target_x86.cc revision 70c4f06f9965cdb9319a2c85f65acda20086d765
1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <string>
18#include <inttypes.h>
19
20#include "codegen_x86.h"
21#include "dex/compiler_internals.h"
22#include "dex/quick/mir_to_lir-inl.h"
23#include "dex/reg_storage_eq.h"
24#include "mirror/array.h"
25#include "mirror/string.h"
26#include "x86_lir.h"
27
28namespace art {
29
30static constexpr RegStorage core_regs_arr_32[] = {
31    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
32};
33static constexpr RegStorage core_regs_arr_64[] = {
34    rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
35    rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
36};
37static constexpr RegStorage core_regs_arr_64q[] = {
38    rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
39    rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
40};
41static constexpr RegStorage sp_regs_arr_32[] = {
42    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
43};
44static constexpr RegStorage sp_regs_arr_64[] = {
45    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
46    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
47};
48static constexpr RegStorage dp_regs_arr_32[] = {
49    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
50};
51static constexpr RegStorage dp_regs_arr_64[] = {
52    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
53    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
54};
55static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
56static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
57static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
58static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
59static constexpr RegStorage core_temps_arr_64[] = {
60    rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
61    rs_r8, rs_r9, rs_r10, rs_r11
62};
63static constexpr RegStorage core_temps_arr_64q[] = {
64    rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
65    rs_r8q, rs_r9q, rs_r10q, rs_r11q
66};
67static constexpr RegStorage sp_temps_arr_32[] = {
68    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
69};
70static constexpr RegStorage sp_temps_arr_64[] = {
71    rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
72    rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
73};
74static constexpr RegStorage dp_temps_arr_32[] = {
75    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
76};
77static constexpr RegStorage dp_temps_arr_64[] = {
78    rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
79    rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
80};
81
82static constexpr RegStorage xp_temps_arr_32[] = {
83    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
84};
85static constexpr RegStorage xp_temps_arr_64[] = {
86    rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
87    rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
88};
89
90static constexpr ArrayRef<const RegStorage> empty_pool;
91static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
92static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
93static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
94static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
95static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
96static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
97static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
98static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
99static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
100static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
101static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
102static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
103static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
104static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
105static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
106static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
107static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
108
109static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
110static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
111
112RegStorage rs_rX86_SP;
113
114X86NativeRegisterPool rX86_ARG0;
115X86NativeRegisterPool rX86_ARG1;
116X86NativeRegisterPool rX86_ARG2;
117X86NativeRegisterPool rX86_ARG3;
118X86NativeRegisterPool rX86_ARG4;
119X86NativeRegisterPool rX86_ARG5;
120X86NativeRegisterPool rX86_FARG0;
121X86NativeRegisterPool rX86_FARG1;
122X86NativeRegisterPool rX86_FARG2;
123X86NativeRegisterPool rX86_FARG3;
124X86NativeRegisterPool rX86_FARG4;
125X86NativeRegisterPool rX86_FARG5;
126X86NativeRegisterPool rX86_FARG6;
127X86NativeRegisterPool rX86_FARG7;
128X86NativeRegisterPool rX86_RET0;
129X86NativeRegisterPool rX86_RET1;
130X86NativeRegisterPool rX86_INVOKE_TGT;
131X86NativeRegisterPool rX86_COUNT;
132
133RegStorage rs_rX86_ARG0;
134RegStorage rs_rX86_ARG1;
135RegStorage rs_rX86_ARG2;
136RegStorage rs_rX86_ARG3;
137RegStorage rs_rX86_ARG4;
138RegStorage rs_rX86_ARG5;
139RegStorage rs_rX86_FARG0;
140RegStorage rs_rX86_FARG1;
141RegStorage rs_rX86_FARG2;
142RegStorage rs_rX86_FARG3;
143RegStorage rs_rX86_FARG4;
144RegStorage rs_rX86_FARG5;
145RegStorage rs_rX86_FARG6;
146RegStorage rs_rX86_FARG7;
147RegStorage rs_rX86_RET0;
148RegStorage rs_rX86_RET1;
149RegStorage rs_rX86_INVOKE_TGT;
150RegStorage rs_rX86_COUNT;
151
152RegLocation X86Mir2Lir::LocCReturn() {
153  return x86_loc_c_return;
154}
155
156RegLocation X86Mir2Lir::LocCReturnRef() {
157  return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
158}
159
160RegLocation X86Mir2Lir::LocCReturnWide() {
161  return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
162}
163
164RegLocation X86Mir2Lir::LocCReturnFloat() {
165  return x86_loc_c_return_float;
166}
167
168RegLocation X86Mir2Lir::LocCReturnDouble() {
169  return x86_loc_c_return_double;
170}
171
172// Return a target-dependent special register for 32-bit.
173RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) {
174  RegStorage res_reg = RegStorage::InvalidReg();
175  switch (reg) {
176    case kSelf: res_reg = RegStorage::InvalidReg(); break;
177    case kSuspend: res_reg =  RegStorage::InvalidReg(); break;
178    case kLr: res_reg =  RegStorage::InvalidReg(); break;
179    case kPc: res_reg =  RegStorage::InvalidReg(); break;
180    case kSp: res_reg =  rs_rX86_SP; break;
181    case kArg0: res_reg = rs_rX86_ARG0; break;
182    case kArg1: res_reg = rs_rX86_ARG1; break;
183    case kArg2: res_reg = rs_rX86_ARG2; break;
184    case kArg3: res_reg = rs_rX86_ARG3; break;
185    case kArg4: res_reg = rs_rX86_ARG4; break;
186    case kArg5: res_reg = rs_rX86_ARG5; break;
187    case kFArg0: res_reg = rs_rX86_FARG0; break;
188    case kFArg1: res_reg = rs_rX86_FARG1; break;
189    case kFArg2: res_reg = rs_rX86_FARG2; break;
190    case kFArg3: res_reg = rs_rX86_FARG3; break;
191    case kFArg4: res_reg = rs_rX86_FARG4; break;
192    case kFArg5: res_reg = rs_rX86_FARG5; break;
193    case kFArg6: res_reg = rs_rX86_FARG6; break;
194    case kFArg7: res_reg = rs_rX86_FARG7; break;
195    case kRet0: res_reg = rs_rX86_RET0; break;
196    case kRet1: res_reg = rs_rX86_RET1; break;
197    case kInvokeTgt: res_reg = rs_rX86_INVOKE_TGT; break;
198    case kHiddenArg: res_reg = rs_rAX; break;
199    case kHiddenFpArg: DCHECK(!cu_->target64); res_reg = rs_fr0; break;
200    case kCount: res_reg = rs_rX86_COUNT; break;
201    default: res_reg = RegStorage::InvalidReg();
202  }
203  return res_reg;
204}
205
206RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
207  LOG(FATAL) << "Do not use this function!!!";
208  return RegStorage::InvalidReg();
209}
210
211/*
212 * Decode the register id.
213 */
214ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
215  /* Double registers in x86 are just a single FP register. This is always just a single bit. */
216  return ResourceMask::Bit(
217      /* FP register starts at bit position 16 */
218      ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
219}
220
221ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
222  /*
223   * FIXME: might make sense to use a virtual resource encoding bit for pc.  Might be
224   * able to clean up some of the x86/Arm_Mips differences
225   */
226  LOG(FATAL) << "Unexpected call to GetPCUseDefEncoding for x86";
227  return kEncodeNone;
228}
229
230void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
231                                          ResourceMask* use_mask, ResourceMask* def_mask) {
232  DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
233  DCHECK(!lir->flags.use_def_invalid);
234
235  // X86-specific resource map setup here.
236  if (flags & REG_USE_SP) {
237    use_mask->SetBit(kX86RegSP);
238  }
239
240  if (flags & REG_DEF_SP) {
241    def_mask->SetBit(kX86RegSP);
242  }
243
244  if (flags & REG_DEFA) {
245    SetupRegMask(def_mask, rs_rAX.GetReg());
246  }
247
248  if (flags & REG_DEFD) {
249    SetupRegMask(def_mask, rs_rDX.GetReg());
250  }
251  if (flags & REG_USEA) {
252    SetupRegMask(use_mask, rs_rAX.GetReg());
253  }
254
255  if (flags & REG_USEC) {
256    SetupRegMask(use_mask, rs_rCX.GetReg());
257  }
258
259  if (flags & REG_USED) {
260    SetupRegMask(use_mask, rs_rDX.GetReg());
261  }
262
263  if (flags & REG_USEB) {
264    SetupRegMask(use_mask, rs_rBX.GetReg());
265  }
266
267  // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
268  if (lir->opcode == kX86RepneScasw) {
269    SetupRegMask(use_mask, rs_rAX.GetReg());
270    SetupRegMask(use_mask, rs_rCX.GetReg());
271    SetupRegMask(use_mask, rs_rDI.GetReg());
272    SetupRegMask(def_mask, rs_rDI.GetReg());
273  }
274
275  if (flags & USE_FP_STACK) {
276    use_mask->SetBit(kX86FPStack);
277    def_mask->SetBit(kX86FPStack);
278  }
279}
280
281/* For dumping instructions */
282static const char* x86RegName[] = {
283  "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
284  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
285};
286
287static const char* x86CondName[] = {
288  "O",
289  "NO",
290  "B/NAE/C",
291  "NB/AE/NC",
292  "Z/EQ",
293  "NZ/NE",
294  "BE/NA",
295  "NBE/A",
296  "S",
297  "NS",
298  "P/PE",
299  "NP/PO",
300  "L/NGE",
301  "NL/GE",
302  "LE/NG",
303  "NLE/G"
304};
305
306/*
307 * Interpret a format string and build a string no longer than size
308 * See format key in Assemble.cc.
309 */
310std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
311  std::string buf;
312  size_t i = 0;
313  size_t fmt_len = strlen(fmt);
314  while (i < fmt_len) {
315    if (fmt[i] != '!') {
316      buf += fmt[i];
317      i++;
318    } else {
319      i++;
320      DCHECK_LT(i, fmt_len);
321      char operand_number_ch = fmt[i];
322      i++;
323      if (operand_number_ch == '!') {
324        buf += "!";
325      } else {
326        int operand_number = operand_number_ch - '0';
327        DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
328        DCHECK_LT(i, fmt_len);
329        int operand = lir->operands[operand_number];
330        switch (fmt[i]) {
331          case 'c':
332            DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
333            buf += x86CondName[operand];
334            break;
335          case 'd':
336            buf += StringPrintf("%d", operand);
337            break;
338          case 'q': {
339             int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
340                             static_cast<uint32_t>(lir->operands[operand_number+1]));
341             buf +=StringPrintf("%" PRId64, value);
342          }
343          case 'p': {
344            EmbeddedData *tab_rec = reinterpret_cast<EmbeddedData*>(UnwrapPointer(operand));
345            buf += StringPrintf("0x%08x", tab_rec->offset);
346            break;
347          }
348          case 'r':
349            if (RegStorage::IsFloat(operand)) {
350              int fp_reg = RegStorage::RegNum(operand);
351              buf += StringPrintf("xmm%d", fp_reg);
352            } else {
353              int reg_num = RegStorage::RegNum(operand);
354              DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
355              buf += x86RegName[reg_num];
356            }
357            break;
358          case 't':
359            buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
360                                reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
361                                lir->target);
362            break;
363          default:
364            buf += StringPrintf("DecodeError '%c'", fmt[i]);
365            break;
366        }
367        i++;
368      }
369    }
370  }
371  return buf;
372}
373
374void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
375  char buf[256];
376  buf[0] = 0;
377
378  if (mask.Equals(kEncodeAll)) {
379    strcpy(buf, "all");
380  } else {
381    char num[8];
382    int i;
383
384    for (i = 0; i < kX86RegEnd; i++) {
385      if (mask.HasBit(i)) {
386        snprintf(num, arraysize(num), "%d ", i);
387        strcat(buf, num);
388      }
389    }
390
391    if (mask.HasBit(ResourceMask::kCCode)) {
392      strcat(buf, "cc ");
393    }
394    /* Memory bits */
395    if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
396      snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
397               DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
398               (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
399    }
400    if (mask.HasBit(ResourceMask::kLiteral)) {
401      strcat(buf, "lit ");
402    }
403
404    if (mask.HasBit(ResourceMask::kHeapRef)) {
405      strcat(buf, "heap ");
406    }
407    if (mask.HasBit(ResourceMask::kMustNotAlias)) {
408      strcat(buf, "noalias ");
409    }
410  }
411  if (buf[0]) {
412    LOG(INFO) << prefix << ": " <<  buf;
413  }
414}
415
416void X86Mir2Lir::AdjustSpillMask() {
417  // Adjustment for LR spilling, x86 has no LR so nothing to do here
418  core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
419  num_core_spills_++;
420}
421
422RegStorage X86Mir2Lir::AllocateByteRegister() {
423  RegStorage reg = AllocTypedTemp(false, kCoreReg);
424  if (!cu_->target64) {
425    DCHECK_LT(reg.GetRegNum(), rs_rX86_SP.GetRegNum());
426  }
427  return reg;
428}
429
430bool X86Mir2Lir::IsByteRegister(RegStorage reg) {
431  return cu_->target64 || reg.GetRegNum() < rs_rX86_SP.GetRegNum();
432}
433
434/* Clobber all regs that might be used by an external C call */
435void X86Mir2Lir::ClobberCallerSave() {
436  Clobber(rs_rAX);
437  Clobber(rs_rCX);
438  Clobber(rs_rDX);
439  Clobber(rs_rBX);
440
441  Clobber(rs_fr0);
442  Clobber(rs_fr1);
443  Clobber(rs_fr2);
444  Clobber(rs_fr3);
445  Clobber(rs_fr4);
446  Clobber(rs_fr5);
447  Clobber(rs_fr6);
448  Clobber(rs_fr7);
449
450  if (cu_->target64) {
451    Clobber(rs_r8);
452    Clobber(rs_r9);
453    Clobber(rs_r10);
454    Clobber(rs_r11);
455
456    Clobber(rs_fr8);
457    Clobber(rs_fr9);
458    Clobber(rs_fr10);
459    Clobber(rs_fr11);
460    Clobber(rs_fr12);
461    Clobber(rs_fr13);
462    Clobber(rs_fr14);
463    Clobber(rs_fr15);
464  }
465}
466
467RegLocation X86Mir2Lir::GetReturnWideAlt() {
468  RegLocation res = LocCReturnWide();
469  DCHECK(res.reg.GetLowReg() == rs_rAX.GetReg());
470  DCHECK(res.reg.GetHighReg() == rs_rDX.GetReg());
471  Clobber(rs_rAX);
472  Clobber(rs_rDX);
473  MarkInUse(rs_rAX);
474  MarkInUse(rs_rDX);
475  MarkWide(res.reg);
476  return res;
477}
478
479RegLocation X86Mir2Lir::GetReturnAlt() {
480  RegLocation res = LocCReturn();
481  res.reg.SetReg(rs_rDX.GetReg());
482  Clobber(rs_rDX);
483  MarkInUse(rs_rDX);
484  return res;
485}
486
487/* To be used when explicitly managing register use */
488void X86Mir2Lir::LockCallTemps() {
489  LockTemp(rs_rX86_ARG0);
490  LockTemp(rs_rX86_ARG1);
491  LockTemp(rs_rX86_ARG2);
492  LockTemp(rs_rX86_ARG3);
493  if (cu_->target64) {
494    LockTemp(rs_rX86_ARG4);
495    LockTemp(rs_rX86_ARG5);
496    LockTemp(rs_rX86_FARG0);
497    LockTemp(rs_rX86_FARG1);
498    LockTemp(rs_rX86_FARG2);
499    LockTemp(rs_rX86_FARG3);
500    LockTemp(rs_rX86_FARG4);
501    LockTemp(rs_rX86_FARG5);
502    LockTemp(rs_rX86_FARG6);
503    LockTemp(rs_rX86_FARG7);
504  }
505}
506
507/* To be used when explicitly managing register use */
508void X86Mir2Lir::FreeCallTemps() {
509  FreeTemp(rs_rX86_ARG0);
510  FreeTemp(rs_rX86_ARG1);
511  FreeTemp(rs_rX86_ARG2);
512  FreeTemp(rs_rX86_ARG3);
513  if (cu_->target64) {
514    FreeTemp(rs_rX86_ARG4);
515    FreeTemp(rs_rX86_ARG5);
516    FreeTemp(rs_rX86_FARG0);
517    FreeTemp(rs_rX86_FARG1);
518    FreeTemp(rs_rX86_FARG2);
519    FreeTemp(rs_rX86_FARG3);
520    FreeTemp(rs_rX86_FARG4);
521    FreeTemp(rs_rX86_FARG5);
522    FreeTemp(rs_rX86_FARG6);
523    FreeTemp(rs_rX86_FARG7);
524  }
525}
526
527bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
528    switch (opcode) {
529      case kX86LockCmpxchgMR:
530      case kX86LockCmpxchgAR:
531      case kX86LockCmpxchg64M:
532      case kX86LockCmpxchg64A:
533      case kX86XchgMR:
534      case kX86Mfence:
535        // Atomic memory instructions provide full barrier.
536        return true;
537      default:
538        break;
539    }
540
541    // Conservative if cannot prove it provides full barrier.
542    return false;
543}
544
545bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
546#if ANDROID_SMP != 0
547  // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
548  LIR* mem_barrier = last_lir_insn_;
549
550  bool ret = false;
551  /*
552   * According to the JSR-133 Cookbook, for x86 only StoreLoad barriers need memory fence. All other barriers
553   * (LoadLoad, LoadStore, StoreStore) are nops due to the x86 memory model. For those cases, all we need
554   * to ensure is that there is a scheduling barrier in place.
555   */
556  if (barrier_kind == kStoreLoad) {
557    // If no LIR exists already that can be used a barrier, then generate an mfence.
558    if (mem_barrier == nullptr) {
559      mem_barrier = NewLIR0(kX86Mfence);
560      ret = true;
561    }
562
563    // If last instruction does not provide full barrier, then insert an mfence.
564    if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
565      mem_barrier = NewLIR0(kX86Mfence);
566      ret = true;
567    }
568  }
569
570  // Now ensure that a scheduling barrier is in place.
571  if (mem_barrier == nullptr) {
572    GenBarrier();
573  } else {
574    // Mark as a scheduling barrier.
575    DCHECK(!mem_barrier->flags.use_def_invalid);
576    mem_barrier->u.m.def_mask = &kEncodeAll;
577  }
578  return ret;
579#else
580  return false;
581#endif
582}
583
584void X86Mir2Lir::CompilerInitializeRegAlloc() {
585  if (cu_->target64) {
586    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
587                                          dp_regs_64, reserved_regs_64, reserved_regs_64q,
588                                          core_temps_64, core_temps_64q, sp_temps_64, dp_temps_64);
589  } else {
590    reg_pool_ = new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
591                                          dp_regs_32, reserved_regs_32, empty_pool,
592                                          core_temps_32, empty_pool, sp_temps_32, dp_temps_32);
593  }
594
595  // Target-specific adjustments.
596
597  // Add in XMM registers.
598  const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
599  for (RegStorage reg : *xp_temps) {
600    RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
601    reginfo_map_.Put(reg.GetReg(), info);
602    info->SetIsTemp(true);
603  }
604
605  // Alias single precision xmm to double xmms.
606  // TODO: as needed, add larger vector sizes - alias all to the largest.
607  GrowableArray<RegisterInfo*>::Iterator it(&reg_pool_->sp_regs_);
608  for (RegisterInfo* info = it.Next(); info != nullptr; info = it.Next()) {
609    int sp_reg_num = info->GetReg().GetRegNum();
610    RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
611    RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
612    // 128-bit xmm vector register's master storage should refer to itself.
613    DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
614
615    // Redirect 32-bit vector's master storage to 128-bit vector.
616    info->SetMaster(xp_reg_info);
617
618    RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
619    RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
620    // Redirect 64-bit vector's master storage to 128-bit vector.
621    dp_reg_info->SetMaster(xp_reg_info);
622    // Singles should show a single 32-bit mask bit, at first referring to the low half.
623    DCHECK_EQ(info->StorageMask(), 0x1U);
624  }
625
626  if (cu_->target64) {
627    // Alias 32bit W registers to corresponding 64bit X registers.
628    GrowableArray<RegisterInfo*>::Iterator w_it(&reg_pool_->core_regs_);
629    for (RegisterInfo* info = w_it.Next(); info != nullptr; info = w_it.Next()) {
630      int x_reg_num = info->GetReg().GetRegNum();
631      RegStorage x_reg = RegStorage::Solo64(x_reg_num);
632      RegisterInfo* x_reg_info = GetRegInfo(x_reg);
633      // 64bit X register's master storage should refer to itself.
634      DCHECK_EQ(x_reg_info, x_reg_info->Master());
635      // Redirect 32bit W master storage to 64bit X.
636      info->SetMaster(x_reg_info);
637      // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
638      DCHECK_EQ(info->StorageMask(), 0x1U);
639    }
640  }
641
642  // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
643  // TODO: adjust for x86/hard float calling convention.
644  reg_pool_->next_core_reg_ = 2;
645  reg_pool_->next_sp_reg_ = 2;
646  reg_pool_->next_dp_reg_ = 1;
647}
648
649void X86Mir2Lir::SpillCoreRegs() {
650  if (num_core_spills_ == 0) {
651    return;
652  }
653  // Spill mask not including fake return address register
654  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
655  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
656  for (int reg = 0; mask; mask >>= 1, reg++) {
657    if (mask & 0x1) {
658      StoreWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
659      offset += GetInstructionSetPointerSize(cu_->instruction_set);
660    }
661  }
662}
663
664void X86Mir2Lir::UnSpillCoreRegs() {
665  if (num_core_spills_ == 0) {
666    return;
667  }
668  // Spill mask not including fake return address register
669  uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
670  int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
671  for (int reg = 0; mask; mask >>= 1, reg++) {
672    if (mask & 0x1) {
673      LoadWordDisp(rs_rX86_SP, offset, RegStorage::Solo32(reg));
674      offset += GetInstructionSetPointerSize(cu_->instruction_set);
675    }
676  }
677}
678
679bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
680  return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
681}
682
683bool X86Mir2Lir::SupportsVolatileLoadStore(OpSize size) {
684  return true;
685}
686
687RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
688  // X86_64 can handle any size.
689  if (cu_->target64) {
690    if (size == kReference) {
691      return kRefReg;
692    }
693    return kCoreReg;
694  }
695
696  if (UNLIKELY(is_volatile)) {
697    // On x86, atomic 64-bit load/store requires an fp register.
698    // Smaller aligned load/store is atomic for both core and fp registers.
699    if (size == k64 || size == kDouble) {
700      return kFPReg;
701    }
702  }
703  return RegClassBySize(size);
704}
705
706X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
707    : Mir2Lir(cu, mir_graph, arena),
708      base_of_code_(nullptr), store_method_addr_(false), store_method_addr_used_(false),
709      method_address_insns_(arena, 100, kGrowableArrayMisc),
710      class_type_address_insns_(arena, 100, kGrowableArrayMisc),
711      call_method_insns_(arena, 100, kGrowableArrayMisc),
712      stack_decrement_(nullptr), stack_increment_(nullptr),
713      const_vectors_(nullptr) {
714  store_method_addr_used_ = false;
715  if (kIsDebugBuild) {
716    for (int i = 0; i < kX86Last; i++) {
717      if (X86Mir2Lir::EncodingMap[i].opcode != i) {
718        LOG(FATAL) << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
719                   << " is wrong: expecting " << i << ", seeing "
720                   << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
721      }
722    }
723  }
724  if (cu_->target64) {
725    rs_rX86_SP = rs_rX86_SP_64;
726
727    rs_rX86_ARG0 = rs_rDI;
728    rs_rX86_ARG1 = rs_rSI;
729    rs_rX86_ARG2 = rs_rDX;
730    rs_rX86_ARG3 = rs_rCX;
731    rs_rX86_ARG4 = rs_r8;
732    rs_rX86_ARG5 = rs_r9;
733    rs_rX86_FARG0 = rs_fr0;
734    rs_rX86_FARG1 = rs_fr1;
735    rs_rX86_FARG2 = rs_fr2;
736    rs_rX86_FARG3 = rs_fr3;
737    rs_rX86_FARG4 = rs_fr4;
738    rs_rX86_FARG5 = rs_fr5;
739    rs_rX86_FARG6 = rs_fr6;
740    rs_rX86_FARG7 = rs_fr7;
741    rX86_ARG0 = rDI;
742    rX86_ARG1 = rSI;
743    rX86_ARG2 = rDX;
744    rX86_ARG3 = rCX;
745    rX86_ARG4 = r8;
746    rX86_ARG5 = r9;
747    rX86_FARG0 = fr0;
748    rX86_FARG1 = fr1;
749    rX86_FARG2 = fr2;
750    rX86_FARG3 = fr3;
751    rX86_FARG4 = fr4;
752    rX86_FARG5 = fr5;
753    rX86_FARG6 = fr6;
754    rX86_FARG7 = fr7;
755    rs_rX86_INVOKE_TGT = rs_rDI;
756  } else {
757    rs_rX86_SP = rs_rX86_SP_32;
758
759    rs_rX86_ARG0 = rs_rAX;
760    rs_rX86_ARG1 = rs_rCX;
761    rs_rX86_ARG2 = rs_rDX;
762    rs_rX86_ARG3 = rs_rBX;
763    rs_rX86_ARG4 = RegStorage::InvalidReg();
764    rs_rX86_ARG5 = RegStorage::InvalidReg();
765    rs_rX86_FARG0 = rs_rAX;
766    rs_rX86_FARG1 = rs_rCX;
767    rs_rX86_FARG2 = rs_rDX;
768    rs_rX86_FARG3 = rs_rBX;
769    rs_rX86_FARG4 = RegStorage::InvalidReg();
770    rs_rX86_FARG5 = RegStorage::InvalidReg();
771    rs_rX86_FARG6 = RegStorage::InvalidReg();
772    rs_rX86_FARG7 = RegStorage::InvalidReg();
773    rX86_ARG0 = rAX;
774    rX86_ARG1 = rCX;
775    rX86_ARG2 = rDX;
776    rX86_ARG3 = rBX;
777    rX86_FARG0 = rAX;
778    rX86_FARG1 = rCX;
779    rX86_FARG2 = rDX;
780    rX86_FARG3 = rBX;
781    rs_rX86_INVOKE_TGT = rs_rAX;
782    // TODO(64): Initialize with invalid reg
783//    rX86_ARG4 = RegStorage::InvalidReg();
784//    rX86_ARG5 = RegStorage::InvalidReg();
785  }
786  rs_rX86_RET0 = rs_rAX;
787  rs_rX86_RET1 = rs_rDX;
788  rs_rX86_COUNT = rs_rCX;
789  rX86_RET0 = rAX;
790  rX86_RET1 = rDX;
791  rX86_INVOKE_TGT = rAX;
792  rX86_COUNT = rCX;
793}
794
795Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
796                          ArenaAllocator* const arena) {
797  return new X86Mir2Lir(cu, mir_graph, arena);
798}
799
800// Not used in x86
801RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<4> offset) {
802  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
803  return RegStorage::InvalidReg();
804}
805
806// Not used in x86
807RegStorage X86Mir2Lir::LoadHelper(ThreadOffset<8> offset) {
808  LOG(FATAL) << "Unexpected use of LoadHelper in x86";
809  return RegStorage::InvalidReg();
810}
811
812LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
813  LOG(FATAL) << "Unexpected use of CheckSuspendUsingLoad in x86";
814  return nullptr;
815}
816
817uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
818  DCHECK(!IsPseudoLirOp(opcode));
819  return X86Mir2Lir::EncodingMap[opcode].flags;
820}
821
822const char* X86Mir2Lir::GetTargetInstName(int opcode) {
823  DCHECK(!IsPseudoLirOp(opcode));
824  return X86Mir2Lir::EncodingMap[opcode].name;
825}
826
827const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
828  DCHECK(!IsPseudoLirOp(opcode));
829  return X86Mir2Lir::EncodingMap[opcode].fmt;
830}
831
832void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
833  // Can we do this directly to memory?
834  rl_dest = UpdateLocWide(rl_dest);
835  if ((rl_dest.location == kLocDalvikFrame) ||
836      (rl_dest.location == kLocCompilerTemp)) {
837    int32_t val_lo = Low32Bits(value);
838    int32_t val_hi = High32Bits(value);
839    int r_base = rs_rX86_SP.GetReg();
840    int displacement = SRegOffset(rl_dest.s_reg_low);
841
842    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
843    LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
844    AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
845                              false /* is_load */, true /* is64bit */);
846    store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
847    AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
848                              false /* is_load */, true /* is64bit */);
849    return;
850  }
851
852  // Just use the standard code to do the generation.
853  Mir2Lir::GenConstWide(rl_dest, value);
854}
855
856// TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
857void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
858  LOG(INFO)  << "location: " << loc.location << ','
859             << (loc.wide ? " w" : "  ")
860             << (loc.defined ? " D" : "  ")
861             << (loc.is_const ? " c" : "  ")
862             << (loc.fp ? " F" : "  ")
863             << (loc.core ? " C" : "  ")
864             << (loc.ref ? " r" : "  ")
865             << (loc.high_word ? " h" : "  ")
866             << (loc.home ? " H" : "  ")
867             << ", low: " << static_cast<int>(loc.reg.GetLowReg())
868             << ", high: " << static_cast<int>(loc.reg.GetHighReg())
869             << ", s_reg: " << loc.s_reg_low
870             << ", orig: " << loc.orig_sreg;
871}
872
873void X86Mir2Lir::Materialize() {
874  // A good place to put the analysis before starting.
875  AnalyzeMIR();
876
877  // Now continue with regular code generation.
878  Mir2Lir::Materialize();
879}
880
881void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
882                                   SpecialTargetRegister symbolic_reg) {
883  /*
884   * For x86, just generate a 32 bit move immediate instruction, that will be filled
885   * in at 'link time'.  For now, put a unique value based on target to ensure that
886   * code deduplication works.
887   */
888  int target_method_idx = target_method.dex_method_index;
889  const DexFile* target_dex_file = target_method.dex_file;
890  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
891  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
892
893  // Generate the move instruction with the unique pointer and save index, dex_file, and type.
894  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
895                     static_cast<int>(target_method_id_ptr), target_method_idx,
896                     WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
897  AppendLIR(move);
898  method_address_insns_.Insert(move);
899}
900
901void X86Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
902  /*
903   * For x86, just generate a 32 bit move immediate instruction, that will be filled
904   * in at 'link time'.  For now, put a unique value based on target to ensure that
905   * code deduplication works.
906   */
907  const DexFile::TypeId& id = cu_->dex_file->GetTypeId(type_idx);
908  uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
909
910  // Generate the move instruction with the unique pointer and save index and type.
911  LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI, TargetReg(symbolic_reg, false).GetReg(),
912                     static_cast<int>(ptr), type_idx);
913  AppendLIR(move);
914  class_type_address_insns_.Insert(move);
915}
916
917LIR *X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
918  /*
919   * For x86, just generate a 32 bit call relative instruction, that will be filled
920   * in at 'link time'.  For now, put a unique value based on target to ensure that
921   * code deduplication works.
922   */
923  int target_method_idx = target_method.dex_method_index;
924  const DexFile* target_dex_file = target_method.dex_file;
925  const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
926  uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
927
928  // Generate the call instruction with the unique pointer and save index, dex_file, and type.
929  LIR *call = RawLIR(current_dalvik_offset_, kX86CallI, static_cast<int>(target_method_id_ptr),
930                     target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
931  AppendLIR(call);
932  call_method_insns_.Insert(call);
933  return call;
934}
935
936/*
937 * @brief Enter a 32 bit quantity into a buffer
938 * @param buf buffer.
939 * @param data Data value.
940 */
941
942static void PushWord(std::vector<uint8_t>&buf, int32_t data) {
943  buf.push_back(data & 0xff);
944  buf.push_back((data >> 8) & 0xff);
945  buf.push_back((data >> 16) & 0xff);
946  buf.push_back((data >> 24) & 0xff);
947}
948
949void X86Mir2Lir::InstallLiteralPools() {
950  // These are handled differently for x86.
951  DCHECK(code_literal_list_ == nullptr);
952  DCHECK(method_literal_list_ == nullptr);
953  DCHECK(class_literal_list_ == nullptr);
954
955  // Align to 16 byte boundary.  We have implicit knowledge that the start of the method is
956  // on a 4 byte boundary.   How can I check this if it changes (other than aligned loads
957  // will fail at runtime)?
958  if (const_vectors_ != nullptr) {
959    int align_size = (16-4) - (code_buffer_.size() & 0xF);
960    if (align_size < 0) {
961      align_size += 16;
962    }
963
964    while (align_size > 0) {
965      code_buffer_.push_back(0);
966      align_size--;
967    }
968    for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
969      PushWord(code_buffer_, p->operands[0]);
970      PushWord(code_buffer_, p->operands[1]);
971      PushWord(code_buffer_, p->operands[2]);
972      PushWord(code_buffer_, p->operands[3]);
973    }
974  }
975
976  // Handle the fixups for methods.
977  for (uint32_t i = 0; i < method_address_insns_.Size(); i++) {
978      LIR* p = method_address_insns_.Get(i);
979      DCHECK_EQ(p->opcode, kX86Mov32RI);
980      uint32_t target_method_idx = p->operands[2];
981      const DexFile* target_dex_file =
982          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[3]));
983
984      // The offset to patch is the last 4 bytes of the instruction.
985      int patch_offset = p->offset + p->flags.size - 4;
986      cu_->compiler_driver->AddMethodPatch(cu_->dex_file, cu_->class_def_idx,
987                                           cu_->method_idx, cu_->invoke_type,
988                                           target_method_idx, target_dex_file,
989                                           static_cast<InvokeType>(p->operands[4]),
990                                           patch_offset);
991  }
992
993  // Handle the fixups for class types.
994  for (uint32_t i = 0; i < class_type_address_insns_.Size(); i++) {
995      LIR* p = class_type_address_insns_.Get(i);
996      DCHECK_EQ(p->opcode, kX86Mov32RI);
997      uint32_t target_method_idx = p->operands[2];
998
999      // The offset to patch is the last 4 bytes of the instruction.
1000      int patch_offset = p->offset + p->flags.size - 4;
1001      cu_->compiler_driver->AddClassPatch(cu_->dex_file, cu_->class_def_idx,
1002                                          cu_->method_idx, target_method_idx, patch_offset);
1003  }
1004
1005  // And now the PC-relative calls to methods.
1006  for (uint32_t i = 0; i < call_method_insns_.Size(); i++) {
1007      LIR* p = call_method_insns_.Get(i);
1008      DCHECK_EQ(p->opcode, kX86CallI);
1009      uint32_t target_method_idx = p->operands[1];
1010      const DexFile* target_dex_file =
1011          reinterpret_cast<const DexFile*>(UnwrapPointer(p->operands[2]));
1012
1013      // The offset to patch is the last 4 bytes of the instruction.
1014      int patch_offset = p->offset + p->flags.size - 4;
1015      cu_->compiler_driver->AddRelativeCodePatch(cu_->dex_file, cu_->class_def_idx,
1016                                                 cu_->method_idx, cu_->invoke_type,
1017                                                 target_method_idx, target_dex_file,
1018                                                 static_cast<InvokeType>(p->operands[3]),
1019                                                 patch_offset, -4 /* offset */);
1020  }
1021
1022  // And do the normal processing.
1023  Mir2Lir::InstallLiteralPools();
1024}
1025
1026bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
1027  if (cu_->target64) {
1028    // TODO: Implement ArrayCOpy intrinsic for x86_64
1029    return false;
1030  }
1031
1032  RegLocation rl_src = info->args[0];
1033  RegLocation rl_srcPos = info->args[1];
1034  RegLocation rl_dst = info->args[2];
1035  RegLocation rl_dstPos = info->args[3];
1036  RegLocation rl_length = info->args[4];
1037  if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
1038    return false;
1039  }
1040  if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
1041    return false;
1042  }
1043  ClobberCallerSave();
1044  LockCallTemps();  // Using fixed registers
1045  LoadValueDirectFixed(rl_src , rs_rAX);
1046  LoadValueDirectFixed(rl_dst , rs_rCX);
1047  LIR* src_dst_same  = OpCmpBranch(kCondEq, rs_rAX , rs_rCX, nullptr);
1048  LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX , 0, nullptr);
1049  LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX , 0, nullptr);
1050  LoadValueDirectFixed(rl_length , rs_rDX);
1051  LIR* len_negative  = OpCmpImmBranch(kCondLt, rs_rDX , 0, nullptr);
1052  LIR* len_too_big  = OpCmpImmBranch(kCondGt, rs_rDX , 128, nullptr);
1053  LoadValueDirectFixed(rl_src , rs_rAX);
1054  LoadWordDisp(rs_rAX , mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1055  LIR* src_bad_len  = nullptr;
1056  LIR* srcPos_negative  = nullptr;
1057  if (!rl_srcPos.is_const) {
1058    LoadValueDirectFixed(rl_srcPos , rs_rBX);
1059    srcPos_negative  = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr);
1060    OpRegReg(kOpAdd, rs_rBX, rs_rDX);
1061    src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1062  } else {
1063    int pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
1064    if (pos_val == 0) {
1065      src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr);
1066    } else {
1067      OpRegRegImm(kOpAdd, rs_rBX,  rs_rDX, pos_val);
1068      src_bad_len  = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1069    }
1070  }
1071  LIR* dstPos_negative = nullptr;
1072  LIR* dst_bad_len = nullptr;
1073  LoadValueDirectFixed(rl_dst, rs_rAX);
1074  LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
1075  if (!rl_dstPos.is_const) {
1076    LoadValueDirectFixed(rl_dstPos , rs_rBX);
1077    dstPos_negative = OpCmpImmBranch(kCondLt, rs_rBX , 0, nullptr);
1078    OpRegRegReg(kOpAdd, rs_rBX, rs_rBX, rs_rDX);
1079    dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1080  } else {
1081    int pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
1082    if (pos_val == 0) {
1083      dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rDX, nullptr);
1084    } else {
1085      OpRegRegImm(kOpAdd, rs_rBX,  rs_rDX, pos_val);
1086      dst_bad_len = OpCmpBranch(kCondLt, rs_rAX , rs_rBX, nullptr);
1087    }
1088  }
1089  // everything is checked now
1090  LoadValueDirectFixed(rl_src , rs_rAX);
1091  LoadValueDirectFixed(rl_dst , rs_rBX);
1092  LoadValueDirectFixed(rl_srcPos , rs_rCX);
1093  NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
1094       rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value());
1095  // RAX now holds the address of the first src element to be copied
1096
1097  LoadValueDirectFixed(rl_dstPos , rs_rCX);
1098  NewLIR5(kX86Lea32RA, rs_rBX.GetReg(), rs_rBX.GetReg(),
1099       rs_rCX.GetReg() , 1, mirror::Array::DataOffset(2).Int32Value() );
1100  // RBX now holds the address of the first dst element to be copied
1101
1102  // check if the number of elements to be copied is odd or even. If odd
1103  // then copy the first element (so that the remaining number of elements
1104  // is even).
1105  LoadValueDirectFixed(rl_length , rs_rCX);
1106  OpRegImm(kOpAnd, rs_rCX, 1);
1107  LIR* jmp_to_begin_loop  = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
1108  OpRegImm(kOpSub, rs_rDX, 1);
1109  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1110  StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
1111
1112  // since the remaining number of elements is even, we will copy by
1113  // two elements at a time.
1114  LIR *beginLoop = NewLIR0(kPseudoTargetLabel);
1115  LIR* jmp_to_ret  = OpCmpImmBranch(kCondEq, rs_rDX , 0, nullptr);
1116  OpRegImm(kOpSub, rs_rDX, 2);
1117  LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
1118  StoreBaseIndexedDisp(rs_rBX, rs_rDX, 1, 0, rs_rCX, kSingle);
1119  OpUnconditionalBranch(beginLoop);
1120  LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1121  LIR* launchpad_branch  = OpUnconditionalBranch(nullptr);
1122  LIR *return_point = NewLIR0(kPseudoTargetLabel);
1123  jmp_to_ret->target = return_point;
1124  jmp_to_begin_loop->target = beginLoop;
1125  src_dst_same->target = check_failed;
1126  len_negative->target = check_failed;
1127  len_too_big->target = check_failed;
1128  src_null_branch->target = check_failed;
1129  if (srcPos_negative != nullptr)
1130    srcPos_negative ->target = check_failed;
1131  if (src_bad_len != nullptr)
1132    src_bad_len->target = check_failed;
1133  dst_null_branch->target = check_failed;
1134  if (dstPos_negative != nullptr)
1135    dstPos_negative->target = check_failed;
1136  if (dst_bad_len != nullptr)
1137    dst_bad_len->target = check_failed;
1138  AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1139  return true;
1140}
1141
1142
1143/*
1144 * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
1145 * otherwise bails to standard library code.
1146 */
1147bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
1148  ClobberCallerSave();
1149  LockCallTemps();  // Using fixed registers
1150
1151  // EAX: 16 bit character being searched.
1152  // ECX: count: number of words to be searched.
1153  // EDI: String being searched.
1154  // EDX: temporary during execution.
1155  // EBX or R11: temporary during execution (depending on mode).
1156
1157  RegLocation rl_obj = info->args[0];
1158  RegLocation rl_char = info->args[1];
1159  RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
1160  RegStorage tmpReg = cu_->target64 ? rs_r11 : rs_rBX;
1161
1162  uint32_t char_value =
1163    rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
1164
1165  if (char_value > 0xFFFF) {
1166    // We have to punt to the real String.indexOf.
1167    return false;
1168  }
1169
1170  // Okay, we are commited to inlining this.
1171  RegLocation rl_return = GetReturn(kCoreReg);
1172  RegLocation rl_dest = InlineTarget(info);
1173
1174  // Is the string non-NULL?
1175  LoadValueDirectFixed(rl_obj, rs_rDX);
1176  GenNullCheck(rs_rDX, info->opt_flags);
1177  info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
1178
1179  // Does the character fit in 16 bits?
1180  LIR* slowpath_branch = nullptr;
1181  if (rl_char.is_const) {
1182    // We need the value in EAX.
1183    LoadConstantNoClobber(rs_rAX, char_value);
1184  } else {
1185    // Character is not a constant; compare at runtime.
1186    LoadValueDirectFixed(rl_char, rs_rAX);
1187    slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
1188  }
1189
1190  // From here down, we know that we are looking for a char that fits in 16 bits.
1191  // Location of reference to data array within the String object.
1192  int value_offset = mirror::String::ValueOffset().Int32Value();
1193  // Location of count within the String object.
1194  int count_offset = mirror::String::CountOffset().Int32Value();
1195  // Starting offset within data array.
1196  int offset_offset = mirror::String::OffsetOffset().Int32Value();
1197  // Start of char data with array_.
1198  int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
1199
1200  // Character is in EAX.
1201  // Object pointer is in EDX.
1202
1203  // We need to preserve EDI, but have no spare registers, so push it on the stack.
1204  // We have to remember that all stack addresses after this are offset by sizeof(EDI).
1205  NewLIR1(kX86Push32R, rs_rDI.GetReg());
1206
1207  // Compute the number of words to search in to rCX.
1208  Load32Disp(rs_rDX, count_offset, rs_rCX);
1209  LIR *length_compare = nullptr;
1210  int start_value = 0;
1211  bool is_index_on_stack = false;
1212  if (zero_based) {
1213    // We have to handle an empty string.  Use special instruction JECXZ.
1214    length_compare = NewLIR0(kX86Jecxz8);
1215  } else {
1216    rl_start = info->args[2];
1217    // We have to offset by the start index.
1218    if (rl_start.is_const) {
1219      start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
1220      start_value = std::max(start_value, 0);
1221
1222      // Is the start > count?
1223      length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
1224
1225      if (start_value != 0) {
1226        OpRegImm(kOpSub, rs_rCX, start_value);
1227      }
1228    } else {
1229      // Runtime start index.
1230      rl_start = UpdateLocTyped(rl_start, kCoreReg);
1231      if (rl_start.location == kLocPhysReg) {
1232        // Handle "start index < 0" case.
1233        OpRegReg(kOpXor, tmpReg, tmpReg);
1234        OpRegReg(kOpCmp, rl_start.reg, tmpReg);
1235        OpCondRegReg(kOpCmov, kCondLt, rl_start.reg, tmpReg);
1236
1237        // The length of the string should be greater than the start index.
1238        length_compare = OpCmpBranch(kCondLe, rs_rCX, rl_start.reg, nullptr);
1239        OpRegReg(kOpSub, rs_rCX, rl_start.reg);
1240        if (rl_start.reg == rs_rDI) {
1241          // The special case. We will use EDI further, so lets put start index to stack.
1242          NewLIR1(kX86Push32R, rs_rDI.GetReg());
1243          is_index_on_stack = true;
1244        }
1245      } else {
1246        // Load the start index from stack, remembering that we pushed EDI.
1247        int displacement = SRegOffset(rl_start.s_reg_low) + (cu_->target64 ? 2 : 1) * sizeof(uint32_t);
1248        {
1249          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1250          Load32Disp(rs_rX86_SP, displacement, tmpReg);
1251        }
1252        OpRegReg(kOpXor, rs_rDI, rs_rDI);
1253        OpRegReg(kOpCmp, tmpReg, rs_rDI);
1254        OpCondRegReg(kOpCmov, kCondLt, tmpReg, rs_rDI);
1255
1256        length_compare = OpCmpBranch(kCondLe, rs_rCX, tmpReg, nullptr);
1257        OpRegReg(kOpSub, rs_rCX, tmpReg);
1258        // Put the start index to stack.
1259        NewLIR1(kX86Push32R, tmpReg.GetReg());
1260        is_index_on_stack = true;
1261      }
1262    }
1263  }
1264  DCHECK(length_compare != nullptr);
1265
1266  // ECX now contains the count in words to be searched.
1267
1268  // Load the address of the string into R11 or EBX (depending on mode).
1269  // The string starts at VALUE(String) + 2 * OFFSET(String) + DATA_OFFSET.
1270  Load32Disp(rs_rDX, value_offset, rs_rDI);
1271  Load32Disp(rs_rDX, offset_offset, tmpReg);
1272  OpLea(tmpReg, rs_rDI, tmpReg, 1, data_offset);
1273
1274  // Now compute into EDI where the search will start.
1275  if (zero_based || rl_start.is_const) {
1276    if (start_value == 0) {
1277      OpRegCopy(rs_rDI, tmpReg);
1278    } else {
1279      NewLIR3(kX86Lea32RM, rs_rDI.GetReg(), tmpReg.GetReg(), 2 * start_value);
1280    }
1281  } else {
1282    if (is_index_on_stack == true) {
1283      // Load the start index from stack.
1284      NewLIR1(kX86Pop32R, rs_rDX.GetReg());
1285      OpLea(rs_rDI, tmpReg, rs_rDX, 1, 0);
1286    } else {
1287      OpLea(rs_rDI, tmpReg, rl_start.reg, 1, 0);
1288    }
1289  }
1290
1291  // EDI now contains the start of the string to be searched.
1292  // We are all prepared to do the search for the character.
1293  NewLIR0(kX86RepneScasw);
1294
1295  // Did we find a match?
1296  LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
1297
1298  // yes, we matched.  Compute the index of the result.
1299  // index = ((curr_ptr - orig_ptr) / 2) - 1.
1300  OpRegReg(kOpSub, rs_rDI, tmpReg);
1301  OpRegImm(kOpAsr, rs_rDI, 1);
1302  NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_rDI.GetReg(), -1);
1303  LIR *all_done = NewLIR1(kX86Jmp8, 0);
1304
1305  // Failed to match; return -1.
1306  LIR *not_found = NewLIR0(kPseudoTargetLabel);
1307  length_compare->target = not_found;
1308  failed_branch->target = not_found;
1309  LoadConstantNoClobber(rl_return.reg, -1);
1310
1311  // And join up at the end.
1312  all_done->target = NewLIR0(kPseudoTargetLabel);
1313  // Restore EDI from the stack.
1314  NewLIR1(kX86Pop32R, rs_rDI.GetReg());
1315
1316  // Out of line code returns here.
1317  if (slowpath_branch != nullptr) {
1318    LIR *return_point = NewLIR0(kPseudoTargetLabel);
1319    AddIntrinsicSlowPath(info, slowpath_branch, return_point);
1320  }
1321
1322  StoreValue(rl_dest, rl_return);
1323  return true;
1324}
1325
1326/*
1327 * @brief Enter an 'advance LOC' into the FDE buffer
1328 * @param buf FDE buffer.
1329 * @param increment Amount by which to increase the current location.
1330 */
1331static void AdvanceLoc(std::vector<uint8_t>&buf, uint32_t increment) {
1332  if (increment < 64) {
1333    // Encoding in opcode.
1334    buf.push_back(0x1 << 6 | increment);
1335  } else if (increment < 256) {
1336    // Single byte delta.
1337    buf.push_back(0x02);
1338    buf.push_back(increment);
1339  } else if (increment < 256 * 256) {
1340    // Two byte delta.
1341    buf.push_back(0x03);
1342    buf.push_back(increment & 0xff);
1343    buf.push_back((increment >> 8) & 0xff);
1344  } else {
1345    // Four byte delta.
1346    buf.push_back(0x04);
1347    PushWord(buf, increment);
1348  }
1349}
1350
1351
1352std::vector<uint8_t>* X86CFIInitialization() {
1353  return X86Mir2Lir::ReturnCommonCallFrameInformation();
1354}
1355
1356std::vector<uint8_t>* X86Mir2Lir::ReturnCommonCallFrameInformation() {
1357  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1358
1359  // Length of the CIE (except for this field).
1360  PushWord(*cfi_info, 16);
1361
1362  // CIE id.
1363  PushWord(*cfi_info, 0xFFFFFFFFU);
1364
1365  // Version: 3.
1366  cfi_info->push_back(0x03);
1367
1368  // Augmentation: empty string.
1369  cfi_info->push_back(0x0);
1370
1371  // Code alignment: 1.
1372  cfi_info->push_back(0x01);
1373
1374  // Data alignment: -4.
1375  cfi_info->push_back(0x7C);
1376
1377  // Return address register (R8).
1378  cfi_info->push_back(0x08);
1379
1380  // Initial return PC is 4(ESP): DW_CFA_def_cfa R4 4.
1381  cfi_info->push_back(0x0C);
1382  cfi_info->push_back(0x04);
1383  cfi_info->push_back(0x04);
1384
1385  // Return address location: 0(SP): DW_CFA_offset R8 1 (* -4);.
1386  cfi_info->push_back(0x2 << 6 | 0x08);
1387  cfi_info->push_back(0x01);
1388
1389  // And 2 Noops to align to 4 byte boundary.
1390  cfi_info->push_back(0x0);
1391  cfi_info->push_back(0x0);
1392
1393  DCHECK_EQ(cfi_info->size() & 3, 0U);
1394  return cfi_info;
1395}
1396
1397static void EncodeUnsignedLeb128(std::vector<uint8_t>& buf, uint32_t value) {
1398  uint8_t buffer[12];
1399  uint8_t *ptr = EncodeUnsignedLeb128(buffer, value);
1400  for (uint8_t *p = buffer; p < ptr; p++) {
1401    buf.push_back(*p);
1402  }
1403}
1404
1405std::vector<uint8_t>* X86Mir2Lir::ReturnCallFrameInformation() {
1406  std::vector<uint8_t>*cfi_info = new std::vector<uint8_t>;
1407
1408  // Generate the FDE for the method.
1409  DCHECK_NE(data_offset_, 0U);
1410
1411  // Length (will be filled in later in this routine).
1412  PushWord(*cfi_info, 0);
1413
1414  // CIE_pointer (can be filled in by linker); might be left at 0 if there is only
1415  // one CIE for the whole debug_frame section.
1416  PushWord(*cfi_info, 0);
1417
1418  // 'initial_location' (filled in by linker).
1419  PushWord(*cfi_info, 0);
1420
1421  // 'address_range' (number of bytes in the method).
1422  PushWord(*cfi_info, data_offset_);
1423
1424  // The instructions in the FDE.
1425  if (stack_decrement_ != nullptr) {
1426    // Advance LOC to just past the stack decrement.
1427    uint32_t pc = NEXT_LIR(stack_decrement_)->offset;
1428    AdvanceLoc(*cfi_info, pc);
1429
1430    // Now update the offset to the call frame: DW_CFA_def_cfa_offset frame_size.
1431    cfi_info->push_back(0x0e);
1432    EncodeUnsignedLeb128(*cfi_info, frame_size_);
1433
1434    // We continue with that stack until the epilogue.
1435    if (stack_increment_ != nullptr) {
1436      uint32_t new_pc = NEXT_LIR(stack_increment_)->offset;
1437      AdvanceLoc(*cfi_info, new_pc - pc);
1438
1439      // We probably have code snippets after the epilogue, so save the
1440      // current state: DW_CFA_remember_state.
1441      cfi_info->push_back(0x0a);
1442
1443      // We have now popped the stack: DW_CFA_def_cfa_offset 4.  There is only the return
1444      // PC on the stack now.
1445      cfi_info->push_back(0x0e);
1446      EncodeUnsignedLeb128(*cfi_info, 4);
1447
1448      // Everything after that is the same as before the epilogue.
1449      // Stack bump was followed by RET instruction.
1450      LIR *post_ret_insn = NEXT_LIR(NEXT_LIR(stack_increment_));
1451      if (post_ret_insn != nullptr) {
1452        pc = new_pc;
1453        new_pc = post_ret_insn->offset;
1454        AdvanceLoc(*cfi_info, new_pc - pc);
1455        // Restore the state: DW_CFA_restore_state.
1456        cfi_info->push_back(0x0b);
1457      }
1458    }
1459  }
1460
1461  // Padding to a multiple of 4
1462  while ((cfi_info->size() & 3) != 0) {
1463    // DW_CFA_nop is encoded as 0.
1464    cfi_info->push_back(0);
1465  }
1466
1467  // Set the length of the FDE inside the generated bytes.
1468  uint32_t length = cfi_info->size() - 4;
1469  (*cfi_info)[0] = length;
1470  (*cfi_info)[1] = length >> 8;
1471  (*cfi_info)[2] = length >> 16;
1472  (*cfi_info)[3] = length >> 24;
1473  return cfi_info;
1474}
1475
1476void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1477  switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
1478    case kMirOpConstVector:
1479      GenConst128(bb, mir);
1480      break;
1481    case kMirOpMoveVector:
1482      GenMoveVector(bb, mir);
1483      break;
1484    case kMirOpPackedMultiply:
1485      GenMultiplyVector(bb, mir);
1486      break;
1487    case kMirOpPackedAddition:
1488      GenAddVector(bb, mir);
1489      break;
1490    case kMirOpPackedSubtract:
1491      GenSubtractVector(bb, mir);
1492      break;
1493    case kMirOpPackedShiftLeft:
1494      GenShiftLeftVector(bb, mir);
1495      break;
1496    case kMirOpPackedSignedShiftRight:
1497      GenSignedShiftRightVector(bb, mir);
1498      break;
1499    case kMirOpPackedUnsignedShiftRight:
1500      GenUnsignedShiftRightVector(bb, mir);
1501      break;
1502    case kMirOpPackedAnd:
1503      GenAndVector(bb, mir);
1504      break;
1505    case kMirOpPackedOr:
1506      GenOrVector(bb, mir);
1507      break;
1508    case kMirOpPackedXor:
1509      GenXorVector(bb, mir);
1510      break;
1511    case kMirOpPackedAddReduce:
1512      GenAddReduceVector(bb, mir);
1513      break;
1514    case kMirOpPackedReduce:
1515      GenReduceVector(bb, mir);
1516      break;
1517    case kMirOpPackedSet:
1518      GenSetVector(bb, mir);
1519      break;
1520    default:
1521      break;
1522  }
1523}
1524
1525void X86Mir2Lir::GenConst128(BasicBlock* bb, MIR* mir) {
1526  int type_size = mir->dalvikInsn.vA;
1527  // We support 128 bit vectors.
1528  DCHECK_EQ(type_size & 0xFFFF, 128);
1529  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1530  uint32_t *args = mir->dalvikInsn.arg;
1531  int reg = rs_dest.GetReg();
1532  // Check for all 0 case.
1533  if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
1534    NewLIR2(kX86XorpsRR, reg, reg);
1535    return;
1536  }
1537  // Okay, load it from the constant vector area.
1538  LIR *data_target = ScanVectorLiteral(mir);
1539  if (data_target == nullptr) {
1540    data_target = AddVectorLiteral(mir);
1541  }
1542
1543  // Address the start of the method.
1544  RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
1545  if (rl_method.wide) {
1546    rl_method = LoadValueWide(rl_method, kCoreReg);
1547  } else {
1548    rl_method = LoadValue(rl_method, kCoreReg);
1549  }
1550
1551  // Load the proper value from the literal area.
1552  // We don't know the proper offset for the value, so pick one that will force
1553  // 4 byte offset.  We will fix this up in the assembler later to have the right
1554  // value.
1555  ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
1556  LIR *load = NewLIR3(kX86Mova128RM, reg, rl_method.reg.GetReg(),  256 /* bogus */);
1557  load->flags.fixup = kFixupLoad;
1558  load->target = data_target;
1559}
1560
1561void X86Mir2Lir::GenMoveVector(BasicBlock *bb, MIR *mir) {
1562  // We only support 128 bit registers.
1563  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1564  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1565  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vC);
1566  NewLIR2(kX86Mova128RR, rs_dest.GetReg(), rs_src.GetReg());
1567}
1568
1569void X86Mir2Lir::GenMultiplyVector(BasicBlock *bb, MIR *mir) {
1570  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1571  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1572  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1573  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1574  int opcode = 0;
1575  switch (opsize) {
1576    case k32:
1577      opcode = kX86PmulldRR;
1578      break;
1579    case kSignedHalf:
1580      opcode = kX86PmullwRR;
1581      break;
1582    case kSingle:
1583      opcode = kX86MulpsRR;
1584      break;
1585    case kDouble:
1586      opcode = kX86MulpdRR;
1587      break;
1588    default:
1589      LOG(FATAL) << "Unsupported vector multiply " << opsize;
1590      break;
1591  }
1592  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1593}
1594
1595void X86Mir2Lir::GenAddVector(BasicBlock *bb, MIR *mir) {
1596  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1597  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1598  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1599  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1600  int opcode = 0;
1601  switch (opsize) {
1602    case k32:
1603      opcode = kX86PadddRR;
1604      break;
1605    case kSignedHalf:
1606    case kUnsignedHalf:
1607      opcode = kX86PaddwRR;
1608      break;
1609    case kUnsignedByte:
1610    case kSignedByte:
1611      opcode = kX86PaddbRR;
1612      break;
1613    case kSingle:
1614      opcode = kX86AddpsRR;
1615      break;
1616    case kDouble:
1617      opcode = kX86AddpdRR;
1618      break;
1619    default:
1620      LOG(FATAL) << "Unsupported vector addition " << opsize;
1621      break;
1622  }
1623  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1624}
1625
1626void X86Mir2Lir::GenSubtractVector(BasicBlock *bb, MIR *mir) {
1627  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1628  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1629  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1630  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1631  int opcode = 0;
1632  switch (opsize) {
1633    case k32:
1634      opcode = kX86PsubdRR;
1635      break;
1636    case kSignedHalf:
1637    case kUnsignedHalf:
1638      opcode = kX86PsubwRR;
1639      break;
1640    case kUnsignedByte:
1641    case kSignedByte:
1642      opcode = kX86PsubbRR;
1643      break;
1644    case kSingle:
1645      opcode = kX86SubpsRR;
1646      break;
1647    case kDouble:
1648      opcode = kX86SubpdRR;
1649      break;
1650    default:
1651      LOG(FATAL) << "Unsupported vector subtraction " << opsize;
1652      break;
1653  }
1654  NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
1655}
1656
1657void X86Mir2Lir::GenShiftLeftVector(BasicBlock *bb, MIR *mir) {
1658  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1659  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1660  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1661  int imm = mir->dalvikInsn.vC;
1662  int opcode = 0;
1663  switch (opsize) {
1664    case k32:
1665      opcode = kX86PslldRI;
1666      break;
1667    case k64:
1668      opcode = kX86PsllqRI;
1669      break;
1670    case kSignedHalf:
1671    case kUnsignedHalf:
1672      opcode = kX86PsllwRI;
1673      break;
1674    default:
1675      LOG(FATAL) << "Unsupported vector shift left " << opsize;
1676      break;
1677  }
1678  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1679}
1680
1681void X86Mir2Lir::GenSignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1682  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1683  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1684  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1685  int imm = mir->dalvikInsn.vC;
1686  int opcode = 0;
1687  switch (opsize) {
1688    case k32:
1689      opcode = kX86PsradRI;
1690      break;
1691    case kSignedHalf:
1692    case kUnsignedHalf:
1693      opcode = kX86PsrawRI;
1694      break;
1695    default:
1696      LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
1697      break;
1698  }
1699  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1700}
1701
1702void X86Mir2Lir::GenUnsignedShiftRightVector(BasicBlock *bb, MIR *mir) {
1703  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1704  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1705  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1706  int imm = mir->dalvikInsn.vC;
1707  int opcode = 0;
1708  switch (opsize) {
1709    case k32:
1710      opcode = kX86PsrldRI;
1711      break;
1712    case k64:
1713      opcode = kX86PsrlqRI;
1714      break;
1715    case kSignedHalf:
1716    case kUnsignedHalf:
1717      opcode = kX86PsrlwRI;
1718      break;
1719    default:
1720      LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
1721      break;
1722  }
1723  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1724}
1725
1726void X86Mir2Lir::GenAndVector(BasicBlock *bb, MIR *mir) {
1727  // We only support 128 bit registers.
1728  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1729  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1730  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1731  NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1732}
1733
1734void X86Mir2Lir::GenOrVector(BasicBlock *bb, MIR *mir) {
1735  // We only support 128 bit registers.
1736  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1737  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1738  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1739  NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1740}
1741
1742void X86Mir2Lir::GenXorVector(BasicBlock *bb, MIR *mir) {
1743  // We only support 128 bit registers.
1744  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1745  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1746  RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vC);
1747  NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
1748}
1749
1750void X86Mir2Lir::GenAddReduceVector(BasicBlock *bb, MIR *mir) {
1751  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1752  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1753  RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vB);
1754  int imm = mir->dalvikInsn.vC;
1755  int opcode = 0;
1756  switch (opsize) {
1757    case k32:
1758      opcode = kX86PhadddRR;
1759      break;
1760    case kSignedHalf:
1761    case kUnsignedHalf:
1762      opcode = kX86PhaddwRR;
1763      break;
1764    default:
1765      LOG(FATAL) << "Unsupported vector add reduce " << opsize;
1766      break;
1767  }
1768  NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
1769}
1770
1771void X86Mir2Lir::GenReduceVector(BasicBlock *bb, MIR *mir) {
1772  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1773  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1774  RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
1775  int index = mir->dalvikInsn.arg[0];
1776  int opcode = 0;
1777  switch (opsize) {
1778    case k32:
1779      opcode = kX86PextrdRRI;
1780      break;
1781    case kSignedHalf:
1782    case kUnsignedHalf:
1783      opcode = kX86PextrwRRI;
1784      break;
1785    case kUnsignedByte:
1786    case kSignedByte:
1787      opcode = kX86PextrbRRI;
1788      break;
1789    default:
1790      LOG(FATAL) << "Unsupported vector reduce " << opsize;
1791      break;
1792  }
1793  // We need to extract to a GPR.
1794  RegStorage temp = AllocTemp();
1795  NewLIR3(opcode, temp.GetReg(), rs_src.GetReg(), index);
1796
1797  // Assume that the destination VR is in the def for the mir.
1798  RegLocation rl_dest = mir_graph_->GetDest(mir);
1799  RegLocation rl_temp =
1800    {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, temp, INVALID_SREG, INVALID_SREG};
1801  StoreValue(rl_dest, rl_temp);
1802}
1803
1804void X86Mir2Lir::GenSetVector(BasicBlock *bb, MIR *mir) {
1805  DCHECK_EQ(mir->dalvikInsn.vA & 0xFFFF, 128U);
1806  OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vA >> 16);
1807  RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vB);
1808  int op_low = 0, op_high = 0;
1809  switch (opsize) {
1810    case k32:
1811      op_low = kX86PshufdRRI;
1812      break;
1813    case kSignedHalf:
1814    case kUnsignedHalf:
1815      // Handles low quadword.
1816      op_low = kX86PshuflwRRI;
1817      // Handles upper quadword.
1818      op_high = kX86PshufdRRI;
1819      break;
1820    default:
1821      LOG(FATAL) << "Unsupported vector set " << opsize;
1822      break;
1823  }
1824
1825  // Load the value from the VR into a GPR.
1826  RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
1827  rl_src = LoadValue(rl_src, kCoreReg);
1828
1829  // Load the value into the XMM register.
1830  NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rl_src.reg.GetReg());
1831
1832  // Now shuffle the value across the destination.
1833  NewLIR3(op_low, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1834
1835  // And then repeat as needed.
1836  if (op_high != 0) {
1837    NewLIR3(op_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
1838  }
1839}
1840
1841
1842LIR *X86Mir2Lir::ScanVectorLiteral(MIR *mir) {
1843  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1844  for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
1845    if (args[0] == p->operands[0] && args[1] == p->operands[1] &&
1846        args[2] == p->operands[2] && args[3] == p->operands[3]) {
1847      return p;
1848    }
1849  }
1850  return nullptr;
1851}
1852
1853LIR *X86Mir2Lir::AddVectorLiteral(MIR *mir) {
1854  LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
1855  int *args = reinterpret_cast<int*>(mir->dalvikInsn.arg);
1856  new_value->operands[0] = args[0];
1857  new_value->operands[1] = args[1];
1858  new_value->operands[2] = args[2];
1859  new_value->operands[3] = args[3];
1860  new_value->next = const_vectors_;
1861  if (const_vectors_ == nullptr) {
1862    estimated_native_code_size_ += 12;  // Amount needed to align to 16 byte boundary.
1863  }
1864  estimated_native_code_size_ += 16;  // Space for one vector.
1865  const_vectors_ = new_value;
1866  return new_value;
1867}
1868
1869// ------------ ABI support: mapping of args to physical registers -------------
1870RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(bool is_double_or_float, bool is_wide) {
1871  const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
1872  const int coreArgMappingToPhysicalRegSize = sizeof(coreArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
1873  const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
1874                                                  kFArg4, kFArg5, kFArg6, kFArg7};
1875  const int fpArgMappingToPhysicalRegSize = sizeof(fpArgMappingToPhysicalReg) / sizeof(SpecialTargetRegister);
1876
1877  if (is_double_or_float) {
1878    if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
1879      return ml_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++], is_wide);
1880    }
1881  } else {
1882    if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
1883      return ml_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], is_wide);
1884    }
1885  }
1886  return RegStorage::InvalidReg();
1887}
1888
1889RegStorage X86Mir2Lir::InToRegStorageMapping::Get(int in_position) {
1890  DCHECK(IsInitialized());
1891  auto res = mapping_.find(in_position);
1892  return res != mapping_.end() ? res->second : RegStorage::InvalidReg();
1893}
1894
1895void X86Mir2Lir::InToRegStorageMapping::Initialize(RegLocation* arg_locs, int count, InToRegStorageMapper* mapper) {
1896  DCHECK(mapper != nullptr);
1897  max_mapped_in_ = -1;
1898  is_there_stack_mapped_ = false;
1899  for (int in_position = 0; in_position < count; in_position++) {
1900     RegStorage reg = mapper->GetNextReg(arg_locs[in_position].fp, arg_locs[in_position].wide);
1901     if (reg.Valid()) {
1902       mapping_[in_position] = reg;
1903       max_mapped_in_ = std::max(max_mapped_in_, in_position);
1904       if (reg.Is64BitSolo()) {
1905         // We covered 2 args, so skip the next one
1906         in_position++;
1907       }
1908     } else {
1909       is_there_stack_mapped_ = true;
1910     }
1911  }
1912  initialized_ = true;
1913}
1914
1915RegStorage X86Mir2Lir::GetArgMappingToPhysicalReg(int arg_num) {
1916  if (!cu_->target64) {
1917    return GetCoreArgMappingToPhysicalReg(arg_num);
1918  }
1919
1920  if (!in_to_reg_storage_mapping_.IsInitialized()) {
1921    int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1922    RegLocation* arg_locs = &mir_graph_->reg_location_[start_vreg];
1923
1924    InToRegStorageX86_64Mapper mapper(this);
1925    in_to_reg_storage_mapping_.Initialize(arg_locs, cu_->num_ins, &mapper);
1926  }
1927  return in_to_reg_storage_mapping_.Get(arg_num);
1928}
1929
1930RegStorage X86Mir2Lir::GetCoreArgMappingToPhysicalReg(int core_arg_num) {
1931  // For the 32-bit internal ABI, the first 3 arguments are passed in registers.
1932  // Not used for 64-bit, TODO: Move X86_32 to the same framework
1933  switch (core_arg_num) {
1934    case 0:
1935      return rs_rX86_ARG1;
1936    case 1:
1937      return rs_rX86_ARG2;
1938    case 2:
1939      return rs_rX86_ARG3;
1940    default:
1941      return RegStorage::InvalidReg();
1942  }
1943}
1944
1945// ---------End of ABI support: mapping of args to physical registers -------------
1946
1947/*
1948 * If there are any ins passed in registers that have not been promoted
1949 * to a callee-save register, flush them to the frame.  Perform initial
1950 * assignment of promoted arguments.
1951 *
1952 * ArgLocs is an array of location records describing the incoming arguments
1953 * with one location record per word of argument.
1954 */
1955void X86Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
1956  if (!cu_->target64) return Mir2Lir::FlushIns(ArgLocs, rl_method);
1957  /*
1958   * Dummy up a RegLocation for the incoming Method*
1959   * It will attempt to keep kArg0 live (or copy it to home location
1960   * if promoted).
1961   */
1962
1963  RegLocation rl_src = rl_method;
1964  rl_src.location = kLocPhysReg;
1965  rl_src.reg = TargetRefReg(kArg0);
1966  rl_src.home = false;
1967  MarkLive(rl_src);
1968  StoreValue(rl_method, rl_src);
1969  // If Method* has been promoted, explicitly flush
1970  if (rl_method.location == kLocPhysReg) {
1971    StoreRefDisp(rs_rX86_SP, 0, As32BitReg(TargetRefReg(kArg0)), kNotVolatile);
1972  }
1973
1974  if (cu_->num_ins == 0) {
1975    return;
1976  }
1977
1978  int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
1979  /*
1980   * Copy incoming arguments to their proper home locations.
1981   * NOTE: an older version of dx had an issue in which
1982   * it would reuse static method argument registers.
1983   * This could result in the same Dalvik virtual register
1984   * being promoted to both core and fp regs. To account for this,
1985   * we only copy to the corresponding promoted physical register
1986   * if it matches the type of the SSA name for the incoming
1987   * argument.  It is also possible that long and double arguments
1988   * end up half-promoted.  In those cases, we must flush the promoted
1989   * half to memory as well.
1990   */
1991  ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
1992  for (int i = 0; i < cu_->num_ins; i++) {
1993    // get reg corresponding to input
1994    RegStorage reg = GetArgMappingToPhysicalReg(i);
1995
1996    RegLocation* t_loc = &ArgLocs[i];
1997    if (reg.Valid()) {
1998      // If arriving in register.
1999
2000      // We have already updated the arg location with promoted info
2001      // so we can be based on it.
2002      if (t_loc->location == kLocPhysReg) {
2003        // Just copy it.
2004        OpRegCopy(t_loc->reg, reg);
2005      } else {
2006        // Needs flush.
2007        if (t_loc->ref) {
2008          StoreRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, kNotVolatile);
2009        } else {
2010          StoreBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), reg, t_loc->wide ? k64 : k32,
2011                        kNotVolatile);
2012        }
2013      }
2014    } else {
2015      // If arriving in frame & promoted.
2016      if (t_loc->location == kLocPhysReg) {
2017        if (t_loc->ref) {
2018          LoadRefDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg, kNotVolatile);
2019        } else {
2020          LoadBaseDisp(rs_rX86_SP, SRegOffset(start_vreg + i), t_loc->reg,
2021                       t_loc->wide ? k64 : k32, kNotVolatile);
2022        }
2023      }
2024    }
2025    if (t_loc->wide) {
2026      // Increment i to skip the next one.
2027      i++;
2028    }
2029  }
2030}
2031
2032/*
2033 * Load up to 5 arguments, the first three of which will be in
2034 * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
2035 * and as part of the load sequence, it must be replaced with
2036 * the target method pointer.  Note, this may also be called
2037 * for "range" variants if the number of arguments is 5 or fewer.
2038 */
2039int X86Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
2040                                  int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
2041                                  const MethodReference& target_method,
2042                                  uint32_t vtable_idx, uintptr_t direct_code,
2043                                  uintptr_t direct_method, InvokeType type, bool skip_this) {
2044  if (!cu_->target64) {
2045    return Mir2Lir::GenDalvikArgsNoRange(info,
2046                                  call_state, pcrLabel, next_call_insn,
2047                                  target_method,
2048                                  vtable_idx, direct_code,
2049                                  direct_method, type, skip_this);
2050  }
2051  return GenDalvikArgsRange(info,
2052                       call_state, pcrLabel, next_call_insn,
2053                       target_method,
2054                       vtable_idx, direct_code,
2055                       direct_method, type, skip_this);
2056}
2057
2058/*
2059 * May have 0+ arguments (also used for jumbo).  Note that
2060 * source virtual registers may be in physical registers, so may
2061 * need to be flushed to home location before copying.  This
2062 * applies to arg3 and above (see below).
2063 *
2064 * Two general strategies:
2065 *    If < 20 arguments
2066 *       Pass args 3-18 using vldm/vstm block copy
2067 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2068 *    If 20+ arguments
2069 *       Pass args arg19+ using memcpy block copy
2070 *       Pass arg0, arg1 & arg2 in kArg1-kArg3
2071 *
2072 */
2073int X86Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
2074                                LIR** pcrLabel, NextCallInsn next_call_insn,
2075                                const MethodReference& target_method,
2076                                uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
2077                                InvokeType type, bool skip_this) {
2078  if (!cu_->target64) {
2079    return Mir2Lir::GenDalvikArgsRange(info, call_state,
2080                                pcrLabel, next_call_insn,
2081                                target_method,
2082                                vtable_idx, direct_code, direct_method,
2083                                type, skip_this);
2084  }
2085
2086  /* If no arguments, just return */
2087  if (info->num_arg_words == 0)
2088    return call_state;
2089
2090  const int start_index = skip_this ? 1 : 0;
2091
2092  InToRegStorageX86_64Mapper mapper(this);
2093  InToRegStorageMapping in_to_reg_storage_mapping;
2094  in_to_reg_storage_mapping.Initialize(info->args, info->num_arg_words, &mapper);
2095  const int last_mapped_in = in_to_reg_storage_mapping.GetMaxMappedIn();
2096  const int size_of_the_last_mapped = last_mapped_in == -1 ? 1 :
2097          in_to_reg_storage_mapping.Get(last_mapped_in).Is64BitSolo() ? 2 : 1;
2098  int regs_left_to_pass_via_stack = info->num_arg_words - (last_mapped_in + size_of_the_last_mapped);
2099
2100  // Fisrt of all, check whether it make sense to use bulk copying
2101  // Optimization is aplicable only for range case
2102  // TODO: make a constant instead of 2
2103  if (info->is_range && regs_left_to_pass_via_stack >= 2) {
2104    // Scan the rest of the args - if in phys_reg flush to memory
2105    for (int next_arg = last_mapped_in + size_of_the_last_mapped; next_arg < info->num_arg_words;) {
2106      RegLocation loc = info->args[next_arg];
2107      if (loc.wide) {
2108        loc = UpdateLocWide(loc);
2109        if (loc.location == kLocPhysReg) {
2110          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2111          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
2112        }
2113        next_arg += 2;
2114      } else {
2115        loc = UpdateLoc(loc);
2116        if (loc.location == kLocPhysReg) {
2117          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2118          StoreBaseDisp(rs_rX86_SP, SRegOffset(loc.s_reg_low), loc.reg, k32, kNotVolatile);
2119        }
2120        next_arg++;
2121      }
2122    }
2123
2124    // Logic below assumes that Method pointer is at offset zero from SP.
2125    DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
2126
2127    // The rest can be copied together
2128    int start_offset = SRegOffset(info->args[last_mapped_in + size_of_the_last_mapped].s_reg_low);
2129    int outs_offset = StackVisitor::GetOutVROffset(last_mapped_in + size_of_the_last_mapped, cu_->instruction_set);
2130
2131    int current_src_offset = start_offset;
2132    int current_dest_offset = outs_offset;
2133
2134    // Only davik regs are accessed in this loop; no next_call_insn() calls.
2135    ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2136    while (regs_left_to_pass_via_stack > 0) {
2137      // This is based on the knowledge that the stack itself is 16-byte aligned.
2138      bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
2139      bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
2140      size_t bytes_to_move;
2141
2142      /*
2143       * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
2144       * a 128-bit move because we won't get the chance to try to aligned. If there are more than
2145       * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
2146       * We do this because we could potentially do a smaller move to align.
2147       */
2148      if (regs_left_to_pass_via_stack == 4 ||
2149          (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
2150        // Moving 128-bits via xmm register.
2151        bytes_to_move = sizeof(uint32_t) * 4;
2152
2153        // Allocate a free xmm temp. Since we are working through the calling sequence,
2154        // we expect to have an xmm temporary available.  AllocTempDouble will abort if
2155        // there are no free registers.
2156        RegStorage temp = AllocTempDouble();
2157
2158        LIR* ld1 = nullptr;
2159        LIR* ld2 = nullptr;
2160        LIR* st1 = nullptr;
2161        LIR* st2 = nullptr;
2162
2163        /*
2164         * The logic is similar for both loads and stores. If we have 16-byte alignment,
2165         * do an aligned move. If we have 8-byte alignment, then do the move in two
2166         * parts. This approach prevents possible cache line splits. Finally, fall back
2167         * to doing an unaligned move. In most cases we likely won't split the cache
2168         * line but we cannot prove it and thus take a conservative approach.
2169         */
2170        bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
2171        bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
2172
2173        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2174        if (src_is_16b_aligned) {
2175          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovA128FP);
2176        } else if (src_is_8b_aligned) {
2177          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovLo128FP);
2178          ld2 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset + (bytes_to_move >> 1),
2179                            kMovHi128FP);
2180        } else {
2181          ld1 = OpMovRegMem(temp, rs_rX86_SP, current_src_offset, kMovU128FP);
2182        }
2183
2184        if (dest_is_16b_aligned) {
2185          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovA128FP);
2186        } else if (dest_is_8b_aligned) {
2187          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovLo128FP);
2188          st2 = OpMovMemReg(rs_rX86_SP, current_dest_offset + (bytes_to_move >> 1),
2189                            temp, kMovHi128FP);
2190        } else {
2191          st1 = OpMovMemReg(rs_rX86_SP, current_dest_offset, temp, kMovU128FP);
2192        }
2193
2194        // TODO If we could keep track of aliasing information for memory accesses that are wider
2195        // than 64-bit, we wouldn't need to set up a barrier.
2196        if (ld1 != nullptr) {
2197          if (ld2 != nullptr) {
2198            // For 64-bit load we can actually set up the aliasing information.
2199            AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
2200            AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true, true);
2201          } else {
2202            // Set barrier for 128-bit load.
2203            ld1->u.m.def_mask = &kEncodeAll;
2204          }
2205        }
2206        if (st1 != nullptr) {
2207          if (st2 != nullptr) {
2208            // For 64-bit store we can actually set up the aliasing information.
2209            AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
2210            AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false, true);
2211          } else {
2212            // Set barrier for 128-bit store.
2213            st1->u.m.def_mask = &kEncodeAll;
2214          }
2215        }
2216
2217        // Free the temporary used for the data movement.
2218        FreeTemp(temp);
2219      } else {
2220        // Moving 32-bits via general purpose register.
2221        bytes_to_move = sizeof(uint32_t);
2222
2223        // Instead of allocating a new temp, simply reuse one of the registers being used
2224        // for argument passing.
2225        RegStorage temp = TargetReg(kArg3, false);
2226
2227        // Now load the argument VR and store to the outs.
2228        Load32Disp(rs_rX86_SP, current_src_offset, temp);
2229        Store32Disp(rs_rX86_SP, current_dest_offset, temp);
2230      }
2231
2232      current_src_offset += bytes_to_move;
2233      current_dest_offset += bytes_to_move;
2234      regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
2235    }
2236    DCHECK_EQ(regs_left_to_pass_via_stack, 0);
2237  }
2238
2239  // Now handle rest not registers if they are
2240  if (in_to_reg_storage_mapping.IsThereStackMapped()) {
2241    RegStorage regSingle = TargetReg(kArg2, false);
2242    RegStorage regWide = TargetReg(kArg3, true);
2243    for (int i = start_index;
2244         i < last_mapped_in + size_of_the_last_mapped + regs_left_to_pass_via_stack; i++) {
2245      RegLocation rl_arg = info->args[i];
2246      rl_arg = UpdateRawLoc(rl_arg);
2247      RegStorage reg = in_to_reg_storage_mapping.Get(i);
2248      if (!reg.Valid()) {
2249        int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
2250
2251        {
2252          ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
2253          if (rl_arg.wide) {
2254            if (rl_arg.location == kLocPhysReg) {
2255              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k64, kNotVolatile);
2256            } else {
2257              LoadValueDirectWideFixed(rl_arg, regWide);
2258              StoreBaseDisp(rs_rX86_SP, out_offset, regWide, k64, kNotVolatile);
2259            }
2260          } else {
2261            if (rl_arg.location == kLocPhysReg) {
2262              StoreBaseDisp(rs_rX86_SP, out_offset, rl_arg.reg, k32, kNotVolatile);
2263            } else {
2264              LoadValueDirectFixed(rl_arg, regSingle);
2265              StoreBaseDisp(rs_rX86_SP, out_offset, regSingle, k32, kNotVolatile);
2266            }
2267          }
2268        }
2269        call_state = next_call_insn(cu_, info, call_state, target_method,
2270                                    vtable_idx, direct_code, direct_method, type);
2271      }
2272      if (rl_arg.wide) {
2273        i++;
2274      }
2275    }
2276  }
2277
2278  // Finish with mapped registers
2279  for (int i = start_index; i <= last_mapped_in; i++) {
2280    RegLocation rl_arg = info->args[i];
2281    rl_arg = UpdateRawLoc(rl_arg);
2282    RegStorage reg = in_to_reg_storage_mapping.Get(i);
2283    if (reg.Valid()) {
2284      if (rl_arg.wide) {
2285        LoadValueDirectWideFixed(rl_arg, reg);
2286      } else {
2287        LoadValueDirectFixed(rl_arg, reg);
2288      }
2289      call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2290                               direct_code, direct_method, type);
2291    }
2292    if (rl_arg.wide) {
2293      i++;
2294    }
2295  }
2296
2297  call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
2298                           direct_code, direct_method, type);
2299  if (pcrLabel) {
2300    if (cu_->compiler_driver->GetCompilerOptions().GetExplicitNullChecks()) {
2301      *pcrLabel = GenExplicitNullCheck(TargetRefReg(kArg1), info->opt_flags);
2302    } else {
2303      *pcrLabel = nullptr;
2304      // In lieu of generating a check for kArg1 being null, we need to
2305      // perform a load when doing implicit checks.
2306      RegStorage tmp = AllocTemp();
2307      Load32Disp(TargetRefReg(kArg1), 0, tmp);
2308      MarkPossibleNullPointerException(info->opt_flags);
2309      FreeTemp(tmp);
2310    }
2311  }
2312  return call_state;
2313}
2314
2315}  // namespace art
2316