uint32_t minLayerZ, uint32_t maxLayerZ)
2715            : flinger(flinger), dpy(dpy),
2716              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2717              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2718              result(PERMISSION_DENIED)
2719        {
2720        }
2721        status_t getResult() const {
2722            return result;
2723        }
2724        virtual bool handler() {
2725            Mutex::Autolock _l(flinger->mStateLock);
2726            result = flinger->captureScreenImplLocked(dpy,
2727                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2728            return true;
2729        }
2730    };
2731
2732    sp<MessageBase> msg = new MessageCaptureScreen(this,
2733            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2734    status_t res = postMessageSync(msg);
2735    if (res == NO_ERROR) {
2736        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2737    }
2738    return res;
2739}
2740
2741// ---------------------------------------------------------------------------
2742
2743SurfaceFlinger::LayerVector::LayerVector() {
2744}
2745
2746SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2747    : SortedVector<sp<LayerBase> >(rhs) {
2748}
2749
2750int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2751    const void* rhs) const
2752{
2753    // sort layers per layer-stack, then by z-order and finally by sequence
2754    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2755    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2756
2757    uint32_t ls = l->currentState().layerStack;
2758    uint32_t rs = r->currentState().layerStack;
2759    if (ls != rs)
2760        return ls - rs;
2761
2762    uint32_t lz = l->currentState().z;
2763    uint32_t rz = r->currentState().z;
2764    if (lz != rz)
2765        return lz - rz;
2766
2767    return l->sequence - r->sequence;
2768}
2769
2770// ---------------------------------------------------------------------------
2771
2772SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2773    : id(DisplayDevice::DISPLAY_ID_MAIN), layerStack(0), orientation(0) {
2774}
2775
2776// ---------------------------------------------------------------------------
2777
2778GraphicBufferAlloc::GraphicBufferAlloc() {}
2779
2780GraphicBufferAlloc::~GraphicBufferAlloc() {}
2781
2782sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2783        PixelFormat format, uint32_t usage, status_t* error) {
2784    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2785    status_t err = graphicBuffer->initCheck();
2786    *error = err;
2787    if (err != 0 || graphicBuffer->handle == 0) {
2788        if (err == NO_MEMORY) {
2789            GraphicBuffer::dumpAllocationsToSystemLog();
2790        }
2791        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2792             "failed (%s), handle=%p",
2793                w, h, strerror(-err), graphicBuffer->handle);
2794        return 0;
2795    }
2796    return graphicBuffer;
2797}
2798
2799// ---------------------------------------------------------------------------
2800
2801}; // namespace android
2802