SurfaceFlinger.cpp revision ca08833d5ea99130797e10ad68a651b50e99da74
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/GuiConfig.h>
41#include <gui/IDisplayEventConnection.h>
42#include <gui/Surface.h>
43#include <gui/GraphicBufferAlloc.h>
44
45#include <ui/GraphicBufferAllocator.h>
46#include <ui/PixelFormat.h>
47#include <ui/UiConfig.h>
48
49#include <utils/misc.h>
50#include <utils/String8.h>
51#include <utils/String16.h>
52#include <utils/StopWatch.h>
53#include <utils/Trace.h>
54
55#include <private/android_filesystem_config.h>
56#include <private/gui/SyncFeatures.h>
57
58#include "clz.h"
59#include "DdmConnection.h"
60#include "DisplayDevice.h"
61#include "Client.h"
62#include "EventThread.h"
63#include "GLExtensions.h"
64#include "Layer.h"
65#include "LayerDim.h"
66#include "SurfaceFlinger.h"
67
68#include "DisplayHardware/FramebufferSurface.h"
69#include "DisplayHardware/HWComposer.h"
70#include "DisplayHardware/VirtualDisplaySurface.h"
71
72#define DISPLAY_COUNT       1
73
74EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
75
76namespace android {
77// ---------------------------------------------------------------------------
78
79const String16 sHardwareTest("android.permission.HARDWARE_TEST");
80const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
81const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
82const String16 sDump("android.permission.DUMP");
83
84// ---------------------------------------------------------------------------
85
86SurfaceFlinger::SurfaceFlinger()
87    :   BnSurfaceComposer(), Thread(false),
88        mTransactionFlags(0),
89        mTransactionPending(false),
90        mAnimTransactionPending(false),
91        mLayersRemoved(false),
92        mRepaintEverything(0),
93        mBootTime(systemTime()),
94        mVisibleRegionsDirty(false),
95        mHwWorkListDirty(false),
96        mAnimCompositionPending(false),
97        mDebugRegion(0),
98        mDebugDDMS(0),
99        mDebugDisableHWC(0),
100        mDebugDisableTransformHint(0),
101        mDebugInSwapBuffers(0),
102        mLastSwapBufferTime(0),
103        mDebugInTransaction(0),
104        mLastTransactionTime(0),
105        mBootFinished(false)
106{
107    ALOGI("SurfaceFlinger is starting");
108
109    // debugging stuff...
110    char value[PROPERTY_VALUE_MAX];
111
112    property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
113    mGpuToCpuSupported = !atoi(value);
114
115    property_get("debug.sf.showupdates", value, "0");
116    mDebugRegion = atoi(value);
117
118    property_get("debug.sf.ddms", value, "0");
119    mDebugDDMS = atoi(value);
120    if (mDebugDDMS) {
121        if (!startDdmConnection()) {
122            // start failed, and DDMS debugging not enabled
123            mDebugDDMS = 0;
124        }
125    }
126    ALOGI_IF(mDebugRegion, "showupdates enabled");
127    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
128}
129
130void SurfaceFlinger::onFirstRef()
131{
132    mEventQueue.init(this);
133
134    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
135
136    // Wait for the main thread to be done with its initialization
137    mReadyToRunBarrier.wait();
138}
139
140
141SurfaceFlinger::~SurfaceFlinger()
142{
143    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
144    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
145    eglTerminate(display);
146}
147
148void SurfaceFlinger::binderDied(const wp<IBinder>& who)
149{
150    // the window manager died on us. prepare its eulogy.
151
152    // restore initial conditions (default device unblank, etc)
153    initializeDisplays();
154
155    // restart the boot-animation
156    startBootAnim();
157}
158
159sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
160{
161    sp<ISurfaceComposerClient> bclient;
162    sp<Client> client(new Client(this));
163    status_t err = client->initCheck();
164    if (err == NO_ERROR) {
165        bclient = client;
166    }
167    return bclient;
168}
169
170sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
171        bool secure)
172{
173    class DisplayToken : public BBinder {
174        sp<SurfaceFlinger> flinger;
175        virtual ~DisplayToken() {
176             // no more references, this display must be terminated
177             Mutex::Autolock _l(flinger->mStateLock);
178             flinger->mCurrentState.displays.removeItem(this);
179             flinger->setTransactionFlags(eDisplayTransactionNeeded);
180         }
181     public:
182        DisplayToken(const sp<SurfaceFlinger>& flinger)
183            : flinger(flinger) {
184        }
185    };
186
187    sp<BBinder> token = new DisplayToken(this);
188
189    Mutex::Autolock _l(mStateLock);
190    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
191    info.displayName = displayName;
192    info.isSecure = secure;
193    mCurrentState.displays.add(token, info);
194
195    return token;
196}
197
198void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
199    ALOGW_IF(mBuiltinDisplays[type],
200            "Overwriting display token for display type %d", type);
201    mBuiltinDisplays[type] = new BBinder();
202    DisplayDeviceState info(type);
203    // All non-virtual displays are currently considered secure.
204    info.isSecure = true;
205    mCurrentState.displays.add(mBuiltinDisplays[type], info);
206}
207
208sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
209    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
210        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
211        return NULL;
212    }
213    return mBuiltinDisplays[id];
214}
215
216sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
217{
218    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
219    return gba;
220}
221
222void SurfaceFlinger::bootFinished()
223{
224    const nsecs_t now = systemTime();
225    const nsecs_t duration = now - mBootTime;
226    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
227    mBootFinished = true;
228
229    // wait patiently for the window manager death
230    const String16 name("window");
231    sp<IBinder> window(defaultServiceManager()->getService(name));
232    if (window != 0) {
233        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
234    }
235
236    // stop boot animation
237    // formerly we would just kill the process, but we now ask it to exit so it
238    // can choose where to stop the animation.
239    property_set("service.bootanim.exit", "1");
240}
241
242void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
243    class MessageDestroyGLTexture : public MessageBase {
244        GLuint texture;
245    public:
246        MessageDestroyGLTexture(GLuint texture)
247            : texture(texture) {
248        }
249        virtual bool handler() {
250            glDeleteTextures(1, &texture);
251            return true;
252        }
253    };
254    postMessageAsync(new MessageDestroyGLTexture(texture));
255}
256
257status_t SurfaceFlinger::selectConfigForAttribute(
258        EGLDisplay dpy,
259        EGLint const* attrs,
260        EGLint attribute, EGLint wanted,
261        EGLConfig* outConfig)
262{
263    EGLConfig config = NULL;
264    EGLint numConfigs = -1, n=0;
265    eglGetConfigs(dpy, NULL, 0, &numConfigs);
266    EGLConfig* const configs = new EGLConfig[numConfigs];
267    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
268
269    if (n) {
270        if (attribute != EGL_NONE) {
271            for (int i=0 ; i<n ; i++) {
272                EGLint value = 0;
273                eglGetConfigAttrib(dpy, configs[i], attribute, &value);
274                if (wanted == value) {
275                    *outConfig = configs[i];
276                    delete [] configs;
277                    return NO_ERROR;
278                }
279            }
280        } else {
281            // just pick the first one
282            *outConfig = configs[0];
283            delete [] configs;
284            return NO_ERROR;
285        }
286    }
287    delete [] configs;
288    return NAME_NOT_FOUND;
289}
290
291class EGLAttributeVector {
292    struct Attribute;
293    class Adder;
294    friend class Adder;
295    KeyedVector<Attribute, EGLint> mList;
296    struct Attribute {
297        Attribute() {};
298        Attribute(EGLint v) : v(v) { }
299        EGLint v;
300        bool operator < (const Attribute& other) const {
301            // this places EGL_NONE at the end
302            EGLint lhs(v);
303            EGLint rhs(other.v);
304            if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
305            if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
306            return lhs < rhs;
307        }
308    };
309    class Adder {
310        friend class EGLAttributeVector;
311        EGLAttributeVector& v;
312        EGLint attribute;
313        Adder(EGLAttributeVector& v, EGLint attribute)
314            : v(v), attribute(attribute) {
315        }
316    public:
317        void operator = (EGLint value) {
318            if (attribute != EGL_NONE) {
319                v.mList.add(attribute, value);
320            }
321        }
322        operator EGLint () const { return v.mList[attribute]; }
323    };
324public:
325    EGLAttributeVector() {
326        mList.add(EGL_NONE, EGL_NONE);
327    }
328    void remove(EGLint attribute) {
329        if (attribute != EGL_NONE) {
330            mList.removeItem(attribute);
331        }
332    }
333    Adder operator [] (EGLint attribute) {
334        return Adder(*this, attribute);
335    }
336    EGLint operator [] (EGLint attribute) const {
337       return mList[attribute];
338    }
339    // cast-operator to (EGLint const*)
340    operator EGLint const* () const { return &mList.keyAt(0).v; }
341};
342
343EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
344    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
345    // it is to be used with WIFI displays
346    EGLConfig config;
347    EGLint dummy;
348    status_t err;
349
350    EGLAttributeVector attribs;
351    attribs[EGL_SURFACE_TYPE]               = EGL_WINDOW_BIT;
352    attribs[EGL_RECORDABLE_ANDROID]         = EGL_TRUE;
353    attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
354    attribs[EGL_RED_SIZE]                   = 8;
355    attribs[EGL_GREEN_SIZE]                 = 8;
356    attribs[EGL_BLUE_SIZE]                  = 8;
357
358    err = selectConfigForAttribute(display, attribs, EGL_NONE, EGL_NONE, &config);
359    if (!err)
360        goto success;
361
362    // maybe we failed because of EGL_FRAMEBUFFER_TARGET_ANDROID
363    ALOGW("no suitable EGLConfig found, trying without EGL_FRAMEBUFFER_TARGET_ANDROID");
364    attribs.remove(EGL_FRAMEBUFFER_TARGET_ANDROID);
365    err = selectConfigForAttribute(display, attribs,
366            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
367    if (!err)
368        goto success;
369
370    // maybe we failed because of EGL_RECORDABLE_ANDROID
371    ALOGW("no suitable EGLConfig found, trying without EGL_RECORDABLE_ANDROID");
372    attribs.remove(EGL_RECORDABLE_ANDROID);
373    err = selectConfigForAttribute(display, attribs,
374            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
375    if (!err)
376        goto success;
377
378    // allow less than 24-bit color; the non-gpu-accelerated emulator only
379    // supports 16-bit color
380    ALOGW("no suitable EGLConfig found, trying with 16-bit color allowed");
381    attribs.remove(EGL_RED_SIZE);
382    attribs.remove(EGL_GREEN_SIZE);
383    attribs.remove(EGL_BLUE_SIZE);
384    err = selectConfigForAttribute(display, attribs,
385            EGL_NATIVE_VISUAL_ID, nativeVisualId, &config);
386    if (!err)
387        goto success;
388
389    // this EGL is too lame for Android
390    ALOGE("no suitable EGLConfig found, giving up");
391
392    return 0;
393
394success:
395    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy))
396        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
397    return config;
398}
399
400EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
401    // Also create our EGLContext
402    EGLint contextAttributes[] = {
403#ifdef EGL_IMG_context_priority
404#ifdef HAS_CONTEXT_PRIORITY
405#warning "using EGL_IMG_context_priority"
406            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
407#endif
408#endif
409            EGL_NONE, EGL_NONE
410    };
411    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
412    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
413    return ctxt;
414}
415
416void SurfaceFlinger::initializeGL(EGLDisplay display) {
417    GLExtensions& extensions(GLExtensions::getInstance());
418    extensions.initWithGLStrings(
419            glGetString(GL_VENDOR),
420            glGetString(GL_RENDERER),
421            glGetString(GL_VERSION),
422            glGetString(GL_EXTENSIONS),
423            eglQueryString(display, EGL_VENDOR),
424            eglQueryString(display, EGL_VERSION),
425            eglQueryString(display, EGL_EXTENSIONS));
426
427    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
428    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
429
430    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
431    glPixelStorei(GL_PACK_ALIGNMENT, 4);
432    glEnableClientState(GL_VERTEX_ARRAY);
433    glShadeModel(GL_FLAT);
434    glDisable(GL_DITHER);
435    glDisable(GL_CULL_FACE);
436
437    struct pack565 {
438        inline uint16_t operator() (int r, int g, int b) const {
439            return (r<<11)|(g<<5)|b;
440        }
441    } pack565;
442
443    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
444    glGenTextures(1, &mProtectedTexName);
445    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
446    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
447    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
448    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
449    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
450    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
451            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
452
453    // print some debugging info
454    EGLint r,g,b,a;
455    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
456    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
457    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
458    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
459    ALOGI("EGL informations:");
460    ALOGI("vendor    : %s", extensions.getEglVendor());
461    ALOGI("version   : %s", extensions.getEglVersion());
462    ALOGI("extensions: %s", extensions.getEglExtension());
463    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
464    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
465    ALOGI("OpenGL ES informations:");
466    ALOGI("vendor    : %s", extensions.getVendor());
467    ALOGI("renderer  : %s", extensions.getRenderer());
468    ALOGI("version   : %s", extensions.getVersion());
469    ALOGI("extensions: %s", extensions.getExtension());
470    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
471    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
472}
473
474status_t SurfaceFlinger::readyToRun()
475{
476    ALOGI(  "SurfaceFlinger's main thread ready to run. "
477            "Initializing graphics H/W...");
478
479    Mutex::Autolock _l(mStateLock);
480
481    // initialize EGL for the default display
482    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
483    eglInitialize(mEGLDisplay, NULL, NULL);
484
485    // Initialize the H/W composer object.  There may or may not be an
486    // actual hardware composer underneath.
487    mHwc = new HWComposer(this,
488            *static_cast<HWComposer::EventHandler *>(this));
489
490    // initialize the config and context
491    EGLint format = mHwc->getVisualID();
492    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
493    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
494
495    // figure out which format we got
496    eglGetConfigAttrib(mEGLDisplay, mEGLConfig,
497            EGL_NATIVE_VISUAL_ID, &mEGLNativeVisualId);
498
499    LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
500            "couldn't create EGLContext");
501
502    // initialize our non-virtual displays
503    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
504        DisplayDevice::DisplayType type((DisplayDevice::DisplayType)i);
505        // set-up the displays that are already connected
506        if (mHwc->isConnected(i) || type==DisplayDevice::DISPLAY_PRIMARY) {
507            // All non-virtual displays are currently considered secure.
508            bool isSecure = true;
509            createBuiltinDisplayLocked(type);
510            wp<IBinder> token = mBuiltinDisplays[i];
511
512            sp<DisplayDevice> hw = new DisplayDevice(this,
513                    type, allocateHwcDisplayId(type), isSecure, token,
514                    new FramebufferSurface(*mHwc, i),
515                    mEGLConfig);
516            if (i > DisplayDevice::DISPLAY_PRIMARY) {
517                // FIXME: currently we don't get blank/unblank requests
518                // for displays other than the main display, so we always
519                // assume a connected display is unblanked.
520                ALOGD("marking display %d as acquired/unblanked", i);
521                hw->acquireScreen();
522            }
523            mDisplays.add(token, hw);
524        }
525    }
526
527    //  we need a GL context current in a few places, when initializing
528    //  OpenGL ES (see below), or creating a layer,
529    //  or when a texture is (asynchronously) destroyed, and for that
530    //  we need a valid surface, so it's convenient to use the main display
531    //  for that.
532    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
533
534    //  initialize OpenGL ES
535    DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
536    initializeGL(mEGLDisplay);
537
538    // start the EventThread
539    mEventThread = new EventThread(this);
540    mEventQueue.setEventThread(mEventThread);
541
542    // initialize our drawing state
543    mDrawingState = mCurrentState;
544
545
546    // We're now ready to accept clients...
547    mReadyToRunBarrier.open();
548
549    // set initial conditions (e.g. unblank default device)
550    initializeDisplays();
551
552    // start boot animation
553    startBootAnim();
554
555    return NO_ERROR;
556}
557
558int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
559    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
560            type : mHwc->allocateDisplayId();
561}
562
563void SurfaceFlinger::startBootAnim() {
564    // start boot animation
565    property_set("service.bootanim.exit", "0");
566    property_set("ctl.start", "bootanim");
567}
568
569uint32_t SurfaceFlinger::getMaxTextureSize() const {
570    return mMaxTextureSize;
571}
572
573uint32_t SurfaceFlinger::getMaxViewportDims() const {
574    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
575            mMaxViewportDims[0] : mMaxViewportDims[1];
576}
577
578// ----------------------------------------------------------------------------
579
580bool SurfaceFlinger::authenticateSurfaceTexture(
581        const sp<IGraphicBufferProducer>& bufferProducer) const {
582    Mutex::Autolock _l(mStateLock);
583    sp<IBinder> surfaceTextureBinder(bufferProducer->asBinder());
584    return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
585}
586
587status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
588    int32_t type = NAME_NOT_FOUND;
589    for (int i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
590        if (display == mBuiltinDisplays[i]) {
591            type = i;
592            break;
593        }
594    }
595
596    if (type < 0) {
597        return type;
598    }
599
600    const HWComposer& hwc(getHwComposer());
601    float xdpi = hwc.getDpiX(type);
602    float ydpi = hwc.getDpiY(type);
603
604    // TODO: Not sure if display density should handled by SF any longer
605    class Density {
606        static int getDensityFromProperty(char const* propName) {
607            char property[PROPERTY_VALUE_MAX];
608            int density = 0;
609            if (property_get(propName, property, NULL) > 0) {
610                density = atoi(property);
611            }
612            return density;
613        }
614    public:
615        static int getEmuDensity() {
616            return getDensityFromProperty("qemu.sf.lcd_density"); }
617        static int getBuildDensity()  {
618            return getDensityFromProperty("ro.sf.lcd_density"); }
619    };
620
621    if (type == DisplayDevice::DISPLAY_PRIMARY) {
622        // The density of the device is provided by a build property
623        float density = Density::getBuildDensity() / 160.0f;
624        if (density == 0) {
625            // the build doesn't provide a density -- this is wrong!
626            // use xdpi instead
627            ALOGE("ro.sf.lcd_density must be defined as a build property");
628            density = xdpi / 160.0f;
629        }
630        if (Density::getEmuDensity()) {
631            // if "qemu.sf.lcd_density" is specified, it overrides everything
632            xdpi = ydpi = density = Density::getEmuDensity();
633            density /= 160.0f;
634        }
635        info->density = density;
636
637        // TODO: this needs to go away (currently needed only by webkit)
638        sp<const DisplayDevice> hw(getDefaultDisplayDevice());
639        info->orientation = hw->getOrientation();
640        getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
641    } else {
642        // TODO: where should this value come from?
643        static const int TV_DENSITY = 213;
644        info->density = TV_DENSITY / 160.0f;
645        info->orientation = 0;
646    }
647
648    info->w = hwc.getWidth(type);
649    info->h = hwc.getHeight(type);
650    info->xdpi = xdpi;
651    info->ydpi = ydpi;
652    info->fps = float(1e9 / hwc.getRefreshPeriod(type));
653
654    // All non-virtual displays are currently considered secure.
655    info->secure = true;
656
657    return NO_ERROR;
658}
659
660// ----------------------------------------------------------------------------
661
662sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
663    return mEventThread->createEventConnection();
664}
665
666// ----------------------------------------------------------------------------
667
668void SurfaceFlinger::waitForEvent() {
669    mEventQueue.waitMessage();
670}
671
672void SurfaceFlinger::signalTransaction() {
673    mEventQueue.invalidate();
674}
675
676void SurfaceFlinger::signalLayerUpdate() {
677    mEventQueue.invalidate();
678}
679
680void SurfaceFlinger::signalRefresh() {
681    mEventQueue.refresh();
682}
683
684status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
685        nsecs_t reltime, uint32_t flags) {
686    return mEventQueue.postMessage(msg, reltime);
687}
688
689status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
690        nsecs_t reltime, uint32_t flags) {
691    status_t res = mEventQueue.postMessage(msg, reltime);
692    if (res == NO_ERROR) {
693        msg->wait();
694    }
695    return res;
696}
697
698bool SurfaceFlinger::threadLoop() {
699    waitForEvent();
700    return true;
701}
702
703void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
704    if (mEventThread == NULL) {
705        // This is a temporary workaround for b/7145521.  A non-null pointer
706        // does not mean EventThread has finished initializing, so this
707        // is not a correct fix.
708        ALOGW("WARNING: EventThread not started, ignoring vsync");
709        return;
710    }
711    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
712        // we should only receive DisplayDevice::DisplayType from the vsync callback
713        mEventThread->onVSyncReceived(type, timestamp);
714    }
715}
716
717void SurfaceFlinger::onHotplugReceived(int type, bool connected) {
718    if (mEventThread == NULL) {
719        // This is a temporary workaround for b/7145521.  A non-null pointer
720        // does not mean EventThread has finished initializing, so this
721        // is not a correct fix.
722        ALOGW("WARNING: EventThread not started, ignoring hotplug");
723        return;
724    }
725
726    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
727        Mutex::Autolock _l(mStateLock);
728        if (connected) {
729            createBuiltinDisplayLocked((DisplayDevice::DisplayType)type);
730        } else {
731            mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
732            mBuiltinDisplays[type].clear();
733        }
734        setTransactionFlags(eDisplayTransactionNeeded);
735
736        // Defer EventThread notification until SF has updated mDisplays.
737    }
738}
739
740void SurfaceFlinger::eventControl(int disp, int event, int enabled) {
741    getHwComposer().eventControl(disp, event, enabled);
742}
743
744void SurfaceFlinger::onMessageReceived(int32_t what) {
745    ATRACE_CALL();
746    switch (what) {
747    case MessageQueue::INVALIDATE:
748        handleMessageTransaction();
749        handleMessageInvalidate();
750        signalRefresh();
751        break;
752    case MessageQueue::REFRESH:
753        handleMessageRefresh();
754        break;
755    }
756}
757
758void SurfaceFlinger::handleMessageTransaction() {
759    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
760    if (transactionFlags) {
761        handleTransaction(transactionFlags);
762    }
763}
764
765void SurfaceFlinger::handleMessageInvalidate() {
766    ATRACE_CALL();
767    handlePageFlip();
768}
769
770void SurfaceFlinger::handleMessageRefresh() {
771    ATRACE_CALL();
772    preComposition();
773    rebuildLayerStacks();
774    setUpHWComposer();
775    doDebugFlashRegions();
776    doComposition();
777    postComposition();
778}
779
780void SurfaceFlinger::doDebugFlashRegions()
781{
782    // is debugging enabled
783    if (CC_LIKELY(!mDebugRegion))
784        return;
785
786    const bool repaintEverything = mRepaintEverything;
787    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
788        const sp<DisplayDevice>& hw(mDisplays[dpy]);
789        if (hw->canDraw()) {
790            // transform the dirty region into this screen's coordinate space
791            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
792            if (!dirtyRegion.isEmpty()) {
793                // redraw the whole screen
794                doComposeSurfaces(hw, Region(hw->bounds()));
795
796                // and draw the dirty region
797                glDisable(GL_TEXTURE_EXTERNAL_OES);
798                glDisable(GL_TEXTURE_2D);
799                glDisable(GL_BLEND);
800                glColor4f(1, 0, 1, 1);
801                const int32_t height = hw->getHeight();
802                Region::const_iterator it = dirtyRegion.begin();
803                Region::const_iterator const end = dirtyRegion.end();
804                while (it != end) {
805                    const Rect& r = *it++;
806                    GLfloat vertices[][2] = {
807                            { (GLfloat) r.left,  (GLfloat) (height - r.top) },
808                            { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
809                            { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
810                            { (GLfloat) r.right, (GLfloat) (height - r.top) }
811                    };
812                    glVertexPointer(2, GL_FLOAT, 0, vertices);
813                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
814                }
815                hw->compositionComplete();
816                hw->swapBuffers(getHwComposer());
817            }
818        }
819    }
820
821    postFramebuffer();
822
823    if (mDebugRegion > 1) {
824        usleep(mDebugRegion * 1000);
825    }
826
827    HWComposer& hwc(getHwComposer());
828    if (hwc.initCheck() == NO_ERROR) {
829        status_t err = hwc.prepare();
830        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
831    }
832}
833
834void SurfaceFlinger::preComposition()
835{
836    bool needExtraInvalidate = false;
837    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
838    const size_t count = currentLayers.size();
839    for (size_t i=0 ; i<count ; i++) {
840        if (currentLayers[i]->onPreComposition()) {
841            needExtraInvalidate = true;
842        }
843    }
844    if (needExtraInvalidate) {
845        signalLayerUpdate();
846    }
847}
848
849void SurfaceFlinger::postComposition()
850{
851    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
852    const size_t count = currentLayers.size();
853    for (size_t i=0 ; i<count ; i++) {
854        currentLayers[i]->onPostComposition();
855    }
856
857    if (mAnimCompositionPending) {
858        mAnimCompositionPending = false;
859
860        const HWComposer& hwc = getHwComposer();
861        sp<Fence> presentFence = hwc.getDisplayFence(HWC_DISPLAY_PRIMARY);
862        if (presentFence->isValid()) {
863            mAnimFrameTracker.setActualPresentFence(presentFence);
864        } else {
865            // The HWC doesn't support present fences, so use the refresh
866            // timestamp instead.
867            nsecs_t presentTime = hwc.getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
868            mAnimFrameTracker.setActualPresentTime(presentTime);
869        }
870        mAnimFrameTracker.advanceFrame();
871    }
872}
873
874void SurfaceFlinger::rebuildLayerStacks() {
875    // rebuild the visible layer list per screen
876    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
877        ATRACE_CALL();
878        mVisibleRegionsDirty = false;
879        invalidateHwcGeometry();
880
881        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
882        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
883            Region opaqueRegion;
884            Region dirtyRegion;
885            Vector< sp<Layer> > layersSortedByZ;
886            const sp<DisplayDevice>& hw(mDisplays[dpy]);
887            const Transform& tr(hw->getTransform());
888            const Rect bounds(hw->getBounds());
889            if (hw->canDraw()) {
890                SurfaceFlinger::computeVisibleRegions(currentLayers,
891                        hw->getLayerStack(), dirtyRegion, opaqueRegion);
892
893                const size_t count = currentLayers.size();
894                for (size_t i=0 ; i<count ; i++) {
895                    const sp<Layer>& layer(currentLayers[i]);
896                    const Layer::State& s(layer->drawingState());
897                    if (s.layerStack == hw->getLayerStack()) {
898                        Region drawRegion(tr.transform(
899                                layer->visibleNonTransparentRegion));
900                        drawRegion.andSelf(bounds);
901                        if (!drawRegion.isEmpty()) {
902                            layersSortedByZ.add(layer);
903                        }
904                    }
905                }
906            }
907            hw->setVisibleLayersSortedByZ(layersSortedByZ);
908            hw->undefinedRegion.set(bounds);
909            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
910            hw->dirtyRegion.orSelf(dirtyRegion);
911        }
912    }
913}
914
915void SurfaceFlinger::setUpHWComposer() {
916    HWComposer& hwc(getHwComposer());
917    if (hwc.initCheck() == NO_ERROR) {
918        // build the h/w work list
919        if (CC_UNLIKELY(mHwWorkListDirty)) {
920            mHwWorkListDirty = false;
921            for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
922                sp<const DisplayDevice> hw(mDisplays[dpy]);
923                const int32_t id = hw->getHwcDisplayId();
924                if (id >= 0) {
925                    const Vector< sp<Layer> >& currentLayers(
926                        hw->getVisibleLayersSortedByZ());
927                    const size_t count = currentLayers.size();
928                    if (hwc.createWorkList(id, count) == NO_ERROR) {
929                        HWComposer::LayerListIterator cur = hwc.begin(id);
930                        const HWComposer::LayerListIterator end = hwc.end(id);
931                        for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
932                            const sp<Layer>& layer(currentLayers[i]);
933                            layer->setGeometry(hw, *cur);
934                            if (mDebugDisableHWC || mDebugRegion) {
935                                cur->setSkip(true);
936                            }
937                        }
938                    }
939                }
940            }
941        }
942
943        // set the per-frame data
944        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
945            sp<const DisplayDevice> hw(mDisplays[dpy]);
946            const int32_t id = hw->getHwcDisplayId();
947            if (id >= 0) {
948                const Vector< sp<Layer> >& currentLayers(
949                    hw->getVisibleLayersSortedByZ());
950                const size_t count = currentLayers.size();
951                HWComposer::LayerListIterator cur = hwc.begin(id);
952                const HWComposer::LayerListIterator end = hwc.end(id);
953                for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
954                    /*
955                     * update the per-frame h/w composer data for each layer
956                     * and build the transparent region of the FB
957                     */
958                    const sp<Layer>& layer(currentLayers[i]);
959                    layer->setPerFrameData(hw, *cur);
960                }
961            }
962        }
963
964        status_t err = hwc.prepare();
965        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
966    }
967}
968
969void SurfaceFlinger::doComposition() {
970    ATRACE_CALL();
971    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
972    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
973        const sp<DisplayDevice>& hw(mDisplays[dpy]);
974        if (hw->canDraw()) {
975            // transform the dirty region into this screen's coordinate space
976            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
977
978            // repaint the framebuffer (if needed)
979            doDisplayComposition(hw, dirtyRegion);
980
981            hw->dirtyRegion.clear();
982            hw->flip(hw->swapRegion);
983            hw->swapRegion.clear();
984        }
985        // inform the h/w that we're done compositing
986        hw->compositionComplete();
987    }
988    postFramebuffer();
989}
990
991void SurfaceFlinger::postFramebuffer()
992{
993    ATRACE_CALL();
994
995    const nsecs_t now = systemTime();
996    mDebugInSwapBuffers = now;
997
998    HWComposer& hwc(getHwComposer());
999    if (hwc.initCheck() == NO_ERROR) {
1000        if (!hwc.supportsFramebufferTarget()) {
1001            // EGL spec says:
1002            //   "surface must be bound to the calling thread's current context,
1003            //    for the current rendering API."
1004            DisplayDevice::makeCurrent(mEGLDisplay,
1005                    getDefaultDisplayDevice(), mEGLContext);
1006        }
1007        hwc.commit();
1008    }
1009
1010    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1011        sp<const DisplayDevice> hw(mDisplays[dpy]);
1012        const Vector< sp<Layer> >& currentLayers(hw->getVisibleLayersSortedByZ());
1013        hw->onSwapBuffersCompleted(hwc);
1014        const size_t count = currentLayers.size();
1015        int32_t id = hw->getHwcDisplayId();
1016        if (id >=0 && hwc.initCheck() == NO_ERROR) {
1017            HWComposer::LayerListIterator cur = hwc.begin(id);
1018            const HWComposer::LayerListIterator end = hwc.end(id);
1019            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
1020                currentLayers[i]->onLayerDisplayed(hw, &*cur);
1021            }
1022        } else {
1023            for (size_t i = 0; i < count; i++) {
1024                currentLayers[i]->onLayerDisplayed(hw, NULL);
1025            }
1026        }
1027    }
1028
1029    mLastSwapBufferTime = systemTime() - now;
1030    mDebugInSwapBuffers = 0;
1031}
1032
1033void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
1034{
1035    ATRACE_CALL();
1036
1037    Mutex::Autolock _l(mStateLock);
1038    const nsecs_t now = systemTime();
1039    mDebugInTransaction = now;
1040
1041    // Here we're guaranteed that some transaction flags are set
1042    // so we can call handleTransactionLocked() unconditionally.
1043    // We call getTransactionFlags(), which will also clear the flags,
1044    // with mStateLock held to guarantee that mCurrentState won't change
1045    // until the transaction is committed.
1046
1047    transactionFlags = getTransactionFlags(eTransactionMask);
1048    handleTransactionLocked(transactionFlags);
1049
1050    mLastTransactionTime = systemTime() - now;
1051    mDebugInTransaction = 0;
1052    invalidateHwcGeometry();
1053    // here the transaction has been committed
1054}
1055
1056void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
1057{
1058    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
1059    const size_t count = currentLayers.size();
1060
1061    /*
1062     * Traversal of the children
1063     * (perform the transaction for each of them if needed)
1064     */
1065
1066    if (transactionFlags & eTraversalNeeded) {
1067        for (size_t i=0 ; i<count ; i++) {
1068            const sp<Layer>& layer(currentLayers[i]);
1069            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
1070            if (!trFlags) continue;
1071
1072            const uint32_t flags = layer->doTransaction(0);
1073            if (flags & Layer::eVisibleRegion)
1074                mVisibleRegionsDirty = true;
1075        }
1076    }
1077
1078    /*
1079     * Perform display own transactions if needed
1080     */
1081
1082    if (transactionFlags & eDisplayTransactionNeeded) {
1083        // here we take advantage of Vector's copy-on-write semantics to
1084        // improve performance by skipping the transaction entirely when
1085        // know that the lists are identical
1086        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
1087        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
1088        if (!curr.isIdenticalTo(draw)) {
1089            mVisibleRegionsDirty = true;
1090            const size_t cc = curr.size();
1091                  size_t dc = draw.size();
1092
1093            // find the displays that were removed
1094            // (ie: in drawing state but not in current state)
1095            // also handle displays that changed
1096            // (ie: displays that are in both lists)
1097            for (size_t i=0 ; i<dc ; i++) {
1098                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
1099                if (j < 0) {
1100                    // in drawing state but not in current state
1101                    if (!draw[i].isMainDisplay()) {
1102                        // Call makeCurrent() on the primary display so we can
1103                        // be sure that nothing associated with this display
1104                        // is current.
1105                        const sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1106                        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1107                        mDisplays.removeItem(draw.keyAt(i));
1108                        getHwComposer().disconnectDisplay(draw[i].type);
1109                        if (draw[i].type < DisplayDevice::NUM_DISPLAY_TYPES)
1110                            mEventThread->onHotplugReceived(draw[i].type, false);
1111                    } else {
1112                        ALOGW("trying to remove the main display");
1113                    }
1114                } else {
1115                    // this display is in both lists. see if something changed.
1116                    const DisplayDeviceState& state(curr[j]);
1117                    const wp<IBinder>& display(curr.keyAt(j));
1118                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
1119                        // changing the surface is like destroying and
1120                        // recreating the DisplayDevice, so we just remove it
1121                        // from the drawing state, so that it get re-added
1122                        // below.
1123                        mDisplays.removeItem(display);
1124                        mDrawingState.displays.removeItemsAt(i);
1125                        dc--; i--;
1126                        // at this point we must loop to the next item
1127                        continue;
1128                    }
1129
1130                    const sp<DisplayDevice> disp(getDisplayDevice(display));
1131                    if (disp != NULL) {
1132                        if (state.layerStack != draw[i].layerStack) {
1133                            disp->setLayerStack(state.layerStack);
1134                        }
1135                        if ((state.orientation != draw[i].orientation)
1136                                || (state.viewport != draw[i].viewport)
1137                                || (state.frame != draw[i].frame))
1138                        {
1139                            disp->setProjection(state.orientation,
1140                                    state.viewport, state.frame);
1141                        }
1142                    }
1143                }
1144            }
1145
1146            // find displays that were added
1147            // (ie: in current state but not in drawing state)
1148            for (size_t i=0 ; i<cc ; i++) {
1149                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
1150                    const DisplayDeviceState& state(curr[i]);
1151
1152                    sp<DisplaySurface> dispSurface;
1153                    int32_t hwcDisplayId = allocateHwcDisplayId(state.type);
1154                    if (state.isVirtualDisplay()) {
1155                        if (state.surface != NULL) {
1156                            dispSurface = new VirtualDisplaySurface(
1157                                    *mHwc, hwcDisplayId, state.surface,
1158                                    state.displayName);
1159                        }
1160                    } else {
1161                        ALOGE_IF(state.surface!=NULL,
1162                                "adding a supported display, but rendering "
1163                                "surface is provided (%p), ignoring it",
1164                                state.surface.get());
1165
1166                        // for supported (by hwc) displays we provide our
1167                        // own rendering surface
1168                        dispSurface = new FramebufferSurface(*mHwc, state.type);
1169                    }
1170
1171                    const wp<IBinder>& display(curr.keyAt(i));
1172                    if (dispSurface != NULL) {
1173                        sp<DisplayDevice> hw = new DisplayDevice(this,
1174                                state.type, hwcDisplayId, state.isSecure,
1175                                display, dispSurface, mEGLConfig);
1176                        hw->setLayerStack(state.layerStack);
1177                        hw->setProjection(state.orientation,
1178                                state.viewport, state.frame);
1179                        hw->setDisplayName(state.displayName);
1180                        mDisplays.add(display, hw);
1181                        if (state.type < DisplayDevice::NUM_DISPLAY_TYPES)
1182                            mEventThread->onHotplugReceived(state.type, true);
1183                    }
1184                }
1185            }
1186        }
1187    }
1188
1189    if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
1190        // The transform hint might have changed for some layers
1191        // (either because a display has changed, or because a layer
1192        // as changed).
1193        //
1194        // Walk through all the layers in currentLayers,
1195        // and update their transform hint.
1196        //
1197        // If a layer is visible only on a single display, then that
1198        // display is used to calculate the hint, otherwise we use the
1199        // default display.
1200        //
1201        // NOTE: we do this here, rather than in rebuildLayerStacks() so that
1202        // the hint is set before we acquire a buffer from the surface texture.
1203        //
1204        // NOTE: layer transactions have taken place already, so we use their
1205        // drawing state. However, SurfaceFlinger's own transaction has not
1206        // happened yet, so we must use the current state layer list
1207        // (soon to become the drawing state list).
1208        //
1209        sp<const DisplayDevice> disp;
1210        uint32_t currentlayerStack = 0;
1211        for (size_t i=0; i<count; i++) {
1212            // NOTE: we rely on the fact that layers are sorted by
1213            // layerStack first (so we don't have to traverse the list
1214            // of displays for every layer).
1215            const sp<Layer>& layer(currentLayers[i]);
1216            uint32_t layerStack = layer->drawingState().layerStack;
1217            if (i==0 || currentlayerStack != layerStack) {
1218                currentlayerStack = layerStack;
1219                // figure out if this layerstack is mirrored
1220                // (more than one display) if so, pick the default display,
1221                // if not, pick the only display it's on.
1222                disp.clear();
1223                for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1224                    sp<const DisplayDevice> hw(mDisplays[dpy]);
1225                    if (hw->getLayerStack() == currentlayerStack) {
1226                        if (disp == NULL) {
1227                            disp = hw;
1228                        } else {
1229                            disp = getDefaultDisplayDevice();
1230                            break;
1231                        }
1232                    }
1233                }
1234            }
1235            if (disp != NULL) {
1236                // presumably this means this layer is using a layerStack
1237                // that is not visible on any display
1238                layer->updateTransformHint(disp);
1239            }
1240        }
1241    }
1242
1243
1244    /*
1245     * Perform our own transaction if needed
1246     */
1247
1248    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1249    if (currentLayers.size() > previousLayers.size()) {
1250        // layers have been added
1251        mVisibleRegionsDirty = true;
1252    }
1253
1254    // some layers might have been removed, so
1255    // we need to update the regions they're exposing.
1256    if (mLayersRemoved) {
1257        mLayersRemoved = false;
1258        mVisibleRegionsDirty = true;
1259        const size_t count = previousLayers.size();
1260        for (size_t i=0 ; i<count ; i++) {
1261            const sp<Layer>& layer(previousLayers[i]);
1262            if (currentLayers.indexOf(layer) < 0) {
1263                // this layer is not visible anymore
1264                // TODO: we could traverse the tree from front to back and
1265                //       compute the actual visible region
1266                // TODO: we could cache the transformed region
1267                const Layer::State& s(layer->drawingState());
1268                Region visibleReg = s.transform.transform(
1269                        Region(Rect(s.active.w, s.active.h)));
1270                invalidateLayerStack(s.layerStack, visibleReg);
1271            }
1272        }
1273    }
1274
1275    commitTransaction();
1276}
1277
1278void SurfaceFlinger::commitTransaction()
1279{
1280    if (!mLayersPendingRemoval.isEmpty()) {
1281        // Notify removed layers now that they can't be drawn from
1282        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1283            mLayersPendingRemoval[i]->onRemoved();
1284        }
1285        mLayersPendingRemoval.clear();
1286    }
1287
1288    // If this transaction is part of a window animation then the next frame
1289    // we composite should be considered an animation as well.
1290    mAnimCompositionPending = mAnimTransactionPending;
1291
1292    mDrawingState = mCurrentState;
1293    mTransactionPending = false;
1294    mAnimTransactionPending = false;
1295    mTransactionCV.broadcast();
1296}
1297
1298void SurfaceFlinger::computeVisibleRegions(
1299        const LayerVector& currentLayers, uint32_t layerStack,
1300        Region& outDirtyRegion, Region& outOpaqueRegion)
1301{
1302    ATRACE_CALL();
1303
1304    Region aboveOpaqueLayers;
1305    Region aboveCoveredLayers;
1306    Region dirty;
1307
1308    outDirtyRegion.clear();
1309
1310    size_t i = currentLayers.size();
1311    while (i--) {
1312        const sp<Layer>& layer = currentLayers[i];
1313
1314        // start with the whole surface at its current location
1315        const Layer::State& s(layer->drawingState());
1316
1317        // only consider the layers on the given layer stack
1318        if (s.layerStack != layerStack)
1319            continue;
1320
1321        /*
1322         * opaqueRegion: area of a surface that is fully opaque.
1323         */
1324        Region opaqueRegion;
1325
1326        /*
1327         * visibleRegion: area of a surface that is visible on screen
1328         * and not fully transparent. This is essentially the layer's
1329         * footprint minus the opaque regions above it.
1330         * Areas covered by a translucent surface are considered visible.
1331         */
1332        Region visibleRegion;
1333
1334        /*
1335         * coveredRegion: area of a surface that is covered by all
1336         * visible regions above it (which includes the translucent areas).
1337         */
1338        Region coveredRegion;
1339
1340        /*
1341         * transparentRegion: area of a surface that is hinted to be completely
1342         * transparent. This is only used to tell when the layer has no visible
1343         * non-transparent regions and can be removed from the layer list. It
1344         * does not affect the visibleRegion of this layer or any layers
1345         * beneath it. The hint may not be correct if apps don't respect the
1346         * SurfaceView restrictions (which, sadly, some don't).
1347         */
1348        Region transparentRegion;
1349
1350
1351        // handle hidden surfaces by setting the visible region to empty
1352        if (CC_LIKELY(layer->isVisible())) {
1353            const bool translucent = !layer->isOpaque();
1354            Rect bounds(s.transform.transform(layer->computeBounds()));
1355            visibleRegion.set(bounds);
1356            if (!visibleRegion.isEmpty()) {
1357                // Remove the transparent area from the visible region
1358                if (translucent) {
1359                    const Transform tr(s.transform);
1360                    if (tr.transformed()) {
1361                        if (tr.preserveRects()) {
1362                            // transform the transparent region
1363                            transparentRegion = tr.transform(s.transparentRegion);
1364                        } else {
1365                            // transformation too complex, can't do the
1366                            // transparent region optimization.
1367                            transparentRegion.clear();
1368                        }
1369                    } else {
1370                        transparentRegion = s.transparentRegion;
1371                    }
1372                }
1373
1374                // compute the opaque region
1375                const int32_t layerOrientation = s.transform.getOrientation();
1376                if (s.alpha==255 && !translucent &&
1377                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1378                    // the opaque region is the layer's footprint
1379                    opaqueRegion = visibleRegion;
1380                }
1381            }
1382        }
1383
1384        // Clip the covered region to the visible region
1385        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1386
1387        // Update aboveCoveredLayers for next (lower) layer
1388        aboveCoveredLayers.orSelf(visibleRegion);
1389
1390        // subtract the opaque region covered by the layers above us
1391        visibleRegion.subtractSelf(aboveOpaqueLayers);
1392
1393        // compute this layer's dirty region
1394        if (layer->contentDirty) {
1395            // we need to invalidate the whole region
1396            dirty = visibleRegion;
1397            // as well, as the old visible region
1398            dirty.orSelf(layer->visibleRegion);
1399            layer->contentDirty = false;
1400        } else {
1401            /* compute the exposed region:
1402             *   the exposed region consists of two components:
1403             *   1) what's VISIBLE now and was COVERED before
1404             *   2) what's EXPOSED now less what was EXPOSED before
1405             *
1406             * note that (1) is conservative, we start with the whole
1407             * visible region but only keep what used to be covered by
1408             * something -- which mean it may have been exposed.
1409             *
1410             * (2) handles areas that were not covered by anything but got
1411             * exposed because of a resize.
1412             */
1413            const Region newExposed = visibleRegion - coveredRegion;
1414            const Region oldVisibleRegion = layer->visibleRegion;
1415            const Region oldCoveredRegion = layer->coveredRegion;
1416            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1417            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1418        }
1419        dirty.subtractSelf(aboveOpaqueLayers);
1420
1421        // accumulate to the screen dirty region
1422        outDirtyRegion.orSelf(dirty);
1423
1424        // Update aboveOpaqueLayers for next (lower) layer
1425        aboveOpaqueLayers.orSelf(opaqueRegion);
1426
1427        // Store the visible region in screen space
1428        layer->setVisibleRegion(visibleRegion);
1429        layer->setCoveredRegion(coveredRegion);
1430        layer->setVisibleNonTransparentRegion(
1431                visibleRegion.subtract(transparentRegion));
1432    }
1433
1434    outOpaqueRegion = aboveOpaqueLayers;
1435}
1436
1437void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1438        const Region& dirty) {
1439    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1440        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1441        if (hw->getLayerStack() == layerStack) {
1442            hw->dirtyRegion.orSelf(dirty);
1443        }
1444    }
1445}
1446
1447void SurfaceFlinger::handlePageFlip()
1448{
1449    Region dirtyRegion;
1450
1451    bool visibleRegions = false;
1452    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1453    const size_t count = currentLayers.size();
1454    for (size_t i=0 ; i<count ; i++) {
1455        const sp<Layer>& layer(currentLayers[i]);
1456        const Region dirty(layer->latchBuffer(visibleRegions));
1457        const Layer::State& s(layer->drawingState());
1458        invalidateLayerStack(s.layerStack, dirty);
1459    }
1460
1461    mVisibleRegionsDirty |= visibleRegions;
1462}
1463
1464void SurfaceFlinger::invalidateHwcGeometry()
1465{
1466    mHwWorkListDirty = true;
1467}
1468
1469
1470void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1471        const Region& inDirtyRegion)
1472{
1473    Region dirtyRegion(inDirtyRegion);
1474
1475    // compute the invalid region
1476    hw->swapRegion.orSelf(dirtyRegion);
1477
1478    uint32_t flags = hw->getFlags();
1479    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1480        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1481        // takes a rectangle, we must make sure to update that whole
1482        // rectangle in that case
1483        dirtyRegion.set(hw->swapRegion.bounds());
1484    } else {
1485        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1486            // We need to redraw the rectangle that will be updated
1487            // (pushed to the framebuffer).
1488            // This is needed because PARTIAL_UPDATES only takes one
1489            // rectangle instead of a region (see DisplayDevice::flip())
1490            dirtyRegion.set(hw->swapRegion.bounds());
1491        } else {
1492            // we need to redraw everything (the whole screen)
1493            dirtyRegion.set(hw->bounds());
1494            hw->swapRegion = dirtyRegion;
1495        }
1496    }
1497
1498    doComposeSurfaces(hw, dirtyRegion);
1499
1500    // update the swap region and clear the dirty region
1501    hw->swapRegion.orSelf(dirtyRegion);
1502
1503    // swap buffers (presentation)
1504    hw->swapBuffers(getHwComposer());
1505}
1506
1507void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1508{
1509    const int32_t id = hw->getHwcDisplayId();
1510    HWComposer& hwc(getHwComposer());
1511    HWComposer::LayerListIterator cur = hwc.begin(id);
1512    const HWComposer::LayerListIterator end = hwc.end(id);
1513
1514    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1515    if (hasGlesComposition) {
1516        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1517
1518        // set the frame buffer
1519        glMatrixMode(GL_MODELVIEW);
1520        glLoadIdentity();
1521
1522        // Never touch the framebuffer if we don't have any framebuffer layers
1523        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1524        if (hasHwcComposition) {
1525            // when using overlays, we assume a fully transparent framebuffer
1526            // NOTE: we could reduce how much we need to clear, for instance
1527            // remove where there are opaque FB layers. however, on some
1528            // GPUs doing a "clean slate" glClear might be more efficient.
1529            // We'll revisit later if needed.
1530            glClearColor(0, 0, 0, 0);
1531            glClear(GL_COLOR_BUFFER_BIT);
1532        } else {
1533            // we start with the whole screen area
1534            const Region bounds(hw->getBounds());
1535
1536            // we remove the scissor part
1537            // we're left with the letterbox region
1538            // (common case is that letterbox ends-up being empty)
1539            const Region letterbox(bounds.subtract(hw->getScissor()));
1540
1541            // compute the area to clear
1542            Region region(hw->undefinedRegion.merge(letterbox));
1543
1544            // but limit it to the dirty region
1545            region.andSelf(dirty);
1546
1547            // screen is already cleared here
1548            if (!region.isEmpty()) {
1549                // can happen with SurfaceView
1550                drawWormhole(hw, region);
1551            }
1552        }
1553
1554        if (hw->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
1555            // just to be on the safe side, we don't set the
1556            // scissor on the main display. It should never be needed
1557            // anyways (though in theory it could since the API allows it).
1558            const Rect& bounds(hw->getBounds());
1559            const Rect& scissor(hw->getScissor());
1560            if (scissor != bounds) {
1561                // scissor doesn't match the screen's dimensions, so we
1562                // need to clear everything outside of it and enable
1563                // the GL scissor so we don't draw anything where we shouldn't
1564                const GLint height = hw->getHeight();
1565                glScissor(scissor.left, height - scissor.bottom,
1566                        scissor.getWidth(), scissor.getHeight());
1567                // enable scissor for this frame
1568                glEnable(GL_SCISSOR_TEST);
1569            }
1570        }
1571    }
1572
1573    /*
1574     * and then, render the layers targeted at the framebuffer
1575     */
1576
1577    const Vector< sp<Layer> >& layers(hw->getVisibleLayersSortedByZ());
1578    const size_t count = layers.size();
1579    const Transform& tr = hw->getTransform();
1580    if (cur != end) {
1581        // we're using h/w composer
1582        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1583            const sp<Layer>& layer(layers[i]);
1584            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1585            if (!clip.isEmpty()) {
1586                switch (cur->getCompositionType()) {
1587                    case HWC_OVERLAY: {
1588                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1589                                && i
1590                                && layer->isOpaque()
1591                                && hasGlesComposition) {
1592                            // never clear the very first layer since we're
1593                            // guaranteed the FB is already cleared
1594                            layer->clearWithOpenGL(hw, clip);
1595                        }
1596                        break;
1597                    }
1598                    case HWC_FRAMEBUFFER: {
1599                        layer->draw(hw, clip);
1600                        break;
1601                    }
1602                    case HWC_FRAMEBUFFER_TARGET: {
1603                        // this should not happen as the iterator shouldn't
1604                        // let us get there.
1605                        ALOGW("HWC_FRAMEBUFFER_TARGET found in hwc list (index=%d)", i);
1606                        break;
1607                    }
1608                }
1609            }
1610            layer->setAcquireFence(hw, *cur);
1611        }
1612    } else {
1613        // we're not using h/w composer
1614        for (size_t i=0 ; i<count ; ++i) {
1615            const sp<Layer>& layer(layers[i]);
1616            const Region clip(dirty.intersect(
1617                    tr.transform(layer->visibleRegion)));
1618            if (!clip.isEmpty()) {
1619                layer->draw(hw, clip);
1620            }
1621        }
1622    }
1623
1624    // disable scissor at the end of the frame
1625    glDisable(GL_SCISSOR_TEST);
1626}
1627
1628void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1629        const Region& region) const
1630{
1631    glDisable(GL_TEXTURE_EXTERNAL_OES);
1632    glDisable(GL_TEXTURE_2D);
1633    glDisable(GL_BLEND);
1634    glColor4f(0,0,0,0);
1635
1636    const int32_t height = hw->getHeight();
1637    Region::const_iterator it = region.begin();
1638    Region::const_iterator const end = region.end();
1639    while (it != end) {
1640        const Rect& r = *it++;
1641        GLfloat vertices[][2] = {
1642                { (GLfloat) r.left,  (GLfloat) (height - r.top) },
1643                { (GLfloat) r.left,  (GLfloat) (height - r.bottom) },
1644                { (GLfloat) r.right, (GLfloat) (height - r.bottom) },
1645                { (GLfloat) r.right, (GLfloat) (height - r.top) }
1646        };
1647        glVertexPointer(2, GL_FLOAT, 0, vertices);
1648        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1649    }
1650}
1651
1652void SurfaceFlinger::addClientLayer(const sp<Client>& client,
1653        const sp<IBinder>& handle,
1654        const sp<IGraphicBufferProducer>& gbc,
1655        const sp<Layer>& lbc)
1656{
1657    // attach this layer to the client
1658    client->attachLayer(handle, lbc);
1659
1660    // add this layer to the current state list
1661    Mutex::Autolock _l(mStateLock);
1662    mCurrentState.layersSortedByZ.add(lbc);
1663    mGraphicBufferProducerList.add(gbc->asBinder());
1664}
1665
1666status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer)
1667{
1668    Mutex::Autolock _l(mStateLock);
1669    ssize_t index = mCurrentState.layersSortedByZ.remove(layer);
1670    if (index >= 0) {
1671        mLayersPendingRemoval.push(layer);
1672        mLayersRemoved = true;
1673        setTransactionFlags(eTransactionNeeded);
1674        return NO_ERROR;
1675    }
1676    return status_t(index);
1677}
1678
1679uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1680{
1681    return android_atomic_release_load(&mTransactionFlags);
1682}
1683
1684uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1685{
1686    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1687}
1688
1689uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1690{
1691    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1692    if ((old & flags)==0) { // wake the server up
1693        signalTransaction();
1694    }
1695    return old;
1696}
1697
1698void SurfaceFlinger::setTransactionState(
1699        const Vector<ComposerState>& state,
1700        const Vector<DisplayState>& displays,
1701        uint32_t flags)
1702{
1703    ATRACE_CALL();
1704    Mutex::Autolock _l(mStateLock);
1705    uint32_t transactionFlags = 0;
1706
1707    if (flags & eAnimation) {
1708        // For window updates that are part of an animation we must wait for
1709        // previous animation "frames" to be handled.
1710        while (mAnimTransactionPending) {
1711            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1712            if (CC_UNLIKELY(err != NO_ERROR)) {
1713                // just in case something goes wrong in SF, return to the
1714                // caller after a few seconds.
1715                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
1716                        "waiting for previous animation frame");
1717                mAnimTransactionPending = false;
1718                break;
1719            }
1720        }
1721    }
1722
1723    size_t count = displays.size();
1724    for (size_t i=0 ; i<count ; i++) {
1725        const DisplayState& s(displays[i]);
1726        transactionFlags |= setDisplayStateLocked(s);
1727    }
1728
1729    count = state.size();
1730    for (size_t i=0 ; i<count ; i++) {
1731        const ComposerState& s(state[i]);
1732        // Here we need to check that the interface we're given is indeed
1733        // one of our own. A malicious client could give us a NULL
1734        // IInterface, or one of its own or even one of our own but a
1735        // different type. All these situations would cause us to crash.
1736        //
1737        // NOTE: it would be better to use RTTI as we could directly check
1738        // that we have a Client*. however, RTTI is disabled in Android.
1739        if (s.client != NULL) {
1740            sp<IBinder> binder = s.client->asBinder();
1741            if (binder != NULL) {
1742                String16 desc(binder->getInterfaceDescriptor());
1743                if (desc == ISurfaceComposerClient::descriptor) {
1744                    sp<Client> client( static_cast<Client *>(s.client.get()) );
1745                    transactionFlags |= setClientStateLocked(client, s.state);
1746                }
1747            }
1748        }
1749    }
1750
1751    if (transactionFlags) {
1752        // this triggers the transaction
1753        setTransactionFlags(transactionFlags);
1754
1755        // if this is a synchronous transaction, wait for it to take effect
1756        // before returning.
1757        if (flags & eSynchronous) {
1758            mTransactionPending = true;
1759        }
1760        if (flags & eAnimation) {
1761            mAnimTransactionPending = true;
1762        }
1763        while (mTransactionPending) {
1764            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1765            if (CC_UNLIKELY(err != NO_ERROR)) {
1766                // just in case something goes wrong in SF, return to the
1767                // called after a few seconds.
1768                ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
1769                mTransactionPending = false;
1770                break;
1771            }
1772        }
1773    }
1774}
1775
1776uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1777{
1778    ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
1779    if (dpyIdx < 0)
1780        return 0;
1781
1782    uint32_t flags = 0;
1783    DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
1784    if (disp.isValid()) {
1785        const uint32_t what = s.what;
1786        if (what & DisplayState::eSurfaceChanged) {
1787            if (disp.surface->asBinder() != s.surface->asBinder()) {
1788                disp.surface = s.surface;
1789                flags |= eDisplayTransactionNeeded;
1790            }
1791        }
1792        if (what & DisplayState::eLayerStackChanged) {
1793            if (disp.layerStack != s.layerStack) {
1794                disp.layerStack = s.layerStack;
1795                flags |= eDisplayTransactionNeeded;
1796            }
1797        }
1798        if (what & DisplayState::eDisplayProjectionChanged) {
1799            if (disp.orientation != s.orientation) {
1800                disp.orientation = s.orientation;
1801                flags |= eDisplayTransactionNeeded;
1802            }
1803            if (disp.frame != s.frame) {
1804                disp.frame = s.frame;
1805                flags |= eDisplayTransactionNeeded;
1806            }
1807            if (disp.viewport != s.viewport) {
1808                disp.viewport = s.viewport;
1809                flags |= eDisplayTransactionNeeded;
1810            }
1811        }
1812    }
1813    return flags;
1814}
1815
1816uint32_t SurfaceFlinger::setClientStateLocked(
1817        const sp<Client>& client,
1818        const layer_state_t& s)
1819{
1820    uint32_t flags = 0;
1821    sp<Layer> layer(client->getLayerUser(s.surface));
1822    if (layer != 0) {
1823        const uint32_t what = s.what;
1824        if (what & layer_state_t::ePositionChanged) {
1825            if (layer->setPosition(s.x, s.y))
1826                flags |= eTraversalNeeded;
1827        }
1828        if (what & layer_state_t::eLayerChanged) {
1829            // NOTE: index needs to be calculated before we update the state
1830            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1831            if (layer->setLayer(s.z)) {
1832                mCurrentState.layersSortedByZ.removeAt(idx);
1833                mCurrentState.layersSortedByZ.add(layer);
1834                // we need traversal (state changed)
1835                // AND transaction (list changed)
1836                flags |= eTransactionNeeded|eTraversalNeeded;
1837            }
1838        }
1839        if (what & layer_state_t::eSizeChanged) {
1840            if (layer->setSize(s.w, s.h)) {
1841                flags |= eTraversalNeeded;
1842            }
1843        }
1844        if (what & layer_state_t::eAlphaChanged) {
1845            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1846                flags |= eTraversalNeeded;
1847        }
1848        if (what & layer_state_t::eMatrixChanged) {
1849            if (layer->setMatrix(s.matrix))
1850                flags |= eTraversalNeeded;
1851        }
1852        if (what & layer_state_t::eTransparentRegionChanged) {
1853            if (layer->setTransparentRegionHint(s.transparentRegion))
1854                flags |= eTraversalNeeded;
1855        }
1856        if (what & layer_state_t::eVisibilityChanged) {
1857            if (layer->setFlags(s.flags, s.mask))
1858                flags |= eTraversalNeeded;
1859        }
1860        if (what & layer_state_t::eCropChanged) {
1861            if (layer->setCrop(s.crop))
1862                flags |= eTraversalNeeded;
1863        }
1864        if (what & layer_state_t::eLayerStackChanged) {
1865            // NOTE: index needs to be calculated before we update the state
1866            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1867            if (layer->setLayerStack(s.layerStack)) {
1868                mCurrentState.layersSortedByZ.removeAt(idx);
1869                mCurrentState.layersSortedByZ.add(layer);
1870                // we need traversal (state changed)
1871                // AND transaction (list changed)
1872                flags |= eTransactionNeeded|eTraversalNeeded;
1873            }
1874        }
1875    }
1876    return flags;
1877}
1878
1879status_t SurfaceFlinger::createLayer(
1880        const String8& name,
1881        const sp<Client>& client,
1882        uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
1883        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp)
1884{
1885    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1886    if (int32_t(w|h) < 0) {
1887        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1888                int(w), int(h));
1889        return BAD_VALUE;
1890    }
1891
1892    status_t result = NO_ERROR;
1893
1894    sp<Layer> layer;
1895
1896    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1897        case ISurfaceComposerClient::eFXSurfaceNormal:
1898            result = createNormalLayer(client,
1899                    name, w, h, flags, format,
1900                    handle, gbp, &layer);
1901            break;
1902        case ISurfaceComposerClient::eFXSurfaceDim:
1903            result = createDimLayer(client,
1904                    name, w, h, flags,
1905                    handle, gbp, &layer);
1906            break;
1907        default:
1908            result = BAD_VALUE;
1909            break;
1910    }
1911
1912    if (result == NO_ERROR) {
1913        addClientLayer(client, *handle, *gbp, layer);
1914        setTransactionFlags(eTransactionNeeded);
1915    }
1916    return result;
1917}
1918
1919status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
1920        const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
1921        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1922{
1923    // initialize the surfaces
1924    switch (format) {
1925    case PIXEL_FORMAT_TRANSPARENT:
1926    case PIXEL_FORMAT_TRANSLUCENT:
1927        format = PIXEL_FORMAT_RGBA_8888;
1928        break;
1929    case PIXEL_FORMAT_OPAQUE:
1930#ifdef NO_RGBX_8888
1931        format = PIXEL_FORMAT_RGB_565;
1932#else
1933        format = PIXEL_FORMAT_RGBX_8888;
1934#endif
1935        break;
1936    }
1937
1938#ifdef NO_RGBX_8888
1939    if (format == PIXEL_FORMAT_RGBX_8888)
1940        format = PIXEL_FORMAT_RGBA_8888;
1941#endif
1942
1943    *outLayer = new Layer(this, client, name, w, h, flags);
1944    status_t err = (*outLayer)->setBuffers(w, h, format, flags);
1945    if (err == NO_ERROR) {
1946        *handle = (*outLayer)->getHandle();
1947        *gbp = (*outLayer)->getBufferQueue();
1948    }
1949
1950    ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
1951    return err;
1952}
1953
1954status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
1955        const String8& name, uint32_t w, uint32_t h, uint32_t flags,
1956        sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
1957{
1958    *outLayer = new LayerDim(this, client, name, w, h, flags);
1959    *handle = (*outLayer)->getHandle();
1960    *gbp = (*outLayer)->getBufferQueue();
1961    return NO_ERROR;
1962}
1963
1964status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
1965{
1966    // called by the window manager when it wants to remove a Layer
1967    status_t err = NO_ERROR;
1968    sp<Layer> l(client->getLayerUser(handle));
1969    if (l != NULL) {
1970        err = removeLayer(l);
1971        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1972                "error removing layer=%p (%s)", l.get(), strerror(-err));
1973    }
1974    return err;
1975}
1976
1977status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
1978{
1979    // called by ~LayerCleaner() when all references to the IBinder (handle)
1980    // are gone
1981    status_t err = NO_ERROR;
1982    sp<Layer> l(layer.promote());
1983    if (l != NULL) {
1984        err = removeLayer(l);
1985        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1986                "error removing layer=%p (%s)", l.get(), strerror(-err));
1987    }
1988    return err;
1989}
1990
1991// ---------------------------------------------------------------------------
1992
1993void SurfaceFlinger::onInitializeDisplays() {
1994    // reset screen orientation and use primary layer stack
1995    Vector<ComposerState> state;
1996    Vector<DisplayState> displays;
1997    DisplayState d;
1998    d.what = DisplayState::eDisplayProjectionChanged |
1999             DisplayState::eLayerStackChanged;
2000    d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
2001    d.layerStack = 0;
2002    d.orientation = DisplayState::eOrientationDefault;
2003    d.frame.makeInvalid();
2004    d.viewport.makeInvalid();
2005    displays.add(d);
2006    setTransactionState(state, displays, 0);
2007    onScreenAcquired(getDefaultDisplayDevice());
2008}
2009
2010void SurfaceFlinger::initializeDisplays() {
2011    class MessageScreenInitialized : public MessageBase {
2012        SurfaceFlinger* flinger;
2013    public:
2014        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
2015        virtual bool handler() {
2016            flinger->onInitializeDisplays();
2017            return true;
2018        }
2019    };
2020    sp<MessageBase> msg = new MessageScreenInitialized(this);
2021    postMessageAsync(msg);  // we may be called from main thread, use async message
2022}
2023
2024
2025void SurfaceFlinger::onScreenAcquired(const sp<const DisplayDevice>& hw) {
2026    ALOGD("Screen acquired, type=%d flinger=%p", hw->getDisplayType(), this);
2027    if (hw->isScreenAcquired()) {
2028        // this is expected, e.g. when power manager wakes up during boot
2029        ALOGD(" screen was previously acquired");
2030        return;
2031    }
2032
2033    hw->acquireScreen();
2034    int32_t type = hw->getDisplayType();
2035    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2036        // built-in display, tell the HWC
2037        getHwComposer().acquire(type);
2038
2039        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2040            // FIXME: eventthread only knows about the main display right now
2041            mEventThread->onScreenAcquired();
2042        }
2043    }
2044    mVisibleRegionsDirty = true;
2045    repaintEverything();
2046}
2047
2048void SurfaceFlinger::onScreenReleased(const sp<const DisplayDevice>& hw) {
2049    ALOGD("Screen released, type=%d flinger=%p", hw->getDisplayType(), this);
2050    if (!hw->isScreenAcquired()) {
2051        ALOGD(" screen was previously released");
2052        return;
2053    }
2054
2055    hw->releaseScreen();
2056    int32_t type = hw->getDisplayType();
2057    if (type < DisplayDevice::NUM_DISPLAY_TYPES) {
2058        if (type == DisplayDevice::DISPLAY_PRIMARY) {
2059            // FIXME: eventthread only knows about the main display right now
2060            mEventThread->onScreenReleased();
2061        }
2062
2063        // built-in display, tell the HWC
2064        getHwComposer().release(type);
2065    }
2066    mVisibleRegionsDirty = true;
2067    // from this point on, SF will stop drawing on this display
2068}
2069
2070void SurfaceFlinger::unblank(const sp<IBinder>& display) {
2071    class MessageScreenAcquired : public MessageBase {
2072        SurfaceFlinger& mFlinger;
2073        sp<IBinder> mDisplay;
2074    public:
2075        MessageScreenAcquired(SurfaceFlinger& flinger,
2076                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2077        virtual bool handler() {
2078            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2079            if (hw == NULL) {
2080                ALOGE("Attempt to unblank null display %p", mDisplay.get());
2081            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2082                ALOGW("Attempt to unblank virtual display");
2083            } else {
2084                mFlinger.onScreenAcquired(hw);
2085            }
2086            return true;
2087        }
2088    };
2089    sp<MessageBase> msg = new MessageScreenAcquired(*this, display);
2090    postMessageSync(msg);
2091}
2092
2093void SurfaceFlinger::blank(const sp<IBinder>& display) {
2094    class MessageScreenReleased : public MessageBase {
2095        SurfaceFlinger& mFlinger;
2096        sp<IBinder> mDisplay;
2097    public:
2098        MessageScreenReleased(SurfaceFlinger& flinger,
2099                const sp<IBinder>& disp) : mFlinger(flinger), mDisplay(disp) { }
2100        virtual bool handler() {
2101            const sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
2102            if (hw == NULL) {
2103                ALOGE("Attempt to blank null display %p", mDisplay.get());
2104            } else if (hw->getDisplayType() >= DisplayDevice::NUM_DISPLAY_TYPES) {
2105                ALOGW("Attempt to blank virtual display");
2106            } else {
2107                mFlinger.onScreenReleased(hw);
2108            }
2109            return true;
2110        }
2111    };
2112    sp<MessageBase> msg = new MessageScreenReleased(*this, display);
2113    postMessageSync(msg);
2114}
2115
2116// ---------------------------------------------------------------------------
2117
2118status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
2119{
2120    const size_t SIZE = 4096;
2121    char buffer[SIZE];
2122    String8 result;
2123
2124    if (!PermissionCache::checkCallingPermission(sDump)) {
2125        snprintf(buffer, SIZE, "Permission Denial: "
2126                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
2127                IPCThreadState::self()->getCallingPid(),
2128                IPCThreadState::self()->getCallingUid());
2129        result.append(buffer);
2130    } else {
2131        // Try to get the main lock, but don't insist if we can't
2132        // (this would indicate SF is stuck, but we want to be able to
2133        // print something in dumpsys).
2134        int retry = 3;
2135        while (mStateLock.tryLock()<0 && --retry>=0) {
2136            usleep(1000000);
2137        }
2138        const bool locked(retry >= 0);
2139        if (!locked) {
2140            snprintf(buffer, SIZE,
2141                    "SurfaceFlinger appears to be unresponsive, "
2142                    "dumping anyways (no locks held)\n");
2143            result.append(buffer);
2144        }
2145
2146        bool dumpAll = true;
2147        size_t index = 0;
2148        size_t numArgs = args.size();
2149        if (numArgs) {
2150            if ((index < numArgs) &&
2151                    (args[index] == String16("--list"))) {
2152                index++;
2153                listLayersLocked(args, index, result, buffer, SIZE);
2154                dumpAll = false;
2155            }
2156
2157            if ((index < numArgs) &&
2158                    (args[index] == String16("--latency"))) {
2159                index++;
2160                dumpStatsLocked(args, index, result, buffer, SIZE);
2161                dumpAll = false;
2162            }
2163
2164            if ((index < numArgs) &&
2165                    (args[index] == String16("--latency-clear"))) {
2166                index++;
2167                clearStatsLocked(args, index, result, buffer, SIZE);
2168                dumpAll = false;
2169            }
2170        }
2171
2172        if (dumpAll) {
2173            dumpAllLocked(result, buffer, SIZE);
2174        }
2175
2176        if (locked) {
2177            mStateLock.unlock();
2178        }
2179    }
2180    write(fd, result.string(), result.size());
2181    return NO_ERROR;
2182}
2183
2184void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
2185        String8& result, char* buffer, size_t SIZE) const
2186{
2187    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2188    const size_t count = currentLayers.size();
2189    for (size_t i=0 ; i<count ; i++) {
2190        const sp<Layer>& layer(currentLayers[i]);
2191        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
2192        result.append(buffer);
2193    }
2194}
2195
2196void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
2197        String8& result, char* buffer, size_t SIZE) const
2198{
2199    String8 name;
2200    if (index < args.size()) {
2201        name = String8(args[index]);
2202        index++;
2203    }
2204
2205    const nsecs_t period =
2206            getHwComposer().getRefreshPeriod(HWC_DISPLAY_PRIMARY);
2207    result.appendFormat("%lld\n", period);
2208
2209    if (name.isEmpty()) {
2210        mAnimFrameTracker.dump(result);
2211    } else {
2212        const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2213        const size_t count = currentLayers.size();
2214        for (size_t i=0 ; i<count ; i++) {
2215            const sp<Layer>& layer(currentLayers[i]);
2216            if (name == layer->getName()) {
2217                layer->dumpStats(result, buffer, SIZE);
2218            }
2219        }
2220    }
2221}
2222
2223void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
2224        String8& result, char* buffer, size_t SIZE)
2225{
2226    String8 name;
2227    if (index < args.size()) {
2228        name = String8(args[index]);
2229        index++;
2230    }
2231
2232    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2233    const size_t count = currentLayers.size();
2234    for (size_t i=0 ; i<count ; i++) {
2235        const sp<Layer>& layer(currentLayers[i]);
2236        if (name.isEmpty() || (name == layer->getName())) {
2237            layer->clearStats();
2238        }
2239    }
2240
2241    mAnimFrameTracker.clear();
2242}
2243
2244/*static*/ void SurfaceFlinger::appendSfConfigString(String8& result)
2245{
2246    static const char* config =
2247            " [sf"
2248#ifdef NO_RGBX_8888
2249            " NO_RGBX_8888"
2250#endif
2251#ifdef HAS_CONTEXT_PRIORITY
2252            " HAS_CONTEXT_PRIORITY"
2253#endif
2254#ifdef NEVER_DEFAULT_TO_ASYNC_MODE
2255            " NEVER_DEFAULT_TO_ASYNC_MODE"
2256#endif
2257#ifdef TARGET_DISABLE_TRIPLE_BUFFERING
2258            " TARGET_DISABLE_TRIPLE_BUFFERING"
2259#endif
2260            "]";
2261    result.append(config);
2262}
2263
2264void SurfaceFlinger::dumpAllLocked(
2265        String8& result, char* buffer, size_t SIZE) const
2266{
2267    // figure out if we're stuck somewhere
2268    const nsecs_t now = systemTime();
2269    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
2270    const nsecs_t inTransaction(mDebugInTransaction);
2271    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
2272    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
2273
2274    /*
2275     * Dump library configuration.
2276     */
2277    result.append("Build configuration:");
2278    appendSfConfigString(result);
2279    appendUiConfigString(result);
2280    appendGuiConfigString(result);
2281    result.append("\n");
2282
2283    result.append("Sync configuration: ");
2284    result.append(SyncFeatures::getInstance().toString());
2285    result.append("\n");
2286
2287    /*
2288     * Dump the visible layer list
2289     */
2290    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
2291    const size_t count = currentLayers.size();
2292    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
2293    result.append(buffer);
2294    for (size_t i=0 ; i<count ; i++) {
2295        const sp<Layer>& layer(currentLayers[i]);
2296        layer->dump(result, buffer, SIZE);
2297    }
2298
2299    /*
2300     * Dump Display state
2301     */
2302
2303    snprintf(buffer, SIZE, "Displays (%d entries)\n", mDisplays.size());
2304    result.append(buffer);
2305    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
2306        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
2307        hw->dump(result, buffer, SIZE);
2308    }
2309
2310    /*
2311     * Dump SurfaceFlinger global state
2312     */
2313
2314    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
2315    result.append(buffer);
2316
2317    HWComposer& hwc(getHwComposer());
2318    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2319    const GLExtensions& extensions(GLExtensions::getInstance());
2320
2321    snprintf(buffer, SIZE, "EGL implementation : %s\n",
2322            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
2323    result.append(buffer);
2324    snprintf(buffer, SIZE, "%s\n",
2325            eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
2326    result.append(buffer);
2327
2328    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
2329            extensions.getVendor(),
2330            extensions.getRenderer(),
2331            extensions.getVersion());
2332    result.append(buffer);
2333    snprintf(buffer, SIZE, "%s\n", extensions.getExtension());
2334    result.append(buffer);
2335
2336    hw->undefinedRegion.dump(result, "undefinedRegion");
2337    snprintf(buffer, SIZE,
2338            "  orientation=%d, canDraw=%d\n",
2339            hw->getOrientation(), hw->canDraw());
2340    result.append(buffer);
2341    snprintf(buffer, SIZE,
2342            "  last eglSwapBuffers() time: %f us\n"
2343            "  last transaction time     : %f us\n"
2344            "  transaction-flags         : %08x\n"
2345            "  refresh-rate              : %f fps\n"
2346            "  x-dpi                     : %f\n"
2347            "  y-dpi                     : %f\n"
2348            "  EGL_NATIVE_VISUAL_ID      : %d\n"
2349            "  gpu_to_cpu_unsupported    : %d\n"
2350            ,
2351            mLastSwapBufferTime/1000.0,
2352            mLastTransactionTime/1000.0,
2353            mTransactionFlags,
2354            1e9 / hwc.getRefreshPeriod(HWC_DISPLAY_PRIMARY),
2355            hwc.getDpiX(HWC_DISPLAY_PRIMARY),
2356            hwc.getDpiY(HWC_DISPLAY_PRIMARY),
2357            mEGLNativeVisualId,
2358            !mGpuToCpuSupported);
2359    result.append(buffer);
2360
2361    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2362            inSwapBuffersDuration/1000.0);
2363    result.append(buffer);
2364
2365    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2366            inTransactionDuration/1000.0);
2367    result.append(buffer);
2368
2369    /*
2370     * VSYNC state
2371     */
2372    mEventThread->dump(result, buffer, SIZE);
2373
2374    /*
2375     * Dump HWComposer state
2376     */
2377    snprintf(buffer, SIZE, "h/w composer state:\n");
2378    result.append(buffer);
2379    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2380            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2381                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2382    result.append(buffer);
2383    hwc.dump(result, buffer, SIZE);
2384
2385    /*
2386     * Dump gralloc state
2387     */
2388    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2389    alloc.dump(result);
2390}
2391
2392const Vector< sp<Layer> >&
2393SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
2394    // Note: mStateLock is held here
2395    wp<IBinder> dpy;
2396    for (size_t i=0 ; i<mDisplays.size() ; i++) {
2397        if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
2398            dpy = mDisplays.keyAt(i);
2399            break;
2400        }
2401    }
2402    if (dpy == NULL) {
2403        ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
2404        // Just use the primary display so we have something to return
2405        dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
2406    }
2407    return getDisplayDevice(dpy)->getVisibleLayersSortedByZ();
2408}
2409
2410bool SurfaceFlinger::startDdmConnection()
2411{
2412    void* libddmconnection_dso =
2413            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2414    if (!libddmconnection_dso) {
2415        return false;
2416    }
2417    void (*DdmConnection_start)(const char* name);
2418    DdmConnection_start =
2419            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2420    if (!DdmConnection_start) {
2421        dlclose(libddmconnection_dso);
2422        return false;
2423    }
2424    (*DdmConnection_start)(getServiceName());
2425    return true;
2426}
2427
2428status_t SurfaceFlinger::onTransact(
2429    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2430{
2431    switch (code) {
2432        case CREATE_CONNECTION:
2433        case CREATE_DISPLAY:
2434        case SET_TRANSACTION_STATE:
2435        case BOOT_FINISHED:
2436        case BLANK:
2437        case UNBLANK:
2438        {
2439            // codes that require permission check
2440            IPCThreadState* ipc = IPCThreadState::self();
2441            const int pid = ipc->getCallingPid();
2442            const int uid = ipc->getCallingUid();
2443            if ((uid != AID_GRAPHICS) &&
2444                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2445                ALOGE("Permission Denial: "
2446                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2447                return PERMISSION_DENIED;
2448            }
2449            break;
2450        }
2451        case CAPTURE_SCREEN:
2452        {
2453            // codes that require permission check
2454            IPCThreadState* ipc = IPCThreadState::self();
2455            const int pid = ipc->getCallingPid();
2456            const int uid = ipc->getCallingUid();
2457            if ((uid != AID_GRAPHICS) &&
2458                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2459                ALOGE("Permission Denial: "
2460                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2461                return PERMISSION_DENIED;
2462            }
2463            break;
2464        }
2465    }
2466
2467    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2468    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2469        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2470        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2471            IPCThreadState* ipc = IPCThreadState::self();
2472            const int pid = ipc->getCallingPid();
2473            const int uid = ipc->getCallingUid();
2474            ALOGE("Permission Denial: "
2475                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2476            return PERMISSION_DENIED;
2477        }
2478        int n;
2479        switch (code) {
2480            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2481            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2482                return NO_ERROR;
2483            case 1002:  // SHOW_UPDATES
2484                n = data.readInt32();
2485                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2486                invalidateHwcGeometry();
2487                repaintEverything();
2488                return NO_ERROR;
2489            case 1004:{ // repaint everything
2490                repaintEverything();
2491                return NO_ERROR;
2492            }
2493            case 1005:{ // force transaction
2494                setTransactionFlags(
2495                        eTransactionNeeded|
2496                        eDisplayTransactionNeeded|
2497                        eTraversalNeeded);
2498                return NO_ERROR;
2499            }
2500            case 1006:{ // send empty update
2501                signalRefresh();
2502                return NO_ERROR;
2503            }
2504            case 1008:  // toggle use of hw composer
2505                n = data.readInt32();
2506                mDebugDisableHWC = n ? 1 : 0;
2507                invalidateHwcGeometry();
2508                repaintEverything();
2509                return NO_ERROR;
2510            case 1009:  // toggle use of transform hint
2511                n = data.readInt32();
2512                mDebugDisableTransformHint = n ? 1 : 0;
2513                invalidateHwcGeometry();
2514                repaintEverything();
2515                return NO_ERROR;
2516            case 1010:  // interrogate.
2517                reply->writeInt32(0);
2518                reply->writeInt32(0);
2519                reply->writeInt32(mDebugRegion);
2520                reply->writeInt32(0);
2521                reply->writeInt32(mDebugDisableHWC);
2522                return NO_ERROR;
2523            case 1013: {
2524                Mutex::Autolock _l(mStateLock);
2525                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2526                reply->writeInt32(hw->getPageFlipCount());
2527            }
2528            return NO_ERROR;
2529        }
2530    }
2531    return err;
2532}
2533
2534void SurfaceFlinger::repaintEverything() {
2535    android_atomic_or(1, &mRepaintEverything);
2536    signalTransaction();
2537}
2538
2539// ---------------------------------------------------------------------------
2540// Capture screen into an IGraphiBufferProducer
2541// ---------------------------------------------------------------------------
2542
2543status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2544        const sp<IGraphicBufferProducer>& producer,
2545        uint32_t reqWidth, uint32_t reqHeight,
2546        uint32_t minLayerZ, uint32_t maxLayerZ,
2547        bool isCpuConsumer) {
2548
2549    if (CC_UNLIKELY(display == 0))
2550        return BAD_VALUE;
2551
2552    if (CC_UNLIKELY(producer == 0))
2553        return BAD_VALUE;
2554
2555    class MessageCaptureScreen : public MessageBase {
2556        SurfaceFlinger* flinger;
2557        sp<IBinder> display;
2558        sp<IGraphicBufferProducer> producer;
2559        uint32_t reqWidth, reqHeight;
2560        uint32_t minLayerZ,maxLayerZ;
2561        bool isCpuConsumer;
2562        status_t result;
2563    public:
2564        MessageCaptureScreen(SurfaceFlinger* flinger,
2565                const sp<IBinder>& display,
2566                const sp<IGraphicBufferProducer>& producer,
2567                uint32_t reqWidth, uint32_t reqHeight,
2568                uint32_t minLayerZ, uint32_t maxLayerZ, bool isCpuConsumer)
2569            : flinger(flinger), display(display), producer(producer),
2570              reqWidth(reqWidth), reqHeight(reqHeight),
2571              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2572              isCpuConsumer(isCpuConsumer),
2573              result(PERMISSION_DENIED)
2574        {
2575        }
2576        status_t getResult() const {
2577            return result;
2578        }
2579        virtual bool handler() {
2580            Mutex::Autolock _l(flinger->mStateLock);
2581            sp<const DisplayDevice> hw(flinger->getDisplayDevice(display));
2582
2583            bool useReadPixels = false;
2584            if (isCpuConsumer) {
2585                bool formatSupportedBytBitmap =
2586                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBA_8888) ||
2587                        (flinger->mEGLNativeVisualId == HAL_PIXEL_FORMAT_RGBX_8888);
2588                if (formatSupportedBytBitmap == false) {
2589                    // the pixel format we have is not compatible with
2590                    // Bitmap.java, which is the likely client of this API,
2591                    // so we just revert to glReadPixels() in that case.
2592                    useReadPixels = true;
2593                }
2594                if (flinger->mGpuToCpuSupported == false) {
2595                    // When we know the GL->CPU path works, we can call
2596                    // captureScreenImplLocked() directly, instead of using the
2597                    // glReadPixels() workaround.
2598                    useReadPixels = true;
2599                }
2600            }
2601
2602            if (!useReadPixels) {
2603                result = flinger->captureScreenImplLocked(hw,
2604                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2605            } else {
2606                result = flinger->captureScreenImplCpuConsumerLocked(hw,
2607                        producer, reqWidth, reqHeight, minLayerZ, maxLayerZ);
2608            }
2609            return true;
2610        }
2611    };
2612
2613    sp<MessageBase> msg = new MessageCaptureScreen(this,
2614            display, producer, reqWidth, reqHeight, minLayerZ, maxLayerZ,
2615            isCpuConsumer);
2616    status_t res = postMessageSync(msg);
2617    if (res == NO_ERROR) {
2618        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2619    }
2620    return res;
2621}
2622
2623status_t SurfaceFlinger::captureScreenImplLocked(
2624        const sp<const DisplayDevice>& hw,
2625        const sp<IGraphicBufferProducer>& producer,
2626        uint32_t reqWidth, uint32_t reqHeight,
2627        uint32_t minLayerZ, uint32_t maxLayerZ)
2628{
2629    ATRACE_CALL();
2630
2631    // get screen geometry
2632    const uint32_t hw_w = hw->getWidth();
2633    const uint32_t hw_h = hw->getHeight();
2634
2635    // if we have secure windows on this display, never allow the screen capture
2636    if (hw->getSecureLayerVisible()) {
2637        ALOGW("FB is protected: PERMISSION_DENIED");
2638        return PERMISSION_DENIED;
2639    }
2640
2641    if ((reqWidth > hw_w) || (reqHeight > hw_h)) {
2642        ALOGE("size mismatch (%d, %d) > (%d, %d)",
2643                reqWidth, reqHeight, hw_w, hw_h);
2644        return BAD_VALUE;
2645    }
2646
2647    reqWidth = (!reqWidth) ? hw_w : reqWidth;
2648    reqHeight = (!reqHeight) ? hw_h : reqHeight;
2649    const bool filtering = reqWidth != hw_w || reqWidth != hw_h;
2650
2651    // Create a surface to render into
2652    sp<Surface> surface = new Surface(producer);
2653    ANativeWindow* const window = surface.get();
2654
2655    // set the buffer size to what the user requested
2656    native_window_set_buffers_user_dimensions(window, reqWidth, reqHeight);
2657
2658    // and create the corresponding EGLSurface
2659    EGLSurface eglSurface = eglCreateWindowSurface(
2660            mEGLDisplay, mEGLConfig, window, NULL);
2661    if (eglSurface == EGL_NO_SURFACE) {
2662        ALOGE("captureScreenImplLocked: eglCreateWindowSurface() failed 0x%4x",
2663                eglGetError());
2664        return BAD_VALUE;
2665    }
2666
2667    if (!eglMakeCurrent(mEGLDisplay, eglSurface, eglSurface, mEGLContext)) {
2668        ALOGE("captureScreenImplLocked: eglMakeCurrent() failed 0x%4x",
2669                eglGetError());
2670        eglDestroySurface(mEGLDisplay, eglSurface);
2671        return BAD_VALUE;
2672    }
2673
2674    // make sure to clear all GL error flags
2675    while ( glGetError() != GL_NO_ERROR ) ;
2676
2677    // set-up our viewport
2678    glViewport(0, 0, reqWidth, reqHeight);
2679    glMatrixMode(GL_PROJECTION);
2680    glLoadIdentity();
2681    glOrthof(0, hw_w, 0, hw_h, 0, 1);
2682    glMatrixMode(GL_MODELVIEW);
2683    glLoadIdentity();
2684
2685    // redraw the screen entirely...
2686    glDisable(GL_TEXTURE_EXTERNAL_OES);
2687    glDisable(GL_TEXTURE_2D);
2688    glClearColor(0,0,0,1);
2689    glClear(GL_COLOR_BUFFER_BIT);
2690
2691    const LayerVector& layers( mDrawingState.layersSortedByZ );
2692    const size_t count = layers.size();
2693    for (size_t i=0 ; i<count ; ++i) {
2694        const sp<Layer>& layer(layers[i]);
2695        const Layer::State& state(layer->drawingState());
2696        if (state.layerStack == hw->getLayerStack()) {
2697            if (state.z >= minLayerZ && state.z <= maxLayerZ) {
2698                if (layer->isVisible()) {
2699                    if (filtering) layer->setFiltering(true);
2700                    layer->draw(hw);
2701                    if (filtering) layer->setFiltering(false);
2702                }
2703            }
2704        }
2705    }
2706
2707    // compositionComplete is needed for older driver
2708    hw->compositionComplete();
2709
2710    // and finishing things up...
2711    if (eglSwapBuffers(mEGLDisplay, eglSurface) != EGL_TRUE) {
2712        ALOGE("captureScreenImplLocked: eglSwapBuffers() failed 0x%4x",
2713                eglGetError());
2714        eglDestroySurface(mEGLDisplay, eglSurface);
2715        return BAD_VALUE;
2716    }
2717
2718    eglDestroySurface(mEGLDisplay, eglSurface);
2719
2720    return NO_ERROR;
2721}
2722
2723
2724status_t SurfaceFlinger::captureScreenImplCpuConsumerLocked(
2725        const sp<const DisplayDevice>& hw,
2726        const sp<IGraphicBufferProducer>& producer,
2727        uint32_t reqWidth, uint32_t reqHeight,
2728        uint32_t minLayerZ, uint32_t maxLayerZ)
2729{
2730    ATRACE_CALL();
2731
2732    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2733        return INVALID_OPERATION;
2734    }
2735
2736    // create the texture that will receive the screenshot, later we'll
2737    // attach a FBO to it so we can call glReadPixels().
2738    GLuint tname;
2739    glGenTextures(1, &tname);
2740    glBindTexture(GL_TEXTURE_2D, tname);
2741    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2742    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2743
2744    // the GLConsumer will provide the BufferQueue
2745    sp<GLConsumer> consumer = new GLConsumer(tname, true, GL_TEXTURE_2D);
2746    consumer->getBufferQueue()->setDefaultBufferFormat(HAL_PIXEL_FORMAT_RGBA_8888);
2747
2748    // call the new screenshot taking code, passing a BufferQueue to it
2749    status_t result = captureScreenImplLocked(hw,
2750            consumer->getBufferQueue(), reqWidth, reqHeight, minLayerZ, maxLayerZ);
2751
2752    if (result == NO_ERROR) {
2753        result = consumer->updateTexImage();
2754        if (result == NO_ERROR) {
2755            // create a FBO
2756            GLuint name;
2757            glGenFramebuffersOES(1, &name);
2758            glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2759            glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2760                    GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2761
2762            reqWidth = consumer->getCurrentBuffer()->getWidth();
2763            reqHeight = consumer->getCurrentBuffer()->getHeight();
2764
2765            {
2766                // in this block we render the screenshot into the
2767                // CpuConsumer using glReadPixels from our GLConsumer,
2768                // Some older drivers don't support the GL->CPU path so
2769                // have to wrap it with a CPU->CPU path, which is what
2770                // glReadPixels essentially is
2771
2772                sp<Surface> sur = new Surface(producer);
2773                ANativeWindow* window = sur.get();
2774                ANativeWindowBuffer* buffer;
2775                void* vaddr;
2776
2777                if (native_window_api_connect(window,
2778                        NATIVE_WINDOW_API_CPU) == NO_ERROR) {
2779                    int err = 0;
2780                    err = native_window_set_buffers_dimensions(window,
2781                            reqWidth, reqHeight);
2782                    err |= native_window_set_buffers_format(window,
2783                            HAL_PIXEL_FORMAT_RGBA_8888);
2784                    err |= native_window_set_usage(window,
2785                            GRALLOC_USAGE_SW_READ_OFTEN |
2786                            GRALLOC_USAGE_SW_WRITE_OFTEN);
2787
2788                    if (err == NO_ERROR) {
2789                        if (native_window_dequeue_buffer_and_wait(window,
2790                                &buffer) == NO_ERROR) {
2791                            sp<GraphicBuffer> buf =
2792                                    static_cast<GraphicBuffer*>(buffer);
2793                            if (buf->lock(GRALLOC_USAGE_SW_WRITE_OFTEN,
2794                                    &vaddr) == NO_ERROR) {
2795                                if (buffer->stride != int(reqWidth)) {
2796                                    // we're unlucky here, glReadPixels is
2797                                    // not able to deal with a stride not
2798                                    // equal to the width.
2799                                    uint32_t* tmp = new uint32_t[reqWidth*reqHeight];
2800                                    if (tmp != NULL) {
2801                                        glReadPixels(0, 0, reqWidth, reqHeight,
2802                                                GL_RGBA, GL_UNSIGNED_BYTE, tmp);
2803                                        for (size_t y=0 ; y<reqHeight ; y++) {
2804                                            memcpy((uint32_t*)vaddr + y*buffer->stride,
2805                                                    tmp + y*reqWidth, reqWidth*4);
2806                                        }
2807                                        delete [] tmp;
2808                                    }
2809                                } else {
2810                                    glReadPixels(0, 0, reqWidth, reqHeight,
2811                                            GL_RGBA, GL_UNSIGNED_BYTE, vaddr);
2812                                }
2813                                buf->unlock();
2814                            }
2815                            window->queueBuffer(window, buffer, -1);
2816                        }
2817                    }
2818                    native_window_api_disconnect(window, NATIVE_WINDOW_API_CPU);
2819                }
2820            }
2821
2822            // back to main framebuffer
2823            glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2824            glDeleteFramebuffersOES(1, &name);
2825        }
2826    }
2827
2828    glDeleteTextures(1, &tname);
2829
2830    DisplayDevice::makeCurrent(mEGLDisplay,
2831            getDefaultDisplayDevice(), mEGLContext);
2832
2833    return result;
2834}
2835
2836// ---------------------------------------------------------------------------
2837
2838SurfaceFlinger::LayerVector::LayerVector() {
2839}
2840
2841SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2842    : SortedVector<sp<Layer> >(rhs) {
2843}
2844
2845int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2846    const void* rhs) const
2847{
2848    // sort layers per layer-stack, then by z-order and finally by sequence
2849    const sp<Layer>& l(*reinterpret_cast<const sp<Layer>*>(lhs));
2850    const sp<Layer>& r(*reinterpret_cast<const sp<Layer>*>(rhs));
2851
2852    uint32_t ls = l->currentState().layerStack;
2853    uint32_t rs = r->currentState().layerStack;
2854    if (ls != rs)
2855        return ls - rs;
2856
2857    uint32_t lz = l->currentState().z;
2858    uint32_t rz = r->currentState().z;
2859    if (lz != rz)
2860        return lz - rz;
2861
2862    return l->sequence - r->sequence;
2863}
2864
2865// ---------------------------------------------------------------------------
2866
2867SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2868    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2869}
2870
2871SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2872    : type(type), layerStack(DisplayDevice::NO_LAYER_STACK), orientation(0) {
2873    viewport.makeInvalid();
2874    frame.makeInvalid();
2875}
2876
2877// ---------------------------------------------------------------------------
2878
2879}; // namespace android
2880