SurfaceFlinger.cpp revision a8026d21f3f2f09e3416cbd33c277fbd15d8cf4e
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/SurfaceTextureClient.h>
43
44#include <ui/GraphicBufferAllocator.h>
45#include <ui/PixelFormat.h>
46#include <ui/UiConfig.h>
47
48#include <utils/misc.h>
49#include <utils/String8.h>
50#include <utils/String16.h>
51#include <utils/StopWatch.h>
52#include <utils/Trace.h>
53
54#include <private/android_filesystem_config.h>
55
56#include "clz.h"
57#include "DdmConnection.h"
58#include "DisplayDevice.h"
59#include "Client.h"
60#include "EventThread.h"
61#include "GLExtensions.h"
62#include "Layer.h"
63#include "LayerDim.h"
64#include "LayerScreenshot.h"
65#include "SurfaceFlinger.h"
66
67#include "DisplayHardware/FramebufferSurface.h"
68#include "DisplayHardware/GraphicBufferAlloc.h"
69#include "DisplayHardware/HWComposer.h"
70
71
72#define EGL_VERSION_HW_ANDROID  0x3143
73
74#define DISPLAY_COUNT       1
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransationPending(false),
90        mLayersRemoved(false),
91        mRepaintEverything(0),
92        mBootTime(systemTime()),
93        mVisibleRegionsDirty(false),
94        mHwWorkListDirty(false),
95        mDebugRegion(0),
96        mDebugDDMS(0),
97        mDebugDisableHWC(0),
98        mDebugDisableTransformHint(0),
99        mDebugInSwapBuffers(0),
100        mLastSwapBufferTime(0),
101        mDebugInTransaction(0),
102        mLastTransactionTime(0),
103        mBootFinished(false)
104{
105    ALOGI("SurfaceFlinger is starting");
106
107    // debugging stuff...
108    char value[PROPERTY_VALUE_MAX];
109
110    property_get("debug.sf.showupdates", value, "0");
111    mDebugRegion = atoi(value);
112
113    property_get("debug.sf.ddms", value, "0");
114    mDebugDDMS = atoi(value);
115    if (mDebugDDMS) {
116        if (!startDdmConnection()) {
117            // start failed, and DDMS debugging not enabled
118            mDebugDDMS = 0;
119        }
120    }
121    ALOGI_IF(mDebugRegion, "showupdates enabled");
122    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
123}
124
125void SurfaceFlinger::onFirstRef()
126{
127    mEventQueue.init(this);
128
129    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
130
131    // Wait for the main thread to be done with its initialization
132    mReadyToRunBarrier.wait();
133}
134
135
136SurfaceFlinger::~SurfaceFlinger()
137{
138    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
139    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
140    eglTerminate(display);
141}
142
143void SurfaceFlinger::binderDied(const wp<IBinder>& who)
144{
145    // the window manager died on us. prepare its eulogy.
146
147    // restore initial conditions (default device unblank, etc)
148    initializeDisplays();
149
150    // restart the boot-animation
151    startBootAnim();
152}
153
154sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
155{
156    sp<ISurfaceComposerClient> bclient;
157    sp<Client> client(new Client(this));
158    status_t err = client->initCheck();
159    if (err == NO_ERROR) {
160        bclient = client;
161    }
162    return bclient;
163}
164
165sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName)
166{
167    class DisplayToken : public BBinder {
168        sp<SurfaceFlinger> flinger;
169        virtual ~DisplayToken() {
170             // no more references, this display must be terminated
171             Mutex::Autolock _l(flinger->mStateLock);
172             flinger->mCurrentState.displays.removeItem(this);
173             flinger->setTransactionFlags(eDisplayTransactionNeeded);
174         }
175     public:
176        DisplayToken(const sp<SurfaceFlinger>& flinger)
177            : flinger(flinger) {
178        }
179    };
180
181    sp<BBinder> token = new DisplayToken(this);
182
183    Mutex::Autolock _l(mStateLock);
184    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
185    info.displayName = displayName;
186    mCurrentState.displays.add(token, info);
187
188    return token;
189}
190
191sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
192    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
193        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
194        return NULL;
195    }
196    return mDefaultDisplays[id];
197}
198
199sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
200{
201    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
202    return gba;
203}
204
205void SurfaceFlinger::bootFinished()
206{
207    const nsecs_t now = systemTime();
208    const nsecs_t duration = now - mBootTime;
209    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
210    mBootFinished = true;
211
212    // wait patiently for the window manager death
213    const String16 name("window");
214    sp<IBinder> window(defaultServiceManager()->getService(name));
215    if (window != 0) {
216        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
217    }
218
219    // stop boot animation
220    // formerly we would just kill the process, but we now ask it to exit so it
221    // can choose where to stop the animation.
222    property_set("service.bootanim.exit", "1");
223}
224
225void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
226    class MessageDestroyGLTexture : public MessageBase {
227        GLuint texture;
228    public:
229        MessageDestroyGLTexture(GLuint texture)
230            : texture(texture) {
231        }
232        virtual bool handler() {
233            glDeleteTextures(1, &texture);
234            return true;
235        }
236    };
237    postMessageAsync(new MessageDestroyGLTexture(texture));
238}
239
240status_t SurfaceFlinger::selectConfigForAttribute(
241        EGLDisplay dpy,
242        EGLint const* attrs,
243        EGLint attribute, EGLint wanted,
244        EGLConfig* outConfig)
245{
246    EGLConfig config = NULL;
247    EGLint numConfigs = -1, n=0;
248    eglGetConfigs(dpy, NULL, 0, &numConfigs);
249    EGLConfig* const configs = new EGLConfig[numConfigs];
250    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
251
252    if (n) {
253        if (attribute != EGL_NONE) {
254            for (int i=0 ; i<n ; i++) {
255                EGLint value = 0;
256                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
257                if (wanted == value) {
258                    *outConfig = configs[i];
259                    delete [] configs;
260                    return NO_ERROR;
261                }
262            }
263        } else {
264            // just pick the first one
265            *outConfig = configs[0];
266            delete [] configs;
267            return NO_ERROR;
268        }
269    }
270    delete [] configs;
271    return NAME_NOT_FOUND;
272}
273
274class EGLAttributeVector {
275    struct Attribute;
276    class Adder;
277    friend class Adder;
278    KeyedVector<Attribute, EGLint> mList;
279    struct Attribute {
280        Attribute() {};
281        Attribute(EGLint v) : v(v) { }
282        EGLint v;
283        bool operator < (const Attribute& other) const {
284            // this places EGL_NONE at the end
285            EGLint lhs(v);
286            EGLint rhs(other.v);
287            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
288            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
289            return lhs < rhs;
290        }
291    };
292    class Adder {
293        friend class EGLAttributeVector;
294        EGLAttributeVector& v;
295        EGLint attribute;
296        Adder(EGLAttributeVector& v, EGLint attribute)
297            : v(v), attribute(attribute) {
298        }
299    public:
300        void operator = (EGLint value) {
301            if (attribute != EGL_NONE) {
302                v.mList.add(attribute, value);
303            }
304        }
305        operator EGLint () const { return v.mList[attribute]; }
306    };
307public:
308    EGLAttributeVector() {
309        mList.add(EGL_NONE, EGL_NONE);
310    }
311    void remove(EGLint attribute) {
312        if (attribute != EGL_NONE) {
313            mList.removeItem(attribute);
314        }
315    }
316    Adder operator [] (EGLint attribute) {
317        return Adder(*this, attribute);
318    }
319    EGLint operator [] (EGLint attribute) const {
320       return mList[attribute];
321    }
322    // cast-operator to (EGLint const*)
323    operator EGLint const* () const { return &mList.keyAt(0).v; }
324};
325
326EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
327    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
328    // it is to be used with WIFI displays
329    EGLConfig config;
330    EGLint dummy;
331    status_t err;
332
333    EGLAttributeVector attribs;
334    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
335    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
336    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
337    attribs[EGL_RED_SIZE]                   = 8;
338    attribs[EGL_GREEN_SIZE]                 = 8;
339    attribs[EGL_BLUE_SIZE]                  = 8;
340
341    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
342    if (!err)
343        goto success;
344
345    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
346    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
347    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
348    err = selectConfigForAttribute(display, attribs,
349            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
350    if (!err)
351        goto success;
352
353    // maybe we failed because of EGL_RECORDABLE_ANDROID
354    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
355    attribs.remove(EGL_RECORDABLE_ANDROID);
356    err = selectConfigForAttribute(display, attribs,
357            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
358    if (!err)
359        goto success;
360
361    // allow less than 24-bit color; the non-gpu-accelerated emulator only
362    // supports 16-bit color
363    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
364    attribs.remove(EGL_RED_SIZE);
365    attribs.remove(EGL_GREEN_SIZE);
366    attribs.remove(EGL_BLUE_SIZE);
367    err = selectConfigForAttribute(display, attribs,
368            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
369    if (!err)
370        goto success;
371
372    // this EGL is too lame for Android
373    ALOGE("no suitable EGLConfig found, giving up");
374
375    return 0;
376
377success:
378    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
379        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
380    return config;
381}
382
383EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
384    // Also create our EGLContext
385    EGLint contextAttributes[] = {
386#ifdef EGL_IMG_context_priority
387#ifdef HAS_CONTEXT_PRIORITY
388#warning "using EGL_IMG_context_priority"
389            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
390#endif
391#endif
392            EGL_NONE, EGL_NONE
393    };
394    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
395    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
396    return ctxt;
397}
398
399void SurfaceFlinger::initializeGL(EGLDisplay display) {
400    GLExtensions& extensions(GLExtensions::getInstance());
401    extensions.initWithGLStrings(
402            glGetString(GL_VENDOR),
403            glGetString(GL_RENDERER),
404            glGetString(GL_VERSION),
405            glGetString(GL_EXTENSIONS),
406            eglQueryString(display, EGL_VENDOR),
407            eglQueryString(display, EGL_VERSION),
408            eglQueryString(display, EGL_EXTENSIONS));
409
410    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
411    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
412
413    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
414    glPixelStorei(GL_PACK_ALIGNMENT, 4);
415    glEnableClientState(GL_VERTEX_ARRAY);
416    glShadeModel(GL_FLAT);
417    glDisable(GL_DITHER);
418    glDisable(GL_CULL_FACE);
419
420    struct pack565 {
421        inline uint16_t operator() (int r, int g, int b) const {
422            return (r<<11)|(g<<5)|b;
423        }
424    } pack565;
425
426    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
427    glGenTextures(1, &mProtectedTexName);
428    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
429    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
430    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
431    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
432    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
433    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
434            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
435
436    // print some debugging info
437    EGLint r,g,b,a;
438    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
439    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
440    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
441    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
442    ALOGI("EGL informations:");
443    ALOGI("vendor    : %s", extensions.getEglVendor());
444    ALOGI("version   : %s", extensions.getEglVersion());
445    ALOGI("extensions: %s", extensions.getEglExtension());
446    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
447    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
448    ALOGI("OpenGL ES informations:");
449    ALOGI("vendor    : %s", extensions.getVendor());
450    ALOGI("renderer  : %s", extensions.getRenderer());
451    ALOGI("version   : %s", extensions.getVersion());
452    ALOGI("extensions: %s", extensions.getExtension());
453    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
454    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
455}
456
457status_t SurfaceFlinger::readyToRun()
458{
459    ALOGI(  "SurfaceFlinger's main thread ready to run. "
460            "Initializing graphics H/W...");
461
462    // initialize EGL for the default display
463    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
464    eglInitialize(mEGLDisplay, NULL, NULL);
465
466    // Initialize the H/W composer object.  There may or may not be an
467    // actual hardware composer underneath.
468    mHwc = new HWComposer(this,
469            *static_cast<HWComposer::EventHandler *>(this));
470
471    // initialize the config and context
472    EGLint format = mHwc->getVisualID();
473    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
474    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
475
476    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
477            "couldn't create EGLContext");
478
479    // initialize our non-virtual displays
480    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
481        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
482        mDefaultDisplays[i] = new BBinder();
483        wp<IBinder> token = mDefaultDisplays[i];
484
485        // set-up the displays that are already connected
486        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
487            mCurrentState.displays.add(token, DisplayDeviceState(type));
488            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
489            sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
490                        static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
491            sp<DisplayDevice> hw = new DisplayDevice(this,
492                    type, token, stc, fbs, mEGLConfig);
493
494            if (i > DisplayDevice::DISPLAY_PRIMARY) {
495                // FIXME: currently we don't really handle blank/unblank
496                // for displays other than the main display, so we always
497                // assume a connected display is unblanked.
498                hw->acquireScreen();
499            }
500            mDisplays.add(token, hw);
501        }
502    }
503
504    //  we need a GL context current in a few places, when initializing
505    //  OpenGL ES (see below), or creating a layer,
506    //  or when a texture is (asynchronously) destroyed, and for that
507    //  we need a valid surface, so it's convenient to use the main display
508    //  for that.
509    sp<const DisplayDevice> hw = getDefaultDisplayDevice();
510
511    //  initialize OpenGL ES
512    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
513    initializeGL(mEGLDisplay);
514
515    // start the EventThread
516    mEventThread = new EventThread(this);
517    mEventQueue.setEventThread(mEventThread);
518
519    // initialize our drawing state
520    mDrawingState = mCurrentState;
521
522
523    // We're now ready to accept clients...
524    mReadyToRunBarrier.open();
525
526    // set initial conditions (e.g. unblank default device)
527    initializeDisplays();
528
529    // start boot animation
530    startBootAnim();
531
532    return NO_ERROR;
533}
534
535int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
536    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
537            type : mHwc->allocateDisplayId();
538}
539
540void SurfaceFlinger::startBootAnim() {
541    // start boot animation
542    property_set("service.bootanim.exit", "0");
543    property_set("ctl.start", "bootanim");
544}
545
546uint32_t SurfaceFlinger::getMaxTextureSize() const {
547    return mMaxTextureSize;
548}
549
550uint32_t SurfaceFlinger::getMaxViewportDims() const {
551    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
552            mMaxViewportDims[0] : mMaxViewportDims[1];
553}
554
555// ----------------------------------------------------------------------------
556
557bool SurfaceFlinger::authenticateSurfaceTexture(
558        const sp<ISurfaceTexture>& surfaceTexture) const {
559    Mutex::Autolock _l(mStateLock);
560    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
561
562    // Check the visible layer list for the ISurface
563    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
564    size_t count = currentLayers.size();
565    for (size_t i=0 ; i<count ; i++) {
566        const sp<LayerBase>& layer(currentLayers[i]);
567        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
568        if (lbc != NULL) {
569            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
570            if (lbcBinder == surfaceTextureBinder) {
571                return true;
572            }
573        }
574    }
575
576    // Check the layers in the purgatory.  This check is here so that if a
577    // SurfaceTexture gets destroyed before all the clients are done using it,
578    // the error will not be reported as "surface XYZ is not authenticated", but
579    // will instead fail later on when the client tries to use the surface,
580    // which should be reported as "surface XYZ returned an -ENODEV".  The
581    // purgatorized layers are no less authentic than the visible ones, so this
582    // should not cause any harm.
583    size_t purgatorySize =  mLayerPurgatory.size();
584    for (size_t i=0 ; i<purgatorySize ; i++) {
585        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
586        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
587        if (lbc != NULL) {
588            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
589            if (lbcBinder == surfaceTextureBinder) {
590                return true;
591            }
592        }
593    }
594
595    return false;
596}
597
598status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
599    int32_t type = BAD_VALUE;
600    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
601        if (display == mDefaultDisplays[i]) {
602            type = i;
603            break;
604        }
605    }
606
607    if (type < 0) {
608        return type;
609    }
610
611    const HWComposer& hwc(getHwComposer());
612    if (!hwc.isConnected(type)) {
613        return NAME_NOT_FOUND;
614    }
615
616    float xdpi = hwc.getDpiX(type);
617    float ydpi = hwc.getDpiY(type);
618
619    // TODO: Not sure if display density should handled by SF any longer
620    class Density {
621        static int getDensityFromProperty(char const* propName) {
622            char property[PROPERTY_VALUE_MAX];
623            int density = 0;
624            if (property_get(propName, property, NULL) > 0) {
625                density = atoi(property);
626            }
627            return density;
628        }
629    public:
630        static int getEmuDensity() {
631            return getDensityFromProperty("qemu.sf.lcd_density"); }
632        static int getBuildDensity()  {
633            return getDensityFromProperty("ro.sf.lcd_density"); }
634    };
635
636    if (type == DisplayDevice::DISPLAY_PRIMARY) {
637        // The density of the device is provided by a build property
638        float density = Density::getBuildDensity() / 160.0f;
639        if (density == 0) {
640            // the build doesn't provide a density -- this is wrong!
641            // use xdpi instead
642            ALOGE("ro.sf.lcd_density must be defined as a build property");
643            density = xdpi / 160.0f;
644        }
645        if (Density::getEmuDensity()) {
646            // if "qemu.sf.lcd_density" is specified, it overrides everything
647            xdpi = ydpi = density = Density::getEmuDensity();
648            density /= 160.0f;
649        }
650        info->density = density;
651
652        // TODO: this needs to go away (currently needed only by webkit)
653        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
654        info->orientation = hw->getOrientation();
655        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
656    } else {
657        // TODO: where should this value come from?
658        static const int TV_DENSITY = 213;
659        info->density = TV_DENSITY / 160.0f;
660        info->orientation = 0;
661    }
662
663    info->w = hwc.getWidth(type);
664    info->h = hwc.getHeight(type);
665    info->xdpi = xdpi;
666    info->ydpi = ydpi;
667    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
668    return NO_ERROR;
669}
670
671// ----------------------------------------------------------------------------
672
673sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
674    return mEventThread->createEventConnection();
675}
676
677void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
678
679    sp<IBinder> token;
680    { // scope for the lock
681        Mutex::Autolock _l(mStateLock);
682        token = mExtDisplayToken;
683    }
684
685    if (token == 0) {
686        token = createDisplay(String8("Display from connectDisplay"));
687    }
688
689    { // scope for the lock
690        Mutex::Autolock _l(mStateLock);
691        if (surface == 0) {
692            // release our current display. we're guarantee to have
693            // a reference to it (token), while we hold the lock
694            mExtDisplayToken = 0;
695        } else {
696            mExtDisplayToken = token;
697        }
698
699        DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
700        info.surface = surface;
701        setTransactionFlags(eDisplayTransactionNeeded);
702    }
703}
704
705// ----------------------------------------------------------------------------
706
707void SurfaceFlinger::waitForEvent() {
708    mEventQueue.waitMessage();
709}
710
711void SurfaceFlinger::signalTransaction() {
712    mEventQueue.invalidate();
713}
714
715void SurfaceFlinger::signalLayerUpdate() {
716    mEventQueue.invalidate();
717}
718
719void SurfaceFlinger::signalRefresh() {
720    mEventQueue.refresh();
721}
722
723status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
724        nsecs_t reltime, uint32_t flags) {
725    return mEventQueue.postMessage(msg, reltime);
726}
727
728status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
729        nsecs_t reltime, uint32_t flags) {
730    status_t res = mEventQueue.postMessage(msg, reltime);
731    if (res == NO_ERROR) {
732        msg->wait();
733    }
734    return res;
735}
736
737bool SurfaceFlinger::threadLoop() {
738    waitForEvent();
739    return true;
740}
741
742void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
743    if (mEventThread == NULL) {
744        // This is a temporary workaround for b/7145521.  A non-null pointer
745        // does not mean EventThread has finished initializing, so this
746        // is not a correct fix.
747        ALOGW("WARNING: EventThread not started, ignoring vsync");
748        return;
749    }
750    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
751        // we should only receive DisplayDevice::DisplayType from the vsync callback
752        mEventThread->onVSyncReceived(type, timestamp);
753    }
754}
755
756void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
757    if (mEventThread == NULL) {
758        // This is a temporary workaround for b/7145521.  A non-null pointer
759        // does not mean EventThread has finished initializing, so this
760        // is not a correct fix.
761        ALOGW("WARNING: EventThread not started, ignoring hotplug");
762        return;
763    }
764
765    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
766        Mutex::Autolock _l(mStateLock);
767        if (connected == false) {
768            mCurrentState.displays.removeItem(mDefaultDisplays[type]);
769        } else {
770            DisplayDeviceState info((DisplayDevice::DisplayType)type);
771            mCurrentState.displays.add(mDefaultDisplays[type], info);
772        }
773        setTransactionFlags(eDisplayTransactionNeeded);
774
775        // we should only receive DisplayDevice::DisplayType from the vsync callback
776        mEventThread->onHotplugReceived(type, connected);
777    }
778}
779
780void SurfaceFlinger::eventControl(int event, int enabled) {
781    getHwComposer().eventControl(event, enabled);
782}
783
784void SurfaceFlinger::onMessageReceived(int32_t what) {
785    ATRACE_CALL();
786    switch (what) {
787    case MessageQueue::INVALIDATE:
788        handleMessageTransaction();
789        handleMessageInvalidate();
790        signalRefresh();
791        break;
792    case MessageQueue::REFRESH:
793        handleMessageRefresh();
794        break;
795    }
796}
797
798void SurfaceFlinger::handleMessageTransaction() {
799    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
800    if (transactionFlags) {
801        handleTransaction(transactionFlags);
802    }
803}
804
805void SurfaceFlinger::handleMessageInvalidate() {
806    ATRACE_CALL();
807    handlePageFlip();
808}
809
810void SurfaceFlinger::handleMessageRefresh() {
811    ATRACE_CALL();
812    preComposition();
813    rebuildLayerStacks();
814    setUpHWComposer();
815    doDebugFlashRegions();
816    doComposition();
817    postComposition();
818}
819
820void SurfaceFlinger::doDebugFlashRegions()
821{
822    // is debugging enabled
823    if (CC_LIKELY(!mDebugRegion))
824        return;
825
826    const bool repaintEverything = mRepaintEverything;
827    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
828        const sp<DisplayDevice>& hw(mDisplays[dpy]);
829        if (hw->canDraw()) {
830            // transform the dirty region into this screen's coordinate space
831            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
832            if (!dirtyRegion.isEmpty()) {
833                // redraw the whole screen
834                doComposeSurfaces(hw, Region(hw->bounds()));
835
836                // and draw the dirty region
837                glDisable(GL_TEXTURE_EXTERNAL_OES);
838                glDisable(GL_TEXTURE_2D);
839                glDisable(GL_BLEND);
840                glColor4f(1, 0, 1, 1);
841                const int32_t height = hw->getHeight();
842                Region::const_iterator it = dirtyRegion.begin();
843                Region::const_iterator const end = dirtyRegion.end();
844                while (it != end) {
845                    const Rect& r = *it++;
846                    GLfloat vertices[][2] = {
847                            { r.left,  height - r.top },
848                            { r.left,  height - r.bottom },
849                            { r.right, height - r.bottom },
850                            { r.right, height - r.top }
851                    };
852                    glVertexPointer(2, GL_FLOAT, 0, vertices);
853                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
854                }
855                hw->compositionComplete();
856                hw->swapBuffers(getHwComposer());
857            }
858        }
859    }
860
861    postFramebuffer();
862
863    if (mDebugRegion > 1) {
864        usleep(mDebugRegion * 1000);
865    }
866
867    HWComposer& hwc(getHwComposer());
868    if (hwc.initCheck() == NO_ERROR) {
869        status_t err = hwc.prepare();
870        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
871    }
872}
873
874void SurfaceFlinger::preComposition()
875{
876    bool needExtraInvalidate = false;
877    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
878    const size_t count = currentLayers.size();
879    for (size_t i=0 ; i<count ; i++) {
880        if (currentLayers[i]->onPreComposition()) {
881            needExtraInvalidate = true;
882        }
883    }
884    if (needExtraInvalidate) {
885        signalLayerUpdate();
886    }
887}
888
889void SurfaceFlinger::postComposition()
890{
891    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
892    const size_t count = currentLayers.size();
893    for (size_t i=0 ; i<count ; i++) {
894        currentLayers[i]->onPostComposition();
895    }
896}
897
898void SurfaceFlinger::rebuildLayerStacks() {
899    // rebuild the visible layer list per screen
900    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
901        ATRACE_CALL();
902        mVisibleRegionsDirty = false;
903        invalidateHwcGeometry();
904
905        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
906        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
907            Region opaqueRegion;
908            Region dirtyRegion;
909            Vector< sp<LayerBase> > layersSortedByZ;
910            const sp<DisplayDevice>& hw(mDisplays[dpy]);
911            const Transform& tr(hw->getTransform());
912            const Rect bounds(hw->getBounds());
913            if (hw->canDraw()) {
914                SurfaceFlinger::computeVisibleRegions(currentLayers,
915                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
916
917                const size_t count = currentLayers.size();
918                for (size_t i=0 ; i<count ; i++) {
919                    const sp<LayerBase>& layer(currentLayers[i]);
920                    const Layer::State& s(layer->drawingState());
921                    if (s.layerStack == hw->getLayerStack()) {
922                        Region drawRegion(tr.transform(
923                                layer->visibleNonTransparentRegion));
924                        drawRegion.andSelf(bounds);
925                        if (!drawRegion.isEmpty()) {
926                            layersSortedByZ.add(layer);
927                        }
928                    }
929                }
930            }
931            hw->setVisibleLayersSortedByZ(layersSortedByZ);
932            hw->undefinedRegion.set(bounds);
933            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
934            hw->dirtyRegion.orSelf(dirtyRegion);
935        }
936    }
937}
938
939void SurfaceFlinger::setUpHWComposer() {
940    HWComposer& hwc(getHwComposer());
941    if (hwc.initCheck() == NO_ERROR) {
942        // build the h/w work list
943        const bool workListsDirty = mHwWorkListDirty;
944        mHwWorkListDirty = false;
945        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
946            sp<const DisplayDevice> hw(mDisplays[dpy]);
947            const int32_t id = hw->getHwcDisplayId();
948            if (id >= 0) {
949                const Vector< sp<LayerBase> >& currentLayers(
950                    hw->getVisibleLayersSortedByZ());
951                const size_t count = currentLayers.size();
952                if (hwc.createWorkList(id, count) >= 0) {
953                    HWComposer::LayerListIterator cur = hwc.begin(id);
954                    const HWComposer::LayerListIterator end = hwc.end(id);
955                    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
956                        const sp<LayerBase>& layer(currentLayers[i]);
957
958                        if (CC_UNLIKELY(workListsDirty)) {
959                            layer->setGeometry(hw, *cur);
960                            if (mDebugDisableHWC || mDebugRegion) {
961                                cur->setSkip(true);
962                            }
963                        }
964
965                        /*
966                         * update the per-frame h/w composer data for each layer
967                         * and build the transparent region of the FB
968                         */
969                        layer->setPerFrameData(hw, *cur);
970                    }
971                }
972            }
973        }
974        status_t err = hwc.prepare();
975        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
976    }
977}
978
979void SurfaceFlinger::doComposition() {
980    ATRACE_CALL();
981    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
982    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
983        const sp<DisplayDevice>& hw(mDisplays[dpy]);
984        if (hw->canDraw()) {
985            // transform the dirty region into this screen's coordinate space
986            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
987            if (!dirtyRegion.isEmpty()) {
988                // repaint the framebuffer (if needed)
989                doDisplayComposition(hw, dirtyRegion);
990            }
991            hw->dirtyRegion.clear();
992            hw->flip(hw->swapRegion);
993            hw->swapRegion.clear();
994        }
995        // inform the h/w that we're done compositing
996        hw->compositionComplete();
997    }
998    postFramebuffer();
999}
1000
1001void SurfaceFlinger::postFramebuffer()
1002{
1003    ATRACE_CALL();
1004
1005    const nsecs_t now = systemTime();
1006    mDebugInSwapBuffers = now;
1007
1008    HWComposer& hwc(getHwComposer());
1009    if (hwc.initCheck() == NO_ERROR) {
1010        if (!hwc.supportsFramebufferTarget()) {
1011            // EGL spec says:
1012            //   "surface must be bound to the calling thread's current context,
1013            //    for the current rendering API."
1014            DisplayDevice::makeCurrent(mEGLDisplay,
1015                    getDefaultDisplayDevice(), mEGLContext);
1016        }
1017        hwc.commit();
1018    }
1019
1020    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1021        sp<const DisplayDevice> hw(mDisplays[dpy]);
1022        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1023        hw->onSwapBuffersCompleted(hwc);
1024        const size_t count = currentLayers.size();
1025        int32_t id = hw->getHwcDisplayId();
1026        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1027            HWComposer::LayerListIterator cur = hwc.begin(id);
1028            const HWComposer::LayerListIterator end = hwc.end(id);
1029            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1030                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1031            }
1032        } else {
1033            for (size_t i = 0; i < count; i++) {
1034                currentLayers[i]->onLayerDisplayed(hw, NULL);
1035            }
1036        }
1037    }
1038
1039    mLastSwapBufferTime = systemTime() - now;
1040    mDebugInSwapBuffers = 0;
1041}
1042
1043void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1044{
1045    ATRACE_CALL();
1046
1047    Mutex::Autolock _l(mStateLock);
1048    const nsecs_t now = systemTime();
1049    mDebugInTransaction = now;
1050
1051    // Here we're guaranteed that some transaction flags are set
1052    // so we can call handleTransactionLocked() unconditionally.
1053    // We call getTransactionFlags(), which will also clear the flags,
1054    // with mStateLock held to guarantee that mCurrentState won't change
1055    // until the transaction is committed.
1056
1057    transactionFlags = getTransactionFlags(eTransactionMask);
1058    handleTransactionLocked(transactionFlags);
1059
1060    mLastTransactionTime = systemTime() - now;
1061    mDebugInTransaction = 0;
1062    invalidateHwcGeometry();
1063    // here the transaction has been committed
1064}
1065
1066void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1067{
1068    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1069    const size_t count = currentLayers.size();
1070
1071    /*
1072     * Traversal of the children
1073     * (perform the transaction for each of them if needed)
1074     */
1075
1076    if (transactionFlags & eTraversalNeeded) {
1077        for (size_t i=0 ; i<count ; i++) {
1078            const sp<LayerBase>& layer = currentLayers[i];
1079            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1080            if (!trFlags) continue;
1081
1082            const uint32_t flags = layer->doTransaction(0);
1083            if (flags & Layer::eVisibleRegion)
1084                mVisibleRegionsDirty = true;
1085        }
1086    }
1087
1088    /*
1089     * Perform display own transactions if needed
1090     */
1091
1092    if (transactionFlags & eDisplayTransactionNeeded) {
1093        // here we take advantage of Vector's copy-on-write semantics to
1094        // improve performance by skipping the transaction entirely when
1095        // know that the lists are identical
1096        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1097        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1098        if (!curr.isIdenticalTo(draw)) {
1099            mVisibleRegionsDirty = true;
1100            const size_t cc = curr.size();
1101                  size_t dc = draw.size();
1102
1103            // find the displays that were removed
1104            // (ie: in drawing state but not in current state)
1105            // also handle displays that changed
1106            // (ie: displays that are in both lists)
1107            for (size_t i=0 ; i<dc ; i++) {
1108                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1109                if (j < 0) {
1110                    // in drawing state but not in current state
1111                    if (!draw[i].isMainDisplay()) {
1112                        mDisplays.removeItem(draw.keyAt(i));
1113                    } else {
1114                        ALOGW("trying to remove the main display");
1115                    }
1116                } else {
1117                    // this display is in both lists. see if something changed.
1118                    const DisplayDeviceState& state(curr[j]);
1119                    const wp<IBinder>& display(curr.keyAt(j));
1120                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1121                        // changing the surface is like destroying and
1122                        // recreating the DisplayDevice, so we just remove it
1123                        // from the drawing state, so that it get re-added
1124                        // below.
1125                        mDisplays.removeItem(display);
1126                        mDrawingState.displays.removeItemsAt(i);
1127                        dc--; i--;
1128                        // at this point we must loop to the next item
1129                        continue;
1130                    }
1131
1132                    const sp<DisplayDevice>& disp(getDisplayDevice(display));
1133                    if (disp != NULL) {
1134                        if (state.layerStack != draw[i].layerStack) {
1135                            disp->setLayerStack(state.layerStack);
1136                        }
1137                        if ((state.orientation != draw[i].orientation)
1138                                || (state.viewport != draw[i].viewport)
1139                                || (state.frame != draw[i].frame))
1140                        {
1141                            disp->setProjection(state.orientation,
1142                                    state.viewport, state.frame);
1143                        }
1144
1145                        // Walk through all the layers in currentLayers,
1146                        // and update their transform hint.
1147                        //
1148                        // TODO: we could be much more clever about which
1149                        // layers we touch and how often we do these updates
1150                        // (e.g. only touch the layers associated with this
1151                        // display, and only on a rotation).
1152                        for (size_t i = 0; i < count; i++) {
1153                            const sp<LayerBase>& layerBase = currentLayers[i];
1154                            layerBase->updateTransformHint();
1155                        }
1156                    }
1157                }
1158            }
1159
1160            // find displays that were added
1161            // (ie: in current state but not in drawing state)
1162            for (size_t i=0 ; i<cc ; i++) {
1163                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1164                    const DisplayDeviceState& state(curr[i]);
1165
1166                    sp<FramebufferSurface> fbs;
1167                    sp<SurfaceTextureClient> stc;
1168                    if (!state.isVirtualDisplay()) {
1169
1170                        ALOGE_IF(state.surface!=NULL,
1171                                "adding a supported display, but rendering "
1172                                "surface is provided (%p), ignoring it",
1173                                state.surface.get());
1174
1175                        // for supported (by hwc) displays we provide our
1176                        // own rendering surface
1177                        fbs = new FramebufferSurface(*mHwc, state.type);
1178                        stc = new SurfaceTextureClient(
1179                                static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
1180                    } else {
1181                        if (state.surface != NULL) {
1182                            stc = new SurfaceTextureClient(state.surface);
1183                        }
1184                    }
1185
1186                    const wp<IBinder>& display(curr.keyAt(i));
1187                    if (stc != NULL) {
1188                        sp<DisplayDevice> hw = new DisplayDevice(this,
1189                                state.type, display, stc, fbs, mEGLConfig);
1190                        hw->setLayerStack(state.layerStack);
1191                        hw->setProjection(state.orientation,
1192                                state.viewport, state.frame);
1193                        hw->setDisplayName(state.displayName);
1194                        mDisplays.add(display, hw);
1195                        if (hw->getDisplayType() < DisplayDevice::NUM_DISPLAY_TYPES) {
1196                            // notify the system that this display is now up
1197                            // (note onScreenAcquired() is safe to call from
1198                            // here because we're in the main thread)
1199                            onScreenAcquired(hw);
1200                        }
1201                    }
1202                }
1203            }
1204        }
1205    }
1206
1207    /*
1208     * Perform our own transaction if needed
1209     */
1210
1211    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1212    if (currentLayers.size() > previousLayers.size()) {
1213        // layers have been added
1214        mVisibleRegionsDirty = true;
1215    }
1216
1217    // some layers might have been removed, so
1218    // we need to update the regions they're exposing.
1219    if (mLayersRemoved) {
1220        mLayersRemoved = false;
1221        mVisibleRegionsDirty = true;
1222        const size_t count = previousLayers.size();
1223        for (size_t i=0 ; i<count ; i++) {
1224            const sp<LayerBase>& layer(previousLayers[i]);
1225            if (currentLayers.indexOf(layer) < 0) {
1226                // this layer is not visible anymore
1227                // TODO: we could traverse the tree from front to back and
1228                //       compute the actual visible region
1229                // TODO: we could cache the transformed region
1230                const Layer::State& s(layer->drawingState());
1231                Region visibleReg = s.transform.transform(
1232                        Region(Rect(s.active.w, s.active.h)));
1233                invalidateLayerStack(s.layerStack, visibleReg);
1234            }
1235        }
1236    }
1237
1238    commitTransaction();
1239}
1240
1241void SurfaceFlinger::commitTransaction()
1242{
1243    if (!mLayersPendingRemoval.isEmpty()) {
1244        // Notify removed layers now that they can't be drawn from
1245        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1246            mLayersPendingRemoval[i]->onRemoved();
1247        }
1248        mLayersPendingRemoval.clear();
1249    }
1250
1251    mDrawingState = mCurrentState;
1252    mTransationPending = false;
1253    mTransactionCV.broadcast();
1254}
1255
1256void SurfaceFlinger::computeVisibleRegions(
1257        const LayerVector& currentLayers, uint32_t layerStack,
1258        Region& outDirtyRegion, Region& outOpaqueRegion)
1259{
1260    ATRACE_CALL();
1261
1262    Region aboveOpaqueLayers;
1263    Region aboveCoveredLayers;
1264    Region dirty;
1265
1266    outDirtyRegion.clear();
1267
1268    size_t i = currentLayers.size();
1269    while (i--) {
1270        const sp<LayerBase>& layer = currentLayers[i];
1271
1272        // start with the whole surface at its current location
1273        const Layer::State& s(layer->drawingState());
1274
1275        // only consider the layers on the given later stack
1276        if (s.layerStack != layerStack)
1277            continue;
1278
1279        /*
1280         * opaqueRegion: area of a surface that is fully opaque.
1281         */
1282        Region opaqueRegion;
1283
1284        /*
1285         * visibleRegion: area of a surface that is visible on screen
1286         * and not fully transparent. This is essentially the layer's
1287         * footprint minus the opaque regions above it.
1288         * Areas covered by a translucent surface are considered visible.
1289         */
1290        Region visibleRegion;
1291
1292        /*
1293         * coveredRegion: area of a surface that is covered by all
1294         * visible regions above it (which includes the translucent areas).
1295         */
1296        Region coveredRegion;
1297
1298        /*
1299         * transparentRegion: area of a surface that is hinted to be completely
1300         * transparent. This is only used to tell when the layer has no visible
1301         * non-transparent regions and can be removed from the layer list. It
1302         * does not affect the visibleRegion of this layer or any layers
1303         * beneath it. The hint may not be correct if apps don't respect the
1304         * SurfaceView restrictions (which, sadly, some don't).
1305         */
1306        Region transparentRegion;
1307
1308
1309        // handle hidden surfaces by setting the visible region to empty
1310        if (CC_LIKELY(layer->isVisible())) {
1311            const bool translucent = !layer->isOpaque();
1312            Rect bounds(layer->computeBounds());
1313            visibleRegion.set(bounds);
1314            if (!visibleRegion.isEmpty()) {
1315                // Remove the transparent area from the visible region
1316                if (translucent) {
1317                    const Transform tr(s.transform);
1318                    if (tr.transformed()) {
1319                        if (tr.preserveRects()) {
1320                            // transform the transparent region
1321                            transparentRegion = tr.transform(s.transparentRegion);
1322                        } else {
1323                            // transformation too complex, can't do the
1324                            // transparent region optimization.
1325                            transparentRegion.clear();
1326                        }
1327                    } else {
1328                        transparentRegion = s.transparentRegion;
1329                    }
1330                }
1331
1332                // compute the opaque region
1333                const int32_t layerOrientation = s.transform.getOrientation();
1334                if (s.alpha==255 && !translucent &&
1335                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1336                    // the opaque region is the layer's footprint
1337                    opaqueRegion = visibleRegion;
1338                }
1339            }
1340        }
1341
1342        // Clip the covered region to the visible region
1343        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1344
1345        // Update aboveCoveredLayers for next (lower) layer
1346        aboveCoveredLayers.orSelf(visibleRegion);
1347
1348        // subtract the opaque region covered by the layers above us
1349        visibleRegion.subtractSelf(aboveOpaqueLayers);
1350
1351        // compute this layer's dirty region
1352        if (layer->contentDirty) {
1353            // we need to invalidate the whole region
1354            dirty = visibleRegion;
1355            // as well, as the old visible region
1356            dirty.orSelf(layer->visibleRegion);
1357            layer->contentDirty = false;
1358        } else {
1359            /* compute the exposed region:
1360             *   the exposed region consists of two components:
1361             *   1) what's VISIBLE now and was COVERED before
1362             *   2) what's EXPOSED now less what was EXPOSED before
1363             *
1364             * note that (1) is conservative, we start with the whole
1365             * visible region but only keep what used to be covered by
1366             * something -- which mean it may have been exposed.
1367             *
1368             * (2) handles areas that were not covered by anything but got
1369             * exposed because of a resize.
1370             */
1371            const Region newExposed = visibleRegion - coveredRegion;
1372            const Region oldVisibleRegion = layer->visibleRegion;
1373            const Region oldCoveredRegion = layer->coveredRegion;
1374            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1375            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1376        }
1377        dirty.subtractSelf(aboveOpaqueLayers);
1378
1379        // accumulate to the screen dirty region
1380        outDirtyRegion.orSelf(dirty);
1381
1382        // Update aboveOpaqueLayers for next (lower) layer
1383        aboveOpaqueLayers.orSelf(opaqueRegion);
1384
1385        // Store the visible region in screen space
1386        layer->setVisibleRegion(visibleRegion);
1387        layer->setCoveredRegion(coveredRegion);
1388        layer->setVisibleNonTransparentRegion(
1389                visibleRegion.subtract(transparentRegion));
1390    }
1391
1392    outOpaqueRegion = aboveOpaqueLayers;
1393}
1394
1395void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1396        const Region& dirty) {
1397    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1398        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1399        if (hw->getLayerStack() == layerStack) {
1400            hw->dirtyRegion.orSelf(dirty);
1401        }
1402    }
1403}
1404
1405void SurfaceFlinger::handlePageFlip()
1406{
1407    Region dirtyRegion;
1408
1409    bool visibleRegions = false;
1410    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1411    const size_t count = currentLayers.size();
1412    for (size_t i=0 ; i<count ; i++) {
1413        const sp<LayerBase>& layer(currentLayers[i]);
1414        const Region dirty(layer->latchBuffer(visibleRegions));
1415        const Layer::State& s(layer->drawingState());
1416        invalidateLayerStack(s.layerStack, dirty);
1417    }
1418
1419    mVisibleRegionsDirty |= visibleRegions;
1420}
1421
1422void SurfaceFlinger::invalidateHwcGeometry()
1423{
1424    mHwWorkListDirty = true;
1425}
1426
1427
1428void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1429        const Region& inDirtyRegion)
1430{
1431    Region dirtyRegion(inDirtyRegion);
1432
1433    // compute the invalid region
1434    hw->swapRegion.orSelf(dirtyRegion);
1435
1436    uint32_t flags = hw->getFlags();
1437    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1438        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1439        // takes a rectangle, we must make sure to update that whole
1440        // rectangle in that case
1441        dirtyRegion.set(hw->swapRegion.bounds());
1442    } else {
1443        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1444            // We need to redraw the rectangle that will be updated
1445            // (pushed to the framebuffer).
1446            // This is needed because PARTIAL_UPDATES only takes one
1447            // rectangle instead of a region (see DisplayDevice::flip())
1448            dirtyRegion.set(hw->swapRegion.bounds());
1449        } else {
1450            // we need to redraw everything (the whole screen)
1451            dirtyRegion.set(hw->bounds());
1452            hw->swapRegion = dirtyRegion;
1453        }
1454    }
1455
1456    doComposeSurfaces(hw, dirtyRegion);
1457
1458    // update the swap region and clear the dirty region
1459    hw->swapRegion.orSelf(dirtyRegion);
1460
1461    // swap buffers (presentation)
1462    hw->swapBuffers(getHwComposer());
1463}
1464
1465void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1466{
1467    const int32_t id = hw->getHwcDisplayId();
1468    HWComposer& hwc(getHwComposer());
1469    HWComposer::LayerListIterator cur = hwc.begin(id);
1470    const HWComposer::LayerListIterator end = hwc.end(id);
1471
1472    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1473    if (hasGlesComposition) {
1474        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1475
1476        // set the frame buffer
1477        glMatrixMode(GL_MODELVIEW);
1478        glLoadIdentity();
1479
1480        // Never touch the framebuffer if we don't have any framebuffer layers
1481        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1482        if (hasHwcComposition) {
1483            // when using overlays, we assume a fully transparent framebuffer
1484            // NOTE: we could reduce how much we need to clear, for instance
1485            // remove where there are opaque FB layers. however, on some
1486            // GPUs doing a "clean slate" glClear might be more efficient.
1487            // We'll revisit later if needed.
1488            glClearColor(0, 0, 0, 0);
1489            glClear(GL_COLOR_BUFFER_BIT);
1490        } else {
1491            const Region region(hw->undefinedRegion.intersect(dirty));
1492            // screen is already cleared here
1493            if (!region.isEmpty()) {
1494                // can happen with SurfaceView
1495                drawWormhole(hw, region);
1496            }
1497        }
1498    }
1499
1500    /*
1501     * and then, render the layers targeted at the framebuffer
1502     */
1503
1504    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1505    const size_t count = layers.size();
1506    const Transform& tr = hw->getTransform();
1507    if (cur != end) {
1508        // we're using h/w composer
1509        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1510            const sp<LayerBase>& layer(layers[i]);
1511            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1512            if (!clip.isEmpty()) {
1513                switch (cur->getCompositionType()) {
1514                    case HWC_OVERLAY: {
1515                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1516                                && i
1517                                && layer->isOpaque()
1518                                && hasGlesComposition) {
1519                            // never clear the very first layer since we're
1520                            // guaranteed the FB is already cleared
1521                            layer->clearWithOpenGL(hw, clip);
1522                        }
1523                        break;
1524                    }
1525                    case HWC_FRAMEBUFFER: {
1526                        layer->draw(hw, clip);
1527                        break;
1528                    }
1529                    case HWC_FRAMEBUFFER_TARGET: {
1530                        // this should not happen as the iterator shouldn't
1531                        // let us get there.
1532                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1533                        break;
1534                    }
1535                }
1536            }
1537            layer->setAcquireFence(hw, *cur);
1538        }
1539    } else {
1540        // we're not using h/w composer
1541        for (size_t i=0 ; i<count ; ++i) {
1542            const sp<LayerBase>& layer(layers[i]);
1543            const Region clip(dirty.intersect(
1544                    tr.transform(layer->visibleRegion)));
1545            if (!clip.isEmpty()) {
1546                layer->draw(hw, clip);
1547            }
1548        }
1549    }
1550}
1551
1552void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1553        const Region& region) const
1554{
1555    glDisable(GL_TEXTURE_EXTERNAL_OES);
1556    glDisable(GL_TEXTURE_2D);
1557    glDisable(GL_BLEND);
1558    glColor4f(0,0,0,0);
1559
1560    const int32_t height = hw->getHeight();
1561    Region::const_iterator it = region.begin();
1562    Region::const_iterator const end = region.end();
1563    while (it != end) {
1564        const Rect& r = *it++;
1565        GLfloat vertices[][2] = {
1566                { r.left,  height - r.top },
1567                { r.left,  height - r.bottom },
1568                { r.right, height - r.bottom },
1569                { r.right, height - r.top }
1570        };
1571        glVertexPointer(2, GL_FLOAT, 0, vertices);
1572        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1573    }
1574}
1575
1576ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1577        const sp<LayerBaseClient>& lbc)
1578{
1579    // attach this layer to the client
1580    size_t name = client->attachLayer(lbc);
1581
1582    // add this layer to the current state list
1583    Mutex::Autolock _l(mStateLock);
1584    mCurrentState.layersSortedByZ.add(lbc);
1585
1586    return ssize_t(name);
1587}
1588
1589status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1590{
1591    Mutex::Autolock _l(mStateLock);
1592    status_t err = purgatorizeLayer_l(layer);
1593    if (err == NO_ERROR)
1594        setTransactionFlags(eTransactionNeeded);
1595    return err;
1596}
1597
1598status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1599{
1600    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1601    if (index >= 0) {
1602        mLayersRemoved = true;
1603        return NO_ERROR;
1604    }
1605    return status_t(index);
1606}
1607
1608status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1609{
1610    // First add the layer to the purgatory list, which makes sure it won't
1611    // go away, then remove it from the main list (through a transaction).
1612    ssize_t err = removeLayer_l(layerBase);
1613    if (err >= 0) {
1614        mLayerPurgatory.add(layerBase);
1615    }
1616
1617    mLayersPendingRemoval.push(layerBase);
1618
1619    // it's possible that we don't find a layer, because it might
1620    // have been destroyed already -- this is not technically an error
1621    // from the user because there is a race between Client::destroySurface(),
1622    // ~Client() and ~ISurface().
1623    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1624}
1625
1626uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1627{
1628    return android_atomic_release_load(&mTransactionFlags);
1629}
1630
1631uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1632{
1633    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1634}
1635
1636uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1637{
1638    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1639    if ((old & flags)==0) { // wake the server up
1640        signalTransaction();
1641    }
1642    return old;
1643}
1644
1645void SurfaceFlinger::setTransactionState(
1646        const Vector<ComposerState>& state,
1647        const Vector<DisplayState>& displays,
1648        uint32_t flags)
1649{
1650    Mutex::Autolock _l(mStateLock);
1651    uint32_t transactionFlags = 0;
1652
1653    size_t count = displays.size();
1654    for (size_t i=0 ; i<count ; i++) {
1655        const DisplayState& s(displays[i]);
1656        transactionFlags |= setDisplayStateLocked(s);
1657    }
1658
1659    count = state.size();
1660    for (size_t i=0 ; i<count ; i++) {
1661        const ComposerState& s(state[i]);
1662        sp<Client> client( static_cast<Client *>(s.client.get()) );
1663        transactionFlags |= setClientStateLocked(client, s.state);
1664    }
1665
1666    if (transactionFlags) {
1667        // this triggers the transaction
1668        setTransactionFlags(transactionFlags);
1669
1670        // if this is a synchronous transaction, wait for it to take effect
1671        // before returning.
1672        if (flags & eSynchronous) {
1673            mTransationPending = true;
1674        }
1675        while (mTransationPending) {
1676            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1677            if (CC_UNLIKELY(err != NO_ERROR)) {
1678                // just in case something goes wrong in SF, return to the
1679                // called after a few seconds.
1680                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1681                mTransationPending = false;
1682                break;
1683            }
1684        }
1685    }
1686}
1687
1688uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1689{
1690    uint32_t flags = 0;
1691    DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1692    if (disp.isValid()) {
1693        const uint32_t what = s.what;
1694        if (what & DisplayState::eSurfaceChanged) {
1695            if (disp.surface->asBinder() != s.surface->asBinder()) {
1696                disp.surface = s.surface;
1697                flags |= eDisplayTransactionNeeded;
1698            }
1699        }
1700        if (what & DisplayState::eLayerStackChanged) {
1701            if (disp.layerStack != s.layerStack) {
1702                disp.layerStack = s.layerStack;
1703                flags |= eDisplayTransactionNeeded;
1704            }
1705        }
1706        if (what & DisplayState::eDisplayProjectionChanged) {
1707            if (disp.orientation != s.orientation) {
1708                disp.orientation = s.orientation;
1709                flags |= eDisplayTransactionNeeded;
1710            }
1711            if (disp.frame != s.frame) {
1712                disp.frame = s.frame;
1713                flags |= eDisplayTransactionNeeded;
1714            }
1715            if (disp.viewport != s.viewport) {
1716                disp.viewport = s.viewport;
1717                flags |= eDisplayTransactionNeeded;
1718            }
1719        }
1720    }
1721    return flags;
1722}
1723
1724uint32_t SurfaceFlinger::setClientStateLocked(
1725        const sp<Client>& client,
1726        const layer_state_t& s)
1727{
1728    uint32_t flags = 0;
1729    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1730    if (layer != 0) {
1731        const uint32_t what = s.what;
1732        if (what & layer_state_t::ePositionChanged) {
1733            if (layer->setPosition(s.x, s.y))
1734                flags |= eTraversalNeeded;
1735        }
1736        if (what & layer_state_t::eLayerChanged) {
1737            // NOTE: index needs to be calculated before we update the state
1738            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1739            if (layer->setLayer(s.z)) {
1740                mCurrentState.layersSortedByZ.removeAt(idx);
1741                mCurrentState.layersSortedByZ.add(layer);
1742                // we need traversal (state changed)
1743                // AND transaction (list changed)
1744                flags |= eTransactionNeeded|eTraversalNeeded;
1745            }
1746        }
1747        if (what & layer_state_t::eSizeChanged) {
1748            if (layer->setSize(s.w, s.h)) {
1749                flags |= eTraversalNeeded;
1750            }
1751        }
1752        if (what & layer_state_t::eAlphaChanged) {
1753            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1754                flags |= eTraversalNeeded;
1755        }
1756        if (what & layer_state_t::eMatrixChanged) {
1757            if (layer->setMatrix(s.matrix))
1758                flags |= eTraversalNeeded;
1759        }
1760        if (what & layer_state_t::eTransparentRegionChanged) {
1761            if (layer->setTransparentRegionHint(s.transparentRegion))
1762                flags |= eTraversalNeeded;
1763        }
1764        if (what & layer_state_t::eVisibilityChanged) {
1765            if (layer->setFlags(s.flags, s.mask))
1766                flags |= eTraversalNeeded;
1767        }
1768        if (what & layer_state_t::eCropChanged) {
1769            if (layer->setCrop(s.crop))
1770                flags |= eTraversalNeeded;
1771        }
1772        if (what & layer_state_t::eLayerStackChanged) {
1773            // NOTE: index needs to be calculated before we update the state
1774            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1775            if (layer->setLayerStack(s.layerStack)) {
1776                mCurrentState.layersSortedByZ.removeAt(idx);
1777                mCurrentState.layersSortedByZ.add(layer);
1778                // we need traversal (state changed)
1779                // AND transaction (list changed)
1780                flags |= eTransactionNeeded|eTraversalNeeded;
1781            }
1782        }
1783    }
1784    return flags;
1785}
1786
1787sp<ISurface> SurfaceFlinger::createLayer(
1788        ISurfaceComposerClient::surface_data_t* params,
1789        const String8& name,
1790        const sp<Client>& client,
1791       uint32_t w, uint32_t h, PixelFormat format,
1792        uint32_t flags)
1793{
1794    sp<LayerBaseClient> layer;
1795    sp<ISurface> surfaceHandle;
1796
1797    if (int32_t(w|h) < 0) {
1798        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1799                int(w), int(h));
1800        return surfaceHandle;
1801    }
1802
1803    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1804    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1805        case ISurfaceComposerClient::eFXSurfaceNormal:
1806            layer = createNormalLayer(client, w, h, flags, format);
1807            break;
1808        case ISurfaceComposerClient::eFXSurfaceBlur:
1809        case ISurfaceComposerClient::eFXSurfaceDim:
1810            layer = createDimLayer(client, w, h, flags);
1811            break;
1812        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1813            layer = createScreenshotLayer(client, w, h, flags);
1814            break;
1815    }
1816
1817    if (layer != 0) {
1818        layer->initStates(w, h, flags);
1819        layer->setName(name);
1820        ssize_t token = addClientLayer(client, layer);
1821        surfaceHandle = layer->getSurface();
1822        if (surfaceHandle != 0) {
1823            params->token = token;
1824            params->identity = layer->getIdentity();
1825        }
1826        setTransactionFlags(eTransactionNeeded);
1827    }
1828
1829    return surfaceHandle;
1830}
1831
1832sp<Layer> SurfaceFlinger::createNormalLayer(
1833        const sp<Client>& client,
1834        uint32_t w, uint32_t h, uint32_t flags,
1835        PixelFormat& format)
1836{
1837    // initialize the surfaces
1838    switch (format) {
1839    case PIXEL_FORMAT_TRANSPARENT:
1840    case PIXEL_FORMAT_TRANSLUCENT:
1841        format = PIXEL_FORMAT_RGBA_8888;
1842        break;
1843    case PIXEL_FORMAT_OPAQUE:
1844#ifdef NO_RGBX_8888
1845        format = PIXEL_FORMAT_RGB_565;
1846#else
1847        format = PIXEL_FORMAT_RGBX_8888;
1848#endif
1849        break;
1850    }
1851
1852#ifdef NO_RGBX_8888
1853    if (format == PIXEL_FORMAT_RGBX_8888)
1854        format = PIXEL_FORMAT_RGBA_8888;
1855#endif
1856
1857    sp<Layer> layer = new Layer(this, client);
1858    status_t err = layer->setBuffers(w, h, format, flags);
1859    if (CC_LIKELY(err != NO_ERROR)) {
1860        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1861        layer.clear();
1862    }
1863    return layer;
1864}
1865
1866sp<LayerDim> SurfaceFlinger::createDimLayer(
1867        const sp<Client>& client,
1868        uint32_t w, uint32_t h, uint32_t flags)
1869{
1870    sp<LayerDim> layer = new LayerDim(this, client);
1871    return layer;
1872}
1873
1874sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1875        const sp<Client>& client,
1876        uint32_t w, uint32_t h, uint32_t flags)
1877{
1878    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1879    return layer;
1880}
1881
1882status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1883{
1884    /*
1885     * called by the window manager, when a surface should be marked for
1886     * destruction.
1887     *
1888     * The surface is removed from the current and drawing lists, but placed
1889     * in the purgatory queue, so it's not destroyed right-away (we need
1890     * to wait for all client's references to go away first).
1891     */
1892
1893    status_t err = NAME_NOT_FOUND;
1894    Mutex::Autolock _l(mStateLock);
1895    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1896
1897    if (layer != 0) {
1898        err = purgatorizeLayer_l(layer);
1899        if (err == NO_ERROR) {
1900            setTransactionFlags(eTransactionNeeded);
1901        }
1902    }
1903    return err;
1904}
1905
1906status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1907{
1908    // called by ~ISurface() when all references are gone
1909    status_t err = NO_ERROR;
1910    sp<LayerBaseClient> l(layer.promote());
1911    if (l != NULL) {
1912        Mutex::Autolock _l(mStateLock);
1913        err = removeLayer_l(l);
1914        if (err == NAME_NOT_FOUND) {
1915            // The surface wasn't in the current list, which means it was
1916            // removed already, which means it is in the purgatory,
1917            // and need to be removed from there.
1918            ssize_t idx = mLayerPurgatory.remove(l);
1919            ALOGE_IF(idx < 0,
1920                    "layer=%p is not in the purgatory list", l.get());
1921        }
1922        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1923                "error removing layer=%p (%s)", l.get(), strerror(-err));
1924    }
1925    return err;
1926}
1927
1928// ---------------------------------------------------------------------------
1929
1930void SurfaceFlinger::onInitializeDisplays() {
1931    // reset screen orientation
1932    Vector<ComposerState> state;
1933    Vector<DisplayState> displays;
1934    DisplayState d;
1935    d.what = DisplayState::eDisplayProjectionChanged;
1936    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1937    d.orientation = DisplayState::eOrientationDefault;
1938    d.frame.makeInvalid();
1939    d.viewport.makeInvalid();
1940    displays.add(d);
1941    setTransactionState(state, displays, 0);
1942    onScreenAcquired(getDefaultDisplayDevice());
1943}
1944
1945void SurfaceFlinger::initializeDisplays() {
1946    class MessageScreenInitialized : public MessageBase {
1947        SurfaceFlinger* flinger;
1948    public:
1949        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1950        virtual bool handler() {
1951            flinger->onInitializeDisplays();
1952            return true;
1953        }
1954    };
1955    sp<MessageBase> msg = new MessageScreenInitialized(this);
1956    postMessageAsync(msg);  // we may be called from main thread, use async message
1957}
1958
1959
1960void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
1961    ALOGD("Screen about to return, flinger = %p", this);
1962    getHwComposer().acquire();
1963    hw->acquireScreen();
1964    if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1965        // FIXME: eventthread only knows about the main display right now
1966        mEventThread->onScreenAcquired();
1967    }
1968    mVisibleRegionsDirty = true;
1969    repaintEverything();
1970}
1971
1972void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
1973    ALOGD("About to give-up screen, flinger = %p", this);
1974    if (hw->isScreenAcquired()) {
1975        if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1976            // FIXME: eventthread only knows about the main display right now
1977            mEventThread->onScreenReleased();
1978        }
1979        hw->releaseScreen();
1980        getHwComposer().release();
1981        mVisibleRegionsDirty = true;
1982        // from this point on, SF will stop drawing
1983    }
1984}
1985
1986void SurfaceFlinger::unblank() {
1987    class MessageScreenAcquired : public MessageBase {
1988        SurfaceFlinger* flinger;
1989    public:
1990        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1991        virtual bool handler() {
1992            // FIXME: should this be per-display?
1993            flinger->onScreenAcquired(flinger->getDefaultDisplayDevice());
1994            return true;
1995        }
1996    };
1997    sp<MessageBase> msg = new MessageScreenAcquired(this);
1998    postMessageSync(msg);
1999}
2000
2001void SurfaceFlinger::blank() {
2002    class MessageScreenReleased : public MessageBase {
2003        SurfaceFlinger* flinger;
2004    public:
2005        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
2006        virtual bool handler() {
2007            // FIXME: should this be per-display?
2008            flinger->onScreenReleased(flinger->getDefaultDisplayDevice());
2009            return true;
2010        }
2011    };
2012    sp<MessageBase> msg = new MessageScreenReleased(this);
2013    postMessageSync(msg);
2014}
2015
2016// ---------------------------------------------------------------------------
2017
2018status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2019{
2020    const size_t SIZE = 4096;
2021    char buffer[SIZE];
2022    String8 result;
2023
2024    if (!PermissionCache::checkCallingPermission(sDump)) {
2025        snprintf(buffer, SIZE, "Permission Denial: "
2026                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2027                IPCThreadState::self()->getCallingPid(),
2028                IPCThreadState::self()->getCallingUid());
2029        result.append(buffer);
2030    } else {
2031        // Try to get the main lock, but don't insist if we can't
2032        // (this would indicate SF is stuck, but we want to be able to
2033        // print something in dumpsys).
2034        int retry = 3;
2035        while (mStateLock.tryLock()<0 && --retry>=0) {
2036            usleep(1000000);
2037        }
2038        const bool locked(retry >= 0);
2039        if (!locked) {
2040            snprintf(buffer, SIZE,
2041                    "SurfaceFlinger appears to be unresponsive, "
2042                    "dumping anyways (no locks held)\n");
2043            result.append(buffer);
2044        }
2045
2046        bool dumpAll = true;
2047        size_t index = 0;
2048        size_t numArgs = args.size();
2049        if (numArgs) {
2050            if ((index < numArgs) &&
2051                    (args[index] == String16("--list"))) {
2052                index++;
2053                listLayersLocked(args, index, result, buffer, SIZE);
2054                dumpAll = false;
2055            }
2056
2057            if ((index < numArgs) &&
2058                    (args[index] == String16("--latency"))) {
2059                index++;
2060                dumpStatsLocked(args, index, result, buffer, SIZE);
2061                dumpAll = false;
2062            }
2063
2064            if ((index < numArgs) &&
2065                    (args[index] == String16("--latency-clear"))) {
2066                index++;
2067                clearStatsLocked(args, index, result, buffer, SIZE);
2068                dumpAll = false;
2069            }
2070        }
2071
2072        if (dumpAll) {
2073            dumpAllLocked(result, buffer, SIZE);
2074        }
2075
2076        if (locked) {
2077            mStateLock.unlock();
2078        }
2079    }
2080    write(fd, result.string(), result.size());
2081    return NO_ERROR;
2082}
2083
2084void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2085        String8& result, char* buffer, size_t SIZE) const
2086{
2087    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2088    const size_t count = currentLayers.size();
2089    for (size_t i=0 ; i<count ; i++) {
2090        const sp<LayerBase>& layer(currentLayers[i]);
2091        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2092        result.append(buffer);
2093    }
2094}
2095
2096void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2097        String8& result, char* buffer, size_t SIZE) const
2098{
2099    String8 name;
2100    if (index < args.size()) {
2101        name = String8(args[index]);
2102        index++;
2103    }
2104
2105    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2106    const size_t count = currentLayers.size();
2107    for (size_t i=0 ; i<count ; i++) {
2108        const sp<LayerBase>& layer(currentLayers[i]);
2109        if (name.isEmpty()) {
2110            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2111            result.append(buffer);
2112        }
2113        if (name.isEmpty() || (name == layer->getName())) {
2114            layer->dumpStats(result, buffer, SIZE);
2115        }
2116    }
2117}
2118
2119void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2120        String8& result, char* buffer, size_t SIZE) const
2121{
2122    String8 name;
2123    if (index < args.size()) {
2124        name = String8(args[index]);
2125        index++;
2126    }
2127
2128    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2129    const size_t count = currentLayers.size();
2130    for (size_t i=0 ; i<count ; i++) {
2131        const sp<LayerBase>& layer(currentLayers[i]);
2132        if (name.isEmpty() || (name == layer->getName())) {
2133            layer->clearStats();
2134        }
2135    }
2136}
2137
2138/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2139{
2140    static const char* config =
2141            " [sf"
2142#ifdef NO_RGBX_8888
2143            " NO_RGBX_8888"
2144#endif
2145#ifdef HAS_CONTEXT_PRIORITY
2146            " HAS_CONTEXT_PRIORITY"
2147#endif
2148#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2149            " NEVER_DEFAULT_TO_ASYNC_MODE"
2150#endif
2151#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2152            " TARGET_DISABLE_TRIPLE_BUFFERING"
2153#endif
2154            "]";
2155    result.append(config);
2156}
2157
2158void SurfaceFlinger::dumpAllLocked(
2159        String8& result, char* buffer, size_t SIZE) const
2160{
2161    // figure out if we're stuck somewhere
2162    const nsecs_t now = systemTime();
2163    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2164    const nsecs_t inTransaction(mDebugInTransaction);
2165    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2166    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2167
2168    /*
2169     * Dump library configuration.
2170     */
2171    result.append("Build configuration:");
2172    appendSfConfigString(result);
2173    appendUiConfigString(result);
2174    appendGuiConfigString(result);
2175    result.append("\n");
2176
2177    /*
2178     * Dump the visible layer list
2179     */
2180    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2181    const size_t count = currentLayers.size();
2182    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2183    result.append(buffer);
2184    for (size_t i=0 ; i<count ; i++) {
2185        const sp<LayerBase>& layer(currentLayers[i]);
2186        layer->dump(result, buffer, SIZE);
2187    }
2188
2189    /*
2190     * Dump the layers in the purgatory
2191     */
2192
2193    const size_t purgatorySize = mLayerPurgatory.size();
2194    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2195    result.append(buffer);
2196    for (size_t i=0 ; i<purgatorySize ; i++) {
2197        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2198        layer->shortDump(result, buffer, SIZE);
2199    }
2200
2201    /*
2202     * Dump Display state
2203     */
2204
2205    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2206    result.append(buffer);
2207    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2208        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2209        hw->dump(result, buffer, SIZE);
2210    }
2211
2212    /*
2213     * Dump SurfaceFlinger global state
2214     */
2215
2216    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2217    result.append(buffer);
2218
2219    HWComposer& hwc(getHwComposer());
2220    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2221    const GLExtensions& extensions(GLExtensions::getInstance());
2222    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2223            extensions.getVendor(),
2224            extensions.getRenderer(),
2225            extensions.getVersion());
2226    result.append(buffer);
2227
2228    snprintf(buffer, SIZE, "EGL : %s\n",
2229            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2230    result.append(buffer);
2231
2232    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2233    result.append(buffer);
2234
2235    hw->undefinedRegion.dump(result, "undefinedRegion");
2236    snprintf(buffer, SIZE,
2237            "  orientation=%d, canDraw=%d\n",
2238            hw->getOrientation(), hw->canDraw());
2239    result.append(buffer);
2240    snprintf(buffer, SIZE,
2241            "  last eglSwapBuffers() time: %f us\n"
2242            "  last transaction time     : %f us\n"
2243            "  transaction-flags         : %08x\n"
2244            "  refresh-rate              : %f fps\n"
2245            "  x-dpi                     : %f\n"
2246            "  y-dpi                     : %f\n",
2247            mLastSwapBufferTime/1000.0,
2248            mLastTransactionTime/1000.0,
2249            mTransactionFlags,
2250            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2251            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2252            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2253    result.append(buffer);
2254
2255    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2256            inSwapBuffersDuration/1000.0);
2257    result.append(buffer);
2258
2259    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2260            inTransactionDuration/1000.0);
2261    result.append(buffer);
2262
2263    /*
2264     * VSYNC state
2265     */
2266    mEventThread->dump(result, buffer, SIZE);
2267
2268    /*
2269     * Dump HWComposer state
2270     */
2271    snprintf(buffer, SIZE, "h/w composer state:\n");
2272    result.append(buffer);
2273    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2274            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2275                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2276    result.append(buffer);
2277    hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2278
2279    /*
2280     * Dump gralloc state
2281     */
2282    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2283    alloc.dump(result);
2284}
2285
2286bool SurfaceFlinger::startDdmConnection()
2287{
2288    void* libddmconnection_dso =
2289            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2290    if (!libddmconnection_dso) {
2291        return false;
2292    }
2293    void (*DdmConnection_start)(const char* name);
2294    DdmConnection_start =
2295            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2296    if (!DdmConnection_start) {
2297        dlclose(libddmconnection_dso);
2298        return false;
2299    }
2300    (*DdmConnection_start)(getServiceName());
2301    return true;
2302}
2303
2304status_t SurfaceFlinger::onTransact(
2305    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2306{
2307    switch (code) {
2308        case CREATE_CONNECTION:
2309        case SET_TRANSACTION_STATE:
2310        case BOOT_FINISHED:
2311        case BLANK:
2312        case UNBLANK:
2313        {
2314            // codes that require permission check
2315            IPCThreadState* ipc = IPCThreadState::self();
2316            const int pid = ipc->getCallingPid();
2317            const int uid = ipc->getCallingUid();
2318            if ((uid != AID_GRAPHICS) &&
2319                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2320                ALOGE("Permission Denial: "
2321                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2322                return PERMISSION_DENIED;
2323            }
2324            break;
2325        }
2326        case CAPTURE_SCREEN:
2327        {
2328            // codes that require permission check
2329            IPCThreadState* ipc = IPCThreadState::self();
2330            const int pid = ipc->getCallingPid();
2331            const int uid = ipc->getCallingUid();
2332            if ((uid != AID_GRAPHICS) &&
2333                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2334                ALOGE("Permission Denial: "
2335                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2336                return PERMISSION_DENIED;
2337            }
2338            break;
2339        }
2340    }
2341
2342    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2343    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2344        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2345        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2346            IPCThreadState* ipc = IPCThreadState::self();
2347            const int pid = ipc->getCallingPid();
2348            const int uid = ipc->getCallingUid();
2349            ALOGE("Permission Denial: "
2350                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2351            return PERMISSION_DENIED;
2352        }
2353        int n;
2354        switch (code) {
2355            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2356            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2357                return NO_ERROR;
2358            case 1002:  // SHOW_UPDATES
2359                n = data.readInt32();
2360                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2361                invalidateHwcGeometry();
2362                repaintEverything();
2363                return NO_ERROR;
2364            case 1004:{ // repaint everything
2365                repaintEverything();
2366                return NO_ERROR;
2367            }
2368            case 1005:{ // force transaction
2369                setTransactionFlags(
2370                        eTransactionNeeded|
2371                        eDisplayTransactionNeeded|
2372                        eTraversalNeeded);
2373                return NO_ERROR;
2374            }
2375            case 1006:{ // send empty update
2376                signalRefresh();
2377                return NO_ERROR;
2378            }
2379            case 1008:  // toggle use of hw composer
2380                n = data.readInt32();
2381                mDebugDisableHWC = n ? 1 : 0;
2382                invalidateHwcGeometry();
2383                repaintEverything();
2384                return NO_ERROR;
2385            case 1009:  // toggle use of transform hint
2386                n = data.readInt32();
2387                mDebugDisableTransformHint = n ? 1 : 0;
2388                invalidateHwcGeometry();
2389                repaintEverything();
2390                return NO_ERROR;
2391            case 1010:  // interrogate.
2392                reply->writeInt32(0);
2393                reply->writeInt32(0);
2394                reply->writeInt32(mDebugRegion);
2395                reply->writeInt32(0);
2396                reply->writeInt32(mDebugDisableHWC);
2397                return NO_ERROR;
2398            case 1013: {
2399                Mutex::Autolock _l(mStateLock);
2400                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2401                reply->writeInt32(hw->getPageFlipCount());
2402            }
2403            return NO_ERROR;
2404        }
2405    }
2406    return err;
2407}
2408
2409void SurfaceFlinger::repaintEverything() {
2410    android_atomic_or(1, &mRepaintEverything);
2411    signalTransaction();
2412}
2413
2414// ---------------------------------------------------------------------------
2415
2416status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2417        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2418{
2419    Mutex::Autolock _l(mStateLock);
2420    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2421}
2422
2423status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2424        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2425{
2426    ATRACE_CALL();
2427
2428    if (!GLExtensions::getInstance().haveFramebufferObject())
2429        return INVALID_OPERATION;
2430
2431    // get screen geometry
2432    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2433    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2434    const uint32_t hw_w = hw->getWidth();
2435    const uint32_t hw_h = hw->getHeight();
2436    GLfloat u = 1;
2437    GLfloat v = 1;
2438
2439    // make sure to clear all GL error flags
2440    while ( glGetError() != GL_NO_ERROR ) ;
2441
2442    // create a FBO
2443    GLuint name, tname;
2444    glGenTextures(1, &tname);
2445    glBindTexture(GL_TEXTURE_2D, tname);
2446    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2447    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2448    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2449            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2450    if (glGetError() != GL_NO_ERROR) {
2451        while ( glGetError() != GL_NO_ERROR ) ;
2452        GLint tw = (2 << (31 - clz(hw_w)));
2453        GLint th = (2 << (31 - clz(hw_h)));
2454        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2455                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2456        u = GLfloat(hw_w) / tw;
2457        v = GLfloat(hw_h) / th;
2458    }
2459    glGenFramebuffersOES(1, &name);
2460    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2461    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2462            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2463
2464    // redraw the screen entirely...
2465    glDisable(GL_TEXTURE_EXTERNAL_OES);
2466    glDisable(GL_TEXTURE_2D);
2467    glClearColor(0,0,0,1);
2468    glClear(GL_COLOR_BUFFER_BIT);
2469    glMatrixMode(GL_MODELVIEW);
2470    glLoadIdentity();
2471    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2472    const size_t count = layers.size();
2473    for (size_t i=0 ; i<count ; ++i) {
2474        const sp<LayerBase>& layer(layers[i]);
2475        layer->draw(hw);
2476    }
2477
2478    hw->compositionComplete();
2479
2480    // back to main framebuffer
2481    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2482    glDeleteFramebuffersOES(1, &name);
2483
2484    *textureName = tname;
2485    *uOut = u;
2486    *vOut = v;
2487    return NO_ERROR;
2488}
2489
2490// ---------------------------------------------------------------------------
2491
2492status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2493        sp<IMemoryHeap>* heap,
2494        uint32_t* w, uint32_t* h, PixelFormat* f,
2495        uint32_t sw, uint32_t sh,
2496        uint32_t minLayerZ, uint32_t maxLayerZ)
2497{
2498    ATRACE_CALL();
2499
2500    status_t result = PERMISSION_DENIED;
2501
2502    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2503        return INVALID_OPERATION;
2504    }
2505
2506    // get screen geometry
2507    sp<const DisplayDevice> hw(getDisplayDevice(display));
2508    const uint32_t hw_w = hw->getWidth();
2509    const uint32_t hw_h = hw->getHeight();
2510
2511    // if we have secure windows on this display, never allow the screen capture
2512    if (hw->getSecureLayerVisible()) {
2513        ALOGW("FB is protected: PERMISSION_DENIED");
2514        return PERMISSION_DENIED;
2515    }
2516
2517    if ((sw > hw_w) || (sh > hw_h)) {
2518        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2519        return BAD_VALUE;
2520    }
2521
2522    sw = (!sw) ? hw_w : sw;
2523    sh = (!sh) ? hw_h : sh;
2524    const size_t size = sw * sh * 4;
2525    const bool filtering = sw != hw_w || sh != hw_h;
2526
2527//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2528//            sw, sh, minLayerZ, maxLayerZ);
2529
2530    // make sure to clear all GL error flags
2531    while ( glGetError() != GL_NO_ERROR ) ;
2532
2533    // create a FBO
2534    GLuint name, tname;
2535    glGenRenderbuffersOES(1, &tname);
2536    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2537    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2538
2539    glGenFramebuffersOES(1, &name);
2540    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2541    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2542            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2543
2544    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2545
2546    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2547
2548        // invert everything, b/c glReadPixel() below will invert the FB
2549        glViewport(0, 0, sw, sh);
2550        glMatrixMode(GL_PROJECTION);
2551        glPushMatrix();
2552        glLoadIdentity();
2553        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2554        glMatrixMode(GL_MODELVIEW);
2555
2556        // redraw the screen entirely...
2557        glClearColor(0,0,0,1);
2558        glClear(GL_COLOR_BUFFER_BIT);
2559
2560        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2561        const size_t count = layers.size();
2562        for (size_t i=0 ; i<count ; ++i) {
2563            const sp<LayerBase>& layer(layers[i]);
2564            const uint32_t z = layer->drawingState().z;
2565            if (z >= minLayerZ && z <= maxLayerZ) {
2566                if (filtering) layer->setFiltering(true);
2567                layer->draw(hw);
2568                if (filtering) layer->setFiltering(false);
2569            }
2570        }
2571
2572        // check for errors and return screen capture
2573        if (glGetError() != GL_NO_ERROR) {
2574            // error while rendering
2575            result = INVALID_OPERATION;
2576        } else {
2577            // allocate shared memory large enough to hold the
2578            // screen capture
2579            sp<MemoryHeapBase> base(
2580                    new MemoryHeapBase(size, 0, "screen-capture") );
2581            void* const ptr = base->getBase();
2582            if (ptr != MAP_FAILED) {
2583                // capture the screen with glReadPixels()
2584                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2585                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2586                if (glGetError() == GL_NO_ERROR) {
2587                    *heap = base;
2588                    *w = sw;
2589                    *h = sh;
2590                    *f = PIXEL_FORMAT_RGBA_8888;
2591                    result = NO_ERROR;
2592                }
2593            } else {
2594                result = NO_MEMORY;
2595            }
2596        }
2597        glViewport(0, 0, hw_w, hw_h);
2598        glMatrixMode(GL_PROJECTION);
2599        glPopMatrix();
2600        glMatrixMode(GL_MODELVIEW);
2601    } else {
2602        result = BAD_VALUE;
2603    }
2604
2605    // release FBO resources
2606    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2607    glDeleteRenderbuffersOES(1, &tname);
2608    glDeleteFramebuffersOES(1, &name);
2609
2610    hw->compositionComplete();
2611
2612//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2613
2614    return result;
2615}
2616
2617
2618status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2619        sp<IMemoryHeap>* heap,
2620        uint32_t* width, uint32_t* height, PixelFormat* format,
2621        uint32_t sw, uint32_t sh,
2622        uint32_t minLayerZ, uint32_t maxLayerZ)
2623{
2624    if (CC_UNLIKELY(display == 0))
2625        return BAD_VALUE;
2626
2627    if (!GLExtensions::getInstance().haveFramebufferObject())
2628        return INVALID_OPERATION;
2629
2630    class MessageCaptureScreen : public MessageBase {
2631        SurfaceFlinger* flinger;
2632        sp<IBinder> display;
2633        sp<IMemoryHeap>* heap;
2634        uint32_t* w;
2635        uint32_t* h;
2636        PixelFormat* f;
2637        uint32_t sw;
2638        uint32_t sh;
2639        uint32_t minLayerZ;
2640        uint32_t maxLayerZ;
2641        status_t result;
2642    public:
2643        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2644                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2645                uint32_t sw, uint32_t sh,
2646                uint32_t minLayerZ, uint32_t maxLayerZ)
2647            : flinger(flinger), display(display),
2648              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2649              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2650              result(PERMISSION_DENIED)
2651        {
2652        }
2653        status_t getResult() const {
2654            return result;
2655        }
2656        virtual bool handler() {
2657            Mutex::Autolock _l(flinger->mStateLock);
2658            result = flinger->captureScreenImplLocked(display,
2659                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2660            return true;
2661        }
2662    };
2663
2664    sp<MessageBase> msg = new MessageCaptureScreen(this,
2665            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2666    status_t res = postMessageSync(msg);
2667    if (res == NO_ERROR) {
2668        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2669    }
2670    return res;
2671}
2672
2673// ---------------------------------------------------------------------------
2674
2675SurfaceFlinger::LayerVector::LayerVector() {
2676}
2677
2678SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2679    : SortedVector<sp<LayerBase> >(rhs) {
2680}
2681
2682int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2683    const void* rhs) const
2684{
2685    // sort layers per layer-stack, then by z-order and finally by sequence
2686    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2687    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2688
2689    uint32_t ls = l->currentState().layerStack;
2690    uint32_t rs = r->currentState().layerStack;
2691    if (ls != rs)
2692        return ls - rs;
2693
2694    uint32_t lz = l->currentState().z;
2695    uint32_t rz = r->currentState().z;
2696    if (lz != rz)
2697        return lz - rz;
2698
2699    return l->sequence - r->sequence;
2700}
2701
2702// ---------------------------------------------------------------------------
2703
2704SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2705    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2706}
2707
2708SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2709    : type(type), layerStack(0), orientation(0) {
2710    viewport.makeInvalid();
2711    frame.makeInvalid();
2712}
2713
2714// ---------------------------------------------------------------------------
2715
2716}; // namespace android
2717