SurfaceFlinger.cpp revision b0d1dd36f104c0b581674adc7f830cbf44b7db06
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/IDisplayEventConnection.h>
41#include <gui/SurfaceTextureClient.h>
42
43#include <ui/GraphicBufferAllocator.h>
44#include <ui/PixelFormat.h>
45
46#include <utils/String8.h>
47#include <utils/String16.h>
48#include <utils/StopWatch.h>
49#include <utils/Trace.h>
50
51#include <private/android_filesystem_config.h>
52
53#include "clz.h"
54#include "DdmConnection.h"
55#include "DisplayDevice.h"
56#include "Client.h"
57#include "EventThread.h"
58#include "GLExtensions.h"
59#include "Layer.h"
60#include "LayerDim.h"
61#include "LayerScreenshot.h"
62#include "SurfaceFlinger.h"
63
64#include "DisplayHardware/FramebufferSurface.h"
65#include "DisplayHardware/HWComposer.h"
66
67
68#define EGL_VERSION_HW_ANDROID  0x3143
69
70#define DISPLAY_COUNT       1
71
72namespace android {
73// ---------------------------------------------------------------------------
74
75const String16 sHardwareTest("android.permission.HARDWARE_TEST");
76const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
77const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
78const String16 sDump("android.permission.DUMP");
79
80// ---------------------------------------------------------------------------
81
82SurfaceFlinger::SurfaceFlinger()
83    :   BnSurfaceComposer(), Thread(false),
84        mTransactionFlags(0),
85        mTransationPending(false),
86        mLayersRemoved(false),
87        mRepaintEverything(0),
88        mBootTime(systemTime()),
89        mVisibleRegionsDirty(false),
90        mHwWorkListDirty(false),
91        mDebugRegion(0),
92        mDebugDDMS(0),
93        mDebugDisableHWC(0),
94        mDebugDisableTransformHint(0),
95        mDebugInSwapBuffers(0),
96        mLastSwapBufferTime(0),
97        mDebugInTransaction(0),
98        mLastTransactionTime(0),
99        mBootFinished(false)
100{
101    ALOGI("SurfaceFlinger is starting");
102
103    // debugging stuff...
104    char value[PROPERTY_VALUE_MAX];
105
106    property_get("debug.sf.showupdates", value, "0");
107    mDebugRegion = atoi(value);
108
109    property_get("debug.sf.ddms", value, "0");
110    mDebugDDMS = atoi(value);
111    if (mDebugDDMS) {
112        if (!startDdmConnection()) {
113            // start failed, and DDMS debugging not enabled
114            mDebugDDMS = 0;
115        }
116    }
117    ALOGI_IF(mDebugRegion, "showupdates enabled");
118    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
119}
120
121void SurfaceFlinger::onFirstRef()
122{
123    mEventQueue.init(this);
124
125    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
126
127    // Wait for the main thread to be done with its initialization
128    mReadyToRunBarrier.wait();
129}
130
131
132SurfaceFlinger::~SurfaceFlinger()
133{
134    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
135    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
136    eglTerminate(display);
137}
138
139void SurfaceFlinger::binderDied(const wp<IBinder>& who)
140{
141    // the window manager died on us. prepare its eulogy.
142
143    // restore initial conditions (default device unblank, etc)
144    initializeDisplays();
145
146    // restart the boot-animation
147    startBootAnim();
148}
149
150sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
151{
152    sp<ISurfaceComposerClient> bclient;
153    sp<Client> client(new Client(this));
154    status_t err = client->initCheck();
155    if (err == NO_ERROR) {
156        bclient = client;
157    }
158    return bclient;
159}
160
161sp<IBinder> SurfaceFlinger::createDisplay()
162{
163    class DisplayToken : public BBinder {
164        sp<SurfaceFlinger> flinger;
165        virtual ~DisplayToken() {
166             // no more references, this display must be terminated
167             Mutex::Autolock _l(flinger->mStateLock);
168             flinger->mCurrentState.displays.removeItem(this);
169             flinger->setTransactionFlags(eDisplayTransactionNeeded);
170         }
171     public:
172        DisplayToken(const sp<SurfaceFlinger>& flinger)
173            : flinger(flinger) {
174        }
175    };
176
177    sp<BBinder> token = new DisplayToken(this);
178
179    Mutex::Autolock _l(mStateLock);
180    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
181    mCurrentState.displays.add(token, info);
182
183    return token;
184}
185
186sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
187    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
188        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
189        return NULL;
190    }
191    return mDefaultDisplays[id];
192}
193
194sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
195{
196    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
197    return gba;
198}
199
200void SurfaceFlinger::bootFinished()
201{
202    const nsecs_t now = systemTime();
203    const nsecs_t duration = now - mBootTime;
204    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
205    mBootFinished = true;
206
207    // wait patiently for the window manager death
208    const String16 name("window");
209    sp<IBinder> window(defaultServiceManager()->getService(name));
210    if (window != 0) {
211        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
212    }
213
214    // stop boot animation
215    // formerly we would just kill the process, but we now ask it to exit so it
216    // can choose where to stop the animation.
217    property_set("service.bootanim.exit", "1");
218}
219
220void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
221    class MessageDestroyGLTexture : public MessageBase {
222        GLuint texture;
223    public:
224        MessageDestroyGLTexture(GLuint texture)
225            : texture(texture) {
226        }
227        virtual bool handler() {
228            glDeleteTextures(1, &texture);
229            return true;
230        }
231    };
232    postMessageAsync(new MessageDestroyGLTexture(texture));
233}
234
235status_t SurfaceFlinger::selectConfigForPixelFormat(
236        EGLDisplay dpy,
237        EGLint const* attrs,
238        PixelFormat format,
239        EGLConfig* outConfig)
240{
241    EGLConfig config = NULL;
242    EGLint numConfigs = -1, n=0;
243    eglGetConfigs(dpy, NULL, 0, &numConfigs);
244    EGLConfig* const configs = new EGLConfig[numConfigs];
245    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
246    for (int i=0 ; i<n ; i++) {
247        EGLint nativeVisualId = 0;
248        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
249        if (nativeVisualId>0 && format == nativeVisualId) {
250            *outConfig = configs[i];
251            delete [] configs;
252            return NO_ERROR;
253        }
254    }
255    delete [] configs;
256    return NAME_NOT_FOUND;
257}
258
259EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
260    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
261    // it is to be used with WIFI displays
262    EGLConfig config;
263    EGLint dummy;
264    status_t err;
265    EGLint attribs[] = {
266            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
267            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
268            EGL_NONE
269    };
270    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
271    if (err) {
272        // maybe we failed because of EGL_RECORDABLE_ANDROID
273        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
274        attribs[2] = EGL_NONE;
275        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
276    }
277    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
278    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
279        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
280    }
281    return config;
282}
283
284EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
285    // Also create our EGLContext
286    EGLint contextAttributes[] = {
287#ifdef EGL_IMG_context_priority
288#ifdef HAS_CONTEXT_PRIORITY
289#warning "using EGL_IMG_context_priority"
290            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
291#endif
292#endif
293            EGL_NONE, EGL_NONE
294    };
295    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
296    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
297    return ctxt;
298}
299
300void SurfaceFlinger::initializeGL(EGLDisplay display, const sp<DisplayDevice>& hw) {
301    EGLBoolean result = DisplayDevice::makeCurrent(display, hw, mEGLContext);
302    if (!result) {
303        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
304        exit(0);
305    }
306
307    GLExtensions& extensions(GLExtensions::getInstance());
308    extensions.initWithGLStrings(
309            glGetString(GL_VENDOR),
310            glGetString(GL_RENDERER),
311            glGetString(GL_VERSION),
312            glGetString(GL_EXTENSIONS),
313            eglQueryString(display, EGL_VENDOR),
314            eglQueryString(display, EGL_VERSION),
315            eglQueryString(display, EGL_EXTENSIONS));
316
317    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
318    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
319
320    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
321    glPixelStorei(GL_PACK_ALIGNMENT, 4);
322    glEnableClientState(GL_VERTEX_ARRAY);
323    glShadeModel(GL_FLAT);
324    glDisable(GL_DITHER);
325    glDisable(GL_CULL_FACE);
326
327    struct pack565 {
328        inline uint16_t operator() (int r, int g, int b) const {
329            return (r<<11)|(g<<5)|b;
330        }
331    } pack565;
332
333    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
334    glGenTextures(1, &mProtectedTexName);
335    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
336    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
337    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
338    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
339    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
340    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
341            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
342
343    // print some debugging info
344    EGLint r,g,b,a;
345    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
346    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
347    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
348    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
349    ALOGI("EGL informations:");
350    ALOGI("vendor    : %s", extensions.getEglVendor());
351    ALOGI("version   : %s", extensions.getEglVersion());
352    ALOGI("extensions: %s", extensions.getEglExtension());
353    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
354    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
355    ALOGI("OpenGL ES informations:");
356    ALOGI("vendor    : %s", extensions.getVendor());
357    ALOGI("renderer  : %s", extensions.getRenderer());
358    ALOGI("version   : %s", extensions.getVersion());
359    ALOGI("extensions: %s", extensions.getExtension());
360    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
361    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
362}
363
364status_t SurfaceFlinger::readyToRun()
365{
366    ALOGI(  "SurfaceFlinger's main thread ready to run. "
367            "Initializing graphics H/W...");
368
369    // initialize EGL for the default display
370    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
371    eglInitialize(mEGLDisplay, NULL, NULL);
372
373    // Initialize the H/W composer object.  There may or may not be an
374    // actual hardware composer underneath.
375    mHwc = new HWComposer(this,
376            *static_cast<HWComposer::EventHandler *>(this));
377
378    // Initialize the main display
379    // create native window to main display
380    sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc);
381    if (fbs == NULL) {
382        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
383        exit(0);
384    }
385
386    sp<SurfaceTextureClient> stc(new SurfaceTextureClient(
387            static_cast<sp<ISurfaceTexture> >(fbs->getBufferQueue())));
388
389    // initialize the config and context
390    int format;
391    ANativeWindow* const anw = stc.get();
392    anw->query(anw, NATIVE_WINDOW_FORMAT, &format);
393    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
394    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
395
396    // initialize our main display hardware
397
398    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
399        mDefaultDisplays[i] = new BBinder();
400        mCurrentState.displays.add(mDefaultDisplays[i],
401                DisplayDeviceState((DisplayDevice::DisplayType)i));
402    }
403    sp<DisplayDevice> hw = new DisplayDevice(this,
404            DisplayDevice::DISPLAY_PRIMARY,
405            mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY],
406            anw, fbs, mEGLConfig);
407    mDisplays.add(mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY], hw);
408
409    //  initialize OpenGL ES
410    initializeGL(mEGLDisplay, hw);
411
412    // start the EventThread
413    mEventThread = new EventThread(this);
414    mEventQueue.setEventThread(mEventThread);
415
416    // initialize our drawing state
417    mDrawingState = mCurrentState;
418
419    // We're now ready to accept clients...
420    mReadyToRunBarrier.open();
421
422    // set initial conditions (e.g. unblank default device)
423    initializeDisplays();
424
425    // start boot animation
426    startBootAnim();
427
428    return NO_ERROR;
429}
430
431int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
432    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
433            type : mHwc->allocateDisplayId();
434}
435
436void SurfaceFlinger::startBootAnim() {
437    // start boot animation
438    property_set("service.bootanim.exit", "0");
439    property_set("ctl.start", "bootanim");
440}
441
442uint32_t SurfaceFlinger::getMaxTextureSize() const {
443    return mMaxTextureSize;
444}
445
446uint32_t SurfaceFlinger::getMaxViewportDims() const {
447    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
448            mMaxViewportDims[0] : mMaxViewportDims[1];
449}
450
451// ----------------------------------------------------------------------------
452
453bool SurfaceFlinger::authenticateSurfaceTexture(
454        const sp<ISurfaceTexture>& surfaceTexture) const {
455    Mutex::Autolock _l(mStateLock);
456    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
457
458    // Check the visible layer list for the ISurface
459    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
460    size_t count = currentLayers.size();
461    for (size_t i=0 ; i<count ; i++) {
462        const sp<LayerBase>& layer(currentLayers[i]);
463        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
464        if (lbc != NULL) {
465            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
466            if (lbcBinder == surfaceTextureBinder) {
467                return true;
468            }
469        }
470    }
471
472    // Check the layers in the purgatory.  This check is here so that if a
473    // SurfaceTexture gets destroyed before all the clients are done using it,
474    // the error will not be reported as "surface XYZ is not authenticated", but
475    // will instead fail later on when the client tries to use the surface,
476    // which should be reported as "surface XYZ returned an -ENODEV".  The
477    // purgatorized layers are no less authentic than the visible ones, so this
478    // should not cause any harm.
479    size_t purgatorySize =  mLayerPurgatory.size();
480    for (size_t i=0 ; i<purgatorySize ; i++) {
481        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
482        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
483        if (lbc != NULL) {
484            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
485            if (lbcBinder == surfaceTextureBinder) {
486                return true;
487            }
488        }
489    }
490
491    return false;
492}
493
494status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
495    // TODO: this is mostly here only for compatibility
496    //       the display size is needed but the display metrics should come from elsewhere
497    if (display != mDefaultDisplays[ISurfaceComposer::eDisplayIdMain]) {
498        // TODO: additional displays not yet supported
499        return BAD_INDEX;
500    }
501
502    const HWComposer& hwc(getHwComposer());
503    float xdpi = hwc.getDpiX(HWC_DISPLAY_PRIMARY);
504    float ydpi = hwc.getDpiY(HWC_DISPLAY_PRIMARY);
505
506    // TODO: Not sure if display density should handled by SF any longer
507    class Density {
508        static int getDensityFromProperty(char const* propName) {
509            char property[PROPERTY_VALUE_MAX];
510            int density = 0;
511            if (property_get(propName, property, NULL) > 0) {
512                density = atoi(property);
513            }
514            return density;
515        }
516    public:
517        static int getEmuDensity() {
518            return getDensityFromProperty("qemu.sf.lcd_density"); }
519        static int getBuildDensity()  {
520            return getDensityFromProperty("ro.sf.lcd_density"); }
521    };
522    // The density of the device is provided by a build property
523    float density = Density::getBuildDensity() / 160.0f;
524    if (density == 0) {
525        // the build doesn't provide a density -- this is wrong!
526        // use xdpi instead
527        ALOGE("ro.sf.lcd_density must be defined as a build property");
528        density = xdpi / 160.0f;
529    }
530    if (Density::getEmuDensity()) {
531        // if "qemu.sf.lcd_density" is specified, it overrides everything
532        xdpi = ydpi = density = Density::getEmuDensity();
533        density /= 160.0f;
534    }
535
536    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
537    info->w = hw->getWidth();
538    info->h = hw->getHeight();
539    info->xdpi = xdpi;
540    info->ydpi = ydpi;
541    info->fps = float(1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY));
542    info->density = density;
543    info->orientation = hw->getOrientation();
544    // TODO: this needs to go away (currently needed only by webkit)
545    getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
546    return NO_ERROR;
547}
548
549// ----------------------------------------------------------------------------
550
551sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
552    return mEventThread->createEventConnection();
553}
554
555void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
556
557    sp<IBinder> token;
558    { // scope for the lock
559        Mutex::Autolock _l(mStateLock);
560        token = mExtDisplayToken;
561    }
562
563    if (token == 0) {
564        token = createDisplay();
565    }
566
567    { // scope for the lock
568        Mutex::Autolock _l(mStateLock);
569        if (surface == 0) {
570            // release our current display. we're guarantee to have
571            // a reference to it (token), while we hold the lock
572            mExtDisplayToken = 0;
573        } else {
574            mExtDisplayToken = token;
575        }
576
577        DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
578        info.surface = surface;
579        setTransactionFlags(eDisplayTransactionNeeded);
580    }
581}
582
583// ----------------------------------------------------------------------------
584
585void SurfaceFlinger::waitForEvent() {
586    mEventQueue.waitMessage();
587}
588
589void SurfaceFlinger::signalTransaction() {
590    mEventQueue.invalidate();
591}
592
593void SurfaceFlinger::signalLayerUpdate() {
594    mEventQueue.invalidate();
595}
596
597void SurfaceFlinger::signalRefresh() {
598    mEventQueue.refresh();
599}
600
601status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
602        nsecs_t reltime, uint32_t flags) {
603    return mEventQueue.postMessage(msg, reltime);
604}
605
606status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
607        nsecs_t reltime, uint32_t flags) {
608    status_t res = mEventQueue.postMessage(msg, reltime);
609    if (res == NO_ERROR) {
610        msg->wait();
611    }
612    return res;
613}
614
615bool SurfaceFlinger::threadLoop() {
616    waitForEvent();
617    return true;
618}
619
620void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
621    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
622        // we should only receive DisplayDevice::DisplayType from the vsync callback
623        const wp<IBinder>& token(mDefaultDisplays[type]);
624        mEventThread->onVSyncReceived(token, timestamp);
625    }
626}
627
628void SurfaceFlinger::eventControl(int event, int enabled) {
629    getHwComposer().eventControl(event, enabled);
630}
631
632void SurfaceFlinger::onMessageReceived(int32_t what) {
633    ATRACE_CALL();
634    switch (what) {
635    case MessageQueue::INVALIDATE:
636        handleMessageTransaction();
637        handleMessageInvalidate();
638        signalRefresh();
639        break;
640    case MessageQueue::REFRESH:
641        handleMessageRefresh();
642        break;
643    }
644}
645
646void SurfaceFlinger::handleMessageTransaction() {
647    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
648    if (transactionFlags) {
649        handleTransaction(transactionFlags);
650    }
651}
652
653void SurfaceFlinger::handleMessageInvalidate() {
654    ATRACE_CALL();
655    handlePageFlip();
656}
657
658void SurfaceFlinger::handleMessageRefresh() {
659    ATRACE_CALL();
660    preComposition();
661    rebuildLayerStacks();
662    setUpHWComposer();
663    doDebugFlashRegions();
664    doComposition();
665    postComposition();
666}
667
668void SurfaceFlinger::doDebugFlashRegions()
669{
670    // is debugging enabled
671    if (CC_LIKELY(!mDebugRegion))
672        return;
673
674    const bool repaintEverything = mRepaintEverything;
675    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
676        const sp<DisplayDevice>& hw(mDisplays[dpy]);
677        if (hw->canDraw()) {
678            // transform the dirty region into this screen's coordinate space
679            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
680            if (!dirtyRegion.isEmpty()) {
681                // redraw the whole screen
682                doComposeSurfaces(hw, Region(hw->bounds()));
683
684                // and draw the dirty region
685                glDisable(GL_TEXTURE_EXTERNAL_OES);
686                glDisable(GL_TEXTURE_2D);
687                glDisable(GL_BLEND);
688                glColor4f(1, 0, 1, 1);
689                const int32_t height = hw->getHeight();
690                Region::const_iterator it = dirtyRegion.begin();
691                Region::const_iterator const end = dirtyRegion.end();
692                while (it != end) {
693                    const Rect& r = *it++;
694                    GLfloat vertices[][2] = {
695                            { r.left,  height - r.top },
696                            { r.left,  height - r.bottom },
697                            { r.right, height - r.bottom },
698                            { r.right, height - r.top }
699                    };
700                    glVertexPointer(2, GL_FLOAT, 0, vertices);
701                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
702                }
703                hw->compositionComplete();
704                // FIXME
705                if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
706                    eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
707                }
708            }
709        }
710    }
711
712    postFramebuffer();
713
714    if (mDebugRegion > 1) {
715        usleep(mDebugRegion * 1000);
716    }
717}
718
719void SurfaceFlinger::preComposition()
720{
721    bool needExtraInvalidate = false;
722    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
723    const size_t count = currentLayers.size();
724    for (size_t i=0 ; i<count ; i++) {
725        if (currentLayers[i]->onPreComposition()) {
726            needExtraInvalidate = true;
727        }
728    }
729    if (needExtraInvalidate) {
730        signalLayerUpdate();
731    }
732}
733
734void SurfaceFlinger::postComposition()
735{
736    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
737    const size_t count = currentLayers.size();
738    for (size_t i=0 ; i<count ; i++) {
739        currentLayers[i]->onPostComposition();
740    }
741}
742
743void SurfaceFlinger::rebuildLayerStacks() {
744    // rebuild the visible layer list per screen
745    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
746        ATRACE_CALL();
747        mVisibleRegionsDirty = false;
748        invalidateHwcGeometry();
749        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
750        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
751            const sp<DisplayDevice>& hw(mDisplays[dpy]);
752            const Transform& tr(hw->getTransform());
753            const Rect bounds(hw->getBounds());
754
755            Region opaqueRegion;
756            Region dirtyRegion;
757            computeVisibleRegions(currentLayers,
758                    hw->getLayerStack(), dirtyRegion, opaqueRegion);
759
760            Vector< sp<LayerBase> > layersSortedByZ;
761            const size_t count = currentLayers.size();
762            for (size_t i=0 ; i<count ; i++) {
763                const sp<LayerBase>& layer(currentLayers[i]);
764                const Layer::State& s(layer->drawingState());
765                if (s.layerStack == hw->getLayerStack()) {
766                    Region visibleRegion(tr.transform(layer->visibleRegion));
767                    visibleRegion.andSelf(bounds);
768                    if (!visibleRegion.isEmpty()) {
769                        layersSortedByZ.add(layer);
770                    }
771                }
772            }
773            hw->setVisibleLayersSortedByZ(layersSortedByZ);
774            hw->undefinedRegion.set(bounds);
775            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
776            hw->dirtyRegion.orSelf(dirtyRegion);
777        }
778    }
779}
780
781void SurfaceFlinger::setUpHWComposer() {
782    HWComposer& hwc(getHwComposer());
783    if (hwc.initCheck() == NO_ERROR) {
784        // build the h/w work list
785        const bool workListsDirty = mHwWorkListDirty;
786        mHwWorkListDirty = false;
787        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
788            sp<const DisplayDevice> hw(mDisplays[dpy]);
789            const int32_t id = hw->getHwcDisplayId();
790            if (id >= 0) {
791                const Vector< sp<LayerBase> >& currentLayers(
792                    hw->getVisibleLayersSortedByZ());
793                const size_t count = currentLayers.size();
794                if (hwc.createWorkList(id, count) >= 0) {
795                    HWComposer::LayerListIterator cur = hwc.begin(id);
796                    const HWComposer::LayerListIterator end = hwc.end(id);
797                    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
798                        const sp<LayerBase>& layer(currentLayers[i]);
799
800                        if (CC_UNLIKELY(workListsDirty)) {
801                            layer->setGeometry(hw, *cur);
802                            if (mDebugDisableHWC || mDebugRegion) {
803                                cur->setSkip(true);
804                            }
805                        }
806
807                        /*
808                         * update the per-frame h/w composer data for each layer
809                         * and build the transparent region of the FB
810                         */
811                        layer->setPerFrameData(hw, *cur);
812                    }
813                }
814            }
815        }
816        status_t err = hwc.prepare();
817        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
818    }
819}
820
821void SurfaceFlinger::doComposition() {
822    ATRACE_CALL();
823    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
824    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
825        const sp<DisplayDevice>& hw(mDisplays[dpy]);
826        if (hw->canDraw()) {
827            // transform the dirty region into this screen's coordinate space
828            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
829            if (!dirtyRegion.isEmpty()) {
830                // repaint the framebuffer (if needed)
831                doDisplayComposition(hw, dirtyRegion);
832            }
833            hw->dirtyRegion.clear();
834            hw->flip(hw->swapRegion);
835            hw->swapRegion.clear();
836        }
837        // inform the h/w that we're done compositing
838        hw->compositionComplete();
839    }
840    postFramebuffer();
841}
842
843void SurfaceFlinger::postFramebuffer()
844{
845    ATRACE_CALL();
846
847    const nsecs_t now = systemTime();
848    mDebugInSwapBuffers = now;
849
850    HWComposer& hwc(getHwComposer());
851    if (hwc.initCheck() == NO_ERROR) {
852        // FIXME: EGL spec says:
853        //   "surface must be bound to the calling thread's current context,
854        //    for the current rendering API."
855        DisplayDevice::makeCurrent(mEGLDisplay, getDefaultDisplayDevice(), mEGLContext);
856        hwc.commit();
857    }
858
859    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
860        sp<const DisplayDevice> hw(mDisplays[dpy]);
861        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
862        const size_t count = currentLayers.size();
863        int32_t id = hw->getHwcDisplayId();
864        if (id >=0 && hwc.initCheck() == NO_ERROR) {
865            HWComposer::LayerListIterator cur = hwc.begin(id);
866            const HWComposer::LayerListIterator end = hwc.end(id);
867            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
868                currentLayers[i]->onLayerDisplayed(hw, &*cur);
869            }
870        } else {
871            for (size_t i = 0; i < count; i++) {
872                currentLayers[i]->onLayerDisplayed(hw, NULL);
873            }
874        }
875    }
876
877    mLastSwapBufferTime = systemTime() - now;
878    mDebugInSwapBuffers = 0;
879}
880
881void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
882{
883    ATRACE_CALL();
884
885    Mutex::Autolock _l(mStateLock);
886    const nsecs_t now = systemTime();
887    mDebugInTransaction = now;
888
889    // Here we're guaranteed that some transaction flags are set
890    // so we can call handleTransactionLocked() unconditionally.
891    // We call getTransactionFlags(), which will also clear the flags,
892    // with mStateLock held to guarantee that mCurrentState won't change
893    // until the transaction is committed.
894
895    transactionFlags = getTransactionFlags(eTransactionMask);
896    handleTransactionLocked(transactionFlags);
897
898    mLastTransactionTime = systemTime() - now;
899    mDebugInTransaction = 0;
900    invalidateHwcGeometry();
901    // here the transaction has been committed
902}
903
904void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
905{
906    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
907    const size_t count = currentLayers.size();
908
909    /*
910     * Traversal of the children
911     * (perform the transaction for each of them if needed)
912     */
913
914    if (transactionFlags & eTraversalNeeded) {
915        for (size_t i=0 ; i<count ; i++) {
916            const sp<LayerBase>& layer = currentLayers[i];
917            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
918            if (!trFlags) continue;
919
920            const uint32_t flags = layer->doTransaction(0);
921            if (flags & Layer::eVisibleRegion)
922                mVisibleRegionsDirty = true;
923        }
924    }
925
926    /*
927     * Perform display own transactions if needed
928     */
929
930    if (transactionFlags & eDisplayTransactionNeeded) {
931        // here we take advantage of Vector's copy-on-write semantics to
932        // improve performance by skipping the transaction entirely when
933        // know that the lists are identical
934        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
935        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
936        if (!curr.isIdenticalTo(draw)) {
937            mVisibleRegionsDirty = true;
938            const size_t cc = curr.size();
939                  size_t dc = draw.size();
940
941            // find the displays that were removed
942            // (ie: in drawing state but not in current state)
943            // also handle displays that changed
944            // (ie: displays that are in both lists)
945            for (size_t i=0 ; i<dc ; i++) {
946                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
947                if (j < 0) {
948                    // in drawing state but not in current state
949                    if (!draw[i].isMainDisplay()) {
950                        mDisplays.removeItem(draw.keyAt(i));
951                    } else {
952                        ALOGW("trying to remove the main display");
953                    }
954                } else {
955                    // this display is in both lists. see if something changed.
956                    const DisplayDeviceState& state(curr[j]);
957                    const wp<IBinder>& display(curr.keyAt(j));
958                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
959                        // changing the surface is like destroying and
960                        // recreating the DisplayDevice, so we just remove it
961                        // from the drawing state, so that it get re-added
962                        // below.
963                        mDisplays.removeItem(display);
964                        mDrawingState.displays.removeItemsAt(i);
965                        dc--; i--;
966                        // at this point we must loop to the next item
967                        continue;
968                    }
969
970                    const sp<DisplayDevice>& disp(getDisplayDevice(display));
971                    if (disp != NULL) {
972                        if (state.layerStack != draw[i].layerStack) {
973                            disp->setLayerStack(state.layerStack);
974                        }
975                        if ((state.orientation != draw[i].orientation)
976                                || (state.viewport != draw[i].viewport)
977                                || (state.frame != draw[i].frame))
978                        {
979                            disp->setProjection(state.orientation,
980                                    state.viewport, state.frame);
981                        }
982                    }
983                }
984            }
985
986            // find displays that were added
987            // (ie: in current state but not in drawing state)
988            for (size_t i=0 ; i<cc ; i++) {
989                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
990                    const DisplayDeviceState& state(curr[i]);
991                    if (state.surface != NULL) {
992                        sp<SurfaceTextureClient> stc(
993                                new SurfaceTextureClient(state.surface));
994                        const wp<IBinder>& display(curr.keyAt(i));
995                        sp<DisplayDevice> disp = new DisplayDevice(this,
996                                state.type, display, stc, 0, mEGLConfig);
997                        disp->setLayerStack(state.layerStack);
998                        disp->setProjection(state.orientation,
999                                state.viewport, state.frame);
1000                        mDisplays.add(display, disp);
1001                    }
1002                }
1003            }
1004        }
1005    }
1006
1007    /*
1008     * Perform our own transaction if needed
1009     */
1010
1011    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1012    if (currentLayers.size() > previousLayers.size()) {
1013        // layers have been added
1014        mVisibleRegionsDirty = true;
1015    }
1016
1017    // some layers might have been removed, so
1018    // we need to update the regions they're exposing.
1019    if (mLayersRemoved) {
1020        mLayersRemoved = false;
1021        mVisibleRegionsDirty = true;
1022        const size_t count = previousLayers.size();
1023        for (size_t i=0 ; i<count ; i++) {
1024            const sp<LayerBase>& layer(previousLayers[i]);
1025            if (currentLayers.indexOf(layer) < 0) {
1026                // this layer is not visible anymore
1027                // TODO: we could traverse the tree from front to back and
1028                //       compute the actual visible region
1029                // TODO: we could cache the transformed region
1030                const Layer::State& s(layer->drawingState());
1031                Region visibleReg = s.transform.transform(
1032                        Region(Rect(s.active.w, s.active.h)));
1033                invalidateLayerStack(s.layerStack, visibleReg);
1034            }
1035        }
1036    }
1037
1038    commitTransaction();
1039}
1040
1041void SurfaceFlinger::commitTransaction()
1042{
1043    if (!mLayersPendingRemoval.isEmpty()) {
1044        // Notify removed layers now that they can't be drawn from
1045        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1046            mLayersPendingRemoval[i]->onRemoved();
1047        }
1048        mLayersPendingRemoval.clear();
1049    }
1050
1051    mDrawingState = mCurrentState;
1052    mTransationPending = false;
1053    mTransactionCV.broadcast();
1054}
1055
1056void SurfaceFlinger::computeVisibleRegions(
1057        const LayerVector& currentLayers, uint32_t layerStack,
1058        Region& outDirtyRegion, Region& outOpaqueRegion)
1059{
1060    ATRACE_CALL();
1061
1062    Region aboveOpaqueLayers;
1063    Region aboveCoveredLayers;
1064    Region dirty;
1065
1066    outDirtyRegion.clear();
1067
1068    size_t i = currentLayers.size();
1069    while (i--) {
1070        const sp<LayerBase>& layer = currentLayers[i];
1071
1072        // start with the whole surface at its current location
1073        const Layer::State& s(layer->drawingState());
1074
1075        // only consider the layers on the given later stack
1076        if (s.layerStack != layerStack)
1077            continue;
1078
1079        /*
1080         * opaqueRegion: area of a surface that is fully opaque.
1081         */
1082        Region opaqueRegion;
1083
1084        /*
1085         * visibleRegion: area of a surface that is visible on screen
1086         * and not fully transparent. This is essentially the layer's
1087         * footprint minus the opaque regions above it.
1088         * Areas covered by a translucent surface are considered visible.
1089         */
1090        Region visibleRegion;
1091
1092        /*
1093         * coveredRegion: area of a surface that is covered by all
1094         * visible regions above it (which includes the translucent areas).
1095         */
1096        Region coveredRegion;
1097
1098
1099        // handle hidden surfaces by setting the visible region to empty
1100        if (CC_LIKELY(!(s.flags & layer_state_t::eLayerHidden) && s.alpha)) {
1101            const bool translucent = !layer->isOpaque();
1102            Rect bounds(layer->computeBounds());
1103            visibleRegion.set(bounds);
1104            if (!visibleRegion.isEmpty()) {
1105                // Remove the transparent area from the visible region
1106                if (translucent) {
1107                    Region transparentRegionScreen;
1108                    const Transform tr(s.transform);
1109                    if (tr.transformed()) {
1110                        if (tr.preserveRects()) {
1111                            // transform the transparent region
1112                            transparentRegionScreen = tr.transform(s.transparentRegion);
1113                        } else {
1114                            // transformation too complex, can't do the
1115                            // transparent region optimization.
1116                            transparentRegionScreen.clear();
1117                        }
1118                    } else {
1119                        transparentRegionScreen = s.transparentRegion;
1120                    }
1121                    visibleRegion.subtractSelf(transparentRegionScreen);
1122                }
1123
1124                // compute the opaque region
1125                const int32_t layerOrientation = s.transform.getOrientation();
1126                if (s.alpha==255 && !translucent &&
1127                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1128                    // the opaque region is the layer's footprint
1129                    opaqueRegion = visibleRegion;
1130                }
1131            }
1132        }
1133
1134        // Clip the covered region to the visible region
1135        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1136
1137        // Update aboveCoveredLayers for next (lower) layer
1138        aboveCoveredLayers.orSelf(visibleRegion);
1139
1140        // subtract the opaque region covered by the layers above us
1141        visibleRegion.subtractSelf(aboveOpaqueLayers);
1142
1143        // compute this layer's dirty region
1144        if (layer->contentDirty) {
1145            // we need to invalidate the whole region
1146            dirty = visibleRegion;
1147            // as well, as the old visible region
1148            dirty.orSelf(layer->visibleRegion);
1149            layer->contentDirty = false;
1150        } else {
1151            /* compute the exposed region:
1152             *   the exposed region consists of two components:
1153             *   1) what's VISIBLE now and was COVERED before
1154             *   2) what's EXPOSED now less what was EXPOSED before
1155             *
1156             * note that (1) is conservative, we start with the whole
1157             * visible region but only keep what used to be covered by
1158             * something -- which mean it may have been exposed.
1159             *
1160             * (2) handles areas that were not covered by anything but got
1161             * exposed because of a resize.
1162             */
1163            const Region newExposed = visibleRegion - coveredRegion;
1164            const Region oldVisibleRegion = layer->visibleRegion;
1165            const Region oldCoveredRegion = layer->coveredRegion;
1166            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1167            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1168        }
1169        dirty.subtractSelf(aboveOpaqueLayers);
1170
1171        // accumulate to the screen dirty region
1172        outDirtyRegion.orSelf(dirty);
1173
1174        // Update aboveOpaqueLayers for next (lower) layer
1175        aboveOpaqueLayers.orSelf(opaqueRegion);
1176
1177        // Store the visible region is screen space
1178        layer->setVisibleRegion(visibleRegion);
1179        layer->setCoveredRegion(coveredRegion);
1180    }
1181
1182    outOpaqueRegion = aboveOpaqueLayers;
1183}
1184
1185void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1186        const Region& dirty) {
1187    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1188        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1189        if (hw->getLayerStack() == layerStack) {
1190            hw->dirtyRegion.orSelf(dirty);
1191        }
1192    }
1193}
1194
1195void SurfaceFlinger::handlePageFlip()
1196{
1197    Region dirtyRegion;
1198
1199    bool visibleRegions = false;
1200    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1201    const size_t count = currentLayers.size();
1202    for (size_t i=0 ; i<count ; i++) {
1203        const sp<LayerBase>& layer(currentLayers[i]);
1204        const Region dirty(layer->latchBuffer(visibleRegions));
1205        const Layer::State& s(layer->drawingState());
1206        invalidateLayerStack(s.layerStack, dirty);
1207    }
1208
1209    mVisibleRegionsDirty |= visibleRegions;
1210}
1211
1212void SurfaceFlinger::invalidateHwcGeometry()
1213{
1214    mHwWorkListDirty = true;
1215}
1216
1217
1218void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1219        const Region& inDirtyRegion)
1220{
1221    Region dirtyRegion(inDirtyRegion);
1222
1223    // compute the invalid region
1224    hw->swapRegion.orSelf(dirtyRegion);
1225
1226    uint32_t flags = hw->getFlags();
1227    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1228        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1229        // takes a rectangle, we must make sure to update that whole
1230        // rectangle in that case
1231        dirtyRegion.set(hw->swapRegion.bounds());
1232    } else {
1233        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1234            // We need to redraw the rectangle that will be updated
1235            // (pushed to the framebuffer).
1236            // This is needed because PARTIAL_UPDATES only takes one
1237            // rectangle instead of a region (see DisplayDevice::flip())
1238            dirtyRegion.set(hw->swapRegion.bounds());
1239        } else {
1240            // we need to redraw everything (the whole screen)
1241            dirtyRegion.set(hw->bounds());
1242            hw->swapRegion = dirtyRegion;
1243        }
1244    }
1245
1246    doComposeSurfaces(hw, dirtyRegion);
1247
1248    // FIXME: we need to call eglSwapBuffers() on displays that have
1249    // GL composition and only on those.
1250    // however, currently hwc.commit() already does that for the main
1251    // display (if there is a hwc) and never for the other ones
1252    if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL ||
1253            getHwComposer().initCheck() != NO_ERROR) {
1254        // FIXME: EGL spec says:
1255        //   "surface must be bound to the calling thread's current context,
1256        //    for the current rendering API."
1257        eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
1258    }
1259
1260    // update the swap region and clear the dirty region
1261    hw->swapRegion.orSelf(dirtyRegion);
1262}
1263
1264void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1265{
1266    const int32_t id = hw->getHwcDisplayId();
1267    HWComposer& hwc(getHwComposer());
1268    HWComposer::LayerListIterator cur = hwc.begin(id);
1269    const HWComposer::LayerListIterator end = hwc.end(id);
1270
1271    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1272    if (hasGlesComposition) {
1273        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1274
1275        // set the frame buffer
1276        glMatrixMode(GL_MODELVIEW);
1277        glLoadIdentity();
1278
1279        // Never touch the framebuffer if we don't have any framebuffer layers
1280        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1281        if (hasHwcComposition) {
1282            // when using overlays, we assume a fully transparent framebuffer
1283            // NOTE: we could reduce how much we need to clear, for instance
1284            // remove where there are opaque FB layers. however, on some
1285            // GPUs doing a "clean slate" glClear might be more efficient.
1286            // We'll revisit later if needed.
1287            glClearColor(0, 0, 0, 0);
1288            glClear(GL_COLOR_BUFFER_BIT);
1289        } else {
1290            const Region region(hw->undefinedRegion.intersect(dirty));
1291            // screen is already cleared here
1292            if (!region.isEmpty()) {
1293                // can happen with SurfaceView
1294                drawWormhole(hw, region);
1295            }
1296        }
1297    }
1298
1299    /*
1300     * and then, render the layers targeted at the framebuffer
1301     */
1302
1303    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1304    const size_t count = layers.size();
1305    const Transform& tr = hw->getTransform();
1306    if (cur != end) {
1307        // we're using h/w composer
1308        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1309            const sp<LayerBase>& layer(layers[i]);
1310            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1311            if (!clip.isEmpty()) {
1312                switch (cur->getCompositionType()) {
1313                    case HWC_OVERLAY: {
1314                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1315                                && i
1316                                && layer->isOpaque()
1317                                && hasGlesComposition) {
1318                            // never clear the very first layer since we're
1319                            // guaranteed the FB is already cleared
1320                            layer->clearWithOpenGL(hw, clip);
1321                        }
1322                        break;
1323                    }
1324                    case HWC_FRAMEBUFFER: {
1325                        layer->draw(hw, clip);
1326                        break;
1327                    }
1328                }
1329            }
1330            layer->setAcquireFence(hw, *cur);
1331        }
1332    } else {
1333        // we're not using h/w composer
1334        for (size_t i=0 ; i<count ; ++i) {
1335            const sp<LayerBase>& layer(layers[i]);
1336            const Region clip(dirty.intersect(
1337                    tr.transform(layer->visibleRegion)));
1338            if (!clip.isEmpty()) {
1339                layer->draw(hw, clip);
1340            }
1341        }
1342    }
1343}
1344
1345void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1346        const Region& region) const
1347{
1348    glDisable(GL_TEXTURE_EXTERNAL_OES);
1349    glDisable(GL_TEXTURE_2D);
1350    glDisable(GL_BLEND);
1351    glColor4f(0,0,0,0);
1352
1353    const int32_t height = hw->getHeight();
1354    Region::const_iterator it = region.begin();
1355    Region::const_iterator const end = region.end();
1356    while (it != end) {
1357        const Rect& r = *it++;
1358        GLfloat vertices[][2] = {
1359                { r.left,  height - r.top },
1360                { r.left,  height - r.bottom },
1361                { r.right, height - r.bottom },
1362                { r.right, height - r.top }
1363        };
1364        glVertexPointer(2, GL_FLOAT, 0, vertices);
1365        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1366    }
1367}
1368
1369ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1370        const sp<LayerBaseClient>& lbc)
1371{
1372    // attach this layer to the client
1373    size_t name = client->attachLayer(lbc);
1374
1375    // add this layer to the current state list
1376    Mutex::Autolock _l(mStateLock);
1377    mCurrentState.layersSortedByZ.add(lbc);
1378
1379    return ssize_t(name);
1380}
1381
1382status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1383{
1384    Mutex::Autolock _l(mStateLock);
1385    status_t err = purgatorizeLayer_l(layer);
1386    if (err == NO_ERROR)
1387        setTransactionFlags(eTransactionNeeded);
1388    return err;
1389}
1390
1391status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1392{
1393    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1394    if (index >= 0) {
1395        mLayersRemoved = true;
1396        return NO_ERROR;
1397    }
1398    return status_t(index);
1399}
1400
1401status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1402{
1403    // First add the layer to the purgatory list, which makes sure it won't
1404    // go away, then remove it from the main list (through a transaction).
1405    ssize_t err = removeLayer_l(layerBase);
1406    if (err >= 0) {
1407        mLayerPurgatory.add(layerBase);
1408    }
1409
1410    mLayersPendingRemoval.push(layerBase);
1411
1412    // it's possible that we don't find a layer, because it might
1413    // have been destroyed already -- this is not technically an error
1414    // from the user because there is a race between Client::destroySurface(),
1415    // ~Client() and ~ISurface().
1416    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1417}
1418
1419uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1420{
1421    return android_atomic_release_load(&mTransactionFlags);
1422}
1423
1424uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1425{
1426    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1427}
1428
1429uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1430{
1431    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1432    if ((old & flags)==0) { // wake the server up
1433        signalTransaction();
1434    }
1435    return old;
1436}
1437
1438void SurfaceFlinger::setTransactionState(
1439        const Vector<ComposerState>& state,
1440        const Vector<DisplayState>& displays,
1441        uint32_t flags)
1442{
1443    Mutex::Autolock _l(mStateLock);
1444    uint32_t transactionFlags = 0;
1445
1446    size_t count = displays.size();
1447    for (size_t i=0 ; i<count ; i++) {
1448        const DisplayState& s(displays[i]);
1449        transactionFlags |= setDisplayStateLocked(s);
1450    }
1451
1452    count = state.size();
1453    for (size_t i=0 ; i<count ; i++) {
1454        const ComposerState& s(state[i]);
1455        sp<Client> client( static_cast<Client *>(s.client.get()) );
1456        transactionFlags |= setClientStateLocked(client, s.state);
1457    }
1458
1459    if (transactionFlags) {
1460        // this triggers the transaction
1461        setTransactionFlags(transactionFlags);
1462
1463        // if this is a synchronous transaction, wait for it to take effect
1464        // before returning.
1465        if (flags & eSynchronous) {
1466            mTransationPending = true;
1467        }
1468        while (mTransationPending) {
1469            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1470            if (CC_UNLIKELY(err != NO_ERROR)) {
1471                // just in case something goes wrong in SF, return to the
1472                // called after a few seconds.
1473                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1474                mTransationPending = false;
1475                break;
1476            }
1477        }
1478    }
1479}
1480
1481uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1482{
1483    uint32_t flags = 0;
1484    DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1485    if (disp.isValid()) {
1486        const uint32_t what = s.what;
1487        if (what & DisplayState::eSurfaceChanged) {
1488            if (disp.surface->asBinder() != s.surface->asBinder()) {
1489                disp.surface = s.surface;
1490                flags |= eDisplayTransactionNeeded;
1491            }
1492        }
1493        if (what & DisplayState::eLayerStackChanged) {
1494            if (disp.layerStack != s.layerStack) {
1495                disp.layerStack = s.layerStack;
1496                flags |= eDisplayTransactionNeeded;
1497            }
1498        }
1499        if (what & DisplayState::eDisplayProjectionChanged) {
1500            if (disp.orientation != s.orientation) {
1501                disp.orientation = s.orientation;
1502                flags |= eDisplayTransactionNeeded;
1503            }
1504            if (disp.frame != s.frame) {
1505                disp.frame = s.frame;
1506                flags |= eDisplayTransactionNeeded;
1507            }
1508            if (disp.viewport != s.viewport) {
1509                disp.viewport = s.viewport;
1510                flags |= eDisplayTransactionNeeded;
1511            }
1512        }
1513    }
1514    return flags;
1515}
1516
1517uint32_t SurfaceFlinger::setClientStateLocked(
1518        const sp<Client>& client,
1519        const layer_state_t& s)
1520{
1521    uint32_t flags = 0;
1522    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1523    if (layer != 0) {
1524        const uint32_t what = s.what;
1525        if (what & layer_state_t::ePositionChanged) {
1526            if (layer->setPosition(s.x, s.y))
1527                flags |= eTraversalNeeded;
1528        }
1529        if (what & layer_state_t::eLayerChanged) {
1530            // NOTE: index needs to be calculated before we update the state
1531            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1532            if (layer->setLayer(s.z)) {
1533                mCurrentState.layersSortedByZ.removeAt(idx);
1534                mCurrentState.layersSortedByZ.add(layer);
1535                // we need traversal (state changed)
1536                // AND transaction (list changed)
1537                flags |= eTransactionNeeded|eTraversalNeeded;
1538            }
1539        }
1540        if (what & layer_state_t::eSizeChanged) {
1541            if (layer->setSize(s.w, s.h)) {
1542                flags |= eTraversalNeeded;
1543            }
1544        }
1545        if (what & layer_state_t::eAlphaChanged) {
1546            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1547                flags |= eTraversalNeeded;
1548        }
1549        if (what & layer_state_t::eMatrixChanged) {
1550            if (layer->setMatrix(s.matrix))
1551                flags |= eTraversalNeeded;
1552        }
1553        if (what & layer_state_t::eTransparentRegionChanged) {
1554            if (layer->setTransparentRegionHint(s.transparentRegion))
1555                flags |= eTraversalNeeded;
1556        }
1557        if (what & layer_state_t::eVisibilityChanged) {
1558            if (layer->setFlags(s.flags, s.mask))
1559                flags |= eTraversalNeeded;
1560        }
1561        if (what & layer_state_t::eCropChanged) {
1562            if (layer->setCrop(s.crop))
1563                flags |= eTraversalNeeded;
1564        }
1565        if (what & layer_state_t::eLayerStackChanged) {
1566            // NOTE: index needs to be calculated before we update the state
1567            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1568            if (layer->setLayerStack(s.layerStack)) {
1569                mCurrentState.layersSortedByZ.removeAt(idx);
1570                mCurrentState.layersSortedByZ.add(layer);
1571                // we need traversal (state changed)
1572                // AND transaction (list changed)
1573                flags |= eTransactionNeeded|eTraversalNeeded;
1574            }
1575        }
1576    }
1577    return flags;
1578}
1579
1580sp<ISurface> SurfaceFlinger::createLayer(
1581        ISurfaceComposerClient::surface_data_t* params,
1582        const String8& name,
1583        const sp<Client>& client,
1584       uint32_t w, uint32_t h, PixelFormat format,
1585        uint32_t flags)
1586{
1587    sp<LayerBaseClient> layer;
1588    sp<ISurface> surfaceHandle;
1589
1590    if (int32_t(w|h) < 0) {
1591        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1592                int(w), int(h));
1593        return surfaceHandle;
1594    }
1595
1596    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1597    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1598        case ISurfaceComposerClient::eFXSurfaceNormal:
1599            layer = createNormalLayer(client, w, h, flags, format);
1600            break;
1601        case ISurfaceComposerClient::eFXSurfaceBlur:
1602        case ISurfaceComposerClient::eFXSurfaceDim:
1603            layer = createDimLayer(client, w, h, flags);
1604            break;
1605        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1606            layer = createScreenshotLayer(client, w, h, flags);
1607            break;
1608    }
1609
1610    if (layer != 0) {
1611        layer->initStates(w, h, flags);
1612        layer->setName(name);
1613        ssize_t token = addClientLayer(client, layer);
1614        surfaceHandle = layer->getSurface();
1615        if (surfaceHandle != 0) {
1616            params->token = token;
1617            params->identity = layer->getIdentity();
1618        }
1619        setTransactionFlags(eTransactionNeeded);
1620    }
1621
1622    return surfaceHandle;
1623}
1624
1625sp<Layer> SurfaceFlinger::createNormalLayer(
1626        const sp<Client>& client,
1627        uint32_t w, uint32_t h, uint32_t flags,
1628        PixelFormat& format)
1629{
1630    // initialize the surfaces
1631    switch (format) {
1632    case PIXEL_FORMAT_TRANSPARENT:
1633    case PIXEL_FORMAT_TRANSLUCENT:
1634        format = PIXEL_FORMAT_RGBA_8888;
1635        break;
1636    case PIXEL_FORMAT_OPAQUE:
1637#ifdef NO_RGBX_8888
1638        format = PIXEL_FORMAT_RGB_565;
1639#else
1640        format = PIXEL_FORMAT_RGBX_8888;
1641#endif
1642        break;
1643    }
1644
1645#ifdef NO_RGBX_8888
1646    if (format == PIXEL_FORMAT_RGBX_8888)
1647        format = PIXEL_FORMAT_RGBA_8888;
1648#endif
1649
1650    sp<Layer> layer = new Layer(this, client);
1651    status_t err = layer->setBuffers(w, h, format, flags);
1652    if (CC_LIKELY(err != NO_ERROR)) {
1653        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1654        layer.clear();
1655    }
1656    return layer;
1657}
1658
1659sp<LayerDim> SurfaceFlinger::createDimLayer(
1660        const sp<Client>& client,
1661        uint32_t w, uint32_t h, uint32_t flags)
1662{
1663    sp<LayerDim> layer = new LayerDim(this, client);
1664    return layer;
1665}
1666
1667sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1668        const sp<Client>& client,
1669        uint32_t w, uint32_t h, uint32_t flags)
1670{
1671    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1672    return layer;
1673}
1674
1675status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1676{
1677    /*
1678     * called by the window manager, when a surface should be marked for
1679     * destruction.
1680     *
1681     * The surface is removed from the current and drawing lists, but placed
1682     * in the purgatory queue, so it's not destroyed right-away (we need
1683     * to wait for all client's references to go away first).
1684     */
1685
1686    status_t err = NAME_NOT_FOUND;
1687    Mutex::Autolock _l(mStateLock);
1688    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1689
1690    if (layer != 0) {
1691        err = purgatorizeLayer_l(layer);
1692        if (err == NO_ERROR) {
1693            setTransactionFlags(eTransactionNeeded);
1694        }
1695    }
1696    return err;
1697}
1698
1699status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1700{
1701    // called by ~ISurface() when all references are gone
1702    status_t err = NO_ERROR;
1703    sp<LayerBaseClient> l(layer.promote());
1704    if (l != NULL) {
1705        Mutex::Autolock _l(mStateLock);
1706        err = removeLayer_l(l);
1707        if (err == NAME_NOT_FOUND) {
1708            // The surface wasn't in the current list, which means it was
1709            // removed already, which means it is in the purgatory,
1710            // and need to be removed from there.
1711            ssize_t idx = mLayerPurgatory.remove(l);
1712            ALOGE_IF(idx < 0,
1713                    "layer=%p is not in the purgatory list", l.get());
1714        }
1715        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1716                "error removing layer=%p (%s)", l.get(), strerror(-err));
1717    }
1718    return err;
1719}
1720
1721// ---------------------------------------------------------------------------
1722
1723void SurfaceFlinger::onInitializeDisplays() {
1724    // reset screen orientation
1725    Vector<ComposerState> state;
1726    Vector<DisplayState> displays;
1727    DisplayState d;
1728    d.what = DisplayState::eDisplayProjectionChanged;
1729    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1730    d.orientation = DisplayState::eOrientationDefault;
1731    d.frame.makeInvalid();
1732    d.viewport.makeInvalid();
1733    displays.add(d);
1734    setTransactionState(state, displays, 0);
1735
1736    // XXX: this should init default device to "unblank" and all other devices to "blank"
1737    onScreenAcquired();
1738}
1739
1740void SurfaceFlinger::initializeDisplays() {
1741    class MessageScreenInitialized : public MessageBase {
1742        SurfaceFlinger* flinger;
1743    public:
1744        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1745        virtual bool handler() {
1746            flinger->onInitializeDisplays();
1747            return true;
1748        }
1749    };
1750    sp<MessageBase> msg = new MessageScreenInitialized(this);
1751    postMessageAsync(msg);  // we may be called from main thread, use async message
1752}
1753
1754
1755void SurfaceFlinger::onScreenAcquired() {
1756    ALOGD("Screen about to return, flinger = %p", this);
1757    sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1758    getHwComposer().acquire();
1759    hw->acquireScreen();
1760    mEventThread->onScreenAcquired();
1761    mVisibleRegionsDirty = true;
1762    repaintEverything();
1763}
1764
1765void SurfaceFlinger::onScreenReleased() {
1766    ALOGD("About to give-up screen, flinger = %p", this);
1767    sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1768    if (hw->isScreenAcquired()) {
1769        mEventThread->onScreenReleased();
1770        hw->releaseScreen();
1771        getHwComposer().release();
1772        // from this point on, SF will stop drawing
1773    }
1774}
1775
1776void SurfaceFlinger::unblank() {
1777    class MessageScreenAcquired : public MessageBase {
1778        SurfaceFlinger* flinger;
1779    public:
1780        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1781        virtual bool handler() {
1782            flinger->onScreenAcquired();
1783            return true;
1784        }
1785    };
1786    sp<MessageBase> msg = new MessageScreenAcquired(this);
1787    postMessageSync(msg);
1788}
1789
1790void SurfaceFlinger::blank() {
1791    class MessageScreenReleased : public MessageBase {
1792        SurfaceFlinger* flinger;
1793    public:
1794        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1795        virtual bool handler() {
1796            flinger->onScreenReleased();
1797            return true;
1798        }
1799    };
1800    sp<MessageBase> msg = new MessageScreenReleased(this);
1801    postMessageSync(msg);
1802}
1803
1804// ---------------------------------------------------------------------------
1805
1806status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1807{
1808    const size_t SIZE = 4096;
1809    char buffer[SIZE];
1810    String8 result;
1811
1812    if (!PermissionCache::checkCallingPermission(sDump)) {
1813        snprintf(buffer, SIZE, "Permission Denial: "
1814                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1815                IPCThreadState::self()->getCallingPid(),
1816                IPCThreadState::self()->getCallingUid());
1817        result.append(buffer);
1818    } else {
1819        // Try to get the main lock, but don't insist if we can't
1820        // (this would indicate SF is stuck, but we want to be able to
1821        // print something in dumpsys).
1822        int retry = 3;
1823        while (mStateLock.tryLock()<0 && --retry>=0) {
1824            usleep(1000000);
1825        }
1826        const bool locked(retry >= 0);
1827        if (!locked) {
1828            snprintf(buffer, SIZE,
1829                    "SurfaceFlinger appears to be unresponsive, "
1830                    "dumping anyways (no locks held)\n");
1831            result.append(buffer);
1832        }
1833
1834        bool dumpAll = true;
1835        size_t index = 0;
1836        size_t numArgs = args.size();
1837        if (numArgs) {
1838            if ((index < numArgs) &&
1839                    (args[index] == String16("--list"))) {
1840                index++;
1841                listLayersLocked(args, index, result, buffer, SIZE);
1842                dumpAll = false;
1843            }
1844
1845            if ((index < numArgs) &&
1846                    (args[index] == String16("--latency"))) {
1847                index++;
1848                dumpStatsLocked(args, index, result, buffer, SIZE);
1849                dumpAll = false;
1850            }
1851
1852            if ((index < numArgs) &&
1853                    (args[index] == String16("--latency-clear"))) {
1854                index++;
1855                clearStatsLocked(args, index, result, buffer, SIZE);
1856                dumpAll = false;
1857            }
1858        }
1859
1860        if (dumpAll) {
1861            dumpAllLocked(result, buffer, SIZE);
1862        }
1863
1864        if (locked) {
1865            mStateLock.unlock();
1866        }
1867    }
1868    write(fd, result.string(), result.size());
1869    return NO_ERROR;
1870}
1871
1872void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1873        String8& result, char* buffer, size_t SIZE) const
1874{
1875    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1876    const size_t count = currentLayers.size();
1877    for (size_t i=0 ; i<count ; i++) {
1878        const sp<LayerBase>& layer(currentLayers[i]);
1879        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1880        result.append(buffer);
1881    }
1882}
1883
1884void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1885        String8& result, char* buffer, size_t SIZE) const
1886{
1887    String8 name;
1888    if (index < args.size()) {
1889        name = String8(args[index]);
1890        index++;
1891    }
1892
1893    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1894    const size_t count = currentLayers.size();
1895    for (size_t i=0 ; i<count ; i++) {
1896        const sp<LayerBase>& layer(currentLayers[i]);
1897        if (name.isEmpty()) {
1898            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1899            result.append(buffer);
1900        }
1901        if (name.isEmpty() || (name == layer->getName())) {
1902            layer->dumpStats(result, buffer, SIZE);
1903        }
1904    }
1905}
1906
1907void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1908        String8& result, char* buffer, size_t SIZE) const
1909{
1910    String8 name;
1911    if (index < args.size()) {
1912        name = String8(args[index]);
1913        index++;
1914    }
1915
1916    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1917    const size_t count = currentLayers.size();
1918    for (size_t i=0 ; i<count ; i++) {
1919        const sp<LayerBase>& layer(currentLayers[i]);
1920        if (name.isEmpty() || (name == layer->getName())) {
1921            layer->clearStats();
1922        }
1923    }
1924}
1925
1926void SurfaceFlinger::dumpAllLocked(
1927        String8& result, char* buffer, size_t SIZE) const
1928{
1929    // figure out if we're stuck somewhere
1930    const nsecs_t now = systemTime();
1931    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1932    const nsecs_t inTransaction(mDebugInTransaction);
1933    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1934    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1935
1936    /*
1937     * Dump the visible layer list
1938     */
1939    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1940    const size_t count = currentLayers.size();
1941    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1942    result.append(buffer);
1943    for (size_t i=0 ; i<count ; i++) {
1944        const sp<LayerBase>& layer(currentLayers[i]);
1945        layer->dump(result, buffer, SIZE);
1946    }
1947
1948    /*
1949     * Dump the layers in the purgatory
1950     */
1951
1952    const size_t purgatorySize = mLayerPurgatory.size();
1953    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1954    result.append(buffer);
1955    for (size_t i=0 ; i<purgatorySize ; i++) {
1956        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1957        layer->shortDump(result, buffer, SIZE);
1958    }
1959
1960    /*
1961     * Dump Display state
1962     */
1963
1964    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1965        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
1966        snprintf(buffer, SIZE,
1967                "+ DisplayDevice[%u]\n"
1968                "   type=%x, layerStack=%u, (%4dx%4d), orient=%2d (type=%08x), "
1969                "flips=%u, secure=%d, numLayers=%u, v:[%d,%d,%d,%d], f:[%d,%d,%d,%d]\n",
1970                dpy,
1971                hw->getDisplayType(), hw->getLayerStack(),
1972                hw->getWidth(), hw->getHeight(),
1973                hw->getOrientation(), hw->getTransform().getType(),
1974                hw->getPageFlipCount(),
1975                hw->getSecureLayerVisible(),
1976                hw->getVisibleLayersSortedByZ().size(),
1977                hw->getViewport().left, hw->getViewport().top, hw->getViewport().right, hw->getViewport().bottom,
1978                hw->getFrame().left, hw->getFrame().top, hw->getFrame().right, hw->getFrame().bottom);
1979
1980        result.append(buffer);
1981    }
1982
1983    /*
1984     * Dump SurfaceFlinger global state
1985     */
1986
1987    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1988    result.append(buffer);
1989
1990    HWComposer& hwc(getHwComposer());
1991    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1992    const GLExtensions& extensions(GLExtensions::getInstance());
1993    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1994            extensions.getVendor(),
1995            extensions.getRenderer(),
1996            extensions.getVersion());
1997    result.append(buffer);
1998
1999    snprintf(buffer, SIZE, "EGL : %s\n",
2000            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2001    result.append(buffer);
2002
2003    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2004    result.append(buffer);
2005
2006    hw->undefinedRegion.dump(result, "undefinedRegion");
2007    snprintf(buffer, SIZE,
2008            "  orientation=%d, canDraw=%d\n",
2009            hw->getOrientation(), hw->canDraw());
2010    result.append(buffer);
2011    snprintf(buffer, SIZE,
2012            "  last eglSwapBuffers() time: %f us\n"
2013            "  last transaction time     : %f us\n"
2014            "  transaction-flags         : %08x\n"
2015            "  refresh-rate              : %f fps\n"
2016            "  x-dpi                     : %f\n"
2017            "  y-dpi                     : %f\n",
2018            mLastSwapBufferTime/1000.0,
2019            mLastTransactionTime/1000.0,
2020            mTransactionFlags,
2021            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2022            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2023            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2024    result.append(buffer);
2025
2026    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2027            inSwapBuffersDuration/1000.0);
2028    result.append(buffer);
2029
2030    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2031            inTransactionDuration/1000.0);
2032    result.append(buffer);
2033
2034    /*
2035     * VSYNC state
2036     */
2037    mEventThread->dump(result, buffer, SIZE);
2038
2039    /*
2040     * Dump HWComposer state
2041     */
2042    snprintf(buffer, SIZE, "h/w composer state:\n");
2043    result.append(buffer);
2044    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2045            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2046                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2047    result.append(buffer);
2048    hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2049
2050    /*
2051     * Dump gralloc state
2052     */
2053    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2054    alloc.dump(result);
2055    hw->dump(result);
2056}
2057
2058bool SurfaceFlinger::startDdmConnection()
2059{
2060    void* libddmconnection_dso =
2061            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2062    if (!libddmconnection_dso) {
2063        return false;
2064    }
2065    void (*DdmConnection_start)(const char* name);
2066    DdmConnection_start =
2067            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2068    if (!DdmConnection_start) {
2069        dlclose(libddmconnection_dso);
2070        return false;
2071    }
2072    (*DdmConnection_start)(getServiceName());
2073    return true;
2074}
2075
2076status_t SurfaceFlinger::onTransact(
2077    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2078{
2079    switch (code) {
2080        case CREATE_CONNECTION:
2081        case SET_TRANSACTION_STATE:
2082        case BOOT_FINISHED:
2083        case BLANK:
2084        case UNBLANK:
2085        {
2086            // codes that require permission check
2087            IPCThreadState* ipc = IPCThreadState::self();
2088            const int pid = ipc->getCallingPid();
2089            const int uid = ipc->getCallingUid();
2090            if ((uid != AID_GRAPHICS) &&
2091                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2092                ALOGE("Permission Denial: "
2093                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2094                return PERMISSION_DENIED;
2095            }
2096            break;
2097        }
2098        case CAPTURE_SCREEN:
2099        {
2100            // codes that require permission check
2101            IPCThreadState* ipc = IPCThreadState::self();
2102            const int pid = ipc->getCallingPid();
2103            const int uid = ipc->getCallingUid();
2104            if ((uid != AID_GRAPHICS) &&
2105                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2106                ALOGE("Permission Denial: "
2107                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2108                return PERMISSION_DENIED;
2109            }
2110            break;
2111        }
2112    }
2113
2114    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2115    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2116        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2117        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2118            IPCThreadState* ipc = IPCThreadState::self();
2119            const int pid = ipc->getCallingPid();
2120            const int uid = ipc->getCallingUid();
2121            ALOGE("Permission Denial: "
2122                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2123            return PERMISSION_DENIED;
2124        }
2125        int n;
2126        switch (code) {
2127            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2128            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2129                return NO_ERROR;
2130            case 1002:  // SHOW_UPDATES
2131                n = data.readInt32();
2132                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2133                invalidateHwcGeometry();
2134                repaintEverything();
2135                return NO_ERROR;
2136            case 1004:{ // repaint everything
2137                repaintEverything();
2138                return NO_ERROR;
2139            }
2140            case 1005:{ // force transaction
2141                setTransactionFlags(
2142                        eTransactionNeeded|
2143                        eDisplayTransactionNeeded|
2144                        eTraversalNeeded);
2145                return NO_ERROR;
2146            }
2147            case 1006:{ // send empty update
2148                signalRefresh();
2149                return NO_ERROR;
2150            }
2151            case 1008:  // toggle use of hw composer
2152                n = data.readInt32();
2153                mDebugDisableHWC = n ? 1 : 0;
2154                invalidateHwcGeometry();
2155                repaintEverything();
2156                return NO_ERROR;
2157            case 1009:  // toggle use of transform hint
2158                n = data.readInt32();
2159                mDebugDisableTransformHint = n ? 1 : 0;
2160                invalidateHwcGeometry();
2161                repaintEverything();
2162                return NO_ERROR;
2163            case 1010:  // interrogate.
2164                reply->writeInt32(0);
2165                reply->writeInt32(0);
2166                reply->writeInt32(mDebugRegion);
2167                reply->writeInt32(0);
2168                reply->writeInt32(mDebugDisableHWC);
2169                return NO_ERROR;
2170            case 1013: {
2171                Mutex::Autolock _l(mStateLock);
2172                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2173                reply->writeInt32(hw->getPageFlipCount());
2174            }
2175            return NO_ERROR;
2176        }
2177    }
2178    return err;
2179}
2180
2181void SurfaceFlinger::repaintEverything() {
2182    android_atomic_or(1, &mRepaintEverything);
2183    signalTransaction();
2184}
2185
2186// ---------------------------------------------------------------------------
2187
2188status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2189        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2190{
2191    Mutex::Autolock _l(mStateLock);
2192    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2193}
2194
2195status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2196        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2197{
2198    ATRACE_CALL();
2199
2200    if (!GLExtensions::getInstance().haveFramebufferObject())
2201        return INVALID_OPERATION;
2202
2203    // get screen geometry
2204    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2205    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2206    const uint32_t hw_w = hw->getWidth();
2207    const uint32_t hw_h = hw->getHeight();
2208    GLfloat u = 1;
2209    GLfloat v = 1;
2210
2211    // make sure to clear all GL error flags
2212    while ( glGetError() != GL_NO_ERROR ) ;
2213
2214    // create a FBO
2215    GLuint name, tname;
2216    glGenTextures(1, &tname);
2217    glBindTexture(GL_TEXTURE_2D, tname);
2218    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2219    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2220    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2221            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2222    if (glGetError() != GL_NO_ERROR) {
2223        while ( glGetError() != GL_NO_ERROR ) ;
2224        GLint tw = (2 << (31 - clz(hw_w)));
2225        GLint th = (2 << (31 - clz(hw_h)));
2226        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2227                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2228        u = GLfloat(hw_w) / tw;
2229        v = GLfloat(hw_h) / th;
2230    }
2231    glGenFramebuffersOES(1, &name);
2232    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2233    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2234            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2235
2236    // redraw the screen entirely...
2237    glDisable(GL_TEXTURE_EXTERNAL_OES);
2238    glDisable(GL_TEXTURE_2D);
2239    glClearColor(0,0,0,1);
2240    glClear(GL_COLOR_BUFFER_BIT);
2241    glMatrixMode(GL_MODELVIEW);
2242    glLoadIdentity();
2243    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2244    const size_t count = layers.size();
2245    for (size_t i=0 ; i<count ; ++i) {
2246        const sp<LayerBase>& layer(layers[i]);
2247        layer->draw(hw);
2248    }
2249
2250    hw->compositionComplete();
2251
2252    // back to main framebuffer
2253    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2254    glDeleteFramebuffersOES(1, &name);
2255
2256    *textureName = tname;
2257    *uOut = u;
2258    *vOut = v;
2259    return NO_ERROR;
2260}
2261
2262// ---------------------------------------------------------------------------
2263
2264status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2265        sp<IMemoryHeap>* heap,
2266        uint32_t* w, uint32_t* h, PixelFormat* f,
2267        uint32_t sw, uint32_t sh,
2268        uint32_t minLayerZ, uint32_t maxLayerZ)
2269{
2270    ATRACE_CALL();
2271
2272    status_t result = PERMISSION_DENIED;
2273
2274    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2275        return INVALID_OPERATION;
2276    }
2277
2278    // get screen geometry
2279    sp<const DisplayDevice> hw(getDisplayDevice(display));
2280    const uint32_t hw_w = hw->getWidth();
2281    const uint32_t hw_h = hw->getHeight();
2282
2283    // if we have secure windows on this display, never allow the screen capture
2284    if (hw->getSecureLayerVisible()) {
2285        ALOGW("FB is protected: PERMISSION_DENIED");
2286        return PERMISSION_DENIED;
2287    }
2288
2289    if ((sw > hw_w) || (sh > hw_h)) {
2290        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2291        return BAD_VALUE;
2292    }
2293
2294    sw = (!sw) ? hw_w : sw;
2295    sh = (!sh) ? hw_h : sh;
2296    const size_t size = sw * sh * 4;
2297    const bool filtering = sw != hw_w || sh != hw_h;
2298
2299//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2300//            sw, sh, minLayerZ, maxLayerZ);
2301
2302    // make sure to clear all GL error flags
2303    while ( glGetError() != GL_NO_ERROR ) ;
2304
2305    // create a FBO
2306    GLuint name, tname;
2307    glGenRenderbuffersOES(1, &tname);
2308    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2309    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2310
2311    glGenFramebuffersOES(1, &name);
2312    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2313    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2314            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2315
2316    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2317
2318    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2319
2320        // invert everything, b/c glReadPixel() below will invert the FB
2321        glViewport(0, 0, sw, sh);
2322        glMatrixMode(GL_PROJECTION);
2323        glPushMatrix();
2324        glLoadIdentity();
2325        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2326        glMatrixMode(GL_MODELVIEW);
2327
2328        // redraw the screen entirely...
2329        glClearColor(0,0,0,1);
2330        glClear(GL_COLOR_BUFFER_BIT);
2331
2332        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2333        const size_t count = layers.size();
2334        for (size_t i=0 ; i<count ; ++i) {
2335            const sp<LayerBase>& layer(layers[i]);
2336            const uint32_t z = layer->drawingState().z;
2337            if (z >= minLayerZ && z <= maxLayerZ) {
2338                if (filtering) layer->setFiltering(true);
2339                layer->draw(hw);
2340                if (filtering) layer->setFiltering(false);
2341            }
2342        }
2343
2344        // check for errors and return screen capture
2345        if (glGetError() != GL_NO_ERROR) {
2346            // error while rendering
2347            result = INVALID_OPERATION;
2348        } else {
2349            // allocate shared memory large enough to hold the
2350            // screen capture
2351            sp<MemoryHeapBase> base(
2352                    new MemoryHeapBase(size, 0, "screen-capture") );
2353            void* const ptr = base->getBase();
2354            if (ptr) {
2355                // capture the screen with glReadPixels()
2356                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2357                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2358                if (glGetError() == GL_NO_ERROR) {
2359                    *heap = base;
2360                    *w = sw;
2361                    *h = sh;
2362                    *f = PIXEL_FORMAT_RGBA_8888;
2363                    result = NO_ERROR;
2364                }
2365            } else {
2366                result = NO_MEMORY;
2367            }
2368        }
2369        glViewport(0, 0, hw_w, hw_h);
2370        glMatrixMode(GL_PROJECTION);
2371        glPopMatrix();
2372        glMatrixMode(GL_MODELVIEW);
2373    } else {
2374        result = BAD_VALUE;
2375    }
2376
2377    // release FBO resources
2378    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2379    glDeleteRenderbuffersOES(1, &tname);
2380    glDeleteFramebuffersOES(1, &name);
2381
2382    hw->compositionComplete();
2383
2384//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2385
2386    return result;
2387}
2388
2389
2390status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2391        sp<IMemoryHeap>* heap,
2392        uint32_t* width, uint32_t* height, PixelFormat* format,
2393        uint32_t sw, uint32_t sh,
2394        uint32_t minLayerZ, uint32_t maxLayerZ)
2395{
2396    if (CC_UNLIKELY(display == 0))
2397        return BAD_VALUE;
2398
2399    if (!GLExtensions::getInstance().haveFramebufferObject())
2400        return INVALID_OPERATION;
2401
2402    class MessageCaptureScreen : public MessageBase {
2403        SurfaceFlinger* flinger;
2404        sp<IBinder> display;
2405        sp<IMemoryHeap>* heap;
2406        uint32_t* w;
2407        uint32_t* h;
2408        PixelFormat* f;
2409        uint32_t sw;
2410        uint32_t sh;
2411        uint32_t minLayerZ;
2412        uint32_t maxLayerZ;
2413        status_t result;
2414    public:
2415        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2416                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2417                uint32_t sw, uint32_t sh,
2418                uint32_t minLayerZ, uint32_t maxLayerZ)
2419            : flinger(flinger), display(display),
2420              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2421              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2422              result(PERMISSION_DENIED)
2423        {
2424        }
2425        status_t getResult() const {
2426            return result;
2427        }
2428        virtual bool handler() {
2429            Mutex::Autolock _l(flinger->mStateLock);
2430            result = flinger->captureScreenImplLocked(display,
2431                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2432            return true;
2433        }
2434    };
2435
2436    sp<MessageBase> msg = new MessageCaptureScreen(this,
2437            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2438    status_t res = postMessageSync(msg);
2439    if (res == NO_ERROR) {
2440        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2441    }
2442    return res;
2443}
2444
2445// ---------------------------------------------------------------------------
2446
2447SurfaceFlinger::LayerVector::LayerVector() {
2448}
2449
2450SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2451    : SortedVector<sp<LayerBase> >(rhs) {
2452}
2453
2454int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2455    const void* rhs) const
2456{
2457    // sort layers per layer-stack, then by z-order and finally by sequence
2458    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2459    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2460
2461    uint32_t ls = l->currentState().layerStack;
2462    uint32_t rs = r->currentState().layerStack;
2463    if (ls != rs)
2464        return ls - rs;
2465
2466    uint32_t lz = l->currentState().z;
2467    uint32_t rz = r->currentState().z;
2468    if (lz != rz)
2469        return lz - rz;
2470
2471    return l->sequence - r->sequence;
2472}
2473
2474// ---------------------------------------------------------------------------
2475
2476SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2477    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2478}
2479
2480SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2481    : type(type), layerStack(0), orientation(0) {
2482    viewport.makeInvalid();
2483    frame.makeInvalid();
2484}
2485
2486// ---------------------------------------------------------------------------
2487
2488GraphicBufferAlloc::GraphicBufferAlloc() {}
2489
2490GraphicBufferAlloc::~GraphicBufferAlloc() {}
2491
2492sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2493        PixelFormat format, uint32_t usage, status_t* error) {
2494    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2495    status_t err = graphicBuffer->initCheck();
2496    *error = err;
2497    if (err != 0 || graphicBuffer->handle == 0) {
2498        if (err == NO_MEMORY) {
2499            GraphicBuffer::dumpAllocationsToSystemLog();
2500        }
2501        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2502             "failed (%s), handle=%p",
2503                w, h, strerror(-err), graphicBuffer->handle);
2504        return 0;
2505    }
2506    return graphicBuffer;
2507}
2508
2509// ---------------------------------------------------------------------------
2510
2511}; // namespace android
2512