SurfaceFlinger.cpp revision bd1153382e7a9d89922bea999a52ca21d46d6caa
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/Surface.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56#include <private/gui/SyncFeatures.h>
57
58#include "clz.h"
59#include "DdmConnection.h"
60#include "DisplayDevice.h"
61#include "Client.h"
62#include "EventThread.h"
63#include "GLExtensions.h"
64#include "Layer.h"
65#include "LayerDim.h"
66#include "SurfaceFlinger.h"
67
68#include "DisplayHardware/FramebufferSurface.h"
69#include "DisplayHardware/HWComposer.h"
70#include "DisplayHardware/VirtualDisplaySurface.h"
71
72#define DISPLAY_COUNT       1
73
74EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mAnimCompositionPending(false),
97        mDebugRegion(0),
98        mDebugDDMS(0),
99        mDebugDisableHWC(0),
100        mDebugDisableTransformHint(0),
101        mDebugInSwapBuffers(0),
102        mLastSwapBufferTime(0),
103        mDebugInTransaction(0),
104        mLastTransactionTime(0),
105        mBootFinished(false)
106{
107    ALOGI("SurfaceFlinger is starting");
108
109    // debugging stuff...
110    char value[PROPERTY_VALUE_MAX];
111
112    property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
113    mGpuToCpuSupported = !atoi(value);
114
115    property_get("debug.sf.showupdates", value, "0");
116    mDebugRegion = atoi(value);
117
118    property_get("debug.sf.ddms", value, "0");
119    mDebugDDMS = atoi(value);
120    if (mDebugDDMS) {
121        if (!startDdmConnection()) {
122            // start failed, and DDMS debugging not enabled
123            mDebugDDMS = 0;
124        }
125    }
126    ALOGI_IF(mDebugRegion, "showupdates enabled");
127    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
128}
129
130void SurfaceFlinger::onFirstRef()
131{
132    mEventQueue.init(this);
133
134    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
135
136    // Wait for the main thread to be done with its initialization
137    mReadyToRunBarrier.wait();
138}
139
140
141SurfaceFlinger::~SurfaceFlinger()
142{
143    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
144    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
145    eglTerminate(display);
146}
147
148void SurfaceFlinger::binderDied(const wp<IBinder>& who)
149{
150    // the window manager died on us. prepare its eulogy.
151
152    // restore initial conditions (default device unblank, etc)
153    initializeDisplays();
154
155    // restart the boot-animation
156    startBootAnim();
157}
158
159sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
160{
161    sp<ISurfaceComposerClient> bclient;
162    sp<Client> client(new Client(this));
163    status_t err = client->initCheck();
164    if (err == NO_ERROR) {
165        bclient = client;
166    }
167    return bclient;
168}
169
170sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
171        bool secure)
172{
173    class DisplayToken : public BBinder {
174        sp<SurfaceFlinger> flinger;
175        virtual ~DisplayToken() {
176             // no more references, this display must be terminated
177             Mutex::Autolock _l(flinger->mStateLock);
178             flinger->mCurrentState.displays.removeItem(this);
179             flinger->setTransactionFlags(eDisplayTransactionNeeded);
180         }
181     public:
182        DisplayToken(const sp<SurfaceFlinger>& flinger)
183            : flinger(flinger) {
184        }
185    };
186
187    sp<BBinder> token = new DisplayToken(this);
188
189    Mutex::Autolock _l(mStateLock);
190    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
191    info.displayName = displayName;
192    info.isSecure = secure;
193    mCurrentState.displays.add(token, info);
194
195    return token;
196}
197
198void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
199    ALOGW_IF(mBuiltinDisplays[type],
200            "Overwriting display token for display type %d", type);
201    mBuiltinDisplays[type] = new BBinder();
202    DisplayDeviceState info(type);
203    // All non-virtual displays are currently considered secure.
204    info.isSecure = true;
205    mCurrentState.displays.add(mBuiltinDisplays[type], info);
206}
207
208sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
209    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
210        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
211        return NULL;
212    }
213    return mBuiltinDisplays[id];
214}
215
216sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
217{
218    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
219    return gba;
220}
221
222void SurfaceFlinger::bootFinished()
223{
224    const nsecs_t now = systemTime();
225    const nsecs_t duration = now - mBootTime;
226    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
227    mBootFinished = true;
228
229    // wait patiently for the window manager death
230    const String16 name("window");
231    sp<IBinder> window(defaultServiceManager()->getService(name));
232    if (window != 0) {
233        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
234    }
235
236    // stop boot animation
237    // formerly we would just kill the process, but we now ask it to exit so it
238    // can choose where to stop the animation.
239    property_set("service.bootanim.exit", "1");
240}
241
242void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
243    class MessageDestroyGLTexture : public MessageBase {
244        GLuint texture;
245    public:
246        MessageDestroyGLTexture(GLuint texture)
247            : texture(texture) {
248        }
249        virtual bool handler() {
250            glDeleteTextures(1, &texture);
251            return true;
252        }
253    };
254    postMessageAsync(new MessageDestroyGLTexture(texture));
255}
256
257status_t SurfaceFlinger::selectConfigForAttribute(
258        EGLDisplay dpy,
259        EGLint const* attrs,
260        EGLint attribute, EGLint wanted,
261        EGLConfig* outConfig)
262{
263    EGLConfig config = NULL;
264    EGLint numConfigs = -1, n=0;
265    eglGetConfigs(dpy, NULL, 0, &numConfigs);
266    EGLConfig* const configs = new EGLConfig[numConfigs];
267    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
268
269    if (n) {
270        if (attribute != EGL_NONE) {
271            for (int i=0 ; i<n ; i++) {
272                EGLint value = 0;
273                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
274                if (wanted == value) {
275                    *outConfig = configs[i];
276                    delete [] configs;
277                    return NO_ERROR;
278                }
279            }
280        } else {
281            // just pick the first one
282            *outConfig = configs[0];
283            delete [] configs;
284            return NO_ERROR;
285        }
286    }
287    delete [] configs;
288    return NAME_NOT_FOUND;
289}
290
291class EGLAttributeVector {
292    struct Attribute;
293    class Adder;
294    friend class Adder;
295    KeyedVector<Attribute, EGLint> mList;
296    struct Attribute {
297        Attribute() {};
298        Attribute(EGLint v) : v(v) { }
299        EGLint v;
300        bool operator < (const Attribute& other) const {
301            // this places EGL_NONE at the end
302            EGLint lhs(v);
303            EGLint rhs(other.v);
304            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
305            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
306            return lhs < rhs;
307        }
308    };
309    class Adder {
310        friend class EGLAttributeVector;
311        EGLAttributeVector& v;
312        EGLint attribute;
313        Adder(EGLAttributeVector& v, EGLint attribute)
314            : v(v), attribute(attribute) {
315        }
316    public:
317        void operator = (EGLint value) {
318            if (attribute != EGL_NONE) {
319                v.mList.add(attribute, value);
320            }
321        }
322        operator EGLint () const { return v.mList[attribute]; }
323    };
324public:
325    EGLAttributeVector() {
326        mList.add(EGL_NONE, EGL_NONE);
327    }
328    void remove(EGLint attribute) {
329        if (attribute != EGL_NONE) {
330            mList.removeItem(attribute);
331        }
332    }
333    Adder operator [] (EGLint attribute) {
334        return Adder(*this, attribute);
335    }
336    EGLint operator [] (EGLint attribute) const {
337       return mList[attribute];
338    }
339    // cast-operator to (EGLint const*)
340    operator EGLint const* () const { return &mList.keyAt(0).v; }
341};
342
343EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
344    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
345    // it is to be used with WIFI displays
346    EGLConfig config;
347    EGLint dummy;
348    status_t err;
349
350    EGLAttributeVector attribs;
351    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
352    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
353    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
354    attribs[EGL_RED_SIZE]                   = 8;
355    attribs[EGL_GREEN_SIZE]                 = 8;
356    attribs[EGL_BLUE_SIZE]                  = 8;
357
358    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
359    if (!err)
360        goto success;
361
362    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
363    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
364    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
365    err = selectConfigForAttribute(display, attribs,
366            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
367    if (!err)
368        goto success;
369
370    // maybe we failed because of EGL_RECORDABLE_ANDROID
371    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
372    attribs.remove(EGL_RECORDABLE_ANDROID);
373    err = selectConfigForAttribute(display, attribs,
374            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
375    if (!err)
376        goto success;
377
378    // allow less than 24-bit color; the non-gpu-accelerated emulator only
379    // supports 16-bit color
380    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
381    attribs.remove(EGL_RED_SIZE);
382    attribs.remove(EGL_GREEN_SIZE);
383    attribs.remove(EGL_BLUE_SIZE);
384    err = selectConfigForAttribute(display, attribs,
385            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
386    if (!err)
387        goto success;
388
389    // this EGL is too lame for Android
390    ALOGE("no suitable EGLConfig found, giving up");
391
392    return 0;
393
394success:
395    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
396        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
397    return config;
398}
399
400EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
401    // Also create our EGLContext
402    EGLint contextAttributes[] = {
403#ifdef EGL_IMG_context_priority
404#ifdef HAS_CONTEXT_PRIORITY
405#warning "using EGL_IMG_context_priority"
406            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
407#endif
408#endif
409            EGL_NONE, EGL_NONE
410    };
411    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
412    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
413    return ctxt;
414}
415
416void SurfaceFlinger::initializeGL(EGLDisplay display) {
417    GLExtensions& extensions(GLExtensions::getInstance());
418    extensions.initWithGLStrings(
419            glGetString(GL_VENDOR),
420            glGetString(GL_RENDERER),
421            glGetString(GL_VERSION),
422            glGetString(GL_EXTENSIONS),
423            eglQueryString(display, EGL_VENDOR),
424            eglQueryString(display, EGL_VERSION),
425            eglQueryString(display, EGL_EXTENSIONS));
426
427    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
428    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
429
430    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
431    glPixelStorei(GL_PACK_ALIGNMENT, 4);
432    glEnableClientState(GL_VERTEX_ARRAY);
433    glShadeModel(GL_FLAT);
434    glDisable(GL_DITHER);
435    glDisable(GL_CULL_FACE);
436
437    struct pack565 {
438        inline uint16_t operator() (int r, int g, int b) const {
439            return (r<<11)|(g<<5)|b;
440        }
441    } pack565;
442
443    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
444    glGenTextures(1, &mProtectedTexName);
445    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
446    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
447    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
448    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
449    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
450    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
451            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
452
453    // print some debugging info
454    EGLint r,g,b,a;
455    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
456    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
457    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
458    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
459    ALOGI("EGL informations:");
460    ALOGI("vendor    : %s", extensions.getEglVendor());
461    ALOGI("version   : %s", extensions.getEglVersion());
462    ALOGI("extensions: %s", extensions.getEglExtension());
463    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
464    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
465    ALOGI("OpenGL ES informations:");
466    ALOGI("vendor    : %s", extensions.getVendor());
467    ALOGI("renderer  : %s", extensions.getRenderer());
468    ALOGI("version   : %s", extensions.getVersion());
469    ALOGI("extensions: %s", extensions.getExtension());
470    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
471    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
472}
473
474status_t SurfaceFlinger::readyToRun()
475{
476    ALOGI(  "SurfaceFlinger's main thread ready to run. "
477            "Initializing graphics H/W...");
478
479    Mutex::Autolock _l(mStateLock);
480
481    // initialize EGL for the default display
482    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
483    eglInitialize(mEGLDisplay, NULL, NULL);
484
485    // Initialize the H/W composer object.  There may or may not be an
486    // actual hardware composer underneath.
487    mHwc = new HWComposer(this,
488            *static_cast<HWComposer::EventHandler *>(this));
489
490    // initialize the config and context
491    EGLint format = mHwc->getVisualID();
492    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
493    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
494
495    // figure out which format we got
496    eglGetConfigAttrib(mEGLDisplay, mEGLConfig,
497            EGL_NATIVE_VISUAL_ID, &mEGLNativeVisualId);
498
499    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
500            "couldn't create EGLContext");
501
502    // initialize our non-virtual displays
503    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
504        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
505        // set-up the displays that are already connected
506        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
507            // All non-virtual displays are currently considered secure.
508            bool isSecure = true;
509            createBuiltinDisplayLocked(type);
510            wp<IBinder> token = mBuiltinDisplays[i];
511
512            sp<DisplayDevice> hw = new DisplayDevice(this,
513                    type, allocateHwcDisplayId(type), isSecure, token,
514                    new FramebufferSurface(*mHwc, i),
515                    mEGLConfig);
516            if (i > DisplayDevice::DISPLAY_PRIMARY) {
517                // FIXME: currently we don't get blank/unblank requests
518                // for displays other than the main display, so we always
519                // assume a connected display is unblanked.
520                ALOGD("marking display %d as acquired/unblanked", i);
521                hw->acquireScreen();
522            }
523            mDisplays.add(token, hw);
524        }
525    }
526
527    //  we need a GL context current in a few places, when initializing
528    //  OpenGL ES (see below), or creating a layer,
529    //  or when a texture is (asynchronously) destroyed, and for that
530    //  we need a valid surface, so it's convenient to use the main display
531    //  for that.
532    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
533
534    //  initialize OpenGL ES
535    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
536    initializeGL(mEGLDisplay);
537
538    // start the EventThread
539    mEventThread = new EventThread(this);
540    mEventQueue.setEventThread(mEventThread);
541
542    // initialize our drawing state
543    mDrawingState = mCurrentState;
544
545
546    // We're now ready to accept clients...
547    mReadyToRunBarrier.open();
548
549    // set initial conditions (e.g. unblank default device)
550    initializeDisplays();
551
552    // start boot animation
553    startBootAnim();
554
555    return NO_ERROR;
556}
557
558int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
559    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
560            type : mHwc->allocateDisplayId();
561}
562
563void SurfaceFlinger::startBootAnim() {
564    // start boot animation
565    property_set("service.bootanim.exit", "0");
566    property_set("ctl.start", "bootanim");
567}
568
569uint32_t SurfaceFlinger::getMaxTextureSize() const {
570    return mMaxTextureSize;
571}
572
573uint32_t SurfaceFlinger::getMaxViewportDims() const {
574    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
575            mMaxViewportDims[0] : mMaxViewportDims[1];
576}
577
578// ----------------------------------------------------------------------------
579
580bool SurfaceFlinger::authenticateSurfaceTexture(
581        const sp<IGraphicBufferProducer>& bufferProducer) const {
582    Mutex::Autolock _l(mStateLock);
583    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
584    return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
585}
586
587status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
588    int32_t type = NAME_NOT_FOUND;
589    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
590        if (display == mBuiltinDisplays[i]) {
591            type = i;
592            break;
593        }
594    }
595
596    if (type < 0) {
597        return type;
598    }
599
600    const HWComposer& hwc(getHwComposer());
601    float xdpi = hwc.getDpiX(type);
602    float ydpi = hwc.getDpiY(type);
603
604    // TODO: Not sure if display density should handled by SF any longer
605    class Density {
606        static int getDensityFromProperty(char const* propName) {
607            char property[PROPERTY_VALUE_MAX];
608            int density = 0;
609            if (property_get(propName, property, NULL) > 0) {
610                density = atoi(property);
611            }
612            return density;
613        }
614    public:
615        static int getEmuDensity() {
616            return getDensityFromProperty("qemu.sf.lcd_density"); }
617        static int getBuildDensity()  {
618            return getDensityFromProperty("ro.sf.lcd_density"); }
619    };
620
621    if (type == DisplayDevice::DISPLAY_PRIMARY) {
622        // The density of the device is provided by a build property
623        float density = Density::getBuildDensity() / 160.0f;
624        if (density == 0) {
625            // the build doesn't provide a density -- this is wrong!
626            // use xdpi instead
627            ALOGE("ro.sf.lcd_density must be defined as a build property");
628            density = xdpi / 160.0f;
629        }
630        if (Density::getEmuDensity()) {
631            // if "qemu.sf.lcd_density" is specified, it overrides everything
632            xdpi = ydpi = density = Density::getEmuDensity();
633            density /= 160.0f;
634        }
635        info->density = density;
636
637        // TODO: this needs to go away (currently needed only by webkit)
638        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
639        info->orientation = hw->getOrientation();
640        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
641    } else {
642        // TODO: where should this value come from?
643        static const int TV_DENSITY = 213;
644        info->density = TV_DENSITY / 160.0f;
645        info->orientation = 0;
646    }
647
648    info->w = hwc.getWidth(type);
649    info->h = hwc.getHeight(type);
650    info->xdpi = xdpi;
651    info->ydpi = ydpi;
652    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
653
654    // All non-virtual displays are currently considered secure.
655    info->secure = true;
656
657    return NO_ERROR;
658}
659
660// ----------------------------------------------------------------------------
661
662sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
663    return mEventThread->createEventConnection();
664}
665
666// ----------------------------------------------------------------------------
667
668void SurfaceFlinger::waitForEvent() {
669    mEventQueue.waitMessage();
670}
671
672void SurfaceFlinger::signalTransaction() {
673    mEventQueue.invalidate();
674}
675
676void SurfaceFlinger::signalLayerUpdate() {
677    mEventQueue.invalidate();
678}
679
680void SurfaceFlinger::signalRefresh() {
681    mEventQueue.refresh();
682}
683
684status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
685        nsecs_t reltime, uint32_t flags) {
686    return mEventQueue.postMessage(msg, reltime);
687}
688
689status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
690        nsecs_t reltime, uint32_t flags) {
691    status_t res = mEventQueue.postMessage(msg, reltime);
692    if (res == NO_ERROR) {
693        msg->wait();
694    }
695    return res;
696}
697
698bool SurfaceFlinger::threadLoop() {
699    waitForEvent();
700    return true;
701}
702
703void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
704    if (mEventThread == NULL) {
705        // This is a temporary workaround for b/7145521.  A non-null pointer
706        // does not mean EventThread has finished initializing, so this
707        // is not a correct fix.
708        ALOGW("WARNING: EventThread not started, ignoring vsync");
709        return;
710    }
711    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
712        // we should only receive DisplayDevice::DisplayType from the vsync callback
713        mEventThread->onVSyncReceived(type, timestamp);
714    }
715}
716
717void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
718    if (mEventThread == NULL) {
719        // This is a temporary workaround for b/7145521.  A non-null pointer
720        // does not mean EventThread has finished initializing, so this
721        // is not a correct fix.
722        ALOGW("WARNING: EventThread not started, ignoring hotplug");
723        return;
724    }
725
726    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
727        Mutex::Autolock _l(mStateLock);
728        if (connected) {
729            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
730        } else {
731            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
732            mBuiltinDisplays[type].clear();
733        }
734        setTransactionFlags(eDisplayTransactionNeeded);
735
736        // Defer EventThread notification until SF has updated mDisplays.
737    }
738}
739
740void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
741    getHwComposer().eventControl(disp, event, enabled);
742}
743
744void SurfaceFlinger::onMessageReceived(int32_t what) {
745    ATRACE_CALL();
746    switch (what) {
747    case MessageQueue::TRANSACTION:
748        handleMessageTransaction();
749        break;
750    case MessageQueue::INVALIDATE:
751        handleMessageTransaction();
752        handleMessageInvalidate();
753        signalRefresh();
754        break;
755    case MessageQueue::REFRESH:
756        handleMessageRefresh();
757        break;
758    }
759}
760
761void SurfaceFlinger::handleMessageTransaction() {
762    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
763    if (transactionFlags) {
764        handleTransaction(transactionFlags);
765    }
766}
767
768void SurfaceFlinger::handleMessageInvalidate() {
769    ATRACE_CALL();
770    handlePageFlip();
771}
772
773void SurfaceFlinger::handleMessageRefresh() {
774    ATRACE_CALL();
775    preComposition();
776    rebuildLayerStacks();
777    setUpHWComposer();
778    doDebugFlashRegions();
779    doComposition();
780    postComposition();
781}
782
783void SurfaceFlinger::doDebugFlashRegions()
784{
785    // is debugging enabled
786    if (CC_LIKELY(!mDebugRegion))
787        return;
788
789    const bool repaintEverything = mRepaintEverything;
790    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
791        const sp<DisplayDevice>& hw(mDisplays[dpy]);
792        if (hw->canDraw()) {
793            // transform the dirty region into this screen's coordinate space
794            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
795            if (!dirtyRegion.isEmpty()) {
796                // redraw the whole screen
797                doComposeSurfaces(hw, Region(hw->bounds()));
798
799                // and draw the dirty region
800                glDisable(GL_TEXTURE_EXTERNAL_OES);
801                glDisable(GL_TEXTURE_2D);
802                glDisable(GL_BLEND);
803                glColor4f(1, 0, 1, 1);
804                const int32_t height = hw->getHeight();
805                Region::const_iterator it = dirtyRegion.begin();
806                Region::const_iterator const end = dirtyRegion.end();
807                while (it != end) {
808                    const Rect& r = *it++;
809                    GLfloat vertices[][2] = {
810                            { (GLfloat) r.left,  (GLfloat) (height - r.top) },
811                            { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
812                            { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
813                            { (GLfloat) r.right, (GLfloat) (height - r.top) }
814                    };
815                    glVertexPointer(2, GL_FLOAT, 0, vertices);
816                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
817                }
818                hw->compositionComplete();
819                hw->swapBuffers(getHwComposer());
820            }
821        }
822    }
823
824    postFramebuffer();
825
826    if (mDebugRegion > 1) {
827        usleep(mDebugRegion * 1000);
828    }
829
830    HWComposer& hwc(getHwComposer());
831    if (hwc.initCheck() == NO_ERROR) {
832        status_t err = hwc.prepare();
833        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
834    }
835}
836
837void SurfaceFlinger::preComposition()
838{
839    bool needExtraInvalidate = false;
840    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
841    const size_t count = currentLayers.size();
842    for (size_t i=0 ; i<count ; i++) {
843        if (currentLayers[i]->onPreComposition()) {
844            needExtraInvalidate = true;
845        }
846    }
847    if (needExtraInvalidate) {
848        signalLayerUpdate();
849    }
850}
851
852void SurfaceFlinger::postComposition()
853{
854    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
855    const size_t count = currentLayers.size();
856    for (size_t i=0 ; i<count ; i++) {
857        currentLayers[i]->onPostComposition();
858    }
859
860    if (mAnimCompositionPending) {
861        mAnimCompositionPending = false;
862
863        const HWComposer& hwc = getHwComposer();
864        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
865        if (presentFence->isValid()) {
866            mAnimFrameTracker.setActualPresentFence(presentFence);
867        } else {
868            // The HWC doesn't support present fences, so use the refresh
869            // timestamp instead.
870            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
871            mAnimFrameTracker.setActualPresentTime(presentTime);
872        }
873        mAnimFrameTracker.advanceFrame();
874    }
875}
876
877void SurfaceFlinger::rebuildLayerStacks() {
878    // rebuild the visible layer list per screen
879    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
880        ATRACE_CALL();
881        mVisibleRegionsDirty = false;
882        invalidateHwcGeometry();
883
884        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
885        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
886            Region opaqueRegion;
887            Region dirtyRegion;
888            Vector< sp<Layer> > layersSortedByZ;
889            const sp<DisplayDevice>& hw(mDisplays[dpy]);
890            const Transform& tr(hw->getTransform());
891            const Rect bounds(hw->getBounds());
892            if (hw->canDraw()) {
893                SurfaceFlinger::computeVisibleRegions(currentLayers,
894                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
895
896                const size_t count = currentLayers.size();
897                for (size_t i=0 ; i<count ; i++) {
898                    const sp<Layer>& layer(currentLayers[i]);
899                    const Layer::State& s(layer->drawingState());
900                    if (s.layerStack == hw->getLayerStack()) {
901                        Region drawRegion(tr.transform(
902                                layer->visibleNonTransparentRegion));
903                        drawRegion.andSelf(bounds);
904                        if (!drawRegion.isEmpty()) {
905                            layersSortedByZ.add(layer);
906                        }
907                    }
908                }
909            }
910            hw->setVisibleLayersSortedByZ(layersSortedByZ);
911            hw->undefinedRegion.set(bounds);
912            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
913            hw->dirtyRegion.orSelf(dirtyRegion);
914        }
915    }
916}
917
918void SurfaceFlinger::setUpHWComposer() {
919    HWComposer& hwc(getHwComposer());
920    if (hwc.initCheck() == NO_ERROR) {
921        // build the h/w work list
922        if (CC_UNLIKELY(mHwWorkListDirty)) {
923            mHwWorkListDirty = false;
924            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
925                sp<const DisplayDevice> hw(mDisplays[dpy]);
926                const int32_t id = hw->getHwcDisplayId();
927                if (id >= 0) {
928                    const Vector< sp<Layer> >& currentLayers(
929                        hw->getVisibleLayersSortedByZ());
930                    const size_t count = currentLayers.size();
931                    if (hwc.createWorkList(id, count) == NO_ERROR) {
932                        HWComposer::LayerListIterator cur = hwc.begin(id);
933                        const HWComposer::LayerListIterator end = hwc.end(id);
934                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
935                            const sp<Layer>& layer(currentLayers[i]);
936                            layer->setGeometry(hw, *cur);
937                            if (mDebugDisableHWC || mDebugRegion) {
938                                cur->setSkip(true);
939                            }
940                        }
941                    }
942                }
943            }
944        }
945
946        // set the per-frame data
947        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
948            sp<const DisplayDevice> hw(mDisplays[dpy]);
949            const int32_t id = hw->getHwcDisplayId();
950            if (id >= 0) {
951                const Vector< sp<Layer> >& currentLayers(
952                    hw->getVisibleLayersSortedByZ());
953                const size_t count = currentLayers.size();
954                HWComposer::LayerListIterator cur = hwc.begin(id);
955                const HWComposer::LayerListIterator end = hwc.end(id);
956                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
957                    /*
958                     * update the per-frame h/w composer data for each layer
959                     * and build the transparent region of the FB
960                     */
961                    const sp<Layer>& layer(currentLayers[i]);
962                    layer->setPerFrameData(hw, *cur);
963                }
964            }
965        }
966
967        status_t err = hwc.prepare();
968        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
969    }
970}
971
972void SurfaceFlinger::doComposition() {
973    ATRACE_CALL();
974    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
975    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
976        const sp<DisplayDevice>& hw(mDisplays[dpy]);
977        if (hw->canDraw()) {
978            // transform the dirty region into this screen's coordinate space
979            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
980
981            // repaint the framebuffer (if needed)
982            doDisplayComposition(hw, dirtyRegion);
983
984            hw->dirtyRegion.clear();
985            hw->flip(hw->swapRegion);
986            hw->swapRegion.clear();
987        }
988        // inform the h/w that we're done compositing
989        hw->compositionComplete();
990    }
991    postFramebuffer();
992}
993
994void SurfaceFlinger::postFramebuffer()
995{
996    ATRACE_CALL();
997
998    const nsecs_t now = systemTime();
999    mDebugInSwapBuffers = now;
1000
1001    HWComposer& hwc(getHwComposer());
1002    if (hwc.initCheck() == NO_ERROR) {
1003        if (!hwc.supportsFramebufferTarget()) {
1004            // EGL spec says:
1005            //   "surface must be bound to the calling thread's current context,
1006            //    for the current rendering API."
1007            DisplayDevice::makeCurrent(mEGLDisplay,
1008                    getDefaultDisplayDevice(), mEGLContext);
1009        }
1010        hwc.commit();
1011    }
1012
1013    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1014        sp<const DisplayDevice> hw(mDisplays[dpy]);
1015        const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
1016        hw->onSwapBuffersCompleted(hwc);
1017        const size_t count = currentLayers.size();
1018        int32_t id = hw->getHwcDisplayId();
1019        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1020            HWComposer::LayerListIterator cur = hwc.begin(id);
1021            const HWComposer::LayerListIterator end = hwc.end(id);
1022            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1023                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1024            }
1025        } else {
1026            for (size_t i = 0; i < count; i++) {
1027                currentLayers[i]->onLayerDisplayed(hw, NULL);
1028            }
1029        }
1030    }
1031
1032    mLastSwapBufferTime = systemTime() - now;
1033    mDebugInSwapBuffers = 0;
1034}
1035
1036void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1037{
1038    ATRACE_CALL();
1039
1040    Mutex::Autolock _l(mStateLock);
1041    const nsecs_t now = systemTime();
1042    mDebugInTransaction = now;
1043
1044    // Here we're guaranteed that some transaction flags are set
1045    // so we can call handleTransactionLocked() unconditionally.
1046    // We call getTransactionFlags(), which will also clear the flags,
1047    // with mStateLock held to guarantee that mCurrentState won't change
1048    // until the transaction is committed.
1049
1050    transactionFlags = getTransactionFlags(eTransactionMask);
1051    handleTransactionLocked(transactionFlags);
1052
1053    mLastTransactionTime = systemTime() - now;
1054    mDebugInTransaction = 0;
1055    invalidateHwcGeometry();
1056    // here the transaction has been committed
1057}
1058
1059void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1060{
1061    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1062    const size_t count = currentLayers.size();
1063
1064    /*
1065     * Traversal of the children
1066     * (perform the transaction for each of them if needed)
1067     */
1068
1069    if (transactionFlags & eTraversalNeeded) {
1070        for (size_t i=0 ; i<count ; i++) {
1071            const sp<Layer>& layer(currentLayers[i]);
1072            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1073            if (!trFlags) continue;
1074
1075            const uint32_t flags = layer->doTransaction(0);
1076            if (flags & Layer::eVisibleRegion)
1077                mVisibleRegionsDirty = true;
1078        }
1079    }
1080
1081    /*
1082     * Perform display own transactions if needed
1083     */
1084
1085    if (transactionFlags & eDisplayTransactionNeeded) {
1086        // here we take advantage of Vector's copy-on-write semantics to
1087        // improve performance by skipping the transaction entirely when
1088        // know that the lists are identical
1089        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1090        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1091        if (!curr.isIdenticalTo(draw)) {
1092            mVisibleRegionsDirty = true;
1093            const size_t cc = curr.size();
1094                  size_t dc = draw.size();
1095
1096            // find the displays that were removed
1097            // (ie: in drawing state but not in current state)
1098            // also handle displays that changed
1099            // (ie: displays that are in both lists)
1100            for (size_t i=0 ; i<dc ; i++) {
1101                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1102                if (j < 0) {
1103                    // in drawing state but not in current state
1104                    if (!draw[i].isMainDisplay()) {
1105                        // Call makeCurrent() on the primary display so we can
1106                        // be sure that nothing associated with this display
1107                        // is current.
1108                        const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice());
1109                        DisplayDevice::makeCurrent(mEGLDisplay, defaultDisplay, mEGLContext);
1110                        sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i)));
1111                        if (hw != NULL)
1112                            hw->disconnect(getHwComposer());
1113                        if (draw[i].type < DisplayDevice::NUM_DISPLAY_TYPES)
1114                            mEventThread->onHotplugReceived(draw[i].type, false);
1115                        mDisplays.removeItem(draw.keyAt(i));
1116                    } else {
1117                        ALOGW("trying to remove the main display");
1118                    }
1119                } else {
1120                    // this display is in both lists. see if something changed.
1121                    const DisplayDeviceState& state(curr[j]);
1122                    const wp<IBinder>& display(curr.keyAt(j));
1123                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1124                        // changing the surface is like destroying and
1125                        // recreating the DisplayDevice, so we just remove it
1126                        // from the drawing state, so that it get re-added
1127                        // below.
1128                        sp<DisplayDevice> hw(getDisplayDevice(display));
1129                        if (hw != NULL)
1130                            hw->disconnect(getHwComposer());
1131                        mDisplays.removeItem(display);
1132                        mDrawingState.displays.removeItemsAt(i);
1133                        dc--; i--;
1134                        // at this point we must loop to the next item
1135                        continue;
1136                    }
1137
1138                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1139                    if (disp != NULL) {
1140                        if (state.layerStack != draw[i].layerStack) {
1141                            disp->setLayerStack(state.layerStack);
1142                        }
1143                        if ((state.orientation != draw[i].orientation)
1144                                || (state.viewport != draw[i].viewport)
1145                                || (state.frame != draw[i].frame))
1146                        {
1147                            disp->setProjection(state.orientation,
1148                                    state.viewport, state.frame);
1149                        }
1150                    }
1151                }
1152            }
1153
1154            // find displays that were added
1155            // (ie: in current state but not in drawing state)
1156            for (size_t i=0 ; i<cc ; i++) {
1157                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1158                    const DisplayDeviceState& state(curr[i]);
1159
1160                    sp<DisplaySurface> dispSurface;
1161                    int32_t hwcDisplayId = -1;
1162                    if (state.isVirtualDisplay()) {
1163                        // Virtual displays without a surface are dormant:
1164                        // they have external state (layer stack, projection,
1165                        // etc.) but no internal state (i.e. a DisplayDevice).
1166                        if (state.surface != NULL) {
1167                            hwcDisplayId = allocateHwcDisplayId(state.type);
1168                            dispSurface = new VirtualDisplaySurface(
1169                                    *mHwc, hwcDisplayId, state.surface,
1170                                    state.displayName);
1171                        }
1172                    } else {
1173                        ALOGE_IF(state.surface!=NULL,
1174                                "adding a supported display, but rendering "
1175                                "surface is provided (%p), ignoring it",
1176                                state.surface.get());
1177                        hwcDisplayId = allocateHwcDisplayId(state.type);
1178                        // for supported (by hwc) displays we provide our
1179                        // own rendering surface
1180                        dispSurface = new FramebufferSurface(*mHwc, state.type);
1181                    }
1182
1183                    const wp<IBinder>& display(curr.keyAt(i));
1184                    if (dispSurface != NULL) {
1185                        sp<DisplayDevice> hw = new DisplayDevice(this,
1186                                state.type, hwcDisplayId, state.isSecure,
1187                                display, dispSurface, mEGLConfig);
1188                        hw->setLayerStack(state.layerStack);
1189                        hw->setProjection(state.orientation,
1190                                state.viewport, state.frame);
1191                        hw->setDisplayName(state.displayName);
1192                        mDisplays.add(display, hw);
1193                        if (state.isVirtualDisplay()) {
1194                            if (hwcDisplayId >= 0) {
1195                                mHwc->setVirtualDisplayProperties(hwcDisplayId,
1196                                        hw->getWidth(), hw->getHeight(),
1197                                        hw->getFormat());
1198                            }
1199                        } else {
1200                            mEventThread->onHotplugReceived(state.type, true);
1201                        }
1202                    }
1203                }
1204            }
1205        }
1206    }
1207
1208    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1209        // The transform hint might have changed for some layers
1210        // (either because a display has changed, or because a layer
1211        // as changed).
1212        //
1213        // Walk through all the layers in currentLayers,
1214        // and update their transform hint.
1215        //
1216        // If a layer is visible only on a single display, then that
1217        // display is used to calculate the hint, otherwise we use the
1218        // default display.
1219        //
1220        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1221        // the hint is set before we acquire a buffer from the surface texture.
1222        //
1223        // NOTE: layer transactions have taken place already, so we use their
1224        // drawing state. However, SurfaceFlinger's own transaction has not
1225        // happened yet, so we must use the current state layer list
1226        // (soon to become the drawing state list).
1227        //
1228        sp<const DisplayDevice> disp;
1229        uint32_t currentlayerStack = 0;
1230        for (size_t i=0; i<count; i++) {
1231            // NOTE: we rely on the fact that layers are sorted by
1232            // layerStack first (so we don't have to traverse the list
1233            // of displays for every layer).
1234            const sp<Layer>& layer(currentLayers[i]);
1235            uint32_t layerStack = layer->drawingState().layerStack;
1236            if (i==0 || currentlayerStack != layerStack) {
1237                currentlayerStack = layerStack;
1238                // figure out if this layerstack is mirrored
1239                // (more than one display) if so, pick the default display,
1240                // if not, pick the only display it's on.
1241                disp.clear();
1242                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1243                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1244                    if (hw->getLayerStack() == currentlayerStack) {
1245                        if (disp == NULL) {
1246                            disp = hw;
1247                        } else {
1248                            disp = NULL;
1249                            break;
1250                        }
1251                    }
1252                }
1253            }
1254            if (disp == NULL) {
1255                // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
1256                // redraw after transform hint changes. See bug 8508397.
1257
1258                // could be null when this layer is using a layerStack
1259                // that is not visible on any display. Also can occur at
1260                // screen off/on times.
1261                disp = getDefaultDisplayDevice();
1262            }
1263            layer->updateTransformHint(disp);
1264        }
1265    }
1266
1267
1268    /*
1269     * Perform our own transaction if needed
1270     */
1271
1272    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1273    if (currentLayers.size() > previousLayers.size()) {
1274        // layers have been added
1275        mVisibleRegionsDirty = true;
1276    }
1277
1278    // some layers might have been removed, so
1279    // we need to update the regions they're exposing.
1280    if (mLayersRemoved) {
1281        mLayersRemoved = false;
1282        mVisibleRegionsDirty = true;
1283        const size_t count = previousLayers.size();
1284        for (size_t i=0 ; i<count ; i++) {
1285            const sp<Layer>& layer(previousLayers[i]);
1286            if (currentLayers.indexOf(layer) < 0) {
1287                // this layer is not visible anymore
1288                // TODO: we could traverse the tree from front to back and
1289                //       compute the actual visible region
1290                // TODO: we could cache the transformed region
1291                const Layer::State& s(layer->drawingState());
1292                Region visibleReg = s.transform.transform(
1293                        Region(Rect(s.active.w, s.active.h)));
1294                invalidateLayerStack(s.layerStack, visibleReg);
1295            }
1296        }
1297    }
1298
1299    commitTransaction();
1300}
1301
1302void SurfaceFlinger::commitTransaction()
1303{
1304    if (!mLayersPendingRemoval.isEmpty()) {
1305        // Notify removed layers now that they can't be drawn from
1306        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1307            mLayersPendingRemoval[i]->onRemoved();
1308        }
1309        mLayersPendingRemoval.clear();
1310    }
1311
1312    // If this transaction is part of a window animation then the next frame
1313    // we composite should be considered an animation as well.
1314    mAnimCompositionPending = mAnimTransactionPending;
1315
1316    mDrawingState = mCurrentState;
1317    mTransactionPending = false;
1318    mAnimTransactionPending = false;
1319    mTransactionCV.broadcast();
1320}
1321
1322void SurfaceFlinger::computeVisibleRegions(
1323        const LayerVector& currentLayers, uint32_t layerStack,
1324        Region& outDirtyRegion, Region& outOpaqueRegion)
1325{
1326    ATRACE_CALL();
1327
1328    Region aboveOpaqueLayers;
1329    Region aboveCoveredLayers;
1330    Region dirty;
1331
1332    outDirtyRegion.clear();
1333
1334    size_t i = currentLayers.size();
1335    while (i--) {
1336        const sp<Layer>& layer = currentLayers[i];
1337
1338        // start with the whole surface at its current location
1339        const Layer::State& s(layer->drawingState());
1340
1341        // only consider the layers on the given layer stack
1342        if (s.layerStack != layerStack)
1343            continue;
1344
1345        /*
1346         * opaqueRegion: area of a surface that is fully opaque.
1347         */
1348        Region opaqueRegion;
1349
1350        /*
1351         * visibleRegion: area of a surface that is visible on screen
1352         * and not fully transparent. This is essentially the layer's
1353         * footprint minus the opaque regions above it.
1354         * Areas covered by a translucent surface are considered visible.
1355         */
1356        Region visibleRegion;
1357
1358        /*
1359         * coveredRegion: area of a surface that is covered by all
1360         * visible regions above it (which includes the translucent areas).
1361         */
1362        Region coveredRegion;
1363
1364        /*
1365         * transparentRegion: area of a surface that is hinted to be completely
1366         * transparent. This is only used to tell when the layer has no visible
1367         * non-transparent regions and can be removed from the layer list. It
1368         * does not affect the visibleRegion of this layer or any layers
1369         * beneath it. The hint may not be correct if apps don't respect the
1370         * SurfaceView restrictions (which, sadly, some don't).
1371         */
1372        Region transparentRegion;
1373
1374
1375        // handle hidden surfaces by setting the visible region to empty
1376        if (CC_LIKELY(layer->isVisible())) {
1377            const bool translucent = !layer->isOpaque();
1378            Rect bounds(s.transform.transform(layer->computeBounds()));
1379            visibleRegion.set(bounds);
1380            if (!visibleRegion.isEmpty()) {
1381                // Remove the transparent area from the visible region
1382                if (translucent) {
1383                    const Transform tr(s.transform);
1384                    if (tr.transformed()) {
1385                        if (tr.preserveRects()) {
1386                            // transform the transparent region
1387                            transparentRegion = tr.transform(s.activeTransparentRegion);
1388                        } else {
1389                            // transformation too complex, can't do the
1390                            // transparent region optimization.
1391                            transparentRegion.clear();
1392                        }
1393                    } else {
1394                        transparentRegion = s.activeTransparentRegion;
1395                    }
1396                }
1397
1398                // compute the opaque region
1399                const int32_t layerOrientation = s.transform.getOrientation();
1400                if (s.alpha==255 && !translucent &&
1401                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1402                    // the opaque region is the layer's footprint
1403                    opaqueRegion = visibleRegion;
1404                }
1405            }
1406        }
1407
1408        // Clip the covered region to the visible region
1409        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1410
1411        // Update aboveCoveredLayers for next (lower) layer
1412        aboveCoveredLayers.orSelf(visibleRegion);
1413
1414        // subtract the opaque region covered by the layers above us
1415        visibleRegion.subtractSelf(aboveOpaqueLayers);
1416
1417        // compute this layer's dirty region
1418        if (layer->contentDirty) {
1419            // we need to invalidate the whole region
1420            dirty = visibleRegion;
1421            // as well, as the old visible region
1422            dirty.orSelf(layer->visibleRegion);
1423            layer->contentDirty = false;
1424        } else {
1425            /* compute the exposed region:
1426             *   the exposed region consists of two components:
1427             *   1) what's VISIBLE now and was COVERED before
1428             *   2) what's EXPOSED now less what was EXPOSED before
1429             *
1430             * note that (1) is conservative, we start with the whole
1431             * visible region but only keep what used to be covered by
1432             * something -- which mean it may have been exposed.
1433             *
1434             * (2) handles areas that were not covered by anything but got
1435             * exposed because of a resize.
1436             */
1437            const Region newExposed = visibleRegion - coveredRegion;
1438            const Region oldVisibleRegion = layer->visibleRegion;
1439            const Region oldCoveredRegion = layer->coveredRegion;
1440            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1441            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1442        }
1443        dirty.subtractSelf(aboveOpaqueLayers);
1444
1445        // accumulate to the screen dirty region
1446        outDirtyRegion.orSelf(dirty);
1447
1448        // Update aboveOpaqueLayers for next (lower) layer
1449        aboveOpaqueLayers.orSelf(opaqueRegion);
1450
1451        // Store the visible region in screen space
1452        layer->setVisibleRegion(visibleRegion);
1453        layer->setCoveredRegion(coveredRegion);
1454        layer->setVisibleNonTransparentRegion(
1455                visibleRegion.subtract(transparentRegion));
1456    }
1457
1458    outOpaqueRegion = aboveOpaqueLayers;
1459}
1460
1461void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1462        const Region& dirty) {
1463    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1464        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1465        if (hw->getLayerStack() == layerStack) {
1466            hw->dirtyRegion.orSelf(dirty);
1467        }
1468    }
1469}
1470
1471void SurfaceFlinger::handlePageFlip()
1472{
1473    Region dirtyRegion;
1474
1475    bool visibleRegions = false;
1476    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1477    const size_t count = currentLayers.size();
1478    for (size_t i=0 ; i<count ; i++) {
1479        const sp<Layer>& layer(currentLayers[i]);
1480        const Region dirty(layer->latchBuffer(visibleRegions));
1481        const Layer::State& s(layer->drawingState());
1482        invalidateLayerStack(s.layerStack, dirty);
1483    }
1484
1485    mVisibleRegionsDirty |= visibleRegions;
1486}
1487
1488void SurfaceFlinger::invalidateHwcGeometry()
1489{
1490    mHwWorkListDirty = true;
1491}
1492
1493
1494void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1495        const Region& inDirtyRegion)
1496{
1497    Region dirtyRegion(inDirtyRegion);
1498
1499    // compute the invalid region
1500    hw->swapRegion.orSelf(dirtyRegion);
1501
1502    uint32_t flags = hw->getFlags();
1503    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1504        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1505        // takes a rectangle, we must make sure to update that whole
1506        // rectangle in that case
1507        dirtyRegion.set(hw->swapRegion.bounds());
1508    } else {
1509        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1510            // We need to redraw the rectangle that will be updated
1511            // (pushed to the framebuffer).
1512            // This is needed because PARTIAL_UPDATES only takes one
1513            // rectangle instead of a region (see DisplayDevice::flip())
1514            dirtyRegion.set(hw->swapRegion.bounds());
1515        } else {
1516            // we need to redraw everything (the whole screen)
1517            dirtyRegion.set(hw->bounds());
1518            hw->swapRegion = dirtyRegion;
1519        }
1520    }
1521
1522    doComposeSurfaces(hw, dirtyRegion);
1523
1524    // update the swap region and clear the dirty region
1525    hw->swapRegion.orSelf(dirtyRegion);
1526
1527    // swap buffers (presentation)
1528    hw->swapBuffers(getHwComposer());
1529}
1530
1531void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1532{
1533    const int32_t id = hw->getHwcDisplayId();
1534    HWComposer& hwc(getHwComposer());
1535    HWComposer::LayerListIterator cur = hwc.begin(id);
1536    const HWComposer::LayerListIterator end = hwc.end(id);
1537
1538    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1539    if (hasGlesComposition) {
1540        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1541
1542        // set the frame buffer
1543        glMatrixMode(GL_MODELVIEW);
1544        glLoadIdentity();
1545
1546        // Never touch the framebuffer if we don't have any framebuffer layers
1547        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1548        if (hasHwcComposition) {
1549            // when using overlays, we assume a fully transparent framebuffer
1550            // NOTE: we could reduce how much we need to clear, for instance
1551            // remove where there are opaque FB layers. however, on some
1552            // GPUs doing a "clean slate" glClear might be more efficient.
1553            // We'll revisit later if needed.
1554            glClearColor(0, 0, 0, 0);
1555            glClear(GL_COLOR_BUFFER_BIT);
1556        } else {
1557            // we start with the whole screen area
1558            const Region bounds(hw->getBounds());
1559
1560            // we remove the scissor part
1561            // we're left with the letterbox region
1562            // (common case is that letterbox ends-up being empty)
1563            const Region letterbox(bounds.subtract(hw->getScissor()));
1564
1565            // compute the area to clear
1566            Region region(hw->undefinedRegion.merge(letterbox));
1567
1568            // but limit it to the dirty region
1569            region.andSelf(dirty);
1570
1571            // screen is already cleared here
1572            if (!region.isEmpty()) {
1573                // can happen with SurfaceView
1574                drawWormhole(hw, region);
1575            }
1576        }
1577
1578        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1579            // just to be on the safe side, we don't set the
1580            // scissor on the main display. It should never be needed
1581            // anyways (though in theory it could since the API allows it).
1582            const Rect& bounds(hw->getBounds());
1583            const Rect& scissor(hw->getScissor());
1584            if (scissor != bounds) {
1585                // scissor doesn't match the screen's dimensions, so we
1586                // need to clear everything outside of it and enable
1587                // the GL scissor so we don't draw anything where we shouldn't
1588                const GLint height = hw->getHeight();
1589                glScissor(scissor.left, height - scissor.bottom,
1590                        scissor.getWidth(), scissor.getHeight());
1591                // enable scissor for this frame
1592                glEnable(GL_SCISSOR_TEST);
1593            }
1594        }
1595    }
1596
1597    /*
1598     * and then, render the layers targeted at the framebuffer
1599     */
1600
1601    const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
1602    const size_t count = layers.size();
1603    const Transform& tr = hw->getTransform();
1604    if (cur != end) {
1605        // we're using h/w composer
1606        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1607            const sp<Layer>& layer(layers[i]);
1608            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1609            if (!clip.isEmpty()) {
1610                switch (cur->getCompositionType()) {
1611                    case HWC_OVERLAY: {
1612                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1613                                && i
1614                                && layer->isOpaque()
1615                                && hasGlesComposition) {
1616                            // never clear the very first layer since we're
1617                            // guaranteed the FB is already cleared
1618                            layer->clearWithOpenGL(hw, clip);
1619                        }
1620                        break;
1621                    }
1622                    case HWC_FRAMEBUFFER: {
1623                        layer->draw(hw, clip);
1624                        break;
1625                    }
1626                    case HWC_FRAMEBUFFER_TARGET: {
1627                        // this should not happen as the iterator shouldn't
1628                        // let us get there.
1629                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1630                        break;
1631                    }
1632                }
1633            }
1634            layer->setAcquireFence(hw, *cur);
1635        }
1636    } else {
1637        // we're not using h/w composer
1638        for (size_t i=0 ; i<count ; ++i) {
1639            const sp<Layer>& layer(layers[i]);
1640            const Region clip(dirty.intersect(
1641                    tr.transform(layer->visibleRegion)));
1642            if (!clip.isEmpty()) {
1643                layer->draw(hw, clip);
1644            }
1645        }
1646    }
1647
1648    // disable scissor at the end of the frame
1649    glDisable(GL_SCISSOR_TEST);
1650}
1651
1652void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1653        const Region& region) const
1654{
1655    glDisable(GL_TEXTURE_EXTERNAL_OES);
1656    glDisable(GL_TEXTURE_2D);
1657    glDisable(GL_BLEND);
1658    glColor4f(0,0,0,0);
1659
1660    const int32_t height = hw->getHeight();
1661    Region::const_iterator it = region.begin();
1662    Region::const_iterator const end = region.end();
1663    while (it != end) {
1664        const Rect& r = *it++;
1665        GLfloat vertices[][2] = {
1666                { (GLfloat) r.left,  (GLfloat) (height - r.top) },
1667                { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
1668                { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
1669                { (GLfloat) r.right, (GLfloat) (height - r.top) }
1670        };
1671        glVertexPointer(2, GL_FLOAT, 0, vertices);
1672        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1673    }
1674}
1675
1676void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1677        const sp<IBinder>& handle,
1678        const sp<IGraphicBufferProducer>& gbc,
1679        const sp<Layer>& lbc)
1680{
1681    // attach this layer to the client
1682    client->attachLayer(handle, lbc);
1683
1684    // add this layer to the current state list
1685    Mutex::Autolock _l(mStateLock);
1686    mCurrentState.layersSortedByZ.add(lbc);
1687    mGraphicBufferProducerList.add(gbc->asBinder());
1688}
1689
1690status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer)
1691{
1692    Mutex::Autolock _l(mStateLock);
1693    ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
1694    if (index >= 0) {
1695        mLayersPendingRemoval.push(layer);
1696        mLayersRemoved = true;
1697        setTransactionFlags(eTransactionNeeded);
1698        return NO_ERROR;
1699    }
1700    return status_t(index);
1701}
1702
1703uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1704{
1705    return android_atomic_release_load(&mTransactionFlags);
1706}
1707
1708uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1709{
1710    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1711}
1712
1713uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1714{
1715    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1716    if ((old & flags)==0) { // wake the server up
1717        signalTransaction();
1718    }
1719    return old;
1720}
1721
1722void SurfaceFlinger::setTransactionState(
1723        const Vector<ComposerState>& state,
1724        const Vector<DisplayState>& displays,
1725        uint32_t flags)
1726{
1727    ATRACE_CALL();
1728    Mutex::Autolock _l(mStateLock);
1729    uint32_t transactionFlags = 0;
1730
1731    if (flags & eAnimation) {
1732        // For window updates that are part of an animation we must wait for
1733        // previous animation "frames" to be handled.
1734        while (mAnimTransactionPending) {
1735            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1736            if (CC_UNLIKELY(err != NO_ERROR)) {
1737                // just in case something goes wrong in SF, return to the
1738                // caller after a few seconds.
1739                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1740                        "waiting for previous animation frame");
1741                mAnimTransactionPending = false;
1742                break;
1743            }
1744        }
1745    }
1746
1747    size_t count = displays.size();
1748    for (size_t i=0 ; i<count ; i++) {
1749        const DisplayState& s(displays[i]);
1750        transactionFlags |= setDisplayStateLocked(s);
1751    }
1752
1753    count = state.size();
1754    for (size_t i=0 ; i<count ; i++) {
1755        const ComposerState& s(state[i]);
1756        // Here we need to check that the interface we're given is indeed
1757        // one of our own. A malicious client could give us a NULL
1758        // IInterface, or one of its own or even one of our own but a
1759        // different type. All these situations would cause us to crash.
1760        //
1761        // NOTE: it would be better to use RTTI as we could directly check
1762        // that we have a Client*. however, RTTI is disabled in Android.
1763        if (s.client != NULL) {
1764            sp<IBinder> binder = s.client->asBinder();
1765            if (binder != NULL) {
1766                String16 desc(binder->getInterfaceDescriptor());
1767                if (desc == ISurfaceComposerClient::descriptor) {
1768                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1769                    transactionFlags |= setClientStateLocked(client, s.state);
1770                }
1771            }
1772        }
1773    }
1774
1775    if (transactionFlags) {
1776        // this triggers the transaction
1777        setTransactionFlags(transactionFlags);
1778
1779        // if this is a synchronous transaction, wait for it to take effect
1780        // before returning.
1781        if (flags & eSynchronous) {
1782            mTransactionPending = true;
1783        }
1784        if (flags & eAnimation) {
1785            mAnimTransactionPending = true;
1786        }
1787        while (mTransactionPending) {
1788            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1789            if (CC_UNLIKELY(err != NO_ERROR)) {
1790                // just in case something goes wrong in SF, return to the
1791                // called after a few seconds.
1792                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1793                mTransactionPending = false;
1794                break;
1795            }
1796        }
1797    }
1798}
1799
1800uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1801{
1802    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1803    if (dpyIdx < 0)
1804        return 0;
1805
1806    uint32_t flags = 0;
1807    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1808    if (disp.isValid()) {
1809        const uint32_t what = s.what;
1810        if (what & DisplayState::eSurfaceChanged) {
1811            if (disp.surface->asBinder() != s.surface->asBinder()) {
1812                disp.surface = s.surface;
1813                flags |= eDisplayTransactionNeeded;
1814            }
1815        }
1816        if (what & DisplayState::eLayerStackChanged) {
1817            if (disp.layerStack != s.layerStack) {
1818                disp.layerStack = s.layerStack;
1819                flags |= eDisplayTransactionNeeded;
1820            }
1821        }
1822        if (what & DisplayState::eDisplayProjectionChanged) {
1823            if (disp.orientation != s.orientation) {
1824                disp.orientation = s.orientation;
1825                flags |= eDisplayTransactionNeeded;
1826            }
1827            if (disp.frame != s.frame) {
1828                disp.frame = s.frame;
1829                flags |= eDisplayTransactionNeeded;
1830            }
1831            if (disp.viewport != s.viewport) {
1832                disp.viewport = s.viewport;
1833                flags |= eDisplayTransactionNeeded;
1834            }
1835        }
1836    }
1837    return flags;
1838}
1839
1840uint32_t SurfaceFlinger::setClientStateLocked(
1841        const sp<Client>& client,
1842        const layer_state_t& s)
1843{
1844    uint32_t flags = 0;
1845    sp<Layer> layer(client->getLayerUser(s.surface));
1846    if (layer != 0) {
1847        const uint32_t what = s.what;
1848        if (what & layer_state_t::ePositionChanged) {
1849            if (layer->setPosition(s.x, s.y))
1850                flags |= eTraversalNeeded;
1851        }
1852        if (what & layer_state_t::eLayerChanged) {
1853            // NOTE: index needs to be calculated before we update the state
1854            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1855            if (layer->setLayer(s.z)) {
1856                mCurrentState.layersSortedByZ.removeAt(idx);
1857                mCurrentState.layersSortedByZ.add(layer);
1858                // we need traversal (state changed)
1859                // AND transaction (list changed)
1860                flags |= eTransactionNeeded|eTraversalNeeded;
1861            }
1862        }
1863        if (what & layer_state_t::eSizeChanged) {
1864            if (layer->setSize(s.w, s.h)) {
1865                flags |= eTraversalNeeded;
1866            }
1867        }
1868        if (what & layer_state_t::eAlphaChanged) {
1869            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1870                flags |= eTraversalNeeded;
1871        }
1872        if (what & layer_state_t::eMatrixChanged) {
1873            if (layer->setMatrix(s.matrix))
1874                flags |= eTraversalNeeded;
1875        }
1876        if (what & layer_state_t::eTransparentRegionChanged) {
1877            if (layer->setTransparentRegionHint(s.transparentRegion))
1878                flags |= eTraversalNeeded;
1879        }
1880        if (what & layer_state_t::eVisibilityChanged) {
1881            if (layer->setFlags(s.flags, s.mask))
1882                flags |= eTraversalNeeded;
1883        }
1884        if (what & layer_state_t::eCropChanged) {
1885            if (layer->setCrop(s.crop))
1886                flags |= eTraversalNeeded;
1887        }
1888        if (what & layer_state_t::eLayerStackChanged) {
1889            // NOTE: index needs to be calculated before we update the state
1890            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1891            if (layer->setLayerStack(s.layerStack)) {
1892                mCurrentState.layersSortedByZ.removeAt(idx);
1893                mCurrentState.layersSortedByZ.add(layer);
1894                // we need traversal (state changed)
1895                // AND transaction (list changed)
1896                flags |= eTransactionNeeded|eTraversalNeeded;
1897            }
1898        }
1899    }
1900    return flags;
1901}
1902
1903status_t SurfaceFlinger::createLayer(
1904        const String8& name,
1905        const sp<Client>& client,
1906        uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
1907        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
1908{
1909    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1910    if (int32_t(w|h) < 0) {
1911        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1912                int(w), int(h));
1913        return BAD_VALUE;
1914    }
1915
1916    status_t result = NO_ERROR;
1917
1918    sp<Layer> layer;
1919
1920    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1921        case ISurfaceComposerClient::eFXSurfaceNormal:
1922            result = createNormalLayer(client,
1923                    name, w, h, flags, format,
1924                    handle, gbp, &layer);
1925            break;
1926        case ISurfaceComposerClient::eFXSurfaceDim:
1927            result = createDimLayer(client,
1928                    name, w, h, flags,
1929                    handle, gbp, &layer);
1930            break;
1931        default:
1932            result = BAD_VALUE;
1933            break;
1934    }
1935
1936    if (result == NO_ERROR) {
1937        addClientLayer(client, *handle, *gbp, layer);
1938        setTransactionFlags(eTransactionNeeded);
1939    }
1940    return result;
1941}
1942
1943status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
1944        const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
1945        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1946{
1947    // initialize the surfaces
1948    switch (format) {
1949    case PIXEL_FORMAT_TRANSPARENT:
1950    case PIXEL_FORMAT_TRANSLUCENT:
1951        format = PIXEL_FORMAT_RGBA_8888;
1952        break;
1953    case PIXEL_FORMAT_OPAQUE:
1954#ifdef NO_RGBX_8888
1955        format = PIXEL_FORMAT_RGB_565;
1956#else
1957        format = PIXEL_FORMAT_RGBX_8888;
1958#endif
1959        break;
1960    }
1961
1962#ifdef NO_RGBX_8888
1963    if (format == PIXEL_FORMAT_RGBX_8888)
1964        format = PIXEL_FORMAT_RGBA_8888;
1965#endif
1966
1967    *outLayer = new Layer(this, client, name, w, h, flags);
1968    status_t err = (*outLayer)->setBuffers(w, h, format, flags);
1969    if (err == NO_ERROR) {
1970        *handle = (*outLayer)->getHandle();
1971        *gbp = (*outLayer)->getBufferQueue();
1972    }
1973
1974    ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
1975    return err;
1976}
1977
1978status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
1979        const String8& name, uint32_t w, uint32_t h, uint32_t flags,
1980        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1981{
1982    *outLayer = new LayerDim(this, client, name, w, h, flags);
1983    *handle = (*outLayer)->getHandle();
1984    *gbp = (*outLayer)->getBufferQueue();
1985    return NO_ERROR;
1986}
1987
1988status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
1989{
1990    // called by the window manager when it wants to remove a Layer
1991    status_t err = NO_ERROR;
1992    sp<Layer> l(client->getLayerUser(handle));
1993    if (l != NULL) {
1994        err = removeLayer(l);
1995        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1996                "error removing layer=%p (%s)", l.get(), strerror(-err));
1997    }
1998    return err;
1999}
2000
2001status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
2002{
2003    // called by ~LayerCleaner() when all references to the IBinder (handle)
2004    // are gone
2005    status_t err = NO_ERROR;
2006    sp<Layer> l(layer.promote());
2007    if (l != NULL) {
2008        err = removeLayer(l);
2009        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2010                "error removing layer=%p (%s)", l.get(), strerror(-err));
2011    }
2012    return err;
2013}
2014
2015// ---------------------------------------------------------------------------
2016
2017void SurfaceFlinger::onInitializeDisplays() {
2018    // reset screen orientation and use primary layer stack
2019    Vector<ComposerState> state;
2020    Vector<DisplayState> displays;
2021    DisplayState d;
2022    d.what = DisplayState::eDisplayProjectionChanged |
2023             DisplayState::eLayerStackChanged;
2024    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2025    d.layerStack = 0;
2026    d.orientation = DisplayState::eOrientationDefault;
2027    d.frame.makeInvalid();
2028    d.viewport.makeInvalid();
2029    displays.add(d);
2030    setTransactionState(state, displays, 0);
2031    onScreenAcquired(getDefaultDisplayDevice());
2032}
2033
2034void SurfaceFlinger::initializeDisplays() {
2035    class MessageScreenInitialized : public MessageBase {
2036        SurfaceFlinger* flinger;
2037    public:
2038        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2039        virtual bool handler() {
2040            flinger->onInitializeDisplays();
2041            return true;
2042        }
2043    };
2044    sp<MessageBase> msg = new MessageScreenInitialized(this);
2045    postMessageAsync(msg);  // we may be called from main thread, use async message
2046}
2047
2048
2049void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2050    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2051    if (hw->isScreenAcquired()) {
2052        // this is expected, e.g. when power manager wakes up during boot
2053        ALOGD(" screen was previously acquired");
2054        return;
2055    }
2056
2057    hw->acquireScreen();
2058    int32_t type = hw->getDisplayType();
2059    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2060        // built-in display, tell the HWC
2061        getHwComposer().acquire(type);
2062
2063        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2064            // FIXME: eventthread only knows about the main display right now
2065            mEventThread->onScreenAcquired();
2066        }
2067    }
2068    mVisibleRegionsDirty = true;
2069    repaintEverything();
2070}
2071
2072void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2073    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2074    if (!hw->isScreenAcquired()) {
2075        ALOGD(" screen was previously released");
2076        return;
2077    }
2078
2079    hw->releaseScreen();
2080    int32_t type = hw->getDisplayType();
2081    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2082        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2083            // FIXME: eventthread only knows about the main display right now
2084            mEventThread->onScreenReleased();
2085        }
2086
2087        // built-in display, tell the HWC
2088        getHwComposer().release(type);
2089    }
2090    mVisibleRegionsDirty = true;
2091    // from this point on, SF will stop drawing on this display
2092}
2093
2094void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2095    class MessageScreenAcquired : public MessageBase {
2096        SurfaceFlinger& mFlinger;
2097        sp<IBinder> mDisplay;
2098    public:
2099        MessageScreenAcquired(SurfaceFlinger& flinger,
2100                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2101        virtual bool handler() {
2102            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2103            if (hw == NULL) {
2104                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2105            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2106                ALOGW("Attempt to unblank virtual display");
2107            } else {
2108                mFlinger.onScreenAcquired(hw);
2109            }
2110            return true;
2111        }
2112    };
2113    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2114    postMessageSync(msg);
2115}
2116
2117void SurfaceFlinger::blank(const sp<IBinder>& display) {
2118    class MessageScreenReleased : public MessageBase {
2119        SurfaceFlinger& mFlinger;
2120        sp<IBinder> mDisplay;
2121    public:
2122        MessageScreenReleased(SurfaceFlinger& flinger,
2123                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2124        virtual bool handler() {
2125            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2126            if (hw == NULL) {
2127                ALOGE("Attempt to blank null display %p", mDisplay.get());
2128            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2129                ALOGW("Attempt to blank virtual display");
2130            } else {
2131                mFlinger.onScreenReleased(hw);
2132            }
2133            return true;
2134        }
2135    };
2136    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2137    postMessageSync(msg);
2138}
2139
2140// ---------------------------------------------------------------------------
2141
2142status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2143{
2144    const size_t SIZE = 4096;
2145    char buffer[SIZE];
2146    String8 result;
2147
2148
2149    IPCThreadState* ipc = IPCThreadState::self();
2150    const int pid = ipc->getCallingPid();
2151    const int uid = ipc->getCallingUid();
2152    if ((uid != AID_SHELL) &&
2153            !PermissionCache::checkPermission(sDump, pid, uid)) {
2154        snprintf(buffer, SIZE, "Permission Denial: "
2155                "can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
2156        result.append(buffer);
2157    } else {
2158        // Try to get the main lock, but don't insist if we can't
2159        // (this would indicate SF is stuck, but we want to be able to
2160        // print something in dumpsys).
2161        int retry = 3;
2162        while (mStateLock.tryLock()<0 && --retry>=0) {
2163            usleep(1000000);
2164        }
2165        const bool locked(retry >= 0);
2166        if (!locked) {
2167            snprintf(buffer, SIZE,
2168                    "SurfaceFlinger appears to be unresponsive, "
2169                    "dumping anyways (no locks held)\n");
2170            result.append(buffer);
2171        }
2172
2173        bool dumpAll = true;
2174        size_t index = 0;
2175        size_t numArgs = args.size();
2176        if (numArgs) {
2177            if ((index < numArgs) &&
2178                    (args[index] == String16("--list"))) {
2179                index++;
2180                listLayersLocked(args, index, result, buffer, SIZE);
2181                dumpAll = false;
2182            }
2183
2184            if ((index < numArgs) &&
2185                    (args[index] == String16("--latency"))) {
2186                index++;
2187                dumpStatsLocked(args, index, result, buffer, SIZE);
2188                dumpAll = false;
2189            }
2190
2191            if ((index < numArgs) &&
2192                    (args[index] == String16("--latency-clear"))) {
2193                index++;
2194                clearStatsLocked(args, index, result, buffer, SIZE);
2195                dumpAll = false;
2196            }
2197        }
2198
2199        if (dumpAll) {
2200            dumpAllLocked(result, buffer, SIZE);
2201        }
2202
2203        if (locked) {
2204            mStateLock.unlock();
2205        }
2206    }
2207    write(fd, result.string(), result.size());
2208    return NO_ERROR;
2209}
2210
2211void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2212        String8& result, char* buffer, size_t SIZE) const
2213{
2214    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2215    const size_t count = currentLayers.size();
2216    for (size_t i=0 ; i<count ; i++) {
2217        const sp<Layer>& layer(currentLayers[i]);
2218        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2219        result.append(buffer);
2220    }
2221}
2222
2223void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2224        String8& result, char* buffer, size_t SIZE) const
2225{
2226    String8 name;
2227    if (index < args.size()) {
2228        name = String8(args[index]);
2229        index++;
2230    }
2231
2232    const nsecs_t period =
2233            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2234    result.appendFormat("%lld\n", period);
2235
2236    if (name.isEmpty()) {
2237        mAnimFrameTracker.dump(result);
2238    } else {
2239        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2240        const size_t count = currentLayers.size();
2241        for (size_t i=0 ; i<count ; i++) {
2242            const sp<Layer>& layer(currentLayers[i]);
2243            if (name == layer->getName()) {
2244                layer->dumpStats(result, buffer, SIZE);
2245            }
2246        }
2247    }
2248}
2249
2250void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2251        String8& result, char* buffer, size_t SIZE)
2252{
2253    String8 name;
2254    if (index < args.size()) {
2255        name = String8(args[index]);
2256        index++;
2257    }
2258
2259    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2260    const size_t count = currentLayers.size();
2261    for (size_t i=0 ; i<count ; i++) {
2262        const sp<Layer>& layer(currentLayers[i]);
2263        if (name.isEmpty() || (name == layer->getName())) {
2264            layer->clearStats();
2265        }
2266    }
2267
2268    mAnimFrameTracker.clear();
2269}
2270
2271/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2272{
2273    static const char* config =
2274            " [sf"
2275#ifdef NO_RGBX_8888
2276            " NO_RGBX_8888"
2277#endif
2278#ifdef HAS_CONTEXT_PRIORITY
2279            " HAS_CONTEXT_PRIORITY"
2280#endif
2281#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2282            " NEVER_DEFAULT_TO_ASYNC_MODE"
2283#endif
2284#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2285            " TARGET_DISABLE_TRIPLE_BUFFERING"
2286#endif
2287            "]";
2288    result.append(config);
2289}
2290
2291void SurfaceFlinger::dumpAllLocked(
2292        String8& result, char* buffer, size_t SIZE) const
2293{
2294    // figure out if we're stuck somewhere
2295    const nsecs_t now = systemTime();
2296    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2297    const nsecs_t inTransaction(mDebugInTransaction);
2298    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2299    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2300
2301    /*
2302     * Dump library configuration.
2303     */
2304    result.append("Build configuration:");
2305    appendSfConfigString(result);
2306    appendUiConfigString(result);
2307    appendGuiConfigString(result);
2308    result.append("\n");
2309
2310    result.append("Sync configuration: ");
2311    result.append(SyncFeatures::getInstance().toString());
2312    result.append("\n");
2313
2314    /*
2315     * Dump the visible layer list
2316     */
2317    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2318    const size_t count = currentLayers.size();
2319    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2320    result.append(buffer);
2321    for (size_t i=0 ; i<count ; i++) {
2322        const sp<Layer>& layer(currentLayers[i]);
2323        layer->dump(result, buffer, SIZE);
2324    }
2325
2326    /*
2327     * Dump Display state
2328     */
2329
2330    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2331    result.append(buffer);
2332    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2333        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2334        hw->dump(result, buffer, SIZE);
2335    }
2336
2337    /*
2338     * Dump SurfaceFlinger global state
2339     */
2340
2341    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2342    result.append(buffer);
2343
2344    HWComposer& hwc(getHwComposer());
2345    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2346    const GLExtensions& extensions(GLExtensions::getInstance());
2347
2348    snprintf(buffer, SIZE, "EGL implementation : %s\n",
2349            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
2350    result.append(buffer);
2351    snprintf(buffer, SIZE, "%s\n",
2352            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
2353    result.append(buffer);
2354
2355    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2356            extensions.getVendor(),
2357            extensions.getRenderer(),
2358            extensions.getVersion());
2359    result.append(buffer);
2360    snprintf(buffer, SIZE, "%s\n", extensions.getExtension());
2361    result.append(buffer);
2362
2363    hw->undefinedRegion.dump(result, "undefinedRegion");
2364    snprintf(buffer, SIZE,
2365            "  orientation=%d, canDraw=%d\n",
2366            hw->getOrientation(), hw->canDraw());
2367    result.append(buffer);
2368    snprintf(buffer, SIZE,
2369            "  last eglSwapBuffers() time: %f us\n"
2370            "  last transaction time     : %f us\n"
2371            "  transaction-flags         : %08x\n"
2372            "  refresh-rate              : %f fps\n"
2373            "  x-dpi                     : %f\n"
2374            "  y-dpi                     : %f\n"
2375            "  EGL_NATIVE_VISUAL_ID      : %d\n"
2376            "  gpu_to_cpu_unsupported    : %d\n"
2377            ,
2378            mLastSwapBufferTime/1000.0,
2379            mLastTransactionTime/1000.0,
2380            mTransactionFlags,
2381            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2382            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2383            hwc.getDpiY(HWC_DISPLAY_PRIMARY),
2384            mEGLNativeVisualId,
2385            !mGpuToCpuSupported);
2386    result.append(buffer);
2387
2388    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2389            inSwapBuffersDuration/1000.0);
2390    result.append(buffer);
2391
2392    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2393            inTransactionDuration/1000.0);
2394    result.append(buffer);
2395
2396    /*
2397     * VSYNC state
2398     */
2399    mEventThread->dump(result, buffer, SIZE);
2400
2401    /*
2402     * Dump HWComposer state
2403     */
2404    snprintf(buffer, SIZE, "h/w composer state:\n");
2405    result.append(buffer);
2406    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2407            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2408                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2409    result.append(buffer);
2410    hwc.dump(result, buffer, SIZE);
2411
2412    /*
2413     * Dump gralloc state
2414     */
2415    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2416    alloc.dump(result);
2417}
2418
2419const Vector< sp<Layer> >&
2420SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
2421    // Note: mStateLock is held here
2422    wp<IBinder> dpy;
2423    for (size_t i=0 ; i<mDisplays.size() ; i++) {
2424        if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
2425            dpy = mDisplays.keyAt(i);
2426            break;
2427        }
2428    }
2429    if (dpy == NULL) {
2430        ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
2431        // Just use the primary display so we have something to return
2432        dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
2433    }
2434    return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
2435}
2436
2437bool SurfaceFlinger::startDdmConnection()
2438{
2439    void* libddmconnection_dso =
2440            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2441    if (!libddmconnection_dso) {
2442        return false;
2443    }
2444    void (*DdmConnection_start)(const char* name);
2445    DdmConnection_start =
2446            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2447    if (!DdmConnection_start) {
2448        dlclose(libddmconnection_dso);
2449        return false;
2450    }
2451    (*DdmConnection_start)(getServiceName());
2452    return true;
2453}
2454
2455status_t SurfaceFlinger::onTransact(
2456    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2457{
2458    switch (code) {
2459        case CREATE_CONNECTION:
2460        case CREATE_DISPLAY:
2461        case SET_TRANSACTION_STATE:
2462        case BOOT_FINISHED:
2463        case BLANK:
2464        case UNBLANK:
2465        {
2466            // codes that require permission check
2467            IPCThreadState* ipc = IPCThreadState::self();
2468            const int pid = ipc->getCallingPid();
2469            const int uid = ipc->getCallingUid();
2470            if ((uid != AID_GRAPHICS) &&
2471                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2472                ALOGE("Permission Denial: "
2473                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2474                return PERMISSION_DENIED;
2475            }
2476            break;
2477        }
2478        case CAPTURE_SCREEN:
2479        {
2480            // codes that require permission check
2481            IPCThreadState* ipc = IPCThreadState::self();
2482            const int pid = ipc->getCallingPid();
2483            const int uid = ipc->getCallingUid();
2484            if ((uid != AID_GRAPHICS) &&
2485                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2486                ALOGE("Permission Denial: "
2487                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2488                return PERMISSION_DENIED;
2489            }
2490            break;
2491        }
2492    }
2493
2494    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2495    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2496        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2497        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2498            IPCThreadState* ipc = IPCThreadState::self();
2499            const int pid = ipc->getCallingPid();
2500            const int uid = ipc->getCallingUid();
2501            ALOGE("Permission Denial: "
2502                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2503            return PERMISSION_DENIED;
2504        }
2505        int n;
2506        switch (code) {
2507            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2508            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2509                return NO_ERROR;
2510            case 1002:  // SHOW_UPDATES
2511                n = data.readInt32();
2512                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2513                invalidateHwcGeometry();
2514                repaintEverything();
2515                return NO_ERROR;
2516            case 1004:{ // repaint everything
2517                repaintEverything();
2518                return NO_ERROR;
2519            }
2520            case 1005:{ // force transaction
2521                setTransactionFlags(
2522                        eTransactionNeeded|
2523                        eDisplayTransactionNeeded|
2524                        eTraversalNeeded);
2525                return NO_ERROR;
2526            }
2527            case 1006:{ // send empty update
2528                signalRefresh();
2529                return NO_ERROR;
2530            }
2531            case 1008:  // toggle use of hw composer
2532                n = data.readInt32();
2533                mDebugDisableHWC = n ? 1 : 0;
2534                invalidateHwcGeometry();
2535                repaintEverything();
2536                return NO_ERROR;
2537            case 1009:  // toggle use of transform hint
2538                n = data.readInt32();
2539                mDebugDisableTransformHint = n ? 1 : 0;
2540                invalidateHwcGeometry();
2541                repaintEverything();
2542                return NO_ERROR;
2543            case 1010:  // interrogate.
2544                reply->writeInt32(0);
2545                reply->writeInt32(0);
2546                reply->writeInt32(mDebugRegion);
2547                reply->writeInt32(0);
2548                reply->writeInt32(mDebugDisableHWC);
2549                return NO_ERROR;
2550            case 1013: {
2551                Mutex::Autolock _l(mStateLock);
2552                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2553                reply->writeInt32(hw->getPageFlipCount());
2554            }
2555            return NO_ERROR;
2556        }
2557    }
2558    return err;
2559}
2560
2561void SurfaceFlinger::repaintEverything() {
2562    android_atomic_or(1, &mRepaintEverything);
2563    signalTransaction();
2564}
2565
2566// ---------------------------------------------------------------------------
2567// Capture screen into an IGraphiBufferProducer
2568// ---------------------------------------------------------------------------
2569
2570status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2571        const sp<IGraphicBufferProducer>& producer,
2572        uint32_t reqWidth, uint32_t reqHeight,
2573        uint32_t minLayerZ, uint32_t maxLayerZ,
2574        bool isCpuConsumer) {
2575
2576    if (CC_UNLIKELY(display == 0))
2577        return BAD_VALUE;
2578
2579    if (CC_UNLIKELY(producer == 0))
2580        return BAD_VALUE;
2581
2582    class MessageCaptureScreen : public MessageBase {
2583        SurfaceFlinger* flinger;
2584        sp<IBinder> display;
2585        sp<IGraphicBufferProducer> producer;
2586        uint32_t reqWidth, reqHeight;
2587        uint32_t minLayerZ,maxLayerZ;
2588        bool isCpuConsumer;
2589        status_t result;
2590    public:
2591        MessageCaptureScreen(SurfaceFlinger* flinger,
2592                const sp<IBinder>& display,
2593                const sp<IGraphicBufferProducer>& producer,
2594                uint32_t reqWidth, uint32_t reqHeight,
2595                uint32_t minLayerZ, uint32_t maxLayerZ, bool isCpuConsumer)
2596            : flinger(flinger), display(display), producer(producer),
2597              reqWidth(reqWidth), reqHeight(reqHeight),
2598              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2599              isCpuConsumer(isCpuConsumer),
2600              result(PERMISSION_DENIED)
2601        {
2602        }
2603        status_t getResult() const {
2604            return result;
2605        }
2606        virtual bool handler() {
2607            Mutex::Autolock _l(flinger->mStateLock);
2608            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2609
2610            bool useReadPixels = false;
2611            if (isCpuConsumer) {
2612                bool formatSupportedBytBitmap =
2613                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBA_8888) ||
2614                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBX_8888);
2615                if (formatSupportedBytBitmap == false) {
2616                    // the pixel format we have is not compatible with
2617                    // Bitmap.java, which is the likely client of this API,
2618                    // so we just revert to glReadPixels() in that case.
2619                    useReadPixels = true;
2620                }
2621                if (flinger->mGpuToCpuSupported == false) {
2622                    // When we know the GL->CPU path works, we can call
2623                    // captureScreenImplLocked() directly, instead of using the
2624                    // glReadPixels() workaround.
2625                    useReadPixels = true;
2626                }
2627            }
2628
2629            if (!useReadPixels) {
2630                result = flinger->captureScreenImplLocked(hw,
2631                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2632            } else {
2633                result = flinger->captureScreenImplCpuConsumerLocked(hw,
2634                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2635            }
2636            return true;
2637        }
2638    };
2639
2640    // make sure to process transactions before screenshots -- a transaction
2641    // might already be pending but scheduled for VSYNC; this guarantees we
2642    // will handle it before the screenshot. When VSYNC finally arrives
2643    // the scheduled transaction will be a no-op. If no transactions are
2644    // scheduled at this time, this will end-up being a no-op as well.
2645    mEventQueue.invalidateTransactionNow();
2646
2647    sp<MessageBase> msg = new MessageCaptureScreen(this,
2648            display, producer, reqWidth, reqHeight, minLayerZ, maxLayerZ,
2649            isCpuConsumer);
2650    status_t res = postMessageSync(msg);
2651    if (res == NO_ERROR) {
2652        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2653    }
2654    return res;
2655}
2656
2657
2658void SurfaceFlinger::renderScreenImplLocked(
2659        const sp<const DisplayDevice>& hw,
2660        uint32_t reqWidth, uint32_t reqHeight,
2661        uint32_t minLayerZ, uint32_t maxLayerZ,
2662        bool yswap)
2663{
2664    ATRACE_CALL();
2665
2666    // get screen geometry
2667    const uint32_t hw_w = hw->getWidth();
2668    const uint32_t hw_h = hw->getHeight();
2669
2670    const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
2671
2672    // make sure to clear all GL error flags
2673    while ( glGetError() != GL_NO_ERROR ) ;
2674
2675    // set-up our viewport
2676    glViewport(0, 0, reqWidth, reqHeight);
2677    glMatrixMode(GL_PROJECTION);
2678    glLoadIdentity();
2679    if (yswap)  glOrthof(0, hw_w, hw_h, 0, 0, 1);
2680    else        glOrthof(0, hw_w, 0, hw_h, 0, 1);
2681    glMatrixMode(GL_MODELVIEW);
2682    glLoadIdentity();
2683
2684    // redraw the screen entirely...
2685    glDisable(GL_SCISSOR_TEST);
2686    glClearColor(0,0,0,1);
2687    glClear(GL_COLOR_BUFFER_BIT);
2688    glDisable(GL_TEXTURE_EXTERNAL_OES);
2689    glDisable(GL_TEXTURE_2D);
2690
2691    const LayerVector& layers( mDrawingState.layersSortedByZ );
2692    const size_t count = layers.size();
2693    for (size_t i=0 ; i<count ; ++i) {
2694        const sp<Layer>& layer(layers[i]);
2695        const Layer::State& state(layer->drawingState());
2696        if (state.layerStack == hw->getLayerStack()) {
2697            if (state.z >= minLayerZ && state.z <= maxLayerZ) {
2698                if (layer->isVisible()) {
2699                    if (filtering) layer->setFiltering(true);
2700                    layer->draw(hw);
2701                    if (filtering) layer->setFiltering(false);
2702                }
2703            }
2704        }
2705    }
2706
2707    // compositionComplete is needed for older driver
2708    hw->compositionComplete();
2709}
2710
2711
2712status_t SurfaceFlinger::captureScreenImplLocked(
2713        const sp<const DisplayDevice>& hw,
2714        const sp<IGraphicBufferProducer>& producer,
2715        uint32_t reqWidth, uint32_t reqHeight,
2716        uint32_t minLayerZ, uint32_t maxLayerZ)
2717{
2718    ATRACE_CALL();
2719
2720    // get screen geometry
2721    const uint32_t hw_w = hw->getWidth();
2722    const uint32_t hw_h = hw->getHeight();
2723
2724    // if we have secure windows on this display, never allow the screen capture
2725    if (hw->getSecureLayerVisible()) {
2726        ALOGW("FB is protected: PERMISSION_DENIED");
2727        return PERMISSION_DENIED;
2728    }
2729
2730    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2731        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2732                reqWidth, reqHeight, hw_w, hw_h);
2733        return BAD_VALUE;
2734    }
2735
2736    reqWidth = (!reqWidth) ? hw_w : reqWidth;
2737    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2738
2739    // Create a surface to render into
2740    sp<Surface> surface = new Surface(producer);
2741    ANativeWindow* const window = surface.get();
2742
2743    // set the buffer size to what the user requested
2744    native_window_set_buffers_user_dimensions(window, reqWidth, reqHeight);
2745
2746    // and create the corresponding EGLSurface
2747    EGLSurface eglSurface = eglCreateWindowSurface(
2748            mEGLDisplay, mEGLConfig, window, NULL);
2749    if (eglSurface == EGL_NO_SURFACE) {
2750        ALOGE("captureScreenImplLocked: eglCreateWindowSurface() failed 0x%4x",
2751                eglGetError());
2752        return BAD_VALUE;
2753    }
2754
2755    if (!eglMakeCurrent(mEGLDisplay, eglSurface, eglSurface, mEGLContext)) {
2756        ALOGE("captureScreenImplLocked: eglMakeCurrent() failed 0x%4x",
2757                eglGetError());
2758        eglDestroySurface(mEGLDisplay, eglSurface);
2759        return BAD_VALUE;
2760    }
2761
2762    renderScreenImplLocked(hw, reqWidth, reqHeight, minLayerZ, maxLayerZ, false);
2763
2764    // and finishing things up...
2765    if (eglSwapBuffers(mEGLDisplay, eglSurface) != EGL_TRUE) {
2766        ALOGE("captureScreenImplLocked: eglSwapBuffers() failed 0x%4x",
2767                eglGetError());
2768        eglDestroySurface(mEGLDisplay, eglSurface);
2769        return BAD_VALUE;
2770    }
2771
2772    eglDestroySurface(mEGLDisplay, eglSurface);
2773
2774    return NO_ERROR;
2775}
2776
2777
2778status_t SurfaceFlinger::captureScreenImplCpuConsumerLocked(
2779        const sp<const DisplayDevice>& hw,
2780        const sp<IGraphicBufferProducer>& producer,
2781        uint32_t reqWidth, uint32_t reqHeight,
2782        uint32_t minLayerZ, uint32_t maxLayerZ)
2783{
2784    ATRACE_CALL();
2785
2786    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2787        return INVALID_OPERATION;
2788    }
2789
2790    // get screen geometry
2791    const uint32_t hw_w = hw->getWidth();
2792    const uint32_t hw_h = hw->getHeight();
2793
2794    // if we have secure windows on this display, never allow the screen capture
2795    if (hw->getSecureLayerVisible()) {
2796        ALOGW("FB is protected: PERMISSION_DENIED");
2797        return PERMISSION_DENIED;
2798    }
2799
2800    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2801        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2802                reqWidth, reqHeight, hw_w, hw_h);
2803        return BAD_VALUE;
2804    }
2805
2806    reqWidth  = (!reqWidth)  ? hw_w : reqWidth;
2807    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2808
2809    GLuint tname;
2810    glGenRenderbuffersOES(1, &tname);
2811    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2812    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, reqWidth, reqHeight);
2813
2814    // create a FBO
2815    GLuint name;
2816    glGenFramebuffersOES(1, &name);
2817    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2818    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2819            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2820
2821    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2822
2823    status_t result = NO_ERROR;
2824    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2825
2826        renderScreenImplLocked(hw, reqWidth, reqHeight, minLayerZ, maxLayerZ, true);
2827
2828        // Below we render the screenshot into the
2829        // CpuConsumer using glReadPixels from our FBO.
2830        // Some older drivers don't support the GL->CPU path so we
2831        // have to wrap it with a CPU->CPU path, which is what
2832        // glReadPixels essentially is.
2833
2834        sp<Surface> sur = new Surface(producer);
2835        ANativeWindow* window = sur.get();
2836
2837        if (native_window_api_connect(window, NATIVE_WINDOW_API_CPU) == NO_ERROR) {
2838            int err = 0;
2839            err = native_window_set_buffers_dimensions(window, reqWidth, reqHeight);
2840            err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
2841            err |= native_window_set_usage(window,
2842                    GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN);
2843
2844            if (err == NO_ERROR) {
2845                ANativeWindowBuffer* buffer;
2846                if (native_window_dequeue_buffer_and_wait(window,  &buffer) == NO_ERROR) {
2847                    sp<GraphicBuffer> buf = static_cast<GraphicBuffer*>(buffer);
2848                    void* vaddr;
2849                    if (buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN, &vaddr) == NO_ERROR) {
2850                        glReadPixels(0, 0, buffer->stride, reqHeight,
2851                                GL_RGBA, GL_UNSIGNED_BYTE, vaddr);
2852                        buf->unlock();
2853                    }
2854                    window->queueBuffer(window, buffer, -1);
2855                }
2856            }
2857            native_window_api_disconnect(window, NATIVE_WINDOW_API_CPU);
2858        }
2859
2860    } else {
2861        ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES while taking screenshot");
2862        result = INVALID_OPERATION;
2863    }
2864
2865    // back to main framebuffer
2866    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2867    glDeleteRenderbuffersOES(1, &tname);
2868    glDeleteFramebuffersOES(1, &name);
2869
2870    DisplayDevice::setViewportAndProjection(hw);
2871
2872    return result;
2873}
2874
2875// ---------------------------------------------------------------------------
2876
2877SurfaceFlinger::LayerVector::LayerVector() {
2878}
2879
2880SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2881    : SortedVector<sp<Layer> >(rhs) {
2882}
2883
2884int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2885    const void* rhs) const
2886{
2887    // sort layers per layer-stack, then by z-order and finally by sequence
2888    const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
2889    const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
2890
2891    uint32_t ls = l->currentState().layerStack;
2892    uint32_t rs = r->currentState().layerStack;
2893    if (ls != rs)
2894        return ls - rs;
2895
2896    uint32_t lz = l->currentState().z;
2897    uint32_t rz = r->currentState().z;
2898    if (lz != rz)
2899        return lz - rz;
2900
2901    return l->sequence - r->sequence;
2902}
2903
2904// ---------------------------------------------------------------------------
2905
2906SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2907    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2908}
2909
2910SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2911    : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) {
2912    viewport.makeInvalid();
2913    frame.makeInvalid();
2914}
2915
2916// ---------------------------------------------------------------------------
2917
2918}; // namespace android
2919