SurfaceFlinger.cpp revision da8d0a5c0cf9d41915d3b106cad4aaec3e767c11
1/*
2 * Copyright (C) 2007 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19#include <stdint.h>
20#include <sys/types.h>
21#include <errno.h>
22#include <math.h>
23#include <dlfcn.h>
24
25#include <EGL/egl.h>
26#include <GLES/gl.h>
27
28#include <cutils/log.h>
29#include <cutils/properties.h>
30
31#include <binder/IPCThreadState.h>
32#include <binder/IServiceManager.h>
33#include <binder/MemoryHeapBase.h>
34#include <binder/PermissionCache.h>
35
36#include <ui/DisplayInfo.h>
37
38#include <gui/BitTube.h>
39#include <gui/BufferQueue.h>
40#include <gui/IDisplayEventConnection.h>
41#include <gui/SurfaceTextureClient.h>
42
43#include <ui/GraphicBufferAllocator.h>
44#include <ui/PixelFormat.h>
45
46#include <utils/String8.h>
47#include <utils/String16.h>
48#include <utils/StopWatch.h>
49#include <utils/Trace.h>
50
51#include <private/android_filesystem_config.h>
52
53#include "clz.h"
54#include "DdmConnection.h"
55#include "DisplayDevice.h"
56#include "Client.h"
57#include "EventThread.h"
58#include "GLExtensions.h"
59#include "Layer.h"
60#include "LayerDim.h"
61#include "LayerScreenshot.h"
62#include "SurfaceFlinger.h"
63
64#include "DisplayHardware/FramebufferSurface.h"
65#include "DisplayHardware/HWComposer.h"
66
67
68#define EGL_VERSION_HW_ANDROID  0x3143
69
70#define DISPLAY_COUNT       1
71
72namespace android {
73// ---------------------------------------------------------------------------
74
75const String16 sHardwareTest("android.permission.HARDWARE_TEST");
76const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
77const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
78const String16 sDump("android.permission.DUMP");
79
80// ---------------------------------------------------------------------------
81
82SurfaceFlinger::SurfaceFlinger()
83    :   BnSurfaceComposer(), Thread(false),
84        mTransactionFlags(0),
85        mTransationPending(false),
86        mLayersRemoved(false),
87        mRepaintEverything(0),
88        mBootTime(systemTime()),
89        mVisibleRegionsDirty(false),
90        mHwWorkListDirty(false),
91        mDebugRegion(0),
92        mDebugDDMS(0),
93        mDebugDisableHWC(0),
94        mDebugDisableTransformHint(0),
95        mDebugInSwapBuffers(0),
96        mLastSwapBufferTime(0),
97        mDebugInTransaction(0),
98        mLastTransactionTime(0),
99        mBootFinished(false)
100{
101    ALOGI("SurfaceFlinger is starting");
102
103    // debugging stuff...
104    char value[PROPERTY_VALUE_MAX];
105
106    property_get("debug.sf.showupdates", value, "0");
107    mDebugRegion = atoi(value);
108
109    property_get("debug.sf.ddms", value, "0");
110    mDebugDDMS = atoi(value);
111    if (mDebugDDMS) {
112        if (!startDdmConnection()) {
113            // start failed, and DDMS debugging not enabled
114            mDebugDDMS = 0;
115        }
116    }
117    ALOGI_IF(mDebugRegion, "showupdates enabled");
118    ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
119}
120
121void SurfaceFlinger::onFirstRef()
122{
123    mEventQueue.init(this);
124
125    run("SurfaceFlinger", PRIORITY_URGENT_DISPLAY);
126
127    // Wait for the main thread to be done with its initialization
128    mReadyToRunBarrier.wait();
129}
130
131
132SurfaceFlinger::~SurfaceFlinger()
133{
134    EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
135    eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
136    eglTerminate(display);
137}
138
139void SurfaceFlinger::binderDied(const wp<IBinder>& who)
140{
141    // the window manager died on us. prepare its eulogy.
142
143    // restore initial conditions (default device unblank, etc)
144    initializeDisplays();
145
146    // restart the boot-animation
147    startBootAnim();
148}
149
150sp<ISurfaceComposerClient> SurfaceFlinger::createConnection()
151{
152    sp<ISurfaceComposerClient> bclient;
153    sp<Client> client(new Client(this));
154    status_t err = client->initCheck();
155    if (err == NO_ERROR) {
156        bclient = client;
157    }
158    return bclient;
159}
160
161sp<IBinder> SurfaceFlinger::createDisplay()
162{
163    class DisplayToken : public BBinder {
164        sp<SurfaceFlinger> flinger;
165        virtual ~DisplayToken() {
166             // no more references, this display must be terminated
167             Mutex::Autolock _l(flinger->mStateLock);
168             flinger->mCurrentState.displays.removeItem(this);
169             flinger->setTransactionFlags(eDisplayTransactionNeeded);
170         }
171     public:
172        DisplayToken(const sp<SurfaceFlinger>& flinger)
173            : flinger(flinger) {
174        }
175    };
176
177    sp<BBinder> token = new DisplayToken(this);
178
179    Mutex::Autolock _l(mStateLock);
180    DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL);
181    mCurrentState.displays.add(token, info);
182
183    return token;
184}
185
186sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
187    if (uint32_t(id) >= DisplayDevice::NUM_DISPLAY_TYPES) {
188        ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
189        return NULL;
190    }
191    return mDefaultDisplays[id];
192}
193
194sp<IGraphicBufferAlloc> SurfaceFlinger::createGraphicBufferAlloc()
195{
196    sp<GraphicBufferAlloc> gba(new GraphicBufferAlloc());
197    return gba;
198}
199
200void SurfaceFlinger::bootFinished()
201{
202    const nsecs_t now = systemTime();
203    const nsecs_t duration = now - mBootTime;
204    ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
205    mBootFinished = true;
206
207    // wait patiently for the window manager death
208    const String16 name("window");
209    sp<IBinder> window(defaultServiceManager()->getService(name));
210    if (window != 0) {
211        window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
212    }
213
214    // stop boot animation
215    // formerly we would just kill the process, but we now ask it to exit so it
216    // can choose where to stop the animation.
217    property_set("service.bootanim.exit", "1");
218}
219
220void SurfaceFlinger::deleteTextureAsync(GLuint texture) {
221    class MessageDestroyGLTexture : public MessageBase {
222        GLuint texture;
223    public:
224        MessageDestroyGLTexture(GLuint texture)
225            : texture(texture) {
226        }
227        virtual bool handler() {
228            glDeleteTextures(1, &texture);
229            return true;
230        }
231    };
232    postMessageAsync(new MessageDestroyGLTexture(texture));
233}
234
235status_t SurfaceFlinger::selectConfigForPixelFormat(
236        EGLDisplay dpy,
237        EGLint const* attrs,
238        PixelFormat format,
239        EGLConfig* outConfig)
240{
241    EGLConfig config = NULL;
242    EGLint numConfigs = -1, n=0;
243    eglGetConfigs(dpy, NULL, 0, &numConfigs);
244    EGLConfig* const configs = new EGLConfig[numConfigs];
245    eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
246    for (int i=0 ; i<n ; i++) {
247        EGLint nativeVisualId = 0;
248        eglGetConfigAttrib(dpy, configs[i], EGL_NATIVE_VISUAL_ID, &nativeVisualId);
249        if (nativeVisualId>0 && format == nativeVisualId) {
250            *outConfig = configs[i];
251            delete [] configs;
252            return NO_ERROR;
253        }
254    }
255    delete [] configs;
256    return NAME_NOT_FOUND;
257}
258
259EGLConfig SurfaceFlinger::selectEGLConfig(EGLDisplay display, EGLint nativeVisualId) {
260    // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
261    // it is to be used with WIFI displays
262    EGLConfig config;
263    EGLint dummy;
264    status_t err;
265    EGLint attribs[] = {
266            EGL_SURFACE_TYPE,           EGL_WINDOW_BIT,
267            EGL_RECORDABLE_ANDROID,     EGL_TRUE,
268            EGL_NONE
269    };
270    err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
271    if (err) {
272        // maybe we failed because of EGL_RECORDABLE_ANDROID
273        ALOGW("couldn't find an EGLConfig with EGL_RECORDABLE_ANDROID");
274        attribs[2] = EGL_NONE;
275        err = selectConfigForPixelFormat(display, attribs, nativeVisualId, &config);
276    }
277    ALOGE_IF(err, "couldn't find an EGLConfig matching the screen format");
278    if (eglGetConfigAttrib(display, config, EGL_CONFIG_CAVEAT, &dummy) == EGL_TRUE) {
279        ALOGW_IF(dummy == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
280    }
281    return config;
282}
283
284EGLContext SurfaceFlinger::createGLContext(EGLDisplay display, EGLConfig config) {
285    // Also create our EGLContext
286    EGLint contextAttributes[] = {
287#ifdef EGL_IMG_context_priority
288#ifdef HAS_CONTEXT_PRIORITY
289#warning "using EGL_IMG_context_priority"
290            EGL_CONTEXT_PRIORITY_LEVEL_IMG, EGL_CONTEXT_PRIORITY_HIGH_IMG,
291#endif
292#endif
293            EGL_NONE, EGL_NONE
294    };
295    EGLContext ctxt = eglCreateContext(display, config, NULL, contextAttributes);
296    ALOGE_IF(ctxt==EGL_NO_CONTEXT, "EGLContext creation failed");
297    return ctxt;
298}
299
300void SurfaceFlinger::initializeGL(EGLDisplay display, const sp<DisplayDevice>& hw) {
301    EGLBoolean result = DisplayDevice::makeCurrent(display, hw, mEGLContext);
302    if (!result) {
303        ALOGE("Couldn't create a working GLES context. check logs. exiting...");
304        exit(0);
305    }
306
307    GLExtensions& extensions(GLExtensions::getInstance());
308    extensions.initWithGLStrings(
309            glGetString(GL_VENDOR),
310            glGetString(GL_RENDERER),
311            glGetString(GL_VERSION),
312            glGetString(GL_EXTENSIONS),
313            eglQueryString(display, EGL_VENDOR),
314            eglQueryString(display, EGL_VERSION),
315            eglQueryString(display, EGL_EXTENSIONS));
316
317    glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
318    glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
319
320    glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
321    glPixelStorei(GL_PACK_ALIGNMENT, 4);
322    glEnableClientState(GL_VERTEX_ARRAY);
323    glShadeModel(GL_FLAT);
324    glDisable(GL_DITHER);
325    glDisable(GL_CULL_FACE);
326
327    struct pack565 {
328        inline uint16_t operator() (int r, int g, int b) const {
329            return (r<<11)|(g<<5)|b;
330        }
331    } pack565;
332
333    const uint16_t protTexData[] = { pack565(0x03, 0x03, 0x03) };
334    glGenTextures(1, &mProtectedTexName);
335    glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
336    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
337    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
338    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
339    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
340    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0,
341            GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
342
343    // print some debugging info
344    EGLint r,g,b,a;
345    eglGetConfigAttrib(display, mEGLConfig, EGL_RED_SIZE,   &r);
346    eglGetConfigAttrib(display, mEGLConfig, EGL_GREEN_SIZE, &g);
347    eglGetConfigAttrib(display, mEGLConfig, EGL_BLUE_SIZE,  &b);
348    eglGetConfigAttrib(display, mEGLConfig, EGL_ALPHA_SIZE, &a);
349    ALOGI("EGL informations:");
350    ALOGI("vendor    : %s", extensions.getEglVendor());
351    ALOGI("version   : %s", extensions.getEglVersion());
352    ALOGI("extensions: %s", extensions.getEglExtension());
353    ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS)?:"Not Supported");
354    ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, mEGLConfig);
355    ALOGI("OpenGL ES informations:");
356    ALOGI("vendor    : %s", extensions.getVendor());
357    ALOGI("renderer  : %s", extensions.getRenderer());
358    ALOGI("version   : %s", extensions.getVersion());
359    ALOGI("extensions: %s", extensions.getExtension());
360    ALOGI("GL_MAX_TEXTURE_SIZE = %d", mMaxTextureSize);
361    ALOGI("GL_MAX_VIEWPORT_DIMS = %d x %d", mMaxViewportDims[0], mMaxViewportDims[1]);
362}
363
364status_t SurfaceFlinger::readyToRun()
365{
366    ALOGI(  "SurfaceFlinger's main thread ready to run. "
367            "Initializing graphics H/W...");
368
369    // initialize EGL
370    mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
371    eglInitialize(mEGLDisplay, NULL, NULL);
372
373    // Initialize the main display
374    // create native window to main display
375    sp<FramebufferSurface> fbs = FramebufferSurface::create();
376    if (fbs == NULL) {
377        ALOGE("Display subsystem failed to initialize. check logs. exiting...");
378        exit(0);
379    }
380
381    sp<SurfaceTextureClient> stc(new SurfaceTextureClient(
382            static_cast<sp<ISurfaceTexture> >(fbs->getBufferQueue())));
383
384    // initialize the config and context
385    int format;
386    ANativeWindow* const anw = stc.get();
387    anw->query(anw, NATIVE_WINDOW_FORMAT, &format);
388    mEGLConfig  = selectEGLConfig(mEGLDisplay, format);
389    mEGLContext = createGLContext(mEGLDisplay, mEGLConfig);
390
391    // initialize our main display hardware
392
393    for (size_t i=0 ; i<DisplayDevice::NUM_DISPLAY_TYPES ; i++) {
394        mDefaultDisplays[i] = new BBinder();
395        mCurrentState.displays.add(mDefaultDisplays[i],
396                DisplayDeviceState((DisplayDevice::DisplayType)i));
397    }
398    sp<DisplayDevice> hw = new DisplayDevice(this,
399            DisplayDevice::DISPLAY_PRIMARY,
400            mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY],
401            anw, fbs, mEGLConfig);
402    mDisplays.add(mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY], hw);
403
404    //  initialize OpenGL ES
405    initializeGL(mEGLDisplay, hw);
406
407    // start the EventThread
408    mEventThread = new EventThread(this);
409    mEventQueue.setEventThread(mEventThread);
410
411    // initialize the H/W composer
412    mHwc = new HWComposer(this,
413            *static_cast<HWComposer::EventHandler *>(this),
414            fbs->getFbHal());
415
416    // initialize our drawing state
417    mDrawingState = mCurrentState;
418
419    // We're now ready to accept clients...
420    mReadyToRunBarrier.open();
421
422    // set initial conditions (e.g. unblank default device)
423    initializeDisplays();
424
425    // start boot animation
426    startBootAnim();
427
428    return NO_ERROR;
429}
430
431int32_t SurfaceFlinger::allocateHwcDisplayId(DisplayDevice::DisplayType type) {
432    return (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) ?
433            type : mHwc->allocateDisplayId();
434}
435
436void SurfaceFlinger::startBootAnim() {
437    // start boot animation
438    property_set("service.bootanim.exit", "0");
439    property_set("ctl.start", "bootanim");
440}
441
442uint32_t SurfaceFlinger::getMaxTextureSize() const {
443    return mMaxTextureSize;
444}
445
446uint32_t SurfaceFlinger::getMaxViewportDims() const {
447    return mMaxViewportDims[0] < mMaxViewportDims[1] ?
448            mMaxViewportDims[0] : mMaxViewportDims[1];
449}
450
451// ----------------------------------------------------------------------------
452
453bool SurfaceFlinger::authenticateSurfaceTexture(
454        const sp<ISurfaceTexture>& surfaceTexture) const {
455    Mutex::Autolock _l(mStateLock);
456    sp<IBinder> surfaceTextureBinder(surfaceTexture->asBinder());
457
458    // Check the visible layer list for the ISurface
459    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
460    size_t count = currentLayers.size();
461    for (size_t i=0 ; i<count ; i++) {
462        const sp<LayerBase>& layer(currentLayers[i]);
463        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
464        if (lbc != NULL) {
465            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
466            if (lbcBinder == surfaceTextureBinder) {
467                return true;
468            }
469        }
470    }
471
472    // Check the layers in the purgatory.  This check is here so that if a
473    // SurfaceTexture gets destroyed before all the clients are done using it,
474    // the error will not be reported as "surface XYZ is not authenticated", but
475    // will instead fail later on when the client tries to use the surface,
476    // which should be reported as "surface XYZ returned an -ENODEV".  The
477    // purgatorized layers are no less authentic than the visible ones, so this
478    // should not cause any harm.
479    size_t purgatorySize =  mLayerPurgatory.size();
480    for (size_t i=0 ; i<purgatorySize ; i++) {
481        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
482        sp<LayerBaseClient> lbc(layer->getLayerBaseClient());
483        if (lbc != NULL) {
484            wp<IBinder> lbcBinder = lbc->getSurfaceTextureBinder();
485            if (lbcBinder == surfaceTextureBinder) {
486                return true;
487            }
488        }
489    }
490
491    return false;
492}
493
494status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& display, DisplayInfo* info) {
495    // TODO: this is mostly here only for compatibility
496    //       the display size is needed but the display metrics should come from elsewhere
497    if (display != mDefaultDisplays[ISurfaceComposer::eDisplayIdMain]) {
498        // TODO: additional displays not yet supported
499        return BAD_INDEX;
500    }
501
502    const HWComposer& hwc(getHwComposer());
503    float xdpi = hwc.getDpiX();
504    float ydpi = hwc.getDpiY();
505
506    // TODO: Not sure if display density should handled by SF any longer
507    class Density {
508        static int getDensityFromProperty(char const* propName) {
509            char property[PROPERTY_VALUE_MAX];
510            int density = 0;
511            if (property_get(propName, property, NULL) > 0) {
512                density = atoi(property);
513            }
514            return density;
515        }
516    public:
517        static int getEmuDensity() {
518            return getDensityFromProperty("qemu.sf.lcd_density"); }
519        static int getBuildDensity()  {
520            return getDensityFromProperty("ro.sf.lcd_density"); }
521    };
522    // The density of the device is provided by a build property
523    float density = Density::getBuildDensity() / 160.0f;
524    if (density == 0) {
525        // the build doesn't provide a density -- this is wrong!
526        // use xdpi instead
527        ALOGE("ro.sf.lcd_density must be defined as a build property");
528        density = xdpi / 160.0f;
529    }
530    if (Density::getEmuDensity()) {
531        // if "qemu.sf.lcd_density" is specified, it overrides everything
532        xdpi = ydpi = density = Density::getEmuDensity();
533        density /= 160.0f;
534    }
535
536    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
537    info->w = hw->getWidth();
538    info->h = hw->getHeight();
539    info->xdpi = xdpi;
540    info->ydpi = ydpi;
541    info->fps = float(1e9 / hwc.getRefreshPeriod());
542    info->density = density;
543    info->orientation = hw->getOrientation();
544    // TODO: this needs to go away (currently needed only by webkit)
545    getPixelFormatInfo(hw->getFormat(), &info->pixelFormatInfo);
546    return NO_ERROR;
547}
548
549// ----------------------------------------------------------------------------
550
551sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection() {
552    return mEventThread->createEventConnection();
553}
554
555void SurfaceFlinger::connectDisplay(const sp<ISurfaceTexture>& surface) {
556
557    sp<IBinder> token;
558    { // scope for the lock
559        Mutex::Autolock _l(mStateLock);
560        token = mExtDisplayToken;
561    }
562
563    if (token == 0) {
564        token = createDisplay();
565    }
566
567    { // scope for the lock
568        Mutex::Autolock _l(mStateLock);
569        if (surface == 0) {
570            // release our current display. we're guarantee to have
571            // a reference to it (token), while we hold the lock
572            mExtDisplayToken = 0;
573        } else {
574            mExtDisplayToken = token;
575        }
576
577        DisplayDeviceState& info(mCurrentState.displays.editValueFor(token));
578        info.surface = surface;
579        setTransactionFlags(eDisplayTransactionNeeded);
580    }
581}
582
583// ----------------------------------------------------------------------------
584
585void SurfaceFlinger::waitForEvent() {
586    mEventQueue.waitMessage();
587}
588
589void SurfaceFlinger::signalTransaction() {
590    mEventQueue.invalidate();
591}
592
593void SurfaceFlinger::signalLayerUpdate() {
594    mEventQueue.invalidate();
595}
596
597void SurfaceFlinger::signalRefresh() {
598    mEventQueue.refresh();
599}
600
601status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
602        nsecs_t reltime, uint32_t flags) {
603    return mEventQueue.postMessage(msg, reltime);
604}
605
606status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
607        nsecs_t reltime, uint32_t flags) {
608    status_t res = mEventQueue.postMessage(msg, reltime);
609    if (res == NO_ERROR) {
610        msg->wait();
611    }
612    return res;
613}
614
615bool SurfaceFlinger::threadLoop() {
616    waitForEvent();
617    return true;
618}
619
620void SurfaceFlinger::onVSyncReceived(int type, nsecs_t timestamp) {
621    if (uint32_t(type) < DisplayDevice::NUM_DISPLAY_TYPES) {
622        // we should only receive DisplayDevice::DisplayType from the vsync callback
623        const wp<IBinder>& token(mDefaultDisplays[type]);
624        mEventThread->onVSyncReceived(token, timestamp);
625    }
626}
627
628void SurfaceFlinger::eventControl(int event, int enabled) {
629    getHwComposer().eventControl(event, enabled);
630}
631
632void SurfaceFlinger::onMessageReceived(int32_t what) {
633    ATRACE_CALL();
634    switch (what) {
635    case MessageQueue::INVALIDATE:
636        handleMessageTransaction();
637        handleMessageInvalidate();
638        signalRefresh();
639        break;
640    case MessageQueue::REFRESH:
641        handleMessageRefresh();
642        break;
643    }
644}
645
646void SurfaceFlinger::handleMessageTransaction() {
647    uint32_t transactionFlags = peekTransactionFlags(eTransactionMask);
648    if (transactionFlags) {
649        handleTransaction(transactionFlags);
650    }
651}
652
653void SurfaceFlinger::handleMessageInvalidate() {
654    ATRACE_CALL();
655    handlePageFlip();
656}
657
658void SurfaceFlinger::handleMessageRefresh() {
659    ATRACE_CALL();
660    preComposition();
661    rebuildLayerStacks();
662    setUpHWComposer();
663    doDebugFlashRegions();
664    doComposition();
665    postComposition();
666}
667
668void SurfaceFlinger::doDebugFlashRegions()
669{
670    // is debugging enabled
671    if (CC_LIKELY(!mDebugRegion))
672        return;
673
674    const bool repaintEverything = mRepaintEverything;
675    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
676        const sp<DisplayDevice>& hw(mDisplays[dpy]);
677        if (hw->canDraw()) {
678            // transform the dirty region into this screen's coordinate space
679            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
680            if (!dirtyRegion.isEmpty()) {
681                // redraw the whole screen
682                doComposeSurfaces(hw, Region(hw->bounds()));
683
684                // and draw the dirty region
685                glDisable(GL_TEXTURE_EXTERNAL_OES);
686                glDisable(GL_TEXTURE_2D);
687                glDisable(GL_BLEND);
688                glColor4f(1, 0, 1, 1);
689                const int32_t height = hw->getHeight();
690                Region::const_iterator it = dirtyRegion.begin();
691                Region::const_iterator const end = dirtyRegion.end();
692                while (it != end) {
693                    const Rect& r = *it++;
694                    GLfloat vertices[][2] = {
695                            { r.left,  height - r.top },
696                            { r.left,  height - r.bottom },
697                            { r.right, height - r.bottom },
698                            { r.right, height - r.top }
699                    };
700                    glVertexPointer(2, GL_FLOAT, 0, vertices);
701                    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
702                }
703                hw->compositionComplete();
704                // FIXME
705                if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
706                    eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
707                }
708            }
709        }
710    }
711
712    postFramebuffer();
713
714    if (mDebugRegion > 1) {
715        usleep(mDebugRegion * 1000);
716    }
717}
718
719void SurfaceFlinger::preComposition()
720{
721    bool needExtraInvalidate = false;
722    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
723    const size_t count = currentLayers.size();
724    for (size_t i=0 ; i<count ; i++) {
725        if (currentLayers[i]->onPreComposition()) {
726            needExtraInvalidate = true;
727        }
728    }
729    if (needExtraInvalidate) {
730        signalLayerUpdate();
731    }
732}
733
734void SurfaceFlinger::postComposition()
735{
736    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
737    const size_t count = currentLayers.size();
738    for (size_t i=0 ; i<count ; i++) {
739        currentLayers[i]->onPostComposition();
740    }
741}
742
743void SurfaceFlinger::rebuildLayerStacks() {
744    // rebuild the visible layer list per screen
745    if (CC_UNLIKELY(mVisibleRegionsDirty)) {
746        ATRACE_CALL();
747        mVisibleRegionsDirty = false;
748        invalidateHwcGeometry();
749        const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
750        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
751            const sp<DisplayDevice>& hw(mDisplays[dpy]);
752            const Transform& tr(hw->getTransform());
753            const Rect bounds(hw->getBounds());
754
755            Region opaqueRegion;
756            Region dirtyRegion;
757            computeVisibleRegions(currentLayers,
758                    hw->getLayerStack(), dirtyRegion, opaqueRegion);
759
760            Vector< sp<LayerBase> > layersSortedByZ;
761            const size_t count = currentLayers.size();
762            for (size_t i=0 ; i<count ; i++) {
763                const sp<LayerBase>& layer(currentLayers[i]);
764                const Layer::State& s(layer->drawingState());
765                if (s.layerStack == hw->getLayerStack()) {
766                    Region visibleRegion(tr.transform(layer->visibleRegion));
767                    visibleRegion.andSelf(bounds);
768                    if (!visibleRegion.isEmpty()) {
769                        layersSortedByZ.add(layer);
770                    }
771                }
772            }
773            hw->setVisibleLayersSortedByZ(layersSortedByZ);
774            hw->undefinedRegion.set(bounds);
775            hw->undefinedRegion.subtractSelf(tr.transform(opaqueRegion));
776            hw->dirtyRegion.orSelf(dirtyRegion);
777        }
778    }
779}
780
781void SurfaceFlinger::setUpHWComposer() {
782    HWComposer& hwc(getHwComposer());
783    if (hwc.initCheck() == NO_ERROR) {
784        // build the h/w work list
785        const bool workListsDirty = mHwWorkListDirty;
786        mHwWorkListDirty = false;
787        for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
788            sp<const DisplayDevice> hw(mDisplays[dpy]);
789            const int32_t id = hw->getHwcDisplayId();
790            if (id >= 0) {
791                const Vector< sp<LayerBase> >& currentLayers(
792                    hw->getVisibleLayersSortedByZ());
793                const size_t count = currentLayers.size();
794                if (hwc.createWorkList(id, count) >= 0) {
795                    HWComposer::LayerListIterator cur = hwc.begin(id);
796                    const HWComposer::LayerListIterator end = hwc.end(id);
797                    for (size_t i=0 ; cur!=end && i<count ; ++i, ++cur) {
798                        const sp<LayerBase>& layer(currentLayers[i]);
799
800                        if (CC_UNLIKELY(workListsDirty)) {
801                            layer->setGeometry(hw, *cur);
802                            if (mDebugDisableHWC || mDebugRegion) {
803                                cur->setSkip(true);
804                            }
805                        }
806
807                        /*
808                         * update the per-frame h/w composer data for each layer
809                         * and build the transparent region of the FB
810                         */
811                        layer->setPerFrameData(hw, *cur);
812                    }
813                }
814            }
815        }
816        status_t err = hwc.prepare();
817        ALOGE_IF(err, "HWComposer::prepare failed (%s)", strerror(-err));
818    }
819}
820
821void SurfaceFlinger::doComposition() {
822    ATRACE_CALL();
823    const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
824    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
825        const sp<DisplayDevice>& hw(mDisplays[dpy]);
826        if (hw->canDraw()) {
827            // transform the dirty region into this screen's coordinate space
828            const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
829            if (!dirtyRegion.isEmpty()) {
830                // repaint the framebuffer (if needed)
831                doDisplayComposition(hw, dirtyRegion);
832            }
833            hw->dirtyRegion.clear();
834            hw->flip(hw->swapRegion);
835            hw->swapRegion.clear();
836        }
837        // inform the h/w that we're done compositing
838        hw->compositionComplete();
839    }
840    postFramebuffer();
841}
842
843void SurfaceFlinger::postFramebuffer()
844{
845    ATRACE_CALL();
846
847    const nsecs_t now = systemTime();
848    mDebugInSwapBuffers = now;
849
850    HWComposer& hwc(getHwComposer());
851    if (hwc.initCheck() == NO_ERROR) {
852        // FIXME: EGL spec says:
853        //   "surface must be bound to the calling thread's current context,
854        //    for the current rendering API."
855        DisplayDevice::makeCurrent(mEGLDisplay, getDefaultDisplayDevice(), mEGLContext);
856        hwc.commit();
857    }
858
859    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
860        sp<const DisplayDevice> hw(mDisplays[dpy]);
861        const Vector< sp<LayerBase> >& currentLayers(hw->getVisibleLayersSortedByZ());
862        const size_t count = currentLayers.size();
863        int32_t id = hw->getHwcDisplayId();
864        if (id >=0 && hwc.initCheck() == NO_ERROR) {
865            HWComposer::LayerListIterator cur = hwc.begin(id);
866            const HWComposer::LayerListIterator end = hwc.end(id);
867            for (size_t i = 0; cur != end && i < count; ++i, ++cur) {
868                currentLayers[i]->onLayerDisplayed(hw, &*cur);
869            }
870        } else {
871            for (size_t i = 0; i < count; i++) {
872                currentLayers[i]->onLayerDisplayed(hw, NULL);
873            }
874        }
875    }
876
877    mLastSwapBufferTime = systemTime() - now;
878    mDebugInSwapBuffers = 0;
879}
880
881void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
882{
883    ATRACE_CALL();
884
885    Mutex::Autolock _l(mStateLock);
886    const nsecs_t now = systemTime();
887    mDebugInTransaction = now;
888
889    // Here we're guaranteed that some transaction flags are set
890    // so we can call handleTransactionLocked() unconditionally.
891    // We call getTransactionFlags(), which will also clear the flags,
892    // with mStateLock held to guarantee that mCurrentState won't change
893    // until the transaction is committed.
894
895    transactionFlags = getTransactionFlags(eTransactionMask);
896    handleTransactionLocked(transactionFlags);
897
898    mLastTransactionTime = systemTime() - now;
899    mDebugInTransaction = 0;
900    invalidateHwcGeometry();
901    // here the transaction has been committed
902}
903
904void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
905{
906    const LayerVector& currentLayers(mCurrentState.layersSortedByZ);
907    const size_t count = currentLayers.size();
908
909    /*
910     * Traversal of the children
911     * (perform the transaction for each of them if needed)
912     */
913
914    if (transactionFlags & eTraversalNeeded) {
915        for (size_t i=0 ; i<count ; i++) {
916            const sp<LayerBase>& layer = currentLayers[i];
917            uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
918            if (!trFlags) continue;
919
920            const uint32_t flags = layer->doTransaction(0);
921            if (flags & Layer::eVisibleRegion)
922                mVisibleRegionsDirty = true;
923        }
924    }
925
926    /*
927     * Perform display own transactions if needed
928     */
929
930    if (transactionFlags & eDisplayTransactionNeeded) {
931        // here we take advantage of Vector's copy-on-write semantics to
932        // improve performance by skipping the transaction entirely when
933        // know that the lists are identical
934        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
935        const KeyedVector<  wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
936        if (!curr.isIdenticalTo(draw)) {
937            mVisibleRegionsDirty = true;
938            const size_t cc = curr.size();
939                  size_t dc = draw.size();
940
941            // find the displays that were removed
942            // (ie: in drawing state but not in current state)
943            // also handle displays that changed
944            // (ie: displays that are in both lists)
945            for (size_t i=0 ; i<dc ; i++) {
946                const ssize_t j = curr.indexOfKey(draw.keyAt(i));
947                if (j < 0) {
948                    // in drawing state but not in current state
949                    if (!draw[i].isMainDisplay()) {
950                        mDisplays.removeItem(draw.keyAt(i));
951                    } else {
952                        ALOGW("trying to remove the main display");
953                    }
954                } else {
955                    // this display is in both lists. see if something changed.
956                    const DisplayDeviceState& state(curr[j]);
957                    const wp<IBinder>& display(curr.keyAt(j));
958                    if (state.surface->asBinder() != draw[i].surface->asBinder()) {
959                        // changing the surface is like destroying and
960                        // recreating the DisplayDevice, so we just remove it
961                        // from the drawing state, so that it get re-added
962                        // below.
963                        mDisplays.removeItem(display);
964                        mDrawingState.displays.removeItemsAt(i);
965                        dc--; i--;
966                        // at this point we must loop to the next item
967                        continue;
968                    }
969
970                    const sp<DisplayDevice>& disp(getDisplayDevice(display));
971                    if (disp != NULL) {
972                        if (state.layerStack != draw[i].layerStack) {
973                            disp->setLayerStack(state.layerStack);
974                        }
975                        if (state.orientation != draw[i].orientation) {
976                            disp->setOrientation(state.orientation);
977                        }
978                        if (state.viewport != draw[i].viewport) {
979                            disp->setViewport(state.viewport);
980                        }
981                        if (state.frame != draw[i].frame) {
982                            disp->setFrame(state.frame);
983                        }
984                    }
985                }
986            }
987
988            // find displays that were added
989            // (ie: in current state but not in drawing state)
990            for (size_t i=0 ; i<cc ; i++) {
991                if (draw.indexOfKey(curr.keyAt(i)) < 0) {
992                    const DisplayDeviceState& state(curr[i]);
993                    if (state.surface != NULL) {
994                        sp<SurfaceTextureClient> stc(
995                                new SurfaceTextureClient(state.surface));
996                        const wp<IBinder>& display(curr.keyAt(i));
997                        sp<DisplayDevice> disp = new DisplayDevice(this,
998                                state.type, display, stc, 0, mEGLConfig);
999                        disp->setLayerStack(state.layerStack);
1000                        disp->setOrientation(state.orientation);
1001                        disp->setViewport(state.viewport);
1002                        disp->setFrame(state.frame);
1003                        mDisplays.add(display, disp);
1004                    }
1005                }
1006            }
1007        }
1008    }
1009
1010    /*
1011     * Perform our own transaction if needed
1012     */
1013
1014    const LayerVector& previousLayers(mDrawingState.layersSortedByZ);
1015    if (currentLayers.size() > previousLayers.size()) {
1016        // layers have been added
1017        mVisibleRegionsDirty = true;
1018    }
1019
1020    // some layers might have been removed, so
1021    // we need to update the regions they're exposing.
1022    if (mLayersRemoved) {
1023        mLayersRemoved = false;
1024        mVisibleRegionsDirty = true;
1025        const size_t count = previousLayers.size();
1026        for (size_t i=0 ; i<count ; i++) {
1027            const sp<LayerBase>& layer(previousLayers[i]);
1028            if (currentLayers.indexOf(layer) < 0) {
1029                // this layer is not visible anymore
1030                // TODO: we could traverse the tree from front to back and
1031                //       compute the actual visible region
1032                // TODO: we could cache the transformed region
1033                Layer::State front(layer->drawingState());
1034                Region visibleReg = front.transform.transform(
1035                        Region(Rect(front.active.w, front.active.h)));
1036                invalidateLayerStack(front.layerStack, visibleReg);
1037            }
1038        }
1039    }
1040
1041    commitTransaction();
1042}
1043
1044void SurfaceFlinger::commitTransaction()
1045{
1046    if (!mLayersPendingRemoval.isEmpty()) {
1047        // Notify removed layers now that they can't be drawn from
1048        for (size_t i = 0; i < mLayersPendingRemoval.size(); i++) {
1049            mLayersPendingRemoval[i]->onRemoved();
1050        }
1051        mLayersPendingRemoval.clear();
1052    }
1053
1054    mDrawingState = mCurrentState;
1055    mTransationPending = false;
1056    mTransactionCV.broadcast();
1057}
1058
1059void SurfaceFlinger::computeVisibleRegions(
1060        const LayerVector& currentLayers, uint32_t layerStack,
1061        Region& outDirtyRegion, Region& outOpaqueRegion)
1062{
1063    ATRACE_CALL();
1064
1065    Region aboveOpaqueLayers;
1066    Region aboveCoveredLayers;
1067    Region dirty;
1068
1069    outDirtyRegion.clear();
1070
1071    size_t i = currentLayers.size();
1072    while (i--) {
1073        const sp<LayerBase>& layer = currentLayers[i];
1074
1075        // start with the whole surface at its current location
1076        const Layer::State& s(layer->drawingState());
1077
1078        // only consider the layers on the given later stack
1079        if (s.layerStack != layerStack)
1080            continue;
1081
1082        /*
1083         * opaqueRegion: area of a surface that is fully opaque.
1084         */
1085        Region opaqueRegion;
1086
1087        /*
1088         * visibleRegion: area of a surface that is visible on screen
1089         * and not fully transparent. This is essentially the layer's
1090         * footprint minus the opaque regions above it.
1091         * Areas covered by a translucent surface are considered visible.
1092         */
1093        Region visibleRegion;
1094
1095        /*
1096         * coveredRegion: area of a surface that is covered by all
1097         * visible regions above it (which includes the translucent areas).
1098         */
1099        Region coveredRegion;
1100
1101
1102        // handle hidden surfaces by setting the visible region to empty
1103        if (CC_LIKELY(!(s.flags & layer_state_t::eLayerHidden) && s.alpha)) {
1104            const bool translucent = !layer->isOpaque();
1105            Rect bounds(layer->computeBounds());
1106            visibleRegion.set(bounds);
1107            if (!visibleRegion.isEmpty()) {
1108                // Remove the transparent area from the visible region
1109                if (translucent) {
1110                    Region transparentRegionScreen;
1111                    const Transform tr(s.transform);
1112                    if (tr.transformed()) {
1113                        if (tr.preserveRects()) {
1114                            // transform the transparent region
1115                            transparentRegionScreen = tr.transform(s.transparentRegion);
1116                        } else {
1117                            // transformation too complex, can't do the
1118                            // transparent region optimization.
1119                            transparentRegionScreen.clear();
1120                        }
1121                    } else {
1122                        transparentRegionScreen = s.transparentRegion;
1123                    }
1124                    visibleRegion.subtractSelf(transparentRegionScreen);
1125                }
1126
1127                // compute the opaque region
1128                const int32_t layerOrientation = s.transform.getOrientation();
1129                if (s.alpha==255 && !translucent &&
1130                        ((layerOrientation & Transform::ROT_INVALID) == false)) {
1131                    // the opaque region is the layer's footprint
1132                    opaqueRegion = visibleRegion;
1133                }
1134            }
1135        }
1136
1137        // Clip the covered region to the visible region
1138        coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
1139
1140        // Update aboveCoveredLayers for next (lower) layer
1141        aboveCoveredLayers.orSelf(visibleRegion);
1142
1143        // subtract the opaque region covered by the layers above us
1144        visibleRegion.subtractSelf(aboveOpaqueLayers);
1145
1146        // compute this layer's dirty region
1147        if (layer->contentDirty) {
1148            // we need to invalidate the whole region
1149            dirty = visibleRegion;
1150            // as well, as the old visible region
1151            dirty.orSelf(layer->visibleRegion);
1152            layer->contentDirty = false;
1153        } else {
1154            /* compute the exposed region:
1155             *   the exposed region consists of two components:
1156             *   1) what's VISIBLE now and was COVERED before
1157             *   2) what's EXPOSED now less what was EXPOSED before
1158             *
1159             * note that (1) is conservative, we start with the whole
1160             * visible region but only keep what used to be covered by
1161             * something -- which mean it may have been exposed.
1162             *
1163             * (2) handles areas that were not covered by anything but got
1164             * exposed because of a resize.
1165             */
1166            const Region newExposed = visibleRegion - coveredRegion;
1167            const Region oldVisibleRegion = layer->visibleRegion;
1168            const Region oldCoveredRegion = layer->coveredRegion;
1169            const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
1170            dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
1171        }
1172        dirty.subtractSelf(aboveOpaqueLayers);
1173
1174        // accumulate to the screen dirty region
1175        outDirtyRegion.orSelf(dirty);
1176
1177        // Update aboveOpaqueLayers for next (lower) layer
1178        aboveOpaqueLayers.orSelf(opaqueRegion);
1179
1180        // Store the visible region is screen space
1181        layer->setVisibleRegion(visibleRegion);
1182        layer->setCoveredRegion(coveredRegion);
1183    }
1184
1185    outOpaqueRegion = aboveOpaqueLayers;
1186}
1187
1188void SurfaceFlinger::invalidateLayerStack(uint32_t layerStack,
1189        const Region& dirty) {
1190    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1191        const sp<DisplayDevice>& hw(mDisplays[dpy]);
1192        if (hw->getLayerStack() == layerStack) {
1193            hw->dirtyRegion.orSelf(dirty);
1194        }
1195    }
1196}
1197
1198void SurfaceFlinger::handlePageFlip()
1199{
1200    Region dirtyRegion;
1201
1202    bool visibleRegions = false;
1203    const LayerVector& currentLayers(mDrawingState.layersSortedByZ);
1204    const size_t count = currentLayers.size();
1205    for (size_t i=0 ; i<count ; i++) {
1206        const sp<LayerBase>& layer(currentLayers[i]);
1207        const Region dirty(layer->latchBuffer(visibleRegions));
1208        Layer::State s(layer->drawingState());
1209        invalidateLayerStack(s.layerStack, dirty);
1210    }
1211
1212    mVisibleRegionsDirty |= visibleRegions;
1213}
1214
1215void SurfaceFlinger::invalidateHwcGeometry()
1216{
1217    mHwWorkListDirty = true;
1218}
1219
1220
1221void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& hw,
1222        const Region& inDirtyRegion)
1223{
1224    Region dirtyRegion(inDirtyRegion);
1225
1226    // compute the invalid region
1227    hw->swapRegion.orSelf(dirtyRegion);
1228
1229    uint32_t flags = hw->getFlags();
1230    if (flags & DisplayDevice::SWAP_RECTANGLE) {
1231        // we can redraw only what's dirty, but since SWAP_RECTANGLE only
1232        // takes a rectangle, we must make sure to update that whole
1233        // rectangle in that case
1234        dirtyRegion.set(hw->swapRegion.bounds());
1235    } else {
1236        if (flags & DisplayDevice::PARTIAL_UPDATES) {
1237            // We need to redraw the rectangle that will be updated
1238            // (pushed to the framebuffer).
1239            // This is needed because PARTIAL_UPDATES only takes one
1240            // rectangle instead of a region (see DisplayDevice::flip())
1241            dirtyRegion.set(hw->swapRegion.bounds());
1242        } else {
1243            // we need to redraw everything (the whole screen)
1244            dirtyRegion.set(hw->bounds());
1245            hw->swapRegion = dirtyRegion;
1246        }
1247    }
1248
1249    doComposeSurfaces(hw, dirtyRegion);
1250
1251    // FIXME: we need to call eglSwapBuffers() on displays that have
1252    // GL composition and only on those.
1253    // however, currently hwc.commit() already does that for the main
1254    // display (if there is a hwc) and never for the other ones
1255    if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL ||
1256            getHwComposer().initCheck() != NO_ERROR) {
1257        // FIXME: EGL spec says:
1258        //   "surface must be bound to the calling thread's current context,
1259        //    for the current rendering API."
1260        eglSwapBuffers(mEGLDisplay, hw->getEGLSurface());
1261    }
1262
1263    // update the swap region and clear the dirty region
1264    hw->swapRegion.orSelf(dirtyRegion);
1265}
1266
1267void SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& hw, const Region& dirty)
1268{
1269    const int32_t id = hw->getHwcDisplayId();
1270    HWComposer& hwc(getHwComposer());
1271    HWComposer::LayerListIterator cur = hwc.begin(id);
1272    const HWComposer::LayerListIterator end = hwc.end(id);
1273
1274    const bool hasGlesComposition = hwc.hasGlesComposition(id) || (cur==end);
1275    if (hasGlesComposition) {
1276        DisplayDevice::makeCurrent(mEGLDisplay, hw, mEGLContext);
1277
1278        // set the frame buffer
1279        glMatrixMode(GL_MODELVIEW);
1280        glLoadIdentity();
1281
1282        // Never touch the framebuffer if we don't have any framebuffer layers
1283        const bool hasHwcComposition = hwc.hasHwcComposition(id);
1284        if (hasHwcComposition) {
1285            // when using overlays, we assume a fully transparent framebuffer
1286            // NOTE: we could reduce how much we need to clear, for instance
1287            // remove where there are opaque FB layers. however, on some
1288            // GPUs doing a "clean slate" glClear might be more efficient.
1289            // We'll revisit later if needed.
1290            glClearColor(0, 0, 0, 0);
1291            glClear(GL_COLOR_BUFFER_BIT);
1292        } else {
1293            const Region region(hw->undefinedRegion.intersect(dirty));
1294            // screen is already cleared here
1295            if (!region.isEmpty()) {
1296                // can happen with SurfaceView
1297                drawWormhole(hw, region);
1298            }
1299        }
1300    }
1301
1302    /*
1303     * and then, render the layers targeted at the framebuffer
1304     */
1305
1306    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
1307    const size_t count = layers.size();
1308    const Transform& tr = hw->getTransform();
1309    if (cur != end) {
1310        // we're using h/w composer
1311        for (size_t i=0 ; i<count && cur!=end ; ++i, ++cur) {
1312            const sp<LayerBase>& layer(layers[i]);
1313            const Region clip(dirty.intersect(tr.transform(layer->visibleRegion)));
1314            if (!clip.isEmpty()) {
1315                switch (cur->getCompositionType()) {
1316                    case HWC_OVERLAY: {
1317                        if ((cur->getHints() & HWC_HINT_CLEAR_FB)
1318                                && i
1319                                && layer->isOpaque()
1320                                && hasGlesComposition) {
1321                            // never clear the very first layer since we're
1322                            // guaranteed the FB is already cleared
1323                            layer->clearWithOpenGL(hw, clip);
1324                        }
1325                        break;
1326                    }
1327                    case HWC_FRAMEBUFFER: {
1328                        layer->draw(hw, clip);
1329                        break;
1330                    }
1331                }
1332            }
1333            layer->setAcquireFence(hw, *cur);
1334        }
1335    } else {
1336        // we're not using h/w composer
1337        for (size_t i=0 ; i<count ; ++i) {
1338            const sp<LayerBase>& layer(layers[i]);
1339            const Region clip(dirty.intersect(
1340                    tr.transform(layer->visibleRegion)));
1341            if (!clip.isEmpty()) {
1342                layer->draw(hw, clip);
1343            }
1344        }
1345    }
1346}
1347
1348void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& hw,
1349        const Region& region) const
1350{
1351    glDisable(GL_TEXTURE_EXTERNAL_OES);
1352    glDisable(GL_TEXTURE_2D);
1353    glDisable(GL_BLEND);
1354    glColor4f(0,0,0,0);
1355
1356    const int32_t height = hw->getHeight();
1357    Region::const_iterator it = region.begin();
1358    Region::const_iterator const end = region.end();
1359    while (it != end) {
1360        const Rect& r = *it++;
1361        GLfloat vertices[][2] = {
1362                { r.left,  height - r.top },
1363                { r.left,  height - r.bottom },
1364                { r.right, height - r.bottom },
1365                { r.right, height - r.top }
1366        };
1367        glVertexPointer(2, GL_FLOAT, 0, vertices);
1368        glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
1369    }
1370}
1371
1372ssize_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
1373        const sp<LayerBaseClient>& lbc)
1374{
1375    // attach this layer to the client
1376    size_t name = client->attachLayer(lbc);
1377
1378    // add this layer to the current state list
1379    Mutex::Autolock _l(mStateLock);
1380    mCurrentState.layersSortedByZ.add(lbc);
1381
1382    return ssize_t(name);
1383}
1384
1385status_t SurfaceFlinger::removeLayer(const sp<LayerBase>& layer)
1386{
1387    Mutex::Autolock _l(mStateLock);
1388    status_t err = purgatorizeLayer_l(layer);
1389    if (err == NO_ERROR)
1390        setTransactionFlags(eTransactionNeeded);
1391    return err;
1392}
1393
1394status_t SurfaceFlinger::removeLayer_l(const sp<LayerBase>& layerBase)
1395{
1396    ssize_t index = mCurrentState.layersSortedByZ.remove(layerBase);
1397    if (index >= 0) {
1398        mLayersRemoved = true;
1399        return NO_ERROR;
1400    }
1401    return status_t(index);
1402}
1403
1404status_t SurfaceFlinger::purgatorizeLayer_l(const sp<LayerBase>& layerBase)
1405{
1406    // First add the layer to the purgatory list, which makes sure it won't
1407    // go away, then remove it from the main list (through a transaction).
1408    ssize_t err = removeLayer_l(layerBase);
1409    if (err >= 0) {
1410        mLayerPurgatory.add(layerBase);
1411    }
1412
1413    mLayersPendingRemoval.push(layerBase);
1414
1415    // it's possible that we don't find a layer, because it might
1416    // have been destroyed already -- this is not technically an error
1417    // from the user because there is a race between Client::destroySurface(),
1418    // ~Client() and ~ISurface().
1419    return (err == NAME_NOT_FOUND) ? status_t(NO_ERROR) : err;
1420}
1421
1422uint32_t SurfaceFlinger::peekTransactionFlags(uint32_t flags)
1423{
1424    return android_atomic_release_load(&mTransactionFlags);
1425}
1426
1427uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags)
1428{
1429    return android_atomic_and(~flags, &mTransactionFlags) & flags;
1430}
1431
1432uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags)
1433{
1434    uint32_t old = android_atomic_or(flags, &mTransactionFlags);
1435    if ((old & flags)==0) { // wake the server up
1436        signalTransaction();
1437    }
1438    return old;
1439}
1440
1441void SurfaceFlinger::setTransactionState(
1442        const Vector<ComposerState>& state,
1443        const Vector<DisplayState>& displays,
1444        uint32_t flags)
1445{
1446    Mutex::Autolock _l(mStateLock);
1447    uint32_t transactionFlags = 0;
1448
1449    size_t count = displays.size();
1450    for (size_t i=0 ; i<count ; i++) {
1451        const DisplayState& s(displays[i]);
1452        transactionFlags |= setDisplayStateLocked(s);
1453    }
1454
1455    count = state.size();
1456    for (size_t i=0 ; i<count ; i++) {
1457        const ComposerState& s(state[i]);
1458        sp<Client> client( static_cast<Client *>(s.client.get()) );
1459        transactionFlags |= setClientStateLocked(client, s.state);
1460    }
1461
1462    if (transactionFlags) {
1463        // this triggers the transaction
1464        setTransactionFlags(transactionFlags);
1465
1466        // if this is a synchronous transaction, wait for it to take effect
1467        // before returning.
1468        if (flags & eSynchronous) {
1469            mTransationPending = true;
1470        }
1471        while (mTransationPending) {
1472            status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
1473            if (CC_UNLIKELY(err != NO_ERROR)) {
1474                // just in case something goes wrong in SF, return to the
1475                // called after a few seconds.
1476                ALOGW_IF(err == TIMED_OUT, "closeGlobalTransaction timed out!");
1477                mTransationPending = false;
1478                break;
1479            }
1480        }
1481    }
1482}
1483
1484uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
1485{
1486    uint32_t flags = 0;
1487    DisplayDeviceState& disp(mCurrentState.displays.editValueFor(s.token));
1488    if (disp.isValid()) {
1489        const uint32_t what = s.what;
1490        if (what & DisplayState::eSurfaceChanged) {
1491            if (disp.surface->asBinder() != s.surface->asBinder()) {
1492                disp.surface = s.surface;
1493                flags |= eDisplayTransactionNeeded;
1494            }
1495        }
1496        if (what & DisplayState::eLayerStackChanged) {
1497            if (disp.layerStack != s.layerStack) {
1498                disp.layerStack = s.layerStack;
1499                flags |= eDisplayTransactionNeeded;
1500            }
1501        }
1502        if (what & DisplayState::eOrientationChanged) {
1503            if (disp.orientation != s.orientation) {
1504                disp.orientation = s.orientation;
1505                flags |= eDisplayTransactionNeeded;
1506            }
1507        }
1508        if (what & DisplayState::eFrameChanged) {
1509            if (disp.frame != s.frame) {
1510                disp.frame = s.frame;
1511                flags |= eDisplayTransactionNeeded;
1512            }
1513        }
1514        if (what & DisplayState::eViewportChanged) {
1515            if (disp.viewport != s.viewport) {
1516                disp.viewport = s.viewport;
1517                flags |= eDisplayTransactionNeeded;
1518            }
1519        }
1520    }
1521    return flags;
1522}
1523
1524uint32_t SurfaceFlinger::setClientStateLocked(
1525        const sp<Client>& client,
1526        const layer_state_t& s)
1527{
1528    uint32_t flags = 0;
1529    sp<LayerBaseClient> layer(client->getLayerUser(s.surface));
1530    if (layer != 0) {
1531        const uint32_t what = s.what;
1532        if (what & layer_state_t::ePositionChanged) {
1533            if (layer->setPosition(s.x, s.y))
1534                flags |= eTraversalNeeded;
1535        }
1536        if (what & layer_state_t::eLayerChanged) {
1537            // NOTE: index needs to be calculated before we update the state
1538            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1539            if (layer->setLayer(s.z)) {
1540                mCurrentState.layersSortedByZ.removeAt(idx);
1541                mCurrentState.layersSortedByZ.add(layer);
1542                // we need traversal (state changed)
1543                // AND transaction (list changed)
1544                flags |= eTransactionNeeded|eTraversalNeeded;
1545            }
1546        }
1547        if (what & layer_state_t::eSizeChanged) {
1548            if (layer->setSize(s.w, s.h)) {
1549                flags |= eTraversalNeeded;
1550            }
1551        }
1552        if (what & layer_state_t::eAlphaChanged) {
1553            if (layer->setAlpha(uint8_t(255.0f*s.alpha+0.5f)))
1554                flags |= eTraversalNeeded;
1555        }
1556        if (what & layer_state_t::eMatrixChanged) {
1557            if (layer->setMatrix(s.matrix))
1558                flags |= eTraversalNeeded;
1559        }
1560        if (what & layer_state_t::eTransparentRegionChanged) {
1561            if (layer->setTransparentRegionHint(s.transparentRegion))
1562                flags |= eTraversalNeeded;
1563        }
1564        if (what & layer_state_t::eVisibilityChanged) {
1565            if (layer->setFlags(s.flags, s.mask))
1566                flags |= eTraversalNeeded;
1567        }
1568        if (what & layer_state_t::eCropChanged) {
1569            if (layer->setCrop(s.crop))
1570                flags |= eTraversalNeeded;
1571        }
1572        if (what & layer_state_t::eLayerStackChanged) {
1573            // NOTE: index needs to be calculated before we update the state
1574            ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
1575            if (layer->setLayerStack(s.layerStack)) {
1576                mCurrentState.layersSortedByZ.removeAt(idx);
1577                mCurrentState.layersSortedByZ.add(layer);
1578                // we need traversal (state changed)
1579                // AND transaction (list changed)
1580                flags |= eTransactionNeeded|eTraversalNeeded;
1581            }
1582        }
1583    }
1584    return flags;
1585}
1586
1587sp<ISurface> SurfaceFlinger::createLayer(
1588        ISurfaceComposerClient::surface_data_t* params,
1589        const String8& name,
1590        const sp<Client>& client,
1591       uint32_t w, uint32_t h, PixelFormat format,
1592        uint32_t flags)
1593{
1594    sp<LayerBaseClient> layer;
1595    sp<ISurface> surfaceHandle;
1596
1597    if (int32_t(w|h) < 0) {
1598        ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
1599                int(w), int(h));
1600        return surfaceHandle;
1601    }
1602
1603    //ALOGD("createLayer for (%d x %d), name=%s", w, h, name.string());
1604    switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
1605        case ISurfaceComposerClient::eFXSurfaceNormal:
1606            layer = createNormalLayer(client, w, h, flags, format);
1607            break;
1608        case ISurfaceComposerClient::eFXSurfaceBlur:
1609        case ISurfaceComposerClient::eFXSurfaceDim:
1610            layer = createDimLayer(client, w, h, flags);
1611            break;
1612        case ISurfaceComposerClient::eFXSurfaceScreenshot:
1613            layer = createScreenshotLayer(client, w, h, flags);
1614            break;
1615    }
1616
1617    if (layer != 0) {
1618        layer->initStates(w, h, flags);
1619        layer->setName(name);
1620        ssize_t token = addClientLayer(client, layer);
1621        surfaceHandle = layer->getSurface();
1622        if (surfaceHandle != 0) {
1623            params->token = token;
1624            params->identity = layer->getIdentity();
1625        }
1626        setTransactionFlags(eTransactionNeeded);
1627    }
1628
1629    return surfaceHandle;
1630}
1631
1632sp<Layer> SurfaceFlinger::createNormalLayer(
1633        const sp<Client>& client,
1634        uint32_t w, uint32_t h, uint32_t flags,
1635        PixelFormat& format)
1636{
1637    // initialize the surfaces
1638    switch (format) {
1639    case PIXEL_FORMAT_TRANSPARENT:
1640    case PIXEL_FORMAT_TRANSLUCENT:
1641        format = PIXEL_FORMAT_RGBA_8888;
1642        break;
1643    case PIXEL_FORMAT_OPAQUE:
1644#ifdef NO_RGBX_8888
1645        format = PIXEL_FORMAT_RGB_565;
1646#else
1647        format = PIXEL_FORMAT_RGBX_8888;
1648#endif
1649        break;
1650    }
1651
1652#ifdef NO_RGBX_8888
1653    if (format == PIXEL_FORMAT_RGBX_8888)
1654        format = PIXEL_FORMAT_RGBA_8888;
1655#endif
1656
1657    sp<Layer> layer = new Layer(this, client);
1658    status_t err = layer->setBuffers(w, h, format, flags);
1659    if (CC_LIKELY(err != NO_ERROR)) {
1660        ALOGE("createNormalLayer() failed (%s)", strerror(-err));
1661        layer.clear();
1662    }
1663    return layer;
1664}
1665
1666sp<LayerDim> SurfaceFlinger::createDimLayer(
1667        const sp<Client>& client,
1668        uint32_t w, uint32_t h, uint32_t flags)
1669{
1670    sp<LayerDim> layer = new LayerDim(this, client);
1671    return layer;
1672}
1673
1674sp<LayerScreenshot> SurfaceFlinger::createScreenshotLayer(
1675        const sp<Client>& client,
1676        uint32_t w, uint32_t h, uint32_t flags)
1677{
1678    sp<LayerScreenshot> layer = new LayerScreenshot(this, client);
1679    return layer;
1680}
1681
1682status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, SurfaceID sid)
1683{
1684    /*
1685     * called by the window manager, when a surface should be marked for
1686     * destruction.
1687     *
1688     * The surface is removed from the current and drawing lists, but placed
1689     * in the purgatory queue, so it's not destroyed right-away (we need
1690     * to wait for all client's references to go away first).
1691     */
1692
1693    status_t err = NAME_NOT_FOUND;
1694    Mutex::Autolock _l(mStateLock);
1695    sp<LayerBaseClient> layer = client->getLayerUser(sid);
1696
1697    if (layer != 0) {
1698        err = purgatorizeLayer_l(layer);
1699        if (err == NO_ERROR) {
1700            setTransactionFlags(eTransactionNeeded);
1701        }
1702    }
1703    return err;
1704}
1705
1706status_t SurfaceFlinger::onLayerDestroyed(const wp<LayerBaseClient>& layer)
1707{
1708    // called by ~ISurface() when all references are gone
1709    status_t err = NO_ERROR;
1710    sp<LayerBaseClient> l(layer.promote());
1711    if (l != NULL) {
1712        Mutex::Autolock _l(mStateLock);
1713        err = removeLayer_l(l);
1714        if (err == NAME_NOT_FOUND) {
1715            // The surface wasn't in the current list, which means it was
1716            // removed already, which means it is in the purgatory,
1717            // and need to be removed from there.
1718            ssize_t idx = mLayerPurgatory.remove(l);
1719            ALOGE_IF(idx < 0,
1720                    "layer=%p is not in the purgatory list", l.get());
1721        }
1722        ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
1723                "error removing layer=%p (%s)", l.get(), strerror(-err));
1724    }
1725    return err;
1726}
1727
1728// ---------------------------------------------------------------------------
1729
1730void SurfaceFlinger::onInitializeDisplays() {
1731    // reset screen orientation
1732    Vector<ComposerState> state;
1733    Vector<DisplayState> displays;
1734    DisplayState d;
1735    d.what = DisplayState::eOrientationChanged;
1736    d.token = mDefaultDisplays[DisplayDevice::DISPLAY_PRIMARY];
1737    d.orientation = DisplayState::eOrientationDefault;
1738    displays.add(d);
1739    setTransactionState(state, displays, 0);
1740
1741    // XXX: this should init default device to "unblank" and all other devices to "blank"
1742    onScreenAcquired();
1743}
1744
1745void SurfaceFlinger::initializeDisplays() {
1746    class MessageScreenInitialized : public MessageBase {
1747        SurfaceFlinger* flinger;
1748    public:
1749        MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
1750        virtual bool handler() {
1751            flinger->onInitializeDisplays();
1752            return true;
1753        }
1754    };
1755    sp<MessageBase> msg = new MessageScreenInitialized(this);
1756    postMessageAsync(msg);  // we may be called from main thread, use async message
1757}
1758
1759
1760void SurfaceFlinger::onScreenAcquired() {
1761    ALOGD("Screen about to return, flinger = %p", this);
1762    sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1763    getHwComposer().acquire();
1764    hw->acquireScreen();
1765    mEventThread->onScreenAcquired();
1766    mVisibleRegionsDirty = true;
1767    repaintEverything();
1768}
1769
1770void SurfaceFlinger::onScreenReleased() {
1771    ALOGD("About to give-up screen, flinger = %p", this);
1772    sp<const DisplayDevice> hw(getDefaultDisplayDevice()); // XXX: this should be per DisplayDevice
1773    if (hw->isScreenAcquired()) {
1774        mEventThread->onScreenReleased();
1775        hw->releaseScreen();
1776        getHwComposer().release();
1777        // from this point on, SF will stop drawing
1778    }
1779}
1780
1781void SurfaceFlinger::unblank() {
1782    class MessageScreenAcquired : public MessageBase {
1783        SurfaceFlinger* flinger;
1784    public:
1785        MessageScreenAcquired(SurfaceFlinger* flinger) : flinger(flinger) { }
1786        virtual bool handler() {
1787            flinger->onScreenAcquired();
1788            return true;
1789        }
1790    };
1791    sp<MessageBase> msg = new MessageScreenAcquired(this);
1792    postMessageSync(msg);
1793}
1794
1795void SurfaceFlinger::blank() {
1796    class MessageScreenReleased : public MessageBase {
1797        SurfaceFlinger* flinger;
1798    public:
1799        MessageScreenReleased(SurfaceFlinger* flinger) : flinger(flinger) { }
1800        virtual bool handler() {
1801            flinger->onScreenReleased();
1802            return true;
1803        }
1804    };
1805    sp<MessageBase> msg = new MessageScreenReleased(this);
1806    postMessageSync(msg);
1807}
1808
1809// ---------------------------------------------------------------------------
1810
1811status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
1812{
1813    const size_t SIZE = 4096;
1814    char buffer[SIZE];
1815    String8 result;
1816
1817    if (!PermissionCache::checkCallingPermission(sDump)) {
1818        snprintf(buffer, SIZE, "Permission Denial: "
1819                "can't dump SurfaceFlinger from pid=%d, uid=%d\n",
1820                IPCThreadState::self()->getCallingPid(),
1821                IPCThreadState::self()->getCallingUid());
1822        result.append(buffer);
1823    } else {
1824        // Try to get the main lock, but don't insist if we can't
1825        // (this would indicate SF is stuck, but we want to be able to
1826        // print something in dumpsys).
1827        int retry = 3;
1828        while (mStateLock.tryLock()<0 && --retry>=0) {
1829            usleep(1000000);
1830        }
1831        const bool locked(retry >= 0);
1832        if (!locked) {
1833            snprintf(buffer, SIZE,
1834                    "SurfaceFlinger appears to be unresponsive, "
1835                    "dumping anyways (no locks held)\n");
1836            result.append(buffer);
1837        }
1838
1839        bool dumpAll = true;
1840        size_t index = 0;
1841        size_t numArgs = args.size();
1842        if (numArgs) {
1843            if ((index < numArgs) &&
1844                    (args[index] == String16("--list"))) {
1845                index++;
1846                listLayersLocked(args, index, result, buffer, SIZE);
1847                dumpAll = false;
1848            }
1849
1850            if ((index < numArgs) &&
1851                    (args[index] == String16("--latency"))) {
1852                index++;
1853                dumpStatsLocked(args, index, result, buffer, SIZE);
1854                dumpAll = false;
1855            }
1856
1857            if ((index < numArgs) &&
1858                    (args[index] == String16("--latency-clear"))) {
1859                index++;
1860                clearStatsLocked(args, index, result, buffer, SIZE);
1861                dumpAll = false;
1862            }
1863        }
1864
1865        if (dumpAll) {
1866            dumpAllLocked(result, buffer, SIZE);
1867        }
1868
1869        if (locked) {
1870            mStateLock.unlock();
1871        }
1872    }
1873    write(fd, result.string(), result.size());
1874    return NO_ERROR;
1875}
1876
1877void SurfaceFlinger::listLayersLocked(const Vector<String16>& args, size_t& index,
1878        String8& result, char* buffer, size_t SIZE) const
1879{
1880    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1881    const size_t count = currentLayers.size();
1882    for (size_t i=0 ; i<count ; i++) {
1883        const sp<LayerBase>& layer(currentLayers[i]);
1884        snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1885        result.append(buffer);
1886    }
1887}
1888
1889void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
1890        String8& result, char* buffer, size_t SIZE) const
1891{
1892    String8 name;
1893    if (index < args.size()) {
1894        name = String8(args[index]);
1895        index++;
1896    }
1897
1898    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1899    const size_t count = currentLayers.size();
1900    for (size_t i=0 ; i<count ; i++) {
1901        const sp<LayerBase>& layer(currentLayers[i]);
1902        if (name.isEmpty()) {
1903            snprintf(buffer, SIZE, "%s\n", layer->getName().string());
1904            result.append(buffer);
1905        }
1906        if (name.isEmpty() || (name == layer->getName())) {
1907            layer->dumpStats(result, buffer, SIZE);
1908        }
1909    }
1910}
1911
1912void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
1913        String8& result, char* buffer, size_t SIZE) const
1914{
1915    String8 name;
1916    if (index < args.size()) {
1917        name = String8(args[index]);
1918        index++;
1919    }
1920
1921    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1922    const size_t count = currentLayers.size();
1923    for (size_t i=0 ; i<count ; i++) {
1924        const sp<LayerBase>& layer(currentLayers[i]);
1925        if (name.isEmpty() || (name == layer->getName())) {
1926            layer->clearStats();
1927        }
1928    }
1929}
1930
1931void SurfaceFlinger::dumpAllLocked(
1932        String8& result, char* buffer, size_t SIZE) const
1933{
1934    // figure out if we're stuck somewhere
1935    const nsecs_t now = systemTime();
1936    const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
1937    const nsecs_t inTransaction(mDebugInTransaction);
1938    nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
1939    nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
1940
1941    /*
1942     * Dump the visible layer list
1943     */
1944    const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
1945    const size_t count = currentLayers.size();
1946    snprintf(buffer, SIZE, "Visible layers (count = %d)\n", count);
1947    result.append(buffer);
1948    for (size_t i=0 ; i<count ; i++) {
1949        const sp<LayerBase>& layer(currentLayers[i]);
1950        layer->dump(result, buffer, SIZE);
1951    }
1952
1953    /*
1954     * Dump the layers in the purgatory
1955     */
1956
1957    const size_t purgatorySize = mLayerPurgatory.size();
1958    snprintf(buffer, SIZE, "Purgatory state (%d entries)\n", purgatorySize);
1959    result.append(buffer);
1960    for (size_t i=0 ; i<purgatorySize ; i++) {
1961        const sp<LayerBase>& layer(mLayerPurgatory.itemAt(i));
1962        layer->shortDump(result, buffer, SIZE);
1963    }
1964
1965    /*
1966     * Dump Display state
1967     */
1968
1969    for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
1970        const sp<const DisplayDevice>& hw(mDisplays[dpy]);
1971        snprintf(buffer, SIZE,
1972                "+ DisplayDevice[%u]\n"
1973                "   id=%x, layerStack=%u, (%4dx%4d), orient=%2d (type=%08x), "
1974                "flips=%u, secure=%d, numLayers=%u, v:[%d,%d,%d,%d], f:[%d,%d,%d,%d]\n",
1975                dpy,
1976                hw->getDisplayType(), hw->getLayerStack(),
1977                hw->getWidth(), hw->getHeight(),
1978                hw->getOrientation(), hw->getTransform().getType(),
1979                hw->getPageFlipCount(),
1980                hw->getSecureLayerVisible(),
1981                hw->getVisibleLayersSortedByZ().size(),
1982                hw->getViewport().left, hw->getViewport().top, hw->getViewport().right, hw->getViewport().bottom,
1983                hw->getFrame().left, hw->getFrame().top, hw->getFrame().right, hw->getFrame().bottom);
1984
1985        result.append(buffer);
1986    }
1987
1988    /*
1989     * Dump SurfaceFlinger global state
1990     */
1991
1992    snprintf(buffer, SIZE, "SurfaceFlinger global state:\n");
1993    result.append(buffer);
1994
1995    HWComposer& hwc(getHwComposer());
1996    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
1997    const GLExtensions& extensions(GLExtensions::getInstance());
1998    snprintf(buffer, SIZE, "GLES: %s, %s, %s\n",
1999            extensions.getVendor(),
2000            extensions.getRenderer(),
2001            extensions.getVersion());
2002    result.append(buffer);
2003
2004    snprintf(buffer, SIZE, "EGL : %s\n",
2005            eglQueryString(mEGLDisplay, EGL_VERSION_HW_ANDROID));
2006    result.append(buffer);
2007
2008    snprintf(buffer, SIZE, "EXTS: %s\n", extensions.getExtension());
2009    result.append(buffer);
2010
2011    hw->undefinedRegion.dump(result, "undefinedRegion");
2012    snprintf(buffer, SIZE,
2013            "  orientation=%d, canDraw=%d\n",
2014            hw->getOrientation(), hw->canDraw());
2015    result.append(buffer);
2016    snprintf(buffer, SIZE,
2017            "  last eglSwapBuffers() time: %f us\n"
2018            "  last transaction time     : %f us\n"
2019            "  transaction-flags         : %08x\n"
2020            "  refresh-rate              : %f fps\n"
2021            "  x-dpi                     : %f\n"
2022            "  y-dpi                     : %f\n",
2023            mLastSwapBufferTime/1000.0,
2024            mLastTransactionTime/1000.0,
2025            mTransactionFlags,
2026            1e9 / hwc.getRefreshPeriod(),
2027            hwc.getDpiX(),
2028            hwc.getDpiY());
2029    result.append(buffer);
2030
2031    snprintf(buffer, SIZE, "  eglSwapBuffers time: %f us\n",
2032            inSwapBuffersDuration/1000.0);
2033    result.append(buffer);
2034
2035    snprintf(buffer, SIZE, "  transaction time: %f us\n",
2036            inTransactionDuration/1000.0);
2037    result.append(buffer);
2038
2039    /*
2040     * VSYNC state
2041     */
2042    mEventThread->dump(result, buffer, SIZE);
2043
2044    /*
2045     * Dump HWComposer state
2046     */
2047    snprintf(buffer, SIZE, "h/w composer state:\n");
2048    result.append(buffer);
2049    snprintf(buffer, SIZE, "  h/w composer %s and %s\n",
2050            hwc.initCheck()==NO_ERROR ? "present" : "not present",
2051                    (mDebugDisableHWC || mDebugRegion) ? "disabled" : "enabled");
2052    result.append(buffer);
2053    hwc.dump(result, buffer, SIZE, hw->getVisibleLayersSortedByZ());
2054
2055    /*
2056     * Dump gralloc state
2057     */
2058    const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
2059    alloc.dump(result);
2060    hw->dump(result);
2061}
2062
2063bool SurfaceFlinger::startDdmConnection()
2064{
2065    void* libddmconnection_dso =
2066            dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
2067    if (!libddmconnection_dso) {
2068        return false;
2069    }
2070    void (*DdmConnection_start)(const char* name);
2071    DdmConnection_start =
2072            (typeof DdmConnection_start)dlsym(libddmconnection_dso, "DdmConnection_start");
2073    if (!DdmConnection_start) {
2074        dlclose(libddmconnection_dso);
2075        return false;
2076    }
2077    (*DdmConnection_start)(getServiceName());
2078    return true;
2079}
2080
2081status_t SurfaceFlinger::onTransact(
2082    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
2083{
2084    switch (code) {
2085        case CREATE_CONNECTION:
2086        case SET_TRANSACTION_STATE:
2087        case BOOT_FINISHED:
2088        case BLANK:
2089        case UNBLANK:
2090        {
2091            // codes that require permission check
2092            IPCThreadState* ipc = IPCThreadState::self();
2093            const int pid = ipc->getCallingPid();
2094            const int uid = ipc->getCallingUid();
2095            if ((uid != AID_GRAPHICS) &&
2096                    !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
2097                ALOGE("Permission Denial: "
2098                        "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2099                return PERMISSION_DENIED;
2100            }
2101            break;
2102        }
2103        case CAPTURE_SCREEN:
2104        {
2105            // codes that require permission check
2106            IPCThreadState* ipc = IPCThreadState::self();
2107            const int pid = ipc->getCallingPid();
2108            const int uid = ipc->getCallingUid();
2109            if ((uid != AID_GRAPHICS) &&
2110                    !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
2111                ALOGE("Permission Denial: "
2112                        "can't read framebuffer pid=%d, uid=%d", pid, uid);
2113                return PERMISSION_DENIED;
2114            }
2115            break;
2116        }
2117    }
2118
2119    status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
2120    if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
2121        CHECK_INTERFACE(ISurfaceComposer, data, reply);
2122        if (CC_UNLIKELY(!PermissionCache::checkCallingPermission(sHardwareTest))) {
2123            IPCThreadState* ipc = IPCThreadState::self();
2124            const int pid = ipc->getCallingPid();
2125            const int uid = ipc->getCallingUid();
2126            ALOGE("Permission Denial: "
2127                    "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
2128            return PERMISSION_DENIED;
2129        }
2130        int n;
2131        switch (code) {
2132            case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
2133            case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
2134                return NO_ERROR;
2135            case 1002:  // SHOW_UPDATES
2136                n = data.readInt32();
2137                mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
2138                invalidateHwcGeometry();
2139                repaintEverything();
2140                return NO_ERROR;
2141            case 1004:{ // repaint everything
2142                repaintEverything();
2143                return NO_ERROR;
2144            }
2145            case 1005:{ // force transaction
2146                setTransactionFlags(
2147                        eTransactionNeeded|
2148                        eDisplayTransactionNeeded|
2149                        eTraversalNeeded);
2150                return NO_ERROR;
2151            }
2152            case 1006:{ // send empty update
2153                signalRefresh();
2154                return NO_ERROR;
2155            }
2156            case 1008:  // toggle use of hw composer
2157                n = data.readInt32();
2158                mDebugDisableHWC = n ? 1 : 0;
2159                invalidateHwcGeometry();
2160                repaintEverything();
2161                return NO_ERROR;
2162            case 1009:  // toggle use of transform hint
2163                n = data.readInt32();
2164                mDebugDisableTransformHint = n ? 1 : 0;
2165                invalidateHwcGeometry();
2166                repaintEverything();
2167                return NO_ERROR;
2168            case 1010:  // interrogate.
2169                reply->writeInt32(0);
2170                reply->writeInt32(0);
2171                reply->writeInt32(mDebugRegion);
2172                reply->writeInt32(0);
2173                reply->writeInt32(mDebugDisableHWC);
2174                return NO_ERROR;
2175            case 1013: {
2176                Mutex::Autolock _l(mStateLock);
2177                sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2178                reply->writeInt32(hw->getPageFlipCount());
2179            }
2180            return NO_ERROR;
2181        }
2182    }
2183    return err;
2184}
2185
2186void SurfaceFlinger::repaintEverything() {
2187    android_atomic_or(1, &mRepaintEverything);
2188    signalTransaction();
2189}
2190
2191// ---------------------------------------------------------------------------
2192
2193status_t SurfaceFlinger::renderScreenToTexture(uint32_t layerStack,
2194        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2195{
2196    Mutex::Autolock _l(mStateLock);
2197    return renderScreenToTextureLocked(layerStack, textureName, uOut, vOut);
2198}
2199
2200status_t SurfaceFlinger::renderScreenToTextureLocked(uint32_t layerStack,
2201        GLuint* textureName, GLfloat* uOut, GLfloat* vOut)
2202{
2203    ATRACE_CALL();
2204
2205    if (!GLExtensions::getInstance().haveFramebufferObject())
2206        return INVALID_OPERATION;
2207
2208    // get screen geometry
2209    // FIXME: figure out what it means to have a screenshot texture w/ multi-display
2210    sp<const DisplayDevice> hw(getDefaultDisplayDevice());
2211    const uint32_t hw_w = hw->getWidth();
2212    const uint32_t hw_h = hw->getHeight();
2213    GLfloat u = 1;
2214    GLfloat v = 1;
2215
2216    // make sure to clear all GL error flags
2217    while ( glGetError() != GL_NO_ERROR ) ;
2218
2219    // create a FBO
2220    GLuint name, tname;
2221    glGenTextures(1, &tname);
2222    glBindTexture(GL_TEXTURE_2D, tname);
2223    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
2224    glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
2225    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2226            hw_w, hw_h, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2227    if (glGetError() != GL_NO_ERROR) {
2228        while ( glGetError() != GL_NO_ERROR ) ;
2229        GLint tw = (2 << (31 - clz(hw_w)));
2230        GLint th = (2 << (31 - clz(hw_h)));
2231        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,
2232                tw, th, 0, GL_RGB, GL_UNSIGNED_BYTE, 0);
2233        u = GLfloat(hw_w) / tw;
2234        v = GLfloat(hw_h) / th;
2235    }
2236    glGenFramebuffersOES(1, &name);
2237    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2238    glFramebufferTexture2DOES(GL_FRAMEBUFFER_OES,
2239            GL_COLOR_ATTACHMENT0_OES, GL_TEXTURE_2D, tname, 0);
2240
2241    // redraw the screen entirely...
2242    glDisable(GL_TEXTURE_EXTERNAL_OES);
2243    glDisable(GL_TEXTURE_2D);
2244    glClearColor(0,0,0,1);
2245    glClear(GL_COLOR_BUFFER_BIT);
2246    glMatrixMode(GL_MODELVIEW);
2247    glLoadIdentity();
2248    const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2249    const size_t count = layers.size();
2250    for (size_t i=0 ; i<count ; ++i) {
2251        const sp<LayerBase>& layer(layers[i]);
2252        layer->draw(hw);
2253    }
2254
2255    hw->compositionComplete();
2256
2257    // back to main framebuffer
2258    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2259    glDeleteFramebuffersOES(1, &name);
2260
2261    *textureName = tname;
2262    *uOut = u;
2263    *vOut = v;
2264    return NO_ERROR;
2265}
2266
2267// ---------------------------------------------------------------------------
2268
2269status_t SurfaceFlinger::captureScreenImplLocked(const sp<IBinder>& display,
2270        sp<IMemoryHeap>* heap,
2271        uint32_t* w, uint32_t* h, PixelFormat* f,
2272        uint32_t sw, uint32_t sh,
2273        uint32_t minLayerZ, uint32_t maxLayerZ)
2274{
2275    ATRACE_CALL();
2276
2277    status_t result = PERMISSION_DENIED;
2278
2279    if (!GLExtensions::getInstance().haveFramebufferObject()) {
2280        return INVALID_OPERATION;
2281    }
2282
2283    // get screen geometry
2284    sp<const DisplayDevice> hw(getDisplayDevice(display));
2285    const uint32_t hw_w = hw->getWidth();
2286    const uint32_t hw_h = hw->getHeight();
2287
2288    // if we have secure windows on this display, never allow the screen capture
2289    if (hw->getSecureLayerVisible()) {
2290        ALOGW("FB is protected: PERMISSION_DENIED");
2291        return PERMISSION_DENIED;
2292    }
2293
2294    if ((sw > hw_w) || (sh > hw_h)) {
2295        ALOGE("size mismatch (%d, %d) > (%d, %d)", sw, sh, hw_w, hw_h);
2296        return BAD_VALUE;
2297    }
2298
2299    sw = (!sw) ? hw_w : sw;
2300    sh = (!sh) ? hw_h : sh;
2301    const size_t size = sw * sh * 4;
2302    const bool filtering = sw != hw_w || sh != hw_h;
2303
2304//    ALOGD("screenshot: sw=%d, sh=%d, minZ=%d, maxZ=%d",
2305//            sw, sh, minLayerZ, maxLayerZ);
2306
2307    // make sure to clear all GL error flags
2308    while ( glGetError() != GL_NO_ERROR ) ;
2309
2310    // create a FBO
2311    GLuint name, tname;
2312    glGenRenderbuffersOES(1, &tname);
2313    glBindRenderbufferOES(GL_RENDERBUFFER_OES, tname);
2314    glRenderbufferStorageOES(GL_RENDERBUFFER_OES, GL_RGBA8_OES, sw, sh);
2315
2316    glGenFramebuffersOES(1, &name);
2317    glBindFramebufferOES(GL_FRAMEBUFFER_OES, name);
2318    glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,
2319            GL_COLOR_ATTACHMENT0_OES, GL_RENDERBUFFER_OES, tname);
2320
2321    GLenum status = glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES);
2322
2323    if (status == GL_FRAMEBUFFER_COMPLETE_OES) {
2324
2325        // invert everything, b/c glReadPixel() below will invert the FB
2326        glViewport(0, 0, sw, sh);
2327        glMatrixMode(GL_PROJECTION);
2328        glPushMatrix();
2329        glLoadIdentity();
2330        glOrthof(0, hw_w, hw_h, 0, 0, 1);
2331        glMatrixMode(GL_MODELVIEW);
2332
2333        // redraw the screen entirely...
2334        glClearColor(0,0,0,1);
2335        glClear(GL_COLOR_BUFFER_BIT);
2336
2337        const Vector< sp<LayerBase> >& layers(hw->getVisibleLayersSortedByZ());
2338        const size_t count = layers.size();
2339        for (size_t i=0 ; i<count ; ++i) {
2340            const sp<LayerBase>& layer(layers[i]);
2341            const uint32_t z = layer->drawingState().z;
2342            if (z >= minLayerZ && z <= maxLayerZ) {
2343                if (filtering) layer->setFiltering(true);
2344                layer->draw(hw);
2345                if (filtering) layer->setFiltering(false);
2346            }
2347        }
2348
2349        // check for errors and return screen capture
2350        if (glGetError() != GL_NO_ERROR) {
2351            // error while rendering
2352            result = INVALID_OPERATION;
2353        } else {
2354            // allocate shared memory large enough to hold the
2355            // screen capture
2356            sp<MemoryHeapBase> base(
2357                    new MemoryHeapBase(size, 0, "screen-capture") );
2358            void* const ptr = base->getBase();
2359            if (ptr) {
2360                // capture the screen with glReadPixels()
2361                ScopedTrace _t(ATRACE_TAG, "glReadPixels");
2362                glReadPixels(0, 0, sw, sh, GL_RGBA, GL_UNSIGNED_BYTE, ptr);
2363                if (glGetError() == GL_NO_ERROR) {
2364                    *heap = base;
2365                    *w = sw;
2366                    *h = sh;
2367                    *f = PIXEL_FORMAT_RGBA_8888;
2368                    result = NO_ERROR;
2369                }
2370            } else {
2371                result = NO_MEMORY;
2372            }
2373        }
2374        glViewport(0, 0, hw_w, hw_h);
2375        glMatrixMode(GL_PROJECTION);
2376        glPopMatrix();
2377        glMatrixMode(GL_MODELVIEW);
2378    } else {
2379        result = BAD_VALUE;
2380    }
2381
2382    // release FBO resources
2383    glBindFramebufferOES(GL_FRAMEBUFFER_OES, 0);
2384    glDeleteRenderbuffersOES(1, &tname);
2385    glDeleteFramebuffersOES(1, &name);
2386
2387    hw->compositionComplete();
2388
2389//    ALOGD("screenshot: result = %s", result<0 ? strerror(result) : "OK");
2390
2391    return result;
2392}
2393
2394
2395status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
2396        sp<IMemoryHeap>* heap,
2397        uint32_t* width, uint32_t* height, PixelFormat* format,
2398        uint32_t sw, uint32_t sh,
2399        uint32_t minLayerZ, uint32_t maxLayerZ)
2400{
2401    if (CC_UNLIKELY(display == 0))
2402        return BAD_VALUE;
2403
2404    if (!GLExtensions::getInstance().haveFramebufferObject())
2405        return INVALID_OPERATION;
2406
2407    class MessageCaptureScreen : public MessageBase {
2408        SurfaceFlinger* flinger;
2409        sp<IBinder> display;
2410        sp<IMemoryHeap>* heap;
2411        uint32_t* w;
2412        uint32_t* h;
2413        PixelFormat* f;
2414        uint32_t sw;
2415        uint32_t sh;
2416        uint32_t minLayerZ;
2417        uint32_t maxLayerZ;
2418        status_t result;
2419    public:
2420        MessageCaptureScreen(SurfaceFlinger* flinger, const sp<IBinder>& display,
2421                sp<IMemoryHeap>* heap, uint32_t* w, uint32_t* h, PixelFormat* f,
2422                uint32_t sw, uint32_t sh,
2423                uint32_t minLayerZ, uint32_t maxLayerZ)
2424            : flinger(flinger), display(display),
2425              heap(heap), w(w), h(h), f(f), sw(sw), sh(sh),
2426              minLayerZ(minLayerZ), maxLayerZ(maxLayerZ),
2427              result(PERMISSION_DENIED)
2428        {
2429        }
2430        status_t getResult() const {
2431            return result;
2432        }
2433        virtual bool handler() {
2434            Mutex::Autolock _l(flinger->mStateLock);
2435            result = flinger->captureScreenImplLocked(display,
2436                    heap, w, h, f, sw, sh, minLayerZ, maxLayerZ);
2437            return true;
2438        }
2439    };
2440
2441    sp<MessageBase> msg = new MessageCaptureScreen(this,
2442            display, heap, width, height, format, sw, sh, minLayerZ, maxLayerZ);
2443    status_t res = postMessageSync(msg);
2444    if (res == NO_ERROR) {
2445        res = static_cast<MessageCaptureScreen*>( msg.get() )->getResult();
2446    }
2447    return res;
2448}
2449
2450// ---------------------------------------------------------------------------
2451
2452SurfaceFlinger::LayerVector::LayerVector() {
2453}
2454
2455SurfaceFlinger::LayerVector::LayerVector(const LayerVector& rhs)
2456    : SortedVector<sp<LayerBase> >(rhs) {
2457}
2458
2459int SurfaceFlinger::LayerVector::do_compare(const void* lhs,
2460    const void* rhs) const
2461{
2462    // sort layers per layer-stack, then by z-order and finally by sequence
2463    const sp<LayerBase>& l(*reinterpret_cast<const sp<LayerBase>*>(lhs));
2464    const sp<LayerBase>& r(*reinterpret_cast<const sp<LayerBase>*>(rhs));
2465
2466    uint32_t ls = l->currentState().layerStack;
2467    uint32_t rs = r->currentState().layerStack;
2468    if (ls != rs)
2469        return ls - rs;
2470
2471    uint32_t lz = l->currentState().z;
2472    uint32_t rz = r->currentState().z;
2473    if (lz != rz)
2474        return lz - rz;
2475
2476    return l->sequence - r->sequence;
2477}
2478
2479// ---------------------------------------------------------------------------
2480
2481SurfaceFlinger::DisplayDeviceState::DisplayDeviceState()
2482    : type(DisplayDevice::DISPLAY_ID_INVALID) {
2483}
2484
2485SurfaceFlinger::DisplayDeviceState::DisplayDeviceState(DisplayDevice::DisplayType type)
2486    : type(type), layerStack(0), orientation(0) {
2487    viewport.makeInvalid();
2488    frame.makeInvalid();
2489}
2490
2491// ---------------------------------------------------------------------------
2492
2493GraphicBufferAlloc::GraphicBufferAlloc() {}
2494
2495GraphicBufferAlloc::~GraphicBufferAlloc() {}
2496
2497sp<GraphicBuffer> GraphicBufferAlloc::createGraphicBuffer(uint32_t w, uint32_t h,
2498        PixelFormat format, uint32_t usage, status_t* error) {
2499    sp<GraphicBuffer> graphicBuffer(new GraphicBuffer(w, h, format, usage));
2500    status_t err = graphicBuffer->initCheck();
2501    *error = err;
2502    if (err != 0 || graphicBuffer->handle == 0) {
2503        if (err == NO_MEMORY) {
2504            GraphicBuffer::dumpAllocationsToSystemLog();
2505        }
2506        ALOGE("GraphicBufferAlloc::createGraphicBuffer(w=%d, h=%d) "
2507             "failed (%s), handle=%p",
2508                w, h, strerror(-err), graphicBuffer->handle);
2509        return 0;
2510    }
2511    return graphicBuffer;
2512}
2513
2514// ---------------------------------------------------------------------------
2515
2516}; // namespace android
2517