1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Thumb2 ISA. */
18
19#include "codegen_arm.h"
20
21#include "arm_lir.h"
22#include "art_method.h"
23#include "base/bit_utils.h"
24#include "base/logging.h"
25#include "dex/mir_graph.h"
26#include "dex/quick/dex_file_to_method_inliner_map.h"
27#include "dex/quick/mir_to_lir-inl.h"
28#include "driver/compiler_driver.h"
29#include "driver/compiler_options.h"
30#include "gc/accounting/card_table.h"
31#include "mirror/object_array-inl.h"
32#include "entrypoints/quick/quick_entrypoints.h"
33#include "utils/dex_cache_arrays_layout-inl.h"
34
35namespace art {
36
37/*
38 * The sparse table in the literal pool is an array of <key,displacement>
39 * pairs.  For each set, we'll load them as a pair using ldmia.
40 * This means that the register number of the temp we use for the key
41 * must be lower than the reg for the displacement.
42 *
43 * The test loop will look something like:
44 *
45 *   adr   r_base, <table>
46 *   ldr   r_val, [rARM_SP, v_reg_off]
47 *   mov   r_idx, #table_size
48 * lp:
49 *   ldmia r_base!, {r_key, r_disp}
50 *   sub   r_idx, #1
51 *   cmp   r_val, r_key
52 *   ifeq
53 *   add   rARM_PC, r_disp   ; This is the branch from which we compute displacement
54 *   cbnz  r_idx, lp
55 */
56void ArmMir2Lir::GenLargeSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
57  const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
58  // Add the table to the list - we'll process it later
59  SwitchTable *tab_rec =
60      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
61  tab_rec->switch_mir = mir;
62  tab_rec->table = table;
63  tab_rec->vaddr = current_dalvik_offset_;
64  uint32_t size = table[1];
65  switch_tables_.push_back(tab_rec);
66
67  // Get the switch value
68  rl_src = LoadValue(rl_src, kCoreReg);
69  RegStorage r_base = AllocTemp();
70  /* Allocate key and disp temps */
71  RegStorage r_key = AllocTemp();
72  RegStorage r_disp = AllocTemp();
73  // Make sure r_key's register number is less than r_disp's number for ldmia
74  if (r_key.GetReg() > r_disp.GetReg()) {
75    RegStorage tmp = r_disp;
76    r_disp = r_key;
77    r_key = tmp;
78  }
79  // Materialize a pointer to the switch table
80  NewLIR3(kThumb2Adr, r_base.GetReg(), 0, WrapPointer(tab_rec));
81  // Set up r_idx
82  RegStorage r_idx = AllocTemp();
83  LoadConstant(r_idx, size);
84  // Establish loop branch target
85  LIR* target = NewLIR0(kPseudoTargetLabel);
86  // Load next key/disp
87  NewLIR2(kThumb2LdmiaWB, r_base.GetReg(), (1 << r_key.GetRegNum()) | (1 << r_disp.GetRegNum()));
88  OpRegReg(kOpCmp, r_key, rl_src.reg);
89  // Go if match. NOTE: No instruction set switch here - must stay Thumb2
90  LIR* it = OpIT(kCondEq, "");
91  LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp.GetReg());
92  OpEndIT(it);
93  tab_rec->anchor = switch_branch;
94  // Needs to use setflags encoding here
95  OpRegRegImm(kOpSub, r_idx, r_idx, 1);  // For value == 1, this should set flags.
96  DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
97  OpCondBranch(kCondNe, target);
98}
99
100
101void ArmMir2Lir::GenLargePackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) {
102  const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
103  // Add the table to the list - we'll process it later
104  SwitchTable *tab_rec =
105      static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable),  kArenaAllocData));
106  tab_rec->switch_mir = mir;
107  tab_rec->table = table;
108  tab_rec->vaddr = current_dalvik_offset_;
109  uint32_t size = table[1];
110  switch_tables_.push_back(tab_rec);
111
112  // Get the switch value
113  rl_src = LoadValue(rl_src, kCoreReg);
114  RegStorage table_base = AllocTemp();
115  // Materialize a pointer to the switch table
116  NewLIR3(kThumb2Adr, table_base.GetReg(), 0, WrapPointer(tab_rec));
117  int low_key = s4FromSwitchData(&table[2]);
118  RegStorage keyReg;
119  // Remove the bias, if necessary
120  if (low_key == 0) {
121    keyReg = rl_src.reg;
122  } else {
123    keyReg = AllocTemp();
124    OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key);
125  }
126  // Bounds check - if < 0 or >= size continue following switch
127  OpRegImm(kOpCmp, keyReg, size-1);
128  LIR* branch_over = OpCondBranch(kCondHi, nullptr);
129
130  // Load the displacement from the switch table
131  RegStorage disp_reg = AllocTemp();
132  LoadBaseIndexed(table_base, keyReg, disp_reg, 2, k32);
133
134  // ..and go! NOTE: No instruction set switch here - must stay Thumb2
135  LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg.GetReg());
136  tab_rec->anchor = switch_branch;
137
138  /* branch_over target here */
139  LIR* target = NewLIR0(kPseudoTargetLabel);
140  branch_over->target = target;
141}
142
143/*
144 * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more
145 * details see monitor.cc.
146 */
147void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
148  FlushAllRegs();
149  // FIXME: need separate LoadValues for object references.
150  LoadValueDirectFixed(rl_src, rs_r0);  // Get obj
151  LockCallTemps();  // Prepare for explicit register usage
152  constexpr bool kArchVariantHasGoodBranchPredictor = false;  // TODO: true if cortex-A15.
153  if (kArchVariantHasGoodBranchPredictor) {
154    LIR* null_check_branch = nullptr;
155    if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
156      null_check_branch = nullptr;  // No null check.
157    } else {
158      // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
159      if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
160        null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr);
161      }
162    }
163    Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
164    NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
165        mirror::Object::MonitorOffset().Int32Value() >> 2);
166    MarkPossibleNullPointerException(opt_flags);
167    // Zero out the read barrier bits.
168    OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
169    LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_r3, 0, nullptr);
170    // r1 is zero except for the rb bits here. Copy the read barrier bits into r2.
171    OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1);
172    NewLIR4(kThumb2Strex, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(),
173        mirror::Object::MonitorOffset().Int32Value() >> 2);
174    LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_r1, 0, nullptr);
175
176
177    LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
178    not_unlocked_branch->target = slow_path_target;
179    if (null_check_branch != nullptr) {
180      null_check_branch->target = slow_path_target;
181    }
182    // TODO: move to a slow path.
183    // Go expensive route - artLockObjectFromCode(obj);
184    LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), rs_rARM_LR);
185    ClobberCallerSave();
186    LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR);
187    MarkSafepointPC(call_inst);
188
189    LIR* success_target = NewLIR0(kPseudoTargetLabel);
190    lock_success_branch->target = success_target;
191    GenMemBarrier(kLoadAny);
192  } else {
193    // Explicit null-check as slow-path is entered using an IT.
194    GenNullCheck(rs_r0, opt_flags);
195    Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
196    NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
197        mirror::Object::MonitorOffset().Int32Value() >> 2);
198    MarkPossibleNullPointerException(opt_flags);
199    // Zero out the read barrier bits.
200    OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
201    // r1 will be zero except for the rb bits if the following
202    // cmp-and-branch branches to eq where r2 will be used. Copy the
203    // read barrier bits into r2.
204    OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1);
205    OpRegImm(kOpCmp, rs_r3, 0);
206
207    LIR* it = OpIT(kCondEq, "");
208    NewLIR4(kThumb2Strex/*eq*/, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(),
209        mirror::Object::MonitorOffset().Int32Value() >> 2);
210    OpEndIT(it);
211    OpRegImm(kOpCmp, rs_r1, 0);
212    it = OpIT(kCondNe, "T");
213    // Go expensive route - artLockObjectFromCode(self, obj);
214    LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(),
215                       rs_rARM_LR);
216    ClobberCallerSave();
217    LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
218    OpEndIT(it);
219    MarkSafepointPC(call_inst);
220    GenMemBarrier(kLoadAny);
221  }
222}
223
224/*
225 * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more
226 * details see monitor.cc. Note the code below doesn't use ldrex/strex as the code holds the lock
227 * and can only give away ownership if its suspended.
228 */
229void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
230  FlushAllRegs();
231  LoadValueDirectFixed(rl_src, rs_r0);  // Get obj
232  LockCallTemps();  // Prepare for explicit register usage
233  LIR* null_check_branch = nullptr;
234  Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
235  constexpr bool kArchVariantHasGoodBranchPredictor = false;  // TODO: true if cortex-A15.
236  if (kArchVariantHasGoodBranchPredictor) {
237    if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
238      null_check_branch = nullptr;  // No null check.
239    } else {
240      // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
241      if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
242        null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr);
243      }
244    }
245    if (!kUseReadBarrier) {
246      Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);  // Get lock
247    } else {
248      NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
249              mirror::Object::MonitorOffset().Int32Value() >> 2);
250    }
251    MarkPossibleNullPointerException(opt_flags);
252    // Zero out the read barrier bits.
253    OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
254    // Zero out except the read barrier bits.
255    OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted);
256    LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_r3, rs_r2, nullptr);
257    GenMemBarrier(kAnyStore);
258    LIR* unlock_success_branch;
259    if (!kUseReadBarrier) {
260      Store32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);
261      unlock_success_branch = OpUnconditionalBranch(nullptr);
262    } else {
263      NewLIR4(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(),
264              mirror::Object::MonitorOffset().Int32Value() >> 2);
265      unlock_success_branch = OpCmpImmBranch(kCondEq, rs_r2, 0, nullptr);
266    }
267    LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
268    slow_unlock_branch->target = slow_path_target;
269    if (null_check_branch != nullptr) {
270      null_check_branch->target = slow_path_target;
271    }
272    // TODO: move to a slow path.
273    // Go expensive route - artUnlockObjectFromCode(obj);
274    LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), rs_rARM_LR);
275    ClobberCallerSave();
276    LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR);
277    MarkSafepointPC(call_inst);
278
279    LIR* success_target = NewLIR0(kPseudoTargetLabel);
280    unlock_success_branch->target = success_target;
281  } else {
282    // Explicit null-check as slow-path is entered using an IT.
283    GenNullCheck(rs_r0, opt_flags);
284    if (!kUseReadBarrier) {
285      Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);  // Get lock
286    } else {
287      // If we use read barriers, we need to use atomic instructions.
288      NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
289              mirror::Object::MonitorOffset().Int32Value() >> 2);
290    }
291    MarkPossibleNullPointerException(opt_flags);
292    Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
293    // Zero out the read barrier bits.
294    OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled);
295    // Zero out except the read barrier bits.
296    OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted);
297    // Is lock unheld on lock or held by us (==thread_id) on unlock?
298    OpRegReg(kOpCmp, rs_r3, rs_r2);
299    if (!kUseReadBarrier) {
300      LIR* it = OpIT(kCondEq, "EE");
301      if (GenMemBarrier(kAnyStore)) {
302        UpdateIT(it, "TEE");
303      }
304      Store32Disp/*eq*/(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);
305      // Go expensive route - UnlockObjectFromCode(obj);
306      LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(),
307                         rs_rARM_LR);
308      ClobberCallerSave();
309      LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
310      OpEndIT(it);
311      MarkSafepointPC(call_inst);
312    } else {
313      // If we use read barriers, we need to use atomic instructions.
314      LIR* it = OpIT(kCondEq, "");
315      if (GenMemBarrier(kAnyStore)) {
316        UpdateIT(it, "T");
317      }
318      NewLIR4/*eq*/(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(),
319                    mirror::Object::MonitorOffset().Int32Value() >> 2);
320      OpEndIT(it);
321      // Since we know r2 wasn't zero before the above it instruction,
322      // if r2 is zero here, we know r3 was equal to r2 and the strex
323      // suceeded (we're done). Otherwise (either r3 wasn't equal to r2
324      // or the strex failed), call the entrypoint.
325      OpRegImm(kOpCmp, rs_r2, 0);
326      LIR* it2 = OpIT(kCondNe, "T");
327      // Go expensive route - UnlockObjectFromCode(obj);
328      LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(),
329                         rs_rARM_LR);
330      ClobberCallerSave();
331      LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
332      OpEndIT(it2);
333      MarkSafepointPC(call_inst);
334    }
335  }
336}
337
338void ArmMir2Lir::GenMoveException(RegLocation rl_dest) {
339  int ex_offset = Thread::ExceptionOffset<4>().Int32Value();
340  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
341  RegStorage reset_reg = AllocTempRef();
342  LoadRefDisp(rs_rARM_SELF, ex_offset, rl_result.reg, kNotVolatile);
343  LoadConstant(reset_reg, 0);
344  StoreRefDisp(rs_rARM_SELF, ex_offset, reset_reg, kNotVolatile);
345  FreeTemp(reset_reg);
346  StoreValue(rl_dest, rl_result);
347}
348
349void ArmMir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) {
350  RegStorage reg_card_base = AllocTemp();
351  RegStorage reg_card_no = AllocTemp();
352  LoadWordDisp(rs_rARM_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base);
353  OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
354  StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
355  FreeTemp(reg_card_base);
356  FreeTemp(reg_card_no);
357}
358
359static dwarf::Reg DwarfCoreReg(int num) {
360  return dwarf::Reg::ArmCore(num);
361}
362
363static dwarf::Reg DwarfFpReg(int num) {
364  return dwarf::Reg::ArmFp(num);
365}
366
367void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
368  DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0);  // empty stack.
369  int spill_count = num_core_spills_ + num_fp_spills_;
370  /*
371   * On entry, r0, r1, r2 & r3 are live.  Let the register allocation
372   * mechanism know so it doesn't try to use any of them when
373   * expanding the frame or flushing.  This leaves the utility
374   * code with a single temp: r12.  This should be enough.
375   */
376  LockTemp(rs_r0);
377  LockTemp(rs_r1);
378  LockTemp(rs_r2);
379  LockTemp(rs_r3);
380
381  /*
382   * We can safely skip the stack overflow check if we're
383   * a leaf *and* our frame size < fudge factor.
384   */
385  bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, kArm);
386  const size_t kStackOverflowReservedUsableBytes = GetStackOverflowReservedBytes(kArm);
387  bool large_frame = (static_cast<size_t>(frame_size_) > kStackOverflowReservedUsableBytes);
388  bool generate_explicit_stack_overflow_check = large_frame ||
389    !cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks();
390  if (!skip_overflow_check) {
391    if (generate_explicit_stack_overflow_check) {
392      if (!large_frame) {
393        /* Load stack limit */
394        LockTemp(rs_r12);
395        Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12);
396      }
397    } else {
398      // Implicit stack overflow check.
399      // Generate a load from [sp, #-overflowsize].  If this is in the stack
400      // redzone we will get a segmentation fault.
401      //
402      // Caveat coder: if someone changes the kStackOverflowReservedBytes value
403      // we need to make sure that it's loadable in an immediate field of
404      // a sub instruction.  Otherwise we will get a temp allocation and the
405      // code size will increase.
406      //
407      // This is done before the callee save instructions to avoid any possibility
408      // of these overflowing.  This uses r12 and that's never saved in a callee
409      // save.
410      OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, GetStackOverflowReservedBytes(kArm));
411      Load32Disp(rs_r12, 0, rs_r12);
412      MarkPossibleStackOverflowException();
413    }
414  }
415  /* Spill core callee saves */
416  if (core_spill_mask_ != 0u) {
417    if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_LR.GetRegNum()))) == 0u) {
418      // Spilling only low regs and/or LR, use 16-bit PUSH.
419      constexpr int lr_bit_shift = rs_rARM_LR.GetRegNum() - 8;
420      NewLIR1(kThumbPush,
421              (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) |
422              ((core_spill_mask_ & (1u << rs_rARM_LR.GetRegNum())) >> lr_bit_shift));
423    } else if (IsPowerOfTwo(core_spill_mask_)) {
424      // kThumb2Push cannot be used to spill a single register.
425      NewLIR1(kThumb2Push1, CTZ(core_spill_mask_));
426    } else {
427      NewLIR1(kThumb2Push, core_spill_mask_);
428    }
429    cfi_.AdjustCFAOffset(num_core_spills_ * kArmPointerSize);
430    cfi_.RelOffsetForMany(DwarfCoreReg(0), 0, core_spill_mask_, kArmPointerSize);
431  }
432  /* Need to spill any FP regs? */
433  if (num_fp_spills_ != 0u) {
434    /*
435     * NOTE: fp spills are a little different from core spills in that
436     * they are pushed as a contiguous block.  When promoting from
437     * the fp set, we must allocate all singles from s16..highest-promoted
438     */
439    NewLIR1(kThumb2VPushCS, num_fp_spills_);
440    cfi_.AdjustCFAOffset(num_fp_spills_ * kArmPointerSize);
441    cfi_.RelOffsetForMany(DwarfFpReg(0), 0, fp_spill_mask_, kArmPointerSize);
442  }
443
444  const int spill_size = spill_count * 4;
445  const int frame_size_without_spills = frame_size_ - spill_size;
446  if (!skip_overflow_check) {
447    if (generate_explicit_stack_overflow_check) {
448      class StackOverflowSlowPath : public LIRSlowPath {
449       public:
450        StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, bool restore_lr, size_t sp_displace)
451            : LIRSlowPath(m2l, branch), restore_lr_(restore_lr),
452              sp_displace_(sp_displace) {
453        }
454        void Compile() OVERRIDE {
455          m2l_->ResetRegPool();
456          m2l_->ResetDefTracking();
457          GenerateTargetLabel(kPseudoThrowTarget);
458          if (restore_lr_) {
459            m2l_->LoadWordDisp(rs_rARM_SP, sp_displace_ - 4, rs_rARM_LR);
460          }
461          m2l_->OpRegImm(kOpAdd, rs_rARM_SP, sp_displace_);
462          m2l_->cfi().AdjustCFAOffset(-sp_displace_);
463          m2l_->ClobberCallerSave();
464          ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pThrowStackOverflow);
465          // Load the entrypoint directly into the pc instead of doing a load + branch. Assumes
466          // codegen and target are in thumb2 mode.
467          // NOTE: native pointer.
468          m2l_->LoadWordDisp(rs_rARM_SELF, func_offset.Int32Value(), rs_rARM_PC);
469          m2l_->cfi().AdjustCFAOffset(sp_displace_);
470        }
471
472       private:
473        const bool restore_lr_;
474        const size_t sp_displace_;
475      };
476      if (large_frame) {
477        // Note: may need a temp reg, and we only have r12 free at this point.
478        OpRegRegImm(kOpSub, rs_rARM_LR, rs_rARM_SP, frame_size_without_spills);
479        Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12);
480        LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_LR, rs_r12, nullptr);
481        // Need to restore LR since we used it as a temp.
482        AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, true, spill_size));
483        OpRegCopy(rs_rARM_SP, rs_rARM_LR);     // Establish stack
484        cfi_.AdjustCFAOffset(frame_size_without_spills);
485      } else {
486        /*
487         * If the frame is small enough we are guaranteed to have enough space that remains to
488         * handle signals on the user stack.  However, we may not have any free temp
489         * registers at this point, so we'll temporarily add LR to the temp pool.
490         */
491        DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp());
492        MarkTemp(rs_rARM_LR);
493        FreeTemp(rs_rARM_LR);
494        OpRegRegImm(kOpSub, rs_rARM_SP, rs_rARM_SP, frame_size_without_spills);
495        cfi_.AdjustCFAOffset(frame_size_without_spills);
496        Clobber(rs_rARM_LR);
497        UnmarkTemp(rs_rARM_LR);
498        LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_SP, rs_r12, nullptr);
499        AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, false, frame_size_));
500      }
501    } else {
502      // Implicit stack overflow check has already been done.  Just make room on the
503      // stack for the frame now.
504      OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills);
505      cfi_.AdjustCFAOffset(frame_size_without_spills);
506    }
507  } else {
508    OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills);
509    cfi_.AdjustCFAOffset(frame_size_without_spills);
510  }
511
512  FlushIns(ArgLocs, rl_method);
513
514  // We can promote a PC-relative reference to dex cache arrays to a register
515  // if it's used at least twice. Without investigating where we should lazily
516  // load the reference, we conveniently load it after flushing inputs.
517  if (dex_cache_arrays_base_reg_.Valid()) {
518    OpPcRelDexCacheArrayAddr(cu_->dex_file, dex_cache_arrays_min_offset_,
519                             dex_cache_arrays_base_reg_);
520  }
521
522  FreeTemp(rs_r0);
523  FreeTemp(rs_r1);
524  FreeTemp(rs_r2);
525  FreeTemp(rs_r3);
526  FreeTemp(rs_r12);
527}
528
529void ArmMir2Lir::GenExitSequence() {
530  cfi_.RememberState();
531  int spill_count = num_core_spills_ + num_fp_spills_;
532
533  /*
534   * In the exit path, r0/r1 are live - make sure they aren't
535   * allocated by the register utilities as temps.
536   */
537  LockTemp(rs_r0);
538  LockTemp(rs_r1);
539
540  int adjust = frame_size_ - (spill_count * kArmPointerSize);
541  OpRegImm(kOpAdd, rs_rARM_SP, adjust);
542  cfi_.AdjustCFAOffset(-adjust);
543  /* Need to restore any FP callee saves? */
544  if (num_fp_spills_) {
545    NewLIR1(kThumb2VPopCS, num_fp_spills_);
546    cfi_.AdjustCFAOffset(-num_fp_spills_ * kArmPointerSize);
547    cfi_.RestoreMany(DwarfFpReg(0), fp_spill_mask_);
548  }
549  bool unspill_LR_to_PC = (core_spill_mask_ & (1 << rs_rARM_LR.GetRegNum())) != 0;
550  if (unspill_LR_to_PC) {
551    core_spill_mask_ &= ~(1 << rs_rARM_LR.GetRegNum());
552    core_spill_mask_ |= (1 << rs_rARM_PC.GetRegNum());
553  }
554  if (core_spill_mask_ != 0u) {
555    if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_PC.GetRegNum()))) == 0u) {
556      // Unspilling only low regs and/or PC, use 16-bit POP.
557      constexpr int pc_bit_shift = rs_rARM_PC.GetRegNum() - 8;
558      NewLIR1(kThumbPop,
559              (core_spill_mask_ & ~(1u << rs_rARM_PC.GetRegNum())) |
560              ((core_spill_mask_ & (1u << rs_rARM_PC.GetRegNum())) >> pc_bit_shift));
561    } else if (IsPowerOfTwo(core_spill_mask_)) {
562      // kThumb2Pop cannot be used to unspill a single register.
563      NewLIR1(kThumb2Pop1, CTZ(core_spill_mask_));
564    } else {
565      NewLIR1(kThumb2Pop, core_spill_mask_);
566    }
567    // If we pop to PC, there is no further epilogue code.
568    if (!unspill_LR_to_PC) {
569      cfi_.AdjustCFAOffset(-num_core_spills_ * kArmPointerSize);
570      cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_);
571      DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0);  // empty stack.
572    }
573  }
574  if (!unspill_LR_to_PC) {
575    /* We didn't pop to rARM_PC, so must do a bv rARM_LR */
576    NewLIR1(kThumbBx, rs_rARM_LR.GetReg());
577  }
578  // The CFI should be restored for any code that follows the exit block.
579  cfi_.RestoreState();
580  cfi_.DefCFAOffset(frame_size_);
581}
582
583void ArmMir2Lir::GenSpecialExitSequence() {
584  NewLIR1(kThumbBx, rs_rARM_LR.GetReg());
585}
586
587void ArmMir2Lir::GenSpecialEntryForSuspend() {
588  // Keep 16-byte stack alignment - push r0, i.e. ArtMethod*, r5, r6, lr.
589  DCHECK(!IsTemp(rs_r5));
590  DCHECK(!IsTemp(rs_r6));
591  core_spill_mask_ =
592      (1u << rs_r5.GetRegNum()) | (1u << rs_r6.GetRegNum()) | (1u << rs_rARM_LR.GetRegNum());
593  num_core_spills_ = 3u;
594  fp_spill_mask_ = 0u;
595  num_fp_spills_ = 0u;
596  frame_size_ = 16u;
597  core_vmap_table_.clear();
598  fp_vmap_table_.clear();
599  NewLIR1(kThumbPush, (1u << rs_r0.GetRegNum()) |                 // ArtMethod*
600          (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) |  // Spills other than LR.
601          (1u << 8));                                             // LR encoded for 16-bit push.
602  cfi_.AdjustCFAOffset(frame_size_);
603  // Do not generate CFI for scratch register r0.
604  cfi_.RelOffsetForMany(DwarfCoreReg(0), 4, core_spill_mask_, kArmPointerSize);
605}
606
607void ArmMir2Lir::GenSpecialExitForSuspend() {
608  // Pop the frame. (ArtMethod* no longer needed but restore it anyway.)
609  NewLIR1(kThumb2Pop, (1u << rs_r0.GetRegNum()) | core_spill_mask_);  // 32-bit because of LR.
610  cfi_.AdjustCFAOffset(-frame_size_);
611  cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_);
612}
613
614static bool ArmUseRelativeCall(CompilationUnit* cu, const MethodReference& target_method) {
615  // Emit relative calls only within a dex file due to the limited range of the BL insn.
616  return cu->dex_file == target_method.dex_file;
617}
618
619/*
620 * Bit of a hack here - in the absence of a real scheduling pass,
621 * emit the next instruction in static & direct invoke sequences.
622 */
623int ArmMir2Lir::ArmNextSDCallInsn(CompilationUnit* cu, CallInfo* info,
624                                  int state, const MethodReference& target_method,
625                                  uint32_t unused_idx ATTRIBUTE_UNUSED,
626                                  uintptr_t direct_code, uintptr_t direct_method,
627                                  InvokeType type) {
628  ArmMir2Lir* cg = static_cast<ArmMir2Lir*>(cu->cg.get());
629  if (info->string_init_offset != 0) {
630    RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
631    switch (state) {
632    case 0: {  // Grab target method* from thread pointer
633      cg->LoadRefDisp(rs_rARM_SELF, info->string_init_offset, arg0_ref, kNotVolatile);
634      break;
635    }
636    case 1:  // Grab the code from the method*
637      if (direct_code == 0) {
638        // kInvokeTgt := arg0_ref->entrypoint
639        cg->LoadWordDisp(arg0_ref,
640                         ArtMethod::EntryPointFromQuickCompiledCodeOffset(
641                             kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt));
642      }
643      break;
644    default:
645      return -1;
646    }
647  } else if (direct_code != 0 && direct_method != 0) {
648    switch (state) {
649    case 0:  // Get the current Method* [sets kArg0]
650      if (direct_code != static_cast<uintptr_t>(-1)) {
651        cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
652      } else if (ArmUseRelativeCall(cu, target_method)) {
653        // Defer to linker patch.
654      } else {
655        cg->LoadCodeAddress(target_method, type, kInvokeTgt);
656      }
657      if (direct_method != static_cast<uintptr_t>(-1)) {
658        cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method);
659      } else {
660        cg->LoadMethodAddress(target_method, type, kArg0);
661      }
662      break;
663    default:
664      return -1;
665    }
666  } else {
667    bool use_pc_rel = cg->CanUseOpPcRelDexCacheArrayLoad();
668    RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
669    switch (state) {
670    case 0:  // Get the current Method* [sets kArg0]
671      // TUNING: we can save a reg copy if Method* has been promoted.
672      if (!use_pc_rel) {
673        cg->LoadCurrMethodDirect(arg0_ref);
674        break;
675      }
676      ++state;
677      FALLTHROUGH_INTENDED;
678    case 1:  // Get method->dex_cache_resolved_methods_
679      if (!use_pc_rel) {
680        cg->LoadRefDisp(arg0_ref,
681                        ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
682                        arg0_ref,
683                        kNotVolatile);
684      }
685      // Set up direct code if known.
686      if (direct_code != 0) {
687        if (direct_code != static_cast<uintptr_t>(-1)) {
688          cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
689        } else if (ArmUseRelativeCall(cu, target_method)) {
690          // Defer to linker patch.
691        } else {
692          CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
693          cg->LoadCodeAddress(target_method, type, kInvokeTgt);
694        }
695      }
696      if (!use_pc_rel || direct_code != 0) {
697        break;
698      }
699      ++state;
700      FALLTHROUGH_INTENDED;
701    case 2:  // Grab target method*
702      CHECK_EQ(cu->dex_file, target_method.dex_file);
703      if (!use_pc_rel) {
704        cg->LoadRefDisp(arg0_ref,
705                        mirror::ObjectArray<mirror::Object>::OffsetOfElement(
706                            target_method.dex_method_index).Int32Value(),
707                        arg0_ref,
708                        kNotVolatile);
709      } else {
710        size_t offset = cg->dex_cache_arrays_layout_.MethodOffset(target_method.dex_method_index);
711        cg->OpPcRelDexCacheArrayLoad(cu->dex_file, offset, arg0_ref, false);
712      }
713      break;
714    case 3:  // Grab the code from the method*
715      if (direct_code == 0) {
716        // kInvokeTgt := arg0_ref->entrypoint
717        cg->LoadWordDisp(arg0_ref,
718                         ArtMethod::EntryPointFromQuickCompiledCodeOffset(
719                             kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt));
720      }
721      break;
722    default:
723      return -1;
724    }
725  }
726  return state + 1;
727}
728
729NextCallInsn ArmMir2Lir::GetNextSDCallInsn() {
730  return ArmNextSDCallInsn;
731}
732
733LIR* ArmMir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
734  // For ARM, just generate a relative BL instruction that will be filled in at 'link time'.
735  // If the target turns out to be too far, the linker will generate a thunk for dispatch.
736  int target_method_idx = target_method.dex_method_index;
737  const DexFile* target_dex_file = target_method.dex_file;
738
739  // Generate the call instruction and save index, dex_file, and type.
740  // NOTE: Method deduplication takes linker patches into account, so we can just pass 0
741  // as a placeholder for the offset.
742  LIR* call = RawLIR(current_dalvik_offset_, kThumb2Bl, 0,
743                     target_method_idx, WrapPointer(target_dex_file), type);
744  AppendLIR(call);
745  call_method_insns_.push_back(call);
746  return call;
747}
748
749LIR* ArmMir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) {
750  LIR* call_insn;
751  if (method_info.FastPath() && ArmUseRelativeCall(cu_, method_info.GetTargetMethod()) &&
752      (method_info.GetSharpType() == kDirect || method_info.GetSharpType() == kStatic) &&
753      method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
754    call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType());
755  } else {
756    call_insn = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
757  }
758  return call_insn;
759}
760
761}  // namespace art
762