mir_graph.cc revision 20f85597828194c12be10d3a927999def066555e
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mir_graph.h"
18
19#include <inttypes.h>
20#include <queue>
21#include <unistd.h>
22
23#include "base/bit_vector-inl.h"
24#include "base/logging.h"
25#include "base/stl_util.h"
26#include "base/stringprintf.h"
27#include "base/scoped_arena_containers.h"
28#include "compiler_ir.h"
29#include "dex_file-inl.h"
30#include "dex_flags.h"
31#include "dex_instruction-inl.h"
32#include "driver/compiler_driver.h"
33#include "driver/dex_compilation_unit.h"
34#include "dex/quick/quick_compiler.h"
35#include "leb128.h"
36#include "pass_driver_me_post_opt.h"
37#include "stack.h"
38
39namespace art {
40
41#define MAX_PATTERN_LEN 5
42
43const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = {
44  "Phi",
45  "Copy",
46  "FusedCmplFloat",
47  "FusedCmpgFloat",
48  "FusedCmplDouble",
49  "FusedCmpgDouble",
50  "FusedCmpLong",
51  "Nop",
52  "OpNullCheck",
53  "OpRangeCheck",
54  "OpDivZeroCheck",
55  "Check1",
56  "Check2",
57  "Select",
58  "ConstVector",
59  "MoveVector",
60  "PackedMultiply",
61  "PackedAddition",
62  "PackedSubtract",
63  "PackedShiftLeft",
64  "PackedSignedShiftRight",
65  "PackedUnsignedShiftRight",
66  "PackedAnd",
67  "PackedOr",
68  "PackedXor",
69  "PackedAddReduce",
70  "PackedReduce",
71  "PackedSet",
72  "ReserveVectorRegisters",
73  "ReturnVectorRegisters",
74  "MemBarrier",
75  "PackedArrayGet",
76  "PackedArrayPut",
77  "MaddInt",
78  "MsubInt",
79  "MaddLong",
80  "MsubLong",
81};
82
83MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena)
84    : reg_location_(NULL),
85      block_id_map_(std::less<unsigned int>(), arena->Adapter()),
86      cu_(cu),
87      ssa_base_vregs_(arena->Adapter(kArenaAllocSSAToDalvikMap)),
88      ssa_subscripts_(arena->Adapter(kArenaAllocSSAToDalvikMap)),
89      vreg_to_ssa_map_(NULL),
90      ssa_last_defs_(NULL),
91      is_constant_v_(NULL),
92      constant_values_(NULL),
93      use_counts_(arena->Adapter()),
94      raw_use_counts_(arena->Adapter()),
95      num_reachable_blocks_(0),
96      max_num_reachable_blocks_(0),
97      dfs_orders_up_to_date_(false),
98      domination_up_to_date_(false),
99      mir_ssa_rep_up_to_date_(false),
100      topological_order_up_to_date_(false),
101      dfs_order_(arena->Adapter(kArenaAllocDfsPreOrder)),
102      dfs_post_order_(arena->Adapter(kArenaAllocDfsPostOrder)),
103      dom_post_order_traversal_(arena->Adapter(kArenaAllocDomPostOrder)),
104      topological_order_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
105      topological_order_loop_ends_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
106      topological_order_indexes_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
107      topological_order_loop_head_stack_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
108      max_nested_loops_(0u),
109      i_dom_list_(NULL),
110      temp_scoped_alloc_(),
111      block_list_(arena->Adapter(kArenaAllocBBList)),
112      try_block_addr_(NULL),
113      entry_block_(NULL),
114      exit_block_(NULL),
115      current_code_item_(NULL),
116      m_units_(arena->Adapter()),
117      method_stack_(arena->Adapter()),
118      current_method_(kInvalidEntry),
119      current_offset_(kInvalidEntry),
120      def_count_(0),
121      opcode_count_(NULL),
122      num_ssa_regs_(0),
123      extended_basic_blocks_(arena->Adapter()),
124      method_sreg_(0),
125      attributes_(METHOD_IS_LEAF),  // Start with leaf assumption, change on encountering invoke.
126      checkstats_(NULL),
127      arena_(arena),
128      backward_branches_(0),
129      forward_branches_(0),
130      num_non_special_compiler_temps_(0),
131      max_available_special_compiler_temps_(1),  // We only need the method ptr as a special temp for now.
132      requested_backend_temp_(false),
133      compiler_temps_committed_(false),
134      punt_to_interpreter_(false),
135      merged_df_flags_(0u),
136      ifield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)),
137      sfield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)),
138      method_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)),
139      suspend_checks_in_loops_(nullptr) {
140  memset(&temp_, 0, sizeof(temp_));
141  use_counts_.reserve(256);
142  raw_use_counts_.reserve(256);
143  block_list_.reserve(100);
144  try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */);
145
146
147  if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
148    // X86 requires a temp to keep track of the method address.
149    // TODO For x86_64, addressing can be done with RIP. When that is implemented,
150    // this needs to be updated to reserve 0 temps for BE.
151    max_available_non_special_compiler_temps_ = cu_->target64 ? 2 : 1;
152    reserved_temps_for_backend_ = max_available_non_special_compiler_temps_;
153  } else {
154    // Other architectures do not have a known lower bound for non-special temps.
155    // We allow the update of the max to happen at BE initialization stage and simply set 0 for now.
156    max_available_non_special_compiler_temps_ = 0;
157    reserved_temps_for_backend_ = 0;
158  }
159}
160
161MIRGraph::~MIRGraph() {
162  STLDeleteElements(&block_list_);
163  STLDeleteElements(&m_units_);
164}
165
166/*
167 * Parse an instruction, return the length of the instruction
168 */
169int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) {
170  const Instruction* inst = Instruction::At(code_ptr);
171  decoded_instruction->opcode = inst->Opcode();
172  decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0;
173  decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0;
174  decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0;
175  decoded_instruction->vC = inst->HasVRegC() ?  inst->VRegC() : 0;
176  if (inst->HasVarArgs()) {
177    inst->GetVarArgs(decoded_instruction->arg);
178  }
179  return inst->SizeInCodeUnits();
180}
181
182
183/* Split an existing block from the specified code offset into two */
184BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset,
185                                 BasicBlock* orig_block, BasicBlock** immed_pred_block_p) {
186  DCHECK_GT(code_offset, orig_block->start_offset);
187  MIR* insn = orig_block->first_mir_insn;
188  MIR* prev = NULL;  // Will be set to instruction before split.
189  while (insn) {
190    if (insn->offset == code_offset) break;
191    prev = insn;
192    insn = insn->next;
193  }
194  if (insn == NULL) {
195    LOG(FATAL) << "Break split failed";
196  }
197  // Now insn is at the instruction where we want to split, namely
198  // insn will be the first instruction of the "bottom" block.
199  // Similarly, prev will be the last instruction of the "top" block
200
201  BasicBlock* bottom_block = CreateNewBB(kDalvikByteCode);
202
203  bottom_block->start_offset = code_offset;
204  bottom_block->first_mir_insn = insn;
205  bottom_block->last_mir_insn = orig_block->last_mir_insn;
206
207  /* If this block was terminated by a return, conditional branch or throw,
208   * the flag needs to go with the bottom block
209   */
210  bottom_block->terminated_by_return = orig_block->terminated_by_return;
211  orig_block->terminated_by_return = false;
212
213  bottom_block->conditional_branch = orig_block->conditional_branch;
214  orig_block->conditional_branch = false;
215
216  bottom_block->explicit_throw = orig_block->explicit_throw;
217  orig_block->explicit_throw = false;
218
219  /* Handle the taken path */
220  bottom_block->taken = orig_block->taken;
221  if (bottom_block->taken != NullBasicBlockId) {
222    orig_block->taken = NullBasicBlockId;
223    BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken);
224    bb_taken->ErasePredecessor(orig_block->id);
225    bb_taken->predecessors.push_back(bottom_block->id);
226  }
227
228  /* Handle the fallthrough path */
229  bottom_block->fall_through = orig_block->fall_through;
230  orig_block->fall_through = bottom_block->id;
231  bottom_block->predecessors.push_back(orig_block->id);
232  if (bottom_block->fall_through != NullBasicBlockId) {
233    BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through);
234    bb_fall_through->ErasePredecessor(orig_block->id);
235    bb_fall_through->predecessors.push_back(bottom_block->id);
236  }
237
238  /* Handle the successor list */
239  if (orig_block->successor_block_list_type != kNotUsed) {
240    bottom_block->successor_block_list_type = orig_block->successor_block_list_type;
241    bottom_block->successor_blocks.swap(orig_block->successor_blocks);
242    orig_block->successor_block_list_type = kNotUsed;
243    DCHECK(orig_block->successor_blocks.empty());  // Empty after the swap() above.
244    for (SuccessorBlockInfo* successor_block_info : bottom_block->successor_blocks) {
245      BasicBlock* bb = GetBasicBlock(successor_block_info->block);
246      if (bb != nullptr) {
247        bb->ErasePredecessor(orig_block->id);
248        bb->predecessors.push_back(bottom_block->id);
249      }
250    }
251  }
252
253  orig_block->last_mir_insn = prev;
254  prev->next = nullptr;
255
256  /*
257   * Update the immediate predecessor block pointer so that outgoing edges
258   * can be applied to the proper block.
259   */
260  if (immed_pred_block_p) {
261    DCHECK_EQ(*immed_pred_block_p, orig_block);
262    *immed_pred_block_p = bottom_block;
263  }
264
265  // Associate dex instructions in the bottom block with the new container.
266  DCHECK(insn != nullptr);
267  DCHECK(insn != orig_block->first_mir_insn);
268  DCHECK(insn == bottom_block->first_mir_insn);
269  DCHECK_EQ(insn->offset, bottom_block->start_offset);
270  // Scan the "bottom" instructions, remapping them to the
271  // newly created "bottom" block.
272  MIR* p = insn;
273  p->bb = bottom_block->id;
274  while (p != bottom_block->last_mir_insn) {
275    p = p->next;
276    DCHECK(p != nullptr);
277    p->bb = bottom_block->id;
278  }
279
280  return bottom_block;
281}
282
283/*
284 * Given a code offset, find out the block that starts with it. If the offset
285 * is in the middle of an existing block, split it into two.  If immed_pred_block_p
286 * is not non-null and is the block being split, update *immed_pred_block_p to
287 * point to the bottom block so that outgoing edges can be set up properly
288 * (by the caller)
289 * Utilizes a map for fast lookup of the typical cases.
290 */
291BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool create,
292                                BasicBlock** immed_pred_block_p,
293                                ScopedArenaVector<uint16_t>* dex_pc_to_block_map) {
294  if (code_offset >= current_code_item_->insns_size_in_code_units_) {
295    return nullptr;
296  }
297
298  int block_id = (*dex_pc_to_block_map)[code_offset];
299  BasicBlock* bb = GetBasicBlock(block_id);
300
301  if ((bb != nullptr) && (bb->start_offset == code_offset)) {
302    // Does this containing block start with the desired instruction?
303    return bb;
304  }
305
306  // No direct hit.
307  if (!create) {
308    return nullptr;
309  }
310
311  if (bb != nullptr) {
312    // The target exists somewhere in an existing block.
313    BasicBlock* bottom_block = SplitBlock(code_offset, bb, bb == *immed_pred_block_p ?  immed_pred_block_p : nullptr);
314    DCHECK(bottom_block != nullptr);
315    MIR* p = bottom_block->first_mir_insn;
316    BasicBlock* orig_block = bb;
317    DCHECK_EQ((*dex_pc_to_block_map)[p->offset], orig_block->id);
318    // Scan the "bottom" instructions, remapping them to the
319    // newly created "bottom" block.
320    (*dex_pc_to_block_map)[p->offset] = bottom_block->id;
321    while (p != bottom_block->last_mir_insn) {
322      p = p->next;
323      DCHECK(p != nullptr);
324      int opcode = p->dalvikInsn.opcode;
325      /*
326       * Some messiness here to ensure that we only enter real opcodes and only the
327       * first half of a potentially throwing instruction that has been split into
328       * CHECK and work portions. Since the 2nd half of a split operation is always
329       * the first in a BasicBlock, we can't hit it here.
330       */
331      if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
332        BasicBlockId mapped_id = (*dex_pc_to_block_map)[p->offset];
333        // At first glance the instructions should all be mapped to orig_block.
334        // However, multiple instructions may correspond to the same dex, hence an earlier
335        // instruction may have already moved the mapping for dex to bottom_block.
336        DCHECK((mapped_id == orig_block->id) || (mapped_id == bottom_block->id));
337        (*dex_pc_to_block_map)[p->offset] = bottom_block->id;
338      }
339    }
340    return bottom_block;
341  }
342
343  // Create a new block.
344  bb = CreateNewBB(kDalvikByteCode);
345  bb->start_offset = code_offset;
346  (*dex_pc_to_block_map)[bb->start_offset] = bb->id;
347  return bb;
348}
349
350
351/* Identify code range in try blocks and set up the empty catch blocks */
352void MIRGraph::ProcessTryCatchBlocks(ScopedArenaVector<uint16_t>* dex_pc_to_block_map) {
353  int tries_size = current_code_item_->tries_size_;
354  DexOffset offset;
355
356  if (tries_size == 0) {
357    return;
358  }
359
360  for (int i = 0; i < tries_size; i++) {
361    const DexFile::TryItem* pTry =
362        DexFile::GetTryItems(*current_code_item_, i);
363    DexOffset start_offset = pTry->start_addr_;
364    DexOffset end_offset = start_offset + pTry->insn_count_;
365    for (offset = start_offset; offset < end_offset; offset++) {
366      try_block_addr_->SetBit(offset);
367    }
368  }
369
370  // Iterate over each of the handlers to enqueue the empty Catch blocks.
371  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0);
372  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
373  for (uint32_t idx = 0; idx < handlers_size; idx++) {
374    CatchHandlerIterator iterator(handlers_ptr);
375    for (; iterator.HasNext(); iterator.Next()) {
376      uint32_t address = iterator.GetHandlerAddress();
377      FindBlock(address, true /*create*/, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map);
378    }
379    handlers_ptr = iterator.EndDataPointer();
380  }
381}
382
383bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,
384                                     NarrowDexOffset catch_offset) {
385  // Catches for monitor-exit during stack unwinding have the pattern
386  //   move-exception (move)* (goto)? monitor-exit throw
387  // In the currently generated dex bytecode we see these catching a bytecode range including
388  // either its own or an identical monitor-exit, http://b/15745363 . This function checks if
389  // it's the case for a given monitor-exit and catch block so that we can ignore it.
390  // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized
391  // block in a try-block and catch the NPE, Error or Throwable and we should let it through;
392  // even though a throwing monitor-exit certainly indicates a bytecode error.)
393  const Instruction* monitor_exit = Instruction::At(current_code_item_->insns_ + monitor_exit_offset);
394  DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT);
395  int monitor_reg = monitor_exit->VRegA_11x();
396  const Instruction* check_insn = Instruction::At(current_code_item_->insns_ + catch_offset);
397  DCHECK(check_insn->Opcode() == Instruction::MOVE_EXCEPTION);
398  if (check_insn->VRegA_11x() == monitor_reg) {
399    // Unexpected move-exception to the same register. Probably not the pattern we're looking for.
400    return false;
401  }
402  check_insn = check_insn->Next();
403  while (true) {
404    int dest = -1;
405    bool wide = false;
406    switch (check_insn->Opcode()) {
407      case Instruction::MOVE_WIDE:
408        wide = true;
409        FALLTHROUGH_INTENDED;
410      case Instruction::MOVE_OBJECT:
411      case Instruction::MOVE:
412        dest = check_insn->VRegA_12x();
413        break;
414
415      case Instruction::MOVE_WIDE_FROM16:
416        wide = true;
417        FALLTHROUGH_INTENDED;
418      case Instruction::MOVE_OBJECT_FROM16:
419      case Instruction::MOVE_FROM16:
420        dest = check_insn->VRegA_22x();
421        break;
422
423      case Instruction::MOVE_WIDE_16:
424        wide = true;
425        FALLTHROUGH_INTENDED;
426      case Instruction::MOVE_OBJECT_16:
427      case Instruction::MOVE_16:
428        dest = check_insn->VRegA_32x();
429        break;
430
431      case Instruction::GOTO:
432      case Instruction::GOTO_16:
433      case Instruction::GOTO_32:
434        check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset());
435        FALLTHROUGH_INTENDED;
436      default:
437        return check_insn->Opcode() == Instruction::MONITOR_EXIT &&
438            check_insn->VRegA_11x() == monitor_reg;
439    }
440
441    if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) {
442      return false;
443    }
444
445    check_insn = check_insn->Next();
446  }
447}
448
449/* Process instructions with the kBranch flag */
450BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
451                                       int width, int flags, const uint16_t* code_ptr,
452                                       const uint16_t* code_end,
453                                       ScopedArenaVector<uint16_t>* dex_pc_to_block_map) {
454  DexOffset target = cur_offset;
455  switch (insn->dalvikInsn.opcode) {
456    case Instruction::GOTO:
457    case Instruction::GOTO_16:
458    case Instruction::GOTO_32:
459      target += insn->dalvikInsn.vA;
460      break;
461    case Instruction::IF_EQ:
462    case Instruction::IF_NE:
463    case Instruction::IF_LT:
464    case Instruction::IF_GE:
465    case Instruction::IF_GT:
466    case Instruction::IF_LE:
467      cur_block->conditional_branch = true;
468      target += insn->dalvikInsn.vC;
469      break;
470    case Instruction::IF_EQZ:
471    case Instruction::IF_NEZ:
472    case Instruction::IF_LTZ:
473    case Instruction::IF_GEZ:
474    case Instruction::IF_GTZ:
475    case Instruction::IF_LEZ:
476      cur_block->conditional_branch = true;
477      target += insn->dalvikInsn.vB;
478      break;
479    default:
480      LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set";
481  }
482  CountBranch(target);
483  BasicBlock* taken_block = FindBlock(target, /* create */ true,
484                                      /* immed_pred_block_p */ &cur_block,
485                                      dex_pc_to_block_map);
486  cur_block->taken = taken_block->id;
487  taken_block->predecessors.push_back(cur_block->id);
488
489  /* Always terminate the current block for conditional branches */
490  if (flags & Instruction::kContinue) {
491    BasicBlock* fallthrough_block = FindBlock(cur_offset +  width,
492                                             /* create */
493                                             true,
494                                             /* immed_pred_block_p */
495                                             &cur_block,
496                                             dex_pc_to_block_map);
497    cur_block->fall_through = fallthrough_block->id;
498    fallthrough_block->predecessors.push_back(cur_block->id);
499  } else if (code_ptr < code_end) {
500    FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map);
501  }
502  return cur_block;
503}
504
505/* Process instructions with the kSwitch flag */
506BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
507                                       int width, int flags,
508                                       ScopedArenaVector<uint16_t>* dex_pc_to_block_map) {
509  UNUSED(flags);
510  const uint16_t* switch_data =
511      reinterpret_cast<const uint16_t*>(GetCurrentInsns() + cur_offset + insn->dalvikInsn.vB);
512  int size;
513  const int* keyTable;
514  const int* target_table;
515  int i;
516  int first_key;
517
518  /*
519   * Packed switch data format:
520   *  ushort ident = 0x0100   magic value
521   *  ushort size             number of entries in the table
522   *  int first_key           first (and lowest) switch case value
523   *  int targets[size]       branch targets, relative to switch opcode
524   *
525   * Total size is (4+size*2) 16-bit code units.
526   */
527  if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) {
528    DCHECK_EQ(static_cast<int>(switch_data[0]),
529              static_cast<int>(Instruction::kPackedSwitchSignature));
530    size = switch_data[1];
531    first_key = switch_data[2] | (switch_data[3] << 16);
532    target_table = reinterpret_cast<const int*>(&switch_data[4]);
533    keyTable = NULL;        // Make the compiler happy.
534  /*
535   * Sparse switch data format:
536   *  ushort ident = 0x0200   magic value
537   *  ushort size             number of entries in the table; > 0
538   *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
539   *  int targets[size]       branch targets, relative to switch opcode
540   *
541   * Total size is (2+size*4) 16-bit code units.
542   */
543  } else {
544    DCHECK_EQ(static_cast<int>(switch_data[0]),
545              static_cast<int>(Instruction::kSparseSwitchSignature));
546    size = switch_data[1];
547    keyTable = reinterpret_cast<const int*>(&switch_data[2]);
548    target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]);
549    first_key = 0;   // To make the compiler happy.
550  }
551
552  if (cur_block->successor_block_list_type != kNotUsed) {
553    LOG(FATAL) << "Successor block list already in use: "
554               << static_cast<int>(cur_block->successor_block_list_type);
555  }
556  cur_block->successor_block_list_type =
557      (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?  kPackedSwitch : kSparseSwitch;
558  cur_block->successor_blocks.reserve(size);
559
560  for (i = 0; i < size; i++) {
561    BasicBlock* case_block = FindBlock(cur_offset + target_table[i],  /* create */ true,
562                                       /* immed_pred_block_p */ &cur_block,
563                                       dex_pc_to_block_map);
564    SuccessorBlockInfo* successor_block_info =
565        static_cast<SuccessorBlockInfo*>(arena_->Alloc(sizeof(SuccessorBlockInfo),
566                                                       kArenaAllocSuccessor));
567    successor_block_info->block = case_block->id;
568    successor_block_info->key =
569        (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
570        first_key + i : keyTable[i];
571    cur_block->successor_blocks.push_back(successor_block_info);
572    case_block->predecessors.push_back(cur_block->id);
573  }
574
575  /* Fall-through case */
576  BasicBlock* fallthrough_block = FindBlock(cur_offset +  width, /* create */ true,
577                                            /* immed_pred_block_p */ nullptr,
578                                            dex_pc_to_block_map);
579  cur_block->fall_through = fallthrough_block->id;
580  fallthrough_block->predecessors.push_back(cur_block->id);
581  return cur_block;
582}
583
584/* Process instructions with the kThrow flag */
585BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
586                                      int width, int flags, ArenaBitVector* try_block_addr,
587                                      const uint16_t* code_ptr, const uint16_t* code_end,
588                                      ScopedArenaVector<uint16_t>* dex_pc_to_block_map) {
589  UNUSED(flags);
590  bool in_try_block = try_block_addr->IsBitSet(cur_offset);
591  bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW);
592
593  /* In try block */
594  if (in_try_block) {
595    CatchHandlerIterator iterator(*current_code_item_, cur_offset);
596
597    if (cur_block->successor_block_list_type != kNotUsed) {
598      LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
599      LOG(FATAL) << "Successor block list already in use: "
600                 << static_cast<int>(cur_block->successor_block_list_type);
601    }
602
603    for (; iterator.HasNext(); iterator.Next()) {
604      BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* create */,
605                                          nullptr /* immed_pred_block_p */,
606                                          dex_pc_to_block_map);
607      if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT &&
608          IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) {
609        // Don't allow monitor-exit to catch its own exception, http://b/15745363 .
610        continue;
611      }
612      if (cur_block->successor_block_list_type == kNotUsed) {
613        cur_block->successor_block_list_type = kCatch;
614      }
615      catch_block->catch_entry = true;
616      if (kIsDebugBuild) {
617        catches_.insert(catch_block->start_offset);
618      }
619      SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*>
620          (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
621      successor_block_info->block = catch_block->id;
622      successor_block_info->key = iterator.GetHandlerTypeIndex();
623      cur_block->successor_blocks.push_back(successor_block_info);
624      catch_block->predecessors.push_back(cur_block->id);
625    }
626    in_try_block = (cur_block->successor_block_list_type != kNotUsed);
627  }
628  bool build_all_edges =
629      (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block;
630  if (!in_try_block && build_all_edges) {
631    BasicBlock* eh_block = CreateNewBB(kExceptionHandling);
632    cur_block->taken = eh_block->id;
633    eh_block->start_offset = cur_offset;
634    eh_block->predecessors.push_back(cur_block->id);
635  }
636
637  if (is_throw) {
638    cur_block->explicit_throw = true;
639    if (code_ptr < code_end) {
640      // Force creation of new block following THROW via side-effect.
641      FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map);
642    }
643    if (!in_try_block) {
644       // Don't split a THROW that can't rethrow - we're done.
645      return cur_block;
646    }
647  }
648
649  if (!build_all_edges) {
650    /*
651     * Even though there is an exception edge here, control cannot return to this
652     * method.  Thus, for the purposes of dataflow analysis and optimization, we can
653     * ignore the edge.  Doing this reduces compile time, and increases the scope
654     * of the basic-block level optimization pass.
655     */
656    return cur_block;
657  }
658
659  /*
660   * Split the potentially-throwing instruction into two parts.
661   * The first half will be a pseudo-op that captures the exception
662   * edges and terminates the basic block.  It always falls through.
663   * Then, create a new basic block that begins with the throwing instruction
664   * (minus exceptions).  Note: this new basic block must NOT be entered into
665   * the block_map.  If the potentially-throwing instruction is the target of a
666   * future branch, we need to find the check psuedo half.  The new
667   * basic block containing the work portion of the instruction should
668   * only be entered via fallthrough from the block containing the
669   * pseudo exception edge MIR.  Note also that this new block is
670   * not automatically terminated after the work portion, and may
671   * contain following instructions.
672   *
673   * Note also that the dex_pc_to_block_map entry for the potentially
674   * throwing instruction will refer to the original basic block.
675   */
676  BasicBlock* new_block = CreateNewBB(kDalvikByteCode);
677  new_block->start_offset = insn->offset;
678  cur_block->fall_through = new_block->id;
679  new_block->predecessors.push_back(cur_block->id);
680  MIR* new_insn = NewMIR();
681  *new_insn = *insn;
682  insn->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheck);
683  // Associate the two halves.
684  insn->meta.throw_insn = new_insn;
685  new_block->AppendMIR(new_insn);
686  return new_block;
687}
688
689/* Parse a Dex method and insert it into the MIRGraph at the current insert point. */
690void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
691                           InvokeType invoke_type ATTRIBUTE_UNUSED, uint16_t class_def_idx,
692                           uint32_t method_idx, jobject class_loader, const DexFile& dex_file) {
693  current_code_item_ = code_item;
694  method_stack_.push_back(std::make_pair(current_method_, current_offset_));
695  current_method_ = m_units_.size();
696  current_offset_ = 0;
697  // TODO: will need to snapshot stack image and use that as the mir context identification.
698  m_units_.push_back(new DexCompilationUnit(cu_, class_loader, Runtime::Current()->GetClassLinker(),
699                     dex_file, current_code_item_, class_def_idx, method_idx, access_flags,
700                     cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx)));
701  const uint16_t* code_ptr = current_code_item_->insns_;
702  const uint16_t* code_end =
703      current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_;
704
705  // TODO: need to rework expansion of block list & try_block_addr when inlining activated.
706  // TUNING: use better estimate of basic blocks for following resize.
707  block_list_.reserve(block_list_.size() + current_code_item_->insns_size_in_code_units_);
708  // FindBlock lookup cache.
709  ScopedArenaAllocator allocator(&cu_->arena_stack);
710  ScopedArenaVector<uint16_t> dex_pc_to_block_map(allocator.Adapter());
711  dex_pc_to_block_map.resize(dex_pc_to_block_map.size() +
712                             current_code_item_->insns_size_in_code_units_);
713
714  // TODO: replace with explicit resize routine.  Using automatic extension side effect for now.
715  try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_);
716  try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_);
717
718  // If this is the first method, set up default entry and exit blocks.
719  if (current_method_ == 0) {
720    DCHECK(entry_block_ == NULL);
721    DCHECK(exit_block_ == NULL);
722    DCHECK_EQ(GetNumBlocks(), 0U);
723    // Use id 0 to represent a null block.
724    BasicBlock* null_block = CreateNewBB(kNullBlock);
725    DCHECK_EQ(null_block->id, NullBasicBlockId);
726    null_block->hidden = true;
727    entry_block_ = CreateNewBB(kEntryBlock);
728    exit_block_ = CreateNewBB(kExitBlock);
729  } else {
730    UNIMPLEMENTED(FATAL) << "Nested inlining not implemented.";
731    /*
732     * Will need to manage storage for ins & outs, push prevous state and update
733     * insert point.
734     */
735  }
736
737  /* Current block to record parsed instructions */
738  BasicBlock* cur_block = CreateNewBB(kDalvikByteCode);
739  DCHECK_EQ(current_offset_, 0U);
740  cur_block->start_offset = current_offset_;
741  // TODO: for inlining support, insert at the insert point rather than entry block.
742  entry_block_->fall_through = cur_block->id;
743  cur_block->predecessors.push_back(entry_block_->id);
744
745  /* Identify code range in try blocks and set up the empty catch blocks */
746  ProcessTryCatchBlocks(&dex_pc_to_block_map);
747
748  uint64_t merged_df_flags = 0u;
749
750  /* Parse all instructions and put them into containing basic blocks */
751  while (code_ptr < code_end) {
752    MIR *insn = NewMIR();
753    insn->offset = current_offset_;
754    insn->m_unit_index = current_method_;
755    int width = ParseInsn(code_ptr, &insn->dalvikInsn);
756    Instruction::Code opcode = insn->dalvikInsn.opcode;
757    if (opcode_count_ != NULL) {
758      opcode_count_[static_cast<int>(opcode)]++;
759    }
760
761    int flags = insn->dalvikInsn.FlagsOf();
762    int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode);
763
764    uint64_t df_flags = GetDataFlowAttributes(insn);
765    merged_df_flags |= df_flags;
766
767    if (df_flags & DF_HAS_DEFS) {
768      def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1;
769    }
770
771    if (df_flags & DF_LVN) {
772      cur_block->use_lvn = true;  // Run local value numbering on this basic block.
773    }
774
775    // Check for inline data block signatures.
776    if (opcode == Instruction::NOP) {
777      // A simple NOP will have a width of 1 at this point, embedded data NOP > 1.
778      if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) {
779        // Could be an aligning nop.  If an embedded data NOP follows, treat pair as single unit.
780        uint16_t following_raw_instruction = code_ptr[1];
781        if ((following_raw_instruction == Instruction::kSparseSwitchSignature) ||
782            (following_raw_instruction == Instruction::kPackedSwitchSignature) ||
783            (following_raw_instruction == Instruction::kArrayDataSignature)) {
784          width += Instruction::At(code_ptr + 1)->SizeInCodeUnits();
785        }
786      }
787      if (width == 1) {
788        // It is a simple nop - treat normally.
789        cur_block->AppendMIR(insn);
790      } else {
791        DCHECK(cur_block->fall_through == NullBasicBlockId);
792        DCHECK(cur_block->taken == NullBasicBlockId);
793        // Unreachable instruction, mark for no continuation and end basic block.
794        flags &= ~Instruction::kContinue;
795        FindBlock(current_offset_ + width, /* create */ true,
796                  /* immed_pred_block_p */ nullptr, &dex_pc_to_block_map);
797      }
798    } else {
799      cur_block->AppendMIR(insn);
800    }
801
802    // Associate the starting dex_pc for this opcode with its containing basic block.
803    dex_pc_to_block_map[insn->offset] = cur_block->id;
804
805    code_ptr += width;
806
807    if (flags & Instruction::kBranch) {
808      cur_block = ProcessCanBranch(cur_block, insn, current_offset_,
809                                   width, flags, code_ptr, code_end, &dex_pc_to_block_map);
810    } else if (flags & Instruction::kReturn) {
811      cur_block->terminated_by_return = true;
812      cur_block->fall_through = exit_block_->id;
813      exit_block_->predecessors.push_back(cur_block->id);
814      /*
815       * Terminate the current block if there are instructions
816       * afterwards.
817       */
818      if (code_ptr < code_end) {
819        /*
820         * Create a fallthrough block for real instructions
821         * (incl. NOP).
822         */
823         FindBlock(current_offset_ + width, /* create */ true,
824                   /* immed_pred_block_p */ nullptr, &dex_pc_to_block_map);
825      }
826    } else if (flags & Instruction::kThrow) {
827      cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_,
828                                  code_ptr, code_end, &dex_pc_to_block_map);
829    } else if (flags & Instruction::kSwitch) {
830      cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width,
831                                   flags, &dex_pc_to_block_map);
832    }
833    if (verify_flags & Instruction::kVerifyVarArgRange ||
834        verify_flags & Instruction::kVerifyVarArgRangeNonZero) {
835      /*
836       * The Quick backend's runtime model includes a gap between a method's
837       * argument ("in") vregs and the rest of its vregs.  Handling a range instruction
838       * which spans the gap is somewhat complicated, and should not happen
839       * in normal usage of dx.  Punt to the interpreter.
840       */
841      int first_reg_in_range = insn->dalvikInsn.vC;
842      int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1;
843      if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) {
844        punt_to_interpreter_ = true;
845      }
846    }
847    current_offset_ += width;
848    BasicBlock* next_block = FindBlock(current_offset_, /* create */ false,
849                                       /* immed_pred_block_p */ nullptr,
850                                       &dex_pc_to_block_map);
851    if (next_block) {
852      /*
853       * The next instruction could be the target of a previously parsed
854       * forward branch so a block is already created. If the current
855       * instruction is not an unconditional branch, connect them through
856       * the fall-through link.
857       */
858      DCHECK(cur_block->fall_through == NullBasicBlockId ||
859             GetBasicBlock(cur_block->fall_through) == next_block ||
860             GetBasicBlock(cur_block->fall_through) == exit_block_);
861
862      if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) {
863        cur_block->fall_through = next_block->id;
864        next_block->predecessors.push_back(cur_block->id);
865      }
866      cur_block = next_block;
867    }
868  }
869  merged_df_flags_ = merged_df_flags;
870
871  if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
872    DumpCFG("/sdcard/1_post_parse_cfg/", true);
873  }
874
875  if (cu_->verbose) {
876    DumpMIRGraph();
877  }
878}
879
880void MIRGraph::ShowOpcodeStats() {
881  DCHECK(opcode_count_ != NULL);
882  LOG(INFO) << "Opcode Count";
883  for (int i = 0; i < kNumPackedOpcodes; i++) {
884    if (opcode_count_[i] != 0) {
885      LOG(INFO) << "-C- " << Instruction::Name(static_cast<Instruction::Code>(i))
886                << " " << opcode_count_[i];
887    }
888  }
889}
890
891uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) {
892  DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0])));
893  return oat_data_flow_attributes_[opcode];
894}
895
896uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) {
897  DCHECK(mir != nullptr);
898  Instruction::Code opcode = mir->dalvikInsn.opcode;
899  return GetDataFlowAttributes(opcode);
900}
901
902// The path can easily surpass FS limits because of parameters etc. Use pathconf to get FS
903// restrictions here. Note that a successful invocation will return an actual value. If the path
904// is too long for some reason, the return will be ENAMETOOLONG. Then cut off part of the name.
905//
906// It's possible the path is not valid, or some other errors appear. In that case return false.
907static bool CreateDumpFile(std::string& fname, const char* dir_prefix, NarrowDexOffset start_offset,
908                           const char *suffix, int nr, std::string* output) {
909  std::string dir = StringPrintf("./%s", dir_prefix);
910  int64_t max_name_length = pathconf(dir.c_str(), _PC_NAME_MAX);
911  if (max_name_length <= 0) {
912    PLOG(ERROR) << "Could not get file name restrictions for " << dir;
913    return false;
914  }
915
916  std::string name = StringPrintf("%s%x%s_%d.dot", fname.c_str(), start_offset,
917                                  suffix == nullptr ? "" : suffix, nr);
918  std::string fpath;
919  if (static_cast<int64_t>(name.size()) > max_name_length) {
920    std::string suffix_str = StringPrintf("_%d.dot", nr);
921    name = name.substr(0, static_cast<size_t>(max_name_length) - suffix_str.size()) + suffix_str;
922  }
923  // Sanity check.
924  DCHECK_LE(name.size(), static_cast<size_t>(max_name_length));
925
926  *output = StringPrintf("%s%s", dir_prefix, name.c_str());
927  return true;
928}
929
930// TODO: use a configurable base prefix, and adjust callers to supply pass name.
931/* Dump the CFG into a DOT graph */
932void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) {
933  FILE* file;
934  static AtomicInteger cnt(0);
935
936  // Increment counter to get a unique file number.
937  cnt++;
938  int nr = cnt.LoadRelaxed();
939
940  std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file));
941  ReplaceSpecialChars(fname);
942  std::string fpath;
943  if (!CreateDumpFile(fname, dir_prefix, GetBasicBlock(GetEntryBlock()->fall_through)->start_offset,
944                      suffix, nr, &fpath)) {
945    LOG(ERROR) << "Could not create dump file name for " << fname;
946    return;
947  }
948  file = fopen(fpath.c_str(), "w");
949  if (file == NULL) {
950    PLOG(ERROR) << "Could not open " << fpath << " for DumpCFG.";
951    return;
952  }
953  fprintf(file, "digraph G {\n");
954
955  fprintf(file, "  rankdir=TB\n");
956
957  int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_;
958  int idx;
959
960  for (idx = 0; idx < num_blocks; idx++) {
961    int block_idx = all_blocks ? idx : dfs_order_[idx];
962    BasicBlock* bb = GetBasicBlock(block_idx);
963    if (bb == NULL) continue;
964    if (bb->block_type == kDead) continue;
965    if (bb->hidden) continue;
966    if (bb->block_type == kEntryBlock) {
967      fprintf(file, "  entry_%d [shape=Mdiamond];\n", bb->id);
968    } else if (bb->block_type == kExitBlock) {
969      fprintf(file, "  exit_%d [shape=Mdiamond];\n", bb->id);
970    } else if (bb->block_type == kDalvikByteCode) {
971      fprintf(file, "  block%04x_%d [shape=record,label = \"{ \\\n",
972              bb->start_offset, bb->id);
973      const MIR* mir;
974        fprintf(file, "    {block id %d\\l}%s\\\n", bb->id,
975                bb->first_mir_insn ? " | " : " ");
976        for (mir = bb->first_mir_insn; mir; mir = mir->next) {
977            int opcode = mir->dalvikInsn.opcode;
978            fprintf(file, "    {%04x %s %s %s %s %s %s %s %s %s\\l}%s\\\n", mir->offset,
979                      mir->ssa_rep ? GetDalvikDisassembly(mir) :
980                      !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ?
981                        Instruction::Name(mir->dalvikInsn.opcode) :
982                        extended_mir_op_names_[opcode - kMirOpFirst],
983                      (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ",
984                      (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ",
985                      (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ",
986                      (mir->optimization_flags & MIR_STORE_NON_TEMPORAL) != 0 ? " non_temporal" : " ",
987                      (mir->optimization_flags & MIR_CALLEE) != 0 ? " inlined" : " ",
988                      (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0 ? " cl_inited" : " ",
989                      (mir->optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0 ? " cl_in_cache" : " ",
990                      (mir->optimization_flags & MIR_IGNORE_DIV_ZERO_CHECK) != 0 ? " no_div_check" : " ",
991                      mir->next ? " | " : " ");
992        }
993        fprintf(file, "  }\"];\n\n");
994    } else if (bb->block_type == kExceptionHandling) {
995      char block_name[BLOCK_NAME_LEN];
996
997      GetBlockName(bb, block_name);
998      fprintf(file, "  %s [shape=invhouse];\n", block_name);
999    }
1000
1001    char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
1002
1003    if (bb->taken != NullBasicBlockId) {
1004      GetBlockName(bb, block_name1);
1005      GetBlockName(GetBasicBlock(bb->taken), block_name2);
1006      fprintf(file, "  %s:s -> %s:n [style=dotted]\n",
1007              block_name1, block_name2);
1008    }
1009    if (bb->fall_through != NullBasicBlockId) {
1010      GetBlockName(bb, block_name1);
1011      GetBlockName(GetBasicBlock(bb->fall_through), block_name2);
1012      fprintf(file, "  %s:s -> %s:n\n", block_name1, block_name2);
1013    }
1014
1015    if (bb->successor_block_list_type != kNotUsed) {
1016      fprintf(file, "  succ%04x_%d [shape=%s,label = \"{ \\\n",
1017              bb->start_offset, bb->id,
1018              (bb->successor_block_list_type == kCatch) ?  "Mrecord" : "record");
1019
1020      int last_succ_id = static_cast<int>(bb->successor_blocks.size() - 1u);
1021      int succ_id = 0;
1022      for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
1023        BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
1024        fprintf(file, "    {<f%d> %04x: %04x\\l}%s\\\n",
1025                succ_id,
1026                successor_block_info->key,
1027                dest_block->start_offset,
1028                (succ_id != last_succ_id) ? " | " : " ");
1029        ++succ_id;
1030      }
1031      fprintf(file, "  }\"];\n\n");
1032
1033      GetBlockName(bb, block_name1);
1034      fprintf(file, "  %s:s -> succ%04x_%d:n [style=dashed]\n",
1035              block_name1, bb->start_offset, bb->id);
1036
1037      // Link the successor pseudo-block with all of its potential targets.
1038      succ_id = 0;
1039      for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
1040        BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
1041
1042        GetBlockName(dest_block, block_name2);
1043        fprintf(file, "  succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset,
1044                bb->id, succ_id++, block_name2);
1045      }
1046    }
1047    fprintf(file, "\n");
1048
1049    if (cu_->verbose) {
1050      /* Display the dominator tree */
1051      GetBlockName(bb, block_name1);
1052      fprintf(file, "  cfg%s [label=\"%s\", shape=none];\n",
1053              block_name1, block_name1);
1054      if (bb->i_dom) {
1055        GetBlockName(GetBasicBlock(bb->i_dom), block_name2);
1056        fprintf(file, "  cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1);
1057      }
1058    }
1059  }
1060  fprintf(file, "}\n");
1061  fclose(file);
1062}
1063
1064/* Insert an MIR instruction to the end of a basic block. */
1065void BasicBlock::AppendMIR(MIR* mir) {
1066  // Insert it after the last MIR.
1067  InsertMIRListAfter(last_mir_insn, mir, mir);
1068}
1069
1070void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1071  // Insert it after the last MIR.
1072  InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir);
1073}
1074
1075void BasicBlock::AppendMIRList(const std::vector<MIR*>& insns) {
1076  for (std::vector<MIR*>::const_iterator it = insns.begin(); it != insns.end(); it++) {
1077    MIR* new_mir = *it;
1078
1079    // Add a copy of each MIR.
1080    InsertMIRListAfter(last_mir_insn, new_mir, new_mir);
1081  }
1082}
1083
1084/* Insert a MIR instruction after the specified MIR. */
1085void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) {
1086  InsertMIRListAfter(current_mir, new_mir, new_mir);
1087}
1088
1089void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) {
1090  // If no MIR, we are done.
1091  if (first_list_mir == nullptr || last_list_mir == nullptr) {
1092    return;
1093  }
1094
1095  // If insert_after is null, assume BB is empty.
1096  if (insert_after == nullptr) {
1097    first_mir_insn = first_list_mir;
1098    last_mir_insn = last_list_mir;
1099    last_list_mir->next = nullptr;
1100  } else {
1101    MIR* after_list = insert_after->next;
1102    insert_after->next = first_list_mir;
1103    last_list_mir->next = after_list;
1104    if (after_list == nullptr) {
1105      last_mir_insn = last_list_mir;
1106    }
1107  }
1108
1109  // Set this BB to be the basic block of the MIRs.
1110  MIR* last = last_list_mir->next;
1111  for (MIR* mir = first_list_mir; mir != last; mir = mir->next) {
1112    mir->bb = id;
1113  }
1114}
1115
1116/* Insert an MIR instruction to the head of a basic block. */
1117void BasicBlock::PrependMIR(MIR* mir) {
1118  InsertMIRListBefore(first_mir_insn, mir, mir);
1119}
1120
1121void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1122  // Insert it before the first MIR.
1123  InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir);
1124}
1125
1126void BasicBlock::PrependMIRList(const std::vector<MIR*>& to_add) {
1127  for (std::vector<MIR*>::const_iterator it = to_add.begin(); it != to_add.end(); it++) {
1128    MIR* mir = *it;
1129
1130    InsertMIRListBefore(first_mir_insn, mir, mir);
1131  }
1132}
1133
1134/* Insert a MIR instruction before the specified MIR. */
1135void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) {
1136  // Insert as a single element list.
1137  return InsertMIRListBefore(current_mir, new_mir, new_mir);
1138}
1139
1140MIR* BasicBlock::FindPreviousMIR(MIR* mir) {
1141  MIR* current = first_mir_insn;
1142
1143  while (current != nullptr) {
1144    MIR* next = current->next;
1145
1146    if (next == mir) {
1147      return current;
1148    }
1149
1150    current = next;
1151  }
1152
1153  return nullptr;
1154}
1155
1156void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) {
1157  // If no MIR, we are done.
1158  if (first_list_mir == nullptr || last_list_mir == nullptr) {
1159    return;
1160  }
1161
1162  // If insert_before is null, assume BB is empty.
1163  if (insert_before == nullptr) {
1164    first_mir_insn = first_list_mir;
1165    last_mir_insn = last_list_mir;
1166    last_list_mir->next = nullptr;
1167  } else {
1168    if (first_mir_insn == insert_before) {
1169      last_list_mir->next = first_mir_insn;
1170      first_mir_insn = first_list_mir;
1171    } else {
1172      // Find the preceding MIR.
1173      MIR* before_list = FindPreviousMIR(insert_before);
1174      DCHECK(before_list != nullptr);
1175      before_list->next = first_list_mir;
1176      last_list_mir->next = insert_before;
1177    }
1178  }
1179
1180  // Set this BB to be the basic block of the MIRs.
1181  for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
1182    mir->bb = id;
1183  }
1184}
1185
1186bool BasicBlock::RemoveMIR(MIR* mir) {
1187  // Remove as a single element list.
1188  return RemoveMIRList(mir, mir);
1189}
1190
1191bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1192  if (first_list_mir == nullptr) {
1193    return false;
1194  }
1195
1196  // Try to find the MIR.
1197  MIR* before_list = nullptr;
1198  MIR* after_list = nullptr;
1199
1200  // If we are removing from the beginning of the MIR list.
1201  if (first_mir_insn == first_list_mir) {
1202    before_list = nullptr;
1203  } else {
1204    before_list = FindPreviousMIR(first_list_mir);
1205    if (before_list == nullptr) {
1206      // We did not find the mir.
1207      return false;
1208    }
1209  }
1210
1211  // Remove the BB information and also find the after_list.
1212  for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
1213    mir->bb = NullBasicBlockId;
1214  }
1215
1216  after_list = last_list_mir->next;
1217
1218  // If there is nothing before the list, after_list is the first_mir.
1219  if (before_list == nullptr) {
1220    first_mir_insn = after_list;
1221  } else {
1222    before_list->next = after_list;
1223  }
1224
1225  // If there is nothing after the list, before_list is last_mir.
1226  if (after_list == nullptr) {
1227    last_mir_insn = before_list;
1228  }
1229
1230  return true;
1231}
1232
1233MIR* BasicBlock::GetFirstNonPhiInsn() {
1234  MIR* mir = first_mir_insn;
1235  while (mir != nullptr && static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
1236    mir = mir->next;
1237  }
1238  return mir;
1239}
1240
1241MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) {
1242  MIR* next_mir = nullptr;
1243
1244  if (current != nullptr) {
1245    next_mir = current->next;
1246  }
1247
1248  if (next_mir == nullptr) {
1249    // Only look for next MIR that follows unconditionally.
1250    if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) {
1251      next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn;
1252    }
1253  }
1254
1255  return next_mir;
1256}
1257
1258static void FillTypeSizeString(uint32_t type_size, std::string* decoded_mir) {
1259  DCHECK(decoded_mir != nullptr);
1260  OpSize type = static_cast<OpSize>(type_size >> 16);
1261  uint16_t vect_size = (type_size & 0xFFFF);
1262
1263  // Now print the type and vector size.
1264  std::stringstream ss;
1265  ss << " (type:";
1266  ss << type;
1267  ss << " vectsize:";
1268  ss << vect_size;
1269  ss << ")";
1270
1271  decoded_mir->append(ss.str());
1272}
1273
1274void MIRGraph::DisassembleExtendedInstr(const MIR* mir, std::string* decoded_mir) {
1275  DCHECK(decoded_mir != nullptr);
1276  int opcode = mir->dalvikInsn.opcode;
1277  SSARepresentation* ssa_rep = mir->ssa_rep;
1278  int defs = (ssa_rep != nullptr) ? ssa_rep->num_defs : 0;
1279  int uses = (ssa_rep != nullptr) ? ssa_rep->num_uses : 0;
1280
1281  if (opcode < kMirOpFirst) {
1282    return;  // It is not an extended instruction.
1283  }
1284
1285  decoded_mir->append(extended_mir_op_names_[opcode - kMirOpFirst]);
1286
1287  switch (opcode) {
1288    case kMirOpPhi: {
1289      if (defs > 0 && uses > 0) {
1290        BasicBlockId* incoming = mir->meta.phi_incoming;
1291        decoded_mir->append(StringPrintf(" %s = (%s",
1292                           GetSSANameWithConst(ssa_rep->defs[0], true).c_str(),
1293                           GetSSANameWithConst(ssa_rep->uses[0], true).c_str()));
1294        decoded_mir->append(StringPrintf(":%d", incoming[0]));
1295        for (int i = 1; i < uses; i++) {
1296          decoded_mir->append(StringPrintf(", %s:%d", GetSSANameWithConst(ssa_rep->uses[i], true).c_str(), incoming[i]));
1297        }
1298        decoded_mir->append(")");
1299      }
1300      break;
1301    }
1302    case kMirOpCopy:
1303      if (ssa_rep != nullptr) {
1304        decoded_mir->append(" ");
1305        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1306        if (defs > 1) {
1307          decoded_mir->append(", ");
1308          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1309        }
1310        decoded_mir->append(" = ");
1311        decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false));
1312        if (uses > 1) {
1313          decoded_mir->append(", ");
1314          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false));
1315        }
1316      } else {
1317        decoded_mir->append(StringPrintf(" v%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1318      }
1319      break;
1320    case kMirOpFusedCmplFloat:
1321    case kMirOpFusedCmpgFloat:
1322    case kMirOpFusedCmplDouble:
1323    case kMirOpFusedCmpgDouble:
1324    case kMirOpFusedCmpLong:
1325      if (ssa_rep != nullptr) {
1326        decoded_mir->append(" ");
1327        decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false));
1328        for (int i = 1; i < uses; i++) {
1329          decoded_mir->append(", ");
1330          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false));
1331        }
1332      } else {
1333        decoded_mir->append(StringPrintf(" v%d, v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1334      }
1335      break;
1336    case kMirOpMoveVector:
1337      decoded_mir->append(StringPrintf(" vect%d = vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1338      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1339      break;
1340    case kMirOpPackedAddition:
1341      decoded_mir->append(StringPrintf(" vect%d = vect%d + vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1342      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1343      break;
1344    case kMirOpPackedMultiply:
1345      decoded_mir->append(StringPrintf(" vect%d = vect%d * vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1346      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1347      break;
1348    case kMirOpPackedSubtract:
1349      decoded_mir->append(StringPrintf(" vect%d = vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1350      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1351      break;
1352    case kMirOpPackedAnd:
1353      decoded_mir->append(StringPrintf(" vect%d = vect%d & vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1354      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1355      break;
1356    case kMirOpPackedOr:
1357      decoded_mir->append(StringPrintf(" vect%d = vect%d \\| vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1358      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1359      break;
1360    case kMirOpPackedXor:
1361      decoded_mir->append(StringPrintf(" vect%d = vect%d ^ vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1362      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1363      break;
1364    case kMirOpPackedShiftLeft:
1365      decoded_mir->append(StringPrintf(" vect%d = vect%d \\<\\< %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1366      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1367      break;
1368    case kMirOpPackedUnsignedShiftRight:
1369      decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1370      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1371      break;
1372    case kMirOpPackedSignedShiftRight:
1373      decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1374      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1375      break;
1376    case kMirOpConstVector:
1377      decoded_mir->append(StringPrintf(" vect%d = %x, %x, %x, %x", mir->dalvikInsn.vA, mir->dalvikInsn.arg[0],
1378                                      mir->dalvikInsn.arg[1], mir->dalvikInsn.arg[2], mir->dalvikInsn.arg[3]));
1379      break;
1380    case kMirOpPackedSet:
1381      if (ssa_rep != nullptr) {
1382        decoded_mir->append(StringPrintf(" vect%d = %s", mir->dalvikInsn.vA,
1383              GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
1384        if (uses > 1) {
1385          decoded_mir->append(", ");
1386          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false));
1387        }
1388      } else {
1389        decoded_mir->append(StringPrintf(" vect%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1390      }
1391      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1392      break;
1393    case kMirOpPackedAddReduce:
1394      if (ssa_rep != nullptr) {
1395        decoded_mir->append(" ");
1396        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1397        if (defs > 1) {
1398          decoded_mir->append(", ");
1399          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1400        }
1401        decoded_mir->append(StringPrintf(" = vect%d + %s", mir->dalvikInsn.vB,
1402            GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
1403        if (uses > 1) {
1404          decoded_mir->append(", ");
1405          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false));
1406        }
1407      } else {
1408        decoded_mir->append(StringPrintf("v%d = vect%d + v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB, mir->dalvikInsn.vA));
1409      }
1410      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1411      break;
1412    case kMirOpPackedReduce:
1413      if (ssa_rep != nullptr) {
1414        decoded_mir->append(" ");
1415        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1416        if (defs > 1) {
1417          decoded_mir->append(", ");
1418          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1419        }
1420        decoded_mir->append(StringPrintf(" = vect%d (extr_idx:%d)", mir->dalvikInsn.vB, mir->dalvikInsn.arg[0]));
1421      } else {
1422        decoded_mir->append(StringPrintf(" v%d = vect%d (extr_idx:%d)", mir->dalvikInsn.vA,
1423                                         mir->dalvikInsn.vB, mir->dalvikInsn.arg[0]));
1424      }
1425      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1426      break;
1427    case kMirOpReserveVectorRegisters:
1428    case kMirOpReturnVectorRegisters:
1429      decoded_mir->append(StringPrintf(" vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1430      break;
1431    case kMirOpMemBarrier: {
1432      decoded_mir->append(" type:");
1433      std::stringstream ss;
1434      ss << static_cast<MemBarrierKind>(mir->dalvikInsn.vA);
1435      decoded_mir->append(ss.str());
1436      break;
1437    }
1438    case kMirOpPackedArrayGet:
1439    case kMirOpPackedArrayPut:
1440      decoded_mir->append(StringPrintf(" vect%d", mir->dalvikInsn.vA));
1441      if (ssa_rep != nullptr) {
1442        decoded_mir->append(StringPrintf(", %s[%s]",
1443                                        GetSSANameWithConst(ssa_rep->uses[0], false).c_str(),
1444                                        GetSSANameWithConst(ssa_rep->uses[1], false).c_str()));
1445      } else {
1446        decoded_mir->append(StringPrintf(", v%d[v%d]", mir->dalvikInsn.vB, mir->dalvikInsn.vC));
1447      }
1448      FillTypeSizeString(mir->dalvikInsn.arg[0], decoded_mir);
1449      break;
1450    case kMirOpMaddInt:
1451    case kMirOpMsubInt:
1452    case kMirOpMaddLong:
1453    case kMirOpMsubLong:
1454      if (ssa_rep != nullptr) {
1455        decoded_mir->append(" ");
1456        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1457        if (defs > 1) {
1458          decoded_mir->append(", ");
1459          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1460        }
1461        for (int i = 0; i < uses; i++) {
1462          decoded_mir->append(", ");
1463          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false));
1464        }
1465      } else {
1466        decoded_mir->append(StringPrintf(" v%d, v%d, v%d, v%d",
1467                                         mir->dalvikInsn.vA, mir->dalvikInsn.vB,
1468                                         mir->dalvikInsn.vC, mir->dalvikInsn.arg[0]));
1469      }
1470      break;
1471    default:
1472      break;
1473  }
1474}
1475
1476char* MIRGraph::GetDalvikDisassembly(const MIR* mir) {
1477  MIR::DecodedInstruction insn = mir->dalvikInsn;
1478  std::string str;
1479  int flags = 0;
1480  int opcode = insn.opcode;
1481  char* ret;
1482  bool nop = false;
1483  SSARepresentation* ssa_rep = mir->ssa_rep;
1484  Instruction::Format dalvik_format = Instruction::k10x;  // Default to no-operand format.
1485
1486  // Handle special cases that recover the original dalvik instruction.
1487  if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) {
1488    str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1489    str.append(": ");
1490    // Recover the original Dex instruction.
1491    insn = mir->meta.throw_insn->dalvikInsn;
1492    ssa_rep = mir->meta.throw_insn->ssa_rep;
1493    opcode = insn.opcode;
1494  } else if (opcode == kMirOpNop) {
1495    str.append("[");
1496    if (mir->offset < current_code_item_->insns_size_in_code_units_) {
1497      // Recover original opcode.
1498      insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode();
1499      opcode = insn.opcode;
1500    }
1501    nop = true;
1502  }
1503  int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0;
1504  int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0;
1505
1506  if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
1507    // Note that this does not check the MIR's opcode in all cases. In cases where it
1508    // recovered dalvik instruction, it uses opcode of that instead of the extended one.
1509    DisassembleExtendedInstr(mir, &str);
1510  } else {
1511    dalvik_format = Instruction::FormatOf(insn.opcode);
1512    flags = insn.FlagsOf();
1513    str.append(Instruction::Name(insn.opcode));
1514
1515    // For invokes-style formats, treat wide regs as a pair of singles.
1516    bool show_singles = ((dalvik_format == Instruction::k35c) ||
1517                         (dalvik_format == Instruction::k3rc));
1518    if (defs != 0) {
1519      str.append(" ");
1520      str.append(GetSSANameWithConst(ssa_rep->defs[0], false));
1521      if (defs > 1) {
1522        str.append(", ");
1523        str.append(GetSSANameWithConst(ssa_rep->defs[1], false));
1524      }
1525      if (uses != 0) {
1526        str.append(", ");
1527      }
1528    }
1529    for (int i = 0; i < uses; i++) {
1530      str.append(" ");
1531      str.append(GetSSANameWithConst(ssa_rep->uses[i], show_singles));
1532      if (!show_singles && (reg_location_ != NULL) && reg_location_[i].wide) {
1533        // For the listing, skip the high sreg.
1534        i++;
1535      }
1536      if (i != (uses - 1)) {
1537        str.append(",");
1538      }
1539    }
1540
1541    switch (dalvik_format) {
1542      case Instruction::k11n:  // Add one immediate from vB.
1543      case Instruction::k21s:
1544      case Instruction::k31i:
1545      case Instruction::k21h:
1546        str.append(StringPrintf(", #0x%x", insn.vB));
1547        break;
1548      case Instruction::k51l:  // Add one wide immediate.
1549        str.append(StringPrintf(", #%" PRId64, insn.vB_wide));
1550        break;
1551      case Instruction::k21c:  // One register, one string/type/method index.
1552      case Instruction::k31c:
1553        str.append(StringPrintf(", index #0x%x", insn.vB));
1554        break;
1555      case Instruction::k22c:  // Two registers, one string/type/method index.
1556        str.append(StringPrintf(", index #0x%x", insn.vC));
1557        break;
1558      case Instruction::k22s:  // Add one immediate from vC.
1559      case Instruction::k22b:
1560        str.append(StringPrintf(", #0x%x", insn.vC));
1561        break;
1562      default:
1563        // Nothing left to print.
1564        break;
1565    }
1566
1567    if ((flags & Instruction::kBranch) != 0) {
1568      // For branches, decode the instructions to print out the branch targets.
1569      int offset = 0;
1570      switch (dalvik_format) {
1571        case Instruction::k21t:
1572          offset = insn.vB;
1573          break;
1574        case Instruction::k22t:
1575          offset = insn.vC;
1576          break;
1577        case Instruction::k10t:
1578        case Instruction::k20t:
1579        case Instruction::k30t:
1580          offset = insn.vA;
1581          break;
1582        default:
1583          LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode;
1584          break;
1585      }
1586      str.append(StringPrintf(", 0x%x (%c%x)", mir->offset + offset,
1587                              offset > 0 ? '+' : '-', offset > 0 ? offset : -offset));
1588    }
1589
1590    if (nop) {
1591      str.append("]--optimized away");
1592    }
1593  }
1594  int length = str.length() + 1;
1595  ret = arena_->AllocArray<char>(length, kArenaAllocDFInfo);
1596  strncpy(ret, str.c_str(), length);
1597  return ret;
1598}
1599
1600/* Turn method name into a legal Linux file name */
1601void MIRGraph::ReplaceSpecialChars(std::string& str) {
1602  static const struct { const char before; const char after; } match[] = {
1603    {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'},
1604    {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='}
1605  };
1606  for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) {
1607    std::replace(str.begin(), str.end(), match[i].before, match[i].after);
1608  }
1609}
1610
1611std::string MIRGraph::GetSSAName(int ssa_reg) {
1612  // TODO: This value is needed for LLVM and debugging. Currently, we compute this and then copy to
1613  //       the arena. We should be smarter and just place straight into the arena, or compute the
1614  //       value more lazily.
1615  int vreg = SRegToVReg(ssa_reg);
1616  if (vreg >= static_cast<int>(GetFirstTempVR())) {
1617    return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1618  } else {
1619    return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1620  }
1621}
1622
1623// Similar to GetSSAName, but if ssa name represents an immediate show that as well.
1624std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) {
1625  if (reg_location_ == NULL) {
1626    // Pre-SSA - just use the standard name.
1627    return GetSSAName(ssa_reg);
1628  }
1629  if (IsConst(reg_location_[ssa_reg])) {
1630    if (!singles_only && reg_location_[ssa_reg].wide &&
1631        !reg_location_[ssa_reg].high_word) {
1632      return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1633                          ConstantValueWide(reg_location_[ssa_reg]));
1634    } else {
1635      return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1636                          ConstantValue(reg_location_[ssa_reg]));
1637    }
1638  } else {
1639    int vreg = SRegToVReg(ssa_reg);
1640    if (vreg >= static_cast<int>(GetFirstTempVR())) {
1641      return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1642    } else {
1643      return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1644    }
1645  }
1646}
1647
1648void MIRGraph::GetBlockName(BasicBlock* bb, char* name) {
1649  switch (bb->block_type) {
1650    case kEntryBlock:
1651      snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id);
1652      break;
1653    case kExitBlock:
1654      snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id);
1655      break;
1656    case kDalvikByteCode:
1657      snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id);
1658      break;
1659    case kExceptionHandling:
1660      snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset,
1661               bb->id);
1662      break;
1663    default:
1664      snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id);
1665      break;
1666  }
1667}
1668
1669const char* MIRGraph::GetShortyFromMethodReference(const MethodReference& target_method) {
1670  const DexFile::MethodId& method_id =
1671      target_method.dex_file->GetMethodId(target_method.dex_method_index);
1672  return target_method.dex_file->GetShorty(method_id.proto_idx_);
1673}
1674
1675/* Debug Utility - dump a compilation unit */
1676void MIRGraph::DumpMIRGraph() {
1677  const char* block_type_names[] = {
1678    "Null Block",
1679    "Entry Block",
1680    "Code Block",
1681    "Exit Block",
1682    "Exception Handling",
1683    "Catch Block"
1684  };
1685
1686  LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1687  LOG(INFO) << GetInsns(0) << " insns";
1688  LOG(INFO) << GetNumBlocks() << " blocks in total";
1689
1690  for (BasicBlock* bb : block_list_) {
1691    LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)",
1692        bb->id,
1693        block_type_names[bb->block_type],
1694        bb->start_offset,
1695        bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset,
1696        bb->last_mir_insn ? "" : " empty");
1697    if (bb->taken != NullBasicBlockId) {
1698      LOG(INFO) << "  Taken branch: block " << bb->taken
1699                << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")";
1700    }
1701    if (bb->fall_through != NullBasicBlockId) {
1702      LOG(INFO) << "  Fallthrough : block " << bb->fall_through
1703                << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")";
1704    }
1705  }
1706}
1707
1708/*
1709 * Build an array of location records for the incoming arguments.
1710 * Note: one location record per word of arguments, with dummy
1711 * high-word loc for wide arguments.  Also pull up any following
1712 * MOVE_RESULT and incorporate it into the invoke.
1713 */
1714CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range) {
1715  CallInfo* info = static_cast<CallInfo*>(arena_->Alloc(sizeof(CallInfo),
1716                                                        kArenaAllocMisc));
1717  MIR* move_result_mir = FindMoveResult(bb, mir);
1718  if (move_result_mir == NULL) {
1719    info->result.location = kLocInvalid;
1720  } else {
1721    info->result = GetRawDest(move_result_mir);
1722    move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
1723  }
1724  info->num_arg_words = mir->ssa_rep->num_uses;
1725  info->args = (info->num_arg_words == 0) ? nullptr :
1726      arena_->AllocArray<RegLocation>(info->num_arg_words, kArenaAllocMisc);
1727  for (size_t i = 0; i < info->num_arg_words; i++) {
1728    info->args[i] = GetRawSrc(mir, i);
1729  }
1730  info->opt_flags = mir->optimization_flags;
1731  info->type = type;
1732  info->is_range = is_range;
1733  if (IsInstructionQuickInvoke(mir->dalvikInsn.opcode)) {
1734    const auto& method_info = GetMethodLoweringInfo(mir);
1735    info->method_ref = method_info.GetTargetMethod();
1736  } else {
1737    info->method_ref = MethodReference(GetCurrentDexCompilationUnit()->GetDexFile(),
1738                                       mir->dalvikInsn.vB);
1739  }
1740  info->index = mir->dalvikInsn.vB;
1741  info->offset = mir->offset;
1742  info->mir = mir;
1743  return info;
1744}
1745
1746// Allocate a new MIR.
1747MIR* MIRGraph::NewMIR() {
1748  MIR* mir = new (arena_) MIR();
1749  return mir;
1750}
1751
1752// Allocate a new basic block.
1753BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) {
1754  BasicBlock* bb = new (arena_) BasicBlock(block_id, block_type, arena_);
1755
1756  // TUNING: better estimate of the exit block predecessors?
1757  bb->predecessors.reserve((block_type == kExitBlock) ? 2048 : 2);
1758  block_id_map_.Put(block_id, block_id);
1759  return bb;
1760}
1761
1762void MIRGraph::InitializeConstantPropagation() {
1763  is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false);
1764  constant_values_ = arena_->AllocArray<int>(GetNumSSARegs(), kArenaAllocDFInfo);
1765}
1766
1767void MIRGraph::InitializeMethodUses() {
1768  // The gate starts by initializing the use counts.
1769  int num_ssa_regs = GetNumSSARegs();
1770  use_counts_.clear();
1771  use_counts_.reserve(num_ssa_regs + 32);
1772  use_counts_.resize(num_ssa_regs, 0u);
1773  raw_use_counts_.clear();
1774  raw_use_counts_.reserve(num_ssa_regs + 32);
1775  raw_use_counts_.resize(num_ssa_regs, 0u);
1776}
1777
1778void MIRGraph::SSATransformationStart() {
1779  DCHECK(temp_scoped_alloc_.get() == nullptr);
1780  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1781  temp_.ssa.num_vregs = GetNumOfCodeAndTempVRs();
1782  temp_.ssa.work_live_vregs = new (temp_scoped_alloc_.get()) ArenaBitVector(
1783      temp_scoped_alloc_.get(), temp_.ssa.num_vregs, false, kBitMapRegisterV);
1784}
1785
1786void MIRGraph::SSATransformationEnd() {
1787  // Verify the dataflow information after the pass.
1788  if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) {
1789    VerifyDataflow();
1790  }
1791
1792  temp_.ssa.num_vregs = 0u;
1793  temp_.ssa.work_live_vregs = nullptr;
1794  DCHECK(temp_.ssa.def_block_matrix == nullptr);
1795  temp_.ssa.phi_node_blocks = nullptr;
1796  DCHECK(temp_scoped_alloc_.get() != nullptr);
1797  temp_scoped_alloc_.reset();
1798
1799  // Update the maximum number of reachable blocks.
1800  max_num_reachable_blocks_ = num_reachable_blocks_;
1801
1802  // Mark MIR SSA representations as up to date.
1803  mir_ssa_rep_up_to_date_ = true;
1804}
1805
1806size_t MIRGraph::GetNumDalvikInsns() const {
1807  size_t cumulative_size = 0u;
1808  bool counted_current_item = false;
1809  const uint8_t size_for_null_code_item = 2u;
1810
1811  for (auto it : m_units_) {
1812    const DexFile::CodeItem* code_item = it->GetCodeItem();
1813    // Even if the code item is null, we still count non-zero value so that
1814    // each m_unit is counted as having impact.
1815    cumulative_size += (code_item == nullptr ?
1816        size_for_null_code_item : code_item->insns_size_in_code_units_);
1817    if (code_item == current_code_item_) {
1818      counted_current_item = true;
1819    }
1820  }
1821
1822  // If the current code item was not counted yet, count it now.
1823  // This can happen for example in unit tests where some fields like m_units_
1824  // are not initialized.
1825  if (counted_current_item == false) {
1826    cumulative_size += (current_code_item_ == nullptr ?
1827        size_for_null_code_item : current_code_item_->insns_size_in_code_units_);
1828  }
1829
1830  return cumulative_size;
1831}
1832
1833static BasicBlock* SelectTopologicalSortOrderFallBack(
1834    MIRGraph* mir_graph, const ArenaBitVector* current_loop,
1835    const ScopedArenaVector<size_t>* visited_cnt_values, ScopedArenaAllocator* allocator,
1836    ScopedArenaVector<BasicBlockId>* tmp_stack) {
1837  // No true loop head has been found but there may be true loop heads after the mess we need
1838  // to resolve. To avoid taking one of those, pick the candidate with the highest number of
1839  // reachable unvisited nodes. That candidate will surely be a part of a loop.
1840  BasicBlock* fall_back = nullptr;
1841  size_t fall_back_num_reachable = 0u;
1842  // Reuse the same bit vector for each candidate to mark reachable unvisited blocks.
1843  ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc);
1844  AllNodesIterator iter(mir_graph);
1845  for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) {
1846    if (candidate->hidden ||                            // Hidden, or
1847        candidate->visited ||                           // already processed, or
1848        (*visited_cnt_values)[candidate->id] == 0u ||   // no processed predecessors, or
1849        (current_loop != nullptr &&                     // outside current loop.
1850         !current_loop->IsBitSet(candidate->id))) {
1851      continue;
1852    }
1853    DCHECK(tmp_stack->empty());
1854    tmp_stack->push_back(candidate->id);
1855    candidate_reachable.ClearAllBits();
1856    size_t num_reachable = 0u;
1857    while (!tmp_stack->empty()) {
1858      BasicBlockId current_id = tmp_stack->back();
1859      tmp_stack->pop_back();
1860      BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1861      DCHECK(current_bb != nullptr);
1862      ChildBlockIterator child_iter(current_bb, mir_graph);
1863      BasicBlock* child_bb = child_iter.Next();
1864      for ( ; child_bb != nullptr; child_bb = child_iter.Next()) {
1865        DCHECK(!child_bb->hidden);
1866        if (child_bb->visited ||                            // Already processed, or
1867            (current_loop != nullptr &&                     // outside current loop.
1868             !current_loop->IsBitSet(child_bb->id))) {
1869          continue;
1870        }
1871        if (!candidate_reachable.IsBitSet(child_bb->id)) {
1872          candidate_reachable.SetBit(child_bb->id);
1873          tmp_stack->push_back(child_bb->id);
1874          num_reachable += 1u;
1875        }
1876      }
1877    }
1878    if (fall_back_num_reachable < num_reachable) {
1879      fall_back_num_reachable = num_reachable;
1880      fall_back = candidate;
1881    }
1882  }
1883  return fall_back;
1884}
1885
1886// Compute from which unvisited blocks is bb_id reachable through unvisited blocks.
1887static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id,
1888                                          ArenaBitVector* reachable,
1889                                          ScopedArenaVector<BasicBlockId>* tmp_stack) {
1890  // NOTE: Loop heads indicated by the "visited" flag.
1891  DCHECK(tmp_stack->empty());
1892  reachable->ClearAllBits();
1893  tmp_stack->push_back(bb_id);
1894  while (!tmp_stack->empty()) {
1895    BasicBlockId current_id = tmp_stack->back();
1896    tmp_stack->pop_back();
1897    BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1898    DCHECK(current_bb != nullptr);
1899    for (BasicBlockId pred_id : current_bb->predecessors) {
1900      BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id);
1901      DCHECK(pred_bb != nullptr);
1902      if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) {
1903        reachable->SetBit(pred_bb->id);
1904        tmp_stack->push_back(pred_bb->id);
1905      }
1906    }
1907  }
1908}
1909
1910void MIRGraph::ComputeTopologicalSortOrder() {
1911  ScopedArenaAllocator allocator(&cu_->arena_stack);
1912  unsigned int num_blocks = GetNumBlocks();
1913
1914  ScopedArenaQueue<BasicBlock*> q(allocator.Adapter());
1915  ScopedArenaVector<size_t> visited_cnt_values(num_blocks, 0u, allocator.Adapter());
1916  ScopedArenaVector<BasicBlockId> loop_head_stack(allocator.Adapter());
1917  size_t max_nested_loops = 0u;
1918  ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc);
1919  loop_exit_blocks.ClearAllBits();
1920
1921  // Count the number of blocks to process and add the entry block(s).
1922  unsigned int num_blocks_to_process = 0u;
1923  for (BasicBlock* bb : block_list_) {
1924    if (bb->hidden == true) {
1925      continue;
1926    }
1927
1928    num_blocks_to_process += 1u;
1929
1930    if (bb->predecessors.size() == 0u) {
1931      // Add entry block to the queue.
1932      q.push(bb);
1933    }
1934  }
1935
1936  // Clear the topological order arrays.
1937  topological_order_.clear();
1938  topological_order_.reserve(num_blocks);
1939  topological_order_loop_ends_.clear();
1940  topological_order_loop_ends_.resize(num_blocks, 0u);
1941  topological_order_indexes_.clear();
1942  topological_order_indexes_.resize(num_blocks, static_cast<uint16_t>(-1));
1943
1944  // Mark all blocks as unvisited.
1945  ClearAllVisitedFlags();
1946
1947  // For loop heads, keep track from which blocks they are reachable not going through other
1948  // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children
1949  // in this set go into the loop body, the other children are jumping over the loop.
1950  ScopedArenaVector<ArenaBitVector*> loop_head_reachable_from(allocator.Adapter());
1951  loop_head_reachable_from.resize(num_blocks, nullptr);
1952  // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id].
1953  ScopedArenaVector<BasicBlockId> tmp_stack(allocator.Adapter());
1954
1955  while (num_blocks_to_process != 0u) {
1956    BasicBlock* bb = nullptr;
1957    if (!q.empty()) {
1958      num_blocks_to_process -= 1u;
1959      // Get top.
1960      bb = q.front();
1961      q.pop();
1962      if (bb->visited) {
1963        // Loop head: it was already processed, mark end and copy exit blocks to the queue.
1964        DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1965        uint16_t idx = static_cast<uint16_t>(topological_order_.size());
1966        topological_order_loop_ends_[topological_order_indexes_[bb->id]] = idx;
1967        DCHECK_EQ(loop_head_stack.back(), bb->id);
1968        loop_head_stack.pop_back();
1969        ArenaBitVector* reachable =
1970            loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1971        for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) {
1972          if (reachable == nullptr || reachable->IsBitSet(candidate_id)) {
1973            q.push(GetBasicBlock(candidate_id));
1974            // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
1975            // so clearing the bit has no effect on the iterator.
1976            loop_exit_blocks.ClearBit(candidate_id);
1977          }
1978        }
1979        continue;
1980      }
1981    } else {
1982      // Find the new loop head.
1983      AllNodesIterator iter(this);
1984      while (true) {
1985        BasicBlock* candidate = iter.Next();
1986        if (candidate == nullptr) {
1987          // We did not find a true loop head, fall back to a reachable block in any loop.
1988          ArenaBitVector* current_loop =
1989              loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1990          bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values,
1991                                                  &allocator, &tmp_stack);
1992          DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1993          if (kIsDebugBuild && cu_->dex_file != nullptr) {
1994            LOG(INFO) << "Topological sort order: Using fall-back in "
1995                << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id
1996                << " @0x" << std::hex << bb->start_offset
1997                << ", num_blocks = " << std::dec << num_blocks;
1998          }
1999          break;
2000        }
2001        if (candidate->hidden ||                            // Hidden, or
2002            candidate->visited ||                           // already processed, or
2003            visited_cnt_values[candidate->id] == 0u ||      // no processed predecessors, or
2004            (!loop_head_stack.empty() &&                    // outside current loop.
2005             !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) {
2006          continue;
2007        }
2008
2009        for (BasicBlockId pred_id : candidate->predecessors) {
2010          BasicBlock* pred_bb = GetBasicBlock(pred_id);
2011          DCHECK(pred_bb != nullptr);
2012          if (pred_bb != candidate && !pred_bb->visited &&
2013              !pred_bb->dominators->IsBitSet(candidate->id)) {
2014            candidate = nullptr;  // Set candidate to null to indicate failure.
2015            break;
2016          }
2017        }
2018        if (candidate != nullptr) {
2019          bb = candidate;
2020          break;
2021        }
2022      }
2023      // Compute blocks from which the loop head is reachable and process those blocks first.
2024      ArenaBitVector* reachable =
2025          new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc);
2026      loop_head_reachable_from[bb->id] = reachable;
2027      ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack);
2028      // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.)
2029      loop_head_stack.push_back(bb->id);
2030      max_nested_loops = std::max(max_nested_loops, loop_head_stack.size());
2031    }
2032
2033    DCHECK_EQ(bb->hidden, false);
2034    DCHECK_EQ(bb->visited, false);
2035    bb->visited = true;
2036    bb->nesting_depth = loop_head_stack.size();
2037
2038    // Now add the basic block.
2039    uint16_t idx = static_cast<uint16_t>(topological_order_.size());
2040    topological_order_indexes_[bb->id] = idx;
2041    topological_order_.push_back(bb->id);
2042
2043    // Update visited_cnt_values for children.
2044    ChildBlockIterator succIter(bb, this);
2045    BasicBlock* successor = succIter.Next();
2046    for ( ; successor != nullptr; successor = succIter.Next()) {
2047      if (successor->hidden) {
2048        continue;
2049      }
2050
2051      // One more predecessor was visited.
2052      visited_cnt_values[successor->id] += 1u;
2053      if (visited_cnt_values[successor->id] == successor->predecessors.size()) {
2054        if (loop_head_stack.empty() ||
2055            loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) {
2056          q.push(successor);
2057        } else {
2058          DCHECK(!loop_exit_blocks.IsBitSet(successor->id));
2059          loop_exit_blocks.SetBit(successor->id);
2060        }
2061      }
2062    }
2063  }
2064
2065  // Prepare the loop head stack for iteration.
2066  topological_order_loop_head_stack_.clear();
2067  topological_order_loop_head_stack_.reserve(max_nested_loops);
2068  max_nested_loops_ = max_nested_loops;
2069  topological_order_up_to_date_ = true;
2070}
2071
2072bool BasicBlock::IsExceptionBlock() const {
2073  if (block_type == kExceptionHandling) {
2074    return true;
2075  }
2076  return false;
2077}
2078
2079ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph)
2080    : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false),
2081      visited_taken_(false), have_successors_(false) {
2082  // Check if we actually do have successors.
2083  if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) {
2084    have_successors_ = true;
2085    successor_iter_ = basic_block_->successor_blocks.cbegin();
2086  }
2087}
2088
2089BasicBlock* ChildBlockIterator::Next() {
2090  // We check if we have a basic block. If we don't we cannot get next child.
2091  if (basic_block_ == nullptr) {
2092    return nullptr;
2093  }
2094
2095  // If we haven't visited fallthrough, return that.
2096  if (visited_fallthrough_ == false) {
2097    visited_fallthrough_ = true;
2098
2099    BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through);
2100    if (result != nullptr) {
2101      return result;
2102    }
2103  }
2104
2105  // If we haven't visited taken, return that.
2106  if (visited_taken_ == false) {
2107    visited_taken_ = true;
2108
2109    BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken);
2110    if (result != nullptr) {
2111      return result;
2112    }
2113  }
2114
2115  // We visited both taken and fallthrough. Now check if we have successors we need to visit.
2116  if (have_successors_ == true) {
2117    // Get information about next successor block.
2118    auto end = basic_block_->successor_blocks.cend();
2119    while (successor_iter_ != end) {
2120      SuccessorBlockInfo* successor_block_info = *successor_iter_;
2121      ++successor_iter_;
2122      // If block was replaced by zero block, take next one.
2123      if (successor_block_info->block != NullBasicBlockId) {
2124        return mir_graph_->GetBasicBlock(successor_block_info->block);
2125      }
2126    }
2127  }
2128
2129  // We do not have anything.
2130  return nullptr;
2131}
2132
2133BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) {
2134  MIRGraph* mir_graph = c_unit->mir_graph.get();
2135  return Copy(mir_graph);
2136}
2137
2138BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) {
2139  BasicBlock* result_bb = mir_graph->CreateNewBB(block_type);
2140
2141  // We don't do a memcpy style copy here because it would lead to a lot of things
2142  // to clean up. Let us do it by hand instead.
2143  // Copy in taken and fallthrough.
2144  result_bb->fall_through = fall_through;
2145  result_bb->taken = taken;
2146
2147  // Copy successor links if needed.
2148  ArenaAllocator* arena = mir_graph->GetArena();
2149
2150  result_bb->successor_block_list_type = successor_block_list_type;
2151  if (result_bb->successor_block_list_type != kNotUsed) {
2152    result_bb->successor_blocks.reserve(successor_blocks.size());
2153    for (SuccessorBlockInfo* sbi_old : successor_blocks) {
2154      SuccessorBlockInfo* sbi_new = static_cast<SuccessorBlockInfo*>(
2155          arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
2156      memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo));
2157      result_bb->successor_blocks.push_back(sbi_new);
2158    }
2159  }
2160
2161  // Copy offset, method.
2162  result_bb->start_offset = start_offset;
2163
2164  // Now copy instructions.
2165  for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) {
2166    // Get a copy first.
2167    MIR* copy = mir->Copy(mir_graph);
2168
2169    // Append it.
2170    result_bb->AppendMIR(copy);
2171  }
2172
2173  return result_bb;
2174}
2175
2176MIR* MIR::Copy(MIRGraph* mir_graph) {
2177  MIR* res = mir_graph->NewMIR();
2178  *res = *this;
2179
2180  // Remove links
2181  res->next = nullptr;
2182  res->bb = NullBasicBlockId;
2183  res->ssa_rep = nullptr;
2184
2185  return res;
2186}
2187
2188MIR* MIR::Copy(CompilationUnit* c_unit) {
2189  return Copy(c_unit->mir_graph.get());
2190}
2191
2192uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) {
2193  // Default result.
2194  int res = 0;
2195
2196  // We are basically setting the iputs to their igets counterparts.
2197  switch (opcode) {
2198    case Instruction::IPUT:
2199    case Instruction::IPUT_OBJECT:
2200    case Instruction::IPUT_BOOLEAN:
2201    case Instruction::IPUT_BYTE:
2202    case Instruction::IPUT_CHAR:
2203    case Instruction::IPUT_SHORT:
2204    case Instruction::IPUT_QUICK:
2205    case Instruction::IPUT_OBJECT_QUICK:
2206    case Instruction::IPUT_BOOLEAN_QUICK:
2207    case Instruction::IPUT_BYTE_QUICK:
2208    case Instruction::IPUT_CHAR_QUICK:
2209    case Instruction::IPUT_SHORT_QUICK:
2210    case Instruction::APUT:
2211    case Instruction::APUT_OBJECT:
2212    case Instruction::APUT_BOOLEAN:
2213    case Instruction::APUT_BYTE:
2214    case Instruction::APUT_CHAR:
2215    case Instruction::APUT_SHORT:
2216    case Instruction::SPUT:
2217    case Instruction::SPUT_OBJECT:
2218    case Instruction::SPUT_BOOLEAN:
2219    case Instruction::SPUT_BYTE:
2220    case Instruction::SPUT_CHAR:
2221    case Instruction::SPUT_SHORT:
2222      // Skip the VR containing what to store.
2223      res = 1;
2224      break;
2225    case Instruction::IPUT_WIDE:
2226    case Instruction::IPUT_WIDE_QUICK:
2227    case Instruction::APUT_WIDE:
2228    case Instruction::SPUT_WIDE:
2229      // Skip the two VRs containing what to store.
2230      res = 2;
2231      break;
2232    default:
2233      // Do nothing in the general case.
2234      break;
2235  }
2236
2237  return res;
2238}
2239
2240/**
2241 * @brief Given a decoded instruction, it checks whether the instruction
2242 * sets a constant and if it does, more information is provided about the
2243 * constant being set.
2244 * @param ptr_value pointer to a 64-bit holder for the constant.
2245 * @param wide Updated by function whether a wide constant is being set by bytecode.
2246 * @return Returns false if the decoded instruction does not represent a constant bytecode.
2247 */
2248bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const {
2249  bool sets_const = true;
2250  int64_t value = vB;
2251
2252  DCHECK(ptr_value != nullptr);
2253  DCHECK(wide != nullptr);
2254
2255  switch (opcode) {
2256    case Instruction::CONST_4:
2257    case Instruction::CONST_16:
2258    case Instruction::CONST:
2259      *wide = false;
2260      value <<= 32;      // In order to get the sign extend.
2261      value >>= 32;
2262      break;
2263    case Instruction::CONST_HIGH16:
2264      *wide = false;
2265      value <<= 48;      // In order to get the sign extend.
2266      value >>= 32;
2267      break;
2268    case Instruction::CONST_WIDE_16:
2269    case Instruction::CONST_WIDE_32:
2270      *wide = true;
2271      value <<= 32;      // In order to get the sign extend.
2272      value >>= 32;
2273      break;
2274    case Instruction::CONST_WIDE:
2275      *wide = true;
2276      value = vB_wide;
2277      break;
2278    case Instruction::CONST_WIDE_HIGH16:
2279      *wide = true;
2280      value <<= 48;      // In order to get the sign extend.
2281      break;
2282    default:
2283      sets_const = false;
2284      break;
2285  }
2286
2287  if (sets_const) {
2288    *ptr_value = value;
2289  }
2290
2291  return sets_const;
2292}
2293
2294void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) {
2295  // Reset flags for all MIRs in bb.
2296  for (MIR* mir = first_mir_insn; mir != NULL; mir = mir->next) {
2297    mir->optimization_flags &= (~reset_flags);
2298  }
2299}
2300
2301void BasicBlock::Kill(MIRGraph* mir_graph) {
2302  for (BasicBlockId pred_id : predecessors) {
2303    BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id);
2304    DCHECK(pred_bb != nullptr);
2305
2306    // Sadly we have to go through the children by hand here.
2307    pred_bb->ReplaceChild(id, NullBasicBlockId);
2308  }
2309  predecessors.clear();
2310
2311  // Mark as dead and hidden.
2312  block_type = kDead;
2313  hidden = true;
2314
2315  // Detach it from its MIRs so we don't generate code for them. Also detached MIRs
2316  // are updated to know that they no longer have a parent.
2317  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2318    mir->bb = NullBasicBlockId;
2319  }
2320  first_mir_insn = nullptr;
2321  last_mir_insn = nullptr;
2322
2323  data_flow_info = nullptr;
2324
2325  // Erase this bb from all children's predecessors and kill unreachable children.
2326  ChildBlockIterator iter(this, mir_graph);
2327  for (BasicBlock* succ_bb = iter.Next(); succ_bb != nullptr; succ_bb = iter.Next()) {
2328    succ_bb->ErasePredecessor(id);
2329  }
2330
2331  // Remove links to children.
2332  fall_through = NullBasicBlockId;
2333  taken = NullBasicBlockId;
2334  successor_block_list_type = kNotUsed;
2335
2336  if (kIsDebugBuild) {
2337    if (catch_entry) {
2338      DCHECK_EQ(mir_graph->catches_.count(start_offset), 1u);
2339      mir_graph->catches_.erase(start_offset);
2340    }
2341  }
2342}
2343
2344bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) {
2345  // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember
2346  // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg,
2347  // then it is not live out of this BB.
2348  int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg);
2349
2350  int last_ssa_reg = -1;
2351
2352  // Walk through the MIRs backwards.
2353  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2354    // Get ssa rep.
2355    SSARepresentation *ssa_rep = mir->ssa_rep;
2356
2357    // Go through the defines for this MIR.
2358    for (int i = 0; i < ssa_rep->num_defs; i++) {
2359      DCHECK(ssa_rep->defs != nullptr);
2360
2361      // Get the ssa reg.
2362      int def_ssa_reg = ssa_rep->defs[i];
2363
2364      // Get dalvik reg.
2365      int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg);
2366
2367      // Compare dalvik regs.
2368      if (dalvik_reg == def_dalvik_reg) {
2369        // We found a def of the register that we are being asked about.
2370        // Remember it.
2371        last_ssa_reg = def_ssa_reg;
2372      }
2373    }
2374  }
2375
2376  if (last_ssa_reg == -1) {
2377    // If we get to this point we couldn't find a define of register user asked about.
2378    // Let's assume the user knows what he's doing so we can be safe and say that if we
2379    // couldn't find a def, it is live out.
2380    return true;
2381  }
2382
2383  // If it is not -1, we found a match, is it ssa_reg?
2384  return (ssa_reg == last_ssa_reg);
2385}
2386
2387bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) {
2388  // We need to check taken, fall_through, and successor_blocks to replace.
2389  bool found = false;
2390  if (taken == old_bb) {
2391    taken = new_bb;
2392    found = true;
2393  }
2394
2395  if (fall_through == old_bb) {
2396    fall_through = new_bb;
2397    found = true;
2398  }
2399
2400  if (successor_block_list_type != kNotUsed) {
2401    for (SuccessorBlockInfo* successor_block_info : successor_blocks) {
2402      if (successor_block_info->block == old_bb) {
2403        successor_block_info->block = new_bb;
2404        found = true;
2405      }
2406    }
2407  }
2408
2409  return found;
2410}
2411
2412void BasicBlock::ErasePredecessor(BasicBlockId old_pred) {
2413  auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred);
2414  DCHECK(pos != predecessors.end());
2415  // It's faster to move the back() to *pos than erase(pos).
2416  *pos = predecessors.back();
2417  predecessors.pop_back();
2418  size_t idx = std::distance(predecessors.begin(), pos);
2419  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2420    if (static_cast<int>(mir->dalvikInsn.opcode) != kMirOpPhi) {
2421      break;
2422    }
2423    DCHECK_EQ(mir->ssa_rep->num_uses - 1u, predecessors.size());
2424    DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred);
2425    mir->meta.phi_incoming[idx] = mir->meta.phi_incoming[predecessors.size()];
2426    mir->ssa_rep->uses[idx] = mir->ssa_rep->uses[predecessors.size()];
2427    mir->ssa_rep->num_uses = predecessors.size();
2428  }
2429}
2430
2431void BasicBlock::UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred) {
2432  DCHECK_NE(new_pred, NullBasicBlockId);
2433  auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred);
2434  DCHECK(pos != predecessors.end());
2435  *pos = new_pred;
2436  size_t idx = std::distance(predecessors.begin(), pos);
2437  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2438    if (static_cast<int>(mir->dalvikInsn.opcode) != kMirOpPhi) {
2439      break;
2440    }
2441    DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred);
2442    mir->meta.phi_incoming[idx] = new_pred;
2443  }
2444}
2445
2446// Create a new basic block with block_id as num_blocks_ that is
2447// post-incremented.
2448BasicBlock* MIRGraph::CreateNewBB(BBType block_type) {
2449  BasicBlockId id = static_cast<BasicBlockId>(block_list_.size());
2450  BasicBlock* res = NewMemBB(block_type, id);
2451  block_list_.push_back(res);
2452  return res;
2453}
2454
2455void MIRGraph::CalculateBasicBlockInformation(const PassManager* const post_opt_pass_manager) {
2456  /* Create the pass driver and launch it */
2457  PassDriverMEPostOpt driver(post_opt_pass_manager, cu_);
2458  driver.Launch();
2459}
2460
2461int MIR::DecodedInstruction::FlagsOf() const {
2462  // Calculate new index.
2463  int idx = static_cast<int>(opcode) - kNumPackedOpcodes;
2464
2465  // Check if it is an extended or not.
2466  if (idx < 0) {
2467    return Instruction::FlagsOf(opcode);
2468  }
2469
2470  // For extended, we use a switch.
2471  switch (static_cast<int>(opcode)) {
2472    case kMirOpPhi:
2473      return Instruction::kContinue;
2474    case kMirOpCopy:
2475      return Instruction::kContinue;
2476    case kMirOpFusedCmplFloat:
2477      return Instruction::kContinue | Instruction::kBranch;
2478    case kMirOpFusedCmpgFloat:
2479      return Instruction::kContinue | Instruction::kBranch;
2480    case kMirOpFusedCmplDouble:
2481      return Instruction::kContinue | Instruction::kBranch;
2482    case kMirOpFusedCmpgDouble:
2483      return Instruction::kContinue | Instruction::kBranch;
2484    case kMirOpFusedCmpLong:
2485      return Instruction::kContinue | Instruction::kBranch;
2486    case kMirOpNop:
2487      return Instruction::kContinue;
2488    case kMirOpNullCheck:
2489      return Instruction::kContinue | Instruction::kThrow;
2490    case kMirOpRangeCheck:
2491      return Instruction::kContinue | Instruction::kThrow;
2492    case kMirOpDivZeroCheck:
2493      return Instruction::kContinue | Instruction::kThrow;
2494    case kMirOpCheck:
2495      return Instruction::kContinue | Instruction::kThrow;
2496    case kMirOpCheckPart2:
2497      return Instruction::kContinue;
2498    case kMirOpSelect:
2499      return Instruction::kContinue;
2500    case kMirOpConstVector:
2501      return Instruction::kContinue;
2502    case kMirOpMoveVector:
2503      return Instruction::kContinue;
2504    case kMirOpPackedMultiply:
2505      return Instruction::kContinue;
2506    case kMirOpPackedAddition:
2507      return Instruction::kContinue;
2508    case kMirOpPackedSubtract:
2509      return Instruction::kContinue;
2510    case kMirOpPackedShiftLeft:
2511      return Instruction::kContinue;
2512    case kMirOpPackedSignedShiftRight:
2513      return Instruction::kContinue;
2514    case kMirOpPackedUnsignedShiftRight:
2515      return Instruction::kContinue;
2516    case kMirOpPackedAnd:
2517      return Instruction::kContinue;
2518    case kMirOpPackedOr:
2519      return Instruction::kContinue;
2520    case kMirOpPackedXor:
2521      return Instruction::kContinue;
2522    case kMirOpPackedAddReduce:
2523      return Instruction::kContinue;
2524    case kMirOpPackedReduce:
2525      return Instruction::kContinue;
2526    case kMirOpPackedSet:
2527      return Instruction::kContinue;
2528    case kMirOpReserveVectorRegisters:
2529      return Instruction::kContinue;
2530    case kMirOpReturnVectorRegisters:
2531      return Instruction::kContinue;
2532    case kMirOpMemBarrier:
2533      return Instruction::kContinue;
2534    case kMirOpPackedArrayGet:
2535      return Instruction::kContinue | Instruction::kThrow;
2536    case kMirOpPackedArrayPut:
2537      return Instruction::kContinue | Instruction::kThrow;
2538    case kMirOpMaddInt:
2539    case kMirOpMsubInt:
2540    case kMirOpMaddLong:
2541    case kMirOpMsubLong:
2542      return Instruction::kContinue;
2543    default:
2544      LOG(WARNING) << "ExtendedFlagsOf: Unhandled case: " << static_cast<int> (opcode);
2545      return 0;
2546  }
2547}
2548
2549const uint16_t* MIRGraph::GetInsns(int m_unit_index) const {
2550  return m_units_[m_unit_index]->GetCodeItem()->insns_;
2551}
2552
2553void MIRGraph::SetPuntToInterpreter(bool val) {
2554  punt_to_interpreter_ = val;
2555  if (val) {
2556    // Disable all subsequent optimizations. They may not be safe to run. (For example,
2557    // LVN/GVN assumes there are no conflicts found by the type inference pass.)
2558    cu_->disable_opt = ~static_cast<decltype(cu_->disable_opt)>(0);
2559  }
2560}
2561
2562}  // namespace art
2563