SurfaceFlinger.cpp revision c19c15174b1a07c5d18f45f26bee7893481ab41d
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/SurfaceTextureClient.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56
57#include "clz.h"
58#include "DdmConnection.h"
59#include "DisplayDevice.h"
60#include "Client.h"
61#include "EventThread.h"
62#include "GLExtensions.h"
63#include "Layer.h"
64#include "LayerDim.h"
65#include "LayerScreenshot.h"
66#include "SurfaceFlinger.h"
67
68#include "DisplayHardware/FramebufferSurface.h"
69#include "DisplayHardware/HWComposer.h"
70
71
72#define EGL_VERSION_HW_ANDROID  0x3143
73
74#define DISPLAY_COUNT       1
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mDebugRegion(0),
97        mDebugDDMS(0),
98        mDebugDisableHWC(0),
99        mDebugDisableTransformHint(0),
100        mDebugInSwapBuffers(0),
101        mLastSwapBufferTime(0),
102        mDebugInTransaction(0),
103        mLastTransactionTime(0),
104        mBootFinished(false)
105{
106    ALOGI("SurfaceFlinger is starting");
107
108    // debugging stuff...
109    char value[PROPERTY_VALUE_MAX];
110
111    property_get("debug.sf.showupdates", value, "0");
112    mDebugRegion = atoi(value);
113
114    property_get("debug.sf.ddms", value, "0");
115    mDebugDDMS = atoi(value);
116    if (mDebugDDMS) {
117        if (!startDdmConnection()) {
118            // start failed, and DDMS debugging not enabled
119            mDebugDDMS = 0;
120        }
121    }
122    ALOGI_IF(mDebugRegion, "showupdates enabled");
123    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
124}
125
126void SurfaceFlinger::onFirstRef()
127{
128    mEventQueue.init(this);
129
130    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
131
132    // Wait for the main thread to be done with its initialization
133    mReadyToRunBarrier.wait();
134}
135
136
137SurfaceFlinger::~SurfaceFlinger()
138{
139    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
140    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
141    eglTerminate(display);
142}
143
144void SurfaceFlinger::binderDied(const wp<IBinder>& who)
145{
146    // the window manager died on us. prepare its eulogy.
147
148    // restore initial conditions (default device unblank, etc)
149    initializeDisplays();
150
151    // restart the boot-animation
152    startBootAnim();
153}
154
155sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
156{
157    sp<ISurfaceComposerClient> bclient;
158    sp<Client> client(new Client(this));
159    status_t err = client->initCheck();
160    if (err == NO_ERROR) {
161        bclient = client;
162    }
163    return bclient;
164}
165
166sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
167        bool secure)
168{
169    class DisplayToken : public BBinder {
170        sp<SurfaceFlinger> flinger;
171        virtual ~DisplayToken() {
172             // no more references, this display must be terminated
173             Mutex::Autolock _l(flinger->mStateLock);
174             flinger->mCurrentState.displays.removeItem(this);
175             flinger->setTransactionFlags(eDisplayTransactionNeeded);
176         }
177     public:
178        DisplayToken(const sp<SurfaceFlinger>& flinger)
179            : flinger(flinger) {
180        }
181    };
182
183    sp<BBinder> token = new DisplayToken(this);
184
185    Mutex::Autolock _l(mStateLock);
186    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
187    info.displayName = displayName;
188    info.isSecure = secure;
189    mCurrentState.displays.add(token, info);
190
191    return token;
192}
193
194void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
195    ALOGW_IF(mBuiltinDisplays[type],
196            "Overwriting display token for display type %d", type);
197    mBuiltinDisplays[type] = new BBinder();
198    DisplayDeviceState info(type);
199    // All non-virtual displays are currently considered secure.
200    info.isSecure = true;
201    mCurrentState.displays.add(mBuiltinDisplays[type], info);
202}
203
204sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
205    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
206        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
207        return NULL;
208    }
209    return mBuiltinDisplays[id];
210}
211
212sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
213{
214    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
215    return gba;
216}
217
218void SurfaceFlinger::bootFinished()
219{
220    const nsecs_t now = systemTime();
221    const nsecs_t duration = now - mBootTime;
222    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
223    mBootFinished = true;
224
225    // wait patiently for the window manager death
226    const String16 name("window");
227    sp<IBinder> window(defaultServiceManager()->getService(name));
228    if (window != 0) {
229        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
230    }
231
232    // stop boot animation
233    // formerly we would just kill the process, but we now ask it to exit so it
234    // can choose where to stop the animation.
235    property_set("service.bootanim.exit", "1");
236}
237
238void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
239    class MessageDestroyGLTexture : public MessageBase {
240        GLuint texture;
241    public:
242        MessageDestroyGLTexture(GLuint texture)
243            : texture(texture) {
244        }
245        virtual bool handler() {
246            glDeleteTextures(1, &texture);
247            return true;
248        }
249    };
250    postMessageAsync(new MessageDestroyGLTexture(texture));
251}
252
253status_t SurfaceFlinger::selectConfigForAttribute(
254        EGLDisplay dpy,
255        EGLint const* attrs,
256        EGLint attribute, EGLint wanted,
257        EGLConfig* outConfig)
258{
259    EGLConfig config = NULL;
260    EGLint numConfigs = -1, n=0;
261    eglGetConfigs(dpy, NULL, 0, &numConfigs);
262    EGLConfig* const configs = new EGLConfig[numConfigs];
263    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
264
265    if (n) {
266        if (attribute != EGL_NONE) {
267            for (int i=0 ; i<n ; i++) {
268                EGLint value = 0;
269                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
270                if (wanted == value) {
271                    *outConfig = configs[i];
272                    delete [] configs;
273                    return NO_ERROR;
274                }
275            }
276        } else {
277            // just pick the first one
278            *outConfig = configs[0];
279            delete [] configs;
280            return NO_ERROR;
281        }
282    }
283    delete [] configs;
284    return NAME_NOT_FOUND;
285}
286
287class EGLAttributeVector {
288    struct Attribute;
289    class Adder;
290    friend class Adder;
291    KeyedVector<Attribute, EGLint> mList;
292    struct Attribute {
293        Attribute() {};
294        Attribute(EGLint v) : v(v) { }
295        EGLint v;
296        bool operator < (const Attribute& other) const {
297            // this places EGL_NONE at the end
298            EGLint lhs(v);
299            EGLint rhs(other.v);
300            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
301            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
302            return lhs < rhs;
303        }
304    };
305    class Adder {
306        friend class EGLAttributeVector;
307        EGLAttributeVector& v;
308        EGLint attribute;
309        Adder(EGLAttributeVector& v, EGLint attribute)
310            : v(v), attribute(attribute) {
311        }
312    public:
313        void operator = (EGLint value) {
314            if (attribute != EGL_NONE) {
315                v.mList.add(attribute, value);
316            }
317        }
318        operator EGLint () const { return v.mList[attribute]; }
319    };
320public:
321    EGLAttributeVector() {
322        mList.add(EGL_NONE, EGL_NONE);
323    }
324    void remove(EGLint attribute) {
325        if (attribute != EGL_NONE) {
326            mList.removeItem(attribute);
327        }
328    }
329    Adder operator [] (EGLint attribute) {
330        return Adder(*this, attribute);
331    }
332    EGLint operator [] (EGLint attribute) const {
333       return mList[attribute];
334    }
335    // cast-operator to (EGLint const*)
336    operator EGLint const* () const { return &mList.keyAt(0).v; }
337};
338
339EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
340    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
341    // it is to be used with WIFI displays
342    EGLConfig config;
343    EGLint dummy;
344    status_t err;
345
346    EGLAttributeVector attribs;
347    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
348    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
349    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
350    attribs[EGL_RED_SIZE]                   = 8;
351    attribs[EGL_GREEN_SIZE]                 = 8;
352    attribs[EGL_BLUE_SIZE]                  = 8;
353
354    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
355    if (!err)
356        goto success;
357
358    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
359    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
360    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
361    err = selectConfigForAttribute(display, attribs,
362            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
363    if (!err)
364        goto success;
365
366    // maybe we failed because of EGL_RECORDABLE_ANDROID
367    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
368    attribs.remove(EGL_RECORDABLE_ANDROID);
369    err = selectConfigForAttribute(display, attribs,
370            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
371    if (!err)
372        goto success;
373
374    // allow less than 24-bit color; the non-gpu-accelerated emulator only
375    // supports 16-bit color
376    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
377    attribs.remove(EGL_RED_SIZE);
378    attribs.remove(EGL_GREEN_SIZE);
379    attribs.remove(EGL_BLUE_SIZE);
380    err = selectConfigForAttribute(display, attribs,
381            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
382    if (!err)
383        goto success;
384
385    // this EGL is too lame for Android
386    ALOGE("no suitable EGLConfig found, giving up");
387
388    return 0;
389
390success:
391    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
392        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
393    return config;
394}
395
396EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
397    // Also create our EGLContext
398    EGLint contextAttributes[] = {
399#ifdef EGL_IMG_context_priority
400#ifdef HAS_CONTEXT_PRIORITY
401#warning "using EGL_IMG_context_priority"
402            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
403#endif
404#endif
405            EGL_NONE, EGL_NONE
406    };
407    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
408    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
409    return ctxt;
410}
411
412void SurfaceFlinger::initializeGL(EGLDisplay display) {
413    GLExtensions& extensions(GLExtensions::getInstance());
414    extensions.initWithGLStrings(
415            glGetString(GL_VENDOR),
416            glGetString(GL_RENDERER),
417            glGetString(GL_VERSION),
418            glGetString(GL_EXTENSIONS),
419            eglQueryString(display, EGL_VENDOR),
420            eglQueryString(display, EGL_VERSION),
421            eglQueryString(display, EGL_EXTENSIONS));
422
423    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
424    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
425
426    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
427    glPixelStorei(GL_PACK_ALIGNMENT, 4);
428    glEnableClientState(GL_VERTEX_ARRAY);
429    glShadeModel(GL_FLAT);
430    glDisable(GL_DITHER);
431    glDisable(GL_CULL_FACE);
432
433    struct pack565 {
434        inline uint16_t operator() (int r, int g, int b) const {
435            return (r<<11)|(g<<5)|b;
436        }
437    } pack565;
438
439    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
440    glGenTextures(1, &mProtectedTexName);
441    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
442    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
443    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
444    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
445    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
446    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
447            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
448
449    // print some debugging info
450    EGLint r,g,b,a;
451    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
452    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
453    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
454    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
455    ALOGI("EGL informations:");
456    ALOGI("vendor    : %s", extensions.getEglVendor());
457    ALOGI("version   : %s", extensions.getEglVersion());
458    ALOGI("extensions: %s", extensions.getEglExtension());
459    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
460    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
461    ALOGI("OpenGL ES informations:");
462    ALOGI("vendor    : %s", extensions.getVendor());
463    ALOGI("renderer  : %s", extensions.getRenderer());
464    ALOGI("version   : %s", extensions.getVersion());
465    ALOGI("extensions: %s", extensions.getExtension());
466    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
467    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
468}
469
470status_t SurfaceFlinger::readyToRun()
471{
472    ALOGI(  "SurfaceFlinger's main thread ready to run. "
473            "Initializing graphics H/W...");
474
475    Mutex::Autolock _l(mStateLock);
476
477    // initialize EGL for the default display
478    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
479    eglInitialize(mEGLDisplay, NULL, NULL);
480
481    // Initialize the H/W composer object.  There may or may not be an
482    // actual hardware composer underneath.
483    mHwc = new HWComposer(this,
484            *static_cast<HWComposer::EventHandler *>(this));
485
486    // initialize the config and context
487    EGLint format = mHwc->getVisualID();
488    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
489    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
490
491    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
492            "couldn't create EGLContext");
493
494    // initialize our non-virtual displays
495    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
496        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
497        // set-up the displays that are already connected
498        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
499            // All non-virtual displays are currently considered secure.
500            bool isSecure = true;
501            createBuiltinDisplayLocked(type);
502            wp<IBinder> token = mBuiltinDisplays[i];
503
504            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i);
505            sp<SurfaceTextureClient> stc = new SurfaceTextureClient(
506                        static_cast< sp<IGraphicBufferProducer> >(fbs->getBufferQueue()));
507            sp<DisplayDevice> hw = new DisplayDevice(this,
508                    type, isSecure, token, stc, fbs, mEGLConfig);
509            if (i > DisplayDevice::DISPLAY_PRIMARY) {
510                // FIXME: currently we don't get blank/unblank requests
511                // for displays other than the main display, so we always
512                // assume a connected display is unblanked.
513                ALOGD("marking display %d as acquired/unblanked", i);
514                hw->acquireScreen();
515            }
516            mDisplays.add(token, hw);
517        }
518    }
519
520    //  we need a GL context current in a few places, when initializing
521    //  OpenGL ES (see below), or creating a layer,
522    //  or when a texture is (asynchronously) destroyed, and for that
523    //  we need a valid surface, so it's convenient to use the main display
524    //  for that.
525    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
526
527    //  initialize OpenGL ES
528    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
529    initializeGL(mEGLDisplay);
530
531    // start the EventThread
532    mEventThread = new EventThread(this);
533    mEventQueue.setEventThread(mEventThread);
534
535    // initialize our drawing state
536    mDrawingState = mCurrentState;
537
538
539    // We're now ready to accept clients...
540    mReadyToRunBarrier.open();
541
542    // set initial conditions (e.g. unblank default device)
543    initializeDisplays();
544
545    // start boot animation
546    startBootAnim();
547
548    return NO_ERROR;
549}
550
551int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
552    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
553            type : mHwc->allocateDisplayId();
554}
555
556void SurfaceFlinger::startBootAnim() {
557    // start boot animation
558    property_set("service.bootanim.exit", "0");
559    property_set("ctl.start", "bootanim");
560}
561
562uint32_t SurfaceFlinger::getMaxTextureSize() const {
563    return mMaxTextureSize;
564}
565
566uint32_t SurfaceFlinger::getMaxViewportDims() const {
567    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
568            mMaxViewportDims[0] : mMaxViewportDims[1];
569}
570
571// ----------------------------------------------------------------------------
572
573bool SurfaceFlinger::authenticateSurfaceTexture(
574        const sp<IGraphicBufferProducer>& bufferProducer) const {
575    Mutex::Autolock _l(mStateLock);
576    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
577
578    // We want to determine whether the IGraphicBufferProducer was created by
579    // SurfaceFlinger.  Check to see if we can find it in the layer list.
580    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
581    size_t count = currentLayers.size();
582    for (size_t i=0 ; i<count ; i++) {
583        const sp<LayerBase>& layer(currentLayers[i]);
584        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
585        if (lbc != NULL) {
586            // If this is an instance of Layer (as opposed to, say, LayerDim),
587            // we will get the consumer interface of SurfaceFlingerConsumer's
588            // BufferQueue.  If it's the same Binder object as the graphic
589            // buffer producer interface, return success.
590            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
591            if (lbcBinder == surfaceTextureBinder) {
592                return true;
593            }
594        }
595    }
596
597    // Check the layers in the purgatory.  This check is here so that if a
598    // GLConsumer gets destroyed before all the clients are done using it,
599    // the error will not be reported as "surface XYZ is not authenticated", but
600    // will instead fail later on when the client tries to use the surface,
601    // which should be reported as "surface XYZ returned an -ENODEV".  The
602    // purgatorized layers are no less authentic than the visible ones, so this
603    // should not cause any harm.
604    size_t purgatorySize =  mLayerPurgatory.size();
605    for (size_t i=0 ; i<purgatorySize ; i++) {
606        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
607        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
608        if (lbc != NULL) {
609            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
610            if (lbcBinder == surfaceTextureBinder) {
611                return true;
612            }
613        }
614    }
615
616    return false;
617}
618
619status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
620    int32_t type = NAME_NOT_FOUND;
621    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
622        if (display == mBuiltinDisplays[i]) {
623            type = i;
624            break;
625        }
626    }
627
628    if (type < 0) {
629        return type;
630    }
631
632    const HWComposer& hwc(getHwComposer());
633    float xdpi = hwc.getDpiX(type);
634    float ydpi = hwc.getDpiY(type);
635
636    // TODO: Not sure if display density should handled by SF any longer
637    class Density {
638        static int getDensityFromProperty(char const* propName) {
639            char property[PROPERTY_VALUE_MAX];
640            int density = 0;
641            if (property_get(propName, property, NULL) > 0) {
642                density = atoi(property);
643            }
644            return density;
645        }
646    public:
647        static int getEmuDensity() {
648            return getDensityFromProperty("qemu.sf.lcd_density"); }
649        static int getBuildDensity()  {
650            return getDensityFromProperty("ro.sf.lcd_density"); }
651    };
652
653    if (type == DisplayDevice::DISPLAY_PRIMARY) {
654        // The density of the device is provided by a build property
655        float density = Density::getBuildDensity() / 160.0f;
656        if (density == 0) {
657            // the build doesn't provide a density -- this is wrong!
658            // use xdpi instead
659            ALOGE("ro.sf.lcd_density must be defined as a build property");
660            density = xdpi / 160.0f;
661        }
662        if (Density::getEmuDensity()) {
663            // if "qemu.sf.lcd_density" is specified, it overrides everything
664            xdpi = ydpi = density = Density::getEmuDensity();
665            density /= 160.0f;
666        }
667        info->density = density;
668
669        // TODO: this needs to go away (currently needed only by webkit)
670        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
671        info->orientation = hw->getOrientation();
672        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
673    } else {
674        // TODO: where should this value come from?
675        static const int TV_DENSITY = 213;
676        info->density = TV_DENSITY / 160.0f;
677        info->orientation = 0;
678    }
679
680    info->w = hwc.getWidth(type);
681    info->h = hwc.getHeight(type);
682    info->xdpi = xdpi;
683    info->ydpi = ydpi;
684    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
685
686    // All non-virtual displays are currently considered secure.
687    info->secure = true;
688
689    return NO_ERROR;
690}
691
692// ----------------------------------------------------------------------------
693
694sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
695    return mEventThread->createEventConnection();
696}
697
698// ----------------------------------------------------------------------------
699
700void SurfaceFlinger::waitForEvent() {
701    mEventQueue.waitMessage();
702}
703
704void SurfaceFlinger::signalTransaction() {
705    mEventQueue.invalidate();
706}
707
708void SurfaceFlinger::signalLayerUpdate() {
709    mEventQueue.invalidate();
710}
711
712void SurfaceFlinger::signalRefresh() {
713    mEventQueue.refresh();
714}
715
716status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
717        nsecs_t reltime, uint32_t flags) {
718    return mEventQueue.postMessage(msg, reltime);
719}
720
721status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
722        nsecs_t reltime, uint32_t flags) {
723    status_t res = mEventQueue.postMessage(msg, reltime);
724    if (res == NO_ERROR) {
725        msg->wait();
726    }
727    return res;
728}
729
730bool SurfaceFlinger::threadLoop() {
731    waitForEvent();
732    return true;
733}
734
735void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
736    if (mEventThread == NULL) {
737        // This is a temporary workaround for b/7145521.  A non-null pointer
738        // does not mean EventThread has finished initializing, so this
739        // is not a correct fix.
740        ALOGW("WARNING: EventThread not started, ignoring vsync");
741        return;
742    }
743    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
744        // we should only receive DisplayDevice::DisplayType from the vsync callback
745        mEventThread->onVSyncReceived(type, timestamp);
746    }
747}
748
749void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
750    if (mEventThread == NULL) {
751        // This is a temporary workaround for b/7145521.  A non-null pointer
752        // does not mean EventThread has finished initializing, so this
753        // is not a correct fix.
754        ALOGW("WARNING: EventThread not started, ignoring hotplug");
755        return;
756    }
757
758    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
759        Mutex::Autolock _l(mStateLock);
760        if (connected) {
761            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
762        } else {
763            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
764            mBuiltinDisplays[type].clear();
765        }
766        setTransactionFlags(eDisplayTransactionNeeded);
767
768        // Defer EventThread notification until SF has updated mDisplays.
769    }
770}
771
772void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
773    getHwComposer().eventControl(disp, event, enabled);
774}
775
776void SurfaceFlinger::onMessageReceived(int32_t what) {
777    ATRACE_CALL();
778    switch (what) {
779    case MessageQueue::INVALIDATE:
780        handleMessageTransaction();
781        handleMessageInvalidate();
782        signalRefresh();
783        break;
784    case MessageQueue::REFRESH:
785        handleMessageRefresh();
786        break;
787    }
788}
789
790void SurfaceFlinger::handleMessageTransaction() {
791    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
792    if (transactionFlags) {
793        handleTransaction(transactionFlags);
794    }
795}
796
797void SurfaceFlinger::handleMessageInvalidate() {
798    ATRACE_CALL();
799    handlePageFlip();
800}
801
802void SurfaceFlinger::handleMessageRefresh() {
803    ATRACE_CALL();
804    preComposition();
805    rebuildLayerStacks();
806    setUpHWComposer();
807    doDebugFlashRegions();
808    doComposition();
809    postComposition();
810}
811
812void SurfaceFlinger::doDebugFlashRegions()
813{
814    // is debugging enabled
815    if (CC_LIKELY(!mDebugRegion))
816        return;
817
818    const bool repaintEverything = mRepaintEverything;
819    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
820        const sp<DisplayDevice>& hw(mDisplays[dpy]);
821        if (hw->canDraw()) {
822            // transform the dirty region into this screen's coordinate space
823            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
824            if (!dirtyRegion.isEmpty()) {
825                // redraw the whole screen
826                doComposeSurfaces(hw, Region(hw->bounds()));
827
828                // and draw the dirty region
829                glDisable(GL_TEXTURE_EXTERNAL_OES);
830                glDisable(GL_TEXTURE_2D);
831                glDisable(GL_BLEND);
832                glColor4f(1, 0, 1, 1);
833                const int32_t height = hw->getHeight();
834                Region::const_iterator it = dirtyRegion.begin();
835                Region::const_iterator const end = dirtyRegion.end();
836                while (it != end) {
837                    const Rect& r = *it++;
838                    GLfloat vertices[][2] = {
839                            { (GLfloat) r.left,  (GLfloat) (height - r.top) },
840                            { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
841                            { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
842                            { (GLfloat) r.right, (GLfloat) (height - r.top) }
843                    };
844                    glVertexPointer(2, GL_FLOAT, 0, vertices);
845                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
846                }
847                hw->compositionComplete();
848                hw->swapBuffers(getHwComposer());
849            }
850        }
851    }
852
853    postFramebuffer();
854
855    if (mDebugRegion > 1) {
856        usleep(mDebugRegion * 1000);
857    }
858
859    HWComposer& hwc(getHwComposer());
860    if (hwc.initCheck() == NO_ERROR) {
861        status_t err = hwc.prepare();
862        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
863    }
864}
865
866void SurfaceFlinger::preComposition()
867{
868    bool needExtraInvalidate = false;
869    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
870    const size_t count = currentLayers.size();
871    for (size_t i=0 ; i<count ; i++) {
872        if (currentLayers[i]->onPreComposition()) {
873            needExtraInvalidate = true;
874        }
875    }
876    if (needExtraInvalidate) {
877        signalLayerUpdate();
878    }
879}
880
881void SurfaceFlinger::postComposition()
882{
883    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
884    const size_t count = currentLayers.size();
885    for (size_t i=0 ; i<count ; i++) {
886        currentLayers[i]->onPostComposition();
887    }
888}
889
890void SurfaceFlinger::rebuildLayerStacks() {
891    // rebuild the visible layer list per screen
892    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
893        ATRACE_CALL();
894        mVisibleRegionsDirty = false;
895        invalidateHwcGeometry();
896
897        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
898        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
899            Region opaqueRegion;
900            Region dirtyRegion;
901            Vector< sp<LayerBase> > layersSortedByZ;
902            const sp<DisplayDevice>& hw(mDisplays[dpy]);
903            const Transform& tr(hw->getTransform());
904            const Rect bounds(hw->getBounds());
905            if (hw->canDraw()) {
906                SurfaceFlinger::computeVisibleRegions(currentLayers,
907                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
908
909                const size_t count = currentLayers.size();
910                for (size_t i=0 ; i<count ; i++) {
911                    const sp<LayerBase>& layer(currentLayers[i]);
912                    const Layer::State& s(layer->drawingState());
913                    if (s.layerStack == hw->getLayerStack()) {
914                        Region drawRegion(tr.transform(
915                                layer->visibleNonTransparentRegion));
916                        drawRegion.andSelf(bounds);
917                        if (!drawRegion.isEmpty()) {
918                            layersSortedByZ.add(layer);
919                        }
920                    }
921                }
922            }
923            hw->setVisibleLayersSortedByZ(layersSortedByZ);
924            hw->undefinedRegion.set(bounds);
925            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
926            hw->dirtyRegion.orSelf(dirtyRegion);
927        }
928    }
929}
930
931void SurfaceFlinger::setUpHWComposer() {
932    HWComposer& hwc(getHwComposer());
933    if (hwc.initCheck() == NO_ERROR) {
934        // build the h/w work list
935        if (CC_UNLIKELY(mHwWorkListDirty)) {
936            mHwWorkListDirty = false;
937            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
938                sp<const DisplayDevice> hw(mDisplays[dpy]);
939                const int32_t id = hw->getHwcDisplayId();
940                if (id >= 0) {
941                    const Vector< sp<LayerBase> >& currentLayers(
942                        hw->getVisibleLayersSortedByZ());
943                    const size_t count = currentLayers.size();
944                    if (hwc.createWorkList(id, count) == NO_ERROR) {
945                        HWComposer::LayerListIterator cur = hwc.begin(id);
946                        const HWComposer::LayerListIterator end = hwc.end(id);
947                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
948                            const sp<LayerBase>& layer(currentLayers[i]);
949                            layer->setGeometry(hw, *cur);
950                            if (mDebugDisableHWC || mDebugRegion) {
951                                cur->setSkip(true);
952                            }
953                        }
954                    }
955                }
956            }
957        }
958
959        // set the per-frame data
960        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
961            sp<const DisplayDevice> hw(mDisplays[dpy]);
962            const int32_t id = hw->getHwcDisplayId();
963            if (id >= 0) {
964                const Vector< sp<LayerBase> >& currentLayers(
965                    hw->getVisibleLayersSortedByZ());
966                const size_t count = currentLayers.size();
967                HWComposer::LayerListIterator cur = hwc.begin(id);
968                const HWComposer::LayerListIterator end = hwc.end(id);
969                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
970                    /*
971                     * update the per-frame h/w composer data for each layer
972                     * and build the transparent region of the FB
973                     */
974                    const sp<LayerBase>& layer(currentLayers[i]);
975                    layer->setPerFrameData(hw, *cur);
976                }
977            }
978        }
979
980        status_t err = hwc.prepare();
981        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
982    }
983}
984
985void SurfaceFlinger::doComposition() {
986    ATRACE_CALL();
987    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
988    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
989        const sp<DisplayDevice>& hw(mDisplays[dpy]);
990        if (hw->canDraw()) {
991            // transform the dirty region into this screen's coordinate space
992            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
993
994            // repaint the framebuffer (if needed)
995            doDisplayComposition(hw, dirtyRegion);
996
997            hw->dirtyRegion.clear();
998            hw->flip(hw->swapRegion);
999            hw->swapRegion.clear();
1000        }
1001        // inform the h/w that we're done compositing
1002        hw->compositionComplete();
1003    }
1004    postFramebuffer();
1005}
1006
1007void SurfaceFlinger::postFramebuffer()
1008{
1009    ATRACE_CALL();
1010
1011    const nsecs_t now = systemTime();
1012    mDebugInSwapBuffers = now;
1013
1014    HWComposer& hwc(getHwComposer());
1015    if (hwc.initCheck() == NO_ERROR) {
1016        if (!hwc.supportsFramebufferTarget()) {
1017            // EGL spec says:
1018            //   "surface must be bound to the calling thread's current context,
1019            //    for the current rendering API."
1020            DisplayDevice::makeCurrent(mEGLDisplay,
1021                    getDefaultDisplayDevice(), mEGLContext);
1022        }
1023        hwc.commit();
1024    }
1025
1026    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1027        sp<const DisplayDevice> hw(mDisplays[dpy]);
1028        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
1029        hw->onSwapBuffersCompleted(hwc);
1030        const size_t count = currentLayers.size();
1031        int32_t id = hw->getHwcDisplayId();
1032        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1033            HWComposer::LayerListIterator cur = hwc.begin(id);
1034            const HWComposer::LayerListIterator end = hwc.end(id);
1035            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1036                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1037            }
1038        } else {
1039            for (size_t i = 0; i < count; i++) {
1040                currentLayers[i]->onLayerDisplayed(hw, NULL);
1041            }
1042        }
1043    }
1044
1045    mLastSwapBufferTime = systemTime() - now;
1046    mDebugInSwapBuffers = 0;
1047}
1048
1049void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1050{
1051    ATRACE_CALL();
1052
1053    Mutex::Autolock _l(mStateLock);
1054    const nsecs_t now = systemTime();
1055    mDebugInTransaction = now;
1056
1057    // Here we're guaranteed that some transaction flags are set
1058    // so we can call handleTransactionLocked() unconditionally.
1059    // We call getTransactionFlags(), which will also clear the flags,
1060    // with mStateLock held to guarantee that mCurrentState won't change
1061    // until the transaction is committed.
1062
1063    transactionFlags = getTransactionFlags(eTransactionMask);
1064    handleTransactionLocked(transactionFlags);
1065
1066    mLastTransactionTime = systemTime() - now;
1067    mDebugInTransaction = 0;
1068    invalidateHwcGeometry();
1069    // here the transaction has been committed
1070}
1071
1072void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1073{
1074    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1075    const size_t count = currentLayers.size();
1076
1077    /*
1078     * Traversal of the children
1079     * (perform the transaction for each of them if needed)
1080     */
1081
1082    if (transactionFlags & eTraversalNeeded) {
1083        for (size_t i=0 ; i<count ; i++) {
1084            const sp<LayerBase>& layer(currentLayers[i]);
1085            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1086            if (!trFlags) continue;
1087
1088            const uint32_t flags = layer->doTransaction(0);
1089            if (flags & Layer::eVisibleRegion)
1090                mVisibleRegionsDirty = true;
1091        }
1092    }
1093
1094    /*
1095     * Perform display own transactions if needed
1096     */
1097
1098    if (transactionFlags & eDisplayTransactionNeeded) {
1099        // here we take advantage of Vector's copy-on-write semantics to
1100        // improve performance by skipping the transaction entirely when
1101        // know that the lists are identical
1102        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1103        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1104        if (!curr.isIdenticalTo(draw)) {
1105            mVisibleRegionsDirty = true;
1106            const size_t cc = curr.size();
1107                  size_t dc = draw.size();
1108
1109            // find the displays that were removed
1110            // (ie: in drawing state but not in current state)
1111            // also handle displays that changed
1112            // (ie: displays that are in both lists)
1113            for (size_t i=0 ; i<dc ; i++) {
1114                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1115                if (j < 0) {
1116                    // in drawing state but not in current state
1117                    if (!draw[i].isMainDisplay()) {
1118                        // Call makeCurrent() on the primary display so we can
1119                        // be sure that nothing associated with this display
1120                        // is current.
1121                        const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1122                        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1123                        mDisplays.removeItem(draw.keyAt(i));
1124                        getHwComposer().disconnectDisplay(draw[i].type);
1125                        mEventThread->onHotplugReceived(draw[i].type, false);
1126                    } else {
1127                        ALOGW("trying to remove the main display");
1128                    }
1129                } else {
1130                    // this display is in both lists. see if something changed.
1131                    const DisplayDeviceState& state(curr[j]);
1132                    const wp<IBinder>& display(curr.keyAt(j));
1133                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1134                        // changing the surface is like destroying and
1135                        // recreating the DisplayDevice, so we just remove it
1136                        // from the drawing state, so that it get re-added
1137                        // below.
1138                        mDisplays.removeItem(display);
1139                        mDrawingState.displays.removeItemsAt(i);
1140                        dc--; i--;
1141                        // at this point we must loop to the next item
1142                        continue;
1143                    }
1144
1145                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1146                    if (disp != NULL) {
1147                        if (state.layerStack != draw[i].layerStack) {
1148                            disp->setLayerStack(state.layerStack);
1149                        }
1150                        if ((state.orientation != draw[i].orientation)
1151                                || (state.viewport != draw[i].viewport)
1152                                || (state.frame != draw[i].frame))
1153                        {
1154                            disp->setProjection(state.orientation,
1155                                    state.viewport, state.frame);
1156                        }
1157                    }
1158                }
1159            }
1160
1161            // find displays that were added
1162            // (ie: in current state but not in drawing state)
1163            for (size_t i=0 ; i<cc ; i++) {
1164                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1165                    const DisplayDeviceState& state(curr[i]);
1166
1167                    sp<FramebufferSurface> fbs;
1168                    sp<SurfaceTextureClient> stc;
1169                    if (!state.isVirtualDisplay()) {
1170
1171                        ALOGE_IF(state.surface!=NULL,
1172                                "adding a supported display, but rendering "
1173                                "surface is provided (%p), ignoring it",
1174                                state.surface.get());
1175
1176                        // for supported (by hwc) displays we provide our
1177                        // own rendering surface
1178                        fbs = new FramebufferSurface(*mHwc, state.type);
1179                        stc = new SurfaceTextureClient(
1180                                static_cast< sp<IGraphicBufferProducer> >(
1181                                        fbs->getBufferQueue()));
1182                    } else {
1183                        if (state.surface != NULL) {
1184                            stc = new SurfaceTextureClient(state.surface);
1185                        }
1186                    }
1187
1188                    const wp<IBinder>& display(curr.keyAt(i));
1189                    if (stc != NULL) {
1190                        sp<DisplayDevice> hw = new DisplayDevice(this,
1191                                state.type, state.isSecure, display, stc, fbs,
1192                                mEGLConfig);
1193                        hw->setLayerStack(state.layerStack);
1194                        hw->setProjection(state.orientation,
1195                                state.viewport, state.frame);
1196                        hw->setDisplayName(state.displayName);
1197                        mDisplays.add(display, hw);
1198                        mEventThread->onHotplugReceived(state.type, true);
1199                    }
1200                }
1201            }
1202        }
1203    }
1204
1205    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1206        // The transform hint might have changed for some layers
1207        // (either because a display has changed, or because a layer
1208        // as changed).
1209        //
1210        // Walk through all the layers in currentLayers,
1211        // and update their transform hint.
1212        //
1213        // If a layer is visible only on a single display, then that
1214        // display is used to calculate the hint, otherwise we use the
1215        // default display.
1216        //
1217        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1218        // the hint is set before we acquire a buffer from the surface texture.
1219        //
1220        // NOTE: layer transactions have taken place already, so we use their
1221        // drawing state. However, SurfaceFlinger's own transaction has not
1222        // happened yet, so we must use the current state layer list
1223        // (soon to become the drawing state list).
1224        //
1225        sp<const DisplayDevice> disp;
1226        uint32_t currentlayerStack = 0;
1227        for (size_t i=0; i<count; i++) {
1228            // NOTE: we rely on the fact that layers are sorted by
1229            // layerStack first (so we don't have to traverse the list
1230            // of displays for every layer).
1231            const sp<LayerBase>& layerBase(currentLayers[i]);
1232            uint32_t layerStack = layerBase->drawingState().layerStack;
1233            if (i==0 || currentlayerStack != layerStack) {
1234                currentlayerStack = layerStack;
1235                // figure out if this layerstack is mirrored
1236                // (more than one display) if so, pick the default display,
1237                // if not, pick the only display it's on.
1238                disp.clear();
1239                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1240                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1241                    if (hw->getLayerStack() == currentlayerStack) {
1242                        if (disp == NULL) {
1243                            disp = hw;
1244                        } else {
1245                            disp = getDefaultDisplayDevice();
1246                            break;
1247                        }
1248                    }
1249                }
1250            }
1251            if (disp != NULL) {
1252                // presumably this means this layer is using a layerStack
1253                // that is not visible on any display
1254                layerBase->updateTransformHint(disp);
1255            }
1256        }
1257    }
1258
1259
1260    /*
1261     * Perform our own transaction if needed
1262     */
1263
1264    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1265    if (currentLayers.size() > previousLayers.size()) {
1266        // layers have been added
1267        mVisibleRegionsDirty = true;
1268    }
1269
1270    // some layers might have been removed, so
1271    // we need to update the regions they're exposing.
1272    if (mLayersRemoved) {
1273        mLayersRemoved = false;
1274        mVisibleRegionsDirty = true;
1275        const size_t count = previousLayers.size();
1276        for (size_t i=0 ; i<count ; i++) {
1277            const sp<LayerBase>& layer(previousLayers[i]);
1278            if (currentLayers.indexOf(layer) < 0) {
1279                // this layer is not visible anymore
1280                // TODO: we could traverse the tree from front to back and
1281                //       compute the actual visible region
1282                // TODO: we could cache the transformed region
1283                const Layer::State& s(layer->drawingState());
1284                Region visibleReg = s.transform.transform(
1285                        Region(Rect(s.active.w, s.active.h)));
1286                invalidateLayerStack(s.layerStack, visibleReg);
1287            }
1288        }
1289    }
1290
1291    commitTransaction();
1292}
1293
1294void SurfaceFlinger::commitTransaction()
1295{
1296    if (!mLayersPendingRemoval.isEmpty()) {
1297        // Notify removed layers now that they can't be drawn from
1298        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1299            mLayersPendingRemoval[i]->onRemoved();
1300        }
1301        mLayersPendingRemoval.clear();
1302    }
1303
1304    mDrawingState = mCurrentState;
1305    mTransactionPending = false;
1306    mAnimTransactionPending = false;
1307    mTransactionCV.broadcast();
1308}
1309
1310void SurfaceFlinger::computeVisibleRegions(
1311        const LayerVector& currentLayers, uint32_t layerStack,
1312        Region& outDirtyRegion, Region& outOpaqueRegion)
1313{
1314    ATRACE_CALL();
1315
1316    Region aboveOpaqueLayers;
1317    Region aboveCoveredLayers;
1318    Region dirty;
1319
1320    outDirtyRegion.clear();
1321
1322    size_t i = currentLayers.size();
1323    while (i--) {
1324        const sp<LayerBase>& layer = currentLayers[i];
1325
1326        // start with the whole surface at its current location
1327        const Layer::State& s(layer->drawingState());
1328
1329        // only consider the layers on the given later stack
1330        if (s.layerStack != layerStack)
1331            continue;
1332
1333        /*
1334         * opaqueRegion: area of a surface that is fully opaque.
1335         */
1336        Region opaqueRegion;
1337
1338        /*
1339         * visibleRegion: area of a surface that is visible on screen
1340         * and not fully transparent. This is essentially the layer's
1341         * footprint minus the opaque regions above it.
1342         * Areas covered by a translucent surface are considered visible.
1343         */
1344        Region visibleRegion;
1345
1346        /*
1347         * coveredRegion: area of a surface that is covered by all
1348         * visible regions above it (which includes the translucent areas).
1349         */
1350        Region coveredRegion;
1351
1352        /*
1353         * transparentRegion: area of a surface that is hinted to be completely
1354         * transparent. This is only used to tell when the layer has no visible
1355         * non-transparent regions and can be removed from the layer list. It
1356         * does not affect the visibleRegion of this layer or any layers
1357         * beneath it. The hint may not be correct if apps don't respect the
1358         * SurfaceView restrictions (which, sadly, some don't).
1359         */
1360        Region transparentRegion;
1361
1362
1363        // handle hidden surfaces by setting the visible region to empty
1364        if (CC_LIKELY(layer->isVisible())) {
1365            const bool translucent = !layer->isOpaque();
1366            Rect bounds(layer->computeBounds());
1367            visibleRegion.set(bounds);
1368            if (!visibleRegion.isEmpty()) {
1369                // Remove the transparent area from the visible region
1370                if (translucent) {
1371                    const Transform tr(s.transform);
1372                    if (tr.transformed()) {
1373                        if (tr.preserveRects()) {
1374                            // transform the transparent region
1375                            transparentRegion = tr.transform(s.transparentRegion);
1376                        } else {
1377                            // transformation too complex, can't do the
1378                            // transparent region optimization.
1379                            transparentRegion.clear();
1380                        }
1381                    } else {
1382                        transparentRegion = s.transparentRegion;
1383                    }
1384                }
1385
1386                // compute the opaque region
1387                const int32_t layerOrientation = s.transform.getOrientation();
1388                if (s.alpha==255 && !translucent &&
1389                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1390                    // the opaque region is the layer's footprint
1391                    opaqueRegion = visibleRegion;
1392                }
1393            }
1394        }
1395
1396        // Clip the covered region to the visible region
1397        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1398
1399        // Update aboveCoveredLayers for next (lower) layer
1400        aboveCoveredLayers.orSelf(visibleRegion);
1401
1402        // subtract the opaque region covered by the layers above us
1403        visibleRegion.subtractSelf(aboveOpaqueLayers);
1404
1405        // compute this layer's dirty region
1406        if (layer->contentDirty) {
1407            // we need to invalidate the whole region
1408            dirty = visibleRegion;
1409            // as well, as the old visible region
1410            dirty.orSelf(layer->visibleRegion);
1411            layer->contentDirty = false;
1412        } else {
1413            /* compute the exposed region:
1414             *   the exposed region consists of two components:
1415             *   1) what's VISIBLE now and was COVERED before
1416             *   2) what's EXPOSED now less what was EXPOSED before
1417             *
1418             * note that (1) is conservative, we start with the whole
1419             * visible region but only keep what used to be covered by
1420             * something -- which mean it may have been exposed.
1421             *
1422             * (2) handles areas that were not covered by anything but got
1423             * exposed because of a resize.
1424             */
1425            const Region newExposed = visibleRegion - coveredRegion;
1426            const Region oldVisibleRegion = layer->visibleRegion;
1427            const Region oldCoveredRegion = layer->coveredRegion;
1428            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1429            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1430        }
1431        dirty.subtractSelf(aboveOpaqueLayers);
1432
1433        // accumulate to the screen dirty region
1434        outDirtyRegion.orSelf(dirty);
1435
1436        // Update aboveOpaqueLayers for next (lower) layer
1437        aboveOpaqueLayers.orSelf(opaqueRegion);
1438
1439        // Store the visible region in screen space
1440        layer->setVisibleRegion(visibleRegion);
1441        layer->setCoveredRegion(coveredRegion);
1442        layer->setVisibleNonTransparentRegion(
1443                visibleRegion.subtract(transparentRegion));
1444    }
1445
1446    outOpaqueRegion = aboveOpaqueLayers;
1447}
1448
1449void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1450        const Region& dirty) {
1451    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1452        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1453        if (hw->getLayerStack() == layerStack) {
1454            hw->dirtyRegion.orSelf(dirty);
1455        }
1456    }
1457}
1458
1459void SurfaceFlinger::handlePageFlip()
1460{
1461    Region dirtyRegion;
1462
1463    bool visibleRegions = false;
1464    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1465    const size_t count = currentLayers.size();
1466    for (size_t i=0 ; i<count ; i++) {
1467        const sp<LayerBase>& layer(currentLayers[i]);
1468        const Region dirty(layer->latchBuffer(visibleRegions));
1469        const Layer::State& s(layer->drawingState());
1470        invalidateLayerStack(s.layerStack, dirty);
1471    }
1472
1473    mVisibleRegionsDirty |= visibleRegions;
1474}
1475
1476void SurfaceFlinger::invalidateHwcGeometry()
1477{
1478    mHwWorkListDirty = true;
1479}
1480
1481
1482void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1483        const Region& inDirtyRegion)
1484{
1485    Region dirtyRegion(inDirtyRegion);
1486
1487    // compute the invalid region
1488    hw->swapRegion.orSelf(dirtyRegion);
1489
1490    uint32_t flags = hw->getFlags();
1491    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1492        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1493        // takes a rectangle, we must make sure to update that whole
1494        // rectangle in that case
1495        dirtyRegion.set(hw->swapRegion.bounds());
1496    } else {
1497        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1498            // We need to redraw the rectangle that will be updated
1499            // (pushed to the framebuffer).
1500            // This is needed because PARTIAL_UPDATES only takes one
1501            // rectangle instead of a region (see DisplayDevice::flip())
1502            dirtyRegion.set(hw->swapRegion.bounds());
1503        } else {
1504            // we need to redraw everything (the whole screen)
1505            dirtyRegion.set(hw->bounds());
1506            hw->swapRegion = dirtyRegion;
1507        }
1508    }
1509
1510    doComposeSurfaces(hw, dirtyRegion);
1511
1512    // update the swap region and clear the dirty region
1513    hw->swapRegion.orSelf(dirtyRegion);
1514
1515    // swap buffers (presentation)
1516    hw->swapBuffers(getHwComposer());
1517}
1518
1519void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1520{
1521    const int32_t id = hw->getHwcDisplayId();
1522    HWComposer& hwc(getHwComposer());
1523    HWComposer::LayerListIterator cur = hwc.begin(id);
1524    const HWComposer::LayerListIterator end = hwc.end(id);
1525
1526    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1527    if (hasGlesComposition) {
1528        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1529
1530        // set the frame buffer
1531        glMatrixMode(GL_MODELVIEW);
1532        glLoadIdentity();
1533
1534        // Never touch the framebuffer if we don't have any framebuffer layers
1535        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1536        if (hasHwcComposition) {
1537            // when using overlays, we assume a fully transparent framebuffer
1538            // NOTE: we could reduce how much we need to clear, for instance
1539            // remove where there are opaque FB layers. however, on some
1540            // GPUs doing a "clean slate" glClear might be more efficient.
1541            // We'll revisit later if needed.
1542            glClearColor(0, 0, 0, 0);
1543            glClear(GL_COLOR_BUFFER_BIT);
1544        } else {
1545            // we start with the whole screen area
1546            const Region bounds(hw->getBounds());
1547
1548            // we remove the scissor part
1549            // we're left with the letterbox region
1550            // (common case is that letterbox ends-up being empty)
1551            const Region letterbox(bounds.subtract(hw->getScissor()));
1552
1553            // compute the area to clear
1554            Region region(hw->undefinedRegion.merge(letterbox));
1555
1556            // but limit it to the dirty region
1557            region.andSelf(dirty);
1558
1559            // screen is already cleared here
1560            if (!region.isEmpty()) {
1561                // can happen with SurfaceView
1562                drawWormhole(hw, region);
1563            }
1564        }
1565
1566        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1567            // just to be on the safe side, we don't set the
1568            // scissor on the main display. It should never be needed
1569            // anyways (though in theory it could since the API allows it).
1570            const Rect& bounds(hw->getBounds());
1571            const Rect& scissor(hw->getScissor());
1572            if (scissor != bounds) {
1573                // scissor doesn't match the screen's dimensions, so we
1574                // need to clear everything outside of it and enable
1575                // the GL scissor so we don't draw anything where we shouldn't
1576                const GLint height = hw->getHeight();
1577                glScissor(scissor.left, height - scissor.bottom,
1578                        scissor.getWidth(), scissor.getHeight());
1579                // enable scissor for this frame
1580                glEnable(GL_SCISSOR_TEST);
1581            }
1582        }
1583    }
1584
1585    /*
1586     * and then, render the layers targeted at the framebuffer
1587     */
1588
1589    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1590    const size_t count = layers.size();
1591    const Transform& tr = hw->getTransform();
1592    if (cur != end) {
1593        // we're using h/w composer
1594        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1595            const sp<LayerBase>& layer(layers[i]);
1596            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1597            if (!clip.isEmpty()) {
1598                switch (cur->getCompositionType()) {
1599                    case HWC_OVERLAY: {
1600                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1601                                && i
1602                                && layer->isOpaque()
1603                                && hasGlesComposition) {
1604                            // never clear the very first layer since we're
1605                            // guaranteed the FB is already cleared
1606                            layer->clearWithOpenGL(hw, clip);
1607                        }
1608                        break;
1609                    }
1610                    case HWC_FRAMEBUFFER: {
1611                        layer->draw(hw, clip);
1612                        break;
1613                    }
1614                    case HWC_FRAMEBUFFER_TARGET: {
1615                        // this should not happen as the iterator shouldn't
1616                        // let us get there.
1617                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1618                        break;
1619                    }
1620                }
1621            }
1622            layer->setAcquireFence(hw, *cur);
1623        }
1624    } else {
1625        // we're not using h/w composer
1626        for (size_t i=0 ; i<count ; ++i) {
1627            const sp<LayerBase>& layer(layers[i]);
1628            const Region clip(dirty.intersect(
1629                    tr.transform(layer->visibleRegion)));
1630            if (!clip.isEmpty()) {
1631                layer->draw(hw, clip);
1632            }
1633        }
1634    }
1635
1636    // disable scissor at the end of the frame
1637    glDisable(GL_SCISSOR_TEST);
1638}
1639
1640void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1641        const Region& region) const
1642{
1643    glDisable(GL_TEXTURE_EXTERNAL_OES);
1644    glDisable(GL_TEXTURE_2D);
1645    glDisable(GL_BLEND);
1646    glColor4f(0,0,0,0);
1647
1648    const int32_t height = hw->getHeight();
1649    Region::const_iterator it = region.begin();
1650    Region::const_iterator const end = region.end();
1651    while (it != end) {
1652        const Rect& r = *it++;
1653        GLfloat vertices[][2] = {
1654                { (GLfloat) r.left,  (GLfloat) (height - r.top) },
1655                { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
1656                { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
1657                { (GLfloat) r.right, (GLfloat) (height - r.top) }
1658        };
1659        glVertexPointer(2, GL_FLOAT, 0, vertices);
1660        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1661    }
1662}
1663
1664ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1665        const sp<LayerBaseClient>& lbc)
1666{
1667    // attach this layer to the client
1668    size_t name = client->attachLayer(lbc);
1669
1670    // add this layer to the current state list
1671    Mutex::Autolock _l(mStateLock);
1672    mCurrentState.layersSortedByZ.add(lbc);
1673
1674    return ssize_t(name);
1675}
1676
1677status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1678{
1679    Mutex::Autolock _l(mStateLock);
1680    status_t err = purgatorizeLayer_l(layer);
1681    if (err == NO_ERROR)
1682        setTransactionFlags(eTransactionNeeded);
1683    return err;
1684}
1685
1686status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1687{
1688    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1689    if (index >= 0) {
1690        mLayersRemoved = true;
1691        return NO_ERROR;
1692    }
1693    return status_t(index);
1694}
1695
1696status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1697{
1698    // First add the layer to the purgatory list, which makes sure it won't
1699    // go away, then remove it from the main list (through a transaction).
1700    ssize_t err = removeLayer_l(layerBase);
1701    if (err >= 0) {
1702        mLayerPurgatory.add(layerBase);
1703    }
1704
1705    mLayersPendingRemoval.push(layerBase);
1706
1707    // it's possible that we don't find a layer, because it might
1708    // have been destroyed already -- this is not technically an error
1709    // from the user because there is a race between Client::destroySurface(),
1710    // ~Client() and ~ISurface().
1711    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1712}
1713
1714uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1715{
1716    return android_atomic_release_load(&mTransactionFlags);
1717}
1718
1719uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1720{
1721    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1722}
1723
1724uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1725{
1726    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1727    if ((old & flags)==0) { // wake the server up
1728        signalTransaction();
1729    }
1730    return old;
1731}
1732
1733void SurfaceFlinger::setTransactionState(
1734        const Vector<ComposerState>& state,
1735        const Vector<DisplayState>& displays,
1736        uint32_t flags)
1737{
1738    ATRACE_CALL();
1739    Mutex::Autolock _l(mStateLock);
1740    uint32_t transactionFlags = 0;
1741
1742    if (flags & eAnimation) {
1743        // For window updates that are part of an animation we must wait for
1744        // previous animation "frames" to be handled.
1745        while (mAnimTransactionPending) {
1746            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1747            if (CC_UNLIKELY(err != NO_ERROR)) {
1748                // just in case something goes wrong in SF, return to the
1749                // caller after a few seconds.
1750                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1751                        "waiting for previous animation frame");
1752                mAnimTransactionPending = false;
1753                break;
1754            }
1755        }
1756    }
1757
1758    size_t count = displays.size();
1759    for (size_t i=0 ; i<count ; i++) {
1760        const DisplayState& s(displays[i]);
1761        transactionFlags |= setDisplayStateLocked(s);
1762    }
1763
1764    count = state.size();
1765    for (size_t i=0 ; i<count ; i++) {
1766        const ComposerState& s(state[i]);
1767        // Here we need to check that the interface we're given is indeed
1768        // one of our own. A malicious client could give us a NULL
1769        // IInterface, or one of its own or even one of our own but a
1770        // different type. All these situations would cause us to crash.
1771        //
1772        // NOTE: it would be better to use RTTI as we could directly check
1773        // that we have a Client*. however, RTTI is disabled in Android.
1774        if (s.client != NULL) {
1775            sp<IBinder> binder = s.client->asBinder();
1776            if (binder != NULL) {
1777                String16 desc(binder->getInterfaceDescriptor());
1778                if (desc == ISurfaceComposerClient::descriptor) {
1779                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1780                    transactionFlags |= setClientStateLocked(client, s.state);
1781                }
1782            }
1783        }
1784    }
1785
1786    if (transactionFlags) {
1787        // this triggers the transaction
1788        setTransactionFlags(transactionFlags);
1789
1790        // if this is a synchronous transaction, wait for it to take effect
1791        // before returning.
1792        if (flags & eSynchronous) {
1793            mTransactionPending = true;
1794        }
1795        if (flags & eAnimation) {
1796            mAnimTransactionPending = true;
1797        }
1798        while (mTransactionPending) {
1799            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1800            if (CC_UNLIKELY(err != NO_ERROR)) {
1801                // just in case something goes wrong in SF, return to the
1802                // called after a few seconds.
1803                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1804                mTransactionPending = false;
1805                break;
1806            }
1807        }
1808    }
1809}
1810
1811uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1812{
1813    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1814    if (dpyIdx < 0)
1815        return 0;
1816
1817    uint32_t flags = 0;
1818    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1819    if (disp.isValid()) {
1820        const uint32_t what = s.what;
1821        if (what & DisplayState::eSurfaceChanged) {
1822            if (disp.surface->asBinder() != s.surface->asBinder()) {
1823                disp.surface = s.surface;
1824                flags |= eDisplayTransactionNeeded;
1825            }
1826        }
1827        if (what & DisplayState::eLayerStackChanged) {
1828            if (disp.layerStack != s.layerStack) {
1829                disp.layerStack = s.layerStack;
1830                flags |= eDisplayTransactionNeeded;
1831            }
1832        }
1833        if (what & DisplayState::eDisplayProjectionChanged) {
1834            if (disp.orientation != s.orientation) {
1835                disp.orientation = s.orientation;
1836                flags |= eDisplayTransactionNeeded;
1837            }
1838            if (disp.frame != s.frame) {
1839                disp.frame = s.frame;
1840                flags |= eDisplayTransactionNeeded;
1841            }
1842            if (disp.viewport != s.viewport) {
1843                disp.viewport = s.viewport;
1844                flags |= eDisplayTransactionNeeded;
1845            }
1846        }
1847    }
1848    return flags;
1849}
1850
1851uint32_t SurfaceFlinger::setClientStateLocked(
1852        const sp<Client>& client,
1853        const layer_state_t& s)
1854{
1855    uint32_t flags = 0;
1856    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1857    if (layer != 0) {
1858        const uint32_t what = s.what;
1859        if (what & layer_state_t::ePositionChanged) {
1860            if (layer->setPosition(s.x, s.y))
1861                flags |= eTraversalNeeded;
1862        }
1863        if (what & layer_state_t::eLayerChanged) {
1864            // NOTE: index needs to be calculated before we update the state
1865            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1866            if (layer->setLayer(s.z)) {
1867                mCurrentState.layersSortedByZ.removeAt(idx);
1868                mCurrentState.layersSortedByZ.add(layer);
1869                // we need traversal (state changed)
1870                // AND transaction (list changed)
1871                flags |= eTransactionNeeded|eTraversalNeeded;
1872            }
1873        }
1874        if (what & layer_state_t::eSizeChanged) {
1875            if (layer->setSize(s.w, s.h)) {
1876                flags |= eTraversalNeeded;
1877            }
1878        }
1879        if (what & layer_state_t::eAlphaChanged) {
1880            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1881                flags |= eTraversalNeeded;
1882        }
1883        if (what & layer_state_t::eMatrixChanged) {
1884            if (layer->setMatrix(s.matrix))
1885                flags |= eTraversalNeeded;
1886        }
1887        if (what & layer_state_t::eTransparentRegionChanged) {
1888            if (layer->setTransparentRegionHint(s.transparentRegion))
1889                flags |= eTraversalNeeded;
1890        }
1891        if (what & layer_state_t::eVisibilityChanged) {
1892            if (layer->setFlags(s.flags, s.mask))
1893                flags |= eTraversalNeeded;
1894        }
1895        if (what & layer_state_t::eCropChanged) {
1896            if (layer->setCrop(s.crop))
1897                flags |= eTraversalNeeded;
1898        }
1899        if (what & layer_state_t::eLayerStackChanged) {
1900            // NOTE: index needs to be calculated before we update the state
1901            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1902            if (layer->setLayerStack(s.layerStack)) {
1903                mCurrentState.layersSortedByZ.removeAt(idx);
1904                mCurrentState.layersSortedByZ.add(layer);
1905                // we need traversal (state changed)
1906                // AND transaction (list changed)
1907                flags |= eTransactionNeeded|eTraversalNeeded;
1908            }
1909        }
1910    }
1911    return flags;
1912}
1913
1914sp<ISurface> SurfaceFlinger::createLayer(
1915        ISurfaceComposerClient::surface_data_t* params,
1916        const String8& name,
1917        const sp<Client>& client,
1918       uint32_t w, uint32_t h, PixelFormat format,
1919        uint32_t flags)
1920{
1921    sp<LayerBaseClient> layer;
1922    sp<ISurface> surfaceHandle;
1923
1924    if (int32_t(w|h) < 0) {
1925        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1926                int(w), int(h));
1927        return surfaceHandle;
1928    }
1929
1930    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1931    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1932        case ISurfaceComposerClient::eFXSurfaceNormal:
1933            layer = createNormalLayer(client, w, h, flags, format);
1934            break;
1935        case ISurfaceComposerClient::eFXSurfaceBlur:
1936        case ISurfaceComposerClient::eFXSurfaceDim:
1937            layer = createDimLayer(client, w, h, flags);
1938            break;
1939        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1940            layer = createScreenshotLayer(client, w, h, flags);
1941            break;
1942    }
1943
1944    if (layer != 0) {
1945        layer->initStates(w, h, flags);
1946        layer->setName(name);
1947        ssize_t token = addClientLayer(client, layer);
1948        surfaceHandle = layer->getSurface();
1949        if (surfaceHandle != 0) {
1950            params->token = token;
1951            params->identity = layer->getIdentity();
1952        }
1953        setTransactionFlags(eTransactionNeeded);
1954    }
1955
1956    return surfaceHandle;
1957}
1958
1959sp<Layer> SurfaceFlinger::createNormalLayer(
1960        const sp<Client>& client,
1961        uint32_t w, uint32_t h, uint32_t flags,
1962        PixelFormat& format)
1963{
1964    // initialize the surfaces
1965    switch (format) {
1966    case PIXEL_FORMAT_TRANSPARENT:
1967    case PIXEL_FORMAT_TRANSLUCENT:
1968        format = PIXEL_FORMAT_RGBA_8888;
1969        break;
1970    case PIXEL_FORMAT_OPAQUE:
1971#ifdef NO_RGBX_8888
1972        format = PIXEL_FORMAT_RGB_565;
1973#else
1974        format = PIXEL_FORMAT_RGBX_8888;
1975#endif
1976        break;
1977    }
1978
1979#ifdef NO_RGBX_8888
1980    if (format == PIXEL_FORMAT_RGBX_8888)
1981        format = PIXEL_FORMAT_RGBA_8888;
1982#endif
1983
1984    sp<Layer> layer = new Layer(this, client);
1985    status_t err = layer->setBuffers(w, h, format, flags);
1986    if (CC_LIKELY(err != NO_ERROR)) {
1987        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1988        layer.clear();
1989    }
1990    return layer;
1991}
1992
1993sp<LayerDim> SurfaceFlinger::createDimLayer(
1994        const sp<Client>& client,
1995        uint32_t w, uint32_t h, uint32_t flags)
1996{
1997    sp<LayerDim> layer = new LayerDim(this, client);
1998    return layer;
1999}
2000
2001sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
2002        const sp<Client>& client,
2003        uint32_t w, uint32_t h, uint32_t flags)
2004{
2005    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
2006    return layer;
2007}
2008
2009status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
2010{
2011    /*
2012     * called by the window manager, when a surface should be marked for
2013     * destruction.
2014     *
2015     * The surface is removed from the current and drawing lists, but placed
2016     * in the purgatory queue, so it's not destroyed right-away (we need
2017     * to wait for all client's references to go away first).
2018     */
2019
2020    status_t err = NAME_NOT_FOUND;
2021    Mutex::Autolock _l(mStateLock);
2022    sp<LayerBaseClient> layer = client->getLayerUser(sid);
2023
2024    if (layer != 0) {
2025        err = purgatorizeLayer_l(layer);
2026        if (err == NO_ERROR) {
2027            setTransactionFlags(eTransactionNeeded);
2028        }
2029    }
2030    return err;
2031}
2032
2033status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
2034{
2035    // called by ~ISurface() when all references are gone
2036    status_t err = NO_ERROR;
2037    sp<LayerBaseClient> l(layer.promote());
2038    if (l != NULL) {
2039        Mutex::Autolock _l(mStateLock);
2040        err = removeLayer_l(l);
2041        if (err == NAME_NOT_FOUND) {
2042            // The surface wasn't in the current list, which means it was
2043            // removed already, which means it is in the purgatory,
2044            // and need to be removed from there.
2045            ssize_t idx = mLayerPurgatory.remove(l);
2046            ALOGE_IF(idx < 0,
2047                    "layer=%p is not in the purgatory list", l.get());
2048        }
2049        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2050                "error removing layer=%p (%s)", l.get(), strerror(-err));
2051    }
2052    return err;
2053}
2054
2055// ---------------------------------------------------------------------------
2056
2057void SurfaceFlinger::onInitializeDisplays() {
2058    // reset screen orientation
2059    Vector<ComposerState> state;
2060    Vector<DisplayState> displays;
2061    DisplayState d;
2062    d.what = DisplayState::eDisplayProjectionChanged;
2063    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2064    d.orientation = DisplayState::eOrientationDefault;
2065    d.frame.makeInvalid();
2066    d.viewport.makeInvalid();
2067    displays.add(d);
2068    setTransactionState(state, displays, 0);
2069    onScreenAcquired(getDefaultDisplayDevice());
2070}
2071
2072void SurfaceFlinger::initializeDisplays() {
2073    class MessageScreenInitialized : public MessageBase {
2074        SurfaceFlinger* flinger;
2075    public:
2076        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2077        virtual bool handler() {
2078            flinger->onInitializeDisplays();
2079            return true;
2080        }
2081    };
2082    sp<MessageBase> msg = new MessageScreenInitialized(this);
2083    postMessageAsync(msg);  // we may be called from main thread, use async message
2084}
2085
2086
2087void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2088    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2089    if (hw->isScreenAcquired()) {
2090        // this is expected, e.g. when power manager wakes up during boot
2091        ALOGD(" screen was previously acquired");
2092        return;
2093    }
2094
2095    hw->acquireScreen();
2096    int32_t type = hw->getDisplayType();
2097    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2098        // built-in display, tell the HWC
2099        getHwComposer().acquire(type);
2100
2101        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2102            // FIXME: eventthread only knows about the main display right now
2103            mEventThread->onScreenAcquired();
2104        }
2105    }
2106    mVisibleRegionsDirty = true;
2107    repaintEverything();
2108}
2109
2110void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2111    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2112    if (!hw->isScreenAcquired()) {
2113        ALOGD(" screen was previously released");
2114        return;
2115    }
2116
2117    hw->releaseScreen();
2118    int32_t type = hw->getDisplayType();
2119    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2120        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2121            // FIXME: eventthread only knows about the main display right now
2122            mEventThread->onScreenReleased();
2123        }
2124
2125        // built-in display, tell the HWC
2126        getHwComposer().release(type);
2127    }
2128    mVisibleRegionsDirty = true;
2129    // from this point on, SF will stop drawing on this display
2130}
2131
2132void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2133    class MessageScreenAcquired : public MessageBase {
2134        SurfaceFlinger& mFlinger;
2135        sp<IBinder> mDisplay;
2136    public:
2137        MessageScreenAcquired(SurfaceFlinger& flinger,
2138                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2139        virtual bool handler() {
2140            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2141            if (hw == NULL) {
2142                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2143            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2144                ALOGW("Attempt to unblank virtual display");
2145            } else {
2146                mFlinger.onScreenAcquired(hw);
2147            }
2148            return true;
2149        }
2150    };
2151    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2152    postMessageSync(msg);
2153}
2154
2155void SurfaceFlinger::blank(const sp<IBinder>& display) {
2156    class MessageScreenReleased : public MessageBase {
2157        SurfaceFlinger& mFlinger;
2158        sp<IBinder> mDisplay;
2159    public:
2160        MessageScreenReleased(SurfaceFlinger& flinger,
2161                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2162        virtual bool handler() {
2163            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2164            if (hw == NULL) {
2165                ALOGE("Attempt to blank null display %p", mDisplay.get());
2166            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2167                ALOGW("Attempt to blank virtual display");
2168            } else {
2169                mFlinger.onScreenReleased(hw);
2170            }
2171            return true;
2172        }
2173    };
2174    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2175    postMessageSync(msg);
2176}
2177
2178// ---------------------------------------------------------------------------
2179
2180status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2181{
2182    const size_t SIZE = 4096;
2183    char buffer[SIZE];
2184    String8 result;
2185
2186    if (!PermissionCache::checkCallingPermission(sDump)) {
2187        snprintf(buffer, SIZE, "Permission Denial: "
2188                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2189                IPCThreadState::self()->getCallingPid(),
2190                IPCThreadState::self()->getCallingUid());
2191        result.append(buffer);
2192    } else {
2193        // Try to get the main lock, but don't insist if we can't
2194        // (this would indicate SF is stuck, but we want to be able to
2195        // print something in dumpsys).
2196        int retry = 3;
2197        while (mStateLock.tryLock()<0 && --retry>=0) {
2198            usleep(1000000);
2199        }
2200        const bool locked(retry >= 0);
2201        if (!locked) {
2202            snprintf(buffer, SIZE,
2203                    "SurfaceFlinger appears to be unresponsive, "
2204                    "dumping anyways (no locks held)\n");
2205            result.append(buffer);
2206        }
2207
2208        bool dumpAll = true;
2209        size_t index = 0;
2210        size_t numArgs = args.size();
2211        if (numArgs) {
2212            if ((index < numArgs) &&
2213                    (args[index] == String16("--list"))) {
2214                index++;
2215                listLayersLocked(args, index, result, buffer, SIZE);
2216                dumpAll = false;
2217            }
2218
2219            if ((index < numArgs) &&
2220                    (args[index] == String16("--latency"))) {
2221                index++;
2222                dumpStatsLocked(args, index, result, buffer, SIZE);
2223                dumpAll = false;
2224            }
2225
2226            if ((index < numArgs) &&
2227                    (args[index] == String16("--latency-clear"))) {
2228                index++;
2229                clearStatsLocked(args, index, result, buffer, SIZE);
2230                dumpAll = false;
2231            }
2232        }
2233
2234        if (dumpAll) {
2235            dumpAllLocked(result, buffer, SIZE);
2236        }
2237
2238        if (locked) {
2239            mStateLock.unlock();
2240        }
2241    }
2242    write(fd, result.string(), result.size());
2243    return NO_ERROR;
2244}
2245
2246void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2247        String8& result, char* buffer, size_t SIZE) const
2248{
2249    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2250    const size_t count = currentLayers.size();
2251    for (size_t i=0 ; i<count ; i++) {
2252        const sp<LayerBase>& layer(currentLayers[i]);
2253        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2254        result.append(buffer);
2255    }
2256}
2257
2258void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2259        String8& result, char* buffer, size_t SIZE) const
2260{
2261    String8 name;
2262    if (index < args.size()) {
2263        name = String8(args[index]);
2264        index++;
2265    }
2266
2267    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2268    const size_t count = currentLayers.size();
2269    for (size_t i=0 ; i<count ; i++) {
2270        const sp<LayerBase>& layer(currentLayers[i]);
2271        if (name.isEmpty()) {
2272            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2273            result.append(buffer);
2274        }
2275        if (name.isEmpty() || (name == layer->getName())) {
2276            layer->dumpStats(result, buffer, SIZE);
2277        }
2278    }
2279}
2280
2281void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2282        String8& result, char* buffer, size_t SIZE) const
2283{
2284    String8 name;
2285    if (index < args.size()) {
2286        name = String8(args[index]);
2287        index++;
2288    }
2289
2290    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2291    const size_t count = currentLayers.size();
2292    for (size_t i=0 ; i<count ; i++) {
2293        const sp<LayerBase>& layer(currentLayers[i]);
2294        if (name.isEmpty() || (name == layer->getName())) {
2295            layer->clearStats();
2296        }
2297    }
2298}
2299
2300/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2301{
2302    static const char* config =
2303            " [sf"
2304#ifdef NO_RGBX_8888
2305            " NO_RGBX_8888"
2306#endif
2307#ifdef HAS_CONTEXT_PRIORITY
2308            " HAS_CONTEXT_PRIORITY"
2309#endif
2310#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2311            " NEVER_DEFAULT_TO_ASYNC_MODE"
2312#endif
2313#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2314            " TARGET_DISABLE_TRIPLE_BUFFERING"
2315#endif
2316            "]";
2317    result.append(config);
2318}
2319
2320void SurfaceFlinger::dumpAllLocked(
2321        String8& result, char* buffer, size_t SIZE) const
2322{
2323    // figure out if we're stuck somewhere
2324    const nsecs_t now = systemTime();
2325    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2326    const nsecs_t inTransaction(mDebugInTransaction);
2327    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2328    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2329
2330    /*
2331     * Dump library configuration.
2332     */
2333    result.append("Build configuration:");
2334    appendSfConfigString(result);
2335    appendUiConfigString(result);
2336    appendGuiConfigString(result);
2337    result.append("\n");
2338
2339    /*
2340     * Dump the visible layer list
2341     */
2342    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2343    const size_t count = currentLayers.size();
2344    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2345    result.append(buffer);
2346    for (size_t i=0 ; i<count ; i++) {
2347        const sp<LayerBase>& layer(currentLayers[i]);
2348        layer->dump(result, buffer, SIZE);
2349    }
2350
2351    /*
2352     * Dump the layers in the purgatory
2353     */
2354
2355    const size_t purgatorySize = mLayerPurgatory.size();
2356    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
2357    result.append(buffer);
2358    for (size_t i=0 ; i<purgatorySize ; i++) {
2359        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
2360        layer->shortDump(result, buffer, SIZE);
2361    }
2362
2363    /*
2364     * Dump Display state
2365     */
2366
2367    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2368    result.append(buffer);
2369    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2370        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2371        hw->dump(result, buffer, SIZE);
2372    }
2373
2374    /*
2375     * Dump SurfaceFlinger global state
2376     */
2377
2378    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2379    result.append(buffer);
2380
2381    HWComposer& hwc(getHwComposer());
2382    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2383    const GLExtensions& extensions(GLExtensions::getInstance());
2384    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2385            extensions.getVendor(),
2386            extensions.getRenderer(),
2387            extensions.getVersion());
2388    result.append(buffer);
2389
2390    snprintf(buffer, SIZE, "EGL : %s\n",
2391            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2392    result.append(buffer);
2393
2394    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2395    result.append(buffer);
2396
2397    hw->undefinedRegion.dump(result, "undefinedRegion");
2398    snprintf(buffer, SIZE,
2399            "  orientation=%d, canDraw=%d\n",
2400            hw->getOrientation(), hw->canDraw());
2401    result.append(buffer);
2402    snprintf(buffer, SIZE,
2403            "  last eglSwapBuffers() time: %f us\n"
2404            "  last transaction time     : %f us\n"
2405            "  transaction-flags         : %08x\n"
2406            "  refresh-rate              : %f fps\n"
2407            "  x-dpi                     : %f\n"
2408            "  y-dpi                     : %f\n",
2409            mLastSwapBufferTime/1000.0,
2410            mLastTransactionTime/1000.0,
2411            mTransactionFlags,
2412            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2413            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2414            hwc.getDpiY(HWC_DISPLAY_PRIMARY));
2415    result.append(buffer);
2416
2417    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2418            inSwapBuffersDuration/1000.0);
2419    result.append(buffer);
2420
2421    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2422            inTransactionDuration/1000.0);
2423    result.append(buffer);
2424
2425    /*
2426     * VSYNC state
2427     */
2428    mEventThread->dump(result, buffer, SIZE);
2429
2430    /*
2431     * Dump HWComposer state
2432     */
2433    snprintf(buffer, SIZE, "h/w composer state:\n");
2434    result.append(buffer);
2435    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2436            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2437                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2438    result.append(buffer);
2439    hwc.dump(result, buffer, SIZE);
2440
2441    /*
2442     * Dump gralloc state
2443     */
2444    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2445    alloc.dump(result);
2446}
2447
2448const Vector< sp<LayerBase> >&
2449SurfaceFlinger::getLayerSortedByZForHwcDisplay(int disp) {
2450    // Note: mStateLock is held here
2451    return getDisplayDevice( getBuiltInDisplay(disp) )->getVisibleLayersSortedByZ();
2452}
2453
2454bool SurfaceFlinger::startDdmConnection()
2455{
2456    void* libddmconnection_dso =
2457            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2458    if (!libddmconnection_dso) {
2459        return false;
2460    }
2461    void (*DdmConnection_start)(const char* name);
2462    DdmConnection_start =
2463            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2464    if (!DdmConnection_start) {
2465        dlclose(libddmconnection_dso);
2466        return false;
2467    }
2468    (*DdmConnection_start)(getServiceName());
2469    return true;
2470}
2471
2472status_t SurfaceFlinger::onTransact(
2473    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2474{
2475    switch (code) {
2476        case CREATE_CONNECTION:
2477        case SET_TRANSACTION_STATE:
2478        case BOOT_FINISHED:
2479        case BLANK:
2480        case UNBLANK:
2481        {
2482            // codes that require permission check
2483            IPCThreadState* ipc = IPCThreadState::self();
2484            const int pid = ipc->getCallingPid();
2485            const int uid = ipc->getCallingUid();
2486            if ((uid != AID_GRAPHICS) &&
2487                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2488                ALOGE("Permission Denial: "
2489                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2490                return PERMISSION_DENIED;
2491            }
2492            break;
2493        }
2494        case CAPTURE_SCREEN:
2495        {
2496            // codes that require permission check
2497            IPCThreadState* ipc = IPCThreadState::self();
2498            const int pid = ipc->getCallingPid();
2499            const int uid = ipc->getCallingUid();
2500            if ((uid != AID_GRAPHICS) &&
2501                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2502                ALOGE("Permission Denial: "
2503                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2504                return PERMISSION_DENIED;
2505            }
2506            break;
2507        }
2508    }
2509
2510    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2511    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2512        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2513        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2514            IPCThreadState* ipc = IPCThreadState::self();
2515            const int pid = ipc->getCallingPid();
2516            const int uid = ipc->getCallingUid();
2517            ALOGE("Permission Denial: "
2518                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2519            return PERMISSION_DENIED;
2520        }
2521        int n;
2522        switch (code) {
2523            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2524            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2525                return NO_ERROR;
2526            case 1002:  // SHOW_UPDATES
2527                n = data.readInt32();
2528                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2529                invalidateHwcGeometry();
2530                repaintEverything();
2531                return NO_ERROR;
2532            case 1004:{ // repaint everything
2533                repaintEverything();
2534                return NO_ERROR;
2535            }
2536            case 1005:{ // force transaction
2537                setTransactionFlags(
2538                        eTransactionNeeded|
2539                        eDisplayTransactionNeeded|
2540                        eTraversalNeeded);
2541                return NO_ERROR;
2542            }
2543            case 1006:{ // send empty update
2544                signalRefresh();
2545                return NO_ERROR;
2546            }
2547            case 1008:  // toggle use of hw composer
2548                n = data.readInt32();
2549                mDebugDisableHWC = n ? 1 : 0;
2550                invalidateHwcGeometry();
2551                repaintEverything();
2552                return NO_ERROR;
2553            case 1009:  // toggle use of transform hint
2554                n = data.readInt32();
2555                mDebugDisableTransformHint = n ? 1 : 0;
2556                invalidateHwcGeometry();
2557                repaintEverything();
2558                return NO_ERROR;
2559            case 1010:  // interrogate.
2560                reply->writeInt32(0);
2561                reply->writeInt32(0);
2562                reply->writeInt32(mDebugRegion);
2563                reply->writeInt32(0);
2564                reply->writeInt32(mDebugDisableHWC);
2565                return NO_ERROR;
2566            case 1013: {
2567                Mutex::Autolock _l(mStateLock);
2568                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2569                reply->writeInt32(hw->getPageFlipCount());
2570            }
2571            return NO_ERROR;
2572        }
2573    }
2574    return err;
2575}
2576
2577void SurfaceFlinger::repaintEverything() {
2578    android_atomic_or(1, &mRepaintEverything);
2579    signalTransaction();
2580}
2581
2582// ---------------------------------------------------------------------------
2583
2584status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2585        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2586{
2587    Mutex::Autolock _l(mStateLock);
2588    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2589}
2590
2591status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2592        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2593{
2594    ATRACE_CALL();
2595
2596    if (!GLExtensions::getInstance().haveFramebufferObject())
2597        return INVALID_OPERATION;
2598
2599    // get screen geometry
2600    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2601    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2602    const uint32_t hw_w = hw->getWidth();
2603    const uint32_t hw_h = hw->getHeight();
2604    GLfloat u = 1;
2605    GLfloat v = 1;
2606
2607    // make sure to clear all GL error flags
2608    while ( glGetError() != GL_NO_ERROR ) ;
2609
2610    // create a FBO
2611    GLuint name, tname;
2612    glGenTextures(1, &tname);
2613    glBindTexture(GL_TEXTURE_2D, tname);
2614    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2615    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2616    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2617            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2618    if (glGetError() != GL_NO_ERROR) {
2619        while ( glGetError() != GL_NO_ERROR ) ;
2620        GLint tw = (2 << (31 - clz(hw_w)));
2621        GLint th = (2 << (31 - clz(hw_h)));
2622        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2623                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2624        u = GLfloat(hw_w) / tw;
2625        v = GLfloat(hw_h) / th;
2626    }
2627    glGenFramebuffersOES(1, &name);
2628    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2629    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2630            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2631
2632    DisplayDevice::setViewportAndProjection(hw);
2633
2634    // redraw the screen entirely...
2635    glDisable(GL_TEXTURE_EXTERNAL_OES);
2636    glDisable(GL_TEXTURE_2D);
2637    glClearColor(0,0,0,1);
2638    glClear(GL_COLOR_BUFFER_BIT);
2639    glMatrixMode(GL_MODELVIEW);
2640    glLoadIdentity();
2641    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2642    const size_t count = layers.size();
2643    for (size_t i=0 ; i<count ; ++i) {
2644        const sp<LayerBase>& layer(layers[i]);
2645        layer->draw(hw);
2646    }
2647
2648    hw->compositionComplete();
2649
2650    // back to main framebuffer
2651    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2652    glDeleteFramebuffersOES(1, &name);
2653
2654    *textureName = tname;
2655    *uOut = u;
2656    *vOut = v;
2657    return NO_ERROR;
2658}
2659
2660// ---------------------------------------------------------------------------
2661
2662status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2663        sp<IMemoryHeap>* heap,
2664        uint32_t* w, uint32_t* h, PixelFormat* f,
2665        uint32_t sw, uint32_t sh,
2666        uint32_t minLayerZ, uint32_t maxLayerZ)
2667{
2668    ATRACE_CALL();
2669
2670    status_t result = PERMISSION_DENIED;
2671
2672    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2673        return INVALID_OPERATION;
2674    }
2675
2676    // get screen geometry
2677    sp<const DisplayDevice> hw(getDisplayDevice(display));
2678    const uint32_t hw_w = hw->getWidth();
2679    const uint32_t hw_h = hw->getHeight();
2680
2681    // if we have secure windows on this display, never allow the screen capture
2682    if (hw->getSecureLayerVisible()) {
2683        ALOGW("FB is protected: PERMISSION_DENIED");
2684        return PERMISSION_DENIED;
2685    }
2686
2687    if ((sw > hw_w) || (sh > hw_h)) {
2688        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2689        return BAD_VALUE;
2690    }
2691
2692    sw = (!sw) ? hw_w : sw;
2693    sh = (!sh) ? hw_h : sh;
2694    const size_t size = sw * sh * 4;
2695    const bool filtering = sw != hw_w || sh != hw_h;
2696
2697//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2698//            sw, sh, minLayerZ, maxLayerZ);
2699
2700    // make sure to clear all GL error flags
2701    while ( glGetError() != GL_NO_ERROR ) ;
2702
2703    // create a FBO
2704    GLuint name, tname;
2705    glGenRenderbuffersOES(1, &tname);
2706    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2707    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2708
2709    glGenFramebuffersOES(1, &name);
2710    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2711    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2712            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2713
2714    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2715
2716    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2717
2718        // invert everything, b/c glReadPixel() below will invert the FB
2719        GLint  viewport[4];
2720        glGetIntegerv(GL_VIEWPORT, viewport);
2721        glViewport(0, 0, sw, sh);
2722        glMatrixMode(GL_PROJECTION);
2723        glPushMatrix();
2724        glLoadIdentity();
2725        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2726        glMatrixMode(GL_MODELVIEW);
2727
2728        // redraw the screen entirely...
2729        glClearColor(0,0,0,1);
2730        glClear(GL_COLOR_BUFFER_BIT);
2731
2732        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2733        const size_t count = layers.size();
2734        for (size_t i=0 ; i<count ; ++i) {
2735            const sp<LayerBase>& layer(layers[i]);
2736            const uint32_t z = layer->drawingState().z;
2737            if (z >= minLayerZ && z <= maxLayerZ) {
2738                if (filtering) layer->setFiltering(true);
2739                layer->draw(hw);
2740                if (filtering) layer->setFiltering(false);
2741            }
2742        }
2743
2744        // check for errors and return screen capture
2745        if (glGetError() != GL_NO_ERROR) {
2746            // error while rendering
2747            result = INVALID_OPERATION;
2748        } else {
2749            // allocate shared memory large enough to hold the
2750            // screen capture
2751            sp<MemoryHeapBase> base(
2752                    new MemoryHeapBase(size, 0, "screen-capture") );
2753            void* const ptr = base->getBase();
2754            if (ptr != MAP_FAILED) {
2755                // capture the screen with glReadPixels()
2756                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2757                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2758                if (glGetError() == GL_NO_ERROR) {
2759                    *heap = base;
2760                    *w = sw;
2761                    *h = sh;
2762                    *f = PIXEL_FORMAT_RGBA_8888;
2763                    result = NO_ERROR;
2764                }
2765            } else {
2766                result = NO_MEMORY;
2767            }
2768        }
2769        glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
2770        glMatrixMode(GL_PROJECTION);
2771        glPopMatrix();
2772        glMatrixMode(GL_MODELVIEW);
2773    } else {
2774        result = BAD_VALUE;
2775    }
2776
2777    // release FBO resources
2778    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2779    glDeleteRenderbuffersOES(1, &tname);
2780    glDeleteFramebuffersOES(1, &name);
2781
2782    hw->compositionComplete();
2783
2784//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2785
2786    return result;
2787}
2788
2789
2790status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2791        sp<IMemoryHeap>* heap,
2792        uint32_t* width, uint32_t* height, PixelFormat* format,
2793        uint32_t sw, uint32_t sh,
2794        uint32_t minLayerZ, uint32_t maxLayerZ)
2795{
2796    if (CC_UNLIKELY(display == 0))
2797        return BAD_VALUE;
2798
2799    if (!GLExtensions::getInstance().haveFramebufferObject())
2800        return INVALID_OPERATION;
2801
2802    class MessageCaptureScreen : public MessageBase {
2803        SurfaceFlinger* flinger;
2804        sp<IBinder> display;
2805        sp<IMemoryHeap>* heap;
2806        uint32_t* w;
2807        uint32_t* h;
2808        PixelFormat* f;
2809        uint32_t sw;
2810        uint32_t sh;
2811        uint32_t minLayerZ;
2812        uint32_t maxLayerZ;
2813        status_t result;
2814    public:
2815        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2816                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2817                uint32_t sw, uint32_t sh,
2818                uint32_t minLayerZ, uint32_t maxLayerZ)
2819            : flinger(flinger), display(display),
2820              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2821              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2822              result(PERMISSION_DENIED)
2823        {
2824        }
2825        status_t getResult() const {
2826            return result;
2827        }
2828        virtual bool handler() {
2829            Mutex::Autolock _l(flinger->mStateLock);
2830            result = flinger->captureScreenImplLocked(display,
2831                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2832            return true;
2833        }
2834    };
2835
2836    sp<MessageBase> msg = new MessageCaptureScreen(this,
2837            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2838    status_t res = postMessageSync(msg);
2839    if (res == NO_ERROR) {
2840        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2841    }
2842    return res;
2843}
2844
2845// ---------------------------------------------------------------------------
2846
2847SurfaceFlinger::LayerVector::LayerVector() {
2848}
2849
2850SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2851    : SortedVector<sp<LayerBase> >(rhs) {
2852}
2853
2854int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2855    const void* rhs) const
2856{
2857    // sort layers per layer-stack, then by z-order and finally by sequence
2858    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2859    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2860
2861    uint32_t ls = l->currentState().layerStack;
2862    uint32_t rs = r->currentState().layerStack;
2863    if (ls != rs)
2864        return ls - rs;
2865
2866    uint32_t lz = l->currentState().z;
2867    uint32_t rz = r->currentState().z;
2868    if (lz != rz)
2869        return lz - rz;
2870
2871    return l->sequence - r->sequence;
2872}
2873
2874// ---------------------------------------------------------------------------
2875
2876SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2877    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2878}
2879
2880SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2881    : type(type), layerStack(0), orientation(0) {
2882    viewport.makeInvalid();
2883    frame.makeInvalid();
2884}
2885
2886// ---------------------------------------------------------------------------
2887
2888}; // namespace android
2889