SurfaceFlinger.cpp revision c2633ce19bdbca4cbf8d6a225ede68a0afd693b9
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24#include <inttypes.h>
25
26#include <EGL/egl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/Surface.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56#include <private/gui/SyncFeatures.h>
57
58#include "Client.h"
59#include "clz.h"
60#include "Colorizer.h"
61#include "DdmConnection.h"
62#include "DisplayDevice.h"
63#include "DispSync.h"
64#include "EventControlThread.h"
65#include "EventThread.h"
66#include "Layer.h"
67#include "LayerDim.h"
68#include "SurfaceFlinger.h"
69
70#include "DisplayHardware/FramebufferSurface.h"
71#include "DisplayHardware/HWComposer.h"
72#include "DisplayHardware/VirtualDisplaySurface.h"
73
74#include "Effects/Daltonizer.h"
75
76#include "RenderEngine/RenderEngine.h"
77#include <cutils/compiler.h>
78
79#define DISPLAY_COUNT       1
80
81/*
82 * DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
83 * black pixels.
84 */
85#define DEBUG_SCREENSHOTS   false
86
87EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
88
89namespace android {
90
91// This works around the lack of support for the sync framework on some
92// devices.
93#ifdef RUNNING_WITHOUT_SYNC_FRAMEWORK
94static const bool runningWithoutSyncFramework = true;
95#else
96static const bool runningWithoutSyncFramework = false;
97#endif
98
99// This is the phase offset in nanoseconds of the software vsync event
100// relative to the vsync event reported by HWComposer.  The software vsync
101// event is when SurfaceFlinger and Choreographer-based applications run each
102// frame.
103//
104// This phase offset allows adjustment of the minimum latency from application
105// wake-up (by Choregographer) time to the time at which the resulting window
106// image is displayed.  This value may be either positive (after the HW vsync)
107// or negative (before the HW vsync).  Setting it to 0 will result in a
108// minimum latency of two vsync periods because the app and SurfaceFlinger
109// will run just after the HW vsync.  Setting it to a positive number will
110// result in the minimum latency being:
111//
112//     (2 * VSYNC_PERIOD - (vsyncPhaseOffsetNs % VSYNC_PERIOD))
113//
114// Note that reducing this latency makes it more likely for the applications
115// to not have their window content image ready in time.  When this happens
116// the latency will end up being an additional vsync period, and animations
117// will hiccup.  Therefore, this latency should be tuned somewhat
118// conservatively (or at least with awareness of the trade-off being made).
119static const int64_t vsyncPhaseOffsetNs = VSYNC_EVENT_PHASE_OFFSET_NS;
120
121// This is the phase offset at which SurfaceFlinger's composition runs.
122static const int64_t sfVsyncPhaseOffsetNs = SF_VSYNC_EVENT_PHASE_OFFSET_NS;
123
124// ---------------------------------------------------------------------------
125
126const String16 sHardwareTest("android.permission.HARDWARE_TEST");
127const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
128const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
129const String16 sDump("android.permission.DUMP");
130
131// ---------------------------------------------------------------------------
132
133SurfaceFlinger::SurfaceFlinger()
134    :   BnSurfaceComposer(),
135        mTransactionFlags(0),
136        mTransactionPending(false),
137        mAnimTransactionPending(false),
138        mLayersRemoved(false),
139        mRepaintEverything(0),
140        mRenderEngine(NULL),
141        mBootTime(systemTime()),
142        mVisibleRegionsDirty(false),
143        mHwWorkListDirty(false),
144        mAnimCompositionPending(false),
145        mDebugRegion(0),
146        mDebugDDMS(0),
147        mDebugDisableHWC(0),
148        mDebugDisableTransformHint(0),
149        mDebugInSwapBuffers(0),
150        mLastSwapBufferTime(0),
151        mDebugInTransaction(0),
152        mLastTransactionTime(0),
153        mBootFinished(false),
154        mPrimaryHWVsyncEnabled(false),
155        mHWVsyncAvailable(false),
156        mDaltonize(false)
157{
158    ALOGI("SurfaceFlinger is starting");
159
160    // debugging stuff...
161    char value[PROPERTY_VALUE_MAX];
162
163    property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
164    mGpuToCpuSupported = !atoi(value);
165
166    property_get("debug.sf.showupdates", value, "0");
167    mDebugRegion = atoi(value);
168
169    property_get("debug.sf.ddms", value, "0");
170    mDebugDDMS = atoi(value);
171    if (mDebugDDMS) {
172        if (!startDdmConnection()) {
173            // start failed, and DDMS debugging not enabled
174            mDebugDDMS = 0;
175        }
176    }
177    ALOGI_IF(mDebugRegion, "showupdates enabled");
178    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
179}
180
181void SurfaceFlinger::onFirstRef()
182{
183    mEventQueue.init(this);
184}
185
186SurfaceFlinger::~SurfaceFlinger()
187{
188    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
189    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
190    eglTerminate(display);
191}
192
193void SurfaceFlinger::binderDied(const wp<IBinder>& who)
194{
195    // the window manager died on us. prepare its eulogy.
196
197    // restore initial conditions (default device unblank, etc)
198    initializeDisplays();
199
200    // restart the boot-animation
201    startBootAnim();
202}
203
204sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
205{
206    sp<ISurfaceComposerClient> bclient;
207    sp<Client> client(new Client(this));
208    status_t err = client->initCheck();
209    if (err == NO_ERROR) {
210        bclient = client;
211    }
212    return bclient;
213}
214
215sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
216        bool secure)
217{
218    class DisplayToken : public BBinder {
219        sp<SurfaceFlinger> flinger;
220        virtual ~DisplayToken() {
221             // no more references, this display must be terminated
222             Mutex::Autolock _l(flinger->mStateLock);
223             flinger->mCurrentState.displays.removeItem(this);
224             flinger->setTransactionFlags(eDisplayTransactionNeeded);
225         }
226     public:
227        DisplayToken(const sp<SurfaceFlinger>& flinger)
228            : flinger(flinger) {
229        }
230    };
231
232    sp<BBinder> token = new DisplayToken(this);
233
234    Mutex::Autolock _l(mStateLock);
235    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
236    info.displayName = displayName;
237    info.isSecure = secure;
238    mCurrentState.displays.add(token, info);
239
240    return token;
241}
242
243void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
244    Mutex::Autolock _l(mStateLock);
245
246    ssize_t idx = mCurrentState.displays.indexOfKey(display);
247    if (idx < 0) {
248        ALOGW("destroyDisplay: invalid display token");
249        return;
250    }
251
252    const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
253    if (!info.isVirtualDisplay()) {
254        ALOGE("destroyDisplay called for non-virtual display");
255        return;
256    }
257
258    mCurrentState.displays.removeItemsAt(idx);
259    setTransactionFlags(eDisplayTransactionNeeded);
260}
261
262void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
263    ALOGW_IF(mBuiltinDisplays[type],
264            "Overwriting display token for display type %d", type);
265    mBuiltinDisplays[type] = new BBinder();
266    DisplayDeviceState info(type);
267    // All non-virtual displays are currently considered secure.
268    info.isSecure = true;
269    mCurrentState.displays.add(mBuiltinDisplays[type], info);
270}
271
272sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
273    if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
274        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
275        return NULL;
276    }
277    return mBuiltinDisplays[id];
278}
279
280sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
281{
282    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
283    return gba;
284}
285
286void SurfaceFlinger::bootFinished()
287{
288    const nsecs_t now = systemTime();
289    const nsecs_t duration = now - mBootTime;
290    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
291    mBootFinished = true;
292
293    // wait patiently for the window manager death
294    const String16 name("window");
295    sp<IBinder> window(defaultServiceManager()->getService(name));
296    if (window != 0) {
297        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
298    }
299
300    // stop boot animation
301    // formerly we would just kill the process, but we now ask it to exit so it
302    // can choose where to stop the animation.
303    property_set("service.bootanim.exit", "1");
304}
305
306void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
307    class MessageDestroyGLTexture : public MessageBase {
308        RenderEngine& engine;
309        uint32_t texture;
310    public:
311        MessageDestroyGLTexture(RenderEngine& engine, uint32_t texture)
312            : engine(engine), texture(texture) {
313        }
314        virtual bool handler() {
315            engine.deleteTextures(1, &texture);
316            return true;
317        }
318    };
319    postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
320}
321
322class DispSyncSource : public VSyncSource, private DispSync::Callback {
323public:
324    DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync) :
325            mValue(0),
326            mPhaseOffset(phaseOffset),
327            mTraceVsync(traceVsync),
328            mDispSync(dispSync) {}
329
330    virtual ~DispSyncSource() {}
331
332    virtual void setVSyncEnabled(bool enable) {
333        // Do NOT lock the mutex here so as to avoid any mutex ordering issues
334        // with locking it in the onDispSyncEvent callback.
335        if (enable) {
336            status_t err = mDispSync->addEventListener(mPhaseOffset,
337                    static_cast<DispSync::Callback*>(this));
338            if (err != NO_ERROR) {
339                ALOGE("error registering vsync callback: %s (%d)",
340                        strerror(-err), err);
341            }
342            ATRACE_INT("VsyncOn", 1);
343        } else {
344            status_t err = mDispSync->removeEventListener(
345                    static_cast<DispSync::Callback*>(this));
346            if (err != NO_ERROR) {
347                ALOGE("error unregistering vsync callback: %s (%d)",
348                        strerror(-err), err);
349            }
350            ATRACE_INT("VsyncOn", 0);
351        }
352    }
353
354    virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
355        Mutex::Autolock lock(mMutex);
356        mCallback = callback;
357    }
358
359private:
360    virtual void onDispSyncEvent(nsecs_t when) {
361        sp<VSyncSource::Callback> callback;
362        {
363            Mutex::Autolock lock(mMutex);
364            callback = mCallback;
365
366            if (mTraceVsync) {
367                mValue = (mValue + 1) % 2;
368                ATRACE_INT("VSYNC", mValue);
369            }
370        }
371
372        if (callback != NULL) {
373            callback->onVSyncEvent(when);
374        }
375    }
376
377    int mValue;
378
379    const nsecs_t mPhaseOffset;
380    const bool mTraceVsync;
381
382    DispSync* mDispSync;
383    sp<VSyncSource::Callback> mCallback;
384    Mutex mMutex;
385};
386
387void SurfaceFlinger::init() {
388    ALOGI(  "SurfaceFlinger's main thread ready to run. "
389            "Initializing graphics H/W...");
390
391    status_t err;
392    Mutex::Autolock _l(mStateLock);
393
394    // initialize EGL for the default display
395    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
396    eglInitialize(mEGLDisplay, NULL, NULL);
397
398    // Initialize the H/W composer object.  There may or may not be an
399    // actual hardware composer underneath.
400    mHwc = new HWComposer(this,
401            *static_cast<HWComposer::EventHandler *>(this));
402
403    // get a RenderEngine for the given display / config (can't fail)
404    mRenderEngine = RenderEngine::create(mEGLDisplay, mHwc->getVisualID());
405
406    // retrieve the EGL context that was selected/created
407    mEGLContext = mRenderEngine->getEGLContext();
408
409    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
410            "couldn't create EGLContext");
411
412    // initialize our non-virtual displays
413    for (size_t i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
414        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
415        // set-up the displays that are already connected
416        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
417            // All non-virtual displays are currently considered secure.
418            bool isSecure = true;
419            createBuiltinDisplayLocked(type);
420            wp<IBinder> token = mBuiltinDisplays[i];
421
422            sp<BufferQueue> bq = new BufferQueue(new GraphicBufferAlloc());
423            sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, i, bq);
424            int32_t hwcId = allocateHwcDisplayId(type);
425            sp<DisplayDevice> hw = new DisplayDevice(this,
426                    type, hwcId, mHwc->getFormat(hwcId), isSecure, token,
427                    fbs, bq,
428                    mRenderEngine->getEGLConfig());
429            if (i > DisplayDevice::DISPLAY_PRIMARY) {
430                // FIXME: currently we don't get blank/unblank requests
431                // for displays other than the main display, so we always
432                // assume a connected display is unblanked.
433                ALOGD("marking display %zu as acquired/unblanked", i);
434                hw->acquireScreen();
435            }
436            mDisplays.add(token, hw);
437        }
438    }
439
440    // make the GLContext current so that we can create textures when creating Layers
441    // (which may happens before we render something)
442    getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
443
444    // start the EventThread
445    sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
446            vsyncPhaseOffsetNs, true);
447    mEventThread = new EventThread(vsyncSrc);
448    sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
449            sfVsyncPhaseOffsetNs, false);
450    mSFEventThread = new EventThread(sfVsyncSrc);
451    mEventQueue.setEventThread(mSFEventThread);
452
453    mEventControlThread = new EventControlThread(this);
454    mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY);
455
456    // set a fake vsync period if there is no HWComposer
457    if (mHwc->initCheck() != NO_ERROR) {
458        mPrimaryDispSync.setPeriod(16666667);
459    }
460
461    // initialize our drawing state
462    mDrawingState = mCurrentState;
463
464    // set initial conditions (e.g. unblank default device)
465    initializeDisplays();
466
467    // start boot animation
468    startBootAnim();
469}
470
471int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
472    return (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) ?
473            type : mHwc->allocateDisplayId();
474}
475
476void SurfaceFlinger::startBootAnim() {
477    // start boot animation
478    property_set("service.bootanim.exit", "0");
479    property_set("ctl.start", "bootanim");
480}
481
482size_t SurfaceFlinger::getMaxTextureSize() const {
483    return mRenderEngine->getMaxTextureSize();
484}
485
486size_t SurfaceFlinger::getMaxViewportDims() const {
487    return mRenderEngine->getMaxViewportDims();
488}
489
490// ----------------------------------------------------------------------------
491
492bool SurfaceFlinger::authenticateSurfaceTexture(
493        const sp<IGraphicBufferProducer>& bufferProducer) const {
494    Mutex::Autolock _l(mStateLock);
495    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
496    return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
497}
498
499status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
500    int32_t type = NAME_NOT_FOUND;
501    for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
502        if (display == mBuiltinDisplays[i]) {
503            type = i;
504            break;
505        }
506    }
507
508    if (type < 0) {
509        return type;
510    }
511
512    const HWComposer& hwc(getHwComposer());
513    float xdpi = hwc.getDpiX(type);
514    float ydpi = hwc.getDpiY(type);
515
516    // TODO: Not sure if display density should handled by SF any longer
517    class Density {
518        static int getDensityFromProperty(char const* propName) {
519            char property[PROPERTY_VALUE_MAX];
520            int density = 0;
521            if (property_get(propName, property, NULL) > 0) {
522                density = atoi(property);
523            }
524            return density;
525        }
526    public:
527        static int getEmuDensity() {
528            return getDensityFromProperty("qemu.sf.lcd_density"); }
529        static int getBuildDensity()  {
530            return getDensityFromProperty("ro.sf.lcd_density"); }
531    };
532
533    if (type == DisplayDevice::DISPLAY_PRIMARY) {
534        // The density of the device is provided by a build property
535        float density = Density::getBuildDensity() / 160.0f;
536        if (density == 0) {
537            // the build doesn't provide a density -- this is wrong!
538            // use xdpi instead
539            ALOGE("ro.sf.lcd_density must be defined as a build property");
540            density = xdpi / 160.0f;
541        }
542        if (Density::getEmuDensity()) {
543            // if "qemu.sf.lcd_density" is specified, it overrides everything
544            xdpi = ydpi = density = Density::getEmuDensity();
545            density /= 160.0f;
546        }
547        info->density = density;
548
549        // TODO: this needs to go away (currently needed only by webkit)
550        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
551        info->orientation = hw->getOrientation();
552    } else {
553        // TODO: where should this value come from?
554        static const int TV_DENSITY = 213;
555        info->density = TV_DENSITY / 160.0f;
556        info->orientation = 0;
557    }
558
559    info->w = hwc.getWidth(type);
560    info->h = hwc.getHeight(type);
561    info->xdpi = xdpi;
562    info->ydpi = ydpi;
563    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
564
565    // All non-virtual displays are currently considered secure.
566    info->secure = true;
567
568    return NO_ERROR;
569}
570
571// ----------------------------------------------------------------------------
572
573sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
574    return mEventThread->createEventConnection();
575}
576
577// ----------------------------------------------------------------------------
578
579void SurfaceFlinger::waitForEvent() {
580    mEventQueue.waitMessage();
581}
582
583void SurfaceFlinger::signalTransaction() {
584    mEventQueue.invalidate();
585}
586
587void SurfaceFlinger::signalLayerUpdate() {
588    mEventQueue.invalidate();
589}
590
591void SurfaceFlinger::signalRefresh() {
592    mEventQueue.refresh();
593}
594
595status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
596        nsecs_t reltime, uint32_t flags) {
597    return mEventQueue.postMessage(msg, reltime);
598}
599
600status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
601        nsecs_t reltime, uint32_t flags) {
602    status_t res = mEventQueue.postMessage(msg, reltime);
603    if (res == NO_ERROR) {
604        msg->wait();
605    }
606    return res;
607}
608
609void SurfaceFlinger::run() {
610    do {
611        waitForEvent();
612    } while (true);
613}
614
615void SurfaceFlinger::enableHardwareVsync() {
616    Mutex::Autolock _l(mHWVsyncLock);
617    if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
618        mPrimaryDispSync.beginResync();
619        //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
620        mEventControlThread->setVsyncEnabled(true);
621        mPrimaryHWVsyncEnabled = true;
622    }
623}
624
625void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
626    Mutex::Autolock _l(mHWVsyncLock);
627
628    if (makeAvailable) {
629        mHWVsyncAvailable = true;
630    } else if (!mHWVsyncAvailable) {
631        ALOGE("resyncToHardwareVsync called when HW vsync unavailable");
632        return;
633    }
634
635    const nsecs_t period =
636            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
637
638    mPrimaryDispSync.reset();
639    mPrimaryDispSync.setPeriod(period);
640
641    if (!mPrimaryHWVsyncEnabled) {
642        mPrimaryDispSync.beginResync();
643        //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
644        mEventControlThread->setVsyncEnabled(true);
645        mPrimaryHWVsyncEnabled = true;
646    }
647}
648
649void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
650    Mutex::Autolock _l(mHWVsyncLock);
651    if (mPrimaryHWVsyncEnabled) {
652        //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
653        mEventControlThread->setVsyncEnabled(false);
654        mPrimaryDispSync.endResync();
655        mPrimaryHWVsyncEnabled = false;
656    }
657    if (makeUnavailable) {
658        mHWVsyncAvailable = false;
659    }
660}
661
662void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
663    bool needsHwVsync = false;
664
665    { // Scope for the lock
666        Mutex::Autolock _l(mHWVsyncLock);
667        if (type == 0 && mPrimaryHWVsyncEnabled) {
668            needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
669        }
670    }
671
672    if (needsHwVsync) {
673        enableHardwareVsync();
674    } else {
675        disableHardwareVsync(false);
676    }
677}
678
679void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
680    if (mEventThread == NULL) {
681        // This is a temporary workaround for b/7145521.  A non-null pointer
682        // does not mean EventThread has finished initializing, so this
683        // is not a correct fix.
684        ALOGW("WARNING: EventThread not started, ignoring hotplug");
685        return;
686    }
687
688    if (uint32_t(type) < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
689        Mutex::Autolock _l(mStateLock);
690        if (connected) {
691            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
692        } else {
693            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
694            mBuiltinDisplays[type].clear();
695        }
696        setTransactionFlags(eDisplayTransactionNeeded);
697
698        // Defer EventThread notification until SF has updated mDisplays.
699    }
700}
701
702void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
703    ATRACE_CALL();
704    getHwComposer().eventControl(disp, event, enabled);
705}
706
707void SurfaceFlinger::onMessageReceived(int32_t what) {
708    ATRACE_CALL();
709    switch (what) {
710    case MessageQueue::TRANSACTION:
711        handleMessageTransaction();
712        break;
713    case MessageQueue::INVALIDATE:
714        handleMessageTransaction();
715        handleMessageInvalidate();
716        signalRefresh();
717        break;
718    case MessageQueue::REFRESH:
719        handleMessageRefresh();
720        break;
721    }
722}
723
724void SurfaceFlinger::handleMessageTransaction() {
725    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
726    if (transactionFlags) {
727        handleTransaction(transactionFlags);
728    }
729}
730
731void SurfaceFlinger::handleMessageInvalidate() {
732    ATRACE_CALL();
733    handlePageFlip();
734}
735
736void SurfaceFlinger::handleMessageRefresh() {
737    ATRACE_CALL();
738    preComposition();
739    rebuildLayerStacks();
740    setUpHWComposer();
741    doDebugFlashRegions();
742    doComposition();
743    postComposition();
744}
745
746void SurfaceFlinger::doDebugFlashRegions()
747{
748    // is debugging enabled
749    if (CC_LIKELY(!mDebugRegion))
750        return;
751
752    const bool repaintEverything = mRepaintEverything;
753    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
754        const sp<DisplayDevice>& hw(mDisplays[dpy]);
755        if (hw->canDraw()) {
756            // transform the dirty region into this screen's coordinate space
757            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
758            if (!dirtyRegion.isEmpty()) {
759                // redraw the whole screen
760                doComposeSurfaces(hw, Region(hw->bounds()));
761
762                // and draw the dirty region
763                const int32_t height = hw->getHeight();
764                RenderEngine& engine(getRenderEngine());
765                engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
766
767                hw->compositionComplete();
768                hw->swapBuffers(getHwComposer());
769            }
770        }
771    }
772
773    postFramebuffer();
774
775    if (mDebugRegion > 1) {
776        usleep(mDebugRegion * 1000);
777    }
778
779    HWComposer& hwc(getHwComposer());
780    if (hwc.initCheck() == NO_ERROR) {
781        status_t err = hwc.prepare();
782        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
783    }
784}
785
786void SurfaceFlinger::preComposition()
787{
788    bool needExtraInvalidate = false;
789    const LayerVector& layers(mDrawingState.layersSortedByZ);
790    const size_t count = layers.size();
791    for (size_t i=0 ; i<count ; i++) {
792        if (layers[i]->onPreComposition()) {
793            needExtraInvalidate = true;
794        }
795    }
796    if (needExtraInvalidate) {
797        signalLayerUpdate();
798    }
799}
800
801void SurfaceFlinger::postComposition()
802{
803    const LayerVector& layers(mDrawingState.layersSortedByZ);
804    const size_t count = layers.size();
805    for (size_t i=0 ; i<count ; i++) {
806        layers[i]->onPostComposition();
807    }
808
809    const HWComposer& hwc = getHwComposer();
810    sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
811
812    if (presentFence->isValid()) {
813        if (mPrimaryDispSync.addPresentFence(presentFence)) {
814            enableHardwareVsync();
815        } else {
816            disableHardwareVsync(false);
817        }
818    }
819
820    if (runningWithoutSyncFramework) {
821        const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
822        if (hw->isScreenAcquired()) {
823            enableHardwareVsync();
824        }
825    }
826
827    if (mAnimCompositionPending) {
828        mAnimCompositionPending = false;
829
830        if (presentFence->isValid()) {
831            mAnimFrameTracker.setActualPresentFence(presentFence);
832        } else {
833            // The HWC doesn't support present fences, so use the refresh
834            // timestamp instead.
835            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
836            mAnimFrameTracker.setActualPresentTime(presentTime);
837        }
838        mAnimFrameTracker.advanceFrame();
839    }
840}
841
842void SurfaceFlinger::rebuildLayerStacks() {
843    // rebuild the visible layer list per screen
844    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
845        ATRACE_CALL();
846        mVisibleRegionsDirty = false;
847        invalidateHwcGeometry();
848
849        const LayerVector& layers(mDrawingState.layersSortedByZ);
850        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
851            Region opaqueRegion;
852            Region dirtyRegion;
853            Vector< sp<Layer> > layersSortedByZ;
854            const sp<DisplayDevice>& hw(mDisplays[dpy]);
855            const Transform& tr(hw->getTransform());
856            const Rect bounds(hw->getBounds());
857            if (hw->canDraw()) {
858                SurfaceFlinger::computeVisibleRegions(layers,
859                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
860
861                const size_t count = layers.size();
862                for (size_t i=0 ; i<count ; i++) {
863                    const sp<Layer>& layer(layers[i]);
864                    const Layer::State& s(layer->getDrawingState());
865                    if (s.layerStack == hw->getLayerStack()) {
866                        Region drawRegion(tr.transform(
867                                layer->visibleNonTransparentRegion));
868                        drawRegion.andSelf(bounds);
869                        if (!drawRegion.isEmpty()) {
870                            layersSortedByZ.add(layer);
871                        }
872                    }
873                }
874            }
875            hw->setVisibleLayersSortedByZ(layersSortedByZ);
876            hw->undefinedRegion.set(bounds);
877            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
878            hw->dirtyRegion.orSelf(dirtyRegion);
879        }
880    }
881}
882
883void SurfaceFlinger::setUpHWComposer() {
884    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
885        mDisplays[dpy]->beginFrame();
886    }
887
888    HWComposer& hwc(getHwComposer());
889    if (hwc.initCheck() == NO_ERROR) {
890        // build the h/w work list
891        if (CC_UNLIKELY(mHwWorkListDirty)) {
892            mHwWorkListDirty = false;
893            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
894                sp<const DisplayDevice> hw(mDisplays[dpy]);
895                const int32_t id = hw->getHwcDisplayId();
896                if (id >= 0) {
897                    const Vector< sp<Layer> >& currentLayers(
898                        hw->getVisibleLayersSortedByZ());
899                    const size_t count = currentLayers.size();
900                    if (hwc.createWorkList(id, count) == NO_ERROR) {
901                        HWComposer::LayerListIterator cur = hwc.begin(id);
902                        const HWComposer::LayerListIterator end = hwc.end(id);
903                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
904                            const sp<Layer>& layer(currentLayers[i]);
905                            layer->setGeometry(hw, *cur);
906                            if (mDebugDisableHWC || mDebugRegion || mDaltonize) {
907                                cur->setSkip(true);
908                            }
909                        }
910                    }
911                }
912            }
913        }
914
915        // set the per-frame data
916        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
917            sp<const DisplayDevice> hw(mDisplays[dpy]);
918            const int32_t id = hw->getHwcDisplayId();
919            if (id >= 0) {
920                const Vector< sp<Layer> >& currentLayers(
921                    hw->getVisibleLayersSortedByZ());
922                const size_t count = currentLayers.size();
923                HWComposer::LayerListIterator cur = hwc.begin(id);
924                const HWComposer::LayerListIterator end = hwc.end(id);
925                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
926                    /*
927                     * update the per-frame h/w composer data for each layer
928                     * and build the transparent region of the FB
929                     */
930                    const sp<Layer>& layer(currentLayers[i]);
931                    layer->setPerFrameData(hw, *cur);
932                }
933            }
934        }
935
936        status_t err = hwc.prepare();
937        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
938
939        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
940            sp<const DisplayDevice> hw(mDisplays[dpy]);
941            hw->prepareFrame(hwc);
942        }
943    }
944}
945
946void SurfaceFlinger::doComposition() {
947    ATRACE_CALL();
948    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
949    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
950        const sp<DisplayDevice>& hw(mDisplays[dpy]);
951        if (hw->canDraw()) {
952            // transform the dirty region into this screen's coordinate space
953            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
954
955            // repaint the framebuffer (if needed)
956            doDisplayComposition(hw, dirtyRegion);
957
958            hw->dirtyRegion.clear();
959            hw->flip(hw->swapRegion);
960            hw->swapRegion.clear();
961        }
962        // inform the h/w that we're done compositing
963        hw->compositionComplete();
964    }
965    postFramebuffer();
966}
967
968void SurfaceFlinger::postFramebuffer()
969{
970    ATRACE_CALL();
971
972    const nsecs_t now = systemTime();
973    mDebugInSwapBuffers = now;
974
975    HWComposer& hwc(getHwComposer());
976    if (hwc.initCheck() == NO_ERROR) {
977        if (!hwc.supportsFramebufferTarget()) {
978            // EGL spec says:
979            //   "surface must be bound to the calling thread's current context,
980            //    for the current rendering API."
981            getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
982        }
983        hwc.commit();
984    }
985
986    // make the default display current because the VirtualDisplayDevice code cannot
987    // deal with dequeueBuffer() being called outside of the composition loop; however
988    // the code below can call glFlush() which is allowed (and does in some case) call
989    // dequeueBuffer().
990    getDefaultDisplayDevice()->makeCurrent(mEGLDisplay, mEGLContext);
991
992    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
993        sp<const DisplayDevice> hw(mDisplays[dpy]);
994        const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
995        hw->onSwapBuffersCompleted(hwc);
996        const size_t count = currentLayers.size();
997        int32_t id = hw->getHwcDisplayId();
998        if (id >=0 && hwc.initCheck() == NO_ERROR) {
999            HWComposer::LayerListIterator cur = hwc.begin(id);
1000            const HWComposer::LayerListIterator end = hwc.end(id);
1001            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1002                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1003            }
1004        } else {
1005            for (size_t i = 0; i < count; i++) {
1006                currentLayers[i]->onLayerDisplayed(hw, NULL);
1007            }
1008        }
1009    }
1010
1011    mLastSwapBufferTime = systemTime() - now;
1012    mDebugInSwapBuffers = 0;
1013
1014    uint32_t flipCount = getDefaultDisplayDevice()->getPageFlipCount();
1015    if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
1016        logFrameStats();
1017    }
1018}
1019
1020void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1021{
1022    ATRACE_CALL();
1023
1024    // here we keep a copy of the drawing state (that is the state that's
1025    // going to be overwritten by handleTransactionLocked()) outside of
1026    // mStateLock so that the side-effects of the State assignment
1027    // don't happen with mStateLock held (which can cause deadlocks).
1028    State drawingState(mDrawingState);
1029
1030    Mutex::Autolock _l(mStateLock);
1031    const nsecs_t now = systemTime();
1032    mDebugInTransaction = now;
1033
1034    // Here we're guaranteed that some transaction flags are set
1035    // so we can call handleTransactionLocked() unconditionally.
1036    // We call getTransactionFlags(), which will also clear the flags,
1037    // with mStateLock held to guarantee that mCurrentState won't change
1038    // until the transaction is committed.
1039
1040    transactionFlags = getTransactionFlags(eTransactionMask);
1041    handleTransactionLocked(transactionFlags);
1042
1043    mLastTransactionTime = systemTime() - now;
1044    mDebugInTransaction = 0;
1045    invalidateHwcGeometry();
1046    // here the transaction has been committed
1047}
1048
1049void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1050{
1051    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1052    const size_t count = currentLayers.size();
1053
1054    /*
1055     * Traversal of the children
1056     * (perform the transaction for each of them if needed)
1057     */
1058
1059    if (transactionFlags & eTraversalNeeded) {
1060        for (size_t i=0 ; i<count ; i++) {
1061            const sp<Layer>& layer(currentLayers[i]);
1062            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1063            if (!trFlags) continue;
1064
1065            const uint32_t flags = layer->doTransaction(0);
1066            if (flags & Layer::eVisibleRegion)
1067                mVisibleRegionsDirty = true;
1068        }
1069    }
1070
1071    /*
1072     * Perform display own transactions if needed
1073     */
1074
1075    if (transactionFlags & eDisplayTransactionNeeded) {
1076        // here we take advantage of Vector's copy-on-write semantics to
1077        // improve performance by skipping the transaction entirely when
1078        // know that the lists are identical
1079        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1080        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1081        if (!curr.isIdenticalTo(draw)) {
1082            mVisibleRegionsDirty = true;
1083            const size_t cc = curr.size();
1084                  size_t dc = draw.size();
1085
1086            // find the displays that were removed
1087            // (ie: in drawing state but not in current state)
1088            // also handle displays that changed
1089            // (ie: displays that are in both lists)
1090            for (size_t i=0 ; i<dc ; i++) {
1091                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1092                if (j < 0) {
1093                    // in drawing state but not in current state
1094                    if (!draw[i].isMainDisplay()) {
1095                        // Call makeCurrent() on the primary display so we can
1096                        // be sure that nothing associated with this display
1097                        // is current.
1098                        const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDevice());
1099                        defaultDisplay->makeCurrent(mEGLDisplay, mEGLContext);
1100                        sp<DisplayDevice> hw(getDisplayDevice(draw.keyAt(i)));
1101                        if (hw != NULL)
1102                            hw->disconnect(getHwComposer());
1103                        if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
1104                            mEventThread->onHotplugReceived(draw[i].type, false);
1105                        mDisplays.removeItem(draw.keyAt(i));
1106                    } else {
1107                        ALOGW("trying to remove the main display");
1108                    }
1109                } else {
1110                    // this display is in both lists. see if something changed.
1111                    const DisplayDeviceState& state(curr[j]);
1112                    const wp<IBinder>& display(curr.keyAt(j));
1113                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1114                        // changing the surface is like destroying and
1115                        // recreating the DisplayDevice, so we just remove it
1116                        // from the drawing state, so that it get re-added
1117                        // below.
1118                        sp<DisplayDevice> hw(getDisplayDevice(display));
1119                        if (hw != NULL)
1120                            hw->disconnect(getHwComposer());
1121                        mDisplays.removeItem(display);
1122                        mDrawingState.displays.removeItemsAt(i);
1123                        dc--; i--;
1124                        // at this point we must loop to the next item
1125                        continue;
1126                    }
1127
1128                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1129                    if (disp != NULL) {
1130                        if (state.layerStack != draw[i].layerStack) {
1131                            disp->setLayerStack(state.layerStack);
1132                        }
1133                        if ((state.orientation != draw[i].orientation)
1134                                || (state.viewport != draw[i].viewport)
1135                                || (state.frame != draw[i].frame))
1136                        {
1137                            disp->setProjection(state.orientation,
1138                                    state.viewport, state.frame);
1139                        }
1140                    }
1141                }
1142            }
1143
1144            // find displays that were added
1145            // (ie: in current state but not in drawing state)
1146            for (size_t i=0 ; i<cc ; i++) {
1147                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1148                    const DisplayDeviceState& state(curr[i]);
1149
1150                    sp<DisplaySurface> dispSurface;
1151                    sp<IGraphicBufferProducer> producer;
1152                    sp<BufferQueue> bq = new BufferQueue(new GraphicBufferAlloc());
1153
1154                    int32_t hwcDisplayId = -1;
1155                    if (state.isVirtualDisplay()) {
1156                        // Virtual displays without a surface are dormant:
1157                        // they have external state (layer stack, projection,
1158                        // etc.) but no internal state (i.e. a DisplayDevice).
1159                        if (state.surface != NULL) {
1160
1161                            hwcDisplayId = allocateHwcDisplayId(state.type);
1162                            sp<VirtualDisplaySurface> vds = new VirtualDisplaySurface(
1163                                    *mHwc, hwcDisplayId, state.surface, bq,
1164                                    state.displayName);
1165
1166                            dispSurface = vds;
1167                            if (hwcDisplayId >= 0) {
1168                                producer = vds;
1169                            } else {
1170                                // There won't be any interaction with HWC for this virtual display,
1171                                // so the GLES driver can pass buffers directly to the sink.
1172                                producer = state.surface;
1173                            }
1174                        }
1175                    } else {
1176                        ALOGE_IF(state.surface!=NULL,
1177                                "adding a supported display, but rendering "
1178                                "surface is provided (%p), ignoring it",
1179                                state.surface.get());
1180                        hwcDisplayId = allocateHwcDisplayId(state.type);
1181                        // for supported (by hwc) displays we provide our
1182                        // own rendering surface
1183                        dispSurface = new FramebufferSurface(*mHwc, state.type, bq);
1184                        producer = bq;
1185                    }
1186
1187                    const wp<IBinder>& display(curr.keyAt(i));
1188                    if (dispSurface != NULL) {
1189                        sp<DisplayDevice> hw = new DisplayDevice(this,
1190                                state.type, hwcDisplayId,
1191                                mHwc->getFormat(hwcDisplayId), state.isSecure,
1192                                display, dispSurface, producer,
1193                                mRenderEngine->getEGLConfig());
1194                        hw->setLayerStack(state.layerStack);
1195                        hw->setProjection(state.orientation,
1196                                state.viewport, state.frame);
1197                        hw->setDisplayName(state.displayName);
1198                        mDisplays.add(display, hw);
1199                        if (state.isVirtualDisplay()) {
1200                            if (hwcDisplayId >= 0) {
1201                                mHwc->setVirtualDisplayProperties(hwcDisplayId,
1202                                        hw->getWidth(), hw->getHeight(),
1203                                        hw->getFormat());
1204                            }
1205                        } else {
1206                            mEventThread->onHotplugReceived(state.type, true);
1207                        }
1208                    }
1209                }
1210            }
1211        }
1212    }
1213
1214    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1215        // The transform hint might have changed for some layers
1216        // (either because a display has changed, or because a layer
1217        // as changed).
1218        //
1219        // Walk through all the layers in currentLayers,
1220        // and update their transform hint.
1221        //
1222        // If a layer is visible only on a single display, then that
1223        // display is used to calculate the hint, otherwise we use the
1224        // default display.
1225        //
1226        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1227        // the hint is set before we acquire a buffer from the surface texture.
1228        //
1229        // NOTE: layer transactions have taken place already, so we use their
1230        // drawing state. However, SurfaceFlinger's own transaction has not
1231        // happened yet, so we must use the current state layer list
1232        // (soon to become the drawing state list).
1233        //
1234        sp<const DisplayDevice> disp;
1235        uint32_t currentlayerStack = 0;
1236        for (size_t i=0; i<count; i++) {
1237            // NOTE: we rely on the fact that layers are sorted by
1238            // layerStack first (so we don't have to traverse the list
1239            // of displays for every layer).
1240            const sp<Layer>& layer(currentLayers[i]);
1241            uint32_t layerStack = layer->getDrawingState().layerStack;
1242            if (i==0 || currentlayerStack != layerStack) {
1243                currentlayerStack = layerStack;
1244                // figure out if this layerstack is mirrored
1245                // (more than one display) if so, pick the default display,
1246                // if not, pick the only display it's on.
1247                disp.clear();
1248                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1249                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1250                    if (hw->getLayerStack() == currentlayerStack) {
1251                        if (disp == NULL) {
1252                            disp = hw;
1253                        } else {
1254                            disp = NULL;
1255                            break;
1256                        }
1257                    }
1258                }
1259            }
1260            if (disp == NULL) {
1261                // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
1262                // redraw after transform hint changes. See bug 8508397.
1263
1264                // could be null when this layer is using a layerStack
1265                // that is not visible on any display. Also can occur at
1266                // screen off/on times.
1267                disp = getDefaultDisplayDevice();
1268            }
1269            layer->updateTransformHint(disp);
1270        }
1271    }
1272
1273
1274    /*
1275     * Perform our own transaction if needed
1276     */
1277
1278    const LayerVector& layers(mDrawingState.layersSortedByZ);
1279    if (currentLayers.size() > layers.size()) {
1280        // layers have been added
1281        mVisibleRegionsDirty = true;
1282    }
1283
1284    // some layers might have been removed, so
1285    // we need to update the regions they're exposing.
1286    if (mLayersRemoved) {
1287        mLayersRemoved = false;
1288        mVisibleRegionsDirty = true;
1289        const size_t count = layers.size();
1290        for (size_t i=0 ; i<count ; i++) {
1291            const sp<Layer>& layer(layers[i]);
1292            if (currentLayers.indexOf(layer) < 0) {
1293                // this layer is not visible anymore
1294                // TODO: we could traverse the tree from front to back and
1295                //       compute the actual visible region
1296                // TODO: we could cache the transformed region
1297                const Layer::State& s(layer->getDrawingState());
1298                Region visibleReg = s.transform.transform(
1299                        Region(Rect(s.active.w, s.active.h)));
1300                invalidateLayerStack(s.layerStack, visibleReg);
1301            }
1302        }
1303    }
1304
1305    commitTransaction();
1306}
1307
1308void SurfaceFlinger::commitTransaction()
1309{
1310    if (!mLayersPendingRemoval.isEmpty()) {
1311        // Notify removed layers now that they can't be drawn from
1312        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1313            mLayersPendingRemoval[i]->onRemoved();
1314        }
1315        mLayersPendingRemoval.clear();
1316    }
1317
1318    // If this transaction is part of a window animation then the next frame
1319    // we composite should be considered an animation as well.
1320    mAnimCompositionPending = mAnimTransactionPending;
1321
1322    mDrawingState = mCurrentState;
1323    mTransactionPending = false;
1324    mAnimTransactionPending = false;
1325    mTransactionCV.broadcast();
1326}
1327
1328void SurfaceFlinger::computeVisibleRegions(
1329        const LayerVector& currentLayers, uint32_t layerStack,
1330        Region& outDirtyRegion, Region& outOpaqueRegion)
1331{
1332    ATRACE_CALL();
1333
1334    Region aboveOpaqueLayers;
1335    Region aboveCoveredLayers;
1336    Region dirty;
1337
1338    outDirtyRegion.clear();
1339
1340    size_t i = currentLayers.size();
1341    while (i--) {
1342        const sp<Layer>& layer = currentLayers[i];
1343
1344        // start with the whole surface at its current location
1345        const Layer::State& s(layer->getDrawingState());
1346
1347        // only consider the layers on the given layer stack
1348        if (s.layerStack != layerStack)
1349            continue;
1350
1351        /*
1352         * opaqueRegion: area of a surface that is fully opaque.
1353         */
1354        Region opaqueRegion;
1355
1356        /*
1357         * visibleRegion: area of a surface that is visible on screen
1358         * and not fully transparent. This is essentially the layer's
1359         * footprint minus the opaque regions above it.
1360         * Areas covered by a translucent surface are considered visible.
1361         */
1362        Region visibleRegion;
1363
1364        /*
1365         * coveredRegion: area of a surface that is covered by all
1366         * visible regions above it (which includes the translucent areas).
1367         */
1368        Region coveredRegion;
1369
1370        /*
1371         * transparentRegion: area of a surface that is hinted to be completely
1372         * transparent. This is only used to tell when the layer has no visible
1373         * non-transparent regions and can be removed from the layer list. It
1374         * does not affect the visibleRegion of this layer or any layers
1375         * beneath it. The hint may not be correct if apps don't respect the
1376         * SurfaceView restrictions (which, sadly, some don't).
1377         */
1378        Region transparentRegion;
1379
1380
1381        // handle hidden surfaces by setting the visible region to empty
1382        if (CC_LIKELY(layer->isVisible())) {
1383            const bool translucent = !layer->isOpaque();
1384            Rect bounds(s.transform.transform(layer->computeBounds()));
1385            visibleRegion.set(bounds);
1386            if (!visibleRegion.isEmpty()) {
1387                // Remove the transparent area from the visible region
1388                if (translucent) {
1389                    const Transform tr(s.transform);
1390                    if (tr.transformed()) {
1391                        if (tr.preserveRects()) {
1392                            // transform the transparent region
1393                            transparentRegion = tr.transform(s.activeTransparentRegion);
1394                        } else {
1395                            // transformation too complex, can't do the
1396                            // transparent region optimization.
1397                            transparentRegion.clear();
1398                        }
1399                    } else {
1400                        transparentRegion = s.activeTransparentRegion;
1401                    }
1402                }
1403
1404                // compute the opaque region
1405                const int32_t layerOrientation = s.transform.getOrientation();
1406                if (s.alpha==255 && !translucent &&
1407                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1408                    // the opaque region is the layer's footprint
1409                    opaqueRegion = visibleRegion;
1410                }
1411            }
1412        }
1413
1414        // Clip the covered region to the visible region
1415        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1416
1417        // Update aboveCoveredLayers for next (lower) layer
1418        aboveCoveredLayers.orSelf(visibleRegion);
1419
1420        // subtract the opaque region covered by the layers above us
1421        visibleRegion.subtractSelf(aboveOpaqueLayers);
1422
1423        // compute this layer's dirty region
1424        if (layer->contentDirty) {
1425            // we need to invalidate the whole region
1426            dirty = visibleRegion;
1427            // as well, as the old visible region
1428            dirty.orSelf(layer->visibleRegion);
1429            layer->contentDirty = false;
1430        } else {
1431            /* compute the exposed region:
1432             *   the exposed region consists of two components:
1433             *   1) what's VISIBLE now and was COVERED before
1434             *   2) what's EXPOSED now less what was EXPOSED before
1435             *
1436             * note that (1) is conservative, we start with the whole
1437             * visible region but only keep what used to be covered by
1438             * something -- which mean it may have been exposed.
1439             *
1440             * (2) handles areas that were not covered by anything but got
1441             * exposed because of a resize.
1442             */
1443            const Region newExposed = visibleRegion - coveredRegion;
1444            const Region oldVisibleRegion = layer->visibleRegion;
1445            const Region oldCoveredRegion = layer->coveredRegion;
1446            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1447            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1448        }
1449        dirty.subtractSelf(aboveOpaqueLayers);
1450
1451        // accumulate to the screen dirty region
1452        outDirtyRegion.orSelf(dirty);
1453
1454        // Update aboveOpaqueLayers for next (lower) layer
1455        aboveOpaqueLayers.orSelf(opaqueRegion);
1456
1457        // Store the visible region in screen space
1458        layer->setVisibleRegion(visibleRegion);
1459        layer->setCoveredRegion(coveredRegion);
1460        layer->setVisibleNonTransparentRegion(
1461                visibleRegion.subtract(transparentRegion));
1462    }
1463
1464    outOpaqueRegion = aboveOpaqueLayers;
1465}
1466
1467void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1468        const Region& dirty) {
1469    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1470        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1471        if (hw->getLayerStack() == layerStack) {
1472            hw->dirtyRegion.orSelf(dirty);
1473        }
1474    }
1475}
1476
1477void SurfaceFlinger::handlePageFlip()
1478{
1479    Region dirtyRegion;
1480
1481    bool visibleRegions = false;
1482    const LayerVector& layers(mDrawingState.layersSortedByZ);
1483    const size_t count = layers.size();
1484    for (size_t i=0 ; i<count ; i++) {
1485        const sp<Layer>& layer(layers[i]);
1486        const Region dirty(layer->latchBuffer(visibleRegions));
1487        const Layer::State& s(layer->getDrawingState());
1488        invalidateLayerStack(s.layerStack, dirty);
1489    }
1490
1491    mVisibleRegionsDirty |= visibleRegions;
1492}
1493
1494void SurfaceFlinger::invalidateHwcGeometry()
1495{
1496    mHwWorkListDirty = true;
1497}
1498
1499
1500void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1501        const Region& inDirtyRegion)
1502{
1503    Region dirtyRegion(inDirtyRegion);
1504
1505    // compute the invalid region
1506    hw->swapRegion.orSelf(dirtyRegion);
1507
1508    uint32_t flags = hw->getFlags();
1509    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1510        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1511        // takes a rectangle, we must make sure to update that whole
1512        // rectangle in that case
1513        dirtyRegion.set(hw->swapRegion.bounds());
1514    } else {
1515        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1516            // We need to redraw the rectangle that will be updated
1517            // (pushed to the framebuffer).
1518            // This is needed because PARTIAL_UPDATES only takes one
1519            // rectangle instead of a region (see DisplayDevice::flip())
1520            dirtyRegion.set(hw->swapRegion.bounds());
1521        } else {
1522            // we need to redraw everything (the whole screen)
1523            dirtyRegion.set(hw->bounds());
1524            hw->swapRegion = dirtyRegion;
1525        }
1526    }
1527
1528    if (CC_LIKELY(!mDaltonize)) {
1529        doComposeSurfaces(hw, dirtyRegion);
1530    } else {
1531        RenderEngine& engine(getRenderEngine());
1532        engine.beginGroup(mDaltonizer());
1533        doComposeSurfaces(hw, dirtyRegion);
1534        engine.endGroup();
1535    }
1536
1537    // update the swap region and clear the dirty region
1538    hw->swapRegion.orSelf(dirtyRegion);
1539
1540    // swap buffers (presentation)
1541    hw->swapBuffers(getHwComposer());
1542}
1543
1544void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1545{
1546    RenderEngine& engine(getRenderEngine());
1547    const int32_t id = hw->getHwcDisplayId();
1548    HWComposer& hwc(getHwComposer());
1549    HWComposer::LayerListIterator cur = hwc.begin(id);
1550    const HWComposer::LayerListIterator end = hwc.end(id);
1551
1552    bool hasGlesComposition = hwc.hasGlesComposition(id);
1553    if (hasGlesComposition) {
1554        if (!hw->makeCurrent(mEGLDisplay, mEGLContext)) {
1555            ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
1556                  hw->getDisplayName().string());
1557            return;
1558        }
1559
1560        // Never touch the framebuffer if we don't have any framebuffer layers
1561        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1562        if (hasHwcComposition) {
1563            // when using overlays, we assume a fully transparent framebuffer
1564            // NOTE: we could reduce how much we need to clear, for instance
1565            // remove where there are opaque FB layers. however, on some
1566            // GPUs doing a "clean slate" clear might be more efficient.
1567            // We'll revisit later if needed.
1568            engine.clearWithColor(0, 0, 0, 0);
1569        } else {
1570            // we start with the whole screen area
1571            const Region bounds(hw->getBounds());
1572
1573            // we remove the scissor part
1574            // we're left with the letterbox region
1575            // (common case is that letterbox ends-up being empty)
1576            const Region letterbox(bounds.subtract(hw->getScissor()));
1577
1578            // compute the area to clear
1579            Region region(hw->undefinedRegion.merge(letterbox));
1580
1581            // but limit it to the dirty region
1582            region.andSelf(dirty);
1583
1584            // screen is already cleared here
1585            if (!region.isEmpty()) {
1586                // can happen with SurfaceView
1587                drawWormhole(hw, region);
1588            }
1589        }
1590
1591        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1592            // just to be on the safe side, we don't set the
1593            // scissor on the main display. It should never be needed
1594            // anyways (though in theory it could since the API allows it).
1595            const Rect& bounds(hw->getBounds());
1596            const Rect& scissor(hw->getScissor());
1597            if (scissor != bounds) {
1598                // scissor doesn't match the screen's dimensions, so we
1599                // need to clear everything outside of it and enable
1600                // the GL scissor so we don't draw anything where we shouldn't
1601
1602                // enable scissor for this frame
1603                const uint32_t height = hw->getHeight();
1604                engine.setScissor(scissor.left, height - scissor.bottom,
1605                        scissor.getWidth(), scissor.getHeight());
1606            }
1607        }
1608    }
1609
1610    /*
1611     * and then, render the layers targeted at the framebuffer
1612     */
1613
1614    const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
1615    const size_t count = layers.size();
1616    const Transform& tr = hw->getTransform();
1617    if (cur != end) {
1618        // we're using h/w composer
1619        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1620            const sp<Layer>& layer(layers[i]);
1621            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1622            if (!clip.isEmpty()) {
1623                switch (cur->getCompositionType()) {
1624                    case HWC_OVERLAY: {
1625                        const Layer::State& state(layer->getDrawingState());
1626                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1627                                && i
1628                                && layer->isOpaque() && (state.alpha == 0xFF)
1629                                && hasGlesComposition) {
1630                            // never clear the very first layer since we're
1631                            // guaranteed the FB is already cleared
1632                            layer->clearWithOpenGL(hw, clip);
1633                        }
1634                        break;
1635                    }
1636                    case HWC_FRAMEBUFFER: {
1637                        layer->draw(hw, clip);
1638                        break;
1639                    }
1640                    case HWC_FRAMEBUFFER_TARGET: {
1641                        // this should not happen as the iterator shouldn't
1642                        // let us get there.
1643                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%zu)", i);
1644                        break;
1645                    }
1646                }
1647            }
1648            layer->setAcquireFence(hw, *cur);
1649        }
1650    } else {
1651        // we're not using h/w composer
1652        for (size_t i=0 ; i<count ; ++i) {
1653            const sp<Layer>& layer(layers[i]);
1654            const Region clip(dirty.intersect(
1655                    tr.transform(layer->visibleRegion)));
1656            if (!clip.isEmpty()) {
1657                layer->draw(hw, clip);
1658            }
1659        }
1660    }
1661
1662    // disable scissor at the end of the frame
1663    engine.disableScissor();
1664}
1665
1666void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw, const Region& region) const {
1667    const int32_t height = hw->getHeight();
1668    RenderEngine& engine(getRenderEngine());
1669    engine.fillRegionWithColor(region, height, 0, 0, 0, 0);
1670}
1671
1672void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1673        const sp<IBinder>& handle,
1674        const sp<IGraphicBufferProducer>& gbc,
1675        const sp<Layer>& lbc)
1676{
1677    // attach this layer to the client
1678    client->attachLayer(handle, lbc);
1679
1680    // add this layer to the current state list
1681    Mutex::Autolock _l(mStateLock);
1682    mCurrentState.layersSortedByZ.add(lbc);
1683    mGraphicBufferProducerList.add(gbc->asBinder());
1684}
1685
1686status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer) {
1687    Mutex::Autolock _l(mStateLock);
1688    ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
1689    if (index >= 0) {
1690        mLayersPendingRemoval.push(layer);
1691        mLayersRemoved = true;
1692        setTransactionFlags(eTransactionNeeded);
1693        return NO_ERROR;
1694    }
1695    return status_t(index);
1696}
1697
1698uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags) {
1699    return android_atomic_release_load(&mTransactionFlags);
1700}
1701
1702uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
1703    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1704}
1705
1706uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
1707    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1708    if ((old & flags)==0) { // wake the server up
1709        signalTransaction();
1710    }
1711    return old;
1712}
1713
1714void SurfaceFlinger::setTransactionState(
1715        const Vector<ComposerState>& state,
1716        const Vector<DisplayState>& displays,
1717        uint32_t flags)
1718{
1719    ATRACE_CALL();
1720    Mutex::Autolock _l(mStateLock);
1721    uint32_t transactionFlags = 0;
1722
1723    if (flags & eAnimation) {
1724        // For window updates that are part of an animation we must wait for
1725        // previous animation "frames" to be handled.
1726        while (mAnimTransactionPending) {
1727            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1728            if (CC_UNLIKELY(err != NO_ERROR)) {
1729                // just in case something goes wrong in SF, return to the
1730                // caller after a few seconds.
1731                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1732                        "waiting for previous animation frame");
1733                mAnimTransactionPending = false;
1734                break;
1735            }
1736        }
1737    }
1738
1739    size_t count = displays.size();
1740    for (size_t i=0 ; i<count ; i++) {
1741        const DisplayState& s(displays[i]);
1742        transactionFlags |= setDisplayStateLocked(s);
1743    }
1744
1745    count = state.size();
1746    for (size_t i=0 ; i<count ; i++) {
1747        const ComposerState& s(state[i]);
1748        // Here we need to check that the interface we're given is indeed
1749        // one of our own. A malicious client could give us a NULL
1750        // IInterface, or one of its own or even one of our own but a
1751        // different type. All these situations would cause us to crash.
1752        //
1753        // NOTE: it would be better to use RTTI as we could directly check
1754        // that we have a Client*. however, RTTI is disabled in Android.
1755        if (s.client != NULL) {
1756            sp<IBinder> binder = s.client->asBinder();
1757            if (binder != NULL) {
1758                String16 desc(binder->getInterfaceDescriptor());
1759                if (desc == ISurfaceComposerClient::descriptor) {
1760                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1761                    transactionFlags |= setClientStateLocked(client, s.state);
1762                }
1763            }
1764        }
1765    }
1766
1767    if (transactionFlags) {
1768        // this triggers the transaction
1769        setTransactionFlags(transactionFlags);
1770
1771        // if this is a synchronous transaction, wait for it to take effect
1772        // before returning.
1773        if (flags & eSynchronous) {
1774            mTransactionPending = true;
1775        }
1776        if (flags & eAnimation) {
1777            mAnimTransactionPending = true;
1778        }
1779        while (mTransactionPending) {
1780            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1781            if (CC_UNLIKELY(err != NO_ERROR)) {
1782                // just in case something goes wrong in SF, return to the
1783                // called after a few seconds.
1784                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1785                mTransactionPending = false;
1786                break;
1787            }
1788        }
1789    }
1790}
1791
1792uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1793{
1794    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1795    if (dpyIdx < 0)
1796        return 0;
1797
1798    uint32_t flags = 0;
1799    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1800    if (disp.isValid()) {
1801        const uint32_t what = s.what;
1802        if (what & DisplayState::eSurfaceChanged) {
1803            if (disp.surface->asBinder() != s.surface->asBinder()) {
1804                disp.surface = s.surface;
1805                flags |= eDisplayTransactionNeeded;
1806            }
1807        }
1808        if (what & DisplayState::eLayerStackChanged) {
1809            if (disp.layerStack != s.layerStack) {
1810                disp.layerStack = s.layerStack;
1811                flags |= eDisplayTransactionNeeded;
1812            }
1813        }
1814        if (what & DisplayState::eDisplayProjectionChanged) {
1815            if (disp.orientation != s.orientation) {
1816                disp.orientation = s.orientation;
1817                flags |= eDisplayTransactionNeeded;
1818            }
1819            if (disp.frame != s.frame) {
1820                disp.frame = s.frame;
1821                flags |= eDisplayTransactionNeeded;
1822            }
1823            if (disp.viewport != s.viewport) {
1824                disp.viewport = s.viewport;
1825                flags |= eDisplayTransactionNeeded;
1826            }
1827        }
1828    }
1829    return flags;
1830}
1831
1832uint32_t SurfaceFlinger::setClientStateLocked(
1833        const sp<Client>& client,
1834        const layer_state_t& s)
1835{
1836    uint32_t flags = 0;
1837    sp<Layer> layer(client->getLayerUser(s.surface));
1838    if (layer != 0) {
1839        const uint32_t what = s.what;
1840        if (what & layer_state_t::ePositionChanged) {
1841            if (layer->setPosition(s.x, s.y))
1842                flags |= eTraversalNeeded;
1843        }
1844        if (what & layer_state_t::eLayerChanged) {
1845            // NOTE: index needs to be calculated before we update the state
1846            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1847            if (layer->setLayer(s.z)) {
1848                mCurrentState.layersSortedByZ.removeAt(idx);
1849                mCurrentState.layersSortedByZ.add(layer);
1850                // we need traversal (state changed)
1851                // AND transaction (list changed)
1852                flags |= eTransactionNeeded|eTraversalNeeded;
1853            }
1854        }
1855        if (what & layer_state_t::eSizeChanged) {
1856            if (layer->setSize(s.w, s.h)) {
1857                flags |= eTraversalNeeded;
1858            }
1859        }
1860        if (what & layer_state_t::eAlphaChanged) {
1861            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1862                flags |= eTraversalNeeded;
1863        }
1864        if (what & layer_state_t::eMatrixChanged) {
1865            if (layer->setMatrix(s.matrix))
1866                flags |= eTraversalNeeded;
1867        }
1868        if (what & layer_state_t::eTransparentRegionChanged) {
1869            if (layer->setTransparentRegionHint(s.transparentRegion))
1870                flags |= eTraversalNeeded;
1871        }
1872        if (what & layer_state_t::eVisibilityChanged) {
1873            if (layer->setFlags(s.flags, s.mask))
1874                flags |= eTraversalNeeded;
1875        }
1876        if (what & layer_state_t::eCropChanged) {
1877            if (layer->setCrop(s.crop))
1878                flags |= eTraversalNeeded;
1879        }
1880        if (what & layer_state_t::eLayerStackChanged) {
1881            // NOTE: index needs to be calculated before we update the state
1882            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1883            if (layer->setLayerStack(s.layerStack)) {
1884                mCurrentState.layersSortedByZ.removeAt(idx);
1885                mCurrentState.layersSortedByZ.add(layer);
1886                // we need traversal (state changed)
1887                // AND transaction (list changed)
1888                flags |= eTransactionNeeded|eTraversalNeeded;
1889            }
1890        }
1891    }
1892    return flags;
1893}
1894
1895status_t SurfaceFlinger::createLayer(
1896        const String8& name,
1897        const sp<Client>& client,
1898        uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
1899        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
1900{
1901    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1902    if (int32_t(w|h) < 0) {
1903        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1904                int(w), int(h));
1905        return BAD_VALUE;
1906    }
1907
1908    status_t result = NO_ERROR;
1909
1910    sp<Layer> layer;
1911
1912    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1913        case ISurfaceComposerClient::eFXSurfaceNormal:
1914            result = createNormalLayer(client,
1915                    name, w, h, flags, format,
1916                    handle, gbp, &layer);
1917            break;
1918        case ISurfaceComposerClient::eFXSurfaceDim:
1919            result = createDimLayer(client,
1920                    name, w, h, flags,
1921                    handle, gbp, &layer);
1922            break;
1923        default:
1924            result = BAD_VALUE;
1925            break;
1926    }
1927
1928    if (result == NO_ERROR) {
1929        addClientLayer(client, *handle, *gbp, layer);
1930        setTransactionFlags(eTransactionNeeded);
1931    }
1932    return result;
1933}
1934
1935status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
1936        const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
1937        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1938{
1939    // initialize the surfaces
1940    switch (format) {
1941    case PIXEL_FORMAT_TRANSPARENT:
1942    case PIXEL_FORMAT_TRANSLUCENT:
1943        format = PIXEL_FORMAT_RGBA_8888;
1944        break;
1945    case PIXEL_FORMAT_OPAQUE:
1946#ifdef NO_RGBX_8888
1947        format = PIXEL_FORMAT_RGB_565;
1948#else
1949        format = PIXEL_FORMAT_RGBX_8888;
1950#endif
1951        break;
1952    }
1953
1954#ifdef NO_RGBX_8888
1955    if (format == PIXEL_FORMAT_RGBX_8888)
1956        format = PIXEL_FORMAT_RGBA_8888;
1957#endif
1958
1959    *outLayer = new Layer(this, client, name, w, h, flags);
1960    status_t err = (*outLayer)->setBuffers(w, h, format, flags);
1961    if (err == NO_ERROR) {
1962        *handle = (*outLayer)->getHandle();
1963        *gbp = (*outLayer)->getBufferQueue();
1964    }
1965
1966    ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
1967    return err;
1968}
1969
1970status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
1971        const String8& name, uint32_t w, uint32_t h, uint32_t flags,
1972        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1973{
1974    *outLayer = new LayerDim(this, client, name, w, h, flags);
1975    *handle = (*outLayer)->getHandle();
1976    *gbp = (*outLayer)->getBufferQueue();
1977    return NO_ERROR;
1978}
1979
1980status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
1981{
1982    // called by the window manager when it wants to remove a Layer
1983    status_t err = NO_ERROR;
1984    sp<Layer> l(client->getLayerUser(handle));
1985    if (l != NULL) {
1986        err = removeLayer(l);
1987        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1988                "error removing layer=%p (%s)", l.get(), strerror(-err));
1989    }
1990    return err;
1991}
1992
1993status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
1994{
1995    // called by ~LayerCleaner() when all references to the IBinder (handle)
1996    // are gone
1997    status_t err = NO_ERROR;
1998    sp<Layer> l(layer.promote());
1999    if (l != NULL) {
2000        err = removeLayer(l);
2001        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
2002                "error removing layer=%p (%s)", l.get(), strerror(-err));
2003    }
2004    return err;
2005}
2006
2007// ---------------------------------------------------------------------------
2008
2009void SurfaceFlinger::onInitializeDisplays() {
2010    // reset screen orientation and use primary layer stack
2011    Vector<ComposerState> state;
2012    Vector<DisplayState> displays;
2013    DisplayState d;
2014    d.what = DisplayState::eDisplayProjectionChanged |
2015             DisplayState::eLayerStackChanged;
2016    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2017    d.layerStack = 0;
2018    d.orientation = DisplayState::eOrientationDefault;
2019    d.frame.makeInvalid();
2020    d.viewport.makeInvalid();
2021    displays.add(d);
2022    setTransactionState(state, displays, 0);
2023    onScreenAcquired(getDefaultDisplayDevice());
2024
2025    const nsecs_t period =
2026            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2027    mAnimFrameTracker.setDisplayRefreshPeriod(period);
2028}
2029
2030void SurfaceFlinger::initializeDisplays() {
2031    class MessageScreenInitialized : public MessageBase {
2032        SurfaceFlinger* flinger;
2033    public:
2034        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2035        virtual bool handler() {
2036            flinger->onInitializeDisplays();
2037            return true;
2038        }
2039    };
2040    sp<MessageBase> msg = new MessageScreenInitialized(this);
2041    postMessageAsync(msg);  // we may be called from main thread, use async message
2042}
2043
2044
2045void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2046    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2047    if (hw->isScreenAcquired()) {
2048        // this is expected, e.g. when power manager wakes up during boot
2049        ALOGD(" screen was previously acquired");
2050        return;
2051    }
2052
2053    hw->acquireScreen();
2054    int32_t type = hw->getDisplayType();
2055    if (type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
2056        // built-in display, tell the HWC
2057        getHwComposer().acquire(type);
2058
2059        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2060            // FIXME: eventthread only knows about the main display right now
2061            mEventThread->onScreenAcquired();
2062
2063            resyncToHardwareVsync(true);
2064        }
2065    }
2066    mVisibleRegionsDirty = true;
2067    repaintEverything();
2068}
2069
2070void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2071    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2072    if (!hw->isScreenAcquired()) {
2073        ALOGD(" screen was previously released");
2074        return;
2075    }
2076
2077    hw->releaseScreen();
2078    int32_t type = hw->getDisplayType();
2079    if (type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
2080        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2081            disableHardwareVsync(true); // also cancels any in-progress resync
2082
2083            // FIXME: eventthread only knows about the main display right now
2084            mEventThread->onScreenReleased();
2085        }
2086
2087        // built-in display, tell the HWC
2088        getHwComposer().release(type);
2089    }
2090    mVisibleRegionsDirty = true;
2091    // from this point on, SF will stop drawing on this display
2092}
2093
2094void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2095    class MessageScreenAcquired : public MessageBase {
2096        SurfaceFlinger& mFlinger;
2097        sp<IBinder> mDisplay;
2098    public:
2099        MessageScreenAcquired(SurfaceFlinger& flinger,
2100                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2101        virtual bool handler() {
2102            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2103            if (hw == NULL) {
2104                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2105            } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
2106                ALOGW("Attempt to unblank virtual display");
2107            } else {
2108                mFlinger.onScreenAcquired(hw);
2109            }
2110            return true;
2111        }
2112    };
2113    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2114    postMessageSync(msg);
2115}
2116
2117void SurfaceFlinger::blank(const sp<IBinder>& display) {
2118    class MessageScreenReleased : public MessageBase {
2119        SurfaceFlinger& mFlinger;
2120        sp<IBinder> mDisplay;
2121    public:
2122        MessageScreenReleased(SurfaceFlinger& flinger,
2123                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2124        virtual bool handler() {
2125            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2126            if (hw == NULL) {
2127                ALOGE("Attempt to blank null display %p", mDisplay.get());
2128            } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
2129                ALOGW("Attempt to blank virtual display");
2130            } else {
2131                mFlinger.onScreenReleased(hw);
2132            }
2133            return true;
2134        }
2135    };
2136    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2137    postMessageSync(msg);
2138}
2139
2140// ---------------------------------------------------------------------------
2141
2142status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2143{
2144    String8 result;
2145
2146    IPCThreadState* ipc = IPCThreadState::self();
2147    const int pid = ipc->getCallingPid();
2148    const int uid = ipc->getCallingUid();
2149    if ((uid != AID_SHELL) &&
2150            !PermissionCache::checkPermission(sDump, pid, uid)) {
2151        result.appendFormat("Permission Denial: "
2152                "can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
2153    } else {
2154        // Try to get the main lock, but don't insist if we can't
2155        // (this would indicate SF is stuck, but we want to be able to
2156        // print something in dumpsys).
2157        int retry = 3;
2158        while (mStateLock.tryLock()<0 && --retry>=0) {
2159            usleep(1000000);
2160        }
2161        const bool locked(retry >= 0);
2162        if (!locked) {
2163            result.append(
2164                    "SurfaceFlinger appears to be unresponsive, "
2165                    "dumping anyways (no locks held)\n");
2166        }
2167
2168        bool dumpAll = true;
2169        size_t index = 0;
2170        size_t numArgs = args.size();
2171        if (numArgs) {
2172            if ((index < numArgs) &&
2173                    (args[index] == String16("--list"))) {
2174                index++;
2175                listLayersLocked(args, index, result);
2176                dumpAll = false;
2177            }
2178
2179            if ((index < numArgs) &&
2180                    (args[index] == String16("--latency"))) {
2181                index++;
2182                dumpStatsLocked(args, index, result);
2183                dumpAll = false;
2184            }
2185
2186            if ((index < numArgs) &&
2187                    (args[index] == String16("--latency-clear"))) {
2188                index++;
2189                clearStatsLocked(args, index, result);
2190                dumpAll = false;
2191            }
2192        }
2193
2194        if (dumpAll) {
2195            dumpAllLocked(args, index, result);
2196        }
2197
2198        if (locked) {
2199            mStateLock.unlock();
2200        }
2201    }
2202    write(fd, result.string(), result.size());
2203    return NO_ERROR;
2204}
2205
2206void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2207        String8& result) const
2208{
2209    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2210    const size_t count = currentLayers.size();
2211    for (size_t i=0 ; i<count ; i++) {
2212        const sp<Layer>& layer(currentLayers[i]);
2213        result.appendFormat("%s\n", layer->getName().string());
2214    }
2215}
2216
2217void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2218        String8& result) const
2219{
2220    String8 name;
2221    if (index < args.size()) {
2222        name = String8(args[index]);
2223        index++;
2224    }
2225
2226    const nsecs_t period =
2227            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2228    result.appendFormat("%" PRId64 "\n", period);
2229
2230    if (name.isEmpty()) {
2231        mAnimFrameTracker.dump(result);
2232    } else {
2233        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2234        const size_t count = currentLayers.size();
2235        for (size_t i=0 ; i<count ; i++) {
2236            const sp<Layer>& layer(currentLayers[i]);
2237            if (name == layer->getName()) {
2238                layer->dumpStats(result);
2239            }
2240        }
2241    }
2242}
2243
2244void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2245        String8& result)
2246{
2247    String8 name;
2248    if (index < args.size()) {
2249        name = String8(args[index]);
2250        index++;
2251    }
2252
2253    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2254    const size_t count = currentLayers.size();
2255    for (size_t i=0 ; i<count ; i++) {
2256        const sp<Layer>& layer(currentLayers[i]);
2257        if (name.isEmpty() || (name == layer->getName())) {
2258            layer->clearStats();
2259        }
2260    }
2261
2262    mAnimFrameTracker.clear();
2263}
2264
2265// This should only be called from the main thread.  Otherwise it would need
2266// the lock and should use mCurrentState rather than mDrawingState.
2267void SurfaceFlinger::logFrameStats() {
2268    const LayerVector& drawingLayers = mDrawingState.layersSortedByZ;
2269    const size_t count = drawingLayers.size();
2270    for (size_t i=0 ; i<count ; i++) {
2271        const sp<Layer>& layer(drawingLayers[i]);
2272        layer->logFrameStats();
2273    }
2274
2275    mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
2276}
2277
2278/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2279{
2280    static const char* config =
2281            " [sf"
2282#ifdef NO_RGBX_8888
2283            " NO_RGBX_8888"
2284#endif
2285#ifdef HAS_CONTEXT_PRIORITY
2286            " HAS_CONTEXT_PRIORITY"
2287#endif
2288#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2289            " NEVER_DEFAULT_TO_ASYNC_MODE"
2290#endif
2291#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2292            " TARGET_DISABLE_TRIPLE_BUFFERING"
2293#endif
2294            "]";
2295    result.append(config);
2296}
2297
2298void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index,
2299        String8& result) const
2300{
2301    bool colorize = false;
2302    if (index < args.size()
2303            && (args[index] == String16("--color"))) {
2304        colorize = true;
2305        index++;
2306    }
2307
2308    Colorizer colorizer(colorize);
2309
2310    // figure out if we're stuck somewhere
2311    const nsecs_t now = systemTime();
2312    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2313    const nsecs_t inTransaction(mDebugInTransaction);
2314    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2315    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2316
2317    /*
2318     * Dump library configuration.
2319     */
2320
2321    colorizer.bold(result);
2322    result.append("Build configuration:");
2323    colorizer.reset(result);
2324    appendSfConfigString(result);
2325    appendUiConfigString(result);
2326    appendGuiConfigString(result);
2327    result.append("\n");
2328
2329    colorizer.bold(result);
2330    result.append("Sync configuration: ");
2331    colorizer.reset(result);
2332    result.append(SyncFeatures::getInstance().toString());
2333    result.append("\n");
2334
2335    /*
2336     * Dump the visible layer list
2337     */
2338    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2339    const size_t count = currentLayers.size();
2340    colorizer.bold(result);
2341    result.appendFormat("Visible layers (count = %zu)\n", count);
2342    colorizer.reset(result);
2343    for (size_t i=0 ; i<count ; i++) {
2344        const sp<Layer>& layer(currentLayers[i]);
2345        layer->dump(result, colorizer);
2346    }
2347
2348    /*
2349     * Dump Display state
2350     */
2351
2352    colorizer.bold(result);
2353    result.appendFormat("Displays (%zu entries)\n", mDisplays.size());
2354    colorizer.reset(result);
2355    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2356        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2357        hw->dump(result);
2358    }
2359
2360    /*
2361     * Dump SurfaceFlinger global state
2362     */
2363
2364    colorizer.bold(result);
2365    result.append("SurfaceFlinger global state:\n");
2366    colorizer.reset(result);
2367
2368    HWComposer& hwc(getHwComposer());
2369    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2370
2371    colorizer.bold(result);
2372    result.appendFormat("EGL implementation : %s\n",
2373            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
2374    colorizer.reset(result);
2375    result.appendFormat("%s\n",
2376            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
2377
2378    mRenderEngine->dump(result);
2379
2380    hw->undefinedRegion.dump(result, "undefinedRegion");
2381    result.appendFormat("  orientation=%d, canDraw=%d\n",
2382            hw->getOrientation(), hw->canDraw());
2383    result.appendFormat(
2384            "  last eglSwapBuffers() time: %f us\n"
2385            "  last transaction time     : %f us\n"
2386            "  transaction-flags         : %08x\n"
2387            "  refresh-rate              : %f fps\n"
2388            "  x-dpi                     : %f\n"
2389            "  y-dpi                     : %f\n"
2390            "  gpu_to_cpu_unsupported    : %d\n"
2391            ,
2392            mLastSwapBufferTime/1000.0,
2393            mLastTransactionTime/1000.0,
2394            mTransactionFlags,
2395            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2396            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2397            hwc.getDpiY(HWC_DISPLAY_PRIMARY),
2398            !mGpuToCpuSupported);
2399
2400    result.appendFormat("  eglSwapBuffers time: %f us\n",
2401            inSwapBuffersDuration/1000.0);
2402
2403    result.appendFormat("  transaction time: %f us\n",
2404            inTransactionDuration/1000.0);
2405
2406    /*
2407     * VSYNC state
2408     */
2409    mEventThread->dump(result);
2410
2411    /*
2412     * Dump HWComposer state
2413     */
2414    colorizer.bold(result);
2415    result.append("h/w composer state:\n");
2416    colorizer.reset(result);
2417    result.appendFormat("  h/w composer %s and %s\n",
2418            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2419                    (mDebugDisableHWC || mDebugRegion || mDaltonize) ? "disabled" : "enabled");
2420    hwc.dump(result);
2421
2422    /*
2423     * Dump gralloc state
2424     */
2425    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2426    alloc.dump(result);
2427}
2428
2429const Vector< sp<Layer> >&
2430SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
2431    // Note: mStateLock is held here
2432    wp<IBinder> dpy;
2433    for (size_t i=0 ; i<mDisplays.size() ; i++) {
2434        if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
2435            dpy = mDisplays.keyAt(i);
2436            break;
2437        }
2438    }
2439    if (dpy == NULL) {
2440        ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
2441        // Just use the primary display so we have something to return
2442        dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
2443    }
2444    return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
2445}
2446
2447bool SurfaceFlinger::startDdmConnection()
2448{
2449    void* libddmconnection_dso =
2450            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2451    if (!libddmconnection_dso) {
2452        return false;
2453    }
2454    void (*DdmConnection_start)(const char* name);
2455    DdmConnection_start =
2456            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2457    if (!DdmConnection_start) {
2458        dlclose(libddmconnection_dso);
2459        return false;
2460    }
2461    (*DdmConnection_start)(getServiceName());
2462    return true;
2463}
2464
2465status_t SurfaceFlinger::onTransact(
2466    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2467{
2468    switch (code) {
2469        case CREATE_CONNECTION:
2470        case CREATE_DISPLAY:
2471        case SET_TRANSACTION_STATE:
2472        case BOOT_FINISHED:
2473        case BLANK:
2474        case UNBLANK:
2475        {
2476            // codes that require permission check
2477            IPCThreadState* ipc = IPCThreadState::self();
2478            const int pid = ipc->getCallingPid();
2479            const int uid = ipc->getCallingUid();
2480            if ((uid != AID_GRAPHICS) &&
2481                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2482                ALOGE("Permission Denial: "
2483                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2484                return PERMISSION_DENIED;
2485            }
2486            break;
2487        }
2488        case CAPTURE_SCREEN:
2489        {
2490            // codes that require permission check
2491            IPCThreadState* ipc = IPCThreadState::self();
2492            const int pid = ipc->getCallingPid();
2493            const int uid = ipc->getCallingUid();
2494            if ((uid != AID_GRAPHICS) &&
2495                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2496                ALOGE("Permission Denial: "
2497                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2498                return PERMISSION_DENIED;
2499            }
2500            break;
2501        }
2502    }
2503
2504    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2505    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2506        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2507        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2508            IPCThreadState* ipc = IPCThreadState::self();
2509            const int pid = ipc->getCallingPid();
2510            const int uid = ipc->getCallingUid();
2511            ALOGE("Permission Denial: "
2512                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2513            return PERMISSION_DENIED;
2514        }
2515        int n;
2516        switch (code) {
2517            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2518            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2519                return NO_ERROR;
2520            case 1002:  // SHOW_UPDATES
2521                n = data.readInt32();
2522                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2523                invalidateHwcGeometry();
2524                repaintEverything();
2525                return NO_ERROR;
2526            case 1004:{ // repaint everything
2527                repaintEverything();
2528                return NO_ERROR;
2529            }
2530            case 1005:{ // force transaction
2531                setTransactionFlags(
2532                        eTransactionNeeded|
2533                        eDisplayTransactionNeeded|
2534                        eTraversalNeeded);
2535                return NO_ERROR;
2536            }
2537            case 1006:{ // send empty update
2538                signalRefresh();
2539                return NO_ERROR;
2540            }
2541            case 1008:  // toggle use of hw composer
2542                n = data.readInt32();
2543                mDebugDisableHWC = n ? 1 : 0;
2544                invalidateHwcGeometry();
2545                repaintEverything();
2546                return NO_ERROR;
2547            case 1009:  // toggle use of transform hint
2548                n = data.readInt32();
2549                mDebugDisableTransformHint = n ? 1 : 0;
2550                invalidateHwcGeometry();
2551                repaintEverything();
2552                return NO_ERROR;
2553            case 1010:  // interrogate.
2554                reply->writeInt32(0);
2555                reply->writeInt32(0);
2556                reply->writeInt32(mDebugRegion);
2557                reply->writeInt32(0);
2558                reply->writeInt32(mDebugDisableHWC);
2559                return NO_ERROR;
2560            case 1013: {
2561                Mutex::Autolock _l(mStateLock);
2562                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2563                reply->writeInt32(hw->getPageFlipCount());
2564                return NO_ERROR;
2565            }
2566            case 1014: {
2567                // daltonize
2568                n = data.readInt32();
2569                switch (n % 10) {
2570                    case 1: mDaltonizer.setType(Daltonizer::protanomaly);   break;
2571                    case 2: mDaltonizer.setType(Daltonizer::deuteranomaly); break;
2572                    case 3: mDaltonizer.setType(Daltonizer::tritanomaly);   break;
2573                }
2574                if (n >= 10) {
2575                    mDaltonizer.setMode(Daltonizer::correction);
2576                } else {
2577                    mDaltonizer.setMode(Daltonizer::simulation);
2578                }
2579                mDaltonize = n > 0;
2580                invalidateHwcGeometry();
2581                repaintEverything();
2582            }
2583            return NO_ERROR;
2584        }
2585    }
2586    return err;
2587}
2588
2589void SurfaceFlinger::repaintEverything() {
2590    android_atomic_or(1, &mRepaintEverything);
2591    signalTransaction();
2592}
2593
2594// ---------------------------------------------------------------------------
2595// Capture screen into an IGraphiBufferProducer
2596// ---------------------------------------------------------------------------
2597
2598/* The code below is here to handle b/8734824
2599 *
2600 * We create a IGraphicBufferProducer wrapper that forwards all calls
2601 * to the calling binder thread, where they are executed. This allows
2602 * the calling thread to be reused (on the other side) and not
2603 * depend on having "enough" binder threads to handle the requests.
2604 *
2605 */
2606
2607class GraphicProducerWrapper : public BBinder, public MessageHandler {
2608    sp<IGraphicBufferProducer> impl;
2609    sp<Looper> looper;
2610    status_t result;
2611    bool exitPending;
2612    bool exitRequested;
2613    mutable Barrier barrier;
2614    volatile int32_t memoryBarrier;
2615    uint32_t code;
2616    Parcel const* data;
2617    Parcel* reply;
2618
2619    enum {
2620        MSG_API_CALL,
2621        MSG_EXIT
2622    };
2623
2624    /*
2625     * this is called by our "fake" BpGraphicBufferProducer. We package the
2626     * data and reply Parcel and forward them to the calling thread.
2627     */
2628    virtual status_t transact(uint32_t code,
2629            const Parcel& data, Parcel* reply, uint32_t flags) {
2630        this->code = code;
2631        this->data = &data;
2632        this->reply = reply;
2633        android_atomic_acquire_store(0, &memoryBarrier);
2634        if (exitPending) {
2635            // if we've exited, we run the message synchronously right here
2636            handleMessage(Message(MSG_API_CALL));
2637        } else {
2638            barrier.close();
2639            looper->sendMessage(this, Message(MSG_API_CALL));
2640            barrier.wait();
2641        }
2642        return result;
2643    }
2644
2645    /*
2646     * here we run on the binder calling thread. All we've got to do is
2647     * call the real BpGraphicBufferProducer.
2648     */
2649    virtual void handleMessage(const Message& message) {
2650        android_atomic_release_load(&memoryBarrier);
2651        if (message.what == MSG_API_CALL) {
2652            result = impl->asBinder()->transact(code, data[0], reply);
2653            barrier.open();
2654        } else if (message.what == MSG_EXIT) {
2655            exitRequested = true;
2656        }
2657    }
2658
2659public:
2660    GraphicProducerWrapper(const sp<IGraphicBufferProducer>& impl) :
2661        impl(impl), looper(new Looper(true)), result(NO_ERROR),
2662        exitPending(false), exitRequested(false) {
2663    }
2664
2665    status_t waitForResponse() {
2666        do {
2667            looper->pollOnce(-1);
2668        } while (!exitRequested);
2669        return result;
2670    }
2671
2672    void exit(status_t result) {
2673        this->result = result;
2674        exitPending = true;
2675        looper->sendMessage(this, Message(MSG_EXIT));
2676    }
2677};
2678
2679
2680status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2681        const sp<IGraphicBufferProducer>& producer,
2682        uint32_t reqWidth, uint32_t reqHeight,
2683        uint32_t minLayerZ, uint32_t maxLayerZ) {
2684
2685    if (CC_UNLIKELY(display == 0))
2686        return BAD_VALUE;
2687
2688    if (CC_UNLIKELY(producer == 0))
2689        return BAD_VALUE;
2690
2691    // if we have secure windows on this display, never allow the screen capture
2692    // unless the producer interface is local (i.e.: we can take a screenshot for
2693    // ourselves).
2694    if (!producer->asBinder()->localBinder()) {
2695        Mutex::Autolock _l(mStateLock);
2696        sp<const DisplayDevice> hw(getDisplayDevice(display));
2697        if (hw->getSecureLayerVisible()) {
2698            ALOGW("FB is protected: PERMISSION_DENIED");
2699            return PERMISSION_DENIED;
2700        }
2701    }
2702
2703    class MessageCaptureScreen : public MessageBase {
2704        SurfaceFlinger* flinger;
2705        sp<IBinder> display;
2706        sp<IGraphicBufferProducer> producer;
2707        uint32_t reqWidth, reqHeight;
2708        uint32_t minLayerZ,maxLayerZ;
2709        status_t result;
2710    public:
2711        MessageCaptureScreen(SurfaceFlinger* flinger,
2712                const sp<IBinder>& display,
2713                const sp<IGraphicBufferProducer>& producer,
2714                uint32_t reqWidth, uint32_t reqHeight,
2715                uint32_t minLayerZ, uint32_t maxLayerZ)
2716            : flinger(flinger), display(display), producer(producer),
2717              reqWidth(reqWidth), reqHeight(reqHeight),
2718              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2719              result(PERMISSION_DENIED)
2720        {
2721        }
2722        status_t getResult() const {
2723            return result;
2724        }
2725        virtual bool handler() {
2726            Mutex::Autolock _l(flinger->mStateLock);
2727            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2728            result = flinger->captureScreenImplLocked(hw,
2729                    producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2730            static_cast<GraphicProducerWrapper*>(producer->asBinder().get())->exit(result);
2731            return true;
2732        }
2733    };
2734
2735    // make sure to process transactions before screenshots -- a transaction
2736    // might already be pending but scheduled for VSYNC; this guarantees we
2737    // will handle it before the screenshot. When VSYNC finally arrives
2738    // the scheduled transaction will be a no-op. If no transactions are
2739    // scheduled at this time, this will end-up being a no-op as well.
2740    mEventQueue.invalidateTransactionNow();
2741
2742    // this creates a "fake" BBinder which will serve as a "fake" remote
2743    // binder to receive the marshaled calls and forward them to the
2744    // real remote (a BpGraphicBufferProducer)
2745    sp<GraphicProducerWrapper> wrapper = new GraphicProducerWrapper(producer);
2746
2747    // the asInterface() call below creates our "fake" BpGraphicBufferProducer
2748    // which does the marshaling work forwards to our "fake remote" above.
2749    sp<MessageBase> msg = new MessageCaptureScreen(this,
2750            display, IGraphicBufferProducer::asInterface( wrapper ),
2751            reqWidth, reqHeight, minLayerZ, maxLayerZ);
2752
2753    status_t res = postMessageAsync(msg);
2754    if (res == NO_ERROR) {
2755        res = wrapper->waitForResponse();
2756    }
2757    return res;
2758}
2759
2760
2761void SurfaceFlinger::renderScreenImplLocked(
2762        const sp<const DisplayDevice>& hw,
2763        uint32_t reqWidth, uint32_t reqHeight,
2764        uint32_t minLayerZ, uint32_t maxLayerZ,
2765        bool yswap)
2766{
2767    ATRACE_CALL();
2768    RenderEngine& engine(getRenderEngine());
2769
2770    // get screen geometry
2771    const uint32_t hw_w = hw->getWidth();
2772    const uint32_t hw_h = hw->getHeight();
2773    const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
2774
2775    // make sure to clear all GL error flags
2776    engine.checkErrors();
2777
2778    // set-up our viewport
2779    engine.setViewportAndProjection(reqWidth, reqHeight, hw_w, hw_h, yswap);
2780    engine.disableTexturing();
2781
2782    // redraw the screen entirely...
2783    engine.clearWithColor(0, 0, 0, 1);
2784
2785    const LayerVector& layers( mDrawingState.layersSortedByZ );
2786    const size_t count = layers.size();
2787    for (size_t i=0 ; i<count ; ++i) {
2788        const sp<Layer>& layer(layers[i]);
2789        const Layer::State& state(layer->getDrawingState());
2790        if (state.layerStack == hw->getLayerStack()) {
2791            if (state.z >= minLayerZ && state.z <= maxLayerZ) {
2792                if (layer->isVisible()) {
2793                    if (filtering) layer->setFiltering(true);
2794                    layer->draw(hw);
2795                    if (filtering) layer->setFiltering(false);
2796                }
2797            }
2798        }
2799    }
2800
2801    // compositionComplete is needed for older driver
2802    hw->compositionComplete();
2803    hw->setViewportAndProjection();
2804}
2805
2806
2807status_t SurfaceFlinger::captureScreenImplLocked(
2808        const sp<const DisplayDevice>& hw,
2809        const sp<IGraphicBufferProducer>& producer,
2810        uint32_t reqWidth, uint32_t reqHeight,
2811        uint32_t minLayerZ, uint32_t maxLayerZ)
2812{
2813    ATRACE_CALL();
2814
2815    // get screen geometry
2816    const uint32_t hw_w = hw->getWidth();
2817    const uint32_t hw_h = hw->getHeight();
2818
2819    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2820        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2821                reqWidth, reqHeight, hw_w, hw_h);
2822        return BAD_VALUE;
2823    }
2824
2825    reqWidth  = (!reqWidth)  ? hw_w : reqWidth;
2826    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2827
2828    // create a surface (because we're a producer, and we need to
2829    // dequeue/queue a buffer)
2830    sp<Surface> sur = new Surface(producer, false);
2831    ANativeWindow* window = sur.get();
2832
2833    status_t result = NO_ERROR;
2834    if (native_window_api_connect(window, NATIVE_WINDOW_API_EGL) == NO_ERROR) {
2835        uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
2836                        GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
2837
2838        int err = 0;
2839        err = native_window_set_buffers_dimensions(window, reqWidth, reqHeight);
2840        err |= native_window_set_scaling_mode(window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
2841        err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
2842        err |= native_window_set_usage(window, usage);
2843
2844        if (err == NO_ERROR) {
2845            ANativeWindowBuffer* buffer;
2846            /* TODO: Once we have the sync framework everywhere this can use
2847             * server-side waits on the fence that dequeueBuffer returns.
2848             */
2849            result = native_window_dequeue_buffer_and_wait(window,  &buffer);
2850            if (result == NO_ERROR) {
2851                // create an EGLImage from the buffer so we can later
2852                // turn it into a texture
2853                EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT,
2854                        EGL_NATIVE_BUFFER_ANDROID, buffer, NULL);
2855                if (image != EGL_NO_IMAGE_KHR) {
2856                    // this binds the given EGLImage as a framebuffer for the
2857                    // duration of this scope.
2858                    RenderEngine::BindImageAsFramebuffer imageBond(getRenderEngine(), image);
2859                    if (imageBond.getStatus() == NO_ERROR) {
2860                        // this will in fact render into our dequeued buffer
2861                        // via an FBO, which means we didn't have to create
2862                        // an EGLSurface and therefore we're not
2863                        // dependent on the context's EGLConfig.
2864                        renderScreenImplLocked(hw, reqWidth, reqHeight,
2865                                minLayerZ, maxLayerZ, true);
2866
2867                        // Create a sync point and wait on it, so we know the buffer is
2868                        // ready before we pass it along.  We can't trivially call glFlush(),
2869                        // so we use a wait flag instead.
2870                        // TODO: pass a sync fd to queueBuffer() and let the consumer wait.
2871                        EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, NULL);
2872                        if (sync != EGL_NO_SYNC_KHR) {
2873                            EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync,
2874                                    EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, 2000000000 /*2 sec*/);
2875                            EGLint eglErr = eglGetError();
2876                            eglDestroySyncKHR(mEGLDisplay, sync);
2877                            if (result == EGL_TIMEOUT_EXPIRED_KHR) {
2878                                ALOGW("captureScreen: fence wait timed out");
2879                            } else {
2880                                ALOGW_IF(eglErr != EGL_SUCCESS,
2881                                        "captureScreen: error waiting on EGL fence: %#x", eglErr);
2882                            }
2883                        } else {
2884                            ALOGW("captureScreen: error creating EGL fence: %#x", eglGetError());
2885                            // not fatal
2886                        }
2887
2888                        if (DEBUG_SCREENSHOTS) {
2889                            uint32_t* pixels = new uint32_t[reqWidth*reqHeight];
2890                            getRenderEngine().readPixels(0, 0, reqWidth, reqHeight, pixels);
2891                            checkScreenshot(reqWidth, reqHeight, reqWidth, pixels,
2892                                    hw, minLayerZ, maxLayerZ);
2893                            delete [] pixels;
2894                        }
2895
2896                    } else {
2897                        ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES error while taking screenshot");
2898                        result = INVALID_OPERATION;
2899                    }
2900                    // destroy our image
2901                    eglDestroyImageKHR(mEGLDisplay, image);
2902                } else {
2903                    result = BAD_VALUE;
2904                }
2905                window->queueBuffer(window, buffer, -1);
2906            }
2907        } else {
2908            result = BAD_VALUE;
2909        }
2910        native_window_api_disconnect(window, NATIVE_WINDOW_API_EGL);
2911    }
2912
2913    return result;
2914}
2915
2916void SurfaceFlinger::checkScreenshot(size_t w, size_t s, size_t h, void const* vaddr,
2917        const sp<const DisplayDevice>& hw, uint32_t minLayerZ, uint32_t maxLayerZ) {
2918    if (DEBUG_SCREENSHOTS) {
2919        for (size_t y=0 ; y<h ; y++) {
2920            uint32_t const * p = (uint32_t const *)vaddr + y*s;
2921            for (size_t x=0 ; x<w ; x++) {
2922                if (p[x] != 0xFF000000) return;
2923            }
2924        }
2925        ALOGE("*** we just took a black screenshot ***\n"
2926                "requested minz=%d, maxz=%d, layerStack=%d",
2927                minLayerZ, maxLayerZ, hw->getLayerStack());
2928        const LayerVector& layers( mDrawingState.layersSortedByZ );
2929        const size_t count = layers.size();
2930        for (size_t i=0 ; i<count ; ++i) {
2931            const sp<Layer>& layer(layers[i]);
2932            const Layer::State& state(layer->getDrawingState());
2933            const bool visible = (state.layerStack == hw->getLayerStack())
2934                                && (state.z >= minLayerZ && state.z <= maxLayerZ)
2935                                && (layer->isVisible());
2936            ALOGE("%c index=%zu, name=%s, layerStack=%d, z=%d, visible=%d, flags=%x, alpha=%x",
2937                    visible ? '+' : '-',
2938                            i, layer->getName().string(), state.layerStack, state.z,
2939                            layer->isVisible(), state.flags, state.alpha);
2940        }
2941    }
2942}
2943
2944// ---------------------------------------------------------------------------
2945
2946SurfaceFlinger::LayerVector::LayerVector() {
2947}
2948
2949SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2950    : SortedVector<sp<Layer> >(rhs) {
2951}
2952
2953int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2954    const void* rhs) const
2955{
2956    // sort layers per layer-stack, then by z-order and finally by sequence
2957    const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
2958    const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
2959
2960    uint32_t ls = l->getCurrentState().layerStack;
2961    uint32_t rs = r->getCurrentState().layerStack;
2962    if (ls != rs)
2963        return ls - rs;
2964
2965    uint32_t lz = l->getCurrentState().z;
2966    uint32_t rz = r->getCurrentState().z;
2967    if (lz != rz)
2968        return lz - rz;
2969
2970    return l->sequence - r->sequence;
2971}
2972
2973// ---------------------------------------------------------------------------
2974
2975SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2976    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2977}
2978
2979SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2980    : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) {
2981    viewport.makeInvalid();
2982    frame.makeInvalid();
2983}
2984
2985// ---------------------------------------------------------------------------
2986
2987}; // namespace android
2988
2989
2990#if defined(__gl_h_)
2991#error "don't include gl/gl.h in this file"
2992#endif
2993
2994#if defined(__gl2_h_)
2995#error "don't include gl2/gl2.h in this file"
2996#endif
2997