SurfaceFlinger.cpp revision bb53b0e4b97634bc31808965f81b3ab4193d0e84
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/SurfaceTextureClient.h>
43
44#include <ui/GraphicBufferAllocator.h>
45#include <ui/PixelFormat.h>
46#include <ui/UiConfig.h>
47
48#include <utils/misc.h>
49#include <utils/String8.h>
50#include <utils/String16.h>
51#include <utils/StopWatch.h>
52#include <utils/Trace.h>
53
54#include <private/android_filesystem_config.h>
55
56#include "clz.h"
57#include "DdmConnection.h"
58#include "DisplayDevice.h"
59#include "Client.h"
60#include "EventThread.h"
61#include "GLExtensions.h"
62#include "Layer.h"
63#include "LayerDim.h"
64#include "LayerScreenshot.h"
65#include "SurfaceFlinger.h"
66
67#include "DisplayHardware/FramebufferSurface.h"
68#include "DisplayHardware/GraphicBufferAlloc.h"
69#include "DisplayHardware/HWComposer.h"
70
71
72#define EGL_VERSION_HW_ANDROID  0x3143
73
74#define DISPLAY_COUNT       1
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransationPending(false),
90        mLayersRemoved(false),
91        mRepaintEverything(0),
92        mBootTime(systemTime()),
93        mVisibleRegionsDirty(false),
94        mHwWorkListDirty(false),
95        mDebugRegion(0),
96        mDebugDDMS(0),
97        mDebugDisableHWC(0),
98        mDebugDisableTransformHint(0),
99        mDebugInSwapBuffers(0),
100        mLastSwapBufferTime(0),
101        mDebugInTransaction(0),
102        mLastTransactionTime(0),
103        mBootFinished(false)
104{
105    ALOGI("SurfaceFlinger is starting");
106
107    // debugging stuff...
108    char value[PROPERTY_VALUE_MAX];
109
110    property_get("debug.sf.showupdates", value, "0");
111    mDebugRegion = atoi(value);
112
113    property_get("debug.sf.ddms", value, "0");
114    mDebugDDMS = atoi(value);
115    if (mDebugDDMS) {
116        if (!startDdmConnection()) {
117            // start failed, and DDMS debugging not enabled
118            mDebugDDMS = 0;
119        }
120    }
121    ALOGI_IF(mDebugRegion, "showupdates enabled");
122    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
123}
124
125void SurfaceFlinger::onFirstRef()
126{
127    mEventQueue.init(this);
128
129    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
130
131    // Wait for the main thread to be done with its initialization
132    mReadyToRunBarrier.wait();
133}
134
135
136SurfaceFlinger::~SurfaceFlinger()
137{
138    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
139    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
140    eglTerminate(display);
141}
142
143void SurfaceFlinger::binderDied(const wp<IBinder>& who)
144{
145    // the window manager died on us. prepare its eulogy.
146
147    // restore initial conditions (default device unblank, etc)
148    initializeDisplays();
149
150    // restart the boot-animation
151    startBootAnim();
152}
153
154sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
155{
156    sp<ISurfaceComposerClient> bclient;
157    sp<Client> client(new Client(this));
158    status_t err = client->initCheck();
159    if (err == NO_ERROR) {
160        bclient = client;
161    }
162    return bclient;
163}
164
165sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName)
166{
167    class DisplayToken : public BBinder {
168        sp<SurfaceFlinger> flinger;
169        virtual ~DisplayToken() {
170             // no more references, this display must be terminated
171             Mutex::Autolock _l(flinger->mStateLock);
172             flinger->mCurrentState.displays.removeItem(this);
173             flinger->setTransactionFlags(eDisplayTransactionNeeded);
174         }
175     public:
176        DisplayToken(const sp<SurfaceFlinger>& flinger)
177            : flinger(flinger) {
178        }
179    };
180
181    sp<BBinder> token = new DisplayToken(this);
182
183    Mutex::Autolock _l(mStateLock);
184    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
185    info.displayName = displayName;
186    mCurrentState.displays.add(token, info);
187
188    return token;
189}
190
191sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
192    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
193        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
194        return NULL;
195    }
196    return mDefaultDisplays[id];
197}
198
199sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
200{
201    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
202    return gba;
203}
204
205void SurfaceFlinger::bootFinished()
206{
207    const nsecs_t now = systemTime();
208    const nsecs_t duration = now - mBootTime;
209    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
210    mBootFinished = true;
211
212    // wait patiently for the window manager death
213    const String16 name("window");
214    sp<IBinder> window(defaultServiceManager()->getService(name));
215    if (window != 0) {
216        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
217    }
218
219    // stop boot animation
220    // formerly we would just kill the process, but we now ask it to exit so it
221    // can choose where to stop the animation.
222    property_set("service.bootanim.exit", "1");
223}
224
225void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
226    class MessageDestroyGLTexture : public MessageBase {
227        GLuint texture;
228    public:
229        MessageDestroyGLTexture(GLuint texture)
230            : texture(texture) {
231        }
232        virtual bool handler() {
233            glDeleteTextures(1, &texture);
234            return true;
235        }
236    };
237    postMessageAsync(new MessageDestroyGLTexture(texture));
238}
239
240status_t SurfaceFlinger::selectConfigForPixelFormat(
241        EGLDisplay dpy,
242        EGLint const* attrs,
243        PixelFormat format,
244        EGLConfig* outConfig)
245{
246    EGLConfig config = NULL;
247    EGLint numConfigs = -1, n=0;
248    eglGetConfigs(dpy, NULL, 0, &numConfigs);
249    EGLConfig* const configs = new EGLConfig[numConfigs];
250    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
251
252    for (int i=0 ; i<n ; i++) {
253        EGLint nativeVisualId = 0;
254        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
255        if (nativeVisualId>0 && format == nativeVisualId) {
256            *outConfig = configs[i];
257            delete [] configs;
258            return NO_ERROR;
259        }
260    }
261    delete [] configs;
262    return NAME_NOT_FOUND;
263}
264
265EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
266    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
267    // it is to be used with WIFI displays
268    EGLConfig config;
269    EGLint dummy;
270    status_t err;
271
272    EGLint attribs[] = {
273            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
274            // The rest of the attributes must be in this order and at the end
275            // of the list; we rely on that for fallback searches below.
276            EGL_RED_SIZE,               8,
277            EGL_GREEN_SIZE,             8,
278            EGL_BLUE_SIZE,              8,
279            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
280            EGL_NONE
281    };
282    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
283    if (!err)
284        goto success;
285
286    // maybe we failed because of EGL_RECORDABLE_ANDROID
287    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
288    attribs[NELEM(attribs) - 3] = EGL_NONE;
289    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
290    if (!err)
291        goto success;
292
293    // allow less than 24-bit color; the non-gpu-accelerated emulator only
294    // supports 16-bit color
295    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
296    attribs[NELEM(attribs) - 9] = EGL_NONE;
297    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
298    if (!err)
299        goto success;
300
301    // this EGL is too lame for Android
302    ALOGE("no suitable EGLConfig found, giving up");
303
304    return 0;
305
306success:
307    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
308        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
309    return config;
310}
311
312EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
313    // Also create our EGLContext
314    EGLint contextAttributes[] = {
315#ifdef EGL_IMG_context_priority
316#ifdef HAS_CONTEXT_PRIORITY
317#warning "using EGL_IMG_context_priority"
318            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
319#endif
320#endif
321            EGL_NONE, EGL_NONE
322    };
323    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
324    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
325    return ctxt;
326}
327
328void SurfaceFlinger::initializeGL(EGLDisplay display) {
329    GLExtensions& extensions(GLExtensions::getInstance());
330    extensions.initWithGLStrings(
331            glGetString(GL_VENDOR),
332            glGetString(GL_RENDERER),
333            glGetString(GL_VERSION),
334            glGetString(GL_EXTENSIONS),
335            eglQueryString(display, EGL_VENDOR),
336            eglQueryString(display, EGL_VERSION),
337            eglQueryString(display, EGL_EXTENSIONS));
338
339    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
340    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
341
342    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
343    glPixelStorei(GL_PACK_ALIGNMENT, 4);
344    glEnableClientState(GL_VERTEX_ARRAY);
345    glShadeModel(GL_FLAT);
346    glDisable(GL_DITHER);
347    glDisable(GL_CULL_FACE);
348
349    struct pack565 {
350        inline uint16_t operator() (int r, int g, int b) const {
351            return (r<<11)|(g<<5)|b;
352        }
353    } pack565;
354
355    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
356    glGenTextures(1, &mProtectedTexName);
357    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
358    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
359    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
360    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
361    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
362    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
363            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
364
365    // print some debugging info
366    EGLint r,g,b,a;
367    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
368    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
369    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
370    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
371    ALOGI("EGL informations:");
372    ALOGI("vendor    : %s", extensions.getEglVendor());
373    ALOGI("version   : %s", extensions.getEglVersion());
374    ALOGI("extensions: %s", extensions.getEglExtension());
375    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
376    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
377    ALOGI("OpenGL ES informations:");
378    ALOGI("vendor    : %s", extensions.getVendor());
379    ALOGI("renderer  : %s", extensions.getRenderer());
380    ALOGI("version   : %s", extensions.getVersion());
381    ALOGI("extensions: %s", extensions.getExtension());
382    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
383    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
384}
385
386status_t SurfaceFlinger::readyToRun()
387{
388    ALOGI(  "SurfaceFlinger's main thread ready to run. "
389            "Initializing graphics H/W...");
390
391    // initialize EGL for the default display
392    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
393    eglInitialize(mEGLDisplay, NULL, NULL);
394
395    // Initialize the H/W composer object.  There may or may not be an
396    // actual hardware composer underneath.
397    mHwc = new HWComposer(this,
398            *static_cast<HWComposer::EventHandler *>(this));
399
400    // initialize the config and context
401    EGLint format = mHwc->getVisualID();
402    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
403    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
404
405    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
406            "couldn't create EGLContext");
407
408    // initialize our non-virtual displays
409    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
410        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
411        mDefaultDisplays[i] = new BBinder();
412        wp<IBinder> token = mDefaultDisplays[i];
413
414        // set-up the displays that are already connected
415        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
416            mCurrentState.displays.add(token, DisplayDeviceState(type));
417            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
418            sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
419                        static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
420            sp<DisplayDevice> hw = new DisplayDevice(this,
421                    type, token, stc, fbs, mEGLConfig);
422
423            if (i > DisplayDevice::DISPLAY_PRIMARY) {
424                // FIXME: currently we don't really handle blank/unblank
425                // for displays other than the main display, so we always
426                // assume a connected display is unblanked.
427                hw->acquireScreen();
428            }
429            mDisplays.add(token, hw);
430        }
431    }
432
433    //  we need a GL context current in a few places, when initializing
434    //  OpenGL ES (see below), or creating a layer,
435    //  or when a texture is (asynchronously) destroyed, and for that
436    //  we need a valid surface, so it's convenient to use the main display
437    //  for that.
438    sp<const DisplayDevice> hw = getDefaultDisplayDevice();
439
440    //  initialize OpenGL ES
441    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
442    initializeGL(mEGLDisplay);
443
444    // start the EventThread
445    mEventThread = new EventThread(this);
446    mEventQueue.setEventThread(mEventThread);
447
448    // initialize our drawing state
449    mDrawingState = mCurrentState;
450
451
452    // We're now ready to accept clients...
453    mReadyToRunBarrier.open();
454
455    // set initial conditions (e.g. unblank default device)
456    initializeDisplays();
457
458    // start boot animation
459    startBootAnim();
460
461    return NO_ERROR;
462}
463
464int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
465    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
466            type : mHwc->allocateDisplayId();
467}
468
469void SurfaceFlinger::startBootAnim() {
470    // start boot animation
471    property_set("service.bootanim.exit", "0");
472    property_set("ctl.start", "bootanim");
473}
474
475uint32_t SurfaceFlinger::getMaxTextureSize() const {
476    return mMaxTextureSize;
477}
478
479uint32_t SurfaceFlinger::getMaxViewportDims() const {
480    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
481            mMaxViewportDims[0] : mMaxViewportDims[1];
482}
483
484// ----------------------------------------------------------------------------
485
486bool SurfaceFlinger::authenticateSurfaceTexture(
487        const sp<ISurfaceTexture>& surfaceTexture) const {
488    Mutex::Autolock _l(mStateLock);
489    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
490
491    // Check the visible layer list for the ISurface
492    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
493    size_t count = currentLayers.size();
494    for (size_t i=0 ; i<count ; i++) {
495        const sp<LayerBase>& layer(currentLayers[i]);
496        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
497        if (lbc != NULL) {
498            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
499            if (lbcBinder == surfaceTextureBinder) {
500                return true;
501            }
502        }
503    }
504
505    // Check the layers in the purgatory.  This check is here so that if a
506    // SurfaceTexture gets destroyed before all the clients are done using it,
507    // the error will not be reported as "surface XYZ is not authenticated", but
508    // will instead fail later on when the client tries to use the surface,
509    // which should be reported as "surface XYZ returned an -ENODEV".  The
510    // purgatorized layers are no less authentic than the visible ones, so this
511    // should not cause any harm.
512    size_t purgatorySize =  mLayerPurgatory.size();
513    for (size_t i=0 ; i<purgatorySize ; i++) {
514        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
515        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
516        if (lbc != NULL) {
517            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
518            if (lbcBinder == surfaceTextureBinder) {
519                return true;
520            }
521        }
522    }
523
524    return false;
525}
526
527status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
528    int32_t type = BAD_VALUE;
529    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
530        if (display == mDefaultDisplays[i]) {
531            type = i;
532            break;
533        }
534    }
535
536    if (type < 0) {
537        return type;
538    }
539
540    const HWComposer& hwc(getHwComposer());
541    if (!hwc.isConnected(type)) {
542        return NAME_NOT_FOUND;
543    }
544
545    float xdpi = hwc.getDpiX(type);
546    float ydpi = hwc.getDpiY(type);
547
548    // TODO: Not sure if display density should handled by SF any longer
549    class Density {
550        static int getDensityFromProperty(char const* propName) {
551            char property[PROPERTY_VALUE_MAX];
552            int density = 0;
553            if (property_get(propName, property, NULL) > 0) {
554                density = atoi(property);
555            }
556            return density;
557        }
558    public:
559        static int getEmuDensity() {
560            return getDensityFromProperty("qemu.sf.lcd_density"); }
561        static int getBuildDensity()  {
562            return getDensityFromProperty("ro.sf.lcd_density"); }
563    };
564
565    if (type == DisplayDevice::DISPLAY_PRIMARY) {
566        // The density of the device is provided by a build property
567        float density = Density::getBuildDensity() / 160.0f;
568        if (density == 0) {
569            // the build doesn't provide a density -- this is wrong!
570            // use xdpi instead
571            ALOGE("ro.sf.lcd_density must be defined as a build property");
572            density = xdpi / 160.0f;
573        }
574        if (Density::getEmuDensity()) {
575            // if "qemu.sf.lcd_density" is specified, it overrides everything
576            xdpi = ydpi = density = Density::getEmuDensity();
577            density /= 160.0f;
578        }
579        info->density = density;
580
581        // TODO: this needs to go away (currently needed only by webkit)
582        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
583        info->orientation = hw->getOrientation();
584        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
585    } else {
586        // TODO: where should this value come from?
587        static const int TV_DENSITY = 213;
588        info->density = TV_DENSITY / 160.0f;
589        info->orientation = 0;
590    }
591
592    info->w = hwc.getWidth(type);
593    info->h = hwc.getHeight(type);
594    info->xdpi = xdpi;
595    info->ydpi = ydpi;
596    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
597    return NO_ERROR;
598}
599
600// ----------------------------------------------------------------------------
601
602sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
603    return mEventThread->createEventConnection();
604}
605
606void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
607
608    sp<IBinder> token;
609    { // scope for the lock
610        Mutex::Autolock _l(mStateLock);
611        token = mExtDisplayToken;
612    }
613
614    if (token == 0) {
615        token = createDisplay(String8("Display from connectDisplay"));
616    }
617
618    { // scope for the lock
619        Mutex::Autolock _l(mStateLock);
620        if (surface == 0) {
621            // release our current display. we're guarantee to have
622            // a reference to it (token), while we hold the lock
623            mExtDisplayToken = 0;
624        } else {
625            mExtDisplayToken = token;
626        }
627
628        DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
629        info.surface = surface;
630        setTransactionFlags(eDisplayTransactionNeeded);
631    }
632}
633
634// ----------------------------------------------------------------------------
635
636void SurfaceFlinger::waitForEvent() {
637    mEventQueue.waitMessage();
638}
639
640void SurfaceFlinger::signalTransaction() {
641    mEventQueue.invalidate();
642}
643
644void SurfaceFlinger::signalLayerUpdate() {
645    mEventQueue.invalidate();
646}
647
648void SurfaceFlinger::signalRefresh() {
649    mEventQueue.refresh();
650}
651
652status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
653        nsecs_t reltime, uint32_t flags) {
654    return mEventQueue.postMessage(msg, reltime);
655}
656
657status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
658        nsecs_t reltime, uint32_t flags) {
659    status_t res = mEventQueue.postMessage(msg, reltime);
660    if (res == NO_ERROR) {
661        msg->wait();
662    }
663    return res;
664}
665
666bool SurfaceFlinger::threadLoop() {
667    waitForEvent();
668    return true;
669}
670
671void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
672    if (mEventThread == NULL) {
673        // This is a temporary workaround for b/7145521.  A non-null pointer
674        // does not mean EventThread has finished initializing, so this
675        // is not a correct fix.
676        ALOGW("WARNING: EventThread not started, ignoring vsync");
677        return;
678    }
679    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
680        // we should only receive DisplayDevice::DisplayType from the vsync callback
681        mEventThread->onVSyncReceived(type, timestamp);
682    }
683}
684
685void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
686    if (mEventThread == NULL) {
687        // This is a temporary workaround for b/7145521.  A non-null pointer
688        // does not mean EventThread has finished initializing, so this
689        // is not a correct fix.
690        ALOGW("WARNING: EventThread not started, ignoring hotplug");
691        return;
692    }
693
694    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
695        Mutex::Autolock _l(mStateLock);
696        if (connected == false) {
697            mCurrentState.displays.removeItem(mDefaultDisplays[type]);
698        } else {
699            DisplayDeviceState info((DisplayDevice::DisplayType)type);
700            mCurrentState.displays.add(mDefaultDisplays[type], info);
701        }
702        setTransactionFlags(eDisplayTransactionNeeded);
703
704        // we should only receive DisplayDevice::DisplayType from the vsync callback
705        mEventThread->onHotplugReceived(type, connected);
706    }
707}
708
709void SurfaceFlinger::eventControl(int event, int enabled) {
710    getHwComposer().eventControl(event, enabled);
711}
712
713void SurfaceFlinger::onMessageReceived(int32_t what) {
714    ATRACE_CALL();
715    switch (what) {
716    case MessageQueue::INVALIDATE:
717        handleMessageTransaction();
718        handleMessageInvalidate();
719        signalRefresh();
720        break;
721    case MessageQueue::REFRESH:
722        handleMessageRefresh();
723        break;
724    }
725}
726
727void SurfaceFlinger::handleMessageTransaction() {
728    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
729    if (transactionFlags) {
730        handleTransaction(transactionFlags);
731    }
732}
733
734void SurfaceFlinger::handleMessageInvalidate() {
735    ATRACE_CALL();
736    handlePageFlip();
737}
738
739void SurfaceFlinger::handleMessageRefresh() {
740    ATRACE_CALL();
741    preComposition();
742    rebuildLayerStacks();
743    setUpHWComposer();
744    doDebugFlashRegions();
745    doComposition();
746    postComposition();
747}
748
749void SurfaceFlinger::doDebugFlashRegions()
750{
751    // is debugging enabled
752    if (CC_LIKELY(!mDebugRegion))
753        return;
754
755    const bool repaintEverything = mRepaintEverything;
756    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
757        const sp<DisplayDevice>& hw(mDisplays[dpy]);
758        if (hw->canDraw()) {
759            // transform the dirty region into this screen's coordinate space
760            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
761            if (!dirtyRegion.isEmpty()) {
762                // redraw the whole screen
763                doComposeSurfaces(hw, Region(hw->bounds()));
764
765                // and draw the dirty region
766                glDisable(GL_TEXTURE_EXTERNAL_OES);
767                glDisable(GL_TEXTURE_2D);
768                glDisable(GL_BLEND);
769                glColor4f(1, 0, 1, 1);
770                const int32_t height = hw->getHeight();
771                Region::const_iterator it = dirtyRegion.begin();
772                Region::const_iterator const end = dirtyRegion.end();
773                while (it != end) {
774                    const Rect& r = *it++;
775                    GLfloat vertices[][2] = {
776                            { r.left,  height - r.top },
777                            { r.left,  height - r.bottom },
778                            { r.right, height - r.bottom },
779                            { r.right, height - r.top }
780                    };
781                    glVertexPointer(2, GL_FLOAT, 0, vertices);
782                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
783                }
784                hw->compositionComplete();
785                hw->swapBuffers(getHwComposer());
786            }
787        }
788    }
789
790    postFramebuffer();
791
792    if (mDebugRegion > 1) {
793        usleep(mDebugRegion * 1000);
794    }
795
796    HWComposer& hwc(getHwComposer());
797    if (hwc.initCheck() == NO_ERROR) {
798        status_t err = hwc.prepare();
799        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
800    }
801}
802
803void SurfaceFlinger::preComposition()
804{
805    bool needExtraInvalidate = false;
806    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
807    const size_t count = currentLayers.size();
808    for (size_t i=0 ; i<count ; i++) {
809        if (currentLayers[i]->onPreComposition()) {
810            needExtraInvalidate = true;
811        }
812    }
813    if (needExtraInvalidate) {
814        signalLayerUpdate();
815    }
816}
817
818void SurfaceFlinger::postComposition()
819{
820    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
821    const size_t count = currentLayers.size();
822    for (size_t i=0 ; i<count ; i++) {
823        currentLayers[i]->onPostComposition();
824    }
825}
826
827void SurfaceFlinger::rebuildLayerStacks() {
828    // rebuild the visible layer list per screen
829    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
830        ATRACE_CALL();
831        mVisibleRegionsDirty = false;
832        invalidateHwcGeometry();
833
834        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
835        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
836            Region opaqueRegion;
837            Region dirtyRegion;
838            Vector< sp<LayerBase> > layersSortedByZ;
839            const sp<DisplayDevice>& hw(mDisplays[dpy]);
840            const Transform& tr(hw->getTransform());
841            const Rect bounds(hw->getBounds());
842            if (hw->canDraw()) {
843                SurfaceFlinger::computeVisibleRegions(currentLayers,
844                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
845
846                const size_t count = currentLayers.size();
847                for (size_t i=0 ; i<count ; i++) {
848                    const sp<LayerBase>& layer(currentLayers[i]);
849                    const Layer::State& s(layer->drawingState());
850                    if (s.layerStack == hw->getLayerStack()) {
851                        Region visibleRegion(tr.transform(layer->visibleRegion));
852                        visibleRegion.andSelf(bounds);
853                        if (!visibleRegion.isEmpty()) {
854                            layersSortedByZ.add(layer);
855                        }
856                    }
857                }
858            }
859            hw->setVisibleLayersSortedByZ(layersSortedByZ);
860            hw->undefinedRegion.set(bounds);
861            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
862            hw->dirtyRegion.orSelf(dirtyRegion);
863        }
864    }
865}
866
867void SurfaceFlinger::setUpHWComposer() {
868    HWComposer& hwc(getHwComposer());
869    if (hwc.initCheck() == NO_ERROR) {
870        // build the h/w work list
871        const bool workListsDirty = mHwWorkListDirty;
872        mHwWorkListDirty = false;
873        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
874            sp<const DisplayDevice> hw(mDisplays[dpy]);
875            const int32_t id = hw->getHwcDisplayId();
876            if (id >= 0) {
877                const Vector< sp<LayerBase> >& currentLayers(
878                    hw->getVisibleLayersSortedByZ());
879                const size_t count = currentLayers.size();
880                if (hwc.createWorkList(id, count) >= 0) {
881                    HWComposer::LayerListIterator cur = hwc.begin(id);
882                    const HWComposer::LayerListIterator end = hwc.end(id);
883                    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
884                        const sp<LayerBase>& layer(currentLayers[i]);
885
886                        if (CC_UNLIKELY(workListsDirty)) {
887                            layer->setGeometry(hw, *cur);
888                            if (mDebugDisableHWC || mDebugRegion) {
889                                cur->setSkip(true);
890                            }
891                        }
892
893                        /*
894                         * update the per-frame h/w composer data for each layer
895                         * and build the transparent region of the FB
896                         */
897                        layer->setPerFrameData(hw, *cur);
898                    }
899                }
900            }
901        }
902        status_t err = hwc.prepare();
903        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
904    }
905}
906
907void SurfaceFlinger::doComposition() {
908    ATRACE_CALL();
909    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
910    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
911        const sp<DisplayDevice>& hw(mDisplays[dpy]);
912        if (hw->canDraw()) {
913            // transform the dirty region into this screen's coordinate space
914            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
915            if (!dirtyRegion.isEmpty()) {
916                // repaint the framebuffer (if needed)
917                doDisplayComposition(hw, dirtyRegion);
918            }
919            hw->dirtyRegion.clear();
920            hw->flip(hw->swapRegion);
921            hw->swapRegion.clear();
922        }
923        // inform the h/w that we're done compositing
924        hw->compositionComplete();
925    }
926    postFramebuffer();
927}
928
929void SurfaceFlinger::postFramebuffer()
930{
931    ATRACE_CALL();
932
933    const nsecs_t now = systemTime();
934    mDebugInSwapBuffers = now;
935
936    HWComposer& hwc(getHwComposer());
937    if (hwc.initCheck() == NO_ERROR) {
938        if (!hwc.supportsFramebufferTarget()) {
939            // EGL spec says:
940            //   "surface must be bound to the calling thread's current context,
941            //    for the current rendering API."
942            DisplayDevice::makeCurrent(mEGLDisplay,
943                    getDefaultDisplayDevice(), mEGLContext);
944        }
945        hwc.commit();
946    }
947
948    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
949        sp<const DisplayDevice> hw(mDisplays[dpy]);
950        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
951        hw->onSwapBuffersCompleted(hwc);
952        const size_t count = currentLayers.size();
953        int32_t id = hw->getHwcDisplayId();
954        if (id >=0 && hwc.initCheck() == NO_ERROR) {
955            HWComposer::LayerListIterator cur = hwc.begin(id);
956            const HWComposer::LayerListIterator end = hwc.end(id);
957            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
958                currentLayers[i]->onLayerDisplayed(hw, &*cur);
959            }
960        } else {
961            for (size_t i = 0; i < count; i++) {
962                currentLayers[i]->onLayerDisplayed(hw, NULL);
963            }
964        }
965    }
966
967    mLastSwapBufferTime = systemTime() - now;
968    mDebugInSwapBuffers = 0;
969}
970
971void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
972{
973    ATRACE_CALL();
974
975    Mutex::Autolock _l(mStateLock);
976    const nsecs_t now = systemTime();
977    mDebugInTransaction = now;
978
979    // Here we're guaranteed that some transaction flags are set
980    // so we can call handleTransactionLocked() unconditionally.
981    // We call getTransactionFlags(), which will also clear the flags,
982    // with mStateLock held to guarantee that mCurrentState won't change
983    // until the transaction is committed.
984
985    transactionFlags = getTransactionFlags(eTransactionMask);
986    handleTransactionLocked(transactionFlags);
987
988    mLastTransactionTime = systemTime() - now;
989    mDebugInTransaction = 0;
990    invalidateHwcGeometry();
991    // here the transaction has been committed
992}
993
994void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
995{
996    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
997    const size_t count = currentLayers.size();
998
999    /*
1000     * Traversal of the children
1001     * (perform the transaction for each of them if needed)
1002     */
1003
1004    if (transactionFlags & eTraversalNeeded) {
1005        for (size_t i=0 ; i<count ; i++) {
1006            const sp<LayerBase>& layer = currentLayers[i];
1007            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1008            if (!trFlags) continue;
1009
1010            const uint32_t flags = layer->doTransaction(0);
1011            if (flags & Layer::eVisibleRegion)
1012                mVisibleRegionsDirty = true;
1013        }
1014    }
1015
1016    /*
1017     * Perform display own transactions if needed
1018     */
1019
1020    if (transactionFlags & eDisplayTransactionNeeded) {
1021        // here we take advantage of Vector's copy-on-write semantics to
1022        // improve performance by skipping the transaction entirely when
1023        // know that the lists are identical
1024        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1025        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1026        if (!curr.isIdenticalTo(draw)) {
1027            mVisibleRegionsDirty = true;
1028            const size_t cc = curr.size();
1029                  size_t dc = draw.size();
1030
1031            // find the displays that were removed
1032            // (ie: in drawing state but not in current state)
1033            // also handle displays that changed
1034            // (ie: displays that are in both lists)
1035            for (size_t i=0 ; i<dc ; i++) {
1036                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1037                if (j < 0) {
1038                    // in drawing state but not in current state
1039                    if (!draw[i].isMainDisplay()) {
1040                        mDisplays.removeItem(draw.keyAt(i));
1041                    } else {
1042                        ALOGW("trying to remove the main display");
1043                    }
1044                } else {
1045                    // this display is in both lists. see if something changed.
1046                    const DisplayDeviceState& state(curr[j]);
1047                    const wp<IBinder>& display(curr.keyAt(j));
1048                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1049                        // changing the surface is like destroying and
1050                        // recreating the DisplayDevice, so we just remove it
1051                        // from the drawing state, so that it get re-added
1052                        // below.
1053                        mDisplays.removeItem(display);
1054                        mDrawingState.displays.removeItemsAt(i);
1055                        dc--; i--;
1056                        // at this point we must loop to the next item
1057                        continue;
1058                    }
1059
1060                    const sp<DisplayDevice>& disp(getDisplayDevice(display));
1061                    if (disp != NULL) {
1062                        if (state.layerStack != draw[i].layerStack) {
1063                            disp->setLayerStack(state.layerStack);
1064                        }
1065                        if ((state.orientation != draw[i].orientation)
1066                                || (state.viewport != draw[i].viewport)
1067                                || (state.frame != draw[i].frame))
1068                        {
1069                            disp->setProjection(state.orientation,
1070                                    state.viewport, state.frame);
1071                        }
1072
1073                        // Walk through all the layers in currentLayers,
1074                        // and update their transform hint.
1075                        //
1076                        // TODO: we could be much more clever about which
1077                        // layers we touch and how often we do these updates
1078                        // (e.g. only touch the layers associated with this
1079                        // display, and only on a rotation).
1080                        for (size_t i = 0; i < count; i++) {
1081                            const sp<LayerBase>& layerBase = currentLayers[i];
1082                            layerBase->updateTransformHint();
1083                        }
1084                    }
1085                }
1086            }
1087
1088            // find displays that were added
1089            // (ie: in current state but not in drawing state)
1090            for (size_t i=0 ; i<cc ; i++) {
1091                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1092                    const DisplayDeviceState& state(curr[i]);
1093
1094                    sp<FramebufferSurface> fbs;
1095                    sp<SurfaceTextureClient> stc;
1096                    if (!state.isVirtualDisplay()) {
1097
1098                        ALOGE_IF(state.surface!=NULL,
1099                                "adding a supported display, but rendering "
1100                                "surface is provided (%p), ignoring it",
1101                                state.surface.get());
1102
1103                        // for supported (by hwc) displays we provide our
1104                        // own rendering surface
1105                        fbs = new FramebufferSurface(*mHwc, state.type);
1106                        stc = new SurfaceTextureClient(
1107                                static_cast< sp<ISurfaceTexture> >(fbs->getBufferQueue()));
1108                    } else {
1109                        if (state.surface != NULL) {
1110                            stc = new SurfaceTextureClient(state.surface);
1111                        }
1112                    }
1113
1114                    const wp<IBinder>& display(curr.keyAt(i));
1115                    if (stc != NULL) {
1116                        sp<DisplayDevice> hw = new DisplayDevice(this,
1117                                state.type, display, stc, fbs, mEGLConfig);
1118                        hw->setLayerStack(state.layerStack);
1119                        hw->setProjection(state.orientation,
1120                                state.viewport, state.frame);
1121                        hw->setDisplayName(state.displayName);
1122                        mDisplays.add(display, hw);
1123                        if (hw->getDisplayType() < DisplayDevice::NUM_DISPLAY_TYPES) {
1124                            // notify the system that this display is now up
1125                            // (note onScreenAcquired() is safe to call from
1126                            // here because we're in the main thread)
1127                            onScreenAcquired(hw);
1128                        }
1129                    }
1130                }
1131            }
1132        }
1133    }
1134
1135    /*
1136     * Perform our own transaction if needed
1137     */
1138
1139    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1140    if (currentLayers.size() > previousLayers.size()) {
1141        // layers have been added
1142        mVisibleRegionsDirty = true;
1143    }
1144
1145    // some layers might have been removed, so
1146    // we need to update the regions they're exposing.
1147    if (mLayersRemoved) {
1148        mLayersRemoved = false;
1149        mVisibleRegionsDirty = true;
1150        const size_t count = previousLayers.size();
1151        for (size_t i=0 ; i<count ; i++) {
1152            const sp<LayerBase>& layer(previousLayers[i]);
1153            if (currentLayers.indexOf(layer) < 0) {
1154                // this layer is not visible anymore
1155                // TODO: we could traverse the tree from front to back and
1156                //       compute the actual visible region
1157                // TODO: we could cache the transformed region
1158                const Layer::State& s(layer->drawingState());
1159                Region visibleReg = s.transform.transform(
1160                        Region(Rect(s.active.w, s.active.h)));
1161                invalidateLayerStack(s.layerStack, visibleReg);
1162            }
1163        }
1164    }
1165
1166    commitTransaction();
1167}
1168
1169void SurfaceFlinger::commitTransaction()
1170{
1171    if (!mLayersPendingRemoval.isEmpty()) {
1172        // Notify removed layers now that they can't be drawn from
1173        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1174            mLayersPendingRemoval[i]->onRemoved();
1175        }
1176        mLayersPendingRemoval.clear();
1177    }
1178
1179    mDrawingState = mCurrentState;
1180    mTransationPending = false;
1181    mTransactionCV.broadcast();
1182}
1183
1184void SurfaceFlinger::computeVisibleRegions(
1185        const LayerVector& currentLayers, uint32_t layerStack,
1186        Region& outDirtyRegion, Region& outOpaqueRegion)
1187{
1188    ATRACE_CALL();
1189
1190    Region aboveOpaqueLayers;
1191    Region aboveCoveredLayers;
1192    Region dirty;
1193
1194    outDirtyRegion.clear();
1195
1196    size_t i = currentLayers.size();
1197    while (i--) {
1198        const sp<LayerBase>& layer = currentLayers[i];
1199
1200        // start with the whole surface at its current location
1201        const Layer::State& s(layer->drawingState());
1202
1203        // only consider the layers on the given later stack
1204        if (s.layerStack != layerStack)
1205            continue;
1206
1207        /*
1208         * opaqueRegion: area of a surface that is fully opaque.
1209         */
1210        Region opaqueRegion;
1211
1212        /*
1213         * visibleRegion: area of a surface that is visible on screen
1214         * and not fully transparent. This is essentially the layer's
1215         * footprint minus the opaque regions above it.
1216         * Areas covered by a translucent surface are considered visible.
1217         */
1218        Region visibleRegion;
1219
1220        /*
1221         * coveredRegion: area of a surface that is covered by all
1222         * visible regions above it (which includes the translucent areas).
1223         */
1224        Region coveredRegion;
1225
1226
1227        // handle hidden surfaces by setting the visible region to empty
1228        if (CC_LIKELY(layer->isVisible())) {
1229            const bool translucent = !layer->isOpaque();
1230            Rect bounds(layer->computeBounds());
1231            visibleRegion.set(bounds);
1232            if (!visibleRegion.isEmpty()) {
1233                // Remove the transparent area from the visible region
1234                if (translucent) {
1235                    Region transparentRegionScreen;
1236                    const Transform tr(s.transform);
1237                    if (tr.transformed()) {
1238                        if (tr.preserveRects()) {
1239                            // transform the transparent region
1240                            transparentRegionScreen = tr.transform(s.transparentRegion);
1241                        } else {
1242                            // transformation too complex, can't do the
1243                            // transparent region optimization.
1244                            transparentRegionScreen.clear();
1245                        }
1246                    } else {
1247                        transparentRegionScreen = s.transparentRegion;
1248                    }
1249                    visibleRegion.subtractSelf(transparentRegionScreen);
1250                }
1251
1252                // compute the opaque region
1253                const int32_t layerOrientation = s.transform.getOrientation();
1254                if (s.alpha==255 && !translucent &&
1255                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1256                    // the opaque region is the layer's footprint
1257                    opaqueRegion = visibleRegion;
1258                }
1259            }
1260        }
1261
1262        // Clip the covered region to the visible region
1263        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1264
1265        // Update aboveCoveredLayers for next (lower) layer
1266        aboveCoveredLayers.orSelf(visibleRegion);
1267
1268        // subtract the opaque region covered by the layers above us
1269        visibleRegion.subtractSelf(aboveOpaqueLayers);
1270
1271        // compute this layer's dirty region
1272        if (layer->contentDirty) {
1273            // we need to invalidate the whole region
1274            dirty = visibleRegion;
1275            // as well, as the old visible region
1276            dirty.orSelf(layer->visibleRegion);
1277            layer->contentDirty = false;
1278        } else {
1279            /* compute the exposed region:
1280             *   the exposed region consists of two components:
1281             *   1) what's VISIBLE now and was COVERED before
1282             *   2) what's EXPOSED now less what was EXPOSED before
1283             *
1284             * note that (1) is conservative, we start with the whole
1285             * visible region but only keep what used to be covered by
1286             * something -- which mean it may have been exposed.
1287             *
1288             * (2) handles areas that were not covered by anything but got
1289             * exposed because of a resize.
1290             */
1291            const Region newExposed = visibleRegion - coveredRegion;
1292            const Region oldVisibleRegion = layer->visibleRegion;
1293            const Region oldCoveredRegion = layer->coveredRegion;
1294            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1295            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1296        }
1297        dirty.subtractSelf(aboveOpaqueLayers);
1298
1299        // accumulate to the screen dirty region
1300        outDirtyRegion.orSelf(dirty);
1301
1302        // Update aboveOpaqueLayers for next (lower) layer
1303        aboveOpaqueLayers.orSelf(opaqueRegion);
1304
1305        // Store the visible region is screen space
1306        layer->setVisibleRegion(visibleRegion);
1307        layer->setCoveredRegion(coveredRegion);
1308    }
1309
1310    outOpaqueRegion = aboveOpaqueLayers;
1311}
1312
1313void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1314        const Region& dirty) {
1315    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1316        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1317        if (hw->getLayerStack() == layerStack) {
1318            hw->dirtyRegion.orSelf(dirty);
1319        }
1320    }
1321}
1322
1323void SurfaceFlinger::handlePageFlip()
1324{
1325    Region dirtyRegion;
1326
1327    bool visibleRegions = false;
1328    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1329    const size_t count = currentLayers.size();
1330    for (size_t i=0 ; i<count ; i++) {
1331        const sp<LayerBase>& layer(currentLayers[i]);
1332        const Region dirty(layer->latchBuffer(visibleRegions));
1333        const Layer::State& s(layer->drawingState());
1334        invalidateLayerStack(s.layerStack, dirty);
1335    }
1336
1337    mVisibleRegionsDirty |= visibleRegions;
1338}
1339
1340void SurfaceFlinger::invalidateHwcGeometry()
1341{
1342    mHwWorkListDirty = true;
1343}
1344
1345
1346void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1347        const Region& inDirtyRegion)
1348{
1349    Region dirtyRegion(inDirtyRegion);
1350
1351    // compute the invalid region
1352    hw->swapRegion.orSelf(dirtyRegion);
1353
1354    uint32_t flags = hw->getFlags();
1355    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1356        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1357        // takes a rectangle, we must make sure to update that whole
1358        // rectangle in that case
1359        dirtyRegion.set(hw->swapRegion.bounds());
1360    } else {
1361        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1362            // We need to redraw the rectangle that will be updated
1363            // (pushed to the framebuffer).
1364            // This is needed because PARTIAL_UPDATES only takes one
1365            // rectangle instead of a region (see DisplayDevice::flip())
1366            dirtyRegion.set(hw->swapRegion.bounds());
1367        } else {
1368            // we need to redraw everything (the whole screen)
1369            dirtyRegion.set(hw->bounds());
1370            hw->swapRegion = dirtyRegion;
1371        }
1372    }
1373
1374    doComposeSurfaces(hw, dirtyRegion);
1375
1376    // update the swap region and clear the dirty region
1377    hw->swapRegion.orSelf(dirtyRegion);
1378
1379    // swap buffers (presentation)
1380    hw->swapBuffers(getHwComposer());
1381}
1382
1383void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1384{
1385    const int32_t id = hw->getHwcDisplayId();
1386    HWComposer& hwc(getHwComposer());
1387    HWComposer::LayerListIterator cur = hwc.begin(id);
1388    const HWComposer::LayerListIterator end = hwc.end(id);
1389
1390    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1391    if (hasGlesComposition) {
1392        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1393
1394        // set the frame buffer
1395        glMatrixMode(GL_MODELVIEW);
1396        glLoadIdentity();
1397
1398        // Never touch the framebuffer if we don't have any framebuffer layers
1399        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1400        if (hasHwcComposition) {
1401            // when using overlays, we assume a fully transparent framebuffer
1402            // NOTE: we could reduce how much we need to clear, for instance
1403            // remove where there are opaque FB layers. however, on some
1404            // GPUs doing a "clean slate" glClear might be more efficient.
1405            // We'll revisit later if needed.
1406            glClearColor(0, 0, 0, 0);
1407            glClear(GL_COLOR_BUFFER_BIT);
1408        } else {
1409            const Region region(hw->undefinedRegion.intersect(dirty));
1410            // screen is already cleared here
1411            if (!region.isEmpty()) {
1412                // can happen with SurfaceView
1413                drawWormhole(hw, region);
1414            }
1415        }
1416    }
1417
1418    /*
1419     * and then, render the layers targeted at the framebuffer
1420     */
1421
1422    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1423    const size_t count = layers.size();
1424    const Transform& tr = hw->getTransform();
1425    if (cur != end) {
1426        // we're using h/w composer
1427        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1428            const sp<LayerBase>& layer(layers[i]);
1429            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1430            if (!clip.isEmpty()) {
1431                switch (cur->getCompositionType()) {
1432                    case HWC_OVERLAY: {
1433                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1434                                && i
1435                                && layer->isOpaque()
1436                                && hasGlesComposition) {
1437                            // never clear the very first layer since we're
1438                            // guaranteed the FB is already cleared
1439                            layer->clearWithOpenGL(hw, clip);
1440                        }
1441                        break;
1442                    }
1443                    case HWC_FRAMEBUFFER: {
1444                        layer->draw(hw, clip);
1445                        break;
1446                    }
1447                    case HWC_FRAMEBUFFER_TARGET: {
1448                        // this should not happen as the iterator shouldn't
1449                        // let us get there.
1450                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1451                        break;
1452                    }
1453                }
1454            }
1455            layer->setAcquireFence(hw, *cur);
1456        }
1457    } else {
1458        // we're not using h/w composer
1459        for (size_t i=0 ; i<count ; ++i) {
1460            const sp<LayerBase>& layer(layers[i]);
1461            const Region clip(dirty.intersect(
1462                    tr.transform(layer->visibleRegion)));
1463            if (!clip.isEmpty()) {
1464                layer->draw(hw, clip);
1465            }
1466        }
1467    }
1468}
1469
1470void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1471        const Region& region) const
1472{
1473    glDisable(GL_TEXTURE_EXTERNAL_OES);
1474    glDisable(GL_TEXTURE_2D);
1475    glDisable(GL_BLEND);
1476    glColor4f(0,0,0,0);
1477
1478    const int32_t height = hw->getHeight();
1479    Region::const_iterator it = region.begin();
1480    Region::const_iterator const end = region.end();
1481    while (it != end) {
1482        const Rect& r = *it++;
1483        GLfloat vertices[][2] = {
1484                { r.left,  height - r.top },
1485                { r.left,  height - r.bottom },
1486                { r.right, height - r.bottom },
1487                { r.right, height - r.top }
1488        };
1489        glVertexPointer(2, GL_FLOAT, 0, vertices);
1490        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1491    }
1492}
1493
1494ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1495        const sp<LayerBaseClient>& lbc)
1496{
1497    // attach this layer to the client
1498    size_t name = client->attachLayer(lbc);
1499
1500    // add this layer to the current state list
1501    Mutex::Autolock _l(mStateLock);
1502    mCurrentState.layersSortedByZ.add(lbc);
1503
1504    return ssize_t(name);
1505}
1506
1507status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1508{
1509    Mutex::Autolock _l(mStateLock);
1510    status_t err = purgatorizeLayer_l(layer);
1511    if (err == NO_ERROR)
1512        setTransactionFlags(eTransactionNeeded);
1513    return err;
1514}
1515
1516status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1517{
1518    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1519    if (index >= 0) {
1520        mLayersRemoved = true;
1521        return NO_ERROR;
1522    }
1523    return status_t(index);
1524}
1525
1526status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1527{
1528    // First add the layer to the purgatory list, which makes sure it won't
1529    // go away, then remove it from the main list (through a transaction).
1530    ssize_t err = removeLayer_l(layerBase);
1531    if (err >= 0) {
1532        mLayerPurgatory.add(layerBase);
1533    }
1534
1535    mLayersPendingRemoval.push(layerBase);
1536
1537    // it's possible that we don't find a layer, because it might
1538    // have been destroyed already -- this is not technically an error
1539    // from the user because there is a race between Client::destroySurface(),
1540    // ~Client() and ~ISurface().
1541    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1542}
1543
1544uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1545{
1546    return android_atomic_release_load(&mTransactionFlags);
1547}
1548
1549uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1550{
1551    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1552}
1553
1554uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1555{
1556    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1557    if ((old & flags)==0) { // wake the server up
1558        signalTransaction();
1559    }
1560    return old;
1561}
1562
1563void SurfaceFlinger::setTransactionState(
1564        const Vector<ComposerState>& state,
1565        const Vector<DisplayState>& displays,
1566        uint32_t flags)
1567{
1568    Mutex::Autolock _l(mStateLock);
1569    uint32_t transactionFlags = 0;
1570
1571    size_t count = displays.size();
1572    for (size_t i=0 ; i<count ; i++) {
1573        const DisplayState& s(displays[i]);
1574        transactionFlags |= setDisplayStateLocked(s);
1575    }
1576
1577    count = state.size();
1578    for (size_t i=0 ; i<count ; i++) {
1579        const ComposerState& s(state[i]);
1580        sp<Client> client( static_cast<Client *>(s.client.get()) );
1581        transactionFlags |= setClientStateLocked(client, s.state);
1582    }
1583
1584    if (transactionFlags) {
1585        // this triggers the transaction
1586        setTransactionFlags(transactionFlags);
1587
1588        // if this is a synchronous transaction, wait for it to take effect
1589        // before returning.
1590        if (flags & eSynchronous) {
1591            mTransationPending = true;
1592        }
1593        while (mTransationPending) {
1594            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1595            if (CC_UNLIKELY(err != NO_ERROR)) {
1596                // just in case something goes wrong in SF, return to the
1597                // called after a few seconds.
1598                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1599                mTransationPending = false;
1600                break;
1601            }
1602        }
1603    }
1604}
1605
1606uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1607{
1608    uint32_t flags = 0;
1609    DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1610    if (disp.isValid()) {
1611        const uint32_t what = s.what;
1612        if (what & DisplayState::eSurfaceChanged) {
1613            if (disp.surface->asBinder() != s.surface->asBinder()) {
1614                disp.surface = s.surface;
1615                flags |= eDisplayTransactionNeeded;
1616            }
1617        }
1618        if (what & DisplayState::eLayerStackChanged) {
1619            if (disp.layerStack != s.layerStack) {
1620                disp.layerStack = s.layerStack;
1621                flags |= eDisplayTransactionNeeded;
1622            }
1623        }
1624        if (what & DisplayState::eDisplayProjectionChanged) {
1625            if (disp.orientation != s.orientation) {
1626                disp.orientation = s.orientation;
1627                flags |= eDisplayTransactionNeeded;
1628            }
1629            if (disp.frame != s.frame) {
1630                disp.frame = s.frame;
1631                flags |= eDisplayTransactionNeeded;
1632            }
1633            if (disp.viewport != s.viewport) {
1634                disp.viewport = s.viewport;
1635                flags |= eDisplayTransactionNeeded;
1636            }
1637        }
1638    }
1639    return flags;
1640}
1641
1642uint32_t SurfaceFlinger::setClientStateLocked(
1643        const sp<Client>& client,
1644        const layer_state_t& s)
1645{
1646    uint32_t flags = 0;
1647    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1648    if (layer != 0) {
1649        const uint32_t what = s.what;
1650        if (what & layer_state_t::ePositionChanged) {
1651            if (layer->setPosition(s.x, s.y))
1652                flags |= eTraversalNeeded;
1653        }
1654        if (what & layer_state_t::eLayerChanged) {
1655            // NOTE: index needs to be calculated before we update the state
1656            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1657            if (layer->setLayer(s.z)) {
1658                mCurrentState.layersSortedByZ.removeAt(idx);
1659                mCurrentState.layersSortedByZ.add(layer);
1660                // we need traversal (state changed)
1661                // AND transaction (list changed)
1662                flags |= eTransactionNeeded|eTraversalNeeded;
1663            }
1664        }
1665        if (what & layer_state_t::eSizeChanged) {
1666            if (layer->setSize(s.w, s.h)) {
1667                flags |= eTraversalNeeded;
1668            }
1669        }
1670        if (what & layer_state_t::eAlphaChanged) {
1671            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1672                flags |= eTraversalNeeded;
1673        }
1674        if (what & layer_state_t::eMatrixChanged) {
1675            if (layer->setMatrix(s.matrix))
1676                flags |= eTraversalNeeded;
1677        }
1678        if (what & layer_state_t::eTransparentRegionChanged) {
1679            if (layer->setTransparentRegionHint(s.transparentRegion))
1680                flags |= eTraversalNeeded;
1681        }
1682        if (what & layer_state_t::eVisibilityChanged) {
1683            if (layer->setFlags(s.flags, s.mask))
1684                flags |= eTraversalNeeded;
1685        }
1686        if (what & layer_state_t::eCropChanged) {
1687            if (layer->setCrop(s.crop))
1688                flags |= eTraversalNeeded;
1689        }
1690        if (what & layer_state_t::eLayerStackChanged) {
1691            // NOTE: index needs to be calculated before we update the state
1692            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1693            if (layer->setLayerStack(s.layerStack)) {
1694                mCurrentState.layersSortedByZ.removeAt(idx);
1695                mCurrentState.layersSortedByZ.add(layer);
1696                // we need traversal (state changed)
1697                // AND transaction (list changed)
1698                flags |= eTransactionNeeded|eTraversalNeeded;
1699            }
1700        }
1701    }
1702    return flags;
1703}
1704
1705sp<ISurface> SurfaceFlinger::createLayer(
1706        ISurfaceComposerClient::surface_data_t* params,
1707        const String8& name,
1708        const sp<Client>& client,
1709       uint32_t w, uint32_t h, PixelFormat format,
1710        uint32_t flags)
1711{
1712    sp<LayerBaseClient> layer;
1713    sp<ISurface> surfaceHandle;
1714
1715    if (int32_t(w|h) < 0) {
1716        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1717                int(w), int(h));
1718        return surfaceHandle;
1719    }
1720
1721    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1722    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1723        case ISurfaceComposerClient::eFXSurfaceNormal:
1724            layer = createNormalLayer(client, w, h, flags, format);
1725            break;
1726        case ISurfaceComposerClient::eFXSurfaceBlur:
1727        case ISurfaceComposerClient::eFXSurfaceDim:
1728            layer = createDimLayer(client, w, h, flags);
1729            break;
1730        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1731            layer = createScreenshotLayer(client, w, h, flags);
1732            break;
1733    }
1734
1735    if (layer != 0) {
1736        layer->initStates(w, h, flags);
1737        layer->setName(name);
1738        ssize_t token = addClientLayer(client, layer);
1739        surfaceHandle = layer->getSurface();
1740        if (surfaceHandle != 0) {
1741            params->token = token;
1742            params->identity = layer->getIdentity();
1743        }
1744        setTransactionFlags(eTransactionNeeded);
1745    }
1746
1747    return surfaceHandle;
1748}
1749
1750sp<Layer> SurfaceFlinger::createNormalLayer(
1751        const sp<Client>& client,
1752        uint32_t w, uint32_t h, uint32_t flags,
1753        PixelFormat& format)
1754{
1755    // initialize the surfaces
1756    switch (format) {
1757    case PIXEL_FORMAT_TRANSPARENT:
1758    case PIXEL_FORMAT_TRANSLUCENT:
1759        format = PIXEL_FORMAT_RGBA_8888;
1760        break;
1761    case PIXEL_FORMAT_OPAQUE:
1762#ifdef NO_RGBX_8888
1763        format = PIXEL_FORMAT_RGB_565;
1764#else
1765        format = PIXEL_FORMAT_RGBX_8888;
1766#endif
1767        break;
1768    }
1769
1770#ifdef NO_RGBX_8888
1771    if (format == PIXEL_FORMAT_RGBX_8888)
1772        format = PIXEL_FORMAT_RGBA_8888;
1773#endif
1774
1775    sp<Layer> layer = new Layer(this, client);
1776    status_t err = layer->setBuffers(w, h, format, flags);
1777    if (CC_LIKELY(err != NO_ERROR)) {
1778        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1779        layer.clear();
1780    }
1781    return layer;
1782}
1783
1784sp<LayerDim> SurfaceFlinger::createDimLayer(
1785        const sp<Client>& client,
1786        uint32_t w, uint32_t h, uint32_t flags)
1787{
1788    sp<LayerDim> layer = new LayerDim(this, client);
1789    return layer;
1790}
1791
1792sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1793        const sp<Client>& client,
1794        uint32_t w, uint32_t h, uint32_t flags)
1795{
1796    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1797    return layer;
1798}
1799
1800status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1801{
1802    /*
1803     * called by the window manager, when a surface should be marked for
1804     * destruction.
1805     *
1806     * The surface is removed from the current and drawing lists, but placed
1807     * in the purgatory queue, so it's not destroyed right-away (we need
1808     * to wait for all client's references to go away first).
1809     */
1810
1811    status_t err = NAME_NOT_FOUND;
1812    Mutex::Autolock _l(mStateLock);
1813    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1814
1815    if (layer != 0) {
1816        err = purgatorizeLayer_l(layer);
1817        if (err == NO_ERROR) {
1818            setTransactionFlags(eTransactionNeeded);
1819        }
1820    }
1821    return err;
1822}
1823
1824status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1825{
1826    // called by ~ISurface() when all references are gone
1827    status_t err = NO_ERROR;
1828    sp<LayerBaseClient> l(layer.promote());
1829    if (l != NULL) {
1830        Mutex::Autolock _l(mStateLock);
1831        err = removeLayer_l(l);
1832        if (err == NAME_NOT_FOUND) {
1833            // The surface wasn't in the current list, which means it was
1834            // removed already, which means it is in the purgatory,
1835            // and need to be removed from there.
1836            ssize_t idx = mLayerPurgatory.remove(l);
1837            ALOGE_IF(idx < 0,
1838                    "layer=%p is not in the purgatory list", l.get());
1839        }
1840        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1841                "error removing layer=%p (%s)", l.get(), strerror(-err));
1842    }
1843    return err;
1844}
1845
1846// ---------------------------------------------------------------------------
1847
1848void SurfaceFlinger::onInitializeDisplays() {
1849    // reset screen orientation
1850    Vector<ComposerState> state;
1851    Vector<DisplayState> displays;
1852    DisplayState d;
1853    d.what = DisplayState::eDisplayProjectionChanged;
1854    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1855    d.orientation = DisplayState::eOrientationDefault;
1856    d.frame.makeInvalid();
1857    d.viewport.makeInvalid();
1858    displays.add(d);
1859    setTransactionState(state, displays, 0);
1860    onScreenAcquired(getDefaultDisplayDevice());
1861}
1862
1863void SurfaceFlinger::initializeDisplays() {
1864    class MessageScreenInitialized : public MessageBase {
1865        SurfaceFlinger* flinger;
1866    public:
1867        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1868        virtual bool handler() {
1869            flinger->onInitializeDisplays();
1870            return true;
1871        }
1872    };
1873    sp<MessageBase> msg = new MessageScreenInitialized(this);
1874    postMessageAsync(msg);  // we may be called from main thread, use async message
1875}
1876
1877
1878void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
1879    ALOGD("Screen about to return, flinger = %p", this);
1880    getHwComposer().acquire();
1881    hw->acquireScreen();
1882    if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1883        // FIXME: eventthread only knows about the main display right now
1884        mEventThread->onScreenAcquired();
1885    }
1886    mVisibleRegionsDirty = true;
1887    repaintEverything();
1888}
1889
1890void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
1891    ALOGD("About to give-up screen, flinger = %p", this);
1892    if (hw->isScreenAcquired()) {
1893        if (hw->getDisplayType() == DisplayDevice::DISPLAY_PRIMARY) {
1894            // FIXME: eventthread only knows about the main display right now
1895            mEventThread->onScreenReleased();
1896        }
1897        hw->releaseScreen();
1898        getHwComposer().release();
1899        mVisibleRegionsDirty = true;
1900        // from this point on, SF will stop drawing
1901    }
1902}
1903
1904void SurfaceFlinger::unblank() {
1905    class MessageScreenAcquired : public MessageBase {
1906        SurfaceFlinger* flinger;
1907    public:
1908        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1909        virtual bool handler() {
1910            // FIXME: should this be per-display?
1911            flinger->onScreenAcquired(flinger->getDefaultDisplayDevice());
1912            return true;
1913        }
1914    };
1915    sp<MessageBase> msg = new MessageScreenAcquired(this);
1916    postMessageSync(msg);
1917}
1918
1919void SurfaceFlinger::blank() {
1920    class MessageScreenReleased : public MessageBase {
1921        SurfaceFlinger* flinger;
1922    public:
1923        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1924        virtual bool handler() {
1925            // FIXME: should this be per-display?
1926            flinger->onScreenReleased(flinger->getDefaultDisplayDevice());
1927            return true;
1928        }
1929    };
1930    sp<MessageBase> msg = new MessageScreenReleased(this);
1931    postMessageSync(msg);
1932}
1933
1934// ---------------------------------------------------------------------------
1935
1936status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1937{
1938    const size_t SIZE = 4096;
1939    char buffer[SIZE];
1940    String8 result;
1941
1942    if (!PermissionCache::checkCallingPermission(sDump)) {
1943        snprintf(buffer, SIZE, "Permission Denial: "
1944                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1945                IPCThreadState::self()->getCallingPid(),
1946                IPCThreadState::self()->getCallingUid());
1947        result.append(buffer);
1948    } else {
1949        // Try to get the main lock, but don't insist if we can't
1950        // (this would indicate SF is stuck, but we want to be able to
1951        // print something in dumpsys).
1952        int retry = 3;
1953        while (mStateLock.tryLock()<0 && --retry>=0) {
1954            usleep(1000000);
1955        }
1956        const bool locked(retry >= 0);
1957        if (!locked) {
1958            snprintf(buffer, SIZE,
1959                    "SurfaceFlinger appears to be unresponsive, "
1960                    "dumping anyways (no locks held)\n");
1961            result.append(buffer);
1962        }
1963
1964        bool dumpAll = true;
1965        size_t index = 0;
1966        size_t numArgs = args.size();
1967        if (numArgs) {
1968            if ((index < numArgs) &&
1969                    (args[index] == String16("--list"))) {
1970                index++;
1971                listLayersLocked(args, index, result, buffer, SIZE);
1972                dumpAll = false;
1973            }
1974
1975            if ((index < numArgs) &&
1976                    (args[index] == String16("--latency"))) {
1977                index++;
1978                dumpStatsLocked(args, index, result, buffer, SIZE);
1979                dumpAll = false;
1980            }
1981
1982            if ((index < numArgs) &&
1983                    (args[index] == String16("--latency-clear"))) {
1984                index++;
1985                clearStatsLocked(args, index, result, buffer, SIZE);
1986                dumpAll = false;
1987            }
1988        }
1989
1990        if (dumpAll) {
1991            dumpAllLocked(result, buffer, SIZE);
1992        }
1993
1994        if (locked) {
1995            mStateLock.unlock();
1996        }
1997    }
1998    write(fd, result.string(), result.size());
1999    return NO_ERROR;
2000}
2001
2002void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2003        String8& result, char* buffer, size_t SIZE) const
2004{
2005    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2006    const size_t count = currentLayers.size();
2007    for (size_t i=0 ; i<count ; i++) {
2008        const sp<LayerBase>& layer(currentLayers[i]);
2009        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2010        result.append(buffer);
2011    }
2012}
2013
2014void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2015        String8& result, char* buffer, size_t SIZE) const
2016{
2017    String8 name;
2018    if (index < args.size()) {
2019        name = String8(args[index]);
2020        index++;
2021    }
2022
2023    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2024    const size_t count = currentLayers.size();
2025    for (size_t i=0 ; i<count ; i++) {
2026        const sp<LayerBase>& layer(currentLayers[i]);
2027        if (name.isEmpty()) {
2028            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2029            result.append(buffer);
2030        }
2031        if (name.isEmpty() || (name == layer->getName())) {
2032            layer->dumpStats(result, buffer, SIZE);
2033        }
2034    }
2035}
2036
2037void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2038        String8& result, char* buffer, size_t SIZE) const
2039{
2040    String8 name;
2041    if (index < args.size()) {
2042        name = String8(args[index]);
2043        index++;
2044    }
2045
2046    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2047    const size_t count = currentLayers.size();
2048    for (size_t i=0 ; i<count ; i++) {
2049        const sp<LayerBase>& layer(currentLayers[i]);
2050        if (name.isEmpty() || (name == layer->getName())) {
2051            layer->clearStats();
2052        }
2053    }
2054}
2055
2056/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2057{
2058    static const char* config =
2059            " [sf"
2060#ifdef NO_RGBX_8888
2061            " NO_RGBX_8888"
2062#endif
2063#ifdef HAS_CONTEXT_PRIORITY
2064            " HAS_CONTEXT_PRIORITY"
2065#endif
2066#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2067            " NEVER_DEFAULT_TO_ASYNC_MODE"
2068#endif
2069#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2070            " TARGET_DISABLE_TRIPLE_BUFFERING"
2071#endif
2072            "]";
2073    result.append(config);
2074}
2075
2076void SurfaceFlinger::dumpAllLocked(
2077        String8& result, char* buffer, size_t SIZE) const
2078{
2079    // figure out if we're stuck somewhere
2080    const nsecs_t now = systemTime();
2081    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2082    const nsecs_t inTransaction(mDebugInTransaction);
2083    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2084    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2085
2086    /*
2087     * Dump library configuration.
2088     */
2089    result.append("Build configuration:");
2090    appendSfConfigString(result);
2091    appendUiConfigString(result);
2092    appendGuiConfigString(result);
2093    result.append("\n");
2094
2095    /*
2096     * Dump the visible layer list
2097     */
2098    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2099    const size_t count = currentLayers.size();
2100    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2101    result.append(buffer);
2102    for (size_t i=0 ; i<count ; i++) {
2103        const sp<LayerBase>& layer(currentLayers[i]);
2104        layer->dump(result, buffer, SIZE);
2105    }
2106
2107    /*
2108     * Dump the layers in the purgatory
2109     */
2110
2111    const size_t purgatorySize = mLayerPurgatory.size();
2112    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2113    result.append(buffer);
2114    for (size_t i=0 ; i<purgatorySize ; i++) {
2115        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2116        layer->shortDump(result, buffer, SIZE);
2117    }
2118
2119    /*
2120     * Dump Display state
2121     */
2122
2123    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2124    result.append(buffer);
2125    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2126        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2127        hw->dump(result, buffer, SIZE);
2128    }
2129
2130    /*
2131     * Dump SurfaceFlinger global state
2132     */
2133
2134    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2135    result.append(buffer);
2136
2137    HWComposer& hwc(getHwComposer());
2138    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2139    const GLExtensions& extensions(GLExtensions::getInstance());
2140    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2141            extensions.getVendor(),
2142            extensions.getRenderer(),
2143            extensions.getVersion());
2144    result.append(buffer);
2145
2146    snprintf(buffer, SIZE, "EGL : %s\n",
2147            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2148    result.append(buffer);
2149
2150    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2151    result.append(buffer);
2152
2153    hw->undefinedRegion.dump(result, "undefinedRegion");
2154    snprintf(buffer, SIZE,
2155            "  orientation=%d, canDraw=%d\n",
2156            hw->getOrientation(), hw->canDraw());
2157    result.append(buffer);
2158    snprintf(buffer, SIZE,
2159            "  last eglSwapBuffers() time: %f us\n"
2160            "  last transaction time     : %f us\n"
2161            "  transaction-flags         : %08x\n"
2162            "  refresh-rate              : %f fps\n"
2163            "  x-dpi                     : %f\n"
2164            "  y-dpi                     : %f\n",
2165            mLastSwapBufferTime/1000.0,
2166            mLastTransactionTime/1000.0,
2167            mTransactionFlags,
2168            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2169            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2170            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2171    result.append(buffer);
2172
2173    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2174            inSwapBuffersDuration/1000.0);
2175    result.append(buffer);
2176
2177    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2178            inTransactionDuration/1000.0);
2179    result.append(buffer);
2180
2181    /*
2182     * VSYNC state
2183     */
2184    mEventThread->dump(result, buffer, SIZE);
2185
2186    /*
2187     * Dump HWComposer state
2188     */
2189    snprintf(buffer, SIZE, "h/w composer state:\n");
2190    result.append(buffer);
2191    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2192            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2193                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2194    result.append(buffer);
2195    hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2196
2197    /*
2198     * Dump gralloc state
2199     */
2200    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2201    alloc.dump(result);
2202}
2203
2204bool SurfaceFlinger::startDdmConnection()
2205{
2206    void* libddmconnection_dso =
2207            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2208    if (!libddmconnection_dso) {
2209        return false;
2210    }
2211    void (*DdmConnection_start)(const char* name);
2212    DdmConnection_start =
2213            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2214    if (!DdmConnection_start) {
2215        dlclose(libddmconnection_dso);
2216        return false;
2217    }
2218    (*DdmConnection_start)(getServiceName());
2219    return true;
2220}
2221
2222status_t SurfaceFlinger::onTransact(
2223    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2224{
2225    switch (code) {
2226        case CREATE_CONNECTION:
2227        case SET_TRANSACTION_STATE:
2228        case BOOT_FINISHED:
2229        case BLANK:
2230        case UNBLANK:
2231        {
2232            // codes that require permission check
2233            IPCThreadState* ipc = IPCThreadState::self();
2234            const int pid = ipc->getCallingPid();
2235            const int uid = ipc->getCallingUid();
2236            if ((uid != AID_GRAPHICS) &&
2237                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2238                ALOGE("Permission Denial: "
2239                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2240                return PERMISSION_DENIED;
2241            }
2242            break;
2243        }
2244        case CAPTURE_SCREEN:
2245        {
2246            // codes that require permission check
2247            IPCThreadState* ipc = IPCThreadState::self();
2248            const int pid = ipc->getCallingPid();
2249            const int uid = ipc->getCallingUid();
2250            if ((uid != AID_GRAPHICS) &&
2251                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2252                ALOGE("Permission Denial: "
2253                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2254                return PERMISSION_DENIED;
2255            }
2256            break;
2257        }
2258    }
2259
2260    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2261    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2262        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2263        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2264            IPCThreadState* ipc = IPCThreadState::self();
2265            const int pid = ipc->getCallingPid();
2266            const int uid = ipc->getCallingUid();
2267            ALOGE("Permission Denial: "
2268                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2269            return PERMISSION_DENIED;
2270        }
2271        int n;
2272        switch (code) {
2273            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2274            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2275                return NO_ERROR;
2276            case 1002:  // SHOW_UPDATES
2277                n = data.readInt32();
2278                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2279                invalidateHwcGeometry();
2280                repaintEverything();
2281                return NO_ERROR;
2282            case 1004:{ // repaint everything
2283                repaintEverything();
2284                return NO_ERROR;
2285            }
2286            case 1005:{ // force transaction
2287                setTransactionFlags(
2288                        eTransactionNeeded|
2289                        eDisplayTransactionNeeded|
2290                        eTraversalNeeded);
2291                return NO_ERROR;
2292            }
2293            case 1006:{ // send empty update
2294                signalRefresh();
2295                return NO_ERROR;
2296            }
2297            case 1008:  // toggle use of hw composer
2298                n = data.readInt32();
2299                mDebugDisableHWC = n ? 1 : 0;
2300                invalidateHwcGeometry();
2301                repaintEverything();
2302                return NO_ERROR;
2303            case 1009:  // toggle use of transform hint
2304                n = data.readInt32();
2305                mDebugDisableTransformHint = n ? 1 : 0;
2306                invalidateHwcGeometry();
2307                repaintEverything();
2308                return NO_ERROR;
2309            case 1010:  // interrogate.
2310                reply->writeInt32(0);
2311                reply->writeInt32(0);
2312                reply->writeInt32(mDebugRegion);
2313                reply->writeInt32(0);
2314                reply->writeInt32(mDebugDisableHWC);
2315                return NO_ERROR;
2316            case 1013: {
2317                Mutex::Autolock _l(mStateLock);
2318                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2319                reply->writeInt32(hw->getPageFlipCount());
2320            }
2321            return NO_ERROR;
2322        }
2323    }
2324    return err;
2325}
2326
2327void SurfaceFlinger::repaintEverything() {
2328    android_atomic_or(1, &mRepaintEverything);
2329    signalTransaction();
2330}
2331
2332// ---------------------------------------------------------------------------
2333
2334status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2335        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2336{
2337    Mutex::Autolock _l(mStateLock);
2338    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2339}
2340
2341status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2342        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2343{
2344    ATRACE_CALL();
2345
2346    if (!GLExtensions::getInstance().haveFramebufferObject())
2347        return INVALID_OPERATION;
2348
2349    // get screen geometry
2350    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2351    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2352    const uint32_t hw_w = hw->getWidth();
2353    const uint32_t hw_h = hw->getHeight();
2354    GLfloat u = 1;
2355    GLfloat v = 1;
2356
2357    // make sure to clear all GL error flags
2358    while ( glGetError() != GL_NO_ERROR ) ;
2359
2360    // create a FBO
2361    GLuint name, tname;
2362    glGenTextures(1, &tname);
2363    glBindTexture(GL_TEXTURE_2D, tname);
2364    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2365    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2366    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2367            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2368    if (glGetError() != GL_NO_ERROR) {
2369        while ( glGetError() != GL_NO_ERROR ) ;
2370        GLint tw = (2 << (31 - clz(hw_w)));
2371        GLint th = (2 << (31 - clz(hw_h)));
2372        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2373                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2374        u = GLfloat(hw_w) / tw;
2375        v = GLfloat(hw_h) / th;
2376    }
2377    glGenFramebuffersOES(1, &name);
2378    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2379    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2380            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2381
2382    // redraw the screen entirely...
2383    glDisable(GL_TEXTURE_EXTERNAL_OES);
2384    glDisable(GL_TEXTURE_2D);
2385    glClearColor(0,0,0,1);
2386    glClear(GL_COLOR_BUFFER_BIT);
2387    glMatrixMode(GL_MODELVIEW);
2388    glLoadIdentity();
2389    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2390    const size_t count = layers.size();
2391    for (size_t i=0 ; i<count ; ++i) {
2392        const sp<LayerBase>& layer(layers[i]);
2393        layer->draw(hw);
2394    }
2395
2396    hw->compositionComplete();
2397
2398    // back to main framebuffer
2399    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2400    glDeleteFramebuffersOES(1, &name);
2401
2402    *textureName = tname;
2403    *uOut = u;
2404    *vOut = v;
2405    return NO_ERROR;
2406}
2407
2408// ---------------------------------------------------------------------------
2409
2410status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2411        sp<IMemoryHeap>* heap,
2412        uint32_t* w, uint32_t* h, PixelFormat* f,
2413        uint32_t sw, uint32_t sh,
2414        uint32_t minLayerZ, uint32_t maxLayerZ)
2415{
2416    ATRACE_CALL();
2417
2418    status_t result = PERMISSION_DENIED;
2419
2420    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2421        return INVALID_OPERATION;
2422    }
2423
2424    // get screen geometry
2425    sp<const DisplayDevice> hw(getDisplayDevice(display));
2426    const uint32_t hw_w = hw->getWidth();
2427    const uint32_t hw_h = hw->getHeight();
2428
2429    // if we have secure windows on this display, never allow the screen capture
2430    if (hw->getSecureLayerVisible()) {
2431        ALOGW("FB is protected: PERMISSION_DENIED");
2432        return PERMISSION_DENIED;
2433    }
2434
2435    if ((sw > hw_w) || (sh > hw_h)) {
2436        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2437        return BAD_VALUE;
2438    }
2439
2440    sw = (!sw) ? hw_w : sw;
2441    sh = (!sh) ? hw_h : sh;
2442    const size_t size = sw * sh * 4;
2443    const bool filtering = sw != hw_w || sh != hw_h;
2444
2445//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2446//            sw, sh, minLayerZ, maxLayerZ);
2447
2448    // make sure to clear all GL error flags
2449    while ( glGetError() != GL_NO_ERROR ) ;
2450
2451    // create a FBO
2452    GLuint name, tname;
2453    glGenRenderbuffersOES(1, &tname);
2454    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2455    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2456
2457    glGenFramebuffersOES(1, &name);
2458    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2459    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2460            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2461
2462    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2463
2464    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2465
2466        // invert everything, b/c glReadPixel() below will invert the FB
2467        glViewport(0, 0, sw, sh);
2468        glMatrixMode(GL_PROJECTION);
2469        glPushMatrix();
2470        glLoadIdentity();
2471        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2472        glMatrixMode(GL_MODELVIEW);
2473
2474        // redraw the screen entirely...
2475        glClearColor(0,0,0,1);
2476        glClear(GL_COLOR_BUFFER_BIT);
2477
2478        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2479        const size_t count = layers.size();
2480        for (size_t i=0 ; i<count ; ++i) {
2481            const sp<LayerBase>& layer(layers[i]);
2482            const uint32_t z = layer->drawingState().z;
2483            if (z >= minLayerZ && z <= maxLayerZ) {
2484                if (filtering) layer->setFiltering(true);
2485                layer->draw(hw);
2486                if (filtering) layer->setFiltering(false);
2487            }
2488        }
2489
2490        // check for errors and return screen capture
2491        if (glGetError() != GL_NO_ERROR) {
2492            // error while rendering
2493            result = INVALID_OPERATION;
2494        } else {
2495            // allocate shared memory large enough to hold the
2496            // screen capture
2497            sp<MemoryHeapBase> base(
2498                    new MemoryHeapBase(size, 0, "screen-capture") );
2499            void* const ptr = base->getBase();
2500            if (ptr) {
2501                // capture the screen with glReadPixels()
2502                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2503                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2504                if (glGetError() == GL_NO_ERROR) {
2505                    *heap = base;
2506                    *w = sw;
2507                    *h = sh;
2508                    *f = PIXEL_FORMAT_RGBA_8888;
2509                    result = NO_ERROR;
2510                }
2511            } else {
2512                result = NO_MEMORY;
2513            }
2514        }
2515        glViewport(0, 0, hw_w, hw_h);
2516        glMatrixMode(GL_PROJECTION);
2517        glPopMatrix();
2518        glMatrixMode(GL_MODELVIEW);
2519    } else {
2520        result = BAD_VALUE;
2521    }
2522
2523    // release FBO resources
2524    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2525    glDeleteRenderbuffersOES(1, &tname);
2526    glDeleteFramebuffersOES(1, &name);
2527
2528    hw->compositionComplete();
2529
2530//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2531
2532    return result;
2533}
2534
2535
2536status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2537        sp<IMemoryHeap>* heap,
2538        uint32_t* width, uint32_t* height, PixelFormat* format,
2539        uint32_t sw, uint32_t sh,
2540        uint32_t minLayerZ, uint32_t maxLayerZ)
2541{
2542    if (CC_UNLIKELY(display == 0))
2543        return BAD_VALUE;
2544
2545    if (!GLExtensions::getInstance().haveFramebufferObject())
2546        return INVALID_OPERATION;
2547
2548    class MessageCaptureScreen : public MessageBase {
2549        SurfaceFlinger* flinger;
2550        sp<IBinder> display;
2551        sp<IMemoryHeap>* heap;
2552        uint32_t* w;
2553        uint32_t* h;
2554        PixelFormat* f;
2555        uint32_t sw;
2556        uint32_t sh;
2557        uint32_t minLayerZ;
2558        uint32_t maxLayerZ;
2559        status_t result;
2560    public:
2561        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2562                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2563                uint32_t sw, uint32_t sh,
2564                uint32_t minLayerZ, uint32_t maxLayerZ)
2565            : flinger(flinger), display(display),
2566              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2567              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2568              result(PERMISSION_DENIED)
2569        {
2570        }
2571        status_t getResult() const {
2572            return result;
2573        }
2574        virtual bool handler() {
2575            Mutex::Autolock _l(flinger->mStateLock);
2576            result = flinger->captureScreenImplLocked(display,
2577                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2578            return true;
2579        }
2580    };
2581
2582    sp<MessageBase> msg = new MessageCaptureScreen(this,
2583            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2584    status_t res = postMessageSync(msg);
2585    if (res == NO_ERROR) {
2586        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2587    }
2588    return res;
2589}
2590
2591// ---------------------------------------------------------------------------
2592
2593SurfaceFlinger::LayerVector::LayerVector() {
2594}
2595
2596SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2597    : SortedVector<sp<LayerBase> >(rhs) {
2598}
2599
2600int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2601    const void* rhs) const
2602{
2603    // sort layers per layer-stack, then by z-order and finally by sequence
2604    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2605    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2606
2607    uint32_t ls = l->currentState().layerStack;
2608    uint32_t rs = r->currentState().layerStack;
2609    if (ls != rs)
2610        return ls - rs;
2611
2612    uint32_t lz = l->currentState().z;
2613    uint32_t rz = r->currentState().z;
2614    if (lz != rz)
2615        return lz - rz;
2616
2617    return l->sequence - r->sequence;
2618}
2619
2620// ---------------------------------------------------------------------------
2621
2622SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2623    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2624}
2625
2626SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2627    : type(type), layerStack(0), orientation(0) {
2628    viewport.makeInvalid();
2629    frame.makeInvalid();
2630}
2631
2632// ---------------------------------------------------------------------------
2633
2634}; // namespace android
2635