1/* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17/* This file contains codegen for the Thumb2 ISA. */ 18 19#include "codegen_arm.h" 20 21#include "arm_lir.h" 22#include "art_method.h" 23#include "base/bit_utils.h" 24#include "base/logging.h" 25#include "dex/mir_graph.h" 26#include "dex/quick/dex_file_to_method_inliner_map.h" 27#include "dex/quick/mir_to_lir-inl.h" 28#include "driver/compiler_driver.h" 29#include "driver/compiler_options.h" 30#include "gc/accounting/card_table.h" 31#include "mirror/object_array-inl.h" 32#include "entrypoints/quick/quick_entrypoints.h" 33#include "utils/dex_cache_arrays_layout-inl.h" 34 35namespace art { 36 37/* 38 * The sparse table in the literal pool is an array of <key,displacement> 39 * pairs. For each set, we'll load them as a pair using ldmia. 40 * This means that the register number of the temp we use for the key 41 * must be lower than the reg for the displacement. 42 * 43 * The test loop will look something like: 44 * 45 * adr r_base, <table> 46 * ldr r_val, [rARM_SP, v_reg_off] 47 * mov r_idx, #table_size 48 * lp: 49 * ldmia r_base!, {r_key, r_disp} 50 * sub r_idx, #1 51 * cmp r_val, r_key 52 * ifeq 53 * add rARM_PC, r_disp ; This is the branch from which we compute displacement 54 * cbnz r_idx, lp 55 */ 56void ArmMir2Lir::GenLargeSparseSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { 57 const uint16_t* table = mir_graph_->GetTable(mir, table_offset); 58 // Add the table to the list - we'll process it later 59 SwitchTable *tab_rec = 60 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); 61 tab_rec->switch_mir = mir; 62 tab_rec->table = table; 63 tab_rec->vaddr = current_dalvik_offset_; 64 uint32_t size = table[1]; 65 switch_tables_.push_back(tab_rec); 66 67 // Get the switch value 68 rl_src = LoadValue(rl_src, kCoreReg); 69 RegStorage r_base = AllocTemp(); 70 /* Allocate key and disp temps */ 71 RegStorage r_key = AllocTemp(); 72 RegStorage r_disp = AllocTemp(); 73 // Make sure r_key's register number is less than r_disp's number for ldmia 74 if (r_key.GetReg() > r_disp.GetReg()) { 75 RegStorage tmp = r_disp; 76 r_disp = r_key; 77 r_key = tmp; 78 } 79 // Materialize a pointer to the switch table 80 NewLIR3(kThumb2Adr, r_base.GetReg(), 0, WrapPointer(tab_rec)); 81 // Set up r_idx 82 RegStorage r_idx = AllocTemp(); 83 LoadConstant(r_idx, size); 84 // Establish loop branch target 85 LIR* target = NewLIR0(kPseudoTargetLabel); 86 // Load next key/disp 87 NewLIR2(kThumb2LdmiaWB, r_base.GetReg(), (1 << r_key.GetRegNum()) | (1 << r_disp.GetRegNum())); 88 OpRegReg(kOpCmp, r_key, rl_src.reg); 89 // Go if match. NOTE: No instruction set switch here - must stay Thumb2 90 LIR* it = OpIT(kCondEq, ""); 91 LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp.GetReg()); 92 OpEndIT(it); 93 tab_rec->anchor = switch_branch; 94 // Needs to use setflags encoding here 95 OpRegRegImm(kOpSub, r_idx, r_idx, 1); // For value == 1, this should set flags. 96 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); 97 OpCondBranch(kCondNe, target); 98} 99 100 101void ArmMir2Lir::GenLargePackedSwitch(MIR* mir, uint32_t table_offset, RegLocation rl_src) { 102 const uint16_t* table = mir_graph_->GetTable(mir, table_offset); 103 // Add the table to the list - we'll process it later 104 SwitchTable *tab_rec = 105 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); 106 tab_rec->switch_mir = mir; 107 tab_rec->table = table; 108 tab_rec->vaddr = current_dalvik_offset_; 109 uint32_t size = table[1]; 110 switch_tables_.push_back(tab_rec); 111 112 // Get the switch value 113 rl_src = LoadValue(rl_src, kCoreReg); 114 RegStorage table_base = AllocTemp(); 115 // Materialize a pointer to the switch table 116 NewLIR3(kThumb2Adr, table_base.GetReg(), 0, WrapPointer(tab_rec)); 117 int low_key = s4FromSwitchData(&table[2]); 118 RegStorage keyReg; 119 // Remove the bias, if necessary 120 if (low_key == 0) { 121 keyReg = rl_src.reg; 122 } else { 123 keyReg = AllocTemp(); 124 OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key); 125 } 126 // Bounds check - if < 0 or >= size continue following switch 127 OpRegImm(kOpCmp, keyReg, size-1); 128 LIR* branch_over = OpCondBranch(kCondHi, nullptr); 129 130 // Load the displacement from the switch table 131 RegStorage disp_reg = AllocTemp(); 132 LoadBaseIndexed(table_base, keyReg, disp_reg, 2, k32); 133 134 // ..and go! NOTE: No instruction set switch here - must stay Thumb2 135 LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg.GetReg()); 136 tab_rec->anchor = switch_branch; 137 138 /* branch_over target here */ 139 LIR* target = NewLIR0(kPseudoTargetLabel); 140 branch_over->target = target; 141} 142 143/* 144 * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more 145 * details see monitor.cc. 146 */ 147void ArmMir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) { 148 FlushAllRegs(); 149 // FIXME: need separate LoadValues for object references. 150 LoadValueDirectFixed(rl_src, rs_r0); // Get obj 151 LockCallTemps(); // Prepare for explicit register usage 152 constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. 153 if (kArchVariantHasGoodBranchPredictor) { 154 LIR* null_check_branch = nullptr; 155 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { 156 null_check_branch = nullptr; // No null check. 157 } else { 158 // If the null-check fails its handled by the slow-path to reduce exception related meta-data. 159 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { 160 null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr); 161 } 162 } 163 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); 164 NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), 165 mirror::Object::MonitorOffset().Int32Value() >> 2); 166 MarkPossibleNullPointerException(opt_flags); 167 // Zero out the read barrier bits. 168 OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); 169 LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_r3, 0, nullptr); 170 // r1 is zero except for the rb bits here. Copy the read barrier bits into r2. 171 OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1); 172 NewLIR4(kThumb2Strex, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(), 173 mirror::Object::MonitorOffset().Int32Value() >> 2); 174 LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_r1, 0, nullptr); 175 176 177 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); 178 not_unlocked_branch->target = slow_path_target; 179 if (null_check_branch != nullptr) { 180 null_check_branch->target = slow_path_target; 181 } 182 // TODO: move to a slow path. 183 // Go expensive route - artLockObjectFromCode(obj); 184 LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), rs_rARM_LR); 185 ClobberCallerSave(); 186 LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR); 187 MarkSafepointPC(call_inst); 188 189 LIR* success_target = NewLIR0(kPseudoTargetLabel); 190 lock_success_branch->target = success_target; 191 GenMemBarrier(kLoadAny); 192 } else { 193 // Explicit null-check as slow-path is entered using an IT. 194 GenNullCheck(rs_r0, opt_flags); 195 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); 196 NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), 197 mirror::Object::MonitorOffset().Int32Value() >> 2); 198 MarkPossibleNullPointerException(opt_flags); 199 // Zero out the read barrier bits. 200 OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); 201 // r1 will be zero except for the rb bits if the following 202 // cmp-and-branch branches to eq where r2 will be used. Copy the 203 // read barrier bits into r2. 204 OpRegRegReg(kOpOr, rs_r2, rs_r2, rs_r1); 205 OpRegImm(kOpCmp, rs_r3, 0); 206 207 LIR* it = OpIT(kCondEq, ""); 208 NewLIR4(kThumb2Strex/*eq*/, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(), 209 mirror::Object::MonitorOffset().Int32Value() >> 2); 210 OpEndIT(it); 211 OpRegImm(kOpCmp, rs_r1, 0); 212 it = OpIT(kCondNe, "T"); 213 // Go expensive route - artLockObjectFromCode(self, obj); 214 LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), 215 rs_rARM_LR); 216 ClobberCallerSave(); 217 LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); 218 OpEndIT(it); 219 MarkSafepointPC(call_inst); 220 GenMemBarrier(kLoadAny); 221 } 222} 223 224/* 225 * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more 226 * details see monitor.cc. Note the code below doesn't use ldrex/strex as the code holds the lock 227 * and can only give away ownership if its suspended. 228 */ 229void ArmMir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) { 230 FlushAllRegs(); 231 LoadValueDirectFixed(rl_src, rs_r0); // Get obj 232 LockCallTemps(); // Prepare for explicit register usage 233 LIR* null_check_branch = nullptr; 234 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); 235 constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15. 236 if (kArchVariantHasGoodBranchPredictor) { 237 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) { 238 null_check_branch = nullptr; // No null check. 239 } else { 240 // If the null-check fails its handled by the slow-path to reduce exception related meta-data. 241 if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) { 242 null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, nullptr); 243 } 244 } 245 if (!kUseReadBarrier) { 246 Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); // Get lock 247 } else { 248 NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), 249 mirror::Object::MonitorOffset().Int32Value() >> 2); 250 } 251 MarkPossibleNullPointerException(opt_flags); 252 // Zero out the read barrier bits. 253 OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); 254 // Zero out except the read barrier bits. 255 OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted); 256 LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_r3, rs_r2, nullptr); 257 GenMemBarrier(kAnyStore); 258 LIR* unlock_success_branch; 259 if (!kUseReadBarrier) { 260 Store32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); 261 unlock_success_branch = OpUnconditionalBranch(nullptr); 262 } else { 263 NewLIR4(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(), 264 mirror::Object::MonitorOffset().Int32Value() >> 2); 265 unlock_success_branch = OpCmpImmBranch(kCondEq, rs_r2, 0, nullptr); 266 } 267 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel); 268 slow_unlock_branch->target = slow_path_target; 269 if (null_check_branch != nullptr) { 270 null_check_branch->target = slow_path_target; 271 } 272 // TODO: move to a slow path. 273 // Go expensive route - artUnlockObjectFromCode(obj); 274 LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), rs_rARM_LR); 275 ClobberCallerSave(); 276 LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR); 277 MarkSafepointPC(call_inst); 278 279 LIR* success_target = NewLIR0(kPseudoTargetLabel); 280 unlock_success_branch->target = success_target; 281 } else { 282 // Explicit null-check as slow-path is entered using an IT. 283 GenNullCheck(rs_r0, opt_flags); 284 if (!kUseReadBarrier) { 285 Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); // Get lock 286 } else { 287 // If we use read barriers, we need to use atomic instructions. 288 NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(), 289 mirror::Object::MonitorOffset().Int32Value() >> 2); 290 } 291 MarkPossibleNullPointerException(opt_flags); 292 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2); 293 // Zero out the read barrier bits. 294 OpRegRegImm(kOpAnd, rs_r3, rs_r1, LockWord::kReadBarrierStateMaskShiftedToggled); 295 // Zero out except the read barrier bits. 296 OpRegRegImm(kOpAnd, rs_r1, rs_r1, LockWord::kReadBarrierStateMaskShifted); 297 // Is lock unheld on lock or held by us (==thread_id) on unlock? 298 OpRegReg(kOpCmp, rs_r3, rs_r2); 299 if (!kUseReadBarrier) { 300 LIR* it = OpIT(kCondEq, "EE"); 301 if (GenMemBarrier(kAnyStore)) { 302 UpdateIT(it, "TEE"); 303 } 304 Store32Disp/*eq*/(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); 305 // Go expensive route - UnlockObjectFromCode(obj); 306 LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), 307 rs_rARM_LR); 308 ClobberCallerSave(); 309 LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); 310 OpEndIT(it); 311 MarkSafepointPC(call_inst); 312 } else { 313 // If we use read barriers, we need to use atomic instructions. 314 LIR* it = OpIT(kCondEq, ""); 315 if (GenMemBarrier(kAnyStore)) { 316 UpdateIT(it, "T"); 317 } 318 NewLIR4/*eq*/(kThumb2Strex, rs_r2.GetReg(), rs_r1.GetReg(), rs_r0.GetReg(), 319 mirror::Object::MonitorOffset().Int32Value() >> 2); 320 OpEndIT(it); 321 // Since we know r2 wasn't zero before the above it instruction, 322 // if r2 is zero here, we know r3 was equal to r2 and the strex 323 // suceeded (we're done). Otherwise (either r3 wasn't equal to r2 324 // or the strex failed), call the entrypoint. 325 OpRegImm(kOpCmp, rs_r2, 0); 326 LIR* it2 = OpIT(kCondNe, "T"); 327 // Go expensive route - UnlockObjectFromCode(obj); 328 LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), 329 rs_rARM_LR); 330 ClobberCallerSave(); 331 LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR); 332 OpEndIT(it2); 333 MarkSafepointPC(call_inst); 334 } 335 } 336} 337 338void ArmMir2Lir::GenMoveException(RegLocation rl_dest) { 339 int ex_offset = Thread::ExceptionOffset<4>().Int32Value(); 340 RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); 341 RegStorage reset_reg = AllocTempRef(); 342 LoadRefDisp(rs_rARM_SELF, ex_offset, rl_result.reg, kNotVolatile); 343 LoadConstant(reset_reg, 0); 344 StoreRefDisp(rs_rARM_SELF, ex_offset, reset_reg, kNotVolatile); 345 FreeTemp(reset_reg); 346 StoreValue(rl_dest, rl_result); 347} 348 349void ArmMir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) { 350 RegStorage reg_card_base = AllocTemp(); 351 RegStorage reg_card_no = AllocTemp(); 352 LoadWordDisp(rs_rARM_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base); 353 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); 354 StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte); 355 FreeTemp(reg_card_base); 356 FreeTemp(reg_card_no); 357} 358 359static dwarf::Reg DwarfCoreReg(int num) { 360 return dwarf::Reg::ArmCore(num); 361} 362 363static dwarf::Reg DwarfFpReg(int num) { 364 return dwarf::Reg::ArmFp(num); 365} 366 367void ArmMir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { 368 DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0); // empty stack. 369 int spill_count = num_core_spills_ + num_fp_spills_; 370 /* 371 * On entry, r0, r1, r2 & r3 are live. Let the register allocation 372 * mechanism know so it doesn't try to use any of them when 373 * expanding the frame or flushing. This leaves the utility 374 * code with a single temp: r12. This should be enough. 375 */ 376 LockTemp(rs_r0); 377 LockTemp(rs_r1); 378 LockTemp(rs_r2); 379 LockTemp(rs_r3); 380 381 /* 382 * We can safely skip the stack overflow check if we're 383 * a leaf *and* our frame size < fudge factor. 384 */ 385 bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, kArm); 386 const size_t kStackOverflowReservedUsableBytes = GetStackOverflowReservedBytes(kArm); 387 bool large_frame = (static_cast<size_t>(frame_size_) > kStackOverflowReservedUsableBytes); 388 bool generate_explicit_stack_overflow_check = large_frame || 389 !cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks(); 390 if (!skip_overflow_check) { 391 if (generate_explicit_stack_overflow_check) { 392 if (!large_frame) { 393 /* Load stack limit */ 394 LockTemp(rs_r12); 395 Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12); 396 } 397 } else { 398 // Implicit stack overflow check. 399 // Generate a load from [sp, #-overflowsize]. If this is in the stack 400 // redzone we will get a segmentation fault. 401 // 402 // Caveat coder: if someone changes the kStackOverflowReservedBytes value 403 // we need to make sure that it's loadable in an immediate field of 404 // a sub instruction. Otherwise we will get a temp allocation and the 405 // code size will increase. 406 // 407 // This is done before the callee save instructions to avoid any possibility 408 // of these overflowing. This uses r12 and that's never saved in a callee 409 // save. 410 OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, GetStackOverflowReservedBytes(kArm)); 411 Load32Disp(rs_r12, 0, rs_r12); 412 MarkPossibleStackOverflowException(); 413 } 414 } 415 /* Spill core callee saves */ 416 if (core_spill_mask_ != 0u) { 417 if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_LR.GetRegNum()))) == 0u) { 418 // Spilling only low regs and/or LR, use 16-bit PUSH. 419 constexpr int lr_bit_shift = rs_rARM_LR.GetRegNum() - 8; 420 NewLIR1(kThumbPush, 421 (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) | 422 ((core_spill_mask_ & (1u << rs_rARM_LR.GetRegNum())) >> lr_bit_shift)); 423 } else if (IsPowerOfTwo(core_spill_mask_)) { 424 // kThumb2Push cannot be used to spill a single register. 425 NewLIR1(kThumb2Push1, CTZ(core_spill_mask_)); 426 } else { 427 NewLIR1(kThumb2Push, core_spill_mask_); 428 } 429 cfi_.AdjustCFAOffset(num_core_spills_ * kArmPointerSize); 430 cfi_.RelOffsetForMany(DwarfCoreReg(0), 0, core_spill_mask_, kArmPointerSize); 431 } 432 /* Need to spill any FP regs? */ 433 if (num_fp_spills_ != 0u) { 434 /* 435 * NOTE: fp spills are a little different from core spills in that 436 * they are pushed as a contiguous block. When promoting from 437 * the fp set, we must allocate all singles from s16..highest-promoted 438 */ 439 NewLIR1(kThumb2VPushCS, num_fp_spills_); 440 cfi_.AdjustCFAOffset(num_fp_spills_ * kArmPointerSize); 441 cfi_.RelOffsetForMany(DwarfFpReg(0), 0, fp_spill_mask_, kArmPointerSize); 442 } 443 444 const int spill_size = spill_count * 4; 445 const int frame_size_without_spills = frame_size_ - spill_size; 446 if (!skip_overflow_check) { 447 if (generate_explicit_stack_overflow_check) { 448 class StackOverflowSlowPath : public LIRSlowPath { 449 public: 450 StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, bool restore_lr, size_t sp_displace) 451 : LIRSlowPath(m2l, branch), restore_lr_(restore_lr), 452 sp_displace_(sp_displace) { 453 } 454 void Compile() OVERRIDE { 455 m2l_->ResetRegPool(); 456 m2l_->ResetDefTracking(); 457 GenerateTargetLabel(kPseudoThrowTarget); 458 if (restore_lr_) { 459 m2l_->LoadWordDisp(rs_rARM_SP, sp_displace_ - 4, rs_rARM_LR); 460 } 461 m2l_->OpRegImm(kOpAdd, rs_rARM_SP, sp_displace_); 462 m2l_->cfi().AdjustCFAOffset(-sp_displace_); 463 m2l_->ClobberCallerSave(); 464 ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pThrowStackOverflow); 465 // Load the entrypoint directly into the pc instead of doing a load + branch. Assumes 466 // codegen and target are in thumb2 mode. 467 // NOTE: native pointer. 468 m2l_->LoadWordDisp(rs_rARM_SELF, func_offset.Int32Value(), rs_rARM_PC); 469 m2l_->cfi().AdjustCFAOffset(sp_displace_); 470 } 471 472 private: 473 const bool restore_lr_; 474 const size_t sp_displace_; 475 }; 476 if (large_frame) { 477 // Note: may need a temp reg, and we only have r12 free at this point. 478 OpRegRegImm(kOpSub, rs_rARM_LR, rs_rARM_SP, frame_size_without_spills); 479 Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12); 480 LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_LR, rs_r12, nullptr); 481 // Need to restore LR since we used it as a temp. 482 AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, true, spill_size)); 483 OpRegCopy(rs_rARM_SP, rs_rARM_LR); // Establish stack 484 cfi_.AdjustCFAOffset(frame_size_without_spills); 485 } else { 486 /* 487 * If the frame is small enough we are guaranteed to have enough space that remains to 488 * handle signals on the user stack. However, we may not have any free temp 489 * registers at this point, so we'll temporarily add LR to the temp pool. 490 */ 491 DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp()); 492 MarkTemp(rs_rARM_LR); 493 FreeTemp(rs_rARM_LR); 494 OpRegRegImm(kOpSub, rs_rARM_SP, rs_rARM_SP, frame_size_without_spills); 495 cfi_.AdjustCFAOffset(frame_size_without_spills); 496 Clobber(rs_rARM_LR); 497 UnmarkTemp(rs_rARM_LR); 498 LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_SP, rs_r12, nullptr); 499 AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, false, frame_size_)); 500 } 501 } else { 502 // Implicit stack overflow check has already been done. Just make room on the 503 // stack for the frame now. 504 OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills); 505 cfi_.AdjustCFAOffset(frame_size_without_spills); 506 } 507 } else { 508 OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills); 509 cfi_.AdjustCFAOffset(frame_size_without_spills); 510 } 511 512 FlushIns(ArgLocs, rl_method); 513 514 // We can promote a PC-relative reference to dex cache arrays to a register 515 // if it's used at least twice. Without investigating where we should lazily 516 // load the reference, we conveniently load it after flushing inputs. 517 if (dex_cache_arrays_base_reg_.Valid()) { 518 OpPcRelDexCacheArrayAddr(cu_->dex_file, dex_cache_arrays_min_offset_, 519 dex_cache_arrays_base_reg_); 520 } 521 522 FreeTemp(rs_r0); 523 FreeTemp(rs_r1); 524 FreeTemp(rs_r2); 525 FreeTemp(rs_r3); 526 FreeTemp(rs_r12); 527} 528 529void ArmMir2Lir::GenExitSequence() { 530 cfi_.RememberState(); 531 int spill_count = num_core_spills_ + num_fp_spills_; 532 533 /* 534 * In the exit path, r0/r1 are live - make sure they aren't 535 * allocated by the register utilities as temps. 536 */ 537 LockTemp(rs_r0); 538 LockTemp(rs_r1); 539 540 int adjust = frame_size_ - (spill_count * kArmPointerSize); 541 OpRegImm(kOpAdd, rs_rARM_SP, adjust); 542 cfi_.AdjustCFAOffset(-adjust); 543 /* Need to restore any FP callee saves? */ 544 if (num_fp_spills_) { 545 NewLIR1(kThumb2VPopCS, num_fp_spills_); 546 cfi_.AdjustCFAOffset(-num_fp_spills_ * kArmPointerSize); 547 cfi_.RestoreMany(DwarfFpReg(0), fp_spill_mask_); 548 } 549 bool unspill_LR_to_PC = (core_spill_mask_ & (1 << rs_rARM_LR.GetRegNum())) != 0; 550 if (unspill_LR_to_PC) { 551 core_spill_mask_ &= ~(1 << rs_rARM_LR.GetRegNum()); 552 core_spill_mask_ |= (1 << rs_rARM_PC.GetRegNum()); 553 } 554 if (core_spill_mask_ != 0u) { 555 if ((core_spill_mask_ & ~(0xffu | (1u << rs_rARM_PC.GetRegNum()))) == 0u) { 556 // Unspilling only low regs and/or PC, use 16-bit POP. 557 constexpr int pc_bit_shift = rs_rARM_PC.GetRegNum() - 8; 558 NewLIR1(kThumbPop, 559 (core_spill_mask_ & ~(1u << rs_rARM_PC.GetRegNum())) | 560 ((core_spill_mask_ & (1u << rs_rARM_PC.GetRegNum())) >> pc_bit_shift)); 561 } else if (IsPowerOfTwo(core_spill_mask_)) { 562 // kThumb2Pop cannot be used to unspill a single register. 563 NewLIR1(kThumb2Pop1, CTZ(core_spill_mask_)); 564 } else { 565 NewLIR1(kThumb2Pop, core_spill_mask_); 566 } 567 // If we pop to PC, there is no further epilogue code. 568 if (!unspill_LR_to_PC) { 569 cfi_.AdjustCFAOffset(-num_core_spills_ * kArmPointerSize); 570 cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_); 571 DCHECK_EQ(cfi_.GetCurrentCFAOffset(), 0); // empty stack. 572 } 573 } 574 if (!unspill_LR_to_PC) { 575 /* We didn't pop to rARM_PC, so must do a bv rARM_LR */ 576 NewLIR1(kThumbBx, rs_rARM_LR.GetReg()); 577 } 578 // The CFI should be restored for any code that follows the exit block. 579 cfi_.RestoreState(); 580 cfi_.DefCFAOffset(frame_size_); 581} 582 583void ArmMir2Lir::GenSpecialExitSequence() { 584 NewLIR1(kThumbBx, rs_rARM_LR.GetReg()); 585} 586 587void ArmMir2Lir::GenSpecialEntryForSuspend() { 588 // Keep 16-byte stack alignment - push r0, i.e. ArtMethod*, r5, r6, lr. 589 DCHECK(!IsTemp(rs_r5)); 590 DCHECK(!IsTemp(rs_r6)); 591 core_spill_mask_ = 592 (1u << rs_r5.GetRegNum()) | (1u << rs_r6.GetRegNum()) | (1u << rs_rARM_LR.GetRegNum()); 593 num_core_spills_ = 3u; 594 fp_spill_mask_ = 0u; 595 num_fp_spills_ = 0u; 596 frame_size_ = 16u; 597 core_vmap_table_.clear(); 598 fp_vmap_table_.clear(); 599 NewLIR1(kThumbPush, (1u << rs_r0.GetRegNum()) | // ArtMethod* 600 (core_spill_mask_ & ~(1u << rs_rARM_LR.GetRegNum())) | // Spills other than LR. 601 (1u << 8)); // LR encoded for 16-bit push. 602 cfi_.AdjustCFAOffset(frame_size_); 603 // Do not generate CFI for scratch register r0. 604 cfi_.RelOffsetForMany(DwarfCoreReg(0), 4, core_spill_mask_, kArmPointerSize); 605} 606 607void ArmMir2Lir::GenSpecialExitForSuspend() { 608 // Pop the frame. (ArtMethod* no longer needed but restore it anyway.) 609 NewLIR1(kThumb2Pop, (1u << rs_r0.GetRegNum()) | core_spill_mask_); // 32-bit because of LR. 610 cfi_.AdjustCFAOffset(-frame_size_); 611 cfi_.RestoreMany(DwarfCoreReg(0), core_spill_mask_); 612} 613 614static bool ArmUseRelativeCall(CompilationUnit* cu, const MethodReference& target_method) { 615 // Emit relative calls only within a dex file due to the limited range of the BL insn. 616 return cu->dex_file == target_method.dex_file; 617} 618 619/* 620 * Bit of a hack here - in the absence of a real scheduling pass, 621 * emit the next instruction in static & direct invoke sequences. 622 */ 623int ArmMir2Lir::ArmNextSDCallInsn(CompilationUnit* cu, CallInfo* info, 624 int state, const MethodReference& target_method, 625 uint32_t unused_idx ATTRIBUTE_UNUSED, 626 uintptr_t direct_code, uintptr_t direct_method, 627 InvokeType type) { 628 ArmMir2Lir* cg = static_cast<ArmMir2Lir*>(cu->cg.get()); 629 if (info->string_init_offset != 0) { 630 RegStorage arg0_ref = cg->TargetReg(kArg0, kRef); 631 switch (state) { 632 case 0: { // Grab target method* from thread pointer 633 cg->LoadRefDisp(rs_rARM_SELF, info->string_init_offset, arg0_ref, kNotVolatile); 634 break; 635 } 636 case 1: // Grab the code from the method* 637 if (direct_code == 0) { 638 // kInvokeTgt := arg0_ref->entrypoint 639 cg->LoadWordDisp(arg0_ref, 640 ArtMethod::EntryPointFromQuickCompiledCodeOffset( 641 kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt)); 642 } 643 break; 644 default: 645 return -1; 646 } 647 } else if (direct_code != 0 && direct_method != 0) { 648 switch (state) { 649 case 0: // Get the current Method* [sets kArg0] 650 if (direct_code != static_cast<uintptr_t>(-1)) { 651 cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code); 652 } else if (ArmUseRelativeCall(cu, target_method)) { 653 // Defer to linker patch. 654 } else { 655 cg->LoadCodeAddress(target_method, type, kInvokeTgt); 656 } 657 if (direct_method != static_cast<uintptr_t>(-1)) { 658 cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method); 659 } else { 660 cg->LoadMethodAddress(target_method, type, kArg0); 661 } 662 break; 663 default: 664 return -1; 665 } 666 } else { 667 bool use_pc_rel = cg->CanUseOpPcRelDexCacheArrayLoad(); 668 RegStorage arg0_ref = cg->TargetReg(kArg0, kRef); 669 switch (state) { 670 case 0: // Get the current Method* [sets kArg0] 671 // TUNING: we can save a reg copy if Method* has been promoted. 672 if (!use_pc_rel) { 673 cg->LoadCurrMethodDirect(arg0_ref); 674 break; 675 } 676 ++state; 677 FALLTHROUGH_INTENDED; 678 case 1: // Get method->dex_cache_resolved_methods_ 679 if (!use_pc_rel) { 680 cg->LoadRefDisp(arg0_ref, 681 ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), 682 arg0_ref, 683 kNotVolatile); 684 } 685 // Set up direct code if known. 686 if (direct_code != 0) { 687 if (direct_code != static_cast<uintptr_t>(-1)) { 688 cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code); 689 } else if (ArmUseRelativeCall(cu, target_method)) { 690 // Defer to linker patch. 691 } else { 692 CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds()); 693 cg->LoadCodeAddress(target_method, type, kInvokeTgt); 694 } 695 } 696 if (!use_pc_rel || direct_code != 0) { 697 break; 698 } 699 ++state; 700 FALLTHROUGH_INTENDED; 701 case 2: // Grab target method* 702 CHECK_EQ(cu->dex_file, target_method.dex_file); 703 if (!use_pc_rel) { 704 cg->LoadRefDisp(arg0_ref, 705 mirror::ObjectArray<mirror::Object>::OffsetOfElement( 706 target_method.dex_method_index).Int32Value(), 707 arg0_ref, 708 kNotVolatile); 709 } else { 710 size_t offset = cg->dex_cache_arrays_layout_.MethodOffset(target_method.dex_method_index); 711 cg->OpPcRelDexCacheArrayLoad(cu->dex_file, offset, arg0_ref, false); 712 } 713 break; 714 case 3: // Grab the code from the method* 715 if (direct_code == 0) { 716 // kInvokeTgt := arg0_ref->entrypoint 717 cg->LoadWordDisp(arg0_ref, 718 ArtMethod::EntryPointFromQuickCompiledCodeOffset( 719 kArmPointerSize).Int32Value(), cg->TargetPtrReg(kInvokeTgt)); 720 } 721 break; 722 default: 723 return -1; 724 } 725 } 726 return state + 1; 727} 728 729NextCallInsn ArmMir2Lir::GetNextSDCallInsn() { 730 return ArmNextSDCallInsn; 731} 732 733LIR* ArmMir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) { 734 // For ARM, just generate a relative BL instruction that will be filled in at 'link time'. 735 // If the target turns out to be too far, the linker will generate a thunk for dispatch. 736 int target_method_idx = target_method.dex_method_index; 737 const DexFile* target_dex_file = target_method.dex_file; 738 739 // Generate the call instruction and save index, dex_file, and type. 740 // NOTE: Method deduplication takes linker patches into account, so we can just pass 0 741 // as a placeholder for the offset. 742 LIR* call = RawLIR(current_dalvik_offset_, kThumb2Bl, 0, 743 target_method_idx, WrapPointer(target_dex_file), type); 744 AppendLIR(call); 745 call_method_insns_.push_back(call); 746 return call; 747} 748 749LIR* ArmMir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) { 750 LIR* call_insn; 751 if (method_info.FastPath() && ArmUseRelativeCall(cu_, method_info.GetTargetMethod()) && 752 (method_info.GetSharpType() == kDirect || method_info.GetSharpType() == kStatic) && 753 method_info.DirectCode() == static_cast<uintptr_t>(-1)) { 754 call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType()); 755 } else { 756 call_insn = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt)); 757 } 758 return call_insn; 759} 760 761} // namespace art 762