SurfaceFlinger.cpp revision bc2d79ed7ada6243f3690f94ab512c0ddcdbed12
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <stdlib.h>
18#include <stdio.h>
19#include <stdint.h>
20#include <unistd.h>
21#include <fcntl.h>
22#include <errno.h>
23#include <math.h>
24#include <limits.h>
25#include <sys/types.h>
26#include <sys/stat.h>
27#include <sys/ioctl.h>
28
29#include <cutils/log.h>
30#include <cutils/properties.h>
31
32#include <binder/IPCThreadState.h>
33#include <binder/IServiceManager.h>
34#include <binder/MemoryHeapBase.h>
35#include <binder/PermissionCache.h>
36
37#include <utils/String8.h>
38#include <utils/String16.h>
39#include <utils/StopWatch.h>
40
41#include <ui/GraphicBufferAllocator.h>
42#include <ui/GraphicLog.h>
43#include <ui/PixelFormat.h>
44
45#include <pixelflinger/pixelflinger.h>
46#include <GLES/gl.h>
47
48#include "clz.h"
49#include "GLExtensions.h"
50#include "DdmConnection.h"
51#include "Layer.h"
52#include "LayerDim.h"
53#include "LayerScreenshot.h"
54#include "SurfaceFlinger.h"
55
56#include "DisplayHardware/DisplayHardware.h"
57#include "DisplayHardware/HWComposer.h"
58
59#include <private/surfaceflinger/SharedBufferStack.h>
60
61/* ideally AID_GRAPHICS would be in a semi-public header
62 * or there would be a way to map a user/group name to its id
63 */
64#ifndef AID_GRAPHICS
65#define AID_GRAPHICS 1003
66#endif
67
68#define EGL_VERSION_HW_ANDROID  0x3143
69
70#define DISPLAY_COUNT       1
71
72namespace android {
73// ---------------------------------------------------------------------------
74
75const String16 sHardwareTest("android.permission.HARDWARE_TEST");
76const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
77const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
78const String16 sDump("android.permission.DUMP");
79
80// ---------------------------------------------------------------------------
81
82SurfaceFlinger::SurfaceFlinger()
83    :   BnSurfaceComposer(), Thread(false),
84        mTransactionFlags(0),
85        mTransationPending(false),
86        mLayersRemoved(false),
87        mBootTime(systemTime()),
88        mVisibleRegionsDirty(false),
89        mHwWorkListDirty(false),
90        mElectronBeamAnimationMode(0),
91        mDebugRegion(0),
92        mDebugBackground(0),
93        mDebugDDMS(0),
94        mDebugDisableHWC(0),
95        mDebugDisableTransformHint(0),
96        mDebugInSwapBuffers(0),
97        mLastSwapBufferTime(0),
98        mDebugInTransaction(0),
99        mLastTransactionTime(0),
100        mBootFinished(false),
101        mConsoleSignals(0),
102        mSecureFrameBuffer(0)
103{
104    init();
105}
106
107void SurfaceFlinger::init()
108{
109    LOGI("SurfaceFlinger is starting");
110
111    // debugging stuff...
112    char value[PROPERTY_VALUE_MAX];
113
114    property_get("debug.sf.showupdates", value, "0");
115    mDebugRegion = atoi(value);
116
117    property_get("debug.sf.showbackground", value, "0");
118    mDebugBackground = atoi(value);
119
120    property_get("debug.sf.ddms", value, "0");
121    mDebugDDMS = atoi(value);
122    if (mDebugDDMS) {
123        DdmConnection::start(getServiceName());
124    }
125
126    LOGI_IF(mDebugRegion,       "showupdates enabled");
127    LOGI_IF(mDebugBackground,   "showbackground enabled");
128    LOGI_IF(mDebugDDMS,         "DDMS debugging enabled");
129}
130
131SurfaceFlinger::~SurfaceFlinger()
132{
133    glDeleteTextures(1, &mWormholeTexName);
134}
135
136sp<IMemoryHeap> SurfaceFlinger::getCblk() const
137{
138    return mServerHeap;
139}
140
141sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
142{
143    sp<ISurfaceComposerClient> bclient;
144    sp<Client> client(new Client(this));
145    status_t err = client->initCheck();
146    if (err == NO_ERROR) {
147        bclient = client;
148    }
149    return bclient;
150}
151
152sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
153{
154    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
155    return gba;
156}
157
158const GraphicPlane& SurfaceFlinger::graphicPlane(int dpy) const
159{
160    LOGE_IF(uint32_t(dpy) >= DISPLAY_COUNT, "Invalid DisplayID %d", dpy);
161    const GraphicPlane& plane(mGraphicPlanes[dpy]);
162    return plane;
163}
164
165GraphicPlane& SurfaceFlinger::graphicPlane(int dpy)
166{
167    return const_cast<GraphicPlane&>(
168        const_cast<SurfaceFlinger const *>(this)->graphicPlane(dpy));
169}
170
171void SurfaceFlinger::bootFinished()
172{
173    const nsecs_t now = systemTime();
174    const nsecs_t duration = now - mBootTime;
175    LOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
176    mBootFinished = true;
177
178    // wait patiently for the window manager death
179    const String16 name("window");
180    sp<IBinder> window(defaultServiceManager()->getService(name));
181    if (window != 0) {
182        window->linkToDeath(this);
183    }
184
185    // stop boot animation
186    property_set("ctl.stop", "bootanim");
187}
188
189void SurfaceFlinger::binderDied(const wp<IBinder>& who)
190{
191    // the window manager died on us. prepare its eulogy.
192
193    // reset screen orientation
194    setOrientation(0, eOrientationDefault, 0);
195
196    // restart the boot-animation
197    property_set("ctl.start", "bootanim");
198}
199
200void SurfaceFlinger::onFirstRef()
201{
202    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
203
204    // Wait for the main thread to be done with its initialization
205    mReadyToRunBarrier.wait();
206}
207
208static inline uint16_t pack565(int r, int g, int b) {
209    return (r<<11)|(g<<5)|b;
210}
211
212status_t SurfaceFlinger::readyToRun()
213{
214    LOGI(   "SurfaceFlinger's main thread ready to run. "
215            "Initializing graphics H/W...");
216
217    // we only support one display currently
218    int dpy = 0;
219
220    {
221        // initialize the main display
222        GraphicPlane& plane(graphicPlane(dpy));
223        DisplayHardware* const hw = new DisplayHardware(this, dpy);
224        plane.setDisplayHardware(hw);
225    }
226
227    // create the shared control-block
228    mServerHeap = new MemoryHeapBase(4096,
229            MemoryHeapBase::READ_ONLY, "SurfaceFlinger read-only heap");
230    LOGE_IF(mServerHeap==0, "can't create shared memory dealer");
231
232    mServerCblk = static_cast<surface_flinger_cblk_t*>(mServerHeap->getBase());
233    LOGE_IF(mServerCblk==0, "can't get to shared control block's address");
234
235    new(mServerCblk) surface_flinger_cblk_t;
236
237    // initialize primary screen
238    // (other display should be initialized in the same manner, but
239    // asynchronously, as they could come and go. None of this is supported
240    // yet).
241    const GraphicPlane& plane(graphicPlane(dpy));
242    const DisplayHardware& hw = plane.displayHardware();
243    const uint32_t w = hw.getWidth();
244    const uint32_t h = hw.getHeight();
245    const uint32_t f = hw.getFormat();
246    hw.makeCurrent();
247
248    // initialize the shared control block
249    mServerCblk->connected |= 1<<dpy;
250    display_cblk_t* dcblk = mServerCblk->displays + dpy;
251    memset(dcblk, 0, sizeof(display_cblk_t));
252    dcblk->w            = plane.getWidth();
253    dcblk->h            = plane.getHeight();
254    dcblk->format       = f;
255    dcblk->orientation  = ISurfaceComposer::eOrientationDefault;
256    dcblk->xdpi         = hw.getDpiX();
257    dcblk->ydpi         = hw.getDpiY();
258    dcblk->fps          = hw.getRefreshRate();
259    dcblk->density      = hw.getDensity();
260
261    // Initialize OpenGL|ES
262    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
263    glPixelStorei(GL_PACK_ALIGNMENT, 4);
264    glEnableClientState(GL_VERTEX_ARRAY);
265    glEnable(GL_SCISSOR_TEST);
266    glShadeModel(GL_FLAT);
267    glDisable(GL_DITHER);
268    glDisable(GL_CULL_FACE);
269
270    const uint16_t g0 = pack565(0x0F,0x1F,0x0F);
271    const uint16_t g1 = pack565(0x17,0x2f,0x17);
272    const uint16_t wormholeTexData[4] = { g0, g1, g1, g0 };
273    glGenTextures(1, &mWormholeTexName);
274    glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
275    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
276    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
277    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
278    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
279    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0,
280            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, wormholeTexData);
281
282    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
283    glGenTextures(1, &mProtectedTexName);
284    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
285    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
286    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
287    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
288    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
289    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
290            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
291
292    glViewport(0, 0, w, h);
293    glMatrixMode(GL_PROJECTION);
294    glLoadIdentity();
295    // put the origin in the left-bottom corner
296    glOrthof(0, w, 0, h, 0, 1); // l=0, r=w ; b=0, t=h
297
298    mReadyToRunBarrier.open();
299
300    /*
301     *  We're now ready to accept clients...
302     */
303
304    // start boot animation
305    property_set("ctl.start", "bootanim");
306
307    return NO_ERROR;
308}
309
310// ----------------------------------------------------------------------------
311#if 0
312#pragma mark -
313#pragma mark Events Handler
314#endif
315
316void SurfaceFlinger::waitForEvent()
317{
318    while (true) {
319        nsecs_t timeout = -1;
320        sp<MessageBase> msg = mEventQueue.waitMessage(timeout);
321        if (msg != 0) {
322            switch (msg->what) {
323                case MessageQueue::INVALIDATE:
324                    // invalidate message, just return to the main loop
325                    return;
326            }
327        }
328    }
329}
330
331void SurfaceFlinger::signalEvent() {
332    mEventQueue.invalidate();
333}
334
335bool SurfaceFlinger::authenticateSurfaceTexture(
336        const sp<ISurfaceTexture>& surfaceTexture) const {
337    Mutex::Autolock _l(mStateLock);
338    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
339
340    // Check the visible layer list for the ISurface
341    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
342    size_t count = currentLayers.size();
343    for (size_t i=0 ; i<count ; i++) {
344        const sp<LayerBase>& layer(currentLayers[i]);
345        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
346        if (lbc != NULL) {
347            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
348            if (lbcBinder == surfaceTextureBinder) {
349                return true;
350            }
351        }
352    }
353
354    // Check the layers in the purgatory.  This check is here so that if a
355    // SurfaceTexture gets destroyed before all the clients are done using it,
356    // the error will not be reported as "surface XYZ is not authenticated", but
357    // will instead fail later on when the client tries to use the surface,
358    // which should be reported as "surface XYZ returned an -ENODEV".  The
359    // purgatorized layers are no less authentic than the visible ones, so this
360    // should not cause any harm.
361    size_t purgatorySize =  mLayerPurgatory.size();
362    for (size_t i=0 ; i<purgatorySize ; i++) {
363        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
364        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
365        if (lbc != NULL) {
366            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
367            if (lbcBinder == surfaceTextureBinder) {
368                return true;
369            }
370        }
371    }
372
373    return false;
374}
375
376status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
377        nsecs_t reltime, uint32_t flags)
378{
379    return mEventQueue.postMessage(msg, reltime, flags);
380}
381
382status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
383        nsecs_t reltime, uint32_t flags)
384{
385    status_t res = mEventQueue.postMessage(msg, reltime, flags);
386    if (res == NO_ERROR) {
387        msg->wait();
388    }
389    return res;
390}
391
392// ----------------------------------------------------------------------------
393#if 0
394#pragma mark -
395#pragma mark Main loop
396#endif
397
398bool SurfaceFlinger::threadLoop()
399{
400    waitForEvent();
401
402    // check for transactions
403    if (UNLIKELY(mConsoleSignals)) {
404        handleConsoleEvents();
405    }
406
407    // if we're in a global transaction, don't do anything.
408    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
409    uint32_t transactionFlags = peekTransactionFlags(mask);
410    if (UNLIKELY(transactionFlags)) {
411        handleTransaction(transactionFlags);
412    }
413
414    // post surfaces (if needed)
415    handlePageFlip();
416
417    if (mDirtyRegion.isEmpty()) {
418        // nothing new to do.
419        return true;
420    }
421
422    if (UNLIKELY(mHwWorkListDirty)) {
423        // build the h/w work list
424        handleWorkList();
425    }
426
427    const DisplayHardware& hw(graphicPlane(0).displayHardware());
428    if (LIKELY(hw.canDraw())) {
429        // repaint the framebuffer (if needed)
430
431        const int index = hw.getCurrentBufferIndex();
432        GraphicLog& logger(GraphicLog::getInstance());
433
434        logger.log(GraphicLog::SF_REPAINT, index);
435        handleRepaint();
436
437        // inform the h/w that we're done compositing
438        logger.log(GraphicLog::SF_COMPOSITION_COMPLETE, index);
439        hw.compositionComplete();
440
441        logger.log(GraphicLog::SF_SWAP_BUFFERS, index);
442        postFramebuffer();
443
444        logger.log(GraphicLog::SF_REPAINT_DONE, index);
445    } else {
446        // pretend we did the post
447        hw.compositionComplete();
448        usleep(16667); // 60 fps period
449    }
450    return true;
451}
452
453void SurfaceFlinger::postFramebuffer()
454{
455    // this should never happen. we do the flip anyways so we don't
456    // risk to cause a deadlock with hwc
457    LOGW_IF(mSwapRegion.isEmpty(), "mSwapRegion is empty");
458    const DisplayHardware& hw(graphicPlane(0).displayHardware());
459    const nsecs_t now = systemTime();
460    mDebugInSwapBuffers = now;
461    hw.flip(mSwapRegion);
462    mLastSwapBufferTime = systemTime() - now;
463    mDebugInSwapBuffers = 0;
464    mSwapRegion.clear();
465}
466
467void SurfaceFlinger::handleConsoleEvents()
468{
469    // something to do with the console
470    const DisplayHardware& hw = graphicPlane(0).displayHardware();
471
472    int what = android_atomic_and(0, &mConsoleSignals);
473    if (what & eConsoleAcquired) {
474        hw.acquireScreen();
475        // this is a temporary work-around, eventually this should be called
476        // by the power-manager
477        SurfaceFlinger::turnElectronBeamOn(mElectronBeamAnimationMode);
478    }
479
480    if (what & eConsoleReleased) {
481        if (hw.isScreenAcquired()) {
482            hw.releaseScreen();
483        }
484    }
485
486    mDirtyRegion.set(hw.bounds());
487}
488
489void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
490{
491    Mutex::Autolock _l(mStateLock);
492    const nsecs_t now = systemTime();
493    mDebugInTransaction = now;
494
495    // Here we're guaranteed that some transaction flags are set
496    // so we can call handleTransactionLocked() unconditionally.
497    // We call getTransactionFlags(), which will also clear the flags,
498    // with mStateLock held to guarantee that mCurrentState won't change
499    // until the transaction is committed.
500
501    const uint32_t mask = eTransactionNeeded | eTraversalNeeded;
502    transactionFlags = getTransactionFlags(mask);
503    handleTransactionLocked(transactionFlags);
504
505    mLastTransactionTime = systemTime() - now;
506    mDebugInTransaction = 0;
507    invalidateHwcGeometry();
508    // here the transaction has been committed
509}
510
511void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
512{
513    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
514    const size_t count = currentLayers.size();
515
516    /*
517     * Traversal of the children
518     * (perform the transaction for each of them if needed)
519     */
520
521    const bool layersNeedTransaction = transactionFlags & eTraversalNeeded;
522    if (layersNeedTransaction) {
523        for (size_t i=0 ; i<count ; i++) {
524            const sp<LayerBase>& layer = currentLayers[i];
525            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
526            if (!trFlags) continue;
527
528            const uint32_t flags = layer->doTransaction(0);
529            if (flags & Layer::eVisibleRegion)
530                mVisibleRegionsDirty = true;
531        }
532    }
533
534    /*
535     * Perform our own transaction if needed
536     */
537
538    if (transactionFlags & eTransactionNeeded) {
539        if (mCurrentState.orientation != mDrawingState.orientation) {
540            // the orientation has changed, recompute all visible regions
541            // and invalidate everything.
542
543            const int dpy = 0;
544            const int orientation = mCurrentState.orientation;
545            // Currently unused: const uint32_t flags = mCurrentState.orientationFlags;
546            GraphicPlane& plane(graphicPlane(dpy));
547            plane.setOrientation(orientation);
548
549            // update the shared control block
550            const DisplayHardware& hw(plane.displayHardware());
551            volatile display_cblk_t* dcblk = mServerCblk->displays + dpy;
552            dcblk->orientation = orientation;
553            dcblk->w = plane.getWidth();
554            dcblk->h = plane.getHeight();
555
556            mVisibleRegionsDirty = true;
557            mDirtyRegion.set(hw.bounds());
558        }
559
560        if (currentLayers.size() > mDrawingState.layersSortedByZ.size()) {
561            // layers have been added
562            mVisibleRegionsDirty = true;
563        }
564
565        // some layers might have been removed, so
566        // we need to update the regions they're exposing.
567        if (mLayersRemoved) {
568            mLayersRemoved = false;
569            mVisibleRegionsDirty = true;
570            const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
571            const size_t count = previousLayers.size();
572            for (size_t i=0 ; i<count ; i++) {
573                const sp<LayerBase>& layer(previousLayers[i]);
574                if (currentLayers.indexOf( layer ) < 0) {
575                    // this layer is not visible anymore
576                    mDirtyRegionRemovedLayer.orSelf(layer->visibleRegionScreen);
577                }
578            }
579        }
580    }
581
582    commitTransaction();
583}
584
585void SurfaceFlinger::computeVisibleRegions(
586    const LayerVector& currentLayers, Region& dirtyRegion, Region& opaqueRegion)
587{
588    const GraphicPlane& plane(graphicPlane(0));
589    const Transform& planeTransform(plane.transform());
590    const DisplayHardware& hw(plane.displayHardware());
591    const Region screenRegion(hw.bounds());
592
593    Region aboveOpaqueLayers;
594    Region aboveCoveredLayers;
595    Region dirty;
596
597    bool secureFrameBuffer = false;
598
599    size_t i = currentLayers.size();
600    while (i--) {
601        const sp<LayerBase>& layer = currentLayers[i];
602        layer->validateVisibility(planeTransform);
603
604        // start with the whole surface at its current location
605        const Layer::State& s(layer->drawingState());
606
607        /*
608         * opaqueRegion: area of a surface that is fully opaque.
609         */
610        Region opaqueRegion;
611
612        /*
613         * visibleRegion: area of a surface that is visible on screen
614         * and not fully transparent. This is essentially the layer's
615         * footprint minus the opaque regions above it.
616         * Areas covered by a translucent surface are considered visible.
617         */
618        Region visibleRegion;
619
620        /*
621         * coveredRegion: area of a surface that is covered by all
622         * visible regions above it (which includes the translucent areas).
623         */
624        Region coveredRegion;
625
626
627        // handle hidden surfaces by setting the visible region to empty
628        if (LIKELY(!(s.flags & ISurfaceComposer::eLayerHidden) && s.alpha)) {
629            const bool translucent = !layer->isOpaque();
630            const Rect bounds(layer->visibleBounds());
631            visibleRegion.set(bounds);
632            visibleRegion.andSelf(screenRegion);
633            if (!visibleRegion.isEmpty()) {
634                // Remove the transparent area from the visible region
635                if (translucent) {
636                    visibleRegion.subtractSelf(layer->transparentRegionScreen);
637                }
638
639                // compute the opaque region
640                const int32_t layerOrientation = layer->getOrientation();
641                if (s.alpha==255 && !translucent &&
642                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
643                    // the opaque region is the layer's footprint
644                    opaqueRegion = visibleRegion;
645                }
646            }
647        }
648
649        // Clip the covered region to the visible region
650        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
651
652        // Update aboveCoveredLayers for next (lower) layer
653        aboveCoveredLayers.orSelf(visibleRegion);
654
655        // subtract the opaque region covered by the layers above us
656        visibleRegion.subtractSelf(aboveOpaqueLayers);
657
658        // compute this layer's dirty region
659        if (layer->contentDirty) {
660            // we need to invalidate the whole region
661            dirty = visibleRegion;
662            // as well, as the old visible region
663            dirty.orSelf(layer->visibleRegionScreen);
664            layer->contentDirty = false;
665        } else {
666            /* compute the exposed region:
667             *   the exposed region consists of two components:
668             *   1) what's VISIBLE now and was COVERED before
669             *   2) what's EXPOSED now less what was EXPOSED before
670             *
671             * note that (1) is conservative, we start with the whole
672             * visible region but only keep what used to be covered by
673             * something -- which mean it may have been exposed.
674             *
675             * (2) handles areas that were not covered by anything but got
676             * exposed because of a resize.
677             */
678            const Region newExposed = visibleRegion - coveredRegion;
679            const Region oldVisibleRegion = layer->visibleRegionScreen;
680            const Region oldCoveredRegion = layer->coveredRegionScreen;
681            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
682            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
683        }
684        dirty.subtractSelf(aboveOpaqueLayers);
685
686        // accumulate to the screen dirty region
687        dirtyRegion.orSelf(dirty);
688
689        // Update aboveOpaqueLayers for next (lower) layer
690        aboveOpaqueLayers.orSelf(opaqueRegion);
691
692        // Store the visible region is screen space
693        layer->setVisibleRegion(visibleRegion);
694        layer->setCoveredRegion(coveredRegion);
695
696        // If a secure layer is partially visible, lock-down the screen!
697        if (layer->isSecure() && !visibleRegion.isEmpty()) {
698            secureFrameBuffer = true;
699        }
700    }
701
702    // invalidate the areas where a layer was removed
703    dirtyRegion.orSelf(mDirtyRegionRemovedLayer);
704    mDirtyRegionRemovedLayer.clear();
705
706    mSecureFrameBuffer = secureFrameBuffer;
707    opaqueRegion = aboveOpaqueLayers;
708}
709
710
711void SurfaceFlinger::commitTransaction()
712{
713    mDrawingState = mCurrentState;
714    mTransationPending = false;
715    mTransactionCV.broadcast();
716}
717
718void SurfaceFlinger::handlePageFlip()
719{
720    bool visibleRegions = mVisibleRegionsDirty;
721    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
722    visibleRegions |= lockPageFlip(currentLayers);
723
724        const DisplayHardware& hw = graphicPlane(0).displayHardware();
725        const Region screenRegion(hw.bounds());
726        if (visibleRegions) {
727            Region opaqueRegion;
728            computeVisibleRegions(currentLayers, mDirtyRegion, opaqueRegion);
729
730            /*
731             *  rebuild the visible layer list
732             */
733            const size_t count = currentLayers.size();
734            mVisibleLayersSortedByZ.clear();
735            mVisibleLayersSortedByZ.setCapacity(count);
736            for (size_t i=0 ; i<count ; i++) {
737                if (!currentLayers[i]->visibleRegionScreen.isEmpty())
738                    mVisibleLayersSortedByZ.add(currentLayers[i]);
739            }
740
741            mWormholeRegion = screenRegion.subtract(opaqueRegion);
742            mVisibleRegionsDirty = false;
743            invalidateHwcGeometry();
744        }
745
746    unlockPageFlip(currentLayers);
747
748    mDirtyRegion.orSelf(getAndClearInvalidateRegion());
749    mDirtyRegion.andSelf(screenRegion);
750}
751
752void SurfaceFlinger::invalidateHwcGeometry()
753{
754    mHwWorkListDirty = true;
755}
756
757bool SurfaceFlinger::lockPageFlip(const LayerVector& currentLayers)
758{
759    bool recomputeVisibleRegions = false;
760    size_t count = currentLayers.size();
761    sp<LayerBase> const* layers = currentLayers.array();
762    for (size_t i=0 ; i<count ; i++) {
763        const sp<LayerBase>& layer(layers[i]);
764        layer->lockPageFlip(recomputeVisibleRegions);
765    }
766    return recomputeVisibleRegions;
767}
768
769void SurfaceFlinger::unlockPageFlip(const LayerVector& currentLayers)
770{
771    const GraphicPlane& plane(graphicPlane(0));
772    const Transform& planeTransform(plane.transform());
773    size_t count = currentLayers.size();
774    sp<LayerBase> const* layers = currentLayers.array();
775    for (size_t i=0 ; i<count ; i++) {
776        const sp<LayerBase>& layer(layers[i]);
777        layer->unlockPageFlip(planeTransform, mDirtyRegion);
778    }
779}
780
781void SurfaceFlinger::handleWorkList()
782{
783    mHwWorkListDirty = false;
784    HWComposer& hwc(graphicPlane(0).displayHardware().getHwComposer());
785    if (hwc.initCheck() == NO_ERROR) {
786        const Vector< sp<LayerBase> >& currentLayers(mVisibleLayersSortedByZ);
787        const size_t count = currentLayers.size();
788        hwc.createWorkList(count);
789        hwc_layer_t* const cur(hwc.getLayers());
790        for (size_t i=0 ; cur && i<count ; i++) {
791            currentLayers[i]->setGeometry(&cur[i]);
792            if (mDebugDisableHWC || mDebugRegion) {
793                cur[i].compositionType = HWC_FRAMEBUFFER;
794                cur[i].flags |= HWC_SKIP_LAYER;
795            }
796        }
797    }
798}
799
800void SurfaceFlinger::handleRepaint()
801{
802    // compute the invalid region
803    mSwapRegion.orSelf(mDirtyRegion);
804
805    if (UNLIKELY(mDebugRegion)) {
806        debugFlashRegions();
807    }
808
809    // set the frame buffer
810    const DisplayHardware& hw(graphicPlane(0).displayHardware());
811    glMatrixMode(GL_MODELVIEW);
812    glLoadIdentity();
813
814    uint32_t flags = hw.getFlags();
815    if ((flags & DisplayHardware::SWAP_RECTANGLE) ||
816        (flags & DisplayHardware::BUFFER_PRESERVED))
817    {
818        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
819        // takes a rectangle, we must make sure to update that whole
820        // rectangle in that case
821        if (flags & DisplayHardware::SWAP_RECTANGLE) {
822            // TODO: we really should be able to pass a region to
823            // SWAP_RECTANGLE so that we don't have to redraw all this.
824            mDirtyRegion.set(mSwapRegion.bounds());
825        } else {
826            // in the BUFFER_PRESERVED case, obviously, we can update only
827            // what's needed and nothing more.
828            // NOTE: this is NOT a common case, as preserving the backbuffer
829            // is costly and usually involves copying the whole update back.
830        }
831    } else {
832        if (flags & DisplayHardware::PARTIAL_UPDATES) {
833            // We need to redraw the rectangle that will be updated
834            // (pushed to the framebuffer).
835            // This is needed because PARTIAL_UPDATES only takes one
836            // rectangle instead of a region (see DisplayHardware::flip())
837            mDirtyRegion.set(mSwapRegion.bounds());
838        } else {
839            // we need to redraw everything (the whole screen)
840            mDirtyRegion.set(hw.bounds());
841            mSwapRegion = mDirtyRegion;
842        }
843    }
844
845    setupHardwareComposer(mDirtyRegion);
846    composeSurfaces(mDirtyRegion);
847
848    // update the swap region and clear the dirty region
849    mSwapRegion.orSelf(mDirtyRegion);
850    mDirtyRegion.clear();
851}
852
853void SurfaceFlinger::setupHardwareComposer(Region& dirtyInOut)
854{
855    const DisplayHardware& hw(graphicPlane(0).displayHardware());
856    HWComposer& hwc(hw.getHwComposer());
857    hwc_layer_t* const cur(hwc.getLayers());
858    if (!cur) {
859        return;
860    }
861
862    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
863    size_t count = layers.size();
864
865    LOGE_IF(hwc.getNumLayers() != count,
866            "HAL number of layers (%d) doesn't match surfaceflinger (%d)",
867            hwc.getNumLayers(), count);
868
869    // just to be extra-safe, use the smallest count
870    if (hwc.initCheck() == NO_ERROR) {
871        count = count < hwc.getNumLayers() ? count : hwc.getNumLayers();
872    }
873
874    /*
875     *  update the per-frame h/w composer data for each layer
876     *  and build the transparent region of the FB
877     */
878    for (size_t i=0 ; i<count ; i++) {
879        const sp<LayerBase>& layer(layers[i]);
880        layer->setPerFrameData(&cur[i]);
881    }
882    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
883    status_t err = hwc.prepare();
884    LOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
885
886    if (err == NO_ERROR) {
887        // what's happening here is tricky.
888        // we want to clear all the layers with the CLEAR_FB flags
889        // that are opaque.
890        // however, since some GPU are efficient at preserving
891        // the backbuffer, we want to take advantage of that so we do the
892        // clear only in the dirty region (other areas will be preserved
893        // on those GPUs).
894        //   NOTE: on non backbuffer preserving GPU, the dirty region
895        //   has already been expanded as needed, so the code is correct
896        //   there too.
897        //
898        // However, the content of the framebuffer cannot be trusted when
899        // we switch to/from FB/OVERLAY, in which case we need to
900        // expand the dirty region to those areas too.
901        //
902        // Note also that there is a special case when switching from
903        // "no layers in FB" to "some layers in FB", where we need to redraw
904        // the entire FB, since some areas might contain uninitialized
905        // data.
906        //
907        // Also we want to make sure to not clear areas that belong to
908        // layers above that won't redraw (we would just be erasing them),
909        // that is, we can't erase anything outside the dirty region.
910
911        Region transparent;
912
913        if (!fbLayerCount && hwc.getLayerCount(HWC_FRAMEBUFFER)) {
914            transparent.set(hw.getBounds());
915            dirtyInOut = transparent;
916        } else {
917            for (size_t i=0 ; i<count ; i++) {
918                const sp<LayerBase>& layer(layers[i]);
919                if ((cur[i].hints & HWC_HINT_CLEAR_FB) && layer->isOpaque()) {
920                    transparent.orSelf(layer->visibleRegionScreen);
921                }
922                bool isOverlay = (cur[i].compositionType != HWC_FRAMEBUFFER);
923                if (isOverlay != layer->isOverlay()) {
924                    // we transitioned to/from overlay, so add this layer
925                    // to the dirty region so the framebuffer can be either
926                    // cleared or redrawn.
927                    dirtyInOut.orSelf(layer->visibleRegionScreen);
928                }
929                layer->setOverlay(isOverlay);
930            }
931            // don't erase stuff outside the dirty region
932            transparent.andSelf(dirtyInOut);
933        }
934
935        /*
936         *  clear the area of the FB that need to be transparent
937         */
938        if (!transparent.isEmpty()) {
939            glClearColor(0,0,0,0);
940            Region::const_iterator it = transparent.begin();
941            Region::const_iterator const end = transparent.end();
942            const int32_t height = hw.getHeight();
943            while (it != end) {
944                const Rect& r(*it++);
945                const GLint sy = height - (r.top + r.height());
946                glScissor(r.left, sy, r.width(), r.height());
947                glClear(GL_COLOR_BUFFER_BIT);
948            }
949        }
950    }
951}
952
953void SurfaceFlinger::composeSurfaces(const Region& dirty)
954{
955    const DisplayHardware& hw(graphicPlane(0).displayHardware());
956    HWComposer& hwc(hw.getHwComposer());
957
958    const size_t fbLayerCount = hwc.getLayerCount(HWC_FRAMEBUFFER);
959    if (UNLIKELY(fbLayerCount && !mWormholeRegion.isEmpty())) {
960        // should never happen unless the window manager has a bug
961        // draw something...
962        drawWormhole();
963    }
964
965    /*
966     * and then, render the layers targeted at the framebuffer
967     */
968    hwc_layer_t* const cur(hwc.getLayers());
969    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
970    size_t count = layers.size();
971    for (size_t i=0 ; i<count ; i++) {
972        if (cur && (cur[i].compositionType != HWC_FRAMEBUFFER)) {
973            continue;
974        }
975        const sp<LayerBase>& layer(layers[i]);
976        const Region clip(dirty.intersect(layer->visibleRegionScreen));
977        if (!clip.isEmpty()) {
978            layer->draw(clip);
979        }
980    }
981}
982
983void SurfaceFlinger::debugFlashRegions()
984{
985    const DisplayHardware& hw(graphicPlane(0).displayHardware());
986    const uint32_t flags = hw.getFlags();
987    const int32_t height = hw.getHeight();
988    if (mSwapRegion.isEmpty()) {
989        return;
990    }
991
992    if (!((flags & DisplayHardware::SWAP_RECTANGLE) ||
993            (flags & DisplayHardware::BUFFER_PRESERVED))) {
994        const Region repaint((flags & DisplayHardware::PARTIAL_UPDATES) ?
995                mDirtyRegion.bounds() : hw.bounds());
996        composeSurfaces(repaint);
997    }
998
999    glDisable(GL_TEXTURE_EXTERNAL_OES);
1000    glDisable(GL_TEXTURE_2D);
1001    glDisable(GL_BLEND);
1002    glDisable(GL_SCISSOR_TEST);
1003
1004    static int toggle = 0;
1005    toggle = 1 - toggle;
1006    if (toggle) {
1007        glColor4f(1, 0, 1, 1);
1008    } else {
1009        glColor4f(1, 1, 0, 1);
1010    }
1011
1012    Region::const_iterator it = mDirtyRegion.begin();
1013    Region::const_iterator const end = mDirtyRegion.end();
1014    while (it != end) {
1015        const Rect& r = *it++;
1016        GLfloat vertices[][2] = {
1017                { r.left,  height - r.top },
1018                { r.left,  height - r.bottom },
1019                { r.right, height - r.bottom },
1020                { r.right, height - r.top }
1021        };
1022        glVertexPointer(2, GL_FLOAT, 0, vertices);
1023        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1024    }
1025
1026    hw.flip(mSwapRegion);
1027
1028    if (mDebugRegion > 1)
1029        usleep(mDebugRegion * 1000);
1030
1031    glEnable(GL_SCISSOR_TEST);
1032}
1033
1034void SurfaceFlinger::drawWormhole() const
1035{
1036    const Region region(mWormholeRegion.intersect(mDirtyRegion));
1037    if (region.isEmpty())
1038        return;
1039
1040    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1041    const int32_t width = hw.getWidth();
1042    const int32_t height = hw.getHeight();
1043
1044    if (LIKELY(!mDebugBackground)) {
1045        glClearColor(0,0,0,0);
1046        Region::const_iterator it = region.begin();
1047        Region::const_iterator const end = region.end();
1048        while (it != end) {
1049            const Rect& r = *it++;
1050            const GLint sy = height - (r.top + r.height());
1051            glScissor(r.left, sy, r.width(), r.height());
1052            glClear(GL_COLOR_BUFFER_BIT);
1053        }
1054    } else {
1055        const GLshort vertices[][2] = { { 0, 0 }, { width, 0 },
1056                { width, height }, { 0, height }  };
1057        const GLshort tcoords[][2] = { { 0, 0 }, { 1, 0 },  { 1, 1 }, { 0, 1 } };
1058
1059        glVertexPointer(2, GL_SHORT, 0, vertices);
1060        glTexCoordPointer(2, GL_SHORT, 0, tcoords);
1061        glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1062
1063        glDisable(GL_TEXTURE_EXTERNAL_OES);
1064        glEnable(GL_TEXTURE_2D);
1065        glBindTexture(GL_TEXTURE_2D, mWormholeTexName);
1066        glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1067        glMatrixMode(GL_TEXTURE);
1068        glLoadIdentity();
1069
1070        glDisable(GL_BLEND);
1071
1072        glScalef(width*(1.0f/32.0f), height*(1.0f/32.0f), 1);
1073        Region::const_iterator it = region.begin();
1074        Region::const_iterator const end = region.end();
1075        while (it != end) {
1076            const Rect& r = *it++;
1077            const GLint sy = height - (r.top + r.height());
1078            glScissor(r.left, sy, r.width(), r.height());
1079            glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1080        }
1081        glDisableClientState(GL_TEXTURE_COORD_ARRAY);
1082        glDisable(GL_TEXTURE_2D);
1083        glLoadIdentity();
1084        glMatrixMode(GL_MODELVIEW);
1085    }
1086}
1087
1088void SurfaceFlinger::debugShowFPS() const
1089{
1090    static int mFrameCount;
1091    static int mLastFrameCount = 0;
1092    static nsecs_t mLastFpsTime = 0;
1093    static float mFps = 0;
1094    mFrameCount++;
1095    nsecs_t now = systemTime();
1096    nsecs_t diff = now - mLastFpsTime;
1097    if (diff > ms2ns(250)) {
1098        mFps =  ((mFrameCount - mLastFrameCount) * float(s2ns(1))) / diff;
1099        mLastFpsTime = now;
1100        mLastFrameCount = mFrameCount;
1101    }
1102    // XXX: mFPS has the value we want
1103 }
1104
1105status_t SurfaceFlinger::addLayer(const sp<LayerBase>& layer)
1106{
1107    Mutex::Autolock _l(mStateLock);
1108    addLayer_l(layer);
1109    setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1110    return NO_ERROR;
1111}
1112
1113status_t SurfaceFlinger::addLayer_l(const sp<LayerBase>& layer)
1114{
1115    ssize_t i = mCurrentState.layersSortedByZ.add(layer);
1116    return (i < 0) ? status_t(i) : status_t(NO_ERROR);
1117}
1118
1119ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1120        const sp<LayerBaseClient>& lbc)
1121{
1122    // attach this layer to the client
1123    size_t name = client->attachLayer(lbc);
1124
1125    Mutex::Autolock _l(mStateLock);
1126
1127    // add this layer to the current state list
1128    addLayer_l(lbc);
1129
1130    return ssize_t(name);
1131}
1132
1133status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1134{
1135    Mutex::Autolock _l(mStateLock);
1136    status_t err = purgatorizeLayer_l(layer);
1137    if (err == NO_ERROR)
1138        setTransactionFlags(eTransactionNeeded);
1139    return err;
1140}
1141
1142status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1143{
1144    sp<LayerBaseClient> lbc(layerBase->getLayerBaseClient());
1145    if (lbc != 0) {
1146        mLayerMap.removeItem( lbc->getSurfaceBinder() );
1147    }
1148    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1149    if (index >= 0) {
1150        mLayersRemoved = true;
1151        return NO_ERROR;
1152    }
1153    return status_t(index);
1154}
1155
1156status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1157{
1158    // First add the layer to the purgatory list, which makes sure it won't
1159    // go away, then remove it from the main list (through a transaction).
1160    ssize_t err = removeLayer_l(layerBase);
1161    if (err >= 0) {
1162        mLayerPurgatory.add(layerBase);
1163    }
1164
1165    layerBase->onRemoved();
1166
1167    // it's possible that we don't find a layer, because it might
1168    // have been destroyed already -- this is not technically an error
1169    // from the user because there is a race between Client::destroySurface(),
1170    // ~Client() and ~ISurface().
1171    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1172}
1173
1174status_t SurfaceFlinger::invalidateLayerVisibility(const sp<LayerBase>& layer)
1175{
1176    layer->forceVisibilityTransaction();
1177    setTransactionFlags(eTraversalNeeded);
1178    return NO_ERROR;
1179}
1180
1181uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1182{
1183    return android_atomic_release_load(&mTransactionFlags);
1184}
1185
1186uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1187{
1188    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1189}
1190
1191uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1192{
1193    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1194    if ((old & flags)==0) { // wake the server up
1195        signalEvent();
1196    }
1197    return old;
1198}
1199
1200
1201void SurfaceFlinger::setTransactionState(const Vector<ComposerState>& state,
1202        int orientation, uint32_t flags) {
1203    Mutex::Autolock _l(mStateLock);
1204
1205    uint32_t transactionFlags = 0;
1206    if (mCurrentState.orientation != orientation) {
1207        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1208            mCurrentState.orientation = orientation;
1209            transactionFlags |= eTransactionNeeded;
1210        } else if (orientation != eOrientationUnchanged) {
1211            LOGW("setTransactionState: ignoring unrecognized orientation: %d",
1212                    orientation);
1213        }
1214    }
1215
1216    const size_t count = state.size();
1217    for (size_t i=0 ; i<count ; i++) {
1218        const ComposerState& s(state[i]);
1219        sp<Client> client( static_cast<Client *>(s.client.get()) );
1220        transactionFlags |= setClientStateLocked(client, s.state);
1221    }
1222
1223    if (transactionFlags) {
1224        // this triggers the transaction
1225        setTransactionFlags(transactionFlags);
1226
1227        // if this is a synchronous transaction, wait for it to take effect
1228        // before returning.
1229        if (flags & eSynchronous) {
1230            mTransationPending = true;
1231        }
1232        while (mTransationPending) {
1233            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1234            if (CC_UNLIKELY(err != NO_ERROR)) {
1235                // just in case something goes wrong in SF, return to the
1236                // called after a few seconds.
1237                LOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1238                mTransationPending = false;
1239                break;
1240            }
1241        }
1242    }
1243}
1244
1245int SurfaceFlinger::setOrientation(DisplayID dpy,
1246        int orientation, uint32_t flags)
1247{
1248    if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
1249        return BAD_VALUE;
1250
1251    Mutex::Autolock _l(mStateLock);
1252    if (mCurrentState.orientation != orientation) {
1253        if (uint32_t(orientation)<=eOrientation270 || orientation==42) {
1254            mCurrentState.orientationFlags = flags;
1255            mCurrentState.orientation = orientation;
1256            setTransactionFlags(eTransactionNeeded);
1257            mTransactionCV.wait(mStateLock);
1258        } else {
1259            orientation = BAD_VALUE;
1260        }
1261    }
1262    return orientation;
1263}
1264
1265sp<ISurface> SurfaceFlinger::createSurface(
1266        ISurfaceComposerClient::surface_data_t* params,
1267        const String8& name,
1268        const sp<Client>& client,
1269        DisplayID d, uint32_t w, uint32_t h, PixelFormat format,
1270        uint32_t flags)
1271{
1272    sp<LayerBaseClient> layer;
1273    sp<ISurface> surfaceHandle;
1274
1275    if (int32_t(w|h) < 0) {
1276        LOGE("createSurface() failed, w or h is negative (w=%d, h=%d)",
1277                int(w), int(h));
1278        return surfaceHandle;
1279    }
1280
1281    //LOGD("createSurface for pid %d (%d x %d)", pid, w, h);
1282    sp<Layer> normalLayer;
1283    switch (flags & eFXSurfaceMask) {
1284        case eFXSurfaceNormal:
1285            normalLayer = createNormalSurface(client, d, w, h, flags, format);
1286            layer = normalLayer;
1287            break;
1288        case eFXSurfaceBlur:
1289            // for now we treat Blur as Dim, until we can implement it
1290            // efficiently.
1291        case eFXSurfaceDim:
1292            layer = createDimSurface(client, d, w, h, flags);
1293            break;
1294        case eFXSurfaceScreenshot:
1295            layer = createScreenshotSurface(client, d, w, h, flags);
1296            break;
1297    }
1298
1299    if (layer != 0) {
1300        layer->initStates(w, h, flags);
1301        layer->setName(name);
1302        ssize_t token = addClientLayer(client, layer);
1303
1304        surfaceHandle = layer->getSurface();
1305        if (surfaceHandle != 0) {
1306            params->token = token;
1307            params->identity = layer->getIdentity();
1308            if (normalLayer != 0) {
1309                Mutex::Autolock _l(mStateLock);
1310                mLayerMap.add(layer->getSurfaceBinder(), normalLayer);
1311            }
1312        }
1313
1314        setTransactionFlags(eTransactionNeeded);
1315    }
1316
1317    return surfaceHandle;
1318}
1319
1320sp<Layer> SurfaceFlinger::createNormalSurface(
1321        const sp<Client>& client, DisplayID display,
1322        uint32_t w, uint32_t h, uint32_t flags,
1323        PixelFormat& format)
1324{
1325    // initialize the surfaces
1326    switch (format) { // TODO: take h/w into account
1327    case PIXEL_FORMAT_TRANSPARENT:
1328    case PIXEL_FORMAT_TRANSLUCENT:
1329        format = PIXEL_FORMAT_RGBA_8888;
1330        break;
1331    case PIXEL_FORMAT_OPAQUE:
1332#ifdef NO_RGBX_8888
1333        format = PIXEL_FORMAT_RGB_565;
1334#else
1335        format = PIXEL_FORMAT_RGBX_8888;
1336#endif
1337        break;
1338    }
1339
1340#ifdef NO_RGBX_8888
1341    if (format == PIXEL_FORMAT_RGBX_8888)
1342        format = PIXEL_FORMAT_RGBA_8888;
1343#endif
1344
1345    sp<Layer> layer = new Layer(this, display, client);
1346    status_t err = layer->setBuffers(w, h, format, flags);
1347    if (LIKELY(err != NO_ERROR)) {
1348        LOGE("createNormalSurfaceLocked() failed (%s)", strerror(-err));
1349        layer.clear();
1350    }
1351    return layer;
1352}
1353
1354sp<LayerDim> SurfaceFlinger::createDimSurface(
1355        const sp<Client>& client, DisplayID display,
1356        uint32_t w, uint32_t h, uint32_t flags)
1357{
1358    sp<LayerDim> layer = new LayerDim(this, display, client);
1359    return layer;
1360}
1361
1362sp<LayerScreenshot> SurfaceFlinger::createScreenshotSurface(
1363        const sp<Client>& client, DisplayID display,
1364        uint32_t w, uint32_t h, uint32_t flags)
1365{
1366    sp<LayerScreenshot> layer = new LayerScreenshot(this, display, client);
1367    return layer;
1368}
1369
1370status_t SurfaceFlinger::removeSurface(const sp<Client>& client, SurfaceID sid)
1371{
1372    /*
1373     * called by the window manager, when a surface should be marked for
1374     * destruction.
1375     *
1376     * The surface is removed from the current and drawing lists, but placed
1377     * in the purgatory queue, so it's not destroyed right-away (we need
1378     * to wait for all client's references to go away first).
1379     */
1380
1381    status_t err = NAME_NOT_FOUND;
1382    Mutex::Autolock _l(mStateLock);
1383    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1384    if (layer != 0) {
1385        err = purgatorizeLayer_l(layer);
1386        if (err == NO_ERROR) {
1387            setTransactionFlags(eTransactionNeeded);
1388        }
1389    }
1390    return err;
1391}
1392
1393status_t SurfaceFlinger::destroySurface(const wp<LayerBaseClient>& layer)
1394{
1395    // called by ~ISurface() when all references are gone
1396    status_t err = NO_ERROR;
1397    sp<LayerBaseClient> l(layer.promote());
1398    if (l != NULL) {
1399        Mutex::Autolock _l(mStateLock);
1400        err = removeLayer_l(l);
1401        if (err == NAME_NOT_FOUND) {
1402            // The surface wasn't in the current list, which means it was
1403            // removed already, which means it is in the purgatory,
1404            // and need to be removed from there.
1405            ssize_t idx = mLayerPurgatory.remove(l);
1406            LOGE_IF(idx < 0,
1407                    "layer=%p is not in the purgatory list", l.get());
1408        }
1409        LOGE_IF(err<0 && err != NAME_NOT_FOUND,
1410                "error removing layer=%p (%s)", l.get(), strerror(-err));
1411    }
1412    return err;
1413}
1414
1415uint32_t SurfaceFlinger::setClientStateLocked(
1416        const sp<Client>& client,
1417        const layer_state_t& s)
1418{
1419    uint32_t flags = 0;
1420    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1421    if (layer != 0) {
1422        const uint32_t what = s.what;
1423        if (what & ePositionChanged) {
1424            if (layer->setPosition(s.x, s.y))
1425                flags |= eTraversalNeeded;
1426        }
1427        if (what & eLayerChanged) {
1428            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1429            if (layer->setLayer(s.z)) {
1430                mCurrentState.layersSortedByZ.removeAt(idx);
1431                mCurrentState.layersSortedByZ.add(layer);
1432                // we need traversal (state changed)
1433                // AND transaction (list changed)
1434                flags |= eTransactionNeeded|eTraversalNeeded;
1435            }
1436        }
1437        if (what & eSizeChanged) {
1438            if (layer->setSize(s.w, s.h)) {
1439                flags |= eTraversalNeeded;
1440            }
1441        }
1442        if (what & eAlphaChanged) {
1443            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1444                flags |= eTraversalNeeded;
1445        }
1446        if (what & eMatrixChanged) {
1447            if (layer->setMatrix(s.matrix))
1448                flags |= eTraversalNeeded;
1449        }
1450        if (what & eTransparentRegionChanged) {
1451            if (layer->setTransparentRegionHint(s.transparentRegion))
1452                flags |= eTraversalNeeded;
1453        }
1454        if (what & eVisibilityChanged) {
1455            if (layer->setFlags(s.flags, s.mask))
1456                flags |= eTraversalNeeded;
1457        }
1458    }
1459    return flags;
1460}
1461
1462void SurfaceFlinger::screenReleased(int dpy)
1463{
1464    // this may be called by a signal handler, we can't do too much in here
1465    android_atomic_or(eConsoleReleased, &mConsoleSignals);
1466    signalEvent();
1467}
1468
1469void SurfaceFlinger::screenAcquired(int dpy)
1470{
1471    // this may be called by a signal handler, we can't do too much in here
1472    android_atomic_or(eConsoleAcquired, &mConsoleSignals);
1473    signalEvent();
1474}
1475
1476status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1477{
1478    const size_t SIZE = 4096;
1479    char buffer[SIZE];
1480    String8 result;
1481
1482    if (!PermissionCache::checkCallingPermission(sDump)) {
1483        snprintf(buffer, SIZE, "Permission Denial: "
1484                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1485                IPCThreadState::self()->getCallingPid(),
1486                IPCThreadState::self()->getCallingUid());
1487        result.append(buffer);
1488    } else {
1489
1490        // figure out if we're stuck somewhere
1491        const nsecs_t now = systemTime();
1492        const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1493        const nsecs_t inTransaction(mDebugInTransaction);
1494        nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1495        nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1496
1497        // Try to get the main lock, but don't insist if we can't
1498        // (this would indicate SF is stuck, but we want to be able to
1499        // print something in dumpsys).
1500        int retry = 3;
1501        while (mStateLock.tryLock()<0 && --retry>=0) {
1502            usleep(1000000);
1503        }
1504        const bool locked(retry >= 0);
1505        if (!locked) {
1506            snprintf(buffer, SIZE,
1507                    "SurfaceFlinger appears to be unresponsive, "
1508                    "dumping anyways (no locks held)\n");
1509            result.append(buffer);
1510        }
1511
1512        /*
1513         * Dump the visible layer list
1514         */
1515        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1516        const size_t count = currentLayers.size();
1517        snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1518        result.append(buffer);
1519        for (size_t i=0 ; i<count ; i++) {
1520            const sp<LayerBase>& layer(currentLayers[i]);
1521            layer->dump(result, buffer, SIZE);
1522            const Layer::State& s(layer->drawingState());
1523            s.transparentRegion.dump(result, "transparentRegion");
1524            layer->transparentRegionScreen.dump(result, "transparentRegionScreen");
1525            layer->visibleRegionScreen.dump(result, "visibleRegionScreen");
1526        }
1527
1528        /*
1529         * Dump the layers in the purgatory
1530         */
1531
1532        const size_t purgatorySize = mLayerPurgatory.size();
1533        snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1534        result.append(buffer);
1535        for (size_t i=0 ; i<purgatorySize ; i++) {
1536            const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1537            layer->shortDump(result, buffer, SIZE);
1538        }
1539
1540        /*
1541         * Dump SurfaceFlinger global state
1542         */
1543
1544        snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1545        result.append(buffer);
1546
1547        const GLExtensions& extensions(GLExtensions::getInstance());
1548        snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1549                extensions.getVendor(),
1550                extensions.getRenderer(),
1551                extensions.getVersion());
1552        result.append(buffer);
1553
1554        snprintf(buffer, SIZE, "EGL : %s\n",
1555                eglQueryString(graphicPlane(0).getEGLDisplay(),
1556                        EGL_VERSION_HW_ANDROID));
1557        result.append(buffer);
1558
1559        snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
1560        result.append(buffer);
1561
1562        mWormholeRegion.dump(result, "WormholeRegion");
1563        const DisplayHardware& hw(graphicPlane(0).displayHardware());
1564        snprintf(buffer, SIZE,
1565                "  orientation=%d, canDraw=%d\n",
1566                mCurrentState.orientation, hw.canDraw());
1567        result.append(buffer);
1568        snprintf(buffer, SIZE,
1569                "  last eglSwapBuffers() time: %f us\n"
1570                "  last transaction time     : %f us\n"
1571                "  refresh-rate              : %f fps\n"
1572                "  x-dpi                     : %f\n"
1573                "  y-dpi                     : %f\n",
1574                mLastSwapBufferTime/1000.0,
1575                mLastTransactionTime/1000.0,
1576                hw.getRefreshRate(),
1577                hw.getDpiX(),
1578                hw.getDpiY());
1579        result.append(buffer);
1580
1581        if (inSwapBuffersDuration || !locked) {
1582            snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
1583                    inSwapBuffersDuration/1000.0);
1584            result.append(buffer);
1585        }
1586
1587        if (inTransactionDuration || !locked) {
1588            snprintf(buffer, SIZE, "  transaction time: %f us\n",
1589                    inTransactionDuration/1000.0);
1590            result.append(buffer);
1591        }
1592
1593        /*
1594         * Dump HWComposer state
1595         */
1596        HWComposer& hwc(hw.getHwComposer());
1597        snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
1598                hwc.initCheck()==NO_ERROR ? "present" : "not present",
1599                (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
1600        result.append(buffer);
1601        hwc.dump(result, buffer, SIZE, mVisibleLayersSortedByZ);
1602
1603        /*
1604         * Dump gralloc state
1605         */
1606        const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
1607        alloc.dump(result);
1608        hw.dump(result);
1609
1610        if (locked) {
1611            mStateLock.unlock();
1612        }
1613    }
1614    write(fd, result.string(), result.size());
1615    return NO_ERROR;
1616}
1617
1618status_t SurfaceFlinger::onTransact(
1619    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
1620{
1621    switch (code) {
1622        case CREATE_CONNECTION:
1623        case SET_TRANSACTION_STATE:
1624        case SET_ORIENTATION:
1625        case BOOT_FINISHED:
1626        case TURN_ELECTRON_BEAM_OFF:
1627        case TURN_ELECTRON_BEAM_ON:
1628        {
1629            // codes that require permission check
1630            IPCThreadState* ipc = IPCThreadState::self();
1631            const int pid = ipc->getCallingPid();
1632            const int uid = ipc->getCallingUid();
1633            if ((uid != AID_GRAPHICS) &&
1634                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
1635                LOGE("Permission Denial: "
1636                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1637                return PERMISSION_DENIED;
1638            }
1639            break;
1640        }
1641        case CAPTURE_SCREEN:
1642        {
1643            // codes that require permission check
1644            IPCThreadState* ipc = IPCThreadState::self();
1645            const int pid = ipc->getCallingPid();
1646            const int uid = ipc->getCallingUid();
1647            if ((uid != AID_GRAPHICS) &&
1648                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
1649                LOGE("Permission Denial: "
1650                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
1651                return PERMISSION_DENIED;
1652            }
1653            break;
1654        }
1655    }
1656
1657    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
1658    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
1659        CHECK_INTERFACE(ISurfaceComposer, data, reply);
1660        if (UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
1661            IPCThreadState* ipc = IPCThreadState::self();
1662            const int pid = ipc->getCallingPid();
1663            const int uid = ipc->getCallingUid();
1664            LOGE("Permission Denial: "
1665                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
1666            return PERMISSION_DENIED;
1667        }
1668        int n;
1669        switch (code) {
1670            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
1671            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
1672                return NO_ERROR;
1673            case 1002:  // SHOW_UPDATES
1674                n = data.readInt32();
1675                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
1676                invalidateHwcGeometry();
1677                repaintEverything();
1678                return NO_ERROR;
1679            case 1003:  // SHOW_BACKGROUND
1680                n = data.readInt32();
1681                mDebugBackground = n ? 1 : 0;
1682                return NO_ERROR;
1683            case 1004:{ // repaint everything
1684                repaintEverything();
1685                return NO_ERROR;
1686            }
1687            case 1005:{ // force transaction
1688                setTransactionFlags(eTransactionNeeded|eTraversalNeeded);
1689                return NO_ERROR;
1690            }
1691            case 1006:{ // enable/disable GraphicLog
1692                int enabled = data.readInt32();
1693                GraphicLog::getInstance().setEnabled(enabled);
1694                return NO_ERROR;
1695            }
1696            case 1008:  // toggle use of hw composer
1697                n = data.readInt32();
1698                mDebugDisableHWC = n ? 1 : 0;
1699                invalidateHwcGeometry();
1700                repaintEverything();
1701                return NO_ERROR;
1702            case 1009:  // toggle use of transform hint
1703                n = data.readInt32();
1704                mDebugDisableTransformHint = n ? 1 : 0;
1705                invalidateHwcGeometry();
1706                repaintEverything();
1707                return NO_ERROR;
1708            case 1010:  // interrogate.
1709                reply->writeInt32(0);
1710                reply->writeInt32(0);
1711                reply->writeInt32(mDebugRegion);
1712                reply->writeInt32(mDebugBackground);
1713                return NO_ERROR;
1714            case 1013: {
1715                Mutex::Autolock _l(mStateLock);
1716                const DisplayHardware& hw(graphicPlane(0).displayHardware());
1717                reply->writeInt32(hw.getPageFlipCount());
1718            }
1719            return NO_ERROR;
1720        }
1721    }
1722    return err;
1723}
1724
1725void SurfaceFlinger::repaintEverything() {
1726    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1727    const Rect bounds(hw.getBounds());
1728    setInvalidateRegion(Region(bounds));
1729    signalEvent();
1730}
1731
1732void SurfaceFlinger::setInvalidateRegion(const Region& reg) {
1733    Mutex::Autolock _l(mInvalidateLock);
1734    mInvalidateRegion = reg;
1735}
1736
1737Region SurfaceFlinger::getAndClearInvalidateRegion() {
1738    Mutex::Autolock _l(mInvalidateLock);
1739    Region reg(mInvalidateRegion);
1740    mInvalidateRegion.clear();
1741    return reg;
1742}
1743
1744// ---------------------------------------------------------------------------
1745
1746status_t SurfaceFlinger::renderScreenToTexture(DisplayID dpy,
1747        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1748{
1749    Mutex::Autolock _l(mStateLock);
1750    return renderScreenToTextureLocked(dpy, textureName, uOut, vOut);
1751}
1752
1753status_t SurfaceFlinger::renderScreenToTextureLocked(DisplayID dpy,
1754        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
1755{
1756    if (!GLExtensions::getInstance().haveFramebufferObject())
1757        return INVALID_OPERATION;
1758
1759    // get screen geometry
1760    const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
1761    const uint32_t hw_w = hw.getWidth();
1762    const uint32_t hw_h = hw.getHeight();
1763    GLfloat u = 1;
1764    GLfloat v = 1;
1765
1766    // make sure to clear all GL error flags
1767    while ( glGetError() != GL_NO_ERROR ) ;
1768
1769    // create a FBO
1770    GLuint name, tname;
1771    glGenTextures(1, &tname);
1772    glBindTexture(GL_TEXTURE_2D, tname);
1773    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1774            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1775    if (glGetError() != GL_NO_ERROR) {
1776        while ( glGetError() != GL_NO_ERROR ) ;
1777        GLint tw = (2 << (31 - clz(hw_w)));
1778        GLint th = (2 << (31 - clz(hw_h)));
1779        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
1780                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
1781        u = GLfloat(hw_w) / tw;
1782        v = GLfloat(hw_h) / th;
1783    }
1784    glGenFramebuffersOES(1, &name);
1785    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
1786    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
1787            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
1788
1789    // redraw the screen entirely...
1790    glDisable(GL_TEXTURE_EXTERNAL_OES);
1791    glDisable(GL_TEXTURE_2D);
1792    glDisable(GL_SCISSOR_TEST);
1793    glClearColor(0,0,0,1);
1794    glClear(GL_COLOR_BUFFER_BIT);
1795    glEnable(GL_SCISSOR_TEST);
1796    glMatrixMode(GL_MODELVIEW);
1797    glLoadIdentity();
1798    const Vector< sp<LayerBase> >& layers(mVisibleLayersSortedByZ);
1799    const size_t count = layers.size();
1800    for (size_t i=0 ; i<count ; ++i) {
1801        const sp<LayerBase>& layer(layers[i]);
1802        layer->drawForSreenShot();
1803    }
1804
1805    hw.compositionComplete();
1806
1807    // back to main framebuffer
1808    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
1809    glDisable(GL_SCISSOR_TEST);
1810    glDeleteFramebuffersOES(1, &name);
1811
1812    *textureName = tname;
1813    *uOut = u;
1814    *vOut = v;
1815    return NO_ERROR;
1816}
1817
1818// ---------------------------------------------------------------------------
1819
1820status_t SurfaceFlinger::electronBeamOffAnimationImplLocked()
1821{
1822    // get screen geometry
1823    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1824    const uint32_t hw_w = hw.getWidth();
1825    const uint32_t hw_h = hw.getHeight();
1826    const Region screenBounds(hw.getBounds());
1827
1828    GLfloat u, v;
1829    GLuint tname;
1830    status_t result = renderScreenToTextureLocked(0, &tname, &u, &v);
1831    if (result != NO_ERROR) {
1832        return result;
1833    }
1834
1835    GLfloat vtx[8];
1836    const GLfloat texCoords[4][2] = { {0,0}, {0,v}, {u,v}, {u,0} };
1837    glBindTexture(GL_TEXTURE_2D, tname);
1838    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
1839    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
1840    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
1841    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
1842    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
1843    glVertexPointer(2, GL_FLOAT, 0, vtx);
1844
1845    /*
1846     * Texture coordinate mapping
1847     *
1848     *                 u
1849     *    1 +----------+---+
1850     *      |     |    |   |  image is inverted
1851     *      |     V    |   |  w.r.t. the texture
1852     *  1-v +----------+   |  coordinates
1853     *      |              |
1854     *      |              |
1855     *      |              |
1856     *    0 +--------------+
1857     *      0              1
1858     *
1859     */
1860
1861    class s_curve_interpolator {
1862        const float nbFrames, s, v;
1863    public:
1864        s_curve_interpolator(int nbFrames, float s)
1865        : nbFrames(1.0f / (nbFrames-1)), s(s),
1866          v(1.0f + expf(-s + 0.5f*s)) {
1867        }
1868        float operator()(int f) {
1869            const float x = f * nbFrames;
1870            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
1871        }
1872    };
1873
1874    class v_stretch {
1875        const GLfloat hw_w, hw_h;
1876    public:
1877        v_stretch(uint32_t hw_w, uint32_t hw_h)
1878        : hw_w(hw_w), hw_h(hw_h) {
1879        }
1880        void operator()(GLfloat* vtx, float v) {
1881            const GLfloat w = hw_w + (hw_w * v);
1882            const GLfloat h = hw_h - (hw_h * v);
1883            const GLfloat x = (hw_w - w) * 0.5f;
1884            const GLfloat y = (hw_h - h) * 0.5f;
1885            vtx[0] = x;         vtx[1] = y;
1886            vtx[2] = x;         vtx[3] = y + h;
1887            vtx[4] = x + w;     vtx[5] = y + h;
1888            vtx[6] = x + w;     vtx[7] = y;
1889        }
1890    };
1891
1892    class h_stretch {
1893        const GLfloat hw_w, hw_h;
1894    public:
1895        h_stretch(uint32_t hw_w, uint32_t hw_h)
1896        : hw_w(hw_w), hw_h(hw_h) {
1897        }
1898        void operator()(GLfloat* vtx, float v) {
1899            const GLfloat w = hw_w - (hw_w * v);
1900            const GLfloat h = 1.0f;
1901            const GLfloat x = (hw_w - w) * 0.5f;
1902            const GLfloat y = (hw_h - h) * 0.5f;
1903            vtx[0] = x;         vtx[1] = y;
1904            vtx[2] = x;         vtx[3] = y + h;
1905            vtx[4] = x + w;     vtx[5] = y + h;
1906            vtx[6] = x + w;     vtx[7] = y;
1907        }
1908    };
1909
1910    // the full animation is 24 frames
1911    char value[PROPERTY_VALUE_MAX];
1912    property_get("debug.sf.electron_frames", value, "24");
1913    int nbFrames = (atoi(value) + 1) >> 1;
1914    if (nbFrames <= 0) // just in case
1915        nbFrames = 24;
1916
1917    s_curve_interpolator itr(nbFrames, 7.5f);
1918    s_curve_interpolator itg(nbFrames, 8.0f);
1919    s_curve_interpolator itb(nbFrames, 8.5f);
1920
1921    v_stretch vverts(hw_w, hw_h);
1922
1923    glMatrixMode(GL_TEXTURE);
1924    glLoadIdentity();
1925    glMatrixMode(GL_MODELVIEW);
1926    glLoadIdentity();
1927
1928    glEnable(GL_BLEND);
1929    glBlendFunc(GL_ONE, GL_ONE);
1930    for (int i=0 ; i<nbFrames ; i++) {
1931        float x, y, w, h;
1932        const float vr = itr(i);
1933        const float vg = itg(i);
1934        const float vb = itb(i);
1935
1936        // clear screen
1937        glColorMask(1,1,1,1);
1938        glClear(GL_COLOR_BUFFER_BIT);
1939        glEnable(GL_TEXTURE_2D);
1940
1941        // draw the red plane
1942        vverts(vtx, vr);
1943        glColorMask(1,0,0,1);
1944        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1945
1946        // draw the green plane
1947        vverts(vtx, vg);
1948        glColorMask(0,1,0,1);
1949        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1950
1951        // draw the blue plane
1952        vverts(vtx, vb);
1953        glColorMask(0,0,1,1);
1954        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1955
1956        // draw the white highlight (we use the last vertices)
1957        glDisable(GL_TEXTURE_2D);
1958        glColorMask(1,1,1,1);
1959        glColor4f(vg, vg, vg, 1);
1960        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1961        hw.flip(screenBounds);
1962    }
1963
1964    h_stretch hverts(hw_w, hw_h);
1965    glDisable(GL_BLEND);
1966    glDisable(GL_TEXTURE_2D);
1967    glColorMask(1,1,1,1);
1968    for (int i=0 ; i<nbFrames ; i++) {
1969        const float v = itg(i);
1970        hverts(vtx, v);
1971        glClear(GL_COLOR_BUFFER_BIT);
1972        glColor4f(1-v, 1-v, 1-v, 1);
1973        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1974        hw.flip(screenBounds);
1975    }
1976
1977    glColorMask(1,1,1,1);
1978    glEnable(GL_SCISSOR_TEST);
1979    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
1980    glDeleteTextures(1, &tname);
1981    glDisable(GL_TEXTURE_2D);
1982    glDisable(GL_BLEND);
1983    return NO_ERROR;
1984}
1985
1986status_t SurfaceFlinger::electronBeamOnAnimationImplLocked()
1987{
1988    status_t result = PERMISSION_DENIED;
1989
1990    if (!GLExtensions::getInstance().haveFramebufferObject())
1991        return INVALID_OPERATION;
1992
1993
1994    // get screen geometry
1995    const DisplayHardware& hw(graphicPlane(0).displayHardware());
1996    const uint32_t hw_w = hw.getWidth();
1997    const uint32_t hw_h = hw.getHeight();
1998    const Region screenBounds(hw.bounds());
1999
2000    GLfloat u, v;
2001    GLuint tname;
2002    result = renderScreenToTextureLocked(0, &tname, &u, &v);
2003    if (result != NO_ERROR) {
2004        return result;
2005    }
2006
2007    GLfloat vtx[8];
2008    const GLfloat texCoords[4][2] = { {0,v}, {0,0}, {u,0}, {u,v} };
2009    glBindTexture(GL_TEXTURE_2D, tname);
2010    glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
2011    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
2012    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
2013    glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
2014    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
2015    glVertexPointer(2, GL_FLOAT, 0, vtx);
2016
2017    class s_curve_interpolator {
2018        const float nbFrames, s, v;
2019    public:
2020        s_curve_interpolator(int nbFrames, float s)
2021        : nbFrames(1.0f / (nbFrames-1)), s(s),
2022          v(1.0f + expf(-s + 0.5f*s)) {
2023        }
2024        float operator()(int f) {
2025            const float x = f * nbFrames;
2026            return ((1.0f/(1.0f + expf(-x*s + 0.5f*s))) - 0.5f) * v + 0.5f;
2027        }
2028    };
2029
2030    class v_stretch {
2031        const GLfloat hw_w, hw_h;
2032    public:
2033        v_stretch(uint32_t hw_w, uint32_t hw_h)
2034        : hw_w(hw_w), hw_h(hw_h) {
2035        }
2036        void operator()(GLfloat* vtx, float v) {
2037            const GLfloat w = hw_w + (hw_w * v);
2038            const GLfloat h = hw_h - (hw_h * v);
2039            const GLfloat x = (hw_w - w) * 0.5f;
2040            const GLfloat y = (hw_h - h) * 0.5f;
2041            vtx[0] = x;         vtx[1] = y;
2042            vtx[2] = x;         vtx[3] = y + h;
2043            vtx[4] = x + w;     vtx[5] = y + h;
2044            vtx[6] = x + w;     vtx[7] = y;
2045        }
2046    };
2047
2048    class h_stretch {
2049        const GLfloat hw_w, hw_h;
2050    public:
2051        h_stretch(uint32_t hw_w, uint32_t hw_h)
2052        : hw_w(hw_w), hw_h(hw_h) {
2053        }
2054        void operator()(GLfloat* vtx, float v) {
2055            const GLfloat w = hw_w - (hw_w * v);
2056            const GLfloat h = 1.0f;
2057            const GLfloat x = (hw_w - w) * 0.5f;
2058            const GLfloat y = (hw_h - h) * 0.5f;
2059            vtx[0] = x;         vtx[1] = y;
2060            vtx[2] = x;         vtx[3] = y + h;
2061            vtx[4] = x + w;     vtx[5] = y + h;
2062            vtx[6] = x + w;     vtx[7] = y;
2063        }
2064    };
2065
2066    // the full animation is 12 frames
2067    int nbFrames = 8;
2068    s_curve_interpolator itr(nbFrames, 7.5f);
2069    s_curve_interpolator itg(nbFrames, 8.0f);
2070    s_curve_interpolator itb(nbFrames, 8.5f);
2071
2072    h_stretch hverts(hw_w, hw_h);
2073    glDisable(GL_BLEND);
2074    glDisable(GL_TEXTURE_2D);
2075    glColorMask(1,1,1,1);
2076    for (int i=nbFrames-1 ; i>=0 ; i--) {
2077        const float v = itg(i);
2078        hverts(vtx, v);
2079        glClear(GL_COLOR_BUFFER_BIT);
2080        glColor4f(1-v, 1-v, 1-v, 1);
2081        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2082        hw.flip(screenBounds);
2083    }
2084
2085    nbFrames = 4;
2086    v_stretch vverts(hw_w, hw_h);
2087    glEnable(GL_BLEND);
2088    glBlendFunc(GL_ONE, GL_ONE);
2089    for (int i=nbFrames-1 ; i>=0 ; i--) {
2090        float x, y, w, h;
2091        const float vr = itr(i);
2092        const float vg = itg(i);
2093        const float vb = itb(i);
2094
2095        // clear screen
2096        glColorMask(1,1,1,1);
2097        glClear(GL_COLOR_BUFFER_BIT);
2098        glEnable(GL_TEXTURE_2D);
2099
2100        // draw the red plane
2101        vverts(vtx, vr);
2102        glColorMask(1,0,0,1);
2103        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2104
2105        // draw the green plane
2106        vverts(vtx, vg);
2107        glColorMask(0,1,0,1);
2108        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2109
2110        // draw the blue plane
2111        vverts(vtx, vb);
2112        glColorMask(0,0,1,1);
2113        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
2114
2115        hw.flip(screenBounds);
2116    }
2117
2118    glColorMask(1,1,1,1);
2119    glEnable(GL_SCISSOR_TEST);
2120    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
2121    glDeleteTextures(1, &tname);
2122    glDisable(GL_TEXTURE_2D);
2123    glDisable(GL_BLEND);
2124
2125    return NO_ERROR;
2126}
2127
2128// ---------------------------------------------------------------------------
2129
2130status_t SurfaceFlinger::turnElectronBeamOffImplLocked(int32_t mode)
2131{
2132    DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2133    if (!hw.canDraw()) {
2134        // we're already off
2135        return NO_ERROR;
2136    }
2137
2138    // turn off hwc while we're doing the animation
2139    hw.getHwComposer().disable();
2140    // and make sure to turn it back on (if needed) next time we compose
2141    invalidateHwcGeometry();
2142
2143    if (mode & ISurfaceComposer::eElectronBeamAnimationOff) {
2144        electronBeamOffAnimationImplLocked();
2145    }
2146
2147    // always clear the whole screen at the end of the animation
2148    glClearColor(0,0,0,1);
2149    glDisable(GL_SCISSOR_TEST);
2150    glClear(GL_COLOR_BUFFER_BIT);
2151    glEnable(GL_SCISSOR_TEST);
2152    hw.flip( Region(hw.bounds()) );
2153
2154    return NO_ERROR;
2155}
2156
2157status_t SurfaceFlinger::turnElectronBeamOff(int32_t mode)
2158{
2159    class MessageTurnElectronBeamOff : public MessageBase {
2160        SurfaceFlinger* flinger;
2161        int32_t mode;
2162        status_t result;
2163    public:
2164        MessageTurnElectronBeamOff(SurfaceFlinger* flinger, int32_t mode)
2165            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2166        }
2167        status_t getResult() const {
2168            return result;
2169        }
2170        virtual bool handler() {
2171            Mutex::Autolock _l(flinger->mStateLock);
2172            result = flinger->turnElectronBeamOffImplLocked(mode);
2173            return true;
2174        }
2175    };
2176
2177    sp<MessageBase> msg = new MessageTurnElectronBeamOff(this, mode);
2178    status_t res = postMessageSync(msg);
2179    if (res == NO_ERROR) {
2180        res = static_cast<MessageTurnElectronBeamOff*>( msg.get() )->getResult();
2181
2182        // work-around: when the power-manager calls us we activate the
2183        // animation. eventually, the "on" animation will be called
2184        // by the power-manager itself
2185        mElectronBeamAnimationMode = mode;
2186    }
2187    return res;
2188}
2189
2190// ---------------------------------------------------------------------------
2191
2192status_t SurfaceFlinger::turnElectronBeamOnImplLocked(int32_t mode)
2193{
2194    DisplayHardware& hw(graphicPlane(0).editDisplayHardware());
2195    if (hw.canDraw()) {
2196        // we're already on
2197        return NO_ERROR;
2198    }
2199    if (mode & ISurfaceComposer::eElectronBeamAnimationOn) {
2200        electronBeamOnAnimationImplLocked();
2201    }
2202
2203    // make sure to redraw the whole screen when the animation is done
2204    mDirtyRegion.set(hw.bounds());
2205    signalEvent();
2206
2207    return NO_ERROR;
2208}
2209
2210status_t SurfaceFlinger::turnElectronBeamOn(int32_t mode)
2211{
2212    class MessageTurnElectronBeamOn : public MessageBase {
2213        SurfaceFlinger* flinger;
2214        int32_t mode;
2215        status_t result;
2216    public:
2217        MessageTurnElectronBeamOn(SurfaceFlinger* flinger, int32_t mode)
2218            : flinger(flinger), mode(mode), result(PERMISSION_DENIED) {
2219        }
2220        status_t getResult() const {
2221            return result;
2222        }
2223        virtual bool handler() {
2224            Mutex::Autolock _l(flinger->mStateLock);
2225            result = flinger->turnElectronBeamOnImplLocked(mode);
2226            return true;
2227        }
2228    };
2229
2230    postMessageAsync( new MessageTurnElectronBeamOn(this, mode) );
2231    return NO_ERROR;
2232}
2233
2234// ---------------------------------------------------------------------------
2235
2236status_t SurfaceFlinger::captureScreenImplLocked(DisplayID dpy,
2237        sp<IMemoryHeap>* heap,
2238        uint32_t* w, uint32_t* h, PixelFormat* f,
2239        uint32_t sw, uint32_t sh,
2240        uint32_t minLayerZ, uint32_t maxLayerZ)
2241{
2242    status_t result = PERMISSION_DENIED;
2243
2244    // only one display supported for now
2245    if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2246        return BAD_VALUE;
2247
2248    if (!GLExtensions::getInstance().haveFramebufferObject())
2249        return INVALID_OPERATION;
2250
2251    // get screen geometry
2252    const DisplayHardware& hw(graphicPlane(dpy).displayHardware());
2253    const uint32_t hw_w = hw.getWidth();
2254    const uint32_t hw_h = hw.getHeight();
2255
2256    if ((sw > hw_w) || (sh > hw_h))
2257        return BAD_VALUE;
2258
2259    sw = (!sw) ? hw_w : sw;
2260    sh = (!sh) ? hw_h : sh;
2261    const size_t size = sw * sh * 4;
2262
2263    //LOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2264    //        sw, sh, minLayerZ, maxLayerZ);
2265
2266    // make sure to clear all GL error flags
2267    while ( glGetError() != GL_NO_ERROR ) ;
2268
2269    // create a FBO
2270    GLuint name, tname;
2271    glGenRenderbuffersOES(1, &tname);
2272    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2273    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2274    glGenFramebuffersOES(1, &name);
2275    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2276    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2277            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2278
2279    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2280
2281    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2282
2283        // invert everything, b/c glReadPixel() below will invert the FB
2284        glViewport(0, 0, sw, sh);
2285        glScissor(0, 0, sw, sh);
2286        glEnable(GL_SCISSOR_TEST);
2287        glMatrixMode(GL_PROJECTION);
2288        glPushMatrix();
2289        glLoadIdentity();
2290        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2291        glMatrixMode(GL_MODELVIEW);
2292
2293        // redraw the screen entirely...
2294        glClearColor(0,0,0,1);
2295        glClear(GL_COLOR_BUFFER_BIT);
2296
2297        const LayerVector& layers(mDrawingState.layersSortedByZ);
2298        const size_t count = layers.size();
2299        for (size_t i=0 ; i<count ; ++i) {
2300            const sp<LayerBase>& layer(layers[i]);
2301            const uint32_t flags = layer->drawingState().flags;
2302            if (!(flags & ISurfaceComposer::eLayerHidden)) {
2303                const uint32_t z = layer->drawingState().z;
2304                if (z >= minLayerZ && z <= maxLayerZ) {
2305                    layer->drawForSreenShot();
2306                }
2307            }
2308        }
2309
2310        // XXX: this is needed on tegra
2311        glEnable(GL_SCISSOR_TEST);
2312        glScissor(0, 0, sw, sh);
2313
2314        // check for errors and return screen capture
2315        if (glGetError() != GL_NO_ERROR) {
2316            // error while rendering
2317            result = INVALID_OPERATION;
2318        } else {
2319            // allocate shared memory large enough to hold the
2320            // screen capture
2321            sp<MemoryHeapBase> base(
2322                    new MemoryHeapBase(size, 0, "screen-capture") );
2323            void* const ptr = base->getBase();
2324            if (ptr) {
2325                // capture the screen with glReadPixels()
2326                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2327                if (glGetError() == GL_NO_ERROR) {
2328                    *heap = base;
2329                    *w = sw;
2330                    *h = sh;
2331                    *f = PIXEL_FORMAT_RGBA_8888;
2332                    result = NO_ERROR;
2333                }
2334            } else {
2335                result = NO_MEMORY;
2336            }
2337        }
2338        glEnable(GL_SCISSOR_TEST);
2339        glViewport(0, 0, hw_w, hw_h);
2340        glMatrixMode(GL_PROJECTION);
2341        glPopMatrix();
2342        glMatrixMode(GL_MODELVIEW);
2343    } else {
2344        result = BAD_VALUE;
2345    }
2346
2347    // release FBO resources
2348    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2349    glDeleteRenderbuffersOES(1, &tname);
2350    glDeleteFramebuffersOES(1, &name);
2351
2352    hw.compositionComplete();
2353
2354    // LOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2355
2356    return result;
2357}
2358
2359
2360status_t SurfaceFlinger::captureScreen(DisplayID dpy,
2361        sp<IMemoryHeap>* heap,
2362        uint32_t* width, uint32_t* height, PixelFormat* format,
2363        uint32_t sw, uint32_t sh,
2364        uint32_t minLayerZ, uint32_t maxLayerZ)
2365{
2366    // only one display supported for now
2367    if (UNLIKELY(uint32_t(dpy) >= DISPLAY_COUNT))
2368        return BAD_VALUE;
2369
2370    if (!GLExtensions::getInstance().haveFramebufferObject())
2371        return INVALID_OPERATION;
2372
2373    class MessageCaptureScreen : public MessageBase {
2374        SurfaceFlinger* flinger;
2375        DisplayID dpy;
2376        sp<IMemoryHeap>* heap;
2377        uint32_t* w;
2378        uint32_t* h;
2379        PixelFormat* f;
2380        uint32_t sw;
2381        uint32_t sh;
2382        uint32_t minLayerZ;
2383        uint32_t maxLayerZ;
2384        status_t result;
2385    public:
2386        MessageCaptureScreen(SurfaceFlinger* flinger, DisplayID dpy,
2387                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2388                uint32_t sw, uint32_t sh,
2389                uint32_t minLayerZ, uint32_t maxLayerZ)
2390            : flinger(flinger), dpy(dpy),
2391              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2392              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2393              result(PERMISSION_DENIED)
2394        {
2395        }
2396        status_t getResult() const {
2397            return result;
2398        }
2399        virtual bool handler() {
2400            Mutex::Autolock _l(flinger->mStateLock);
2401
2402            // if we have secure windows, never allow the screen capture
2403            if (flinger->mSecureFrameBuffer)
2404                return true;
2405
2406            result = flinger->captureScreenImplLocked(dpy,
2407                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2408
2409            return true;
2410        }
2411    };
2412
2413    sp<MessageBase> msg = new MessageCaptureScreen(this,
2414            dpy, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2415    status_t res = postMessageSync(msg);
2416    if (res == NO_ERROR) {
2417        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2418    }
2419    return res;
2420}
2421
2422// ---------------------------------------------------------------------------
2423
2424sp<Layer> SurfaceFlinger::getLayer(const sp<ISurface>& sur) const
2425{
2426    sp<Layer> result;
2427    Mutex::Autolock _l(mStateLock);
2428    result = mLayerMap.valueFor( sur->asBinder() ).promote();
2429    return result;
2430}
2431
2432// ---------------------------------------------------------------------------
2433
2434Client::Client(const sp<SurfaceFlinger>& flinger)
2435    : mFlinger(flinger), mNameGenerator(1)
2436{
2437}
2438
2439Client::~Client()
2440{
2441    const size_t count = mLayers.size();
2442    for (size_t i=0 ; i<count ; i++) {
2443        sp<LayerBaseClient> layer(mLayers.valueAt(i).promote());
2444        if (layer != 0) {
2445            mFlinger->removeLayer(layer);
2446        }
2447    }
2448}
2449
2450status_t Client::initCheck() const {
2451    return NO_ERROR;
2452}
2453
2454size_t Client::attachLayer(const sp<LayerBaseClient>& layer)
2455{
2456    Mutex::Autolock _l(mLock);
2457    size_t name = mNameGenerator++;
2458    mLayers.add(name, layer);
2459    return name;
2460}
2461
2462void Client::detachLayer(const LayerBaseClient* layer)
2463{
2464    Mutex::Autolock _l(mLock);
2465    // we do a linear search here, because this doesn't happen often
2466    const size_t count = mLayers.size();
2467    for (size_t i=0 ; i<count ; i++) {
2468        if (mLayers.valueAt(i) == layer) {
2469            mLayers.removeItemsAt(i, 1);
2470            break;
2471        }
2472    }
2473}
2474sp<LayerBaseClient> Client::getLayerUser(int32_t i) const
2475{
2476    Mutex::Autolock _l(mLock);
2477    sp<LayerBaseClient> lbc;
2478    wp<LayerBaseClient> layer(mLayers.valueFor(i));
2479    if (layer != 0) {
2480        lbc = layer.promote();
2481        LOGE_IF(lbc==0, "getLayerUser(name=%d) is dead", int(i));
2482    }
2483    return lbc;
2484}
2485
2486
2487status_t Client::onTransact(
2488    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2489{
2490    // these must be checked
2491     IPCThreadState* ipc = IPCThreadState::self();
2492     const int pid = ipc->getCallingPid();
2493     const int uid = ipc->getCallingUid();
2494     const int self_pid = getpid();
2495     if (UNLIKELY(pid != self_pid && uid != AID_GRAPHICS && uid != 0)) {
2496         // we're called from a different process, do the real check
2497         if (!PermissionCache::checkCallingPermission(sAccessSurfaceFlinger))
2498         {
2499             LOGE("Permission Denial: "
2500                     "can't openGlobalTransaction pid=%d, uid=%d", pid, uid);
2501             return PERMISSION_DENIED;
2502         }
2503     }
2504     return BnSurfaceComposerClient::onTransact(code, data, reply, flags);
2505}
2506
2507
2508sp<ISurface> Client::createSurface(
2509        ISurfaceComposerClient::surface_data_t* params,
2510        const String8& name,
2511        DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2512        uint32_t flags)
2513{
2514    /*
2515     * createSurface must be called from the GL thread so that it can
2516     * have access to the GL context.
2517     */
2518
2519    class MessageCreateSurface : public MessageBase {
2520        sp<ISurface> result;
2521        SurfaceFlinger* flinger;
2522        ISurfaceComposerClient::surface_data_t* params;
2523        Client* client;
2524        const String8& name;
2525        DisplayID display;
2526        uint32_t w, h;
2527        PixelFormat format;
2528        uint32_t flags;
2529    public:
2530        MessageCreateSurface(SurfaceFlinger* flinger,
2531                ISurfaceComposerClient::surface_data_t* params,
2532                const String8& name, Client* client,
2533                DisplayID display, uint32_t w, uint32_t h, PixelFormat format,
2534                uint32_t flags)
2535            : flinger(flinger), params(params), client(client), name(name),
2536              display(display), w(w), h(h), format(format), flags(flags)
2537        {
2538        }
2539        sp<ISurface> getResult() const { return result; }
2540        virtual bool handler() {
2541            result = flinger->createSurface(params, name, client,
2542                    display, w, h, format, flags);
2543            return true;
2544        }
2545    };
2546
2547    sp<MessageBase> msg = new MessageCreateSurface(mFlinger.get(),
2548            params, name, this, display, w, h, format, flags);
2549    mFlinger->postMessageSync(msg);
2550    return static_cast<MessageCreateSurface*>( msg.get() )->getResult();
2551}
2552status_t Client::destroySurface(SurfaceID sid) {
2553    return mFlinger->removeSurface(this, sid);
2554}
2555
2556// ---------------------------------------------------------------------------
2557
2558GraphicBufferAlloc::GraphicBufferAlloc() {}
2559
2560GraphicBufferAlloc::~GraphicBufferAlloc() {}
2561
2562sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2563        PixelFormat format, uint32_t usage, status_t* error) {
2564    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2565    status_t err = graphicBuffer->initCheck();
2566    *error = err;
2567    if (err != 0 || graphicBuffer->handle == 0) {
2568        if (err == NO_MEMORY) {
2569            GraphicBuffer::dumpAllocationsToSystemLog();
2570        }
2571        LOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2572             "failed (%s), handle=%p",
2573                w, h, strerror(-err), graphicBuffer->handle);
2574        return 0;
2575    }
2576    return graphicBuffer;
2577}
2578
2579// ---------------------------------------------------------------------------
2580
2581GraphicPlane::GraphicPlane()
2582    : mHw(0)
2583{
2584}
2585
2586GraphicPlane::~GraphicPlane() {
2587    delete mHw;
2588}
2589
2590bool GraphicPlane::initialized() const {
2591    return mHw ? true : false;
2592}
2593
2594int GraphicPlane::getWidth() const {
2595    return mWidth;
2596}
2597
2598int GraphicPlane::getHeight() const {
2599    return mHeight;
2600}
2601
2602void GraphicPlane::setDisplayHardware(DisplayHardware *hw)
2603{
2604    mHw = hw;
2605
2606    // initialize the display orientation transform.
2607    // it's a constant that should come from the display driver.
2608    int displayOrientation = ISurfaceComposer::eOrientationDefault;
2609    char property[PROPERTY_VALUE_MAX];
2610    if (property_get("ro.sf.hwrotation", property, NULL) > 0) {
2611        //displayOrientation
2612        switch (atoi(property)) {
2613        case 90:
2614            displayOrientation = ISurfaceComposer::eOrientation90;
2615            break;
2616        case 270:
2617            displayOrientation = ISurfaceComposer::eOrientation270;
2618            break;
2619        }
2620    }
2621
2622    const float w = hw->getWidth();
2623    const float h = hw->getHeight();
2624    GraphicPlane::orientationToTransfrom(displayOrientation, w, h,
2625            &mDisplayTransform);
2626    if (displayOrientation & ISurfaceComposer::eOrientationSwapMask) {
2627        mDisplayWidth = h;
2628        mDisplayHeight = w;
2629    } else {
2630        mDisplayWidth = w;
2631        mDisplayHeight = h;
2632    }
2633
2634    setOrientation(ISurfaceComposer::eOrientationDefault);
2635}
2636
2637status_t GraphicPlane::orientationToTransfrom(
2638        int orientation, int w, int h, Transform* tr)
2639{
2640    uint32_t flags = 0;
2641    switch (orientation) {
2642    case ISurfaceComposer::eOrientationDefault:
2643        flags = Transform::ROT_0;
2644        break;
2645    case ISurfaceComposer::eOrientation90:
2646        flags = Transform::ROT_90;
2647        break;
2648    case ISurfaceComposer::eOrientation180:
2649        flags = Transform::ROT_180;
2650        break;
2651    case ISurfaceComposer::eOrientation270:
2652        flags = Transform::ROT_270;
2653        break;
2654    default:
2655        return BAD_VALUE;
2656    }
2657    tr->set(flags, w, h);
2658    return NO_ERROR;
2659}
2660
2661status_t GraphicPlane::setOrientation(int orientation)
2662{
2663    // If the rotation can be handled in hardware, this is where
2664    // the magic should happen.
2665
2666    const DisplayHardware& hw(displayHardware());
2667    const float w = mDisplayWidth;
2668    const float h = mDisplayHeight;
2669    mWidth = int(w);
2670    mHeight = int(h);
2671
2672    Transform orientationTransform;
2673    GraphicPlane::orientationToTransfrom(orientation, w, h,
2674            &orientationTransform);
2675    if (orientation & ISurfaceComposer::eOrientationSwapMask) {
2676        mWidth = int(h);
2677        mHeight = int(w);
2678    }
2679
2680    mOrientation = orientation;
2681    mGlobalTransform = mDisplayTransform * orientationTransform;
2682    return NO_ERROR;
2683}
2684
2685const DisplayHardware& GraphicPlane::displayHardware() const {
2686    return *mHw;
2687}
2688
2689DisplayHardware& GraphicPlane::editDisplayHardware() {
2690    return *mHw;
2691}
2692
2693const Transform& GraphicPlane::transform() const {
2694    return mGlobalTransform;
2695}
2696
2697EGLDisplay GraphicPlane::getEGLDisplay() const {
2698    return mHw->getEGLDisplay();
2699}
2700
2701// ---------------------------------------------------------------------------
2702
2703}; // namespace android
2704