mir_graph.cc revision a262f7707330dccfb50af6345813083182b61043
1/*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "mir_graph.h"
18
19#include <inttypes.h>
20#include <queue>
21
22#include "base/bit_vector-inl.h"
23#include "base/stl_util.h"
24#include "compiler_internals.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex/global_value_numbering.h"
28#include "dex/quick/dex_file_to_method_inliner_map.h"
29#include "dex/quick/dex_file_method_inliner.h"
30#include "leb128.h"
31#include "pass_driver_me_post_opt.h"
32#include "stack.h"
33#include "utils/scoped_arena_containers.h"
34
35namespace art {
36
37#define MAX_PATTERN_LEN 5
38
39const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = {
40  "Phi",
41  "Copy",
42  "FusedCmplFloat",
43  "FusedCmpgFloat",
44  "FusedCmplDouble",
45  "FusedCmpgDouble",
46  "FusedCmpLong",
47  "Nop",
48  "OpNullCheck",
49  "OpRangeCheck",
50  "OpDivZeroCheck",
51  "Check1",
52  "Check2",
53  "Select",
54  "ConstVector",
55  "MoveVector",
56  "PackedMultiply",
57  "PackedAddition",
58  "PackedSubtract",
59  "PackedShiftLeft",
60  "PackedSignedShiftRight",
61  "PackedUnsignedShiftRight",
62  "PackedAnd",
63  "PackedOr",
64  "PackedXor",
65  "PackedAddReduce",
66  "PackedReduce",
67  "PackedSet",
68  "ReserveVectorRegisters",
69  "ReturnVectorRegisters",
70  "MemBarrier",
71  "PackedArrayGet",
72  "PackedArrayPut",
73  "MaddInt",
74  "MsubInt",
75  "MaddLong",
76  "MsubLong",
77};
78
79MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena)
80    : reg_location_(NULL),
81      block_id_map_(std::less<unsigned int>(), arena->Adapter()),
82      cu_(cu),
83      ssa_base_vregs_(arena->Adapter(kArenaAllocSSAToDalvikMap)),
84      ssa_subscripts_(arena->Adapter(kArenaAllocSSAToDalvikMap)),
85      vreg_to_ssa_map_(NULL),
86      ssa_last_defs_(NULL),
87      is_constant_v_(NULL),
88      constant_values_(NULL),
89      use_counts_(arena->Adapter()),
90      raw_use_counts_(arena->Adapter()),
91      num_reachable_blocks_(0),
92      max_num_reachable_blocks_(0),
93      dfs_orders_up_to_date_(false),
94      dfs_order_(arena->Adapter(kArenaAllocDfsPreOrder)),
95      dfs_post_order_(arena->Adapter(kArenaAllocDfsPostOrder)),
96      dom_post_order_traversal_(arena->Adapter(kArenaAllocDomPostOrder)),
97      topological_order_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
98      topological_order_loop_ends_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
99      topological_order_indexes_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
100      topological_order_loop_head_stack_(arena->Adapter(kArenaAllocTopologicalSortOrder)),
101      max_nested_loops_(0u),
102      i_dom_list_(NULL),
103      temp_scoped_alloc_(),
104      block_list_(arena->Adapter(kArenaAllocBBList)),
105      try_block_addr_(NULL),
106      entry_block_(NULL),
107      exit_block_(NULL),
108      num_blocks_(0),
109      current_code_item_(NULL),
110      dex_pc_to_block_map_(arena->Adapter()),
111      m_units_(arena->Adapter()),
112      method_stack_(arena->Adapter()),
113      current_method_(kInvalidEntry),
114      current_offset_(kInvalidEntry),
115      def_count_(0),
116      opcode_count_(NULL),
117      num_ssa_regs_(0),
118      extended_basic_blocks_(arena->Adapter()),
119      method_sreg_(0),
120      attributes_(METHOD_IS_LEAF),  // Start with leaf assumption, change on encountering invoke.
121      checkstats_(NULL),
122      arena_(arena),
123      backward_branches_(0),
124      forward_branches_(0),
125      num_non_special_compiler_temps_(0),
126      max_available_special_compiler_temps_(1),  // We only need the method ptr as a special temp for now.
127      requested_backend_temp_(false),
128      compiler_temps_committed_(false),
129      punt_to_interpreter_(false),
130      merged_df_flags_(0u),
131      ifield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)),
132      sfield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)),
133      method_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)),
134      suspend_checks_in_loops_(nullptr) {
135  memset(&temp_, 0, sizeof(temp_));
136  use_counts_.reserve(256);
137  raw_use_counts_.reserve(256);
138  block_list_.reserve(100);
139  try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */);
140
141
142  if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
143    // X86 requires a temp to keep track of the method address.
144    // TODO For x86_64, addressing can be done with RIP. When that is implemented,
145    // this needs to be updated to reserve 0 temps for BE.
146    max_available_non_special_compiler_temps_ = cu_->target64 ? 2 : 1;
147    reserved_temps_for_backend_ = max_available_non_special_compiler_temps_;
148  } else {
149    // Other architectures do not have a known lower bound for non-special temps.
150    // We allow the update of the max to happen at BE initialization stage and simply set 0 for now.
151    max_available_non_special_compiler_temps_ = 0;
152    reserved_temps_for_backend_ = 0;
153  }
154}
155
156MIRGraph::~MIRGraph() {
157  STLDeleteElements(&block_list_);
158  STLDeleteElements(&m_units_);
159}
160
161/*
162 * Parse an instruction, return the length of the instruction
163 */
164int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) {
165  const Instruction* inst = Instruction::At(code_ptr);
166  decoded_instruction->opcode = inst->Opcode();
167  decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0;
168  decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0;
169  decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0;
170  decoded_instruction->vC = inst->HasVRegC() ?  inst->VRegC() : 0;
171  if (inst->HasVarArgs()) {
172    inst->GetVarArgs(decoded_instruction->arg);
173  }
174  return inst->SizeInCodeUnits();
175}
176
177
178/* Split an existing block from the specified code offset into two */
179BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset,
180                                 BasicBlock* orig_block, BasicBlock** immed_pred_block_p) {
181  DCHECK_GT(code_offset, orig_block->start_offset);
182  MIR* insn = orig_block->first_mir_insn;
183  MIR* prev = NULL;  // Will be set to instruction before split.
184  while (insn) {
185    if (insn->offset == code_offset) break;
186    prev = insn;
187    insn = insn->next;
188  }
189  if (insn == NULL) {
190    LOG(FATAL) << "Break split failed";
191  }
192  // Now insn is at the instruction where we want to split, namely
193  // insn will be the first instruction of the "bottom" block.
194  // Similarly, prev will be the last instruction of the "top" block
195
196  BasicBlock* bottom_block = CreateNewBB(kDalvikByteCode);
197
198  bottom_block->start_offset = code_offset;
199  bottom_block->first_mir_insn = insn;
200  bottom_block->last_mir_insn = orig_block->last_mir_insn;
201
202  /* If this block was terminated by a return, conditional branch or throw,
203   * the flag needs to go with the bottom block
204   */
205  bottom_block->terminated_by_return = orig_block->terminated_by_return;
206  orig_block->terminated_by_return = false;
207
208  bottom_block->conditional_branch = orig_block->conditional_branch;
209  orig_block->conditional_branch = false;
210
211  bottom_block->explicit_throw = orig_block->explicit_throw;
212  orig_block->explicit_throw = false;
213
214  /* Handle the taken path */
215  bottom_block->taken = orig_block->taken;
216  if (bottom_block->taken != NullBasicBlockId) {
217    orig_block->taken = NullBasicBlockId;
218    BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken);
219    bb_taken->ErasePredecessor(orig_block->id);
220    bb_taken->predecessors.push_back(bottom_block->id);
221  }
222
223  /* Handle the fallthrough path */
224  bottom_block->fall_through = orig_block->fall_through;
225  orig_block->fall_through = bottom_block->id;
226  bottom_block->predecessors.push_back(orig_block->id);
227  if (bottom_block->fall_through != NullBasicBlockId) {
228    BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through);
229    bb_fall_through->ErasePredecessor(orig_block->id);
230    bb_fall_through->predecessors.push_back(bottom_block->id);
231  }
232
233  /* Handle the successor list */
234  if (orig_block->successor_block_list_type != kNotUsed) {
235    bottom_block->successor_block_list_type = orig_block->successor_block_list_type;
236    bottom_block->successor_blocks.swap(orig_block->successor_blocks);
237    orig_block->successor_block_list_type = kNotUsed;
238    DCHECK(orig_block->successor_blocks.empty());  // Empty after the swap() above.
239    for (SuccessorBlockInfo* successor_block_info : bottom_block->successor_blocks) {
240      BasicBlock* bb = GetBasicBlock(successor_block_info->block);
241      if (bb != nullptr) {
242        bb->ErasePredecessor(orig_block->id);
243        bb->predecessors.push_back(bottom_block->id);
244      }
245    }
246  }
247
248  orig_block->last_mir_insn = prev;
249  prev->next = nullptr;
250
251  /*
252   * Update the immediate predecessor block pointer so that outgoing edges
253   * can be applied to the proper block.
254   */
255  if (immed_pred_block_p) {
256    DCHECK_EQ(*immed_pred_block_p, orig_block);
257    *immed_pred_block_p = bottom_block;
258  }
259
260  // Associate dex instructions in the bottom block with the new container.
261  DCHECK(insn != nullptr);
262  DCHECK(insn != orig_block->first_mir_insn);
263  DCHECK(insn == bottom_block->first_mir_insn);
264  DCHECK_EQ(insn->offset, bottom_block->start_offset);
265  DCHECK_EQ(dex_pc_to_block_map_[insn->offset], orig_block->id);
266  // Scan the "bottom" instructions, remapping them to the
267  // newly created "bottom" block.
268  MIR* p = insn;
269  p->bb = bottom_block->id;
270  dex_pc_to_block_map_[p->offset] = bottom_block->id;
271  while (p != bottom_block->last_mir_insn) {
272    p = p->next;
273    DCHECK(p != nullptr);
274    p->bb = bottom_block->id;
275    int opcode = p->dalvikInsn.opcode;
276    /*
277     * Some messiness here to ensure that we only enter real opcodes and only the
278     * first half of a potentially throwing instruction that has been split into
279     * CHECK and work portions. Since the 2nd half of a split operation is always
280     * the first in a BasicBlock, we can't hit it here.
281     */
282    if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
283      BasicBlockId mapped_id = dex_pc_to_block_map_[p->offset];
284      // At first glance the instructions should all be mapped to orig_block.
285      // However, multiple instructions may correspond to the same dex, hence an earlier
286      // instruction may have already moved the mapping for dex to bottom_block.
287      DCHECK((mapped_id == orig_block->id) || (mapped_id == bottom_block->id));
288      dex_pc_to_block_map_[p->offset] = bottom_block->id;
289    }
290  }
291
292  return bottom_block;
293}
294
295/*
296 * Given a code offset, find out the block that starts with it. If the offset
297 * is in the middle of an existing block, split it into two.  If immed_pred_block_p
298 * is not non-null and is the block being split, update *immed_pred_block_p to
299 * point to the bottom block so that outgoing edges can be set up properly
300 * (by the caller)
301 * Utilizes a map for fast lookup of the typical cases.
302 */
303BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool create,
304                                BasicBlock** immed_pred_block_p) {
305  if (code_offset >= current_code_item_->insns_size_in_code_units_) {
306    return nullptr;
307  }
308
309  int block_id = dex_pc_to_block_map_[code_offset];
310  BasicBlock* bb = GetBasicBlock(block_id);
311
312  if ((bb != nullptr) && (bb->start_offset == code_offset)) {
313    // Does this containing block start with the desired instruction?
314    return bb;
315  }
316
317  // No direct hit.
318  if (!create) {
319    return nullptr;
320  }
321
322  if (bb != nullptr) {
323    // The target exists somewhere in an existing block.
324    return SplitBlock(code_offset, bb, bb == *immed_pred_block_p ?  immed_pred_block_p : nullptr);
325  }
326
327  // Create a new block.
328  bb = CreateNewBB(kDalvikByteCode);
329  bb->start_offset = code_offset;
330  dex_pc_to_block_map_[bb->start_offset] = bb->id;
331  return bb;
332}
333
334
335/* Identify code range in try blocks and set up the empty catch blocks */
336void MIRGraph::ProcessTryCatchBlocks() {
337  int tries_size = current_code_item_->tries_size_;
338  DexOffset offset;
339
340  if (tries_size == 0) {
341    return;
342  }
343
344  for (int i = 0; i < tries_size; i++) {
345    const DexFile::TryItem* pTry =
346        DexFile::GetTryItems(*current_code_item_, i);
347    DexOffset start_offset = pTry->start_addr_;
348    DexOffset end_offset = start_offset + pTry->insn_count_;
349    for (offset = start_offset; offset < end_offset; offset++) {
350      try_block_addr_->SetBit(offset);
351    }
352  }
353
354  // Iterate over each of the handlers to enqueue the empty Catch blocks.
355  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0);
356  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
357  for (uint32_t idx = 0; idx < handlers_size; idx++) {
358    CatchHandlerIterator iterator(handlers_ptr);
359    for (; iterator.HasNext(); iterator.Next()) {
360      uint32_t address = iterator.GetHandlerAddress();
361      FindBlock(address, true /*create*/, /* immed_pred_block_p */ nullptr);
362    }
363    handlers_ptr = iterator.EndDataPointer();
364  }
365}
366
367bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset,
368                                     NarrowDexOffset catch_offset) {
369  // Catches for monitor-exit during stack unwinding have the pattern
370  //   move-exception (move)* (goto)? monitor-exit throw
371  // In the currently generated dex bytecode we see these catching a bytecode range including
372  // either its own or an identical monitor-exit, http://b/15745363 . This function checks if
373  // it's the case for a given monitor-exit and catch block so that we can ignore it.
374  // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized
375  // block in a try-block and catch the NPE, Error or Throwable and we should let it through;
376  // even though a throwing monitor-exit certainly indicates a bytecode error.)
377  const Instruction* monitor_exit = Instruction::At(current_code_item_->insns_ + monitor_exit_offset);
378  DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT);
379  int monitor_reg = monitor_exit->VRegA_11x();
380  const Instruction* check_insn = Instruction::At(current_code_item_->insns_ + catch_offset);
381  DCHECK(check_insn->Opcode() == Instruction::MOVE_EXCEPTION);
382  if (check_insn->VRegA_11x() == monitor_reg) {
383    // Unexpected move-exception to the same register. Probably not the pattern we're looking for.
384    return false;
385  }
386  check_insn = check_insn->Next();
387  while (true) {
388    int dest = -1;
389    bool wide = false;
390    switch (check_insn->Opcode()) {
391      case Instruction::MOVE_WIDE:
392        wide = true;
393        FALLTHROUGH_INTENDED;
394      case Instruction::MOVE_OBJECT:
395      case Instruction::MOVE:
396        dest = check_insn->VRegA_12x();
397        break;
398
399      case Instruction::MOVE_WIDE_FROM16:
400        wide = true;
401        FALLTHROUGH_INTENDED;
402      case Instruction::MOVE_OBJECT_FROM16:
403      case Instruction::MOVE_FROM16:
404        dest = check_insn->VRegA_22x();
405        break;
406
407      case Instruction::MOVE_WIDE_16:
408        wide = true;
409        FALLTHROUGH_INTENDED;
410      case Instruction::MOVE_OBJECT_16:
411      case Instruction::MOVE_16:
412        dest = check_insn->VRegA_32x();
413        break;
414
415      case Instruction::GOTO:
416      case Instruction::GOTO_16:
417      case Instruction::GOTO_32:
418        check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset());
419        FALLTHROUGH_INTENDED;
420      default:
421        return check_insn->Opcode() == Instruction::MONITOR_EXIT &&
422            check_insn->VRegA_11x() == monitor_reg;
423    }
424
425    if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) {
426      return false;
427    }
428
429    check_insn = check_insn->Next();
430  }
431}
432
433/* Process instructions with the kBranch flag */
434BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
435                                       int width, int flags, const uint16_t* code_ptr,
436                                       const uint16_t* code_end) {
437  DexOffset target = cur_offset;
438  switch (insn->dalvikInsn.opcode) {
439    case Instruction::GOTO:
440    case Instruction::GOTO_16:
441    case Instruction::GOTO_32:
442      target += insn->dalvikInsn.vA;
443      break;
444    case Instruction::IF_EQ:
445    case Instruction::IF_NE:
446    case Instruction::IF_LT:
447    case Instruction::IF_GE:
448    case Instruction::IF_GT:
449    case Instruction::IF_LE:
450      cur_block->conditional_branch = true;
451      target += insn->dalvikInsn.vC;
452      break;
453    case Instruction::IF_EQZ:
454    case Instruction::IF_NEZ:
455    case Instruction::IF_LTZ:
456    case Instruction::IF_GEZ:
457    case Instruction::IF_GTZ:
458    case Instruction::IF_LEZ:
459      cur_block->conditional_branch = true;
460      target += insn->dalvikInsn.vB;
461      break;
462    default:
463      LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set";
464  }
465  CountBranch(target);
466  BasicBlock* taken_block = FindBlock(target, /* create */ true,
467                                      /* immed_pred_block_p */ &cur_block);
468  cur_block->taken = taken_block->id;
469  taken_block->predecessors.push_back(cur_block->id);
470
471  /* Always terminate the current block for conditional branches */
472  if (flags & Instruction::kContinue) {
473    BasicBlock* fallthrough_block = FindBlock(cur_offset +  width,
474                                             /* create */
475                                             true,
476                                             /* immed_pred_block_p */
477                                             &cur_block);
478    cur_block->fall_through = fallthrough_block->id;
479    fallthrough_block->predecessors.push_back(cur_block->id);
480  } else if (code_ptr < code_end) {
481    FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr);
482  }
483  return cur_block;
484}
485
486/* Process instructions with the kSwitch flag */
487BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
488                                       int width, int flags) {
489  UNUSED(flags);
490  const uint16_t* switch_data =
491      reinterpret_cast<const uint16_t*>(GetCurrentInsns() + cur_offset + insn->dalvikInsn.vB);
492  int size;
493  const int* keyTable;
494  const int* target_table;
495  int i;
496  int first_key;
497
498  /*
499   * Packed switch data format:
500   *  ushort ident = 0x0100   magic value
501   *  ushort size             number of entries in the table
502   *  int first_key           first (and lowest) switch case value
503   *  int targets[size]       branch targets, relative to switch opcode
504   *
505   * Total size is (4+size*2) 16-bit code units.
506   */
507  if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) {
508    DCHECK_EQ(static_cast<int>(switch_data[0]),
509              static_cast<int>(Instruction::kPackedSwitchSignature));
510    size = switch_data[1];
511    first_key = switch_data[2] | (switch_data[3] << 16);
512    target_table = reinterpret_cast<const int*>(&switch_data[4]);
513    keyTable = NULL;        // Make the compiler happy.
514  /*
515   * Sparse switch data format:
516   *  ushort ident = 0x0200   magic value
517   *  ushort size             number of entries in the table; > 0
518   *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
519   *  int targets[size]       branch targets, relative to switch opcode
520   *
521   * Total size is (2+size*4) 16-bit code units.
522   */
523  } else {
524    DCHECK_EQ(static_cast<int>(switch_data[0]),
525              static_cast<int>(Instruction::kSparseSwitchSignature));
526    size = switch_data[1];
527    keyTable = reinterpret_cast<const int*>(&switch_data[2]);
528    target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]);
529    first_key = 0;   // To make the compiler happy.
530  }
531
532  if (cur_block->successor_block_list_type != kNotUsed) {
533    LOG(FATAL) << "Successor block list already in use: "
534               << static_cast<int>(cur_block->successor_block_list_type);
535  }
536  cur_block->successor_block_list_type =
537      (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?  kPackedSwitch : kSparseSwitch;
538  cur_block->successor_blocks.reserve(size);
539
540  for (i = 0; i < size; i++) {
541    BasicBlock* case_block = FindBlock(cur_offset + target_table[i],  /* create */ true,
542                                       /* immed_pred_block_p */ &cur_block);
543    SuccessorBlockInfo* successor_block_info =
544        static_cast<SuccessorBlockInfo*>(arena_->Alloc(sizeof(SuccessorBlockInfo),
545                                                       kArenaAllocSuccessor));
546    successor_block_info->block = case_block->id;
547    successor_block_info->key =
548        (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ?
549        first_key + i : keyTable[i];
550    cur_block->successor_blocks.push_back(successor_block_info);
551    case_block->predecessors.push_back(cur_block->id);
552  }
553
554  /* Fall-through case */
555  BasicBlock* fallthrough_block = FindBlock(cur_offset +  width, /* create */ true,
556                                            /* immed_pred_block_p */ nullptr);
557  cur_block->fall_through = fallthrough_block->id;
558  fallthrough_block->predecessors.push_back(cur_block->id);
559  return cur_block;
560}
561
562/* Process instructions with the kThrow flag */
563BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset,
564                                      int width, int flags, ArenaBitVector* try_block_addr,
565                                      const uint16_t* code_ptr, const uint16_t* code_end) {
566  UNUSED(flags);
567  bool in_try_block = try_block_addr->IsBitSet(cur_offset);
568  bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW);
569
570  /* In try block */
571  if (in_try_block) {
572    CatchHandlerIterator iterator(*current_code_item_, cur_offset);
573
574    if (cur_block->successor_block_list_type != kNotUsed) {
575      LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
576      LOG(FATAL) << "Successor block list already in use: "
577                 << static_cast<int>(cur_block->successor_block_list_type);
578    }
579
580    for (; iterator.HasNext(); iterator.Next()) {
581      BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* create */,
582                                          nullptr /* immed_pred_block_p */);
583      if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT &&
584          IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) {
585        // Don't allow monitor-exit to catch its own exception, http://b/15745363 .
586        continue;
587      }
588      if (cur_block->successor_block_list_type == kNotUsed) {
589        cur_block->successor_block_list_type = kCatch;
590      }
591      catch_block->catch_entry = true;
592      if (kIsDebugBuild) {
593        catches_.insert(catch_block->start_offset);
594      }
595      SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*>
596          (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
597      successor_block_info->block = catch_block->id;
598      successor_block_info->key = iterator.GetHandlerTypeIndex();
599      cur_block->successor_blocks.push_back(successor_block_info);
600      catch_block->predecessors.push_back(cur_block->id);
601    }
602    in_try_block = (cur_block->successor_block_list_type != kNotUsed);
603  }
604  bool build_all_edges =
605      (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block;
606  if (!in_try_block && build_all_edges) {
607    BasicBlock* eh_block = CreateNewBB(kExceptionHandling);
608    cur_block->taken = eh_block->id;
609    eh_block->start_offset = cur_offset;
610    eh_block->predecessors.push_back(cur_block->id);
611  }
612
613  if (is_throw) {
614    cur_block->explicit_throw = true;
615    if (code_ptr < code_end) {
616      // Force creation of new block following THROW via side-effect.
617      FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr);
618    }
619    if (!in_try_block) {
620       // Don't split a THROW that can't rethrow - we're done.
621      return cur_block;
622    }
623  }
624
625  if (!build_all_edges) {
626    /*
627     * Even though there is an exception edge here, control cannot return to this
628     * method.  Thus, for the purposes of dataflow analysis and optimization, we can
629     * ignore the edge.  Doing this reduces compile time, and increases the scope
630     * of the basic-block level optimization pass.
631     */
632    return cur_block;
633  }
634
635  /*
636   * Split the potentially-throwing instruction into two parts.
637   * The first half will be a pseudo-op that captures the exception
638   * edges and terminates the basic block.  It always falls through.
639   * Then, create a new basic block that begins with the throwing instruction
640   * (minus exceptions).  Note: this new basic block must NOT be entered into
641   * the block_map.  If the potentially-throwing instruction is the target of a
642   * future branch, we need to find the check psuedo half.  The new
643   * basic block containing the work portion of the instruction should
644   * only be entered via fallthrough from the block containing the
645   * pseudo exception edge MIR.  Note also that this new block is
646   * not automatically terminated after the work portion, and may
647   * contain following instructions.
648   *
649   * Note also that the dex_pc_to_block_map_ entry for the potentially
650   * throwing instruction will refer to the original basic block.
651   */
652  BasicBlock* new_block = CreateNewBB(kDalvikByteCode);
653  new_block->start_offset = insn->offset;
654  cur_block->fall_through = new_block->id;
655  new_block->predecessors.push_back(cur_block->id);
656  MIR* new_insn = NewMIR();
657  *new_insn = *insn;
658  insn->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheck);
659  // Associate the two halves.
660  insn->meta.throw_insn = new_insn;
661  new_block->AppendMIR(new_insn);
662  return new_block;
663}
664
665/* Parse a Dex method and insert it into the MIRGraph at the current insert point. */
666void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags,
667                           InvokeType invoke_type, uint16_t class_def_idx,
668                           uint32_t method_idx, jobject class_loader, const DexFile& dex_file) {
669  current_code_item_ = code_item;
670  method_stack_.push_back(std::make_pair(current_method_, current_offset_));
671  current_method_ = m_units_.size();
672  current_offset_ = 0;
673  // TODO: will need to snapshot stack image and use that as the mir context identification.
674  m_units_.push_back(new DexCompilationUnit(cu_, class_loader, Runtime::Current()->GetClassLinker(),
675                     dex_file, current_code_item_, class_def_idx, method_idx, access_flags,
676                     cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx)));
677  const uint16_t* code_ptr = current_code_item_->insns_;
678  const uint16_t* code_end =
679      current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_;
680
681  // TODO: need to rework expansion of block list & try_block_addr when inlining activated.
682  // TUNING: use better estimate of basic blocks for following resize.
683  block_list_.reserve(block_list_.size() + current_code_item_->insns_size_in_code_units_);
684  dex_pc_to_block_map_.resize(dex_pc_to_block_map_.size() + current_code_item_->insns_size_in_code_units_);
685
686  // TODO: replace with explicit resize routine.  Using automatic extension side effect for now.
687  try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_);
688  try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_);
689
690  // If this is the first method, set up default entry and exit blocks.
691  if (current_method_ == 0) {
692    DCHECK(entry_block_ == NULL);
693    DCHECK(exit_block_ == NULL);
694    DCHECK_EQ(num_blocks_, 0U);
695    // Use id 0 to represent a null block.
696    BasicBlock* null_block = CreateNewBB(kNullBlock);
697    DCHECK_EQ(null_block->id, NullBasicBlockId);
698    null_block->hidden = true;
699    entry_block_ = CreateNewBB(kEntryBlock);
700    exit_block_ = CreateNewBB(kExitBlock);
701    // TODO: deprecate all "cu->" fields; move what's left to wherever CompilationUnit is allocated.
702    cu_->dex_file = &dex_file;
703    cu_->class_def_idx = class_def_idx;
704    cu_->method_idx = method_idx;
705    cu_->access_flags = access_flags;
706    cu_->invoke_type = invoke_type;
707    cu_->shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
708  } else {
709    UNIMPLEMENTED(FATAL) << "Nested inlining not implemented.";
710    /*
711     * Will need to manage storage for ins & outs, push prevous state and update
712     * insert point.
713     */
714  }
715
716  /* Current block to record parsed instructions */
717  BasicBlock* cur_block = CreateNewBB(kDalvikByteCode);
718  DCHECK_EQ(current_offset_, 0U);
719  cur_block->start_offset = current_offset_;
720  // TODO: for inlining support, insert at the insert point rather than entry block.
721  entry_block_->fall_through = cur_block->id;
722  cur_block->predecessors.push_back(entry_block_->id);
723
724  /* Identify code range in try blocks and set up the empty catch blocks */
725  ProcessTryCatchBlocks();
726
727  uint64_t merged_df_flags = 0u;
728
729  /* Parse all instructions and put them into containing basic blocks */
730  while (code_ptr < code_end) {
731    MIR *insn = NewMIR();
732    insn->offset = current_offset_;
733    insn->m_unit_index = current_method_;
734    int width = ParseInsn(code_ptr, &insn->dalvikInsn);
735    Instruction::Code opcode = insn->dalvikInsn.opcode;
736    if (opcode_count_ != NULL) {
737      opcode_count_[static_cast<int>(opcode)]++;
738    }
739
740    int flags = insn->dalvikInsn.FlagsOf();
741    int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode);
742
743    uint64_t df_flags = GetDataFlowAttributes(insn);
744    merged_df_flags |= df_flags;
745
746    if (df_flags & DF_HAS_DEFS) {
747      def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1;
748    }
749
750    if (df_flags & DF_LVN) {
751      cur_block->use_lvn = true;  // Run local value numbering on this basic block.
752    }
753
754    // Check for inline data block signatures.
755    if (opcode == Instruction::NOP) {
756      // A simple NOP will have a width of 1 at this point, embedded data NOP > 1.
757      if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) {
758        // Could be an aligning nop.  If an embedded data NOP follows, treat pair as single unit.
759        uint16_t following_raw_instruction = code_ptr[1];
760        if ((following_raw_instruction == Instruction::kSparseSwitchSignature) ||
761            (following_raw_instruction == Instruction::kPackedSwitchSignature) ||
762            (following_raw_instruction == Instruction::kArrayDataSignature)) {
763          width += Instruction::At(code_ptr + 1)->SizeInCodeUnits();
764        }
765      }
766      if (width == 1) {
767        // It is a simple nop - treat normally.
768        cur_block->AppendMIR(insn);
769      } else {
770        DCHECK(cur_block->fall_through == NullBasicBlockId);
771        DCHECK(cur_block->taken == NullBasicBlockId);
772        // Unreachable instruction, mark for no continuation and end basic block.
773        flags &= ~Instruction::kContinue;
774        FindBlock(current_offset_ + width, /* create */ true, /* immed_pred_block_p */ nullptr);
775      }
776    } else {
777      cur_block->AppendMIR(insn);
778    }
779
780    // Associate the starting dex_pc for this opcode with its containing basic block.
781    dex_pc_to_block_map_[insn->offset] = cur_block->id;
782
783    code_ptr += width;
784
785    if (flags & Instruction::kBranch) {
786      cur_block = ProcessCanBranch(cur_block, insn, current_offset_,
787                                   width, flags, code_ptr, code_end);
788    } else if (flags & Instruction::kReturn) {
789      cur_block->terminated_by_return = true;
790      cur_block->fall_through = exit_block_->id;
791      exit_block_->predecessors.push_back(cur_block->id);
792      /*
793       * Terminate the current block if there are instructions
794       * afterwards.
795       */
796      if (code_ptr < code_end) {
797        /*
798         * Create a fallthrough block for real instructions
799         * (incl. NOP).
800         */
801         FindBlock(current_offset_ + width, /* create */ true, /* immed_pred_block_p */ nullptr);
802      }
803    } else if (flags & Instruction::kThrow) {
804      cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_,
805                                  code_ptr, code_end);
806    } else if (flags & Instruction::kSwitch) {
807      cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width, flags);
808    }
809    if (verify_flags & Instruction::kVerifyVarArgRange ||
810        verify_flags & Instruction::kVerifyVarArgRangeNonZero) {
811      /*
812       * The Quick backend's runtime model includes a gap between a method's
813       * argument ("in") vregs and the rest of its vregs.  Handling a range instruction
814       * which spans the gap is somewhat complicated, and should not happen
815       * in normal usage of dx.  Punt to the interpreter.
816       */
817      int first_reg_in_range = insn->dalvikInsn.vC;
818      int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1;
819      if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) {
820        punt_to_interpreter_ = true;
821      }
822    }
823    current_offset_ += width;
824    BasicBlock* next_block = FindBlock(current_offset_, /* create */ false,
825                                       /* immed_pred_block_p */ nullptr);
826    if (next_block) {
827      /*
828       * The next instruction could be the target of a previously parsed
829       * forward branch so a block is already created. If the current
830       * instruction is not an unconditional branch, connect them through
831       * the fall-through link.
832       */
833      DCHECK(cur_block->fall_through == NullBasicBlockId ||
834             GetBasicBlock(cur_block->fall_through) == next_block ||
835             GetBasicBlock(cur_block->fall_through) == exit_block_);
836
837      if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) {
838        cur_block->fall_through = next_block->id;
839        next_block->predecessors.push_back(cur_block->id);
840      }
841      cur_block = next_block;
842    }
843  }
844  merged_df_flags_ = merged_df_flags;
845
846  if (cu_->enable_debug & (1 << kDebugDumpCFG)) {
847    DumpCFG("/sdcard/1_post_parse_cfg/", true);
848  }
849
850  if (cu_->verbose) {
851    DumpMIRGraph();
852  }
853}
854
855void MIRGraph::ShowOpcodeStats() {
856  DCHECK(opcode_count_ != NULL);
857  LOG(INFO) << "Opcode Count";
858  for (int i = 0; i < kNumPackedOpcodes; i++) {
859    if (opcode_count_[i] != 0) {
860      LOG(INFO) << "-C- " << Instruction::Name(static_cast<Instruction::Code>(i))
861                << " " << opcode_count_[i];
862    }
863  }
864}
865
866uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) {
867  DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0])));
868  return oat_data_flow_attributes_[opcode];
869}
870
871uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) {
872  DCHECK(mir != nullptr);
873  Instruction::Code opcode = mir->dalvikInsn.opcode;
874  return GetDataFlowAttributes(opcode);
875}
876
877// TODO: use a configurable base prefix, and adjust callers to supply pass name.
878/* Dump the CFG into a DOT graph */
879void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) {
880  FILE* file;
881  static AtomicInteger cnt(0);
882
883  // Increment counter to get a unique file number.
884  cnt++;
885
886  std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file));
887  ReplaceSpecialChars(fname);
888  fname = StringPrintf("%s%s%x%s_%d.dot", dir_prefix, fname.c_str(),
889                      GetBasicBlock(GetEntryBlock()->fall_through)->start_offset,
890                      suffix == nullptr ? "" : suffix,
891                      cnt.LoadRelaxed());
892  file = fopen(fname.c_str(), "w");
893  if (file == NULL) {
894    return;
895  }
896  fprintf(file, "digraph G {\n");
897
898  fprintf(file, "  rankdir=TB\n");
899
900  int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_;
901  int idx;
902
903  for (idx = 0; idx < num_blocks; idx++) {
904    int block_idx = all_blocks ? idx : dfs_order_[idx];
905    BasicBlock* bb = GetBasicBlock(block_idx);
906    if (bb == NULL) continue;
907    if (bb->block_type == kDead) continue;
908    if (bb->hidden) continue;
909    if (bb->block_type == kEntryBlock) {
910      fprintf(file, "  entry_%d [shape=Mdiamond];\n", bb->id);
911    } else if (bb->block_type == kExitBlock) {
912      fprintf(file, "  exit_%d [shape=Mdiamond];\n", bb->id);
913    } else if (bb->block_type == kDalvikByteCode) {
914      fprintf(file, "  block%04x_%d [shape=record,label = \"{ \\\n",
915              bb->start_offset, bb->id);
916      const MIR* mir;
917        fprintf(file, "    {block id %d\\l}%s\\\n", bb->id,
918                bb->first_mir_insn ? " | " : " ");
919        for (mir = bb->first_mir_insn; mir; mir = mir->next) {
920            int opcode = mir->dalvikInsn.opcode;
921            fprintf(file, "    {%04x %s %s %s %s %s %s %s %s %s\\l}%s\\\n", mir->offset,
922                      mir->ssa_rep ? GetDalvikDisassembly(mir) :
923                      !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ?
924                        Instruction::Name(mir->dalvikInsn.opcode) :
925                        extended_mir_op_names_[opcode - kMirOpFirst],
926                      (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ",
927                      (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ",
928                      (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ",
929                      (mir->optimization_flags & MIR_STORE_NON_TEMPORAL) != 0 ? " non_temporal" : " ",
930                      (mir->optimization_flags & MIR_CALLEE) != 0 ? " inlined" : " ",
931                      (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0 ? " cl_inited" : " ",
932                      (mir->optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0 ? " cl_in_cache" : " ",
933                      (mir->optimization_flags & MIR_IGNORE_DIV_ZERO_CHECK) != 0 ? " no_div_check" : " ",
934                      mir->next ? " | " : " ");
935        }
936        fprintf(file, "  }\"];\n\n");
937    } else if (bb->block_type == kExceptionHandling) {
938      char block_name[BLOCK_NAME_LEN];
939
940      GetBlockName(bb, block_name);
941      fprintf(file, "  %s [shape=invhouse];\n", block_name);
942    }
943
944    char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
945
946    if (bb->taken != NullBasicBlockId) {
947      GetBlockName(bb, block_name1);
948      GetBlockName(GetBasicBlock(bb->taken), block_name2);
949      fprintf(file, "  %s:s -> %s:n [style=dotted]\n",
950              block_name1, block_name2);
951    }
952    if (bb->fall_through != NullBasicBlockId) {
953      GetBlockName(bb, block_name1);
954      GetBlockName(GetBasicBlock(bb->fall_through), block_name2);
955      fprintf(file, "  %s:s -> %s:n\n", block_name1, block_name2);
956    }
957
958    if (bb->successor_block_list_type != kNotUsed) {
959      fprintf(file, "  succ%04x_%d [shape=%s,label = \"{ \\\n",
960              bb->start_offset, bb->id,
961              (bb->successor_block_list_type == kCatch) ?  "Mrecord" : "record");
962
963      int last_succ_id = static_cast<int>(bb->successor_blocks.size() - 1u);
964      int succ_id = 0;
965      for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
966        BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
967        fprintf(file, "    {<f%d> %04x: %04x\\l}%s\\\n",
968                succ_id,
969                successor_block_info->key,
970                dest_block->start_offset,
971                (succ_id != last_succ_id) ? " | " : " ");
972        ++succ_id;
973      }
974      fprintf(file, "  }\"];\n\n");
975
976      GetBlockName(bb, block_name1);
977      fprintf(file, "  %s:s -> succ%04x_%d:n [style=dashed]\n",
978              block_name1, bb->start_offset, bb->id);
979
980      // Link the successor pseudo-block with all of its potential targets.
981      succ_id = 0;
982      for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
983        BasicBlock* dest_block = GetBasicBlock(successor_block_info->block);
984
985        GetBlockName(dest_block, block_name2);
986        fprintf(file, "  succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset,
987                bb->id, succ_id++, block_name2);
988      }
989    }
990    fprintf(file, "\n");
991
992    if (cu_->verbose) {
993      /* Display the dominator tree */
994      GetBlockName(bb, block_name1);
995      fprintf(file, "  cfg%s [label=\"%s\", shape=none];\n",
996              block_name1, block_name1);
997      if (bb->i_dom) {
998        GetBlockName(GetBasicBlock(bb->i_dom), block_name2);
999        fprintf(file, "  cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1);
1000      }
1001    }
1002  }
1003  fprintf(file, "}\n");
1004  fclose(file);
1005}
1006
1007/* Insert an MIR instruction to the end of a basic block. */
1008void BasicBlock::AppendMIR(MIR* mir) {
1009  // Insert it after the last MIR.
1010  InsertMIRListAfter(last_mir_insn, mir, mir);
1011}
1012
1013void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1014  // Insert it after the last MIR.
1015  InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir);
1016}
1017
1018void BasicBlock::AppendMIRList(const std::vector<MIR*>& insns) {
1019  for (std::vector<MIR*>::const_iterator it = insns.begin(); it != insns.end(); it++) {
1020    MIR* new_mir = *it;
1021
1022    // Add a copy of each MIR.
1023    InsertMIRListAfter(last_mir_insn, new_mir, new_mir);
1024  }
1025}
1026
1027/* Insert a MIR instruction after the specified MIR. */
1028void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) {
1029  InsertMIRListAfter(current_mir, new_mir, new_mir);
1030}
1031
1032void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) {
1033  // If no MIR, we are done.
1034  if (first_list_mir == nullptr || last_list_mir == nullptr) {
1035    return;
1036  }
1037
1038  // If insert_after is null, assume BB is empty.
1039  if (insert_after == nullptr) {
1040    first_mir_insn = first_list_mir;
1041    last_mir_insn = last_list_mir;
1042    last_list_mir->next = nullptr;
1043  } else {
1044    MIR* after_list = insert_after->next;
1045    insert_after->next = first_list_mir;
1046    last_list_mir->next = after_list;
1047    if (after_list == nullptr) {
1048      last_mir_insn = last_list_mir;
1049    }
1050  }
1051
1052  // Set this BB to be the basic block of the MIRs.
1053  MIR* last = last_list_mir->next;
1054  for (MIR* mir = first_list_mir; mir != last; mir = mir->next) {
1055    mir->bb = id;
1056  }
1057}
1058
1059/* Insert an MIR instruction to the head of a basic block. */
1060void BasicBlock::PrependMIR(MIR* mir) {
1061  InsertMIRListBefore(first_mir_insn, mir, mir);
1062}
1063
1064void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1065  // Insert it before the first MIR.
1066  InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir);
1067}
1068
1069void BasicBlock::PrependMIRList(const std::vector<MIR*>& to_add) {
1070  for (std::vector<MIR*>::const_iterator it = to_add.begin(); it != to_add.end(); it++) {
1071    MIR* mir = *it;
1072
1073    InsertMIRListBefore(first_mir_insn, mir, mir);
1074  }
1075}
1076
1077/* Insert a MIR instruction before the specified MIR. */
1078void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) {
1079  // Insert as a single element list.
1080  return InsertMIRListBefore(current_mir, new_mir, new_mir);
1081}
1082
1083MIR* BasicBlock::FindPreviousMIR(MIR* mir) {
1084  MIR* current = first_mir_insn;
1085
1086  while (current != nullptr) {
1087    MIR* next = current->next;
1088
1089    if (next == mir) {
1090      return current;
1091    }
1092
1093    current = next;
1094  }
1095
1096  return nullptr;
1097}
1098
1099void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) {
1100  // If no MIR, we are done.
1101  if (first_list_mir == nullptr || last_list_mir == nullptr) {
1102    return;
1103  }
1104
1105  // If insert_before is null, assume BB is empty.
1106  if (insert_before == nullptr) {
1107    first_mir_insn = first_list_mir;
1108    last_mir_insn = last_list_mir;
1109    last_list_mir->next = nullptr;
1110  } else {
1111    if (first_mir_insn == insert_before) {
1112      last_list_mir->next = first_mir_insn;
1113      first_mir_insn = first_list_mir;
1114    } else {
1115      // Find the preceding MIR.
1116      MIR* before_list = FindPreviousMIR(insert_before);
1117      DCHECK(before_list != nullptr);
1118      before_list->next = first_list_mir;
1119      last_list_mir->next = insert_before;
1120    }
1121  }
1122
1123  // Set this BB to be the basic block of the MIRs.
1124  for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
1125    mir->bb = id;
1126  }
1127}
1128
1129bool BasicBlock::RemoveMIR(MIR* mir) {
1130  // Remove as a single element list.
1131  return RemoveMIRList(mir, mir);
1132}
1133
1134bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) {
1135  if (first_list_mir == nullptr) {
1136    return false;
1137  }
1138
1139  // Try to find the MIR.
1140  MIR* before_list = nullptr;
1141  MIR* after_list = nullptr;
1142
1143  // If we are removing from the beginning of the MIR list.
1144  if (first_mir_insn == first_list_mir) {
1145    before_list = nullptr;
1146  } else {
1147    before_list = FindPreviousMIR(first_list_mir);
1148    if (before_list == nullptr) {
1149      // We did not find the mir.
1150      return false;
1151    }
1152  }
1153
1154  // Remove the BB information and also find the after_list.
1155  for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) {
1156    mir->bb = NullBasicBlockId;
1157  }
1158
1159  after_list = last_list_mir->next;
1160
1161  // If there is nothing before the list, after_list is the first_mir.
1162  if (before_list == nullptr) {
1163    first_mir_insn = after_list;
1164  } else {
1165    before_list->next = after_list;
1166  }
1167
1168  // If there is nothing after the list, before_list is last_mir.
1169  if (after_list == nullptr) {
1170    last_mir_insn = before_list;
1171  }
1172
1173  return true;
1174}
1175
1176MIR* BasicBlock::GetFirstNonPhiInsn() {
1177  MIR* mir = first_mir_insn;
1178  while (mir != nullptr && static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
1179    mir = mir->next;
1180  }
1181  return mir;
1182}
1183
1184MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) {
1185  MIR* next_mir = nullptr;
1186
1187  if (current != nullptr) {
1188    next_mir = current->next;
1189  }
1190
1191  if (next_mir == nullptr) {
1192    // Only look for next MIR that follows unconditionally.
1193    if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) {
1194      next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn;
1195    }
1196  }
1197
1198  return next_mir;
1199}
1200
1201static void FillTypeSizeString(uint32_t type_size, std::string* decoded_mir) {
1202  DCHECK(decoded_mir != nullptr);
1203  OpSize type = static_cast<OpSize>(type_size >> 16);
1204  uint16_t vect_size = (type_size & 0xFFFF);
1205
1206  // Now print the type and vector size.
1207  std::stringstream ss;
1208  ss << " (type:";
1209  ss << type;
1210  ss << " vectsize:";
1211  ss << vect_size;
1212  ss << ")";
1213
1214  decoded_mir->append(ss.str());
1215}
1216
1217void MIRGraph::DisassembleExtendedInstr(const MIR* mir, std::string* decoded_mir) {
1218  DCHECK(decoded_mir != nullptr);
1219  int opcode = mir->dalvikInsn.opcode;
1220  SSARepresentation* ssa_rep = mir->ssa_rep;
1221  int defs = (ssa_rep != nullptr) ? ssa_rep->num_defs : 0;
1222  int uses = (ssa_rep != nullptr) ? ssa_rep->num_uses : 0;
1223
1224  if (opcode < kMirOpFirst) {
1225    return;  // It is not an extended instruction.
1226  }
1227
1228  decoded_mir->append(extended_mir_op_names_[opcode - kMirOpFirst]);
1229
1230  switch (opcode) {
1231    case kMirOpPhi: {
1232      if (defs > 0 && uses > 0) {
1233        BasicBlockId* incoming = mir->meta.phi_incoming;
1234        decoded_mir->append(StringPrintf(" %s = (%s",
1235                           GetSSANameWithConst(ssa_rep->defs[0], true).c_str(),
1236                           GetSSANameWithConst(ssa_rep->uses[0], true).c_str()));
1237        decoded_mir->append(StringPrintf(":%d", incoming[0]));
1238        for (int i = 1; i < uses; i++) {
1239          decoded_mir->append(StringPrintf(", %s:%d", GetSSANameWithConst(ssa_rep->uses[i], true).c_str(), incoming[i]));
1240        }
1241        decoded_mir->append(")");
1242      }
1243      break;
1244    }
1245    case kMirOpCopy:
1246      if (ssa_rep != nullptr) {
1247        decoded_mir->append(" ");
1248        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1249        if (defs > 1) {
1250          decoded_mir->append(", ");
1251          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1252        }
1253        decoded_mir->append(" = ");
1254        decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false));
1255        if (uses > 1) {
1256          decoded_mir->append(", ");
1257          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false));
1258        }
1259      } else {
1260        decoded_mir->append(StringPrintf(" v%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1261      }
1262      break;
1263    case kMirOpFusedCmplFloat:
1264    case kMirOpFusedCmpgFloat:
1265    case kMirOpFusedCmplDouble:
1266    case kMirOpFusedCmpgDouble:
1267    case kMirOpFusedCmpLong:
1268      if (ssa_rep != nullptr) {
1269        decoded_mir->append(" ");
1270        decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false));
1271        for (int i = 1; i < uses; i++) {
1272          decoded_mir->append(", ");
1273          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false));
1274        }
1275      } else {
1276        decoded_mir->append(StringPrintf(" v%d, v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1277      }
1278      break;
1279    case kMirOpMoveVector:
1280      decoded_mir->append(StringPrintf(" vect%d = vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1281      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1282      break;
1283    case kMirOpPackedAddition:
1284      decoded_mir->append(StringPrintf(" vect%d = vect%d + vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1285      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1286      break;
1287    case kMirOpPackedMultiply:
1288      decoded_mir->append(StringPrintf(" vect%d = vect%d * vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1289      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1290      break;
1291    case kMirOpPackedSubtract:
1292      decoded_mir->append(StringPrintf(" vect%d = vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1293      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1294      break;
1295    case kMirOpPackedAnd:
1296      decoded_mir->append(StringPrintf(" vect%d = vect%d & vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1297      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1298      break;
1299    case kMirOpPackedOr:
1300      decoded_mir->append(StringPrintf(" vect%d = vect%d \\| vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1301      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1302      break;
1303    case kMirOpPackedXor:
1304      decoded_mir->append(StringPrintf(" vect%d = vect%d ^ vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1305      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1306      break;
1307    case kMirOpPackedShiftLeft:
1308      decoded_mir->append(StringPrintf(" vect%d = vect%d \\<\\< %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1309      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1310      break;
1311    case kMirOpPackedUnsignedShiftRight:
1312      decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1313      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1314      break;
1315    case kMirOpPackedSignedShiftRight:
1316      decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1317      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1318      break;
1319    case kMirOpConstVector:
1320      decoded_mir->append(StringPrintf(" vect%d = %x, %x, %x, %x", mir->dalvikInsn.vA, mir->dalvikInsn.arg[0],
1321                                      mir->dalvikInsn.arg[1], mir->dalvikInsn.arg[2], mir->dalvikInsn.arg[3]));
1322      break;
1323    case kMirOpPackedSet:
1324      if (ssa_rep != nullptr) {
1325        decoded_mir->append(StringPrintf(" vect%d = %s", mir->dalvikInsn.vA,
1326              GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
1327        if (uses > 1) {
1328          decoded_mir->append(", ");
1329          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false));
1330        }
1331      } else {
1332        decoded_mir->append(StringPrintf(" vect%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1333      }
1334      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1335      break;
1336    case kMirOpPackedAddReduce:
1337      if (ssa_rep != nullptr) {
1338        decoded_mir->append(" ");
1339        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1340        if (defs > 1) {
1341          decoded_mir->append(", ");
1342          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1343        }
1344        decoded_mir->append(StringPrintf(" = vect%d + %s", mir->dalvikInsn.vB,
1345            GetSSANameWithConst(ssa_rep->uses[0], false).c_str()));
1346        if (uses > 1) {
1347          decoded_mir->append(", ");
1348          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false));
1349        }
1350      } else {
1351        decoded_mir->append(StringPrintf("v%d = vect%d + v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB, mir->dalvikInsn.vA));
1352      }
1353      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1354      break;
1355    case kMirOpPackedReduce:
1356      if (ssa_rep != nullptr) {
1357        decoded_mir->append(" ");
1358        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1359        if (defs > 1) {
1360          decoded_mir->append(", ");
1361          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1362        }
1363        decoded_mir->append(StringPrintf(" = vect%d (extr_idx:%d)", mir->dalvikInsn.vB, mir->dalvikInsn.arg[0]));
1364      } else {
1365        decoded_mir->append(StringPrintf(" v%d = vect%d (extr_idx:%d)", mir->dalvikInsn.vA,
1366                                         mir->dalvikInsn.vB, mir->dalvikInsn.arg[0]));
1367      }
1368      FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir);
1369      break;
1370    case kMirOpReserveVectorRegisters:
1371    case kMirOpReturnVectorRegisters:
1372      decoded_mir->append(StringPrintf(" vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB));
1373      break;
1374    case kMirOpMemBarrier: {
1375      decoded_mir->append(" type:");
1376      std::stringstream ss;
1377      ss << static_cast<MemBarrierKind>(mir->dalvikInsn.vA);
1378      decoded_mir->append(ss.str());
1379      break;
1380    }
1381    case kMirOpPackedArrayGet:
1382    case kMirOpPackedArrayPut:
1383      decoded_mir->append(StringPrintf(" vect%d", mir->dalvikInsn.vA));
1384      if (ssa_rep != nullptr) {
1385        decoded_mir->append(StringPrintf(", %s[%s]",
1386                                        GetSSANameWithConst(ssa_rep->uses[0], false).c_str(),
1387                                        GetSSANameWithConst(ssa_rep->uses[1], false).c_str()));
1388      } else {
1389        decoded_mir->append(StringPrintf(", v%d[v%d]", mir->dalvikInsn.vB, mir->dalvikInsn.vC));
1390      }
1391      FillTypeSizeString(mir->dalvikInsn.arg[0], decoded_mir);
1392      break;
1393    case kMirOpMaddInt:
1394    case kMirOpMsubInt:
1395    case kMirOpMaddLong:
1396    case kMirOpMsubLong:
1397      if (ssa_rep != nullptr) {
1398        decoded_mir->append(" ");
1399        decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false));
1400        if (defs > 1) {
1401          decoded_mir->append(", ");
1402          decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false));
1403        }
1404        for (int i = 0; i < uses; i++) {
1405          decoded_mir->append(", ");
1406          decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false));
1407        }
1408      } else {
1409        decoded_mir->append(StringPrintf(" v%d, v%d, v%d, v%d",
1410                                         mir->dalvikInsn.vA, mir->dalvikInsn.vB,
1411                                         mir->dalvikInsn.vC, mir->dalvikInsn.arg[0]));
1412      }
1413      break;
1414    default:
1415      break;
1416  }
1417}
1418
1419char* MIRGraph::GetDalvikDisassembly(const MIR* mir) {
1420  MIR::DecodedInstruction insn = mir->dalvikInsn;
1421  std::string str;
1422  int flags = 0;
1423  int opcode = insn.opcode;
1424  char* ret;
1425  bool nop = false;
1426  SSARepresentation* ssa_rep = mir->ssa_rep;
1427  Instruction::Format dalvik_format = Instruction::k10x;  // Default to no-operand format.
1428
1429  // Handle special cases that recover the original dalvik instruction.
1430  if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) {
1431    str.append(extended_mir_op_names_[opcode - kMirOpFirst]);
1432    str.append(": ");
1433    // Recover the original Dex instruction.
1434    insn = mir->meta.throw_insn->dalvikInsn;
1435    ssa_rep = mir->meta.throw_insn->ssa_rep;
1436    opcode = insn.opcode;
1437  } else if (opcode == kMirOpNop) {
1438    str.append("[");
1439    if (mir->offset < current_code_item_->insns_size_in_code_units_) {
1440      // Recover original opcode.
1441      insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode();
1442      opcode = insn.opcode;
1443    }
1444    nop = true;
1445  }
1446  int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0;
1447  int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0;
1448
1449  if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) {
1450    // Note that this does not check the MIR's opcode in all cases. In cases where it
1451    // recovered dalvik instruction, it uses opcode of that instead of the extended one.
1452    DisassembleExtendedInstr(mir, &str);
1453  } else {
1454    dalvik_format = Instruction::FormatOf(insn.opcode);
1455    flags = insn.FlagsOf();
1456    str.append(Instruction::Name(insn.opcode));
1457
1458    // For invokes-style formats, treat wide regs as a pair of singles.
1459    bool show_singles = ((dalvik_format == Instruction::k35c) ||
1460                         (dalvik_format == Instruction::k3rc));
1461    if (defs != 0) {
1462      str.append(" ");
1463      str.append(GetSSANameWithConst(ssa_rep->defs[0], false));
1464      if (defs > 1) {
1465        str.append(", ");
1466        str.append(GetSSANameWithConst(ssa_rep->defs[1], false));
1467      }
1468      if (uses != 0) {
1469        str.append(", ");
1470      }
1471    }
1472    for (int i = 0; i < uses; i++) {
1473      str.append(" ");
1474      str.append(GetSSANameWithConst(ssa_rep->uses[i], show_singles));
1475      if (!show_singles && (reg_location_ != NULL) && reg_location_[i].wide) {
1476        // For the listing, skip the high sreg.
1477        i++;
1478      }
1479      if (i != (uses - 1)) {
1480        str.append(",");
1481      }
1482    }
1483
1484    switch (dalvik_format) {
1485      case Instruction::k11n:  // Add one immediate from vB.
1486      case Instruction::k21s:
1487      case Instruction::k31i:
1488      case Instruction::k21h:
1489        str.append(StringPrintf(", #0x%x", insn.vB));
1490        break;
1491      case Instruction::k51l:  // Add one wide immediate.
1492        str.append(StringPrintf(", #%" PRId64, insn.vB_wide));
1493        break;
1494      case Instruction::k21c:  // One register, one string/type/method index.
1495      case Instruction::k31c:
1496        str.append(StringPrintf(", index #0x%x", insn.vB));
1497        break;
1498      case Instruction::k22c:  // Two registers, one string/type/method index.
1499        str.append(StringPrintf(", index #0x%x", insn.vC));
1500        break;
1501      case Instruction::k22s:  // Add one immediate from vC.
1502      case Instruction::k22b:
1503        str.append(StringPrintf(", #0x%x", insn.vC));
1504        break;
1505      default:
1506        // Nothing left to print.
1507        break;
1508    }
1509
1510    if ((flags & Instruction::kBranch) != 0) {
1511      // For branches, decode the instructions to print out the branch targets.
1512      int offset = 0;
1513      switch (dalvik_format) {
1514        case Instruction::k21t:
1515          offset = insn.vB;
1516          break;
1517        case Instruction::k22t:
1518          offset = insn.vC;
1519          break;
1520        case Instruction::k10t:
1521        case Instruction::k20t:
1522        case Instruction::k30t:
1523          offset = insn.vA;
1524          break;
1525        default:
1526          LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode;
1527          break;
1528      }
1529      str.append(StringPrintf(", 0x%x (%c%x)", mir->offset + offset,
1530                              offset > 0 ? '+' : '-', offset > 0 ? offset : -offset));
1531    }
1532
1533    if (nop) {
1534      str.append("]--optimized away");
1535    }
1536  }
1537  int length = str.length() + 1;
1538  ret = static_cast<char*>(arena_->Alloc(length, kArenaAllocDFInfo));
1539  strncpy(ret, str.c_str(), length);
1540  return ret;
1541}
1542
1543/* Turn method name into a legal Linux file name */
1544void MIRGraph::ReplaceSpecialChars(std::string& str) {
1545  static const struct { const char before; const char after; } match[] = {
1546    {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'},
1547    {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='}
1548  };
1549  for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) {
1550    std::replace(str.begin(), str.end(), match[i].before, match[i].after);
1551  }
1552}
1553
1554std::string MIRGraph::GetSSAName(int ssa_reg) {
1555  // TODO: This value is needed for LLVM and debugging. Currently, we compute this and then copy to
1556  //       the arena. We should be smarter and just place straight into the arena, or compute the
1557  //       value more lazily.
1558  int vreg = SRegToVReg(ssa_reg);
1559  if (vreg >= static_cast<int>(GetFirstTempVR())) {
1560    return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1561  } else {
1562    return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1563  }
1564}
1565
1566// Similar to GetSSAName, but if ssa name represents an immediate show that as well.
1567std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) {
1568  if (reg_location_ == NULL) {
1569    // Pre-SSA - just use the standard name.
1570    return GetSSAName(ssa_reg);
1571  }
1572  if (IsConst(reg_location_[ssa_reg])) {
1573    if (!singles_only && reg_location_[ssa_reg].wide &&
1574        !reg_location_[ssa_reg].high_word) {
1575      return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1576                          ConstantValueWide(reg_location_[ssa_reg]));
1577    } else {
1578      return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg),
1579                          ConstantValue(reg_location_[ssa_reg]));
1580    }
1581  } else {
1582    int vreg = SRegToVReg(ssa_reg);
1583    if (vreg >= static_cast<int>(GetFirstTempVR())) {
1584      return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1585    } else {
1586      return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg));
1587    }
1588  }
1589}
1590
1591void MIRGraph::GetBlockName(BasicBlock* bb, char* name) {
1592  switch (bb->block_type) {
1593    case kEntryBlock:
1594      snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id);
1595      break;
1596    case kExitBlock:
1597      snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id);
1598      break;
1599    case kDalvikByteCode:
1600      snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id);
1601      break;
1602    case kExceptionHandling:
1603      snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset,
1604               bb->id);
1605      break;
1606    default:
1607      snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id);
1608      break;
1609  }
1610}
1611
1612const char* MIRGraph::GetShortyFromTargetIdx(int target_idx) {
1613  // TODO: for inlining support, use current code unit.
1614  const DexFile::MethodId& method_id = cu_->dex_file->GetMethodId(target_idx);
1615  return cu_->dex_file->GetShorty(method_id.proto_idx_);
1616}
1617
1618const char* MIRGraph::GetShortyFromMethodReference(const MethodReference& target_method) {
1619  const DexFile::MethodId& method_id =
1620      target_method.dex_file->GetMethodId(target_method.dex_method_index);
1621  return target_method.dex_file->GetShorty(method_id.proto_idx_);
1622}
1623
1624/* Debug Utility - dump a compilation unit */
1625void MIRGraph::DumpMIRGraph() {
1626  const char* block_type_names[] = {
1627    "Null Block",
1628    "Entry Block",
1629    "Code Block",
1630    "Exit Block",
1631    "Exception Handling",
1632    "Catch Block"
1633  };
1634
1635  LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1636  LOG(INFO) << GetInsns(0) << " insns";
1637  LOG(INFO) << GetNumBlocks() << " blocks in total";
1638
1639  for (BasicBlock* bb : block_list_) {
1640    LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)",
1641        bb->id,
1642        block_type_names[bb->block_type],
1643        bb->start_offset,
1644        bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset,
1645        bb->last_mir_insn ? "" : " empty");
1646    if (bb->taken != NullBasicBlockId) {
1647      LOG(INFO) << "  Taken branch: block " << bb->taken
1648                << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")";
1649    }
1650    if (bb->fall_through != NullBasicBlockId) {
1651      LOG(INFO) << "  Fallthrough : block " << bb->fall_through
1652                << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")";
1653    }
1654  }
1655}
1656
1657/*
1658 * Build an array of location records for the incoming arguments.
1659 * Note: one location record per word of arguments, with dummy
1660 * high-word loc for wide arguments.  Also pull up any following
1661 * MOVE_RESULT and incorporate it into the invoke.
1662 */
1663CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type,
1664                                  bool is_range) {
1665  CallInfo* info = static_cast<CallInfo*>(arena_->Alloc(sizeof(CallInfo),
1666                                                        kArenaAllocMisc));
1667  MIR* move_result_mir = FindMoveResult(bb, mir);
1668  if (move_result_mir == NULL) {
1669    info->result.location = kLocInvalid;
1670  } else {
1671    info->result = GetRawDest(move_result_mir);
1672    move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
1673  }
1674  info->num_arg_words = mir->ssa_rep->num_uses;
1675  info->args = (info->num_arg_words == 0) ? NULL : static_cast<RegLocation*>
1676      (arena_->Alloc(sizeof(RegLocation) * info->num_arg_words, kArenaAllocMisc));
1677  for (int i = 0; i < info->num_arg_words; i++) {
1678    info->args[i] = GetRawSrc(mir, i);
1679  }
1680  info->opt_flags = mir->optimization_flags;
1681  info->type = type;
1682  info->is_range = is_range;
1683  info->index = mir->dalvikInsn.vB;
1684  info->offset = mir->offset;
1685  info->mir = mir;
1686  return info;
1687}
1688
1689// Allocate a new MIR.
1690MIR* MIRGraph::NewMIR() {
1691  MIR* mir = new (arena_) MIR();
1692  return mir;
1693}
1694
1695// Allocate a new basic block.
1696BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) {
1697  BasicBlock* bb = new (arena_) BasicBlock(block_id, block_type, arena_);
1698
1699  // TUNING: better estimate of the exit block predecessors?
1700  bb->predecessors.reserve((block_type == kExitBlock) ? 2048 : 2);
1701  block_id_map_.Put(block_id, block_id);
1702  return bb;
1703}
1704
1705void MIRGraph::InitializeConstantPropagation() {
1706  is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false);
1707  constant_values_ = static_cast<int*>(arena_->Alloc(sizeof(int) * GetNumSSARegs(), kArenaAllocDFInfo));
1708}
1709
1710void MIRGraph::InitializeMethodUses() {
1711  // The gate starts by initializing the use counts.
1712  int num_ssa_regs = GetNumSSARegs();
1713  use_counts_.clear();
1714  use_counts_.reserve(num_ssa_regs + 32);
1715  use_counts_.resize(num_ssa_regs, 0u);
1716  raw_use_counts_.clear();
1717  raw_use_counts_.reserve(num_ssa_regs + 32);
1718  raw_use_counts_.resize(num_ssa_regs, 0u);
1719}
1720
1721void MIRGraph::SSATransformationStart() {
1722  DCHECK(temp_scoped_alloc_.get() == nullptr);
1723  temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1724  temp_.ssa.num_vregs = GetNumOfCodeAndTempVRs();
1725  temp_.ssa.work_live_vregs = new (temp_scoped_alloc_.get()) ArenaBitVector(
1726      temp_scoped_alloc_.get(), temp_.ssa.num_vregs, false, kBitMapRegisterV);
1727}
1728
1729void MIRGraph::SSATransformationEnd() {
1730  // Verify the dataflow information after the pass.
1731  if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) {
1732    VerifyDataflow();
1733  }
1734
1735  temp_.ssa.num_vregs = 0u;
1736  temp_.ssa.work_live_vregs = nullptr;
1737  temp_.ssa.def_block_matrix = nullptr;
1738  DCHECK(temp_scoped_alloc_.get() != nullptr);
1739  temp_scoped_alloc_.reset();
1740
1741  // Update the maximum number of reachable blocks.
1742  max_num_reachable_blocks_ = num_reachable_blocks_;
1743}
1744
1745size_t MIRGraph::GetNumDalvikInsns() const {
1746  size_t cumulative_size = 0u;
1747  bool counted_current_item = false;
1748  const uint8_t size_for_null_code_item = 2u;
1749
1750  for (auto it : m_units_) {
1751    const DexFile::CodeItem* code_item = it->GetCodeItem();
1752    // Even if the code item is null, we still count non-zero value so that
1753    // each m_unit is counted as having impact.
1754    cumulative_size += (code_item == nullptr ?
1755        size_for_null_code_item : code_item->insns_size_in_code_units_);
1756    if (code_item == current_code_item_) {
1757      counted_current_item = true;
1758    }
1759  }
1760
1761  // If the current code item was not counted yet, count it now.
1762  // This can happen for example in unit tests where some fields like m_units_
1763  // are not initialized.
1764  if (counted_current_item == false) {
1765    cumulative_size += (current_code_item_ == nullptr ?
1766        size_for_null_code_item : current_code_item_->insns_size_in_code_units_);
1767  }
1768
1769  return cumulative_size;
1770}
1771
1772static BasicBlock* SelectTopologicalSortOrderFallBack(
1773    MIRGraph* mir_graph, const ArenaBitVector* current_loop,
1774    const ScopedArenaVector<size_t>* visited_cnt_values, ScopedArenaAllocator* allocator,
1775    ScopedArenaVector<BasicBlockId>* tmp_stack) {
1776  // No true loop head has been found but there may be true loop heads after the mess we need
1777  // to resolve. To avoid taking one of those, pick the candidate with the highest number of
1778  // reachable unvisited nodes. That candidate will surely be a part of a loop.
1779  BasicBlock* fall_back = nullptr;
1780  size_t fall_back_num_reachable = 0u;
1781  // Reuse the same bit vector for each candidate to mark reachable unvisited blocks.
1782  ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc);
1783  AllNodesIterator iter(mir_graph);
1784  for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) {
1785    if (candidate->hidden ||                            // Hidden, or
1786        candidate->visited ||                           // already processed, or
1787        (*visited_cnt_values)[candidate->id] == 0u ||   // no processed predecessors, or
1788        (current_loop != nullptr &&                     // outside current loop.
1789         !current_loop->IsBitSet(candidate->id))) {
1790      continue;
1791    }
1792    DCHECK(tmp_stack->empty());
1793    tmp_stack->push_back(candidate->id);
1794    candidate_reachable.ClearAllBits();
1795    size_t num_reachable = 0u;
1796    while (!tmp_stack->empty()) {
1797      BasicBlockId current_id = tmp_stack->back();
1798      tmp_stack->pop_back();
1799      BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1800      DCHECK(current_bb != nullptr);
1801      ChildBlockIterator child_iter(current_bb, mir_graph);
1802      BasicBlock* child_bb = child_iter.Next();
1803      for ( ; child_bb != nullptr; child_bb = child_iter.Next()) {
1804        DCHECK(!child_bb->hidden);
1805        if (child_bb->visited ||                            // Already processed, or
1806            (current_loop != nullptr &&                     // outside current loop.
1807             !current_loop->IsBitSet(child_bb->id))) {
1808          continue;
1809        }
1810        if (!candidate_reachable.IsBitSet(child_bb->id)) {
1811          candidate_reachable.SetBit(child_bb->id);
1812          tmp_stack->push_back(child_bb->id);
1813          num_reachable += 1u;
1814        }
1815      }
1816    }
1817    if (fall_back_num_reachable < num_reachable) {
1818      fall_back_num_reachable = num_reachable;
1819      fall_back = candidate;
1820    }
1821  }
1822  return fall_back;
1823}
1824
1825// Compute from which unvisited blocks is bb_id reachable through unvisited blocks.
1826static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id,
1827                                          ArenaBitVector* reachable,
1828                                          ScopedArenaVector<BasicBlockId>* tmp_stack) {
1829  // NOTE: Loop heads indicated by the "visited" flag.
1830  DCHECK(tmp_stack->empty());
1831  reachable->ClearAllBits();
1832  tmp_stack->push_back(bb_id);
1833  while (!tmp_stack->empty()) {
1834    BasicBlockId current_id = tmp_stack->back();
1835    tmp_stack->pop_back();
1836    BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id);
1837    DCHECK(current_bb != nullptr);
1838    for (BasicBlockId pred_id : current_bb->predecessors) {
1839      BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id);
1840      DCHECK(pred_bb != nullptr);
1841      if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) {
1842        reachable->SetBit(pred_bb->id);
1843        tmp_stack->push_back(pred_bb->id);
1844      }
1845    }
1846  }
1847}
1848
1849void MIRGraph::ComputeTopologicalSortOrder() {
1850  ScopedArenaAllocator allocator(&cu_->arena_stack);
1851  unsigned int num_blocks = GetNumBlocks();
1852
1853  ScopedArenaQueue<BasicBlock*> q(allocator.Adapter());
1854  ScopedArenaVector<size_t> visited_cnt_values(num_blocks, 0u, allocator.Adapter());
1855  ScopedArenaVector<BasicBlockId> loop_head_stack(allocator.Adapter());
1856  size_t max_nested_loops = 0u;
1857  ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc);
1858  loop_exit_blocks.ClearAllBits();
1859
1860  // Count the number of blocks to process and add the entry block(s).
1861  unsigned int num_blocks_to_process = 0u;
1862  for (BasicBlock* bb : block_list_) {
1863    if (bb->hidden == true) {
1864      continue;
1865    }
1866
1867    num_blocks_to_process += 1u;
1868
1869    if (bb->predecessors.size() == 0u) {
1870      // Add entry block to the queue.
1871      q.push(bb);
1872    }
1873  }
1874
1875  // Clear the topological order arrays.
1876  topological_order_.clear();
1877  topological_order_.reserve(num_blocks);
1878  topological_order_loop_ends_.clear();
1879  topological_order_loop_ends_.resize(num_blocks, 0u);
1880  topological_order_indexes_.clear();
1881  topological_order_indexes_.resize(num_blocks, static_cast<uint16_t>(-1));
1882
1883  // Mark all blocks as unvisited.
1884  ClearAllVisitedFlags();
1885
1886  // For loop heads, keep track from which blocks they are reachable not going through other
1887  // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children
1888  // in this set go into the loop body, the other children are jumping over the loop.
1889  ScopedArenaVector<ArenaBitVector*> loop_head_reachable_from(allocator.Adapter());
1890  loop_head_reachable_from.resize(num_blocks, nullptr);
1891  // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id].
1892  ScopedArenaVector<BasicBlockId> tmp_stack(allocator.Adapter());
1893
1894  while (num_blocks_to_process != 0u) {
1895    BasicBlock* bb = nullptr;
1896    if (!q.empty()) {
1897      num_blocks_to_process -= 1u;
1898      // Get top.
1899      bb = q.front();
1900      q.pop();
1901      if (bb->visited) {
1902        // Loop head: it was already processed, mark end and copy exit blocks to the queue.
1903        DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1904        uint16_t idx = static_cast<uint16_t>(topological_order_.size());
1905        topological_order_loop_ends_[topological_order_indexes_[bb->id]] = idx;
1906        DCHECK_EQ(loop_head_stack.back(), bb->id);
1907        loop_head_stack.pop_back();
1908        ArenaBitVector* reachable =
1909            loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1910        for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) {
1911          if (reachable == nullptr || reachable->IsBitSet(candidate_id)) {
1912            q.push(GetBasicBlock(candidate_id));
1913            // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
1914            // so clearing the bit has no effect on the iterator.
1915            loop_exit_blocks.ClearBit(candidate_id);
1916          }
1917        }
1918        continue;
1919      }
1920    } else {
1921      // Find the new loop head.
1922      AllNodesIterator iter(this);
1923      while (true) {
1924        BasicBlock* candidate = iter.Next();
1925        if (candidate == nullptr) {
1926          // We did not find a true loop head, fall back to a reachable block in any loop.
1927          ArenaBitVector* current_loop =
1928              loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()];
1929          bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values,
1930                                                  &allocator, &tmp_stack);
1931          DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1932          if (kIsDebugBuild && cu_->dex_file != nullptr) {
1933            LOG(INFO) << "Topological sort order: Using fall-back in "
1934                << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id
1935                << " @0x" << std::hex << bb->start_offset
1936                << ", num_blocks = " << std::dec << num_blocks;
1937          }
1938          break;
1939        }
1940        if (candidate->hidden ||                            // Hidden, or
1941            candidate->visited ||                           // already processed, or
1942            visited_cnt_values[candidate->id] == 0u ||      // no processed predecessors, or
1943            (!loop_head_stack.empty() &&                    // outside current loop.
1944             !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) {
1945          continue;
1946        }
1947
1948        for (BasicBlockId pred_id : candidate->predecessors) {
1949          BasicBlock* pred_bb = GetBasicBlock(pred_id);
1950          DCHECK(pred_bb != nullptr);
1951          if (pred_bb != candidate && !pred_bb->visited &&
1952              !pred_bb->dominators->IsBitSet(candidate->id)) {
1953            candidate = nullptr;  // Set candidate to null to indicate failure.
1954            break;
1955          }
1956        }
1957        if (candidate != nullptr) {
1958          bb = candidate;
1959          break;
1960        }
1961      }
1962      // Compute blocks from which the loop head is reachable and process those blocks first.
1963      ArenaBitVector* reachable =
1964          new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc);
1965      loop_head_reachable_from[bb->id] = reachable;
1966      ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack);
1967      // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.)
1968      loop_head_stack.push_back(bb->id);
1969      max_nested_loops = std::max(max_nested_loops, loop_head_stack.size());
1970    }
1971
1972    DCHECK_EQ(bb->hidden, false);
1973    DCHECK_EQ(bb->visited, false);
1974    bb->visited = true;
1975    bb->nesting_depth = loop_head_stack.size();
1976
1977    // Now add the basic block.
1978    uint16_t idx = static_cast<uint16_t>(topological_order_.size());
1979    topological_order_indexes_[bb->id] = idx;
1980    topological_order_.push_back(bb->id);
1981
1982    // Update visited_cnt_values for children.
1983    ChildBlockIterator succIter(bb, this);
1984    BasicBlock* successor = succIter.Next();
1985    for ( ; successor != nullptr; successor = succIter.Next()) {
1986      if (successor->hidden) {
1987        continue;
1988      }
1989
1990      // One more predecessor was visited.
1991      visited_cnt_values[successor->id] += 1u;
1992      if (visited_cnt_values[successor->id] == successor->predecessors.size()) {
1993        if (loop_head_stack.empty() ||
1994            loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) {
1995          q.push(successor);
1996        } else {
1997          DCHECK(!loop_exit_blocks.IsBitSet(successor->id));
1998          loop_exit_blocks.SetBit(successor->id);
1999        }
2000      }
2001    }
2002  }
2003
2004  // Prepare the loop head stack for iteration.
2005  topological_order_loop_head_stack_.clear();
2006  topological_order_loop_head_stack_.reserve(max_nested_loops);
2007  max_nested_loops_ = max_nested_loops;
2008}
2009
2010bool BasicBlock::IsExceptionBlock() const {
2011  if (block_type == kExceptionHandling) {
2012    return true;
2013  }
2014  return false;
2015}
2016
2017ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph)
2018    : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false),
2019      visited_taken_(false), have_successors_(false) {
2020  // Check if we actually do have successors.
2021  if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) {
2022    have_successors_ = true;
2023    successor_iter_ = basic_block_->successor_blocks.cbegin();
2024  }
2025}
2026
2027BasicBlock* ChildBlockIterator::Next() {
2028  // We check if we have a basic block. If we don't we cannot get next child.
2029  if (basic_block_ == nullptr) {
2030    return nullptr;
2031  }
2032
2033  // If we haven't visited fallthrough, return that.
2034  if (visited_fallthrough_ == false) {
2035    visited_fallthrough_ = true;
2036
2037    BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through);
2038    if (result != nullptr) {
2039      return result;
2040    }
2041  }
2042
2043  // If we haven't visited taken, return that.
2044  if (visited_taken_ == false) {
2045    visited_taken_ = true;
2046
2047    BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken);
2048    if (result != nullptr) {
2049      return result;
2050    }
2051  }
2052
2053  // We visited both taken and fallthrough. Now check if we have successors we need to visit.
2054  if (have_successors_ == true) {
2055    // Get information about next successor block.
2056    auto end = basic_block_->successor_blocks.cend();
2057    while (successor_iter_ != end) {
2058      SuccessorBlockInfo* successor_block_info = *successor_iter_;
2059      ++successor_iter_;
2060      // If block was replaced by zero block, take next one.
2061      if (successor_block_info->block != NullBasicBlockId) {
2062        return mir_graph_->GetBasicBlock(successor_block_info->block);
2063      }
2064    }
2065  }
2066
2067  // We do not have anything.
2068  return nullptr;
2069}
2070
2071BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) {
2072  MIRGraph* mir_graph = c_unit->mir_graph.get();
2073  return Copy(mir_graph);
2074}
2075
2076BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) {
2077  BasicBlock* result_bb = mir_graph->CreateNewBB(block_type);
2078
2079  // We don't do a memcpy style copy here because it would lead to a lot of things
2080  // to clean up. Let us do it by hand instead.
2081  // Copy in taken and fallthrough.
2082  result_bb->fall_through = fall_through;
2083  result_bb->taken = taken;
2084
2085  // Copy successor links if needed.
2086  ArenaAllocator* arena = mir_graph->GetArena();
2087
2088  result_bb->successor_block_list_type = successor_block_list_type;
2089  if (result_bb->successor_block_list_type != kNotUsed) {
2090    result_bb->successor_blocks.reserve(successor_blocks.size());
2091    for (SuccessorBlockInfo* sbi_old : successor_blocks) {
2092      SuccessorBlockInfo* sbi_new = static_cast<SuccessorBlockInfo*>(
2093          arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessor));
2094      memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo));
2095      result_bb->successor_blocks.push_back(sbi_new);
2096    }
2097  }
2098
2099  // Copy offset, method.
2100  result_bb->start_offset = start_offset;
2101
2102  // Now copy instructions.
2103  for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) {
2104    // Get a copy first.
2105    MIR* copy = mir->Copy(mir_graph);
2106
2107    // Append it.
2108    result_bb->AppendMIR(copy);
2109  }
2110
2111  return result_bb;
2112}
2113
2114MIR* MIR::Copy(MIRGraph* mir_graph) {
2115  MIR* res = mir_graph->NewMIR();
2116  *res = *this;
2117
2118  // Remove links
2119  res->next = nullptr;
2120  res->bb = NullBasicBlockId;
2121  res->ssa_rep = nullptr;
2122
2123  return res;
2124}
2125
2126MIR* MIR::Copy(CompilationUnit* c_unit) {
2127  return Copy(c_unit->mir_graph.get());
2128}
2129
2130uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) {
2131  // Default result.
2132  int res = 0;
2133
2134  // We are basically setting the iputs to their igets counterparts.
2135  switch (opcode) {
2136    case Instruction::IPUT:
2137    case Instruction::IPUT_OBJECT:
2138    case Instruction::IPUT_BOOLEAN:
2139    case Instruction::IPUT_BYTE:
2140    case Instruction::IPUT_CHAR:
2141    case Instruction::IPUT_SHORT:
2142    case Instruction::IPUT_QUICK:
2143    case Instruction::IPUT_OBJECT_QUICK:
2144    case Instruction::IPUT_BOOLEAN_QUICK:
2145    case Instruction::IPUT_BYTE_QUICK:
2146    case Instruction::IPUT_CHAR_QUICK:
2147    case Instruction::IPUT_SHORT_QUICK:
2148    case Instruction::APUT:
2149    case Instruction::APUT_OBJECT:
2150    case Instruction::APUT_BOOLEAN:
2151    case Instruction::APUT_BYTE:
2152    case Instruction::APUT_CHAR:
2153    case Instruction::APUT_SHORT:
2154    case Instruction::SPUT:
2155    case Instruction::SPUT_OBJECT:
2156    case Instruction::SPUT_BOOLEAN:
2157    case Instruction::SPUT_BYTE:
2158    case Instruction::SPUT_CHAR:
2159    case Instruction::SPUT_SHORT:
2160      // Skip the VR containing what to store.
2161      res = 1;
2162      break;
2163    case Instruction::IPUT_WIDE:
2164    case Instruction::IPUT_WIDE_QUICK:
2165    case Instruction::APUT_WIDE:
2166    case Instruction::SPUT_WIDE:
2167      // Skip the two VRs containing what to store.
2168      res = 2;
2169      break;
2170    default:
2171      // Do nothing in the general case.
2172      break;
2173  }
2174
2175  return res;
2176}
2177
2178/**
2179 * @brief Given a decoded instruction, it checks whether the instruction
2180 * sets a constant and if it does, more information is provided about the
2181 * constant being set.
2182 * @param ptr_value pointer to a 64-bit holder for the constant.
2183 * @param wide Updated by function whether a wide constant is being set by bytecode.
2184 * @return Returns false if the decoded instruction does not represent a constant bytecode.
2185 */
2186bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const {
2187  bool sets_const = true;
2188  int64_t value = vB;
2189
2190  DCHECK(ptr_value != nullptr);
2191  DCHECK(wide != nullptr);
2192
2193  switch (opcode) {
2194    case Instruction::CONST_4:
2195    case Instruction::CONST_16:
2196    case Instruction::CONST:
2197      *wide = false;
2198      value <<= 32;      // In order to get the sign extend.
2199      value >>= 32;
2200      break;
2201    case Instruction::CONST_HIGH16:
2202      *wide = false;
2203      value <<= 48;      // In order to get the sign extend.
2204      value >>= 32;
2205      break;
2206    case Instruction::CONST_WIDE_16:
2207    case Instruction::CONST_WIDE_32:
2208      *wide = true;
2209      value <<= 32;      // In order to get the sign extend.
2210      value >>= 32;
2211      break;
2212    case Instruction::CONST_WIDE:
2213      *wide = true;
2214      value = vB_wide;
2215      break;
2216    case Instruction::CONST_WIDE_HIGH16:
2217      *wide = true;
2218      value <<= 48;      // In order to get the sign extend.
2219      break;
2220    default:
2221      sets_const = false;
2222      break;
2223  }
2224
2225  if (sets_const) {
2226    *ptr_value = value;
2227  }
2228
2229  return sets_const;
2230}
2231
2232void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) {
2233  // Reset flags for all MIRs in bb.
2234  for (MIR* mir = first_mir_insn; mir != NULL; mir = mir->next) {
2235    mir->optimization_flags &= (~reset_flags);
2236  }
2237}
2238
2239void BasicBlock::Kill(MIRGraph* mir_graph) {
2240  for (BasicBlockId pred_id : predecessors) {
2241    BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id);
2242    DCHECK(pred_bb != nullptr);
2243
2244    // Sadly we have to go through the children by hand here.
2245    pred_bb->ReplaceChild(id, NullBasicBlockId);
2246  }
2247  predecessors.clear();
2248
2249  KillUnreachable(mir_graph);
2250}
2251
2252void BasicBlock::KillUnreachable(MIRGraph* mir_graph) {
2253  DCHECK(predecessors.empty());  // Unreachable.
2254
2255  // Mark as dead and hidden.
2256  block_type = kDead;
2257  hidden = true;
2258
2259  // Detach it from its MIRs so we don't generate code for them. Also detached MIRs
2260  // are updated to know that they no longer have a parent.
2261  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2262    mir->bb = NullBasicBlockId;
2263  }
2264  first_mir_insn = nullptr;
2265  last_mir_insn = nullptr;
2266
2267  data_flow_info = nullptr;
2268
2269  // Erase this bb from all children's predecessors and kill unreachable children.
2270  ChildBlockIterator iter(this, mir_graph);
2271  for (BasicBlock* succ_bb = iter.Next(); succ_bb != nullptr; succ_bb = iter.Next()) {
2272    succ_bb->ErasePredecessor(id);
2273    if (succ_bb->predecessors.empty()) {
2274      succ_bb->KillUnreachable(mir_graph);
2275    }
2276  }
2277
2278  // Remove links to children.
2279  fall_through = NullBasicBlockId;
2280  taken = NullBasicBlockId;
2281  successor_block_list_type = kNotUsed;
2282
2283  if (kIsDebugBuild) {
2284    if (catch_entry) {
2285      DCHECK_EQ(mir_graph->catches_.count(start_offset), 1u);
2286      mir_graph->catches_.erase(start_offset);
2287    }
2288  }
2289}
2290
2291bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) {
2292  // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember
2293  // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg,
2294  // then it is not live out of this BB.
2295  int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg);
2296
2297  int last_ssa_reg = -1;
2298
2299  // Walk through the MIRs backwards.
2300  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2301    // Get ssa rep.
2302    SSARepresentation *ssa_rep = mir->ssa_rep;
2303
2304    // Go through the defines for this MIR.
2305    for (int i = 0; i < ssa_rep->num_defs; i++) {
2306      DCHECK(ssa_rep->defs != nullptr);
2307
2308      // Get the ssa reg.
2309      int def_ssa_reg = ssa_rep->defs[i];
2310
2311      // Get dalvik reg.
2312      int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg);
2313
2314      // Compare dalvik regs.
2315      if (dalvik_reg == def_dalvik_reg) {
2316        // We found a def of the register that we are being asked about.
2317        // Remember it.
2318        last_ssa_reg = def_ssa_reg;
2319      }
2320    }
2321  }
2322
2323  if (last_ssa_reg == -1) {
2324    // If we get to this point we couldn't find a define of register user asked about.
2325    // Let's assume the user knows what he's doing so we can be safe and say that if we
2326    // couldn't find a def, it is live out.
2327    return true;
2328  }
2329
2330  // If it is not -1, we found a match, is it ssa_reg?
2331  return (ssa_reg == last_ssa_reg);
2332}
2333
2334bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) {
2335  // We need to check taken, fall_through, and successor_blocks to replace.
2336  bool found = false;
2337  if (taken == old_bb) {
2338    taken = new_bb;
2339    found = true;
2340  }
2341
2342  if (fall_through == old_bb) {
2343    fall_through = new_bb;
2344    found = true;
2345  }
2346
2347  if (successor_block_list_type != kNotUsed) {
2348    for (SuccessorBlockInfo* successor_block_info : successor_blocks) {
2349      if (successor_block_info->block == old_bb) {
2350        successor_block_info->block = new_bb;
2351        found = true;
2352      }
2353    }
2354  }
2355
2356  return found;
2357}
2358
2359void BasicBlock::ErasePredecessor(BasicBlockId old_pred) {
2360  auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred);
2361  DCHECK(pos != predecessors.end());
2362  // It's faster to move the back() to *pos than erase(pos).
2363  *pos = predecessors.back();
2364  predecessors.pop_back();
2365  size_t idx = std::distance(predecessors.begin(), pos);
2366  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2367    if (static_cast<int>(mir->dalvikInsn.opcode) != kMirOpPhi) {
2368      break;
2369    }
2370    DCHECK_EQ(mir->ssa_rep->num_uses - 1u, predecessors.size());
2371    DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred);
2372    mir->meta.phi_incoming[idx] = mir->meta.phi_incoming[predecessors.size()];
2373    mir->ssa_rep->uses[idx] = mir->ssa_rep->uses[predecessors.size()];
2374    mir->ssa_rep->num_uses = predecessors.size();
2375  }
2376}
2377
2378void BasicBlock::UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred) {
2379  DCHECK_NE(new_pred, NullBasicBlockId);
2380  auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred);
2381  DCHECK(pos != predecessors.end());
2382  *pos = new_pred;
2383  size_t idx = std::distance(predecessors.begin(), pos);
2384  for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) {
2385    if (static_cast<int>(mir->dalvikInsn.opcode) != kMirOpPhi) {
2386      break;
2387    }
2388    DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred);
2389    mir->meta.phi_incoming[idx] = new_pred;
2390  }
2391}
2392
2393// Create a new basic block with block_id as num_blocks_ that is
2394// post-incremented.
2395BasicBlock* MIRGraph::CreateNewBB(BBType block_type) {
2396  BasicBlock* res = NewMemBB(block_type, num_blocks_++);
2397  block_list_.push_back(res);
2398  return res;
2399}
2400
2401void MIRGraph::CalculateBasicBlockInformation() {
2402  PassDriverMEPostOpt driver(cu_);
2403  driver.Launch();
2404}
2405
2406void MIRGraph::InitializeBasicBlockData() {
2407  num_blocks_ = block_list_.size();
2408}
2409
2410int MIR::DecodedInstruction::FlagsOf() const {
2411  // Calculate new index.
2412  int idx = static_cast<int>(opcode) - kNumPackedOpcodes;
2413
2414  // Check if it is an extended or not.
2415  if (idx < 0) {
2416    return Instruction::FlagsOf(opcode);
2417  }
2418
2419  // For extended, we use a switch.
2420  switch (static_cast<int>(opcode)) {
2421    case kMirOpPhi:
2422      return Instruction::kContinue;
2423    case kMirOpCopy:
2424      return Instruction::kContinue;
2425    case kMirOpFusedCmplFloat:
2426      return Instruction::kContinue | Instruction::kBranch;
2427    case kMirOpFusedCmpgFloat:
2428      return Instruction::kContinue | Instruction::kBranch;
2429    case kMirOpFusedCmplDouble:
2430      return Instruction::kContinue | Instruction::kBranch;
2431    case kMirOpFusedCmpgDouble:
2432      return Instruction::kContinue | Instruction::kBranch;
2433    case kMirOpFusedCmpLong:
2434      return Instruction::kContinue | Instruction::kBranch;
2435    case kMirOpNop:
2436      return Instruction::kContinue;
2437    case kMirOpNullCheck:
2438      return Instruction::kContinue | Instruction::kThrow;
2439    case kMirOpRangeCheck:
2440      return Instruction::kContinue | Instruction::kThrow;
2441    case kMirOpDivZeroCheck:
2442      return Instruction::kContinue | Instruction::kThrow;
2443    case kMirOpCheck:
2444      return Instruction::kContinue | Instruction::kThrow;
2445    case kMirOpCheckPart2:
2446      return Instruction::kContinue;
2447    case kMirOpSelect:
2448      return Instruction::kContinue;
2449    case kMirOpConstVector:
2450      return Instruction::kContinue;
2451    case kMirOpMoveVector:
2452      return Instruction::kContinue;
2453    case kMirOpPackedMultiply:
2454      return Instruction::kContinue;
2455    case kMirOpPackedAddition:
2456      return Instruction::kContinue;
2457    case kMirOpPackedSubtract:
2458      return Instruction::kContinue;
2459    case kMirOpPackedShiftLeft:
2460      return Instruction::kContinue;
2461    case kMirOpPackedSignedShiftRight:
2462      return Instruction::kContinue;
2463    case kMirOpPackedUnsignedShiftRight:
2464      return Instruction::kContinue;
2465    case kMirOpPackedAnd:
2466      return Instruction::kContinue;
2467    case kMirOpPackedOr:
2468      return Instruction::kContinue;
2469    case kMirOpPackedXor:
2470      return Instruction::kContinue;
2471    case kMirOpPackedAddReduce:
2472      return Instruction::kContinue;
2473    case kMirOpPackedReduce:
2474      return Instruction::kContinue;
2475    case kMirOpPackedSet:
2476      return Instruction::kContinue;
2477    case kMirOpReserveVectorRegisters:
2478      return Instruction::kContinue;
2479    case kMirOpReturnVectorRegisters:
2480      return Instruction::kContinue;
2481    case kMirOpMemBarrier:
2482      return Instruction::kContinue;
2483    case kMirOpPackedArrayGet:
2484      return Instruction::kContinue | Instruction::kThrow;
2485    case kMirOpPackedArrayPut:
2486      return Instruction::kContinue | Instruction::kThrow;
2487    case kMirOpMaddInt:
2488    case kMirOpMsubInt:
2489    case kMirOpMaddLong:
2490    case kMirOpMsubLong:
2491      return Instruction::kContinue;
2492    default:
2493      LOG(WARNING) << "ExtendedFlagsOf: Unhandled case: " << static_cast<int> (opcode);
2494      return 0;
2495  }
2496}
2497}  // namespace art
2498