heap.cc revision 0c8c303c20cdaaf54d26e45cc17dc5afb820d8ef
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/allocator.h"
27#include "base/dumpable.h"
28#include "base/histogram-inl.h"
29#include "base/stl_util.h"
30#include "common_throws.h"
31#include "cutils/sched_policy.h"
32#include "debugger.h"
33#include "dex_file-inl.h"
34#include "gc/accounting/atomic_stack.h"
35#include "gc/accounting/card_table-inl.h"
36#include "gc/accounting/heap_bitmap-inl.h"
37#include "gc/accounting/mod_union_table.h"
38#include "gc/accounting/mod_union_table-inl.h"
39#include "gc/accounting/remembered_set.h"
40#include "gc/accounting/space_bitmap-inl.h"
41#include "gc/collector/concurrent_copying.h"
42#include "gc/collector/mark_compact.h"
43#include "gc/collector/mark_sweep-inl.h"
44#include "gc/collector/partial_mark_sweep.h"
45#include "gc/collector/semi_space.h"
46#include "gc/collector/sticky_mark_sweep.h"
47#include "gc/reference_processor.h"
48#include "gc/space/bump_pointer_space.h"
49#include "gc/space/dlmalloc_space-inl.h"
50#include "gc/space/image_space.h"
51#include "gc/space/large_object_space.h"
52#include "gc/space/rosalloc_space-inl.h"
53#include "gc/space/space-inl.h"
54#include "gc/space/zygote_space.h"
55#include "gc/task_processor.h"
56#include "entrypoints/quick/quick_alloc_entrypoints.h"
57#include "heap-inl.h"
58#include "image.h"
59#include "intern_table.h"
60#include "mirror/art_field-inl.h"
61#include "mirror/class-inl.h"
62#include "mirror/object.h"
63#include "mirror/object-inl.h"
64#include "mirror/object_array-inl.h"
65#include "mirror/reference-inl.h"
66#include "os.h"
67#include "reflection.h"
68#include "runtime.h"
69#include "ScopedLocalRef.h"
70#include "scoped_thread_state_change.h"
71#include "handle_scope-inl.h"
72#include "thread_list.h"
73#include "well_known_classes.h"
74
75namespace art {
76
77namespace gc {
78
79static constexpr size_t kCollectorTransitionStressIterations = 0;
80static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
81// Minimum amount of remaining bytes before a concurrent GC is triggered.
82static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
83static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
84// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
85// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
86// threads (lower pauses, use less memory bandwidth).
87static constexpr double kStickyGcThroughputAdjustment = 1.0;
88// Whether or not we compact the zygote in PreZygoteFork.
89static constexpr bool kCompactZygote = kMovingCollector;
90// How many reserve entries are at the end of the allocation stack, these are only needed if the
91// allocation stack overflows.
92static constexpr size_t kAllocationStackReserveSize = 1024;
93// Default mark stack size in bytes.
94static const size_t kDefaultMarkStackSize = 64 * KB;
95// Define space name.
96static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
97static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
98static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
99static const char* kNonMovingSpaceName = "non moving space";
100static const char* kZygoteSpaceName = "zygote space";
101static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
102static constexpr bool kGCALotMode = false;
103// GC alot mode uses a small allocation stack to stress test a lot of GC.
104static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
105    sizeof(mirror::HeapReference<mirror::Object>);
106// Verify objet has a small allocation stack size since searching the allocation stack is slow.
107static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
108    sizeof(mirror::HeapReference<mirror::Object>);
109static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
110    sizeof(mirror::HeapReference<mirror::Object>);
111
112Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
113           double target_utilization, double foreground_heap_growth_multiplier,
114           size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
115           const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
116           CollectorType background_collector_type,
117           space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
118           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
119           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
120           bool ignore_max_footprint, bool use_tlab,
121           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
122           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
123           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
124           uint64_t min_interval_homogeneous_space_compaction_by_oom)
125    : non_moving_space_(nullptr),
126      rosalloc_space_(nullptr),
127      dlmalloc_space_(nullptr),
128      main_space_(nullptr),
129      collector_type_(kCollectorTypeNone),
130      foreground_collector_type_(foreground_collector_type),
131      background_collector_type_(background_collector_type),
132      desired_collector_type_(foreground_collector_type_),
133      pending_task_lock_(nullptr),
134      parallel_gc_threads_(parallel_gc_threads),
135      conc_gc_threads_(conc_gc_threads),
136      low_memory_mode_(low_memory_mode),
137      long_pause_log_threshold_(long_pause_log_threshold),
138      long_gc_log_threshold_(long_gc_log_threshold),
139      ignore_max_footprint_(ignore_max_footprint),
140      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
141      zygote_space_(nullptr),
142      large_object_threshold_(large_object_threshold),
143      collector_type_running_(kCollectorTypeNone),
144      last_gc_type_(collector::kGcTypeNone),
145      next_gc_type_(collector::kGcTypePartial),
146      capacity_(capacity),
147      growth_limit_(growth_limit),
148      max_allowed_footprint_(initial_size),
149      native_footprint_gc_watermark_(initial_size),
150      native_need_to_run_finalization_(false),
151      // Initially assume we perceive jank in case the process state is never updated.
152      process_state_(kProcessStateJankPerceptible),
153      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
154      total_bytes_freed_ever_(0),
155      total_objects_freed_ever_(0),
156      num_bytes_allocated_(0),
157      native_bytes_allocated_(0),
158      verify_missing_card_marks_(false),
159      verify_system_weaks_(false),
160      verify_pre_gc_heap_(verify_pre_gc_heap),
161      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
162      verify_post_gc_heap_(verify_post_gc_heap),
163      verify_mod_union_table_(false),
164      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
165      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
166      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
167      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
168       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
169       * verification is enabled, we limit the size of allocation stacks to speed up their
170       * searching.
171       */
172      max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
173          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
174          kDefaultAllocationStackSize),
175      current_allocator_(kAllocatorTypeDlMalloc),
176      current_non_moving_allocator_(kAllocatorTypeNonMoving),
177      bump_pointer_space_(nullptr),
178      temp_space_(nullptr),
179      min_free_(min_free),
180      max_free_(max_free),
181      target_utilization_(target_utilization),
182      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
183      total_wait_time_(0),
184      total_allocation_time_(0),
185      verify_object_mode_(kVerifyObjectModeDisabled),
186      disable_moving_gc_count_(0),
187      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
188      use_tlab_(use_tlab),
189      main_space_backup_(nullptr),
190      min_interval_homogeneous_space_compaction_by_oom_(
191          min_interval_homogeneous_space_compaction_by_oom),
192      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
193      pending_collector_transition_(nullptr),
194      pending_heap_trim_(nullptr),
195      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
196  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
197    LOG(INFO) << "Heap() entering";
198  }
199  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
200  // entrypoints.
201  const bool is_zygote = Runtime::Current()->IsZygote();
202  if (!is_zygote) {
203    // Background compaction is currently not supported for command line runs.
204    if (background_collector_type_ != foreground_collector_type_) {
205      VLOG(heap) << "Disabling background compaction for non zygote";
206      background_collector_type_ = foreground_collector_type_;
207    }
208  }
209  ChangeCollector(desired_collector_type_);
210  live_bitmap_.reset(new accounting::HeapBitmap(this));
211  mark_bitmap_.reset(new accounting::HeapBitmap(this));
212  // Requested begin for the alloc space, to follow the mapped image and oat files
213  uint8_t* requested_alloc_space_begin = nullptr;
214  if (!image_file_name.empty()) {
215    std::string error_msg;
216    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
217                                                               image_instruction_set,
218                                                               &error_msg);
219    if (image_space != nullptr) {
220      AddSpace(image_space);
221      // Oat files referenced by image files immediately follow them in memory, ensure alloc space
222      // isn't going to get in the middle
223      uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
224      CHECK_GT(oat_file_end_addr, image_space->End());
225      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
226    } else {
227      LOG(WARNING) << "Could not create image space with image file '" << image_file_name << "'. "
228                   << "Attempting to fall back to imageless running. Error was: " << error_msg;
229    }
230  }
231  /*
232  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
233                                     +-  nonmoving space (non_moving_space_capacity)+-
234                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
235                                     +-????????????????????????????????????????????+-
236                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
237                                     +-main alloc space / bump space 1 (capacity_) +-
238                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
239                                     +-????????????????????????????????????????????+-
240                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
241                                     +-main alloc space2 / bump space 2 (capacity_)+-
242                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
243  */
244  // We don't have hspace compaction enabled with GSS.
245  if (foreground_collector_type_ == kCollectorTypeGSS) {
246    use_homogeneous_space_compaction_for_oom_ = false;
247  }
248  bool support_homogeneous_space_compaction =
249      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
250      use_homogeneous_space_compaction_for_oom_;
251  // We may use the same space the main space for the non moving space if we don't need to compact
252  // from the main space.
253  // This is not the case if we support homogeneous compaction or have a moving background
254  // collector type.
255  bool separate_non_moving_space = is_zygote ||
256      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
257      IsMovingGc(background_collector_type_);
258  if (foreground_collector_type == kCollectorTypeGSS) {
259    separate_non_moving_space = false;
260  }
261  std::unique_ptr<MemMap> main_mem_map_1;
262  std::unique_ptr<MemMap> main_mem_map_2;
263  uint8_t* request_begin = requested_alloc_space_begin;
264  if (request_begin != nullptr && separate_non_moving_space) {
265    request_begin += non_moving_space_capacity;
266  }
267  std::string error_str;
268  std::unique_ptr<MemMap> non_moving_space_mem_map;
269  if (separate_non_moving_space) {
270    // If we are the zygote, the non moving space becomes the zygote space when we run
271    // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
272    // rename the mem map later.
273    const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
274    // Reserve the non moving mem map before the other two since it needs to be at a specific
275    // address.
276    non_moving_space_mem_map.reset(
277        MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
278                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, &error_str));
279    CHECK(non_moving_space_mem_map != nullptr) << error_str;
280    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
281    request_begin = reinterpret_cast<uint8_t*>(300 * MB);
282  }
283  // Attempt to create 2 mem maps at or after the requested begin.
284  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
285                                                    &error_str));
286  CHECK(main_mem_map_1.get() != nullptr) << error_str;
287  if (support_homogeneous_space_compaction ||
288      background_collector_type_ == kCollectorTypeSS ||
289      foreground_collector_type_ == kCollectorTypeSS) {
290    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
291                                                      capacity_, &error_str));
292    CHECK(main_mem_map_2.get() != nullptr) << error_str;
293  }
294  // Create the non moving space first so that bitmaps don't take up the address range.
295  if (separate_non_moving_space) {
296    // Non moving space is always dlmalloc since we currently don't have support for multiple
297    // active rosalloc spaces.
298    const size_t size = non_moving_space_mem_map->Size();
299    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
300        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
301        initial_size, size, size, false);
302    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
303    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
304        << requested_alloc_space_begin;
305    AddSpace(non_moving_space_);
306  }
307  // Create other spaces based on whether or not we have a moving GC.
308  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
309    // Create bump pointer spaces.
310    // We only to create the bump pointer if the foreground collector is a compacting GC.
311    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
312    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
313                                                                    main_mem_map_1.release());
314    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
315    AddSpace(bump_pointer_space_);
316    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
317                                                            main_mem_map_2.release());
318    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
319    AddSpace(temp_space_);
320    CHECK(separate_non_moving_space);
321  } else {
322    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
323    CHECK(main_space_ != nullptr);
324    AddSpace(main_space_);
325    if (!separate_non_moving_space) {
326      non_moving_space_ = main_space_;
327      CHECK(!non_moving_space_->CanMoveObjects());
328    }
329    if (foreground_collector_type_ == kCollectorTypeGSS) {
330      CHECK_EQ(foreground_collector_type_, background_collector_type_);
331      // Create bump pointer spaces instead of a backup space.
332      main_mem_map_2.release();
333      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
334                                                            kGSSBumpPointerSpaceCapacity, nullptr);
335      CHECK(bump_pointer_space_ != nullptr);
336      AddSpace(bump_pointer_space_);
337      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
338                                                    kGSSBumpPointerSpaceCapacity, nullptr);
339      CHECK(temp_space_ != nullptr);
340      AddSpace(temp_space_);
341    } else if (main_mem_map_2.get() != nullptr) {
342      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
343      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
344                                                           growth_limit_, capacity_, name, true));
345      CHECK(main_space_backup_.get() != nullptr);
346      // Add the space so its accounted for in the heap_begin and heap_end.
347      AddSpace(main_space_backup_.get());
348    }
349  }
350  CHECK(non_moving_space_ != nullptr);
351  CHECK(!non_moving_space_->CanMoveObjects());
352  // Allocate the large object space.
353  if (large_object_space_type == space::kLargeObjectSpaceTypeFreeList) {
354    large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
355                                                       capacity_);
356    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
357  } else if (large_object_space_type == space::kLargeObjectSpaceTypeMap) {
358    large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
359    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
360  } else {
361    // Disable the large object space by making the cutoff excessively large.
362    large_object_threshold_ = std::numeric_limits<size_t>::max();
363    large_object_space_ = nullptr;
364  }
365  if (large_object_space_ != nullptr) {
366    AddSpace(large_object_space_);
367  }
368  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
369  CHECK(!continuous_spaces_.empty());
370  // Relies on the spaces being sorted.
371  uint8_t* heap_begin = continuous_spaces_.front()->Begin();
372  uint8_t* heap_end = continuous_spaces_.back()->Limit();
373  size_t heap_capacity = heap_end - heap_begin;
374  // Remove the main backup space since it slows down the GC to have unused extra spaces.
375  // TODO: Avoid needing to do this.
376  if (main_space_backup_.get() != nullptr) {
377    RemoveSpace(main_space_backup_.get());
378  }
379  // Allocate the card table.
380  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
381  CHECK(card_table_.get() != NULL) << "Failed to create card table";
382  // Card cache for now since it makes it easier for us to update the references to the copying
383  // spaces.
384  accounting::ModUnionTable* mod_union_table =
385      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
386                                                      GetImageSpace());
387  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
388  AddModUnionTable(mod_union_table);
389  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
390    accounting::RememberedSet* non_moving_space_rem_set =
391        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
392    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
393    AddRememberedSet(non_moving_space_rem_set);
394  }
395  // TODO: Count objects in the image space here?
396  num_bytes_allocated_.StoreRelaxed(0);
397  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
398                                                    kDefaultMarkStackSize));
399  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
400  allocation_stack_.reset(accounting::ObjectStack::Create(
401      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
402  live_stack_.reset(accounting::ObjectStack::Create(
403      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
404  // It's still too early to take a lock because there are no threads yet, but we can create locks
405  // now. We don't create it earlier to make it clear that you can't use locks during heap
406  // initialization.
407  gc_complete_lock_ = new Mutex("GC complete lock");
408  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
409                                                *gc_complete_lock_));
410  task_processor_.reset(new TaskProcessor());
411  pending_task_lock_ = new Mutex("Pending task lock");
412  if (ignore_max_footprint_) {
413    SetIdealFootprint(std::numeric_limits<size_t>::max());
414    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
415  }
416  CHECK_NE(max_allowed_footprint_, 0U);
417  // Create our garbage collectors.
418  for (size_t i = 0; i < 2; ++i) {
419    const bool concurrent = i != 0;
420    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
421    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
422    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
423  }
424  if (kMovingCollector) {
425    // TODO: Clean this up.
426    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
427    semi_space_collector_ = new collector::SemiSpace(this, generational,
428                                                     generational ? "generational" : "");
429    garbage_collectors_.push_back(semi_space_collector_);
430    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
431    garbage_collectors_.push_back(concurrent_copying_collector_);
432    mark_compact_collector_ = new collector::MarkCompact(this);
433    garbage_collectors_.push_back(mark_compact_collector_);
434  }
435  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
436      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
437    // Check that there's no gap between the image space and the non moving space so that the
438    // immune region won't break (eg. due to a large object allocated in the gap). This is only
439    // required when we're the zygote or using GSS.
440    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
441                                      non_moving_space_->GetMemMap());
442    if (!no_gap) {
443      MemMap::DumpMaps(LOG(ERROR));
444      LOG(FATAL) << "There's a gap between the image space and the main space";
445    }
446  }
447  if (running_on_valgrind_) {
448    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
449  }
450  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
451    LOG(INFO) << "Heap() exiting";
452  }
453}
454
455MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
456                                           size_t capacity, std::string* out_error_str) {
457  while (true) {
458    MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
459                                       PROT_READ | PROT_WRITE, true, out_error_str);
460    if (map != nullptr || request_begin == nullptr) {
461      return map;
462    }
463    // Retry a  second time with no specified request begin.
464    request_begin = nullptr;
465  }
466  return nullptr;
467}
468
469space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
470                                                      size_t growth_limit, size_t capacity,
471                                                      const char* name, bool can_move_objects) {
472  space::MallocSpace* malloc_space = nullptr;
473  if (kUseRosAlloc) {
474    // Create rosalloc space.
475    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
476                                                          initial_size, growth_limit, capacity,
477                                                          low_memory_mode_, can_move_objects);
478  } else {
479    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
480                                                          initial_size, growth_limit, capacity,
481                                                          can_move_objects);
482  }
483  if (collector::SemiSpace::kUseRememberedSet) {
484    accounting::RememberedSet* rem_set  =
485        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
486    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
487    AddRememberedSet(rem_set);
488  }
489  CHECK(malloc_space != nullptr) << "Failed to create " << name;
490  malloc_space->SetFootprintLimit(malloc_space->Capacity());
491  return malloc_space;
492}
493
494void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
495                                 size_t capacity) {
496  // Is background compaction is enabled?
497  bool can_move_objects = IsMovingGc(background_collector_type_) !=
498      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
499  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
500  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
501  // from the main space to the zygote space. If background compaction is enabled, always pass in
502  // that we can move objets.
503  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
504    // After the zygote we want this to be false if we don't have background compaction enabled so
505    // that getting primitive array elements is faster.
506    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
507    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
508  }
509  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
510    RemoveRememberedSet(main_space_);
511  }
512  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
513  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
514                                            can_move_objects);
515  SetSpaceAsDefault(main_space_);
516  VLOG(heap) << "Created main space " << main_space_;
517}
518
519void Heap::ChangeAllocator(AllocatorType allocator) {
520  if (current_allocator_ != allocator) {
521    // These two allocators are only used internally and don't have any entrypoints.
522    CHECK_NE(allocator, kAllocatorTypeLOS);
523    CHECK_NE(allocator, kAllocatorTypeNonMoving);
524    current_allocator_ = allocator;
525    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
526    SetQuickAllocEntryPointsAllocator(current_allocator_);
527    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
528  }
529}
530
531void Heap::DisableMovingGc() {
532  if (IsMovingGc(foreground_collector_type_)) {
533    foreground_collector_type_ = kCollectorTypeCMS;
534  }
535  if (IsMovingGc(background_collector_type_)) {
536    background_collector_type_ = foreground_collector_type_;
537  }
538  TransitionCollector(foreground_collector_type_);
539  ThreadList* tl = Runtime::Current()->GetThreadList();
540  Thread* self = Thread::Current();
541  ScopedThreadStateChange tsc(self, kSuspended);
542  tl->SuspendAll();
543  // Something may have caused the transition to fail.
544  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
545    CHECK(main_space_ != nullptr);
546    // The allocation stack may have non movable objects in it. We need to flush it since the GC
547    // can't only handle marking allocation stack objects of one non moving space and one main
548    // space.
549    {
550      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
551      FlushAllocStack();
552    }
553    main_space_->DisableMovingObjects();
554    non_moving_space_ = main_space_;
555    CHECK(!non_moving_space_->CanMoveObjects());
556  }
557  tl->ResumeAll();
558}
559
560std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
561  if (!IsValidContinuousSpaceObjectAddress(klass)) {
562    return StringPrintf("<non heap address klass %p>", klass);
563  }
564  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
565  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
566    std::string result("[");
567    result += SafeGetClassDescriptor(component_type);
568    return result;
569  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
570    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
571  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
572    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
573  } else {
574    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
575    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
576      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
577    }
578    const DexFile* dex_file = dex_cache->GetDexFile();
579    uint16_t class_def_idx = klass->GetDexClassDefIndex();
580    if (class_def_idx == DexFile::kDexNoIndex16) {
581      return "<class def not found>";
582    }
583    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
584    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
585    return dex_file->GetTypeDescriptor(type_id);
586  }
587}
588
589std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
590  if (obj == nullptr) {
591    return "null";
592  }
593  mirror::Class* klass = obj->GetClass<kVerifyNone>();
594  if (klass == nullptr) {
595    return "(class=null)";
596  }
597  std::string result(SafeGetClassDescriptor(klass));
598  if (obj->IsClass()) {
599    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
600  }
601  return result;
602}
603
604void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
605  if (obj == nullptr) {
606    stream << "(obj=null)";
607    return;
608  }
609  if (IsAligned<kObjectAlignment>(obj)) {
610    space::Space* space = nullptr;
611    // Don't use find space since it only finds spaces which actually contain objects instead of
612    // spaces which may contain objects (e.g. cleared bump pointer spaces).
613    for (const auto& cur_space : continuous_spaces_) {
614      if (cur_space->HasAddress(obj)) {
615        space = cur_space;
616        break;
617      }
618    }
619    // Unprotect all the spaces.
620    for (const auto& con_space : continuous_spaces_) {
621      mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
622    }
623    stream << "Object " << obj;
624    if (space != nullptr) {
625      stream << " in space " << *space;
626    }
627    mirror::Class* klass = obj->GetClass<kVerifyNone>();
628    stream << "\nclass=" << klass;
629    if (klass != nullptr) {
630      stream << " type= " << SafePrettyTypeOf(obj);
631    }
632    // Re-protect the address we faulted on.
633    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
634  }
635}
636
637bool Heap::IsCompilingBoot() const {
638  if (!Runtime::Current()->IsCompiler()) {
639    return false;
640  }
641  for (const auto& space : continuous_spaces_) {
642    if (space->IsImageSpace() || space->IsZygoteSpace()) {
643      return false;
644    }
645  }
646  return true;
647}
648
649bool Heap::HasImageSpace() const {
650  for (const auto& space : continuous_spaces_) {
651    if (space->IsImageSpace()) {
652      return true;
653    }
654  }
655  return false;
656}
657
658void Heap::IncrementDisableMovingGC(Thread* self) {
659  // Need to do this holding the lock to prevent races where the GC is about to run / running when
660  // we attempt to disable it.
661  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
662  MutexLock mu(self, *gc_complete_lock_);
663  ++disable_moving_gc_count_;
664  if (IsMovingGc(collector_type_running_)) {
665    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
666  }
667}
668
669void Heap::DecrementDisableMovingGC(Thread* self) {
670  MutexLock mu(self, *gc_complete_lock_);
671  CHECK_GE(disable_moving_gc_count_, 0U);
672  --disable_moving_gc_count_;
673}
674
675void Heap::UpdateProcessState(ProcessState process_state) {
676  if (process_state_ != process_state) {
677    process_state_ = process_state;
678    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
679      // Start at index 1 to avoid "is always false" warning.
680      // Have iteration 1 always transition the collector.
681      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
682                          ? foreground_collector_type_ : background_collector_type_);
683      usleep(kCollectorTransitionStressWait);
684    }
685    if (process_state_ == kProcessStateJankPerceptible) {
686      // Transition back to foreground right away to prevent jank.
687      RequestCollectorTransition(foreground_collector_type_, 0);
688    } else {
689      // Don't delay for debug builds since we may want to stress test the GC.
690      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
691      // special handling which does a homogenous space compaction once but then doesn't transition
692      // the collector.
693      RequestCollectorTransition(background_collector_type_,
694                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
695    }
696  }
697}
698
699void Heap::CreateThreadPool() {
700  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
701  if (num_threads != 0) {
702    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
703  }
704}
705
706void Heap::VisitObjects(ObjectCallback callback, void* arg) {
707  Thread* self = Thread::Current();
708  if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
709    // Threads are already suspended.
710    VisitObjectsInternal(callback, arg);
711  } else if (IsGcConcurrent() && IsMovingGc(collector_type_)) {
712    // Concurrent moving GC. Suspend all threads and visit objects.
713    DCHECK_EQ(collector_type_, foreground_collector_type_);
714    DCHECK_EQ(foreground_collector_type_, background_collector_type_)
715        << "Assume no transition such that collector_type_ won't change";
716    self->TransitionFromRunnableToSuspended(kWaitingForVisitObjects);
717    ThreadList* tl = Runtime::Current()->GetThreadList();
718    tl->SuspendAll();
719    VisitObjectsInternal(callback, arg);
720    tl->ResumeAll();
721    self->TransitionFromSuspendedToRunnable();
722  } else {
723    // GCs can move objects, so don't allow this.
724    ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
725    VisitObjectsInternal(callback, arg);
726  }
727}
728
729void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
730  if (bump_pointer_space_ != nullptr) {
731    // Visit objects in bump pointer space.
732    bump_pointer_space_->Walk(callback, arg);
733  }
734  // TODO: Switch to standard begin and end to use ranged a based loop.
735  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
736      it < end; ++it) {
737    mirror::Object* obj = *it;
738    if (obj != nullptr && obj->GetClass() != nullptr) {
739      // Avoid the race condition caused by the object not yet being written into the allocation
740      // stack or the class not yet being written in the object. Or, if
741      // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
742      callback(obj, arg);
743    }
744  }
745  {
746    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
747    GetLiveBitmap()->Walk(callback, arg);
748  }
749}
750
751void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
752  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
753  space::ContinuousSpace* space2 = non_moving_space_;
754  // TODO: Generalize this to n bitmaps?
755  CHECK(space1 != nullptr);
756  CHECK(space2 != nullptr);
757  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
758                 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
759                 stack);
760}
761
762void Heap::DeleteThreadPool() {
763  thread_pool_.reset(nullptr);
764}
765
766void Heap::AddSpace(space::Space* space) {
767  CHECK(space != nullptr);
768  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
769  if (space->IsContinuousSpace()) {
770    DCHECK(!space->IsDiscontinuousSpace());
771    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
772    // Continuous spaces don't necessarily have bitmaps.
773    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
774    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
775    if (live_bitmap != nullptr) {
776      CHECK(mark_bitmap != nullptr);
777      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
778      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
779    }
780    continuous_spaces_.push_back(continuous_space);
781    // Ensure that spaces remain sorted in increasing order of start address.
782    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
783              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
784      return a->Begin() < b->Begin();
785    });
786  } else {
787    CHECK(space->IsDiscontinuousSpace());
788    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
789    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
790    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
791    discontinuous_spaces_.push_back(discontinuous_space);
792  }
793  if (space->IsAllocSpace()) {
794    alloc_spaces_.push_back(space->AsAllocSpace());
795  }
796}
797
798void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
799  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
800  if (continuous_space->IsDlMallocSpace()) {
801    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
802  } else if (continuous_space->IsRosAllocSpace()) {
803    rosalloc_space_ = continuous_space->AsRosAllocSpace();
804  }
805}
806
807void Heap::RemoveSpace(space::Space* space) {
808  DCHECK(space != nullptr);
809  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
810  if (space->IsContinuousSpace()) {
811    DCHECK(!space->IsDiscontinuousSpace());
812    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
813    // Continuous spaces don't necessarily have bitmaps.
814    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
815    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
816    if (live_bitmap != nullptr) {
817      DCHECK(mark_bitmap != nullptr);
818      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
819      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
820    }
821    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
822    DCHECK(it != continuous_spaces_.end());
823    continuous_spaces_.erase(it);
824  } else {
825    DCHECK(space->IsDiscontinuousSpace());
826    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
827    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
828    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
829    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
830                        discontinuous_space);
831    DCHECK(it != discontinuous_spaces_.end());
832    discontinuous_spaces_.erase(it);
833  }
834  if (space->IsAllocSpace()) {
835    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
836    DCHECK(it != alloc_spaces_.end());
837    alloc_spaces_.erase(it);
838  }
839}
840
841void Heap::DumpGcPerformanceInfo(std::ostream& os) {
842  // Dump cumulative timings.
843  os << "Dumping cumulative Gc timings\n";
844  uint64_t total_duration = 0;
845  // Dump cumulative loggers for each GC type.
846  uint64_t total_paused_time = 0;
847  for (auto& collector : garbage_collectors_) {
848    total_duration += collector->GetCumulativeTimings().GetTotalNs();
849    total_paused_time += collector->GetTotalPausedTimeNs();
850    collector->DumpPerformanceInfo(os);
851    collector->ResetMeasurements();
852  }
853  uint64_t allocation_time =
854      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
855  if (total_duration != 0) {
856    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
857    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
858    os << "Mean GC size throughput: "
859       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
860    os << "Mean GC object throughput: "
861       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
862  }
863  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
864  os << "Total number of allocations " << total_objects_allocated << "\n";
865  uint64_t total_bytes_allocated = GetBytesAllocatedEver();
866  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
867  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
868  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
869  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
870  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
871  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
872  if (kMeasureAllocationTime) {
873    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
874    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
875       << "\n";
876  }
877  if (HasZygoteSpace()) {
878    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
879  }
880  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
881  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_);
882  BaseMutex::DumpAll(os);
883}
884
885Heap::~Heap() {
886  VLOG(heap) << "Starting ~Heap()";
887  STLDeleteElements(&garbage_collectors_);
888  // If we don't reset then the mark stack complains in its destructor.
889  allocation_stack_->Reset();
890  live_stack_->Reset();
891  STLDeleteValues(&mod_union_tables_);
892  STLDeleteValues(&remembered_sets_);
893  STLDeleteElements(&continuous_spaces_);
894  STLDeleteElements(&discontinuous_spaces_);
895  delete gc_complete_lock_;
896  delete pending_task_lock_;
897  VLOG(heap) << "Finished ~Heap()";
898}
899
900space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
901                                                            bool fail_ok) const {
902  for (const auto& space : continuous_spaces_) {
903    if (space->Contains(obj)) {
904      return space;
905    }
906  }
907  if (!fail_ok) {
908    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
909  }
910  return NULL;
911}
912
913space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
914                                                                  bool fail_ok) const {
915  for (const auto& space : discontinuous_spaces_) {
916    if (space->Contains(obj)) {
917      return space;
918    }
919  }
920  if (!fail_ok) {
921    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
922  }
923  return NULL;
924}
925
926space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
927  space::Space* result = FindContinuousSpaceFromObject(obj, true);
928  if (result != NULL) {
929    return result;
930  }
931  return FindDiscontinuousSpaceFromObject(obj, fail_ok);
932}
933
934space::ImageSpace* Heap::GetImageSpace() const {
935  for (const auto& space : continuous_spaces_) {
936    if (space->IsImageSpace()) {
937      return space->AsImageSpace();
938    }
939  }
940  return NULL;
941}
942
943void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
944  std::ostringstream oss;
945  size_t total_bytes_free = GetFreeMemory();
946  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
947      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
948  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
949  if (total_bytes_free >= byte_count) {
950    space::AllocSpace* space = nullptr;
951    if (allocator_type == kAllocatorTypeNonMoving) {
952      space = non_moving_space_;
953    } else if (allocator_type == kAllocatorTypeRosAlloc ||
954               allocator_type == kAllocatorTypeDlMalloc) {
955      space = main_space_;
956    } else if (allocator_type == kAllocatorTypeBumpPointer ||
957               allocator_type == kAllocatorTypeTLAB) {
958      space = bump_pointer_space_;
959    }
960    if (space != nullptr) {
961      space->LogFragmentationAllocFailure(oss, byte_count);
962    }
963  }
964  self->ThrowOutOfMemoryError(oss.str().c_str());
965}
966
967void Heap::DoPendingCollectorTransition() {
968  CollectorType desired_collector_type = desired_collector_type_;
969  // Launch homogeneous space compaction if it is desired.
970  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
971    if (!CareAboutPauseTimes()) {
972      PerformHomogeneousSpaceCompact();
973    } else {
974      VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
975    }
976  } else {
977    TransitionCollector(desired_collector_type);
978  }
979}
980
981void Heap::Trim(Thread* self) {
982  if (!CareAboutPauseTimes()) {
983    ATRACE_BEGIN("Deflating monitors");
984    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
985    // about pauses.
986    Runtime* runtime = Runtime::Current();
987    runtime->GetThreadList()->SuspendAll();
988    uint64_t start_time = NanoTime();
989    size_t count = runtime->GetMonitorList()->DeflateMonitors();
990    VLOG(heap) << "Deflating " << count << " monitors took "
991        << PrettyDuration(NanoTime() - start_time);
992    runtime->GetThreadList()->ResumeAll();
993    ATRACE_END();
994  }
995  TrimIndirectReferenceTables(self);
996  TrimSpaces(self);
997}
998
999class TrimIndirectReferenceTableClosure : public Closure {
1000 public:
1001  explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1002  }
1003  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1004    ATRACE_BEGIN("Trimming reference table");
1005    thread->GetJniEnv()->locals.Trim();
1006    ATRACE_END();
1007    barrier_->Pass(Thread::Current());
1008  }
1009
1010 private:
1011  Barrier* const barrier_;
1012};
1013
1014void Heap::TrimIndirectReferenceTables(Thread* self) {
1015  ScopedObjectAccess soa(self);
1016  ATRACE_BEGIN(__FUNCTION__);
1017  JavaVMExt* vm = soa.Vm();
1018  // Trim globals indirect reference table.
1019  vm->TrimGlobals();
1020  // Trim locals indirect reference tables.
1021  Barrier barrier(0);
1022  TrimIndirectReferenceTableClosure closure(&barrier);
1023  ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1024  size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1025  barrier.Increment(self, barrier_count);
1026  ATRACE_END();
1027}
1028
1029void Heap::TrimSpaces(Thread* self) {
1030  {
1031    // Need to do this before acquiring the locks since we don't want to get suspended while
1032    // holding any locks.
1033    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1034    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1035    // trimming.
1036    MutexLock mu(self, *gc_complete_lock_);
1037    // Ensure there is only one GC at a time.
1038    WaitForGcToCompleteLocked(kGcCauseTrim, self);
1039    collector_type_running_ = kCollectorTypeHeapTrim;
1040  }
1041  ATRACE_BEGIN(__FUNCTION__);
1042  const uint64_t start_ns = NanoTime();
1043  // Trim the managed spaces.
1044  uint64_t total_alloc_space_allocated = 0;
1045  uint64_t total_alloc_space_size = 0;
1046  uint64_t managed_reclaimed = 0;
1047  for (const auto& space : continuous_spaces_) {
1048    if (space->IsMallocSpace()) {
1049      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1050      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1051        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1052        // for a long period of time.
1053        managed_reclaimed += malloc_space->Trim();
1054      }
1055      total_alloc_space_size += malloc_space->Size();
1056    }
1057  }
1058  total_alloc_space_allocated = GetBytesAllocated();
1059  if (large_object_space_ != nullptr) {
1060    total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1061  }
1062  if (bump_pointer_space_ != nullptr) {
1063    total_alloc_space_allocated -= bump_pointer_space_->Size();
1064  }
1065  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1066      static_cast<float>(total_alloc_space_size);
1067  uint64_t gc_heap_end_ns = NanoTime();
1068  // We never move things in the native heap, so we can finish the GC at this point.
1069  FinishGC(self, collector::kGcTypeNone);
1070  size_t native_reclaimed = 0;
1071
1072#ifdef HAVE_ANDROID_OS
1073  // Only trim the native heap if we don't care about pauses.
1074  if (!CareAboutPauseTimes()) {
1075#if defined(USE_DLMALLOC)
1076    // Trim the native heap.
1077    dlmalloc_trim(0);
1078    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1079#elif defined(USE_JEMALLOC)
1080    // Jemalloc does it's own internal trimming.
1081#else
1082    UNIMPLEMENTED(WARNING) << "Add trimming support";
1083#endif
1084  }
1085#endif  // HAVE_ANDROID_OS
1086  uint64_t end_ns = NanoTime();
1087  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1088      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1089      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1090      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1091      << "%.";
1092  ATRACE_END();
1093}
1094
1095bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1096  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1097  // taking the lock.
1098  if (obj == nullptr) {
1099    return true;
1100  }
1101  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1102}
1103
1104bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1105  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1106}
1107
1108bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1109  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1110    return false;
1111  }
1112  for (const auto& space : continuous_spaces_) {
1113    if (space->HasAddress(obj)) {
1114      return true;
1115    }
1116  }
1117  return false;
1118}
1119
1120bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1121                              bool search_live_stack, bool sorted) {
1122  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1123    return false;
1124  }
1125  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1126    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1127    if (obj == klass) {
1128      // This case happens for java.lang.Class.
1129      return true;
1130    }
1131    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1132  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1133    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1134    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1135    return temp_space_->Contains(obj);
1136  }
1137  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1138  space::DiscontinuousSpace* d_space = nullptr;
1139  if (c_space != nullptr) {
1140    if (c_space->GetLiveBitmap()->Test(obj)) {
1141      return true;
1142    }
1143  } else {
1144    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1145    if (d_space != nullptr) {
1146      if (d_space->GetLiveBitmap()->Test(obj)) {
1147        return true;
1148      }
1149    }
1150  }
1151  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1152  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1153    if (i > 0) {
1154      NanoSleep(MsToNs(10));
1155    }
1156    if (search_allocation_stack) {
1157      if (sorted) {
1158        if (allocation_stack_->ContainsSorted(obj)) {
1159          return true;
1160        }
1161      } else if (allocation_stack_->Contains(obj)) {
1162        return true;
1163      }
1164    }
1165
1166    if (search_live_stack) {
1167      if (sorted) {
1168        if (live_stack_->ContainsSorted(obj)) {
1169          return true;
1170        }
1171      } else if (live_stack_->Contains(obj)) {
1172        return true;
1173      }
1174    }
1175  }
1176  // We need to check the bitmaps again since there is a race where we mark something as live and
1177  // then clear the stack containing it.
1178  if (c_space != nullptr) {
1179    if (c_space->GetLiveBitmap()->Test(obj)) {
1180      return true;
1181    }
1182  } else {
1183    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1184    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1185      return true;
1186    }
1187  }
1188  return false;
1189}
1190
1191std::string Heap::DumpSpaces() const {
1192  std::ostringstream oss;
1193  DumpSpaces(oss);
1194  return oss.str();
1195}
1196
1197void Heap::DumpSpaces(std::ostream& stream) const {
1198  for (const auto& space : continuous_spaces_) {
1199    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1200    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1201    stream << space << " " << *space << "\n";
1202    if (live_bitmap != nullptr) {
1203      stream << live_bitmap << " " << *live_bitmap << "\n";
1204    }
1205    if (mark_bitmap != nullptr) {
1206      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1207    }
1208  }
1209  for (const auto& space : discontinuous_spaces_) {
1210    stream << space << " " << *space << "\n";
1211  }
1212}
1213
1214void Heap::VerifyObjectBody(mirror::Object* obj) {
1215  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1216    return;
1217  }
1218
1219  // Ignore early dawn of the universe verifications.
1220  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1221    return;
1222  }
1223  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1224  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1225  CHECK(c != nullptr) << "Null class in object " << obj;
1226  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1227  CHECK(VerifyClassClass(c));
1228
1229  if (verify_object_mode_ > kVerifyObjectModeFast) {
1230    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1231    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1232  }
1233}
1234
1235void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1236  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1237}
1238
1239void Heap::VerifyHeap() {
1240  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1241  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1242}
1243
1244void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1245  // Use signed comparison since freed bytes can be negative when background compaction foreground
1246  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1247  // free list backed space typically increasing memory footprint due to padding and binning.
1248  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1249  // Note: This relies on 2s complement for handling negative freed_bytes.
1250  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1251  if (Runtime::Current()->HasStatsEnabled()) {
1252    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1253    thread_stats->freed_objects += freed_objects;
1254    thread_stats->freed_bytes += freed_bytes;
1255    // TODO: Do this concurrently.
1256    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1257    global_stats->freed_objects += freed_objects;
1258    global_stats->freed_bytes += freed_bytes;
1259  }
1260}
1261
1262space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1263  for (const auto& space : continuous_spaces_) {
1264    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1265      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1266        return space->AsContinuousSpace()->AsRosAllocSpace();
1267      }
1268    }
1269  }
1270  return nullptr;
1271}
1272
1273mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1274                                             size_t alloc_size, size_t* bytes_allocated,
1275                                             size_t* usable_size,
1276                                             mirror::Class** klass) {
1277  bool was_default_allocator = allocator == GetCurrentAllocator();
1278  // Make sure there is no pending exception since we may need to throw an OOME.
1279  self->AssertNoPendingException();
1280  DCHECK(klass != nullptr);
1281  StackHandleScope<1> hs(self);
1282  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1283  klass = nullptr;  // Invalidate for safety.
1284  // The allocation failed. If the GC is running, block until it completes, and then retry the
1285  // allocation.
1286  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1287  if (last_gc != collector::kGcTypeNone) {
1288    // If we were the default allocator but the allocator changed while we were suspended,
1289    // abort the allocation.
1290    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1291      return nullptr;
1292    }
1293    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1294    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1295                                                     usable_size);
1296    if (ptr != nullptr) {
1297      return ptr;
1298    }
1299  }
1300
1301  collector::GcType tried_type = next_gc_type_;
1302  const bool gc_ran =
1303      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1304  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1305    return nullptr;
1306  }
1307  if (gc_ran) {
1308    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1309                                                     usable_size);
1310    if (ptr != nullptr) {
1311      return ptr;
1312    }
1313  }
1314
1315  // Loop through our different Gc types and try to Gc until we get enough free memory.
1316  for (collector::GcType gc_type : gc_plan_) {
1317    if (gc_type == tried_type) {
1318      continue;
1319    }
1320    // Attempt to run the collector, if we succeed, re-try the allocation.
1321    const bool plan_gc_ran =
1322        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1323    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1324      return nullptr;
1325    }
1326    if (plan_gc_ran) {
1327      // Did we free sufficient memory for the allocation to succeed?
1328      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1329                                                       usable_size);
1330      if (ptr != nullptr) {
1331        return ptr;
1332      }
1333    }
1334  }
1335  // Allocations have failed after GCs;  this is an exceptional state.
1336  // Try harder, growing the heap if necessary.
1337  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1338                                                  usable_size);
1339  if (ptr != nullptr) {
1340    return ptr;
1341  }
1342  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1343  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1344  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1345  // OOME.
1346  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1347           << " allocation";
1348  // TODO: Run finalization, but this may cause more allocations to occur.
1349  // We don't need a WaitForGcToComplete here either.
1350  DCHECK(!gc_plan_.empty());
1351  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1352  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1353    return nullptr;
1354  }
1355  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1356  if (ptr == nullptr) {
1357    const uint64_t current_time = NanoTime();
1358    switch (allocator) {
1359      case kAllocatorTypeRosAlloc:
1360        // Fall-through.
1361      case kAllocatorTypeDlMalloc: {
1362        if (use_homogeneous_space_compaction_for_oom_ &&
1363            current_time - last_time_homogeneous_space_compaction_by_oom_ >
1364            min_interval_homogeneous_space_compaction_by_oom_) {
1365          last_time_homogeneous_space_compaction_by_oom_ = current_time;
1366          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1367          switch (result) {
1368            case HomogeneousSpaceCompactResult::kSuccess:
1369              // If the allocation succeeded, we delayed an oom.
1370              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1371                                              usable_size);
1372              if (ptr != nullptr) {
1373                count_delayed_oom_++;
1374              }
1375              break;
1376            case HomogeneousSpaceCompactResult::kErrorReject:
1377              // Reject due to disabled moving GC.
1378              break;
1379            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1380              // Throw OOM by default.
1381              break;
1382            default: {
1383              UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1384                  << static_cast<size_t>(result);
1385              UNREACHABLE();
1386            }
1387          }
1388          // Always print that we ran homogeneous space compation since this can cause jank.
1389          VLOG(heap) << "Ran heap homogeneous space compaction, "
1390                    << " requested defragmentation "
1391                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1392                    << " performed defragmentation "
1393                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1394                    << " ignored homogeneous space compaction "
1395                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1396                    << " delayed count = "
1397                    << count_delayed_oom_.LoadSequentiallyConsistent();
1398        }
1399        break;
1400      }
1401      case kAllocatorTypeNonMoving: {
1402        // Try to transition the heap if the allocation failure was due to the space being full.
1403        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1404          // If we aren't out of memory then the OOM was probably from the non moving space being
1405          // full. Attempt to disable compaction and turn the main space into a non moving space.
1406          DisableMovingGc();
1407          // If we are still a moving GC then something must have caused the transition to fail.
1408          if (IsMovingGc(collector_type_)) {
1409            MutexLock mu(self, *gc_complete_lock_);
1410            // If we couldn't disable moving GC, just throw OOME and return null.
1411            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1412                         << disable_moving_gc_count_;
1413          } else {
1414            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1415            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1416                                            usable_size);
1417          }
1418        }
1419        break;
1420      }
1421      default: {
1422        // Do nothing for others allocators.
1423      }
1424    }
1425  }
1426  // If the allocation hasn't succeeded by this point, throw an OOM error.
1427  if (ptr == nullptr) {
1428    ThrowOutOfMemoryError(self, alloc_size, allocator);
1429  }
1430  return ptr;
1431}
1432
1433void Heap::SetTargetHeapUtilization(float target) {
1434  DCHECK_GT(target, 0.0f);  // asserted in Java code
1435  DCHECK_LT(target, 1.0f);
1436  target_utilization_ = target;
1437}
1438
1439size_t Heap::GetObjectsAllocated() const {
1440  size_t total = 0;
1441  for (space::AllocSpace* space : alloc_spaces_) {
1442    total += space->GetObjectsAllocated();
1443  }
1444  return total;
1445}
1446
1447uint64_t Heap::GetObjectsAllocatedEver() const {
1448  return GetObjectsFreedEver() + GetObjectsAllocated();
1449}
1450
1451uint64_t Heap::GetBytesAllocatedEver() const {
1452  return GetBytesFreedEver() + GetBytesAllocated();
1453}
1454
1455class InstanceCounter {
1456 public:
1457  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1458      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1459      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1460  }
1461  static void Callback(mirror::Object* obj, void* arg)
1462      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1463    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1464    mirror::Class* instance_class = obj->GetClass();
1465    CHECK(instance_class != nullptr);
1466    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1467      if (instance_counter->use_is_assignable_from_) {
1468        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1469          ++instance_counter->counts_[i];
1470        }
1471      } else if (instance_class == instance_counter->classes_[i]) {
1472        ++instance_counter->counts_[i];
1473      }
1474    }
1475  }
1476
1477 private:
1478  const std::vector<mirror::Class*>& classes_;
1479  bool use_is_assignable_from_;
1480  uint64_t* const counts_;
1481  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1482};
1483
1484void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1485                          uint64_t* counts) {
1486  InstanceCounter counter(classes, use_is_assignable_from, counts);
1487  VisitObjects(InstanceCounter::Callback, &counter);
1488}
1489
1490class InstanceCollector {
1491 public:
1492  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1493      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1494      : class_(c), max_count_(max_count), instances_(instances) {
1495  }
1496  static void Callback(mirror::Object* obj, void* arg)
1497      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1498    DCHECK(arg != nullptr);
1499    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1500    if (obj->GetClass() == instance_collector->class_) {
1501      if (instance_collector->max_count_ == 0 ||
1502          instance_collector->instances_.size() < instance_collector->max_count_) {
1503        instance_collector->instances_.push_back(obj);
1504      }
1505    }
1506  }
1507
1508 private:
1509  const mirror::Class* const class_;
1510  const uint32_t max_count_;
1511  std::vector<mirror::Object*>& instances_;
1512  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1513};
1514
1515void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1516                        std::vector<mirror::Object*>& instances) {
1517  InstanceCollector collector(c, max_count, instances);
1518  VisitObjects(&InstanceCollector::Callback, &collector);
1519}
1520
1521class ReferringObjectsFinder {
1522 public:
1523  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1524                         std::vector<mirror::Object*>& referring_objects)
1525      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1526      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1527  }
1528
1529  static void Callback(mirror::Object* obj, void* arg)
1530      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1531    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1532  }
1533
1534  // For bitmap Visit.
1535  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1536  // annotalysis on visitors.
1537  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1538    o->VisitReferences<true>(*this, VoidFunctor());
1539  }
1540
1541  // For Object::VisitReferences.
1542  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1543      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1544    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1545    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1546      referring_objects_.push_back(obj);
1547    }
1548  }
1549
1550 private:
1551  const mirror::Object* const object_;
1552  const uint32_t max_count_;
1553  std::vector<mirror::Object*>& referring_objects_;
1554  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1555};
1556
1557void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1558                               std::vector<mirror::Object*>& referring_objects) {
1559  ReferringObjectsFinder finder(o, max_count, referring_objects);
1560  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1561}
1562
1563void Heap::CollectGarbage(bool clear_soft_references) {
1564  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1565  // last GC will not have necessarily been cleared.
1566  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1567}
1568
1569HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1570  Thread* self = Thread::Current();
1571  // Inc requested homogeneous space compaction.
1572  count_requested_homogeneous_space_compaction_++;
1573  // Store performed homogeneous space compaction at a new request arrival.
1574  ThreadList* tl = Runtime::Current()->GetThreadList();
1575  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1576  Locks::mutator_lock_->AssertNotHeld(self);
1577  {
1578    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1579    MutexLock mu(self, *gc_complete_lock_);
1580    // Ensure there is only one GC at a time.
1581    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1582    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1583    // is non zero.
1584    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1585    // exit.
1586    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1587        !main_space_->CanMoveObjects()) {
1588      return HomogeneousSpaceCompactResult::kErrorReject;
1589    }
1590    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1591  }
1592  if (Runtime::Current()->IsShuttingDown(self)) {
1593    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1594    // cause objects to get finalized.
1595    FinishGC(self, collector::kGcTypeNone);
1596    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1597  }
1598  // Suspend all threads.
1599  tl->SuspendAll();
1600  uint64_t start_time = NanoTime();
1601  // Launch compaction.
1602  space::MallocSpace* to_space = main_space_backup_.release();
1603  space::MallocSpace* from_space = main_space_;
1604  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1605  const uint64_t space_size_before_compaction = from_space->Size();
1606  AddSpace(to_space);
1607  // Make sure that we will have enough room to copy.
1608  CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1609  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1610  const uint64_t space_size_after_compaction = to_space->Size();
1611  main_space_ = to_space;
1612  main_space_backup_.reset(from_space);
1613  RemoveSpace(from_space);
1614  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1615  // Update performed homogeneous space compaction count.
1616  count_performed_homogeneous_space_compaction_++;
1617  // Print statics log and resume all threads.
1618  uint64_t duration = NanoTime() - start_time;
1619  VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1620             << PrettySize(space_size_before_compaction) << " -> "
1621             << PrettySize(space_size_after_compaction) << " compact-ratio: "
1622             << std::fixed << static_cast<double>(space_size_after_compaction) /
1623             static_cast<double>(space_size_before_compaction);
1624  tl->ResumeAll();
1625  // Finish GC.
1626  reference_processor_.EnqueueClearedReferences(self);
1627  GrowForUtilization(semi_space_collector_);
1628  FinishGC(self, collector::kGcTypeFull);
1629  return HomogeneousSpaceCompactResult::kSuccess;
1630}
1631
1632void Heap::TransitionCollector(CollectorType collector_type) {
1633  if (collector_type == collector_type_) {
1634    return;
1635  }
1636  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1637             << " -> " << static_cast<int>(collector_type);
1638  uint64_t start_time = NanoTime();
1639  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1640  Runtime* const runtime = Runtime::Current();
1641  ThreadList* const tl = runtime->GetThreadList();
1642  Thread* const self = Thread::Current();
1643  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1644  Locks::mutator_lock_->AssertNotHeld(self);
1645  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1646  // compacting_gc_disable_count_, this should rarely occurs).
1647  for (;;) {
1648    {
1649      ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1650      MutexLock mu(self, *gc_complete_lock_);
1651      // Ensure there is only one GC at a time.
1652      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1653      // Currently we only need a heap transition if we switch from a moving collector to a
1654      // non-moving one, or visa versa.
1655      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1656      // If someone else beat us to it and changed the collector before we could, exit.
1657      // This is safe to do before the suspend all since we set the collector_type_running_ before
1658      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1659      // then it would get blocked on WaitForGcToCompleteLocked.
1660      if (collector_type == collector_type_) {
1661        return;
1662      }
1663      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1664      if (!copying_transition || disable_moving_gc_count_ == 0) {
1665        // TODO: Not hard code in semi-space collector?
1666        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1667        break;
1668      }
1669    }
1670    usleep(1000);
1671  }
1672  if (runtime->IsShuttingDown(self)) {
1673    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1674    // cause objects to get finalized.
1675    FinishGC(self, collector::kGcTypeNone);
1676    return;
1677  }
1678  tl->SuspendAll();
1679  switch (collector_type) {
1680    case kCollectorTypeSS: {
1681      if (!IsMovingGc(collector_type_)) {
1682        // Create the bump pointer space from the backup space.
1683        CHECK(main_space_backup_ != nullptr);
1684        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1685        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1686        // pointer space last transition it will be protected.
1687        CHECK(mem_map != nullptr);
1688        mem_map->Protect(PROT_READ | PROT_WRITE);
1689        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1690                                                                        mem_map.release());
1691        AddSpace(bump_pointer_space_);
1692        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1693        // Use the now empty main space mem map for the bump pointer temp space.
1694        mem_map.reset(main_space_->ReleaseMemMap());
1695        // Unset the pointers just in case.
1696        if (dlmalloc_space_ == main_space_) {
1697          dlmalloc_space_ = nullptr;
1698        } else if (rosalloc_space_ == main_space_) {
1699          rosalloc_space_ = nullptr;
1700        }
1701        // Remove the main space so that we don't try to trim it, this doens't work for debug
1702        // builds since RosAlloc attempts to read the magic number from a protected page.
1703        RemoveSpace(main_space_);
1704        RemoveRememberedSet(main_space_);
1705        delete main_space_;  // Delete the space since it has been removed.
1706        main_space_ = nullptr;
1707        RemoveRememberedSet(main_space_backup_.get());
1708        main_space_backup_.reset(nullptr);  // Deletes the space.
1709        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1710                                                                mem_map.release());
1711        AddSpace(temp_space_);
1712      }
1713      break;
1714    }
1715    case kCollectorTypeMS:
1716      // Fall through.
1717    case kCollectorTypeCMS: {
1718      if (IsMovingGc(collector_type_)) {
1719        CHECK(temp_space_ != nullptr);
1720        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1721        RemoveSpace(temp_space_);
1722        temp_space_ = nullptr;
1723        mem_map->Protect(PROT_READ | PROT_WRITE);
1724        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
1725                              std::min(mem_map->Size(), growth_limit_), mem_map->Size());
1726        mem_map.release();
1727        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1728        AddSpace(main_space_);
1729        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1730        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1731        RemoveSpace(bump_pointer_space_);
1732        bump_pointer_space_ = nullptr;
1733        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1734        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1735        if (kIsDebugBuild && kUseRosAlloc) {
1736          mem_map->Protect(PROT_READ | PROT_WRITE);
1737        }
1738        main_space_backup_.reset(CreateMallocSpaceFromMemMap(
1739            mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
1740            mem_map->Size(), name, true));
1741        if (kIsDebugBuild && kUseRosAlloc) {
1742          mem_map->Protect(PROT_NONE);
1743        }
1744        mem_map.release();
1745      }
1746      break;
1747    }
1748    default: {
1749      LOG(FATAL) << "Attempted to transition to invalid collector type "
1750                 << static_cast<size_t>(collector_type);
1751      break;
1752    }
1753  }
1754  ChangeCollector(collector_type);
1755  tl->ResumeAll();
1756  // Can't call into java code with all threads suspended.
1757  reference_processor_.EnqueueClearedReferences(self);
1758  uint64_t duration = NanoTime() - start_time;
1759  GrowForUtilization(semi_space_collector_);
1760  FinishGC(self, collector::kGcTypeFull);
1761  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1762  int32_t delta_allocated = before_allocated - after_allocated;
1763  std::string saved_str;
1764  if (delta_allocated >= 0) {
1765    saved_str = " saved at least " + PrettySize(delta_allocated);
1766  } else {
1767    saved_str = " expanded " + PrettySize(-delta_allocated);
1768  }
1769  VLOG(heap) << "Heap transition to " << process_state_ << " took "
1770      << PrettyDuration(duration) << saved_str;
1771}
1772
1773void Heap::ChangeCollector(CollectorType collector_type) {
1774  // TODO: Only do this with all mutators suspended to avoid races.
1775  if (collector_type != collector_type_) {
1776    if (collector_type == kCollectorTypeMC) {
1777      // Don't allow mark compact unless support is compiled in.
1778      CHECK(kMarkCompactSupport);
1779    }
1780    collector_type_ = collector_type;
1781    gc_plan_.clear();
1782    switch (collector_type_) {
1783      case kCollectorTypeCC:  // Fall-through.
1784      case kCollectorTypeMC:  // Fall-through.
1785      case kCollectorTypeSS:  // Fall-through.
1786      case kCollectorTypeGSS: {
1787        gc_plan_.push_back(collector::kGcTypeFull);
1788        if (use_tlab_) {
1789          ChangeAllocator(kAllocatorTypeTLAB);
1790        } else {
1791          ChangeAllocator(kAllocatorTypeBumpPointer);
1792        }
1793        break;
1794      }
1795      case kCollectorTypeMS: {
1796        gc_plan_.push_back(collector::kGcTypeSticky);
1797        gc_plan_.push_back(collector::kGcTypePartial);
1798        gc_plan_.push_back(collector::kGcTypeFull);
1799        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1800        break;
1801      }
1802      case kCollectorTypeCMS: {
1803        gc_plan_.push_back(collector::kGcTypeSticky);
1804        gc_plan_.push_back(collector::kGcTypePartial);
1805        gc_plan_.push_back(collector::kGcTypeFull);
1806        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1807        break;
1808      }
1809      default: {
1810        UNIMPLEMENTED(FATAL);
1811        UNREACHABLE();
1812      }
1813    }
1814    if (IsGcConcurrent()) {
1815      concurrent_start_bytes_ =
1816          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1817    } else {
1818      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1819    }
1820  }
1821}
1822
1823// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1824class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1825 public:
1826  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1827      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1828  }
1829
1830  void BuildBins(space::ContinuousSpace* space) {
1831    bin_live_bitmap_ = space->GetLiveBitmap();
1832    bin_mark_bitmap_ = space->GetMarkBitmap();
1833    BinContext context;
1834    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1835    context.collector_ = this;
1836    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1837    // Note: This requires traversing the space in increasing order of object addresses.
1838    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1839    // Add the last bin which spans after the last object to the end of the space.
1840    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1841  }
1842
1843 private:
1844  struct BinContext {
1845    uintptr_t prev_;  // The end of the previous object.
1846    ZygoteCompactingCollector* collector_;
1847  };
1848  // Maps from bin sizes to locations.
1849  std::multimap<size_t, uintptr_t> bins_;
1850  // Live bitmap of the space which contains the bins.
1851  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1852  // Mark bitmap of the space which contains the bins.
1853  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1854
1855  static void Callback(mirror::Object* obj, void* arg)
1856      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1857    DCHECK(arg != nullptr);
1858    BinContext* context = reinterpret_cast<BinContext*>(arg);
1859    ZygoteCompactingCollector* collector = context->collector_;
1860    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1861    size_t bin_size = object_addr - context->prev_;
1862    // Add the bin consisting of the end of the previous object to the start of the current object.
1863    collector->AddBin(bin_size, context->prev_);
1864    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1865  }
1866
1867  void AddBin(size_t size, uintptr_t position) {
1868    if (size != 0) {
1869      bins_.insert(std::make_pair(size, position));
1870    }
1871  }
1872
1873  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1874    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1875    // allocator.
1876    UNUSED(space);
1877    return false;
1878  }
1879
1880  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1881      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1882    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1883    mirror::Object* forward_address;
1884    // Find the smallest bin which we can move obj in.
1885    auto it = bins_.lower_bound(object_size);
1886    if (it == bins_.end()) {
1887      // No available space in the bins, place it in the target space instead (grows the zygote
1888      // space).
1889      size_t bytes_allocated;
1890      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1891      if (to_space_live_bitmap_ != nullptr) {
1892        to_space_live_bitmap_->Set(forward_address);
1893      } else {
1894        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1895        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1896      }
1897    } else {
1898      size_t size = it->first;
1899      uintptr_t pos = it->second;
1900      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1901      forward_address = reinterpret_cast<mirror::Object*>(pos);
1902      // Set the live and mark bits so that sweeping system weaks works properly.
1903      bin_live_bitmap_->Set(forward_address);
1904      bin_mark_bitmap_->Set(forward_address);
1905      DCHECK_GE(size, object_size);
1906      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1907    }
1908    // Copy the object over to its new location.
1909    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1910    if (kUseBakerOrBrooksReadBarrier) {
1911      obj->AssertReadBarrierPointer();
1912      if (kUseBrooksReadBarrier) {
1913        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1914        forward_address->SetReadBarrierPointer(forward_address);
1915      }
1916      forward_address->AssertReadBarrierPointer();
1917    }
1918    return forward_address;
1919  }
1920};
1921
1922void Heap::UnBindBitmaps() {
1923  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1924  for (const auto& space : GetContinuousSpaces()) {
1925    if (space->IsContinuousMemMapAllocSpace()) {
1926      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1927      if (alloc_space->HasBoundBitmaps()) {
1928        alloc_space->UnBindBitmaps();
1929      }
1930    }
1931  }
1932}
1933
1934void Heap::PreZygoteFork() {
1935  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1936  Thread* self = Thread::Current();
1937  MutexLock mu(self, zygote_creation_lock_);
1938  // Try to see if we have any Zygote spaces.
1939  if (HasZygoteSpace()) {
1940    LOG(WARNING) << __FUNCTION__ << " called when we already have a zygote space.";
1941    return;
1942  }
1943  Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
1944  Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
1945  VLOG(heap) << "Starting PreZygoteFork";
1946  // Trim the pages at the end of the non moving space.
1947  non_moving_space_->Trim();
1948  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1949  // there.
1950  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1951  const bool same_space = non_moving_space_ == main_space_;
1952  if (kCompactZygote) {
1953    // Can't compact if the non moving space is the same as the main space.
1954    DCHECK(semi_space_collector_ != nullptr);
1955    // Temporarily disable rosalloc verification because the zygote
1956    // compaction will mess up the rosalloc internal metadata.
1957    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1958    ZygoteCompactingCollector zygote_collector(this);
1959    zygote_collector.BuildBins(non_moving_space_);
1960    // Create a new bump pointer space which we will compact into.
1961    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1962                                         non_moving_space_->Limit());
1963    // Compact the bump pointer space to a new zygote bump pointer space.
1964    bool reset_main_space = false;
1965    if (IsMovingGc(collector_type_)) {
1966      zygote_collector.SetFromSpace(bump_pointer_space_);
1967    } else {
1968      CHECK(main_space_ != nullptr);
1969      // Copy from the main space.
1970      zygote_collector.SetFromSpace(main_space_);
1971      reset_main_space = true;
1972    }
1973    zygote_collector.SetToSpace(&target_space);
1974    zygote_collector.SetSwapSemiSpaces(false);
1975    zygote_collector.Run(kGcCauseCollectorTransition, false);
1976    if (reset_main_space) {
1977      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1978      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1979      MemMap* mem_map = main_space_->ReleaseMemMap();
1980      RemoveSpace(main_space_);
1981      space::Space* old_main_space = main_space_;
1982      CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
1983                            mem_map->Size());
1984      delete old_main_space;
1985      AddSpace(main_space_);
1986    } else {
1987      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1988    }
1989    if (temp_space_ != nullptr) {
1990      CHECK(temp_space_->IsEmpty());
1991    }
1992    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1993    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1994    // Update the end and write out image.
1995    non_moving_space_->SetEnd(target_space.End());
1996    non_moving_space_->SetLimit(target_space.Limit());
1997    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1998  }
1999  // Change the collector to the post zygote one.
2000  ChangeCollector(foreground_collector_type_);
2001  // Save the old space so that we can remove it after we complete creating the zygote space.
2002  space::MallocSpace* old_alloc_space = non_moving_space_;
2003  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2004  // the remaining available space.
2005  // Remove the old space before creating the zygote space since creating the zygote space sets
2006  // the old alloc space's bitmaps to nullptr.
2007  RemoveSpace(old_alloc_space);
2008  if (collector::SemiSpace::kUseRememberedSet) {
2009    // Sanity bound check.
2010    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2011    // Remove the remembered set for the now zygote space (the old
2012    // non-moving space). Note now that we have compacted objects into
2013    // the zygote space, the data in the remembered set is no longer
2014    // needed. The zygote space will instead have a mod-union table
2015    // from this point on.
2016    RemoveRememberedSet(old_alloc_space);
2017  }
2018  // Remaining space becomes the new non moving space.
2019  zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2020                                                     &non_moving_space_);
2021  CHECK(!non_moving_space_->CanMoveObjects());
2022  if (same_space) {
2023    main_space_ = non_moving_space_;
2024    SetSpaceAsDefault(main_space_);
2025  }
2026  delete old_alloc_space;
2027  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2028  AddSpace(zygote_space_);
2029  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2030  AddSpace(non_moving_space_);
2031  // Create the zygote space mod union table.
2032  accounting::ModUnionTable* mod_union_table =
2033      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
2034                                             zygote_space_);
2035  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2036  // Set all the cards in the mod-union table since we don't know which objects contain references
2037  // to large objects.
2038  mod_union_table->SetCards();
2039  AddModUnionTable(mod_union_table);
2040  if (collector::SemiSpace::kUseRememberedSet) {
2041    // Add a new remembered set for the post-zygote non-moving space.
2042    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2043        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2044                                      non_moving_space_);
2045    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2046        << "Failed to create post-zygote non-moving space remembered set";
2047    AddRememberedSet(post_zygote_non_moving_space_rem_set);
2048  }
2049}
2050
2051void Heap::FlushAllocStack() {
2052  MarkAllocStackAsLive(allocation_stack_.get());
2053  allocation_stack_->Reset();
2054}
2055
2056void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2057                          accounting::ContinuousSpaceBitmap* bitmap2,
2058                          accounting::LargeObjectBitmap* large_objects,
2059                          accounting::ObjectStack* stack) {
2060  DCHECK(bitmap1 != nullptr);
2061  DCHECK(bitmap2 != nullptr);
2062  mirror::Object** limit = stack->End();
2063  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
2064    const mirror::Object* obj = *it;
2065    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2066      if (bitmap1->HasAddress(obj)) {
2067        bitmap1->Set(obj);
2068      } else if (bitmap2->HasAddress(obj)) {
2069        bitmap2->Set(obj);
2070      } else {
2071        DCHECK(large_objects != nullptr);
2072        large_objects->Set(obj);
2073      }
2074    }
2075  }
2076}
2077
2078void Heap::SwapSemiSpaces() {
2079  CHECK(bump_pointer_space_ != nullptr);
2080  CHECK(temp_space_ != nullptr);
2081  std::swap(bump_pointer_space_, temp_space_);
2082}
2083
2084void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2085                   space::ContinuousMemMapAllocSpace* source_space,
2086                   GcCause gc_cause) {
2087  CHECK(kMovingCollector);
2088  if (target_space != source_space) {
2089    // Don't swap spaces since this isn't a typical semi space collection.
2090    semi_space_collector_->SetSwapSemiSpaces(false);
2091    semi_space_collector_->SetFromSpace(source_space);
2092    semi_space_collector_->SetToSpace(target_space);
2093    semi_space_collector_->Run(gc_cause, false);
2094  } else {
2095    CHECK(target_space->IsBumpPointerSpace())
2096        << "In-place compaction is only supported for bump pointer spaces";
2097    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2098    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2099  }
2100}
2101
2102collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2103                                               bool clear_soft_references) {
2104  Thread* self = Thread::Current();
2105  Runtime* runtime = Runtime::Current();
2106  // If the heap can't run the GC, silently fail and return that no GC was run.
2107  switch (gc_type) {
2108    case collector::kGcTypePartial: {
2109      if (!HasZygoteSpace()) {
2110        return collector::kGcTypeNone;
2111      }
2112      break;
2113    }
2114    default: {
2115      // Other GC types don't have any special cases which makes them not runnable. The main case
2116      // here is full GC.
2117    }
2118  }
2119  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2120  Locks::mutator_lock_->AssertNotHeld(self);
2121  if (self->IsHandlingStackOverflow()) {
2122    // If we are throwing a stack overflow error we probably don't have enough remaining stack
2123    // space to run the GC.
2124    return collector::kGcTypeNone;
2125  }
2126  bool compacting_gc;
2127  {
2128    gc_complete_lock_->AssertNotHeld(self);
2129    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2130    MutexLock mu(self, *gc_complete_lock_);
2131    // Ensure there is only one GC at a time.
2132    WaitForGcToCompleteLocked(gc_cause, self);
2133    compacting_gc = IsMovingGc(collector_type_);
2134    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2135    if (compacting_gc && disable_moving_gc_count_ != 0) {
2136      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2137      return collector::kGcTypeNone;
2138    }
2139    collector_type_running_ = collector_type_;
2140  }
2141
2142  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2143    ++runtime->GetStats()->gc_for_alloc_count;
2144    ++self->GetStats()->gc_for_alloc_count;
2145  }
2146  const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2147  // Approximate heap size.
2148  ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
2149
2150  DCHECK_LT(gc_type, collector::kGcTypeMax);
2151  DCHECK_NE(gc_type, collector::kGcTypeNone);
2152
2153  collector::GarbageCollector* collector = nullptr;
2154  // TODO: Clean this up.
2155  if (compacting_gc) {
2156    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2157           current_allocator_ == kAllocatorTypeTLAB);
2158    switch (collector_type_) {
2159      case kCollectorTypeSS:
2160        // Fall-through.
2161      case kCollectorTypeGSS:
2162        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2163        semi_space_collector_->SetToSpace(temp_space_);
2164        semi_space_collector_->SetSwapSemiSpaces(true);
2165        collector = semi_space_collector_;
2166        break;
2167      case kCollectorTypeCC:
2168        collector = concurrent_copying_collector_;
2169        break;
2170      case kCollectorTypeMC:
2171        mark_compact_collector_->SetSpace(bump_pointer_space_);
2172        collector = mark_compact_collector_;
2173        break;
2174      default:
2175        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2176    }
2177    if (collector != mark_compact_collector_) {
2178      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2179      CHECK(temp_space_->IsEmpty());
2180    }
2181    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2182  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2183      current_allocator_ == kAllocatorTypeDlMalloc) {
2184    collector = FindCollectorByGcType(gc_type);
2185  } else {
2186    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2187  }
2188  if (IsGcConcurrent()) {
2189    // Disable concurrent GC check so that we don't have spammy JNI requests.
2190    // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2191    // calculated in the same thread so that there aren't any races that can cause it to become
2192    // permanantly disabled. b/17942071
2193    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2194  }
2195  CHECK(collector != nullptr)
2196      << "Could not find garbage collector with collector_type="
2197      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2198  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2199  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2200  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2201  RequestTrim(self);
2202  // Enqueue cleared references.
2203  reference_processor_.EnqueueClearedReferences(self);
2204  // Grow the heap so that we know when to perform the next GC.
2205  GrowForUtilization(collector, bytes_allocated_before_gc);
2206  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2207  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2208  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2209  // (mutator time blocked >= long_pause_log_threshold_).
2210  bool log_gc = gc_cause == kGcCauseExplicit;
2211  if (!log_gc && CareAboutPauseTimes()) {
2212    // GC for alloc pauses the allocating thread, so consider it as a pause.
2213    log_gc = duration > long_gc_log_threshold_ ||
2214        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2215    for (uint64_t pause : pause_times) {
2216      log_gc = log_gc || pause >= long_pause_log_threshold_;
2217    }
2218  }
2219  if (log_gc) {
2220    const size_t percent_free = GetPercentFree();
2221    const size_t current_heap_size = GetBytesAllocated();
2222    const size_t total_memory = GetTotalMemory();
2223    std::ostringstream pause_string;
2224    for (size_t i = 0; i < pause_times.size(); ++i) {
2225        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2226                     << ((i != pause_times.size() - 1) ? "," : "");
2227    }
2228    LOG(INFO) << gc_cause << " " << collector->GetName()
2229              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2230              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2231              << current_gc_iteration_.GetFreedLargeObjects() << "("
2232              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2233              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2234              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2235              << " total " << PrettyDuration((duration / 1000) * 1000);
2236    VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2237  }
2238  FinishGC(self, gc_type);
2239  // Inform DDMS that a GC completed.
2240  Dbg::GcDidFinish();
2241  return gc_type;
2242}
2243
2244void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2245  MutexLock mu(self, *gc_complete_lock_);
2246  collector_type_running_ = kCollectorTypeNone;
2247  if (gc_type != collector::kGcTypeNone) {
2248    last_gc_type_ = gc_type;
2249  }
2250  // Wake anyone who may have been waiting for the GC to complete.
2251  gc_complete_cond_->Broadcast(self);
2252}
2253
2254static void RootMatchesObjectVisitor(mirror::Object** root, void* arg,
2255                                     const RootInfo& /*root_info*/) {
2256  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2257  if (*root == obj) {
2258    LOG(INFO) << "Object " << obj << " is a root";
2259  }
2260}
2261
2262class ScanVisitor {
2263 public:
2264  void operator()(const mirror::Object* obj) const {
2265    LOG(ERROR) << "Would have rescanned object " << obj;
2266  }
2267};
2268
2269// Verify a reference from an object.
2270class VerifyReferenceVisitor {
2271 public:
2272  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2273      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2274      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2275
2276  size_t GetFailureCount() const {
2277    return fail_count_->LoadSequentiallyConsistent();
2278  }
2279
2280  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2281      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2282    UNUSED(klass);
2283    if (verify_referent_) {
2284      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2285    }
2286  }
2287
2288  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2289      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2290    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2291  }
2292
2293  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2294    return heap_->IsLiveObjectLocked(obj, true, false, true);
2295  }
2296
2297  static void VerifyRootCallback(mirror::Object** root, void* arg, const RootInfo& root_info)
2298      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2299    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2300    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2301      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2302          << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2303    }
2304  }
2305
2306 private:
2307  // TODO: Fix the no thread safety analysis.
2308  // Returns false on failure.
2309  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2310      NO_THREAD_SAFETY_ANALYSIS {
2311    if (ref == nullptr || IsLive(ref)) {
2312      // Verify that the reference is live.
2313      return true;
2314    }
2315    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2316      // Print message on only on first failure to prevent spam.
2317      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2318    }
2319    if (obj != nullptr) {
2320      // Only do this part for non roots.
2321      accounting::CardTable* card_table = heap_->GetCardTable();
2322      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2323      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2324      uint8_t* card_addr = card_table->CardFromAddr(obj);
2325      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2326                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2327      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2328        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2329      } else {
2330        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2331      }
2332
2333      // Attempt to find the class inside of the recently freed objects.
2334      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2335      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2336        space::MallocSpace* space = ref_space->AsMallocSpace();
2337        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2338        if (ref_class != nullptr) {
2339          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2340                     << PrettyClass(ref_class);
2341        } else {
2342          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2343        }
2344      }
2345
2346      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2347          ref->GetClass()->IsClass()) {
2348        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2349      } else {
2350        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2351                   << ") is not a valid heap address";
2352      }
2353
2354      card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2355      void* cover_begin = card_table->AddrFromCard(card_addr);
2356      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2357          accounting::CardTable::kCardSize);
2358      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2359          << "-" << cover_end;
2360      accounting::ContinuousSpaceBitmap* bitmap =
2361          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2362
2363      if (bitmap == nullptr) {
2364        LOG(ERROR) << "Object " << obj << " has no bitmap";
2365        if (!VerifyClassClass(obj->GetClass())) {
2366          LOG(ERROR) << "Object " << obj << " failed class verification!";
2367        }
2368      } else {
2369        // Print out how the object is live.
2370        if (bitmap->Test(obj)) {
2371          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2372        }
2373        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2374          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2375        }
2376        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2377          LOG(ERROR) << "Object " << obj << " found in live stack";
2378        }
2379        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2380          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2381        }
2382        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2383          LOG(ERROR) << "Ref " << ref << " found in live stack";
2384        }
2385        // Attempt to see if the card table missed the reference.
2386        ScanVisitor scan_visitor;
2387        uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2388        card_table->Scan(bitmap, byte_cover_begin,
2389                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2390      }
2391
2392      // Search to see if any of the roots reference our object.
2393      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2394      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2395
2396      // Search to see if any of the roots reference our reference.
2397      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2398      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2399    }
2400    return false;
2401  }
2402
2403  Heap* const heap_;
2404  Atomic<size_t>* const fail_count_;
2405  const bool verify_referent_;
2406};
2407
2408// Verify all references within an object, for use with HeapBitmap::Visit.
2409class VerifyObjectVisitor {
2410 public:
2411  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2412      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2413  }
2414
2415  void operator()(mirror::Object* obj) const
2416      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2417    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2418    // be live or else how did we find it in the live bitmap?
2419    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2420    // The class doesn't count as a reference but we should verify it anyways.
2421    obj->VisitReferences<true>(visitor, visitor);
2422  }
2423
2424  static void VisitCallback(mirror::Object* obj, void* arg)
2425      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2426    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2427    visitor->operator()(obj);
2428  }
2429
2430  size_t GetFailureCount() const {
2431    return fail_count_->LoadSequentiallyConsistent();
2432  }
2433
2434 private:
2435  Heap* const heap_;
2436  Atomic<size_t>* const fail_count_;
2437  const bool verify_referent_;
2438};
2439
2440void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2441  // Slow path, the allocation stack push back must have already failed.
2442  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2443  do {
2444    // TODO: Add handle VerifyObject.
2445    StackHandleScope<1> hs(self);
2446    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2447    // Push our object into the reserve region of the allocaiton stack. This is only required due
2448    // to heap verification requiring that roots are live (either in the live bitmap or in the
2449    // allocation stack).
2450    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2451    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2452  } while (!allocation_stack_->AtomicPushBack(*obj));
2453}
2454
2455void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2456  // Slow path, the allocation stack push back must have already failed.
2457  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2458  mirror::Object** start_address;
2459  mirror::Object** end_address;
2460  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2461                                            &end_address)) {
2462    // TODO: Add handle VerifyObject.
2463    StackHandleScope<1> hs(self);
2464    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2465    // Push our object into the reserve region of the allocaiton stack. This is only required due
2466    // to heap verification requiring that roots are live (either in the live bitmap or in the
2467    // allocation stack).
2468    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2469    // Push into the reserve allocation stack.
2470    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2471  }
2472  self->SetThreadLocalAllocationStack(start_address, end_address);
2473  // Retry on the new thread-local allocation stack.
2474  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2475}
2476
2477// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2478size_t Heap::VerifyHeapReferences(bool verify_referents) {
2479  Thread* self = Thread::Current();
2480  Locks::mutator_lock_->AssertExclusiveHeld(self);
2481  // Lets sort our allocation stacks so that we can efficiently binary search them.
2482  allocation_stack_->Sort();
2483  live_stack_->Sort();
2484  // Since we sorted the allocation stack content, need to revoke all
2485  // thread-local allocation stacks.
2486  RevokeAllThreadLocalAllocationStacks(self);
2487  Atomic<size_t> fail_count_(0);
2488  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2489  // Verify objects in the allocation stack since these will be objects which were:
2490  // 1. Allocated prior to the GC (pre GC verification).
2491  // 2. Allocated during the GC (pre sweep GC verification).
2492  // We don't want to verify the objects in the live stack since they themselves may be
2493  // pointing to dead objects if they are not reachable.
2494  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2495  // Verify the roots:
2496  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2497  if (visitor.GetFailureCount() > 0) {
2498    // Dump mod-union tables.
2499    for (const auto& table_pair : mod_union_tables_) {
2500      accounting::ModUnionTable* mod_union_table = table_pair.second;
2501      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2502    }
2503    // Dump remembered sets.
2504    for (const auto& table_pair : remembered_sets_) {
2505      accounting::RememberedSet* remembered_set = table_pair.second;
2506      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2507    }
2508    DumpSpaces(LOG(ERROR));
2509  }
2510  return visitor.GetFailureCount();
2511}
2512
2513class VerifyReferenceCardVisitor {
2514 public:
2515  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2516      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2517                            Locks::heap_bitmap_lock_)
2518      : heap_(heap), failed_(failed) {
2519  }
2520
2521  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2522  // annotalysis on visitors.
2523  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2524      NO_THREAD_SAFETY_ANALYSIS {
2525    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2526    // Filter out class references since changing an object's class does not mark the card as dirty.
2527    // Also handles large objects, since the only reference they hold is a class reference.
2528    if (ref != nullptr && !ref->IsClass()) {
2529      accounting::CardTable* card_table = heap_->GetCardTable();
2530      // If the object is not dirty and it is referencing something in the live stack other than
2531      // class, then it must be on a dirty card.
2532      if (!card_table->AddrIsInCardTable(obj)) {
2533        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2534        *failed_ = true;
2535      } else if (!card_table->IsDirty(obj)) {
2536        // TODO: Check mod-union tables.
2537        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2538        // kCardDirty - 1 if it didnt get touched since we aged it.
2539        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2540        if (live_stack->ContainsSorted(ref)) {
2541          if (live_stack->ContainsSorted(obj)) {
2542            LOG(ERROR) << "Object " << obj << " found in live stack";
2543          }
2544          if (heap_->GetLiveBitmap()->Test(obj)) {
2545            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2546          }
2547          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2548                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2549
2550          // Print which field of the object is dead.
2551          if (!obj->IsObjectArray()) {
2552            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2553            CHECK(klass != NULL);
2554            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2555                                                                      : klass->GetIFields();
2556            CHECK(fields != NULL);
2557            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2558              mirror::ArtField* cur = fields->Get(i);
2559              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2560                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2561                          << PrettyField(cur);
2562                break;
2563              }
2564            }
2565          } else {
2566            mirror::ObjectArray<mirror::Object>* object_array =
2567                obj->AsObjectArray<mirror::Object>();
2568            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2569              if (object_array->Get(i) == ref) {
2570                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2571              }
2572            }
2573          }
2574
2575          *failed_ = true;
2576        }
2577      }
2578    }
2579  }
2580
2581 private:
2582  Heap* const heap_;
2583  bool* const failed_;
2584};
2585
2586class VerifyLiveStackReferences {
2587 public:
2588  explicit VerifyLiveStackReferences(Heap* heap)
2589      : heap_(heap),
2590        failed_(false) {}
2591
2592  void operator()(mirror::Object* obj) const
2593      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2594    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2595    obj->VisitReferences<true>(visitor, VoidFunctor());
2596  }
2597
2598  bool Failed() const {
2599    return failed_;
2600  }
2601
2602 private:
2603  Heap* const heap_;
2604  bool failed_;
2605};
2606
2607bool Heap::VerifyMissingCardMarks() {
2608  Thread* self = Thread::Current();
2609  Locks::mutator_lock_->AssertExclusiveHeld(self);
2610  // We need to sort the live stack since we binary search it.
2611  live_stack_->Sort();
2612  // Since we sorted the allocation stack content, need to revoke all
2613  // thread-local allocation stacks.
2614  RevokeAllThreadLocalAllocationStacks(self);
2615  VerifyLiveStackReferences visitor(this);
2616  GetLiveBitmap()->Visit(visitor);
2617  // We can verify objects in the live stack since none of these should reference dead objects.
2618  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2619    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2620      visitor(*it);
2621    }
2622  }
2623  return !visitor.Failed();
2624}
2625
2626void Heap::SwapStacks(Thread* self) {
2627  UNUSED(self);
2628  if (kUseThreadLocalAllocationStack) {
2629    live_stack_->AssertAllZero();
2630  }
2631  allocation_stack_.swap(live_stack_);
2632}
2633
2634void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2635  // This must be called only during the pause.
2636  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2637  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2638  MutexLock mu2(self, *Locks::thread_list_lock_);
2639  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2640  for (Thread* t : thread_list) {
2641    t->RevokeThreadLocalAllocationStack();
2642  }
2643}
2644
2645void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
2646  if (kIsDebugBuild) {
2647    if (rosalloc_space_ != nullptr) {
2648      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
2649    }
2650    if (bump_pointer_space_ != nullptr) {
2651      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
2652    }
2653  }
2654}
2655
2656void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2657  if (kIsDebugBuild) {
2658    if (bump_pointer_space_ != nullptr) {
2659      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2660    }
2661  }
2662}
2663
2664accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2665  auto it = mod_union_tables_.find(space);
2666  if (it == mod_union_tables_.end()) {
2667    return nullptr;
2668  }
2669  return it->second;
2670}
2671
2672accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2673  auto it = remembered_sets_.find(space);
2674  if (it == remembered_sets_.end()) {
2675    return nullptr;
2676  }
2677  return it->second;
2678}
2679
2680void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2681  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2682  // Clear cards and keep track of cards cleared in the mod-union table.
2683  for (const auto& space : continuous_spaces_) {
2684    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2685    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2686    if (table != nullptr) {
2687      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2688          "ImageModUnionClearCards";
2689      TimingLogger::ScopedTiming t2(name, timings);
2690      table->ClearCards();
2691    } else if (use_rem_sets && rem_set != nullptr) {
2692      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2693          << static_cast<int>(collector_type_);
2694      TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
2695      rem_set->ClearCards();
2696    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2697      TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
2698      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2699      // were dirty before the GC started.
2700      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2701      // -> clean(cleaning thread).
2702      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2703      // roots and then we scan / update mod union tables after. We will always scan either card.
2704      // If we end up with the non aged card, we scan it it in the pause.
2705      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2706                                     VoidFunctor());
2707    }
2708  }
2709}
2710
2711static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2712}
2713
2714void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2715  Thread* const self = Thread::Current();
2716  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2717  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2718  if (verify_pre_gc_heap_) {
2719    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
2720    size_t failures = VerifyHeapReferences();
2721    if (failures > 0) {
2722      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2723          << " failures";
2724    }
2725  }
2726  // Check that all objects which reference things in the live stack are on dirty cards.
2727  if (verify_missing_card_marks_) {
2728    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
2729    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2730    SwapStacks(self);
2731    // Sort the live stack so that we can quickly binary search it later.
2732    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2733                                    << " missing card mark verification failed\n" << DumpSpaces();
2734    SwapStacks(self);
2735  }
2736  if (verify_mod_union_table_) {
2737    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
2738    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2739    for (const auto& table_pair : mod_union_tables_) {
2740      accounting::ModUnionTable* mod_union_table = table_pair.second;
2741      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2742      mod_union_table->Verify();
2743    }
2744  }
2745}
2746
2747void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2748  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2749    collector::GarbageCollector::ScopedPause pause(gc);
2750    PreGcVerificationPaused(gc);
2751  }
2752}
2753
2754void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2755  UNUSED(gc);
2756  // TODO: Add a new runtime option for this?
2757  if (verify_pre_gc_rosalloc_) {
2758    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2759  }
2760}
2761
2762void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2763  Thread* const self = Thread::Current();
2764  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2765  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2766  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2767  // reachable objects.
2768  if (verify_pre_sweeping_heap_) {
2769    TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
2770    CHECK_NE(self->GetState(), kRunnable);
2771    {
2772      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2773      // Swapping bound bitmaps does nothing.
2774      gc->SwapBitmaps();
2775    }
2776    // Pass in false since concurrent reference processing can mean that the reference referents
2777    // may point to dead objects at the point which PreSweepingGcVerification is called.
2778    size_t failures = VerifyHeapReferences(false);
2779    if (failures > 0) {
2780      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2781          << " failures";
2782    }
2783    {
2784      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2785      gc->SwapBitmaps();
2786    }
2787  }
2788  if (verify_pre_sweeping_rosalloc_) {
2789    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2790  }
2791}
2792
2793void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2794  // Only pause if we have to do some verification.
2795  Thread* const self = Thread::Current();
2796  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2797  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2798  if (verify_system_weaks_) {
2799    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2800    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2801    mark_sweep->VerifySystemWeaks();
2802  }
2803  if (verify_post_gc_rosalloc_) {
2804    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2805  }
2806  if (verify_post_gc_heap_) {
2807    TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
2808    size_t failures = VerifyHeapReferences();
2809    if (failures > 0) {
2810      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2811          << " failures";
2812    }
2813  }
2814}
2815
2816void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2817  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2818    collector::GarbageCollector::ScopedPause pause(gc);
2819    PostGcVerificationPaused(gc);
2820  }
2821}
2822
2823void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2824  TimingLogger::ScopedTiming t(name, timings);
2825  for (const auto& space : continuous_spaces_) {
2826    if (space->IsRosAllocSpace()) {
2827      VLOG(heap) << name << " : " << space->GetName();
2828      space->AsRosAllocSpace()->Verify();
2829    }
2830  }
2831}
2832
2833collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2834  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2835  MutexLock mu(self, *gc_complete_lock_);
2836  return WaitForGcToCompleteLocked(cause, self);
2837}
2838
2839collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2840  collector::GcType last_gc_type = collector::kGcTypeNone;
2841  uint64_t wait_start = NanoTime();
2842  while (collector_type_running_ != kCollectorTypeNone) {
2843    ATRACE_BEGIN("GC: Wait For Completion");
2844    // We must wait, change thread state then sleep on gc_complete_cond_;
2845    gc_complete_cond_->Wait(self);
2846    last_gc_type = last_gc_type_;
2847    ATRACE_END();
2848  }
2849  uint64_t wait_time = NanoTime() - wait_start;
2850  total_wait_time_ += wait_time;
2851  if (wait_time > long_pause_log_threshold_) {
2852    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2853        << " for cause " << cause;
2854  }
2855  return last_gc_type;
2856}
2857
2858void Heap::DumpForSigQuit(std::ostream& os) {
2859  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2860     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2861  DumpGcPerformanceInfo(os);
2862}
2863
2864size_t Heap::GetPercentFree() {
2865  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2866}
2867
2868void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2869  if (max_allowed_footprint > GetMaxMemory()) {
2870    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2871             << PrettySize(GetMaxMemory());
2872    max_allowed_footprint = GetMaxMemory();
2873  }
2874  max_allowed_footprint_ = max_allowed_footprint;
2875}
2876
2877bool Heap::IsMovableObject(const mirror::Object* obj) const {
2878  if (kMovingCollector) {
2879    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2880    if (space != nullptr) {
2881      // TODO: Check large object?
2882      return space->CanMoveObjects();
2883    }
2884  }
2885  return false;
2886}
2887
2888void Heap::UpdateMaxNativeFootprint() {
2889  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2890  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2891  size_t target_size = native_size / GetTargetHeapUtilization();
2892  if (target_size > native_size + max_free_) {
2893    target_size = native_size + max_free_;
2894  } else if (target_size < native_size + min_free_) {
2895    target_size = native_size + min_free_;
2896  }
2897  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
2898}
2899
2900collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2901  for (const auto& collector : garbage_collectors_) {
2902    if (collector->GetCollectorType() == collector_type_ &&
2903        collector->GetGcType() == gc_type) {
2904      return collector;
2905    }
2906  }
2907  return nullptr;
2908}
2909
2910double Heap::HeapGrowthMultiplier() const {
2911  // If we don't care about pause times we are background, so return 1.0.
2912  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2913    return 1.0;
2914  }
2915  return foreground_heap_growth_multiplier_;
2916}
2917
2918void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
2919                              uint64_t bytes_allocated_before_gc) {
2920  // We know what our utilization is at this moment.
2921  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2922  const uint64_t bytes_allocated = GetBytesAllocated();
2923  uint64_t target_size;
2924  collector::GcType gc_type = collector_ran->GetGcType();
2925  const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2926  // foreground.
2927  const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
2928  const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
2929  if (gc_type != collector::kGcTypeSticky) {
2930    // Grow the heap for non sticky GC.
2931    ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2932    CHECK_GE(delta, 0);
2933    target_size = bytes_allocated + delta * multiplier;
2934    target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
2935    target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
2936    native_need_to_run_finalization_ = true;
2937    next_gc_type_ = collector::kGcTypeSticky;
2938  } else {
2939    collector::GcType non_sticky_gc_type =
2940        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
2941    // Find what the next non sticky collector will be.
2942    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2943    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2944    // do another sticky collection next.
2945    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2946    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2947    // if the sticky GC throughput always remained >= the full/partial throughput.
2948    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2949        non_sticky_collector->GetEstimatedMeanThroughput() &&
2950        non_sticky_collector->NumberOfIterations() > 0 &&
2951        bytes_allocated <= max_allowed_footprint_) {
2952      next_gc_type_ = collector::kGcTypeSticky;
2953    } else {
2954      next_gc_type_ = non_sticky_gc_type;
2955    }
2956    // If we have freed enough memory, shrink the heap back down.
2957    if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
2958      target_size = bytes_allocated + adjusted_max_free;
2959    } else {
2960      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2961    }
2962  }
2963  if (!ignore_max_footprint_) {
2964    SetIdealFootprint(target_size);
2965    if (IsGcConcurrent()) {
2966      const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
2967          current_gc_iteration_.GetFreedLargeObjectBytes();
2968      // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
2969      // how many bytes were allocated during the GC we need to add freed_bytes back on.
2970      CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
2971      const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
2972          bytes_allocated_before_gc;
2973      // Calculate when to perform the next ConcurrentGC.
2974      // Calculate the estimated GC duration.
2975      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2976      // Estimate how many remaining bytes we will have when we need to start the next GC.
2977      size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
2978      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2979      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2980      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2981        // A never going to happen situation that from the estimated allocation rate we will exceed
2982        // the applications entire footprint with the given estimated allocation rate. Schedule
2983        // another GC nearly straight away.
2984        remaining_bytes = kMinConcurrentRemainingBytes;
2985      }
2986      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2987      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
2988      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2989      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2990      // right away.
2991      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2992                                         static_cast<size_t>(bytes_allocated));
2993    }
2994  }
2995}
2996
2997void Heap::ClampGrowthLimit() {
2998  capacity_ = growth_limit_;
2999  for (const auto& space : continuous_spaces_) {
3000    if (space->IsMallocSpace()) {
3001      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3002      malloc_space->ClampGrowthLimit();
3003    }
3004  }
3005  // This space isn't added for performance reasons.
3006  if (main_space_backup_.get() != nullptr) {
3007    main_space_backup_->ClampGrowthLimit();
3008  }
3009}
3010
3011void Heap::ClearGrowthLimit() {
3012  growth_limit_ = capacity_;
3013  for (const auto& space : continuous_spaces_) {
3014    if (space->IsMallocSpace()) {
3015      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3016      malloc_space->ClearGrowthLimit();
3017      malloc_space->SetFootprintLimit(malloc_space->Capacity());
3018    }
3019  }
3020  // This space isn't added for performance reasons.
3021  if (main_space_backup_.get() != nullptr) {
3022    main_space_backup_->ClearGrowthLimit();
3023    main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3024  }
3025}
3026
3027void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
3028  ScopedObjectAccess soa(self);
3029  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3030  jvalue args[1];
3031  args[0].l = arg.get();
3032  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3033  // Restore object in case it gets moved.
3034  *object = soa.Decode<mirror::Object*>(arg.get());
3035}
3036
3037void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
3038  StackHandleScope<1> hs(self);
3039  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3040  RequestConcurrentGC(self);
3041}
3042
3043class Heap::ConcurrentGCTask : public HeapTask {
3044 public:
3045  explicit ConcurrentGCTask(uint64_t target_time) : HeapTask(target_time) { }
3046  virtual void Run(Thread* self) OVERRIDE {
3047    gc::Heap* heap = Runtime::Current()->GetHeap();
3048    heap->ConcurrentGC(self);
3049    heap->ClearConcurrentGCRequest();
3050  }
3051};
3052
3053static bool CanAddHeapTask(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_) {
3054  Runtime* runtime = Runtime::Current();
3055  return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3056      !self->IsHandlingStackOverflow();
3057}
3058
3059void Heap::ClearConcurrentGCRequest() {
3060  concurrent_gc_pending_.StoreRelaxed(false);
3061}
3062
3063void Heap::RequestConcurrentGC(Thread* self) {
3064  if (CanAddHeapTask(self) &&
3065      concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
3066    task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime()));  // Start straight away.
3067  }
3068}
3069
3070void Heap::ConcurrentGC(Thread* self) {
3071  if (!Runtime::Current()->IsShuttingDown(self)) {
3072    // Wait for any GCs currently running to finish.
3073    if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
3074      // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
3075      // instead. E.g. can't do partial, so do full instead.
3076      if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
3077          collector::kGcTypeNone) {
3078        for (collector::GcType gc_type : gc_plan_) {
3079          // Attempt to run the collector, if we succeed, we are done.
3080          if (gc_type > next_gc_type_ &&
3081              CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
3082                  collector::kGcTypeNone) {
3083            break;
3084          }
3085        }
3086      }
3087    }
3088  }
3089}
3090
3091class Heap::CollectorTransitionTask : public HeapTask {
3092 public:
3093  explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) { }
3094  virtual void Run(Thread* self) OVERRIDE {
3095    gc::Heap* heap = Runtime::Current()->GetHeap();
3096    heap->DoPendingCollectorTransition();
3097    heap->ClearPendingCollectorTransition(self);
3098  }
3099};
3100
3101void Heap::ClearPendingCollectorTransition(Thread* self) {
3102  MutexLock mu(self, *pending_task_lock_);
3103  pending_collector_transition_ = nullptr;
3104}
3105
3106void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3107  Thread* self = Thread::Current();
3108  desired_collector_type_ = desired_collector_type;
3109  if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3110    return;
3111  }
3112  CollectorTransitionTask* added_task = nullptr;
3113  const uint64_t target_time = NanoTime() + delta_time;
3114  {
3115    MutexLock mu(self, *pending_task_lock_);
3116    // If we have an existing collector transition, update the targe time to be the new target.
3117    if (pending_collector_transition_ != nullptr) {
3118      task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3119      return;
3120    }
3121    added_task = new CollectorTransitionTask(target_time);
3122    pending_collector_transition_ = added_task;
3123  }
3124  task_processor_->AddTask(self, added_task);
3125}
3126
3127class Heap::HeapTrimTask : public HeapTask {
3128 public:
3129  explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
3130  virtual void Run(Thread* self) OVERRIDE {
3131    gc::Heap* heap = Runtime::Current()->GetHeap();
3132    heap->Trim(self);
3133    heap->ClearPendingTrim(self);
3134  }
3135};
3136
3137void Heap::ClearPendingTrim(Thread* self) {
3138  MutexLock mu(self, *pending_task_lock_);
3139  pending_heap_trim_ = nullptr;
3140}
3141
3142void Heap::RequestTrim(Thread* self) {
3143  if (!CanAddHeapTask(self)) {
3144    return;
3145  }
3146  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3147  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3148  // a space it will hold its lock and can become a cause of jank.
3149  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3150  // forking.
3151
3152  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3153  // because that only marks object heads, so a large array looks like lots of empty space. We
3154  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3155  // to utilization (which is probably inversely proportional to how much benefit we can expect).
3156  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3157  // not how much use we're making of those pages.
3158  HeapTrimTask* added_task = nullptr;
3159  {
3160    MutexLock mu(self, *pending_task_lock_);
3161    if (pending_heap_trim_ != nullptr) {
3162      // Already have a heap trim request in task processor, ignore this request.
3163      return;
3164    }
3165    added_task = new HeapTrimTask(kHeapTrimWait);
3166    pending_heap_trim_ = added_task;
3167  }
3168  task_processor_->AddTask(self, added_task);
3169}
3170
3171void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3172  if (rosalloc_space_ != nullptr) {
3173    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3174  }
3175  if (bump_pointer_space_ != nullptr) {
3176    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
3177  }
3178}
3179
3180void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3181  if (rosalloc_space_ != nullptr) {
3182    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3183  }
3184}
3185
3186void Heap::RevokeAllThreadLocalBuffers() {
3187  if (rosalloc_space_ != nullptr) {
3188    rosalloc_space_->RevokeAllThreadLocalBuffers();
3189  }
3190  if (bump_pointer_space_ != nullptr) {
3191    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3192  }
3193}
3194
3195bool Heap::IsGCRequestPending() const {
3196  return concurrent_gc_pending_.LoadRelaxed();
3197}
3198
3199void Heap::RunFinalization(JNIEnv* env) {
3200  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3201  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3202    CHECK(WellKnownClasses::java_lang_System != nullptr);
3203    WellKnownClasses::java_lang_System_runFinalization =
3204        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3205    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3206  }
3207  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3208                            WellKnownClasses::java_lang_System_runFinalization);
3209}
3210
3211void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3212  Thread* self = ThreadForEnv(env);
3213  if (native_need_to_run_finalization_) {
3214    RunFinalization(env);
3215    UpdateMaxNativeFootprint();
3216    native_need_to_run_finalization_ = false;
3217  }
3218  // Total number of native bytes allocated.
3219  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3220  new_native_bytes_allocated += bytes;
3221  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3222    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3223        collector::kGcTypeFull;
3224
3225    // The second watermark is higher than the gc watermark. If you hit this it means you are
3226    // allocating native objects faster than the GC can keep up with.
3227    if (new_native_bytes_allocated > growth_limit_) {
3228      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3229        // Just finished a GC, attempt to run finalizers.
3230        RunFinalization(env);
3231        CHECK(!env->ExceptionCheck());
3232      }
3233      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3234      if (new_native_bytes_allocated > growth_limit_) {
3235        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3236        RunFinalization(env);
3237        native_need_to_run_finalization_ = false;
3238        CHECK(!env->ExceptionCheck());
3239      }
3240      // We have just run finalizers, update the native watermark since it is very likely that
3241      // finalizers released native managed allocations.
3242      UpdateMaxNativeFootprint();
3243    } else if (!IsGCRequestPending()) {
3244      if (IsGcConcurrent()) {
3245        RequestConcurrentGC(self);
3246      } else {
3247        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3248      }
3249    }
3250  }
3251}
3252
3253void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3254  size_t expected_size;
3255  do {
3256    expected_size = native_bytes_allocated_.LoadRelaxed();
3257    if (UNLIKELY(bytes > expected_size)) {
3258      ScopedObjectAccess soa(env);
3259      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3260                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3261                                 "registered as allocated", bytes, expected_size).c_str());
3262      break;
3263    }
3264  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3265                                                               expected_size - bytes));
3266}
3267
3268size_t Heap::GetTotalMemory() const {
3269  return std::max(max_allowed_footprint_, GetBytesAllocated());
3270}
3271
3272void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3273  DCHECK(mod_union_table != nullptr);
3274  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3275}
3276
3277void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3278  CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3279        (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3280  CHECK_GE(byte_count, sizeof(mirror::Object));
3281}
3282
3283void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3284  CHECK(remembered_set != nullptr);
3285  space::Space* space = remembered_set->GetSpace();
3286  CHECK(space != nullptr);
3287  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3288  remembered_sets_.Put(space, remembered_set);
3289  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3290}
3291
3292void Heap::RemoveRememberedSet(space::Space* space) {
3293  CHECK(space != nullptr);
3294  auto it = remembered_sets_.find(space);
3295  CHECK(it != remembered_sets_.end());
3296  delete it->second;
3297  remembered_sets_.erase(it);
3298  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3299}
3300
3301void Heap::ClearMarkedObjects() {
3302  // Clear all of the spaces' mark bitmaps.
3303  for (const auto& space : GetContinuousSpaces()) {
3304    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3305    if (space->GetLiveBitmap() != mark_bitmap) {
3306      mark_bitmap->Clear();
3307    }
3308  }
3309  // Clear the marked objects in the discontinous space object sets.
3310  for (const auto& space : GetDiscontinuousSpaces()) {
3311    space->GetMarkBitmap()->Clear();
3312  }
3313}
3314
3315}  // namespace gc
3316}  // namespace art
3317