heap.cc revision 17a924abde2b0f1f37f6008b451a0a75190c71ff
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "art_field-inl.h"
27#include "base/allocator.h"
28#include "base/dumpable.h"
29#include "base/histogram-inl.h"
30#include "base/stl_util.h"
31#include "common_throws.h"
32#include "cutils/sched_policy.h"
33#include "debugger.h"
34#include "dex_file-inl.h"
35#include "gc/accounting/atomic_stack.h"
36#include "gc/accounting/card_table-inl.h"
37#include "gc/accounting/heap_bitmap-inl.h"
38#include "gc/accounting/mod_union_table.h"
39#include "gc/accounting/mod_union_table-inl.h"
40#include "gc/accounting/remembered_set.h"
41#include "gc/accounting/space_bitmap-inl.h"
42#include "gc/collector/concurrent_copying.h"
43#include "gc/collector/mark_compact.h"
44#include "gc/collector/mark_sweep-inl.h"
45#include "gc/collector/partial_mark_sweep.h"
46#include "gc/collector/semi_space.h"
47#include "gc/collector/sticky_mark_sweep.h"
48#include "gc/reference_processor.h"
49#include "gc/space/bump_pointer_space.h"
50#include "gc/space/dlmalloc_space-inl.h"
51#include "gc/space/image_space.h"
52#include "gc/space/large_object_space.h"
53#include "gc/space/region_space.h"
54#include "gc/space/rosalloc_space-inl.h"
55#include "gc/space/space-inl.h"
56#include "gc/space/zygote_space.h"
57#include "gc/task_processor.h"
58#include "entrypoints/quick/quick_alloc_entrypoints.h"
59#include "heap-inl.h"
60#include "image.h"
61#include "intern_table.h"
62#include "mirror/class-inl.h"
63#include "mirror/object.h"
64#include "mirror/object-inl.h"
65#include "mirror/object_array-inl.h"
66#include "mirror/reference-inl.h"
67#include "os.h"
68#include "reflection.h"
69#include "runtime.h"
70#include "ScopedLocalRef.h"
71#include "scoped_thread_state_change.h"
72#include "handle_scope-inl.h"
73#include "thread_list.h"
74#include "well_known_classes.h"
75
76namespace art {
77
78namespace gc {
79
80static constexpr size_t kCollectorTransitionStressIterations = 0;
81static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
82// Minimum amount of remaining bytes before a concurrent GC is triggered.
83static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
84static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
85// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
86// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
87// threads (lower pauses, use less memory bandwidth).
88static constexpr double kStickyGcThroughputAdjustment = 1.0;
89// Whether or not we compact the zygote in PreZygoteFork.
90static constexpr bool kCompactZygote = kMovingCollector;
91// How many reserve entries are at the end of the allocation stack, these are only needed if the
92// allocation stack overflows.
93static constexpr size_t kAllocationStackReserveSize = 1024;
94// Default mark stack size in bytes.
95static const size_t kDefaultMarkStackSize = 64 * KB;
96// Define space name.
97static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
98static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
99static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
100static const char* kNonMovingSpaceName = "non moving space";
101static const char* kZygoteSpaceName = "zygote space";
102static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
103static constexpr bool kGCALotMode = false;
104// GC alot mode uses a small allocation stack to stress test a lot of GC.
105static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
106    sizeof(mirror::HeapReference<mirror::Object>);
107// Verify objet has a small allocation stack size since searching the allocation stack is slow.
108static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
109    sizeof(mirror::HeapReference<mirror::Object>);
110static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
111    sizeof(mirror::HeapReference<mirror::Object>);
112
113Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
114           double target_utilization, double foreground_heap_growth_multiplier,
115           size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
116           const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
117           CollectorType background_collector_type,
118           space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
119           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
120           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
121           bool ignore_max_footprint, bool use_tlab,
122           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
123           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
124           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
125           uint64_t min_interval_homogeneous_space_compaction_by_oom)
126    : non_moving_space_(nullptr),
127      rosalloc_space_(nullptr),
128      dlmalloc_space_(nullptr),
129      main_space_(nullptr),
130      collector_type_(kCollectorTypeNone),
131      foreground_collector_type_(foreground_collector_type),
132      background_collector_type_(background_collector_type),
133      desired_collector_type_(foreground_collector_type_),
134      pending_task_lock_(nullptr),
135      parallel_gc_threads_(parallel_gc_threads),
136      conc_gc_threads_(conc_gc_threads),
137      low_memory_mode_(low_memory_mode),
138      long_pause_log_threshold_(long_pause_log_threshold),
139      long_gc_log_threshold_(long_gc_log_threshold),
140      ignore_max_footprint_(ignore_max_footprint),
141      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
142      zygote_space_(nullptr),
143      large_object_threshold_(large_object_threshold),
144      collector_type_running_(kCollectorTypeNone),
145      last_gc_type_(collector::kGcTypeNone),
146      next_gc_type_(collector::kGcTypePartial),
147      capacity_(capacity),
148      growth_limit_(growth_limit),
149      max_allowed_footprint_(initial_size),
150      native_footprint_gc_watermark_(initial_size),
151      native_need_to_run_finalization_(false),
152      // Initially assume we perceive jank in case the process state is never updated.
153      process_state_(kProcessStateJankPerceptible),
154      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
155      total_bytes_freed_ever_(0),
156      total_objects_freed_ever_(0),
157      num_bytes_allocated_(0),
158      native_bytes_allocated_(0),
159      num_bytes_freed_revoke_(0),
160      verify_missing_card_marks_(false),
161      verify_system_weaks_(false),
162      verify_pre_gc_heap_(verify_pre_gc_heap),
163      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
164      verify_post_gc_heap_(verify_post_gc_heap),
165      verify_mod_union_table_(false),
166      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
167      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
168      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
169      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
170       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
171       * verification is enabled, we limit the size of allocation stacks to speed up their
172       * searching.
173       */
174      max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
175          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
176          kDefaultAllocationStackSize),
177      current_allocator_(kAllocatorTypeDlMalloc),
178      current_non_moving_allocator_(kAllocatorTypeNonMoving),
179      bump_pointer_space_(nullptr),
180      temp_space_(nullptr),
181      region_space_(nullptr),
182      min_free_(min_free),
183      max_free_(max_free),
184      target_utilization_(target_utilization),
185      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
186      total_wait_time_(0),
187      total_allocation_time_(0),
188      verify_object_mode_(kVerifyObjectModeDisabled),
189      disable_moving_gc_count_(0),
190      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
191      use_tlab_(use_tlab),
192      main_space_backup_(nullptr),
193      min_interval_homogeneous_space_compaction_by_oom_(
194          min_interval_homogeneous_space_compaction_by_oom),
195      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
196      pending_collector_transition_(nullptr),
197      pending_heap_trim_(nullptr),
198      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
199      running_collection_is_blocking_(false),
200      blocking_gc_count_(0U),
201      blocking_gc_time_(0U),
202      last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
203          (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
204      gc_count_last_window_(0U),
205      blocking_gc_count_last_window_(0U),
206      gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
207      blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
208                                        kGcCountRateMaxBucketCount) {
209  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
210    LOG(INFO) << "Heap() entering";
211  }
212  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
213  // entrypoints.
214  const bool is_zygote = Runtime::Current()->IsZygote();
215  if (!is_zygote) {
216    // Background compaction is currently not supported for command line runs.
217    if (background_collector_type_ != foreground_collector_type_) {
218      VLOG(heap) << "Disabling background compaction for non zygote";
219      background_collector_type_ = foreground_collector_type_;
220    }
221  }
222  ChangeCollector(desired_collector_type_);
223  live_bitmap_.reset(new accounting::HeapBitmap(this));
224  mark_bitmap_.reset(new accounting::HeapBitmap(this));
225  // Requested begin for the alloc space, to follow the mapped image and oat files
226  uint8_t* requested_alloc_space_begin = nullptr;
227  if (foreground_collector_type_ == kCollectorTypeCC) {
228    // Need to use a low address so that we can allocate a contiguous
229    // 2 * Xmx space when there's no image (dex2oat for target).
230    CHECK_GE(300 * MB, non_moving_space_capacity);
231    requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
232  }
233  if (!image_file_name.empty()) {
234    std::string error_msg;
235    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
236                                                               image_instruction_set,
237                                                               &error_msg);
238    if (image_space != nullptr) {
239      AddSpace(image_space);
240      // Oat files referenced by image files immediately follow them in memory, ensure alloc space
241      // isn't going to get in the middle
242      uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
243      CHECK_GT(oat_file_end_addr, image_space->End());
244      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
245    } else {
246      LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
247                   << "Attempting to fall back to imageless running. Error was: " << error_msg;
248    }
249  }
250  /*
251  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
252                                     +-  nonmoving space (non_moving_space_capacity)+-
253                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
254                                     +-????????????????????????????????????????????+-
255                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
256                                     +-main alloc space / bump space 1 (capacity_) +-
257                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
258                                     +-????????????????????????????????????????????+-
259                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
260                                     +-main alloc space2 / bump space 2 (capacity_)+-
261                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
262  */
263  // We don't have hspace compaction enabled with GSS or CC.
264  if (foreground_collector_type_ == kCollectorTypeGSS ||
265      foreground_collector_type_ == kCollectorTypeCC) {
266    use_homogeneous_space_compaction_for_oom_ = false;
267  }
268  bool support_homogeneous_space_compaction =
269      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
270      use_homogeneous_space_compaction_for_oom_;
271  // We may use the same space the main space for the non moving space if we don't need to compact
272  // from the main space.
273  // This is not the case if we support homogeneous compaction or have a moving background
274  // collector type.
275  bool separate_non_moving_space = is_zygote ||
276      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
277      IsMovingGc(background_collector_type_);
278  if (foreground_collector_type == kCollectorTypeGSS) {
279    separate_non_moving_space = false;
280  }
281  std::unique_ptr<MemMap> main_mem_map_1;
282  std::unique_ptr<MemMap> main_mem_map_2;
283  uint8_t* request_begin = requested_alloc_space_begin;
284  if (request_begin != nullptr && separate_non_moving_space) {
285    request_begin += non_moving_space_capacity;
286  }
287  std::string error_str;
288  std::unique_ptr<MemMap> non_moving_space_mem_map;
289  if (separate_non_moving_space) {
290    // If we are the zygote, the non moving space becomes the zygote space when we run
291    // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
292    // rename the mem map later.
293    const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
294    // Reserve the non moving mem map before the other two since it needs to be at a specific
295    // address.
296    non_moving_space_mem_map.reset(
297        MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
298                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
299                             &error_str));
300    CHECK(non_moving_space_mem_map != nullptr) << error_str;
301    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
302    request_begin = reinterpret_cast<uint8_t*>(300 * MB);
303  }
304  // Attempt to create 2 mem maps at or after the requested begin.
305  if (foreground_collector_type_ != kCollectorTypeCC) {
306    if (separate_non_moving_space) {
307      main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin,
308                                                        capacity_, &error_str));
309    } else {
310      // If no separate non-moving space, the main space must come
311      // right after the image space to avoid a gap.
312      main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
313                                                PROT_READ | PROT_WRITE, true, false,
314                                                &error_str));
315    }
316    CHECK(main_mem_map_1.get() != nullptr) << error_str;
317  }
318  if (support_homogeneous_space_compaction ||
319      background_collector_type_ == kCollectorTypeSS ||
320      foreground_collector_type_ == kCollectorTypeSS) {
321    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
322                                                      capacity_, &error_str));
323    CHECK(main_mem_map_2.get() != nullptr) << error_str;
324  }
325  // Create the non moving space first so that bitmaps don't take up the address range.
326  if (separate_non_moving_space) {
327    // Non moving space is always dlmalloc since we currently don't have support for multiple
328    // active rosalloc spaces.
329    const size_t size = non_moving_space_mem_map->Size();
330    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
331        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
332        initial_size, size, size, false);
333    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
334    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
335        << requested_alloc_space_begin;
336    AddSpace(non_moving_space_);
337  }
338  // Create other spaces based on whether or not we have a moving GC.
339  if (foreground_collector_type_ == kCollectorTypeCC) {
340    region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
341    AddSpace(region_space_);
342  } else if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
343    // Create bump pointer spaces.
344    // We only to create the bump pointer if the foreground collector is a compacting GC.
345    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
346    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
347                                                                    main_mem_map_1.release());
348    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
349    AddSpace(bump_pointer_space_);
350    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
351                                                            main_mem_map_2.release());
352    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
353    AddSpace(temp_space_);
354    CHECK(separate_non_moving_space);
355  } else {
356    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
357    CHECK(main_space_ != nullptr);
358    AddSpace(main_space_);
359    if (!separate_non_moving_space) {
360      non_moving_space_ = main_space_;
361      CHECK(!non_moving_space_->CanMoveObjects());
362    }
363    if (foreground_collector_type_ == kCollectorTypeGSS) {
364      CHECK_EQ(foreground_collector_type_, background_collector_type_);
365      // Create bump pointer spaces instead of a backup space.
366      main_mem_map_2.release();
367      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
368                                                            kGSSBumpPointerSpaceCapacity, nullptr);
369      CHECK(bump_pointer_space_ != nullptr);
370      AddSpace(bump_pointer_space_);
371      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
372                                                    kGSSBumpPointerSpaceCapacity, nullptr);
373      CHECK(temp_space_ != nullptr);
374      AddSpace(temp_space_);
375    } else if (main_mem_map_2.get() != nullptr) {
376      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
377      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
378                                                           growth_limit_, capacity_, name, true));
379      CHECK(main_space_backup_.get() != nullptr);
380      // Add the space so its accounted for in the heap_begin and heap_end.
381      AddSpace(main_space_backup_.get());
382    }
383  }
384  CHECK(non_moving_space_ != nullptr);
385  CHECK(!non_moving_space_->CanMoveObjects());
386  // Allocate the large object space.
387  if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
388    large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
389                                                       capacity_);
390    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
391  } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
392    large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
393    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
394  } else {
395    // Disable the large object space by making the cutoff excessively large.
396    large_object_threshold_ = std::numeric_limits<size_t>::max();
397    large_object_space_ = nullptr;
398  }
399  if (large_object_space_ != nullptr) {
400    AddSpace(large_object_space_);
401  }
402  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
403  CHECK(!continuous_spaces_.empty());
404  // Relies on the spaces being sorted.
405  uint8_t* heap_begin = continuous_spaces_.front()->Begin();
406  uint8_t* heap_end = continuous_spaces_.back()->Limit();
407  size_t heap_capacity = heap_end - heap_begin;
408  // Remove the main backup space since it slows down the GC to have unused extra spaces.
409  // TODO: Avoid needing to do this.
410  if (main_space_backup_.get() != nullptr) {
411    RemoveSpace(main_space_backup_.get());
412  }
413  // Allocate the card table.
414  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
415  CHECK(card_table_.get() != nullptr) << "Failed to create card table";
416
417  if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
418    rb_table_.reset(new accounting::ReadBarrierTable());
419    DCHECK(rb_table_->IsAllCleared());
420  }
421  if (GetImageSpace() != nullptr) {
422    // Don't add the image mod union table if we are running without an image, this can crash if
423    // we use the CardCache implementation.
424    accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
425        "Image mod-union table", this, GetImageSpace());
426    CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
427    AddModUnionTable(mod_union_table);
428  }
429  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
430    accounting::RememberedSet* non_moving_space_rem_set =
431        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
432    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
433    AddRememberedSet(non_moving_space_rem_set);
434  }
435  // TODO: Count objects in the image space here?
436  num_bytes_allocated_.StoreRelaxed(0);
437  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
438                                                    kDefaultMarkStackSize));
439  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
440  allocation_stack_.reset(accounting::ObjectStack::Create(
441      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
442  live_stack_.reset(accounting::ObjectStack::Create(
443      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
444  // It's still too early to take a lock because there are no threads yet, but we can create locks
445  // now. We don't create it earlier to make it clear that you can't use locks during heap
446  // initialization.
447  gc_complete_lock_ = new Mutex("GC complete lock");
448  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
449                                                *gc_complete_lock_));
450  task_processor_.reset(new TaskProcessor());
451  pending_task_lock_ = new Mutex("Pending task lock");
452  if (ignore_max_footprint_) {
453    SetIdealFootprint(std::numeric_limits<size_t>::max());
454    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
455  }
456  CHECK_NE(max_allowed_footprint_, 0U);
457  // Create our garbage collectors.
458  for (size_t i = 0; i < 2; ++i) {
459    const bool concurrent = i != 0;
460    if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
461        (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
462      garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
463      garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
464      garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
465    }
466  }
467  if (kMovingCollector) {
468    if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
469        MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
470        use_homogeneous_space_compaction_for_oom_) {
471      // TODO: Clean this up.
472      const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
473      semi_space_collector_ = new collector::SemiSpace(this, generational,
474                                                       generational ? "generational" : "");
475      garbage_collectors_.push_back(semi_space_collector_);
476    }
477    if (MayUseCollector(kCollectorTypeCC)) {
478      concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
479      garbage_collectors_.push_back(concurrent_copying_collector_);
480    }
481    if (MayUseCollector(kCollectorTypeMC)) {
482      mark_compact_collector_ = new collector::MarkCompact(this);
483      garbage_collectors_.push_back(mark_compact_collector_);
484    }
485  }
486  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
487      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
488    // Check that there's no gap between the image space and the non moving space so that the
489    // immune region won't break (eg. due to a large object allocated in the gap). This is only
490    // required when we're the zygote or using GSS.
491    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
492                                      non_moving_space_->GetMemMap());
493    if (!no_gap) {
494      MemMap::DumpMaps(LOG(ERROR), true);
495      LOG(FATAL) << "There's a gap between the image space and the non-moving space";
496    }
497  }
498  if (running_on_valgrind_) {
499    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
500  }
501  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
502    LOG(INFO) << "Heap() exiting";
503  }
504}
505
506MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
507                                           size_t capacity, std::string* out_error_str) {
508  while (true) {
509    MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
510                                       PROT_READ | PROT_WRITE, true, false, out_error_str);
511    if (map != nullptr || request_begin == nullptr) {
512      return map;
513    }
514    // Retry a  second time with no specified request begin.
515    request_begin = nullptr;
516  }
517}
518
519bool Heap::MayUseCollector(CollectorType type) const {
520  return foreground_collector_type_ == type || background_collector_type_ == type;
521}
522
523space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
524                                                      size_t growth_limit, size_t capacity,
525                                                      const char* name, bool can_move_objects) {
526  space::MallocSpace* malloc_space = nullptr;
527  if (kUseRosAlloc) {
528    // Create rosalloc space.
529    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
530                                                          initial_size, growth_limit, capacity,
531                                                          low_memory_mode_, can_move_objects);
532  } else {
533    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
534                                                          initial_size, growth_limit, capacity,
535                                                          can_move_objects);
536  }
537  if (collector::SemiSpace::kUseRememberedSet) {
538    accounting::RememberedSet* rem_set  =
539        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
540    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
541    AddRememberedSet(rem_set);
542  }
543  CHECK(malloc_space != nullptr) << "Failed to create " << name;
544  malloc_space->SetFootprintLimit(malloc_space->Capacity());
545  return malloc_space;
546}
547
548void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
549                                 size_t capacity) {
550  // Is background compaction is enabled?
551  bool can_move_objects = IsMovingGc(background_collector_type_) !=
552      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
553  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
554  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
555  // from the main space to the zygote space. If background compaction is enabled, always pass in
556  // that we can move objets.
557  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
558    // After the zygote we want this to be false if we don't have background compaction enabled so
559    // that getting primitive array elements is faster.
560    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
561    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
562  }
563  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
564    RemoveRememberedSet(main_space_);
565  }
566  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
567  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
568                                            can_move_objects);
569  SetSpaceAsDefault(main_space_);
570  VLOG(heap) << "Created main space " << main_space_;
571}
572
573void Heap::ChangeAllocator(AllocatorType allocator) {
574  if (current_allocator_ != allocator) {
575    // These two allocators are only used internally and don't have any entrypoints.
576    CHECK_NE(allocator, kAllocatorTypeLOS);
577    CHECK_NE(allocator, kAllocatorTypeNonMoving);
578    current_allocator_ = allocator;
579    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
580    SetQuickAllocEntryPointsAllocator(current_allocator_);
581    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
582  }
583}
584
585void Heap::DisableMovingGc() {
586  if (IsMovingGc(foreground_collector_type_)) {
587    foreground_collector_type_ = kCollectorTypeCMS;
588  }
589  if (IsMovingGc(background_collector_type_)) {
590    background_collector_type_ = foreground_collector_type_;
591  }
592  TransitionCollector(foreground_collector_type_);
593  ThreadList* tl = Runtime::Current()->GetThreadList();
594  Thread* self = Thread::Current();
595  ScopedThreadStateChange tsc(self, kSuspended);
596  tl->SuspendAll(__FUNCTION__);
597  // Something may have caused the transition to fail.
598  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
599    CHECK(main_space_ != nullptr);
600    // The allocation stack may have non movable objects in it. We need to flush it since the GC
601    // can't only handle marking allocation stack objects of one non moving space and one main
602    // space.
603    {
604      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
605      FlushAllocStack();
606    }
607    main_space_->DisableMovingObjects();
608    non_moving_space_ = main_space_;
609    CHECK(!non_moving_space_->CanMoveObjects());
610  }
611  tl->ResumeAll();
612}
613
614std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
615  if (!IsValidContinuousSpaceObjectAddress(klass)) {
616    return StringPrintf("<non heap address klass %p>", klass);
617  }
618  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
619  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
620    std::string result("[");
621    result += SafeGetClassDescriptor(component_type);
622    return result;
623  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
624    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
625  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
626    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
627  } else {
628    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
629    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
630      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
631    }
632    const DexFile* dex_file = dex_cache->GetDexFile();
633    uint16_t class_def_idx = klass->GetDexClassDefIndex();
634    if (class_def_idx == DexFile::kDexNoIndex16) {
635      return "<class def not found>";
636    }
637    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
638    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
639    return dex_file->GetTypeDescriptor(type_id);
640  }
641}
642
643std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
644  if (obj == nullptr) {
645    return "null";
646  }
647  mirror::Class* klass = obj->GetClass<kVerifyNone>();
648  if (klass == nullptr) {
649    return "(class=null)";
650  }
651  std::string result(SafeGetClassDescriptor(klass));
652  if (obj->IsClass()) {
653    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
654  }
655  return result;
656}
657
658void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
659  if (obj == nullptr) {
660    stream << "(obj=null)";
661    return;
662  }
663  if (IsAligned<kObjectAlignment>(obj)) {
664    space::Space* space = nullptr;
665    // Don't use find space since it only finds spaces which actually contain objects instead of
666    // spaces which may contain objects (e.g. cleared bump pointer spaces).
667    for (const auto& cur_space : continuous_spaces_) {
668      if (cur_space->HasAddress(obj)) {
669        space = cur_space;
670        break;
671      }
672    }
673    // Unprotect all the spaces.
674    for (const auto& con_space : continuous_spaces_) {
675      mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
676    }
677    stream << "Object " << obj;
678    if (space != nullptr) {
679      stream << " in space " << *space;
680    }
681    mirror::Class* klass = obj->GetClass<kVerifyNone>();
682    stream << "\nclass=" << klass;
683    if (klass != nullptr) {
684      stream << " type= " << SafePrettyTypeOf(obj);
685    }
686    // Re-protect the address we faulted on.
687    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
688  }
689}
690
691bool Heap::IsCompilingBoot() const {
692  if (!Runtime::Current()->IsAotCompiler()) {
693    return false;
694  }
695  for (const auto& space : continuous_spaces_) {
696    if (space->IsImageSpace() || space->IsZygoteSpace()) {
697      return false;
698    }
699  }
700  return true;
701}
702
703bool Heap::HasImageSpace() const {
704  for (const auto& space : continuous_spaces_) {
705    if (space->IsImageSpace()) {
706      return true;
707    }
708  }
709  return false;
710}
711
712void Heap::IncrementDisableMovingGC(Thread* self) {
713  // Need to do this holding the lock to prevent races where the GC is about to run / running when
714  // we attempt to disable it.
715  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
716  MutexLock mu(self, *gc_complete_lock_);
717  ++disable_moving_gc_count_;
718  if (IsMovingGc(collector_type_running_)) {
719    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
720  }
721}
722
723void Heap::DecrementDisableMovingGC(Thread* self) {
724  MutexLock mu(self, *gc_complete_lock_);
725  CHECK_GE(disable_moving_gc_count_, 0U);
726  --disable_moving_gc_count_;
727}
728
729void Heap::UpdateProcessState(ProcessState process_state) {
730  if (process_state_ != process_state) {
731    process_state_ = process_state;
732    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
733      // Start at index 1 to avoid "is always false" warning.
734      // Have iteration 1 always transition the collector.
735      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
736                          ? foreground_collector_type_ : background_collector_type_);
737      usleep(kCollectorTransitionStressWait);
738    }
739    if (process_state_ == kProcessStateJankPerceptible) {
740      // Transition back to foreground right away to prevent jank.
741      RequestCollectorTransition(foreground_collector_type_, 0);
742    } else {
743      // Don't delay for debug builds since we may want to stress test the GC.
744      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
745      // special handling which does a homogenous space compaction once but then doesn't transition
746      // the collector.
747      RequestCollectorTransition(background_collector_type_,
748                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
749    }
750  }
751}
752
753void Heap::CreateThreadPool() {
754  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
755  if (num_threads != 0) {
756    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
757  }
758}
759
760// Visit objects when threads aren't suspended. If concurrent moving
761// GC, disable moving GC and suspend threads and then visit objects.
762void Heap::VisitObjects(ObjectCallback callback, void* arg) {
763  Thread* self = Thread::Current();
764  Locks::mutator_lock_->AssertSharedHeld(self);
765  DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
766  if (IsGcConcurrentAndMoving()) {
767    // Concurrent moving GC. Just suspending threads isn't sufficient
768    // because a collection isn't one big pause and we could suspend
769    // threads in the middle (between phases) of a concurrent moving
770    // collection where it's not easily known which objects are alive
771    // (both the region space and the non-moving space) or which
772    // copies of objects to visit, and the to-space invariant could be
773    // easily broken. Visit objects while GC isn't running by using
774    // IncrementDisableMovingGC() and threads are suspended.
775    IncrementDisableMovingGC(self);
776    self->TransitionFromRunnableToSuspended(kWaitingForVisitObjects);
777    ThreadList* tl = Runtime::Current()->GetThreadList();
778    tl->SuspendAll(__FUNCTION__);
779    VisitObjectsInternalRegionSpace(callback, arg);
780    VisitObjectsInternal(callback, arg);
781    tl->ResumeAll();
782    self->TransitionFromSuspendedToRunnable();
783    DecrementDisableMovingGC(self);
784  } else {
785    // GCs can move objects, so don't allow this.
786    ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
787    DCHECK(region_space_ == nullptr);
788    VisitObjectsInternal(callback, arg);
789  }
790}
791
792// Visit objects when threads are already suspended.
793void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
794  Thread* self = Thread::Current();
795  Locks::mutator_lock_->AssertExclusiveHeld(self);
796  VisitObjectsInternalRegionSpace(callback, arg);
797  VisitObjectsInternal(callback, arg);
798}
799
800// Visit objects in the region spaces.
801void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
802  Thread* self = Thread::Current();
803  Locks::mutator_lock_->AssertExclusiveHeld(self);
804  if (region_space_ != nullptr) {
805    DCHECK(IsGcConcurrentAndMoving());
806    if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
807      // Exclude the pre-zygote fork time where the semi-space collector
808      // calls VerifyHeapReferences() as part of the zygote compaction
809      // which then would call here without the moving GC disabled,
810      // which is fine.
811      DCHECK(IsMovingGCDisabled(self));
812    }
813    region_space_->Walk(callback, arg);
814  }
815}
816
817// Visit objects in the other spaces.
818void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
819  if (bump_pointer_space_ != nullptr) {
820    // Visit objects in bump pointer space.
821    bump_pointer_space_->Walk(callback, arg);
822  }
823  // TODO: Switch to standard begin and end to use ranged a based loop.
824  for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
825    mirror::Object* const obj = it->AsMirrorPtr();
826    if (obj != nullptr && obj->GetClass() != nullptr) {
827      // Avoid the race condition caused by the object not yet being written into the allocation
828      // stack or the class not yet being written in the object. Or, if
829      // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
830      callback(obj, arg);
831    }
832  }
833  {
834    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
835    GetLiveBitmap()->Walk(callback, arg);
836  }
837}
838
839void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
840  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
841  space::ContinuousSpace* space2 = non_moving_space_;
842  // TODO: Generalize this to n bitmaps?
843  CHECK(space1 != nullptr);
844  CHECK(space2 != nullptr);
845  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
846                 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
847                 stack);
848}
849
850void Heap::DeleteThreadPool() {
851  thread_pool_.reset(nullptr);
852}
853
854void Heap::AddSpace(space::Space* space) {
855  CHECK(space != nullptr);
856  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
857  if (space->IsContinuousSpace()) {
858    DCHECK(!space->IsDiscontinuousSpace());
859    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
860    // Continuous spaces don't necessarily have bitmaps.
861    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
862    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
863    if (live_bitmap != nullptr) {
864      CHECK(mark_bitmap != nullptr);
865      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
866      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
867    }
868    continuous_spaces_.push_back(continuous_space);
869    // Ensure that spaces remain sorted in increasing order of start address.
870    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
871              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
872      return a->Begin() < b->Begin();
873    });
874  } else {
875    CHECK(space->IsDiscontinuousSpace());
876    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
877    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
878    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
879    discontinuous_spaces_.push_back(discontinuous_space);
880  }
881  if (space->IsAllocSpace()) {
882    alloc_spaces_.push_back(space->AsAllocSpace());
883  }
884}
885
886void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
887  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
888  if (continuous_space->IsDlMallocSpace()) {
889    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
890  } else if (continuous_space->IsRosAllocSpace()) {
891    rosalloc_space_ = continuous_space->AsRosAllocSpace();
892  }
893}
894
895void Heap::RemoveSpace(space::Space* space) {
896  DCHECK(space != nullptr);
897  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
898  if (space->IsContinuousSpace()) {
899    DCHECK(!space->IsDiscontinuousSpace());
900    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
901    // Continuous spaces don't necessarily have bitmaps.
902    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
903    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
904    if (live_bitmap != nullptr) {
905      DCHECK(mark_bitmap != nullptr);
906      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
907      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
908    }
909    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
910    DCHECK(it != continuous_spaces_.end());
911    continuous_spaces_.erase(it);
912  } else {
913    DCHECK(space->IsDiscontinuousSpace());
914    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
915    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
916    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
917    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
918                        discontinuous_space);
919    DCHECK(it != discontinuous_spaces_.end());
920    discontinuous_spaces_.erase(it);
921  }
922  if (space->IsAllocSpace()) {
923    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
924    DCHECK(it != alloc_spaces_.end());
925    alloc_spaces_.erase(it);
926  }
927}
928
929void Heap::DumpGcPerformanceInfo(std::ostream& os) {
930  // Dump cumulative timings.
931  os << "Dumping cumulative Gc timings\n";
932  uint64_t total_duration = 0;
933  // Dump cumulative loggers for each GC type.
934  uint64_t total_paused_time = 0;
935  for (auto& collector : garbage_collectors_) {
936    total_duration += collector->GetCumulativeTimings().GetTotalNs();
937    total_paused_time += collector->GetTotalPausedTimeNs();
938    collector->DumpPerformanceInfo(os);
939  }
940  uint64_t allocation_time =
941      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
942  if (total_duration != 0) {
943    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
944    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
945    os << "Mean GC size throughput: "
946       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
947    os << "Mean GC object throughput: "
948       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
949  }
950  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
951  os << "Total number of allocations " << total_objects_allocated << "\n";
952  os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
953  os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
954  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
955  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
956  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
957  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
958  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
959  if (kMeasureAllocationTime) {
960    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
961    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
962       << "\n";
963  }
964  if (HasZygoteSpace()) {
965    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
966  }
967  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
968  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
969  os << "Total GC count: " << GetGcCount() << "\n";
970  os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
971  os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
972  os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
973
974  {
975    MutexLock mu(Thread::Current(), *gc_complete_lock_);
976    if (gc_count_rate_histogram_.SampleSize() > 0U) {
977      os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
978      gc_count_rate_histogram_.DumpBins(os);
979      os << "\n";
980    }
981    if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
982      os << "Histogram of blocking GC count per "
983         << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
984      blocking_gc_count_rate_histogram_.DumpBins(os);
985      os << "\n";
986    }
987  }
988
989  BaseMutex::DumpAll(os);
990}
991
992uint64_t Heap::GetGcCount() const {
993  uint64_t gc_count = 0U;
994  for (auto& collector : garbage_collectors_) {
995    gc_count += collector->GetCumulativeTimings().GetIterations();
996  }
997  return gc_count;
998}
999
1000uint64_t Heap::GetGcTime() const {
1001  uint64_t gc_time = 0U;
1002  for (auto& collector : garbage_collectors_) {
1003    gc_time += collector->GetCumulativeTimings().GetTotalNs();
1004  }
1005  return gc_time;
1006}
1007
1008uint64_t Heap::GetBlockingGcCount() const {
1009  return blocking_gc_count_;
1010}
1011
1012uint64_t Heap::GetBlockingGcTime() const {
1013  return blocking_gc_time_;
1014}
1015
1016void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1017  MutexLock mu(Thread::Current(), *gc_complete_lock_);
1018  if (gc_count_rate_histogram_.SampleSize() > 0U) {
1019    gc_count_rate_histogram_.DumpBins(os);
1020  }
1021}
1022
1023void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1024  MutexLock mu(Thread::Current(), *gc_complete_lock_);
1025  if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1026    blocking_gc_count_rate_histogram_.DumpBins(os);
1027  }
1028}
1029
1030Heap::~Heap() {
1031  VLOG(heap) << "Starting ~Heap()";
1032  STLDeleteElements(&garbage_collectors_);
1033  // If we don't reset then the mark stack complains in its destructor.
1034  allocation_stack_->Reset();
1035  live_stack_->Reset();
1036  STLDeleteValues(&mod_union_tables_);
1037  STLDeleteValues(&remembered_sets_);
1038  STLDeleteElements(&continuous_spaces_);
1039  STLDeleteElements(&discontinuous_spaces_);
1040  delete gc_complete_lock_;
1041  delete pending_task_lock_;
1042  VLOG(heap) << "Finished ~Heap()";
1043}
1044
1045space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
1046                                                            bool fail_ok) const {
1047  for (const auto& space : continuous_spaces_) {
1048    if (space->Contains(obj)) {
1049      return space;
1050    }
1051  }
1052  if (!fail_ok) {
1053    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1054  }
1055  return nullptr;
1056}
1057
1058space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
1059                                                                  bool fail_ok) const {
1060  for (const auto& space : discontinuous_spaces_) {
1061    if (space->Contains(obj)) {
1062      return space;
1063    }
1064  }
1065  if (!fail_ok) {
1066    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1067  }
1068  return nullptr;
1069}
1070
1071space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
1072  space::Space* result = FindContinuousSpaceFromObject(obj, true);
1073  if (result != nullptr) {
1074    return result;
1075  }
1076  return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1077}
1078
1079space::ImageSpace* Heap::GetImageSpace() const {
1080  for (const auto& space : continuous_spaces_) {
1081    if (space->IsImageSpace()) {
1082      return space->AsImageSpace();
1083    }
1084  }
1085  return nullptr;
1086}
1087
1088void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1089  std::ostringstream oss;
1090  size_t total_bytes_free = GetFreeMemory();
1091  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1092      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
1093  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1094  if (total_bytes_free >= byte_count) {
1095    space::AllocSpace* space = nullptr;
1096    if (allocator_type == kAllocatorTypeNonMoving) {
1097      space = non_moving_space_;
1098    } else if (allocator_type == kAllocatorTypeRosAlloc ||
1099               allocator_type == kAllocatorTypeDlMalloc) {
1100      space = main_space_;
1101    } else if (allocator_type == kAllocatorTypeBumpPointer ||
1102               allocator_type == kAllocatorTypeTLAB) {
1103      space = bump_pointer_space_;
1104    } else if (allocator_type == kAllocatorTypeRegion ||
1105               allocator_type == kAllocatorTypeRegionTLAB) {
1106      space = region_space_;
1107    }
1108    if (space != nullptr) {
1109      space->LogFragmentationAllocFailure(oss, byte_count);
1110    }
1111  }
1112  self->ThrowOutOfMemoryError(oss.str().c_str());
1113}
1114
1115void Heap::DoPendingCollectorTransition() {
1116  CollectorType desired_collector_type = desired_collector_type_;
1117  // Launch homogeneous space compaction if it is desired.
1118  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1119    if (!CareAboutPauseTimes()) {
1120      PerformHomogeneousSpaceCompact();
1121    } else {
1122      VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1123    }
1124  } else {
1125    TransitionCollector(desired_collector_type);
1126  }
1127}
1128
1129void Heap::Trim(Thread* self) {
1130  if (!CareAboutPauseTimes()) {
1131    ATRACE_BEGIN("Deflating monitors");
1132    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1133    // about pauses.
1134    Runtime* runtime = Runtime::Current();
1135    runtime->GetThreadList()->SuspendAll(__FUNCTION__);
1136    uint64_t start_time = NanoTime();
1137    size_t count = runtime->GetMonitorList()->DeflateMonitors();
1138    VLOG(heap) << "Deflating " << count << " monitors took "
1139        << PrettyDuration(NanoTime() - start_time);
1140    runtime->GetThreadList()->ResumeAll();
1141    ATRACE_END();
1142  }
1143  TrimIndirectReferenceTables(self);
1144  TrimSpaces(self);
1145}
1146
1147class TrimIndirectReferenceTableClosure : public Closure {
1148 public:
1149  explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1150  }
1151  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1152    ATRACE_BEGIN("Trimming reference table");
1153    thread->GetJniEnv()->locals.Trim();
1154    ATRACE_END();
1155    // If thread is a running mutator, then act on behalf of the trim thread.
1156    // See the code in ThreadList::RunCheckpoint.
1157    if (thread->GetState() == kRunnable) {
1158      barrier_->Pass(Thread::Current());
1159    }
1160  }
1161
1162 private:
1163  Barrier* const barrier_;
1164};
1165
1166void Heap::TrimIndirectReferenceTables(Thread* self) {
1167  ScopedObjectAccess soa(self);
1168  ATRACE_BEGIN(__FUNCTION__);
1169  JavaVMExt* vm = soa.Vm();
1170  // Trim globals indirect reference table.
1171  vm->TrimGlobals();
1172  // Trim locals indirect reference tables.
1173  Barrier barrier(0);
1174  TrimIndirectReferenceTableClosure closure(&barrier);
1175  ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1176  size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1177  if (barrier_count != 0) {
1178    barrier.Increment(self, barrier_count);
1179  }
1180  ATRACE_END();
1181}
1182
1183void Heap::TrimSpaces(Thread* self) {
1184  {
1185    // Need to do this before acquiring the locks since we don't want to get suspended while
1186    // holding any locks.
1187    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1188    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1189    // trimming.
1190    MutexLock mu(self, *gc_complete_lock_);
1191    // Ensure there is only one GC at a time.
1192    WaitForGcToCompleteLocked(kGcCauseTrim, self);
1193    collector_type_running_ = kCollectorTypeHeapTrim;
1194  }
1195  ATRACE_BEGIN(__FUNCTION__);
1196  const uint64_t start_ns = NanoTime();
1197  // Trim the managed spaces.
1198  uint64_t total_alloc_space_allocated = 0;
1199  uint64_t total_alloc_space_size = 0;
1200  uint64_t managed_reclaimed = 0;
1201  for (const auto& space : continuous_spaces_) {
1202    if (space->IsMallocSpace()) {
1203      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1204      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1205        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1206        // for a long period of time.
1207        managed_reclaimed += malloc_space->Trim();
1208      }
1209      total_alloc_space_size += malloc_space->Size();
1210    }
1211  }
1212  total_alloc_space_allocated = GetBytesAllocated();
1213  if (large_object_space_ != nullptr) {
1214    total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1215  }
1216  if (bump_pointer_space_ != nullptr) {
1217    total_alloc_space_allocated -= bump_pointer_space_->Size();
1218  }
1219  if (region_space_ != nullptr) {
1220    total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1221  }
1222  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1223      static_cast<float>(total_alloc_space_size);
1224  uint64_t gc_heap_end_ns = NanoTime();
1225  // We never move things in the native heap, so we can finish the GC at this point.
1226  FinishGC(self, collector::kGcTypeNone);
1227  size_t native_reclaimed = 0;
1228
1229#ifdef HAVE_ANDROID_OS
1230  // Only trim the native heap if we don't care about pauses.
1231  if (!CareAboutPauseTimes()) {
1232#if defined(USE_DLMALLOC)
1233    // Trim the native heap.
1234    dlmalloc_trim(0);
1235    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1236#elif defined(USE_JEMALLOC)
1237    // Jemalloc does it's own internal trimming.
1238#else
1239    UNIMPLEMENTED(WARNING) << "Add trimming support";
1240#endif
1241  }
1242#endif  // HAVE_ANDROID_OS
1243  uint64_t end_ns = NanoTime();
1244  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1245      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1246      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1247      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1248      << "%.";
1249  ATRACE_END();
1250}
1251
1252bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1253  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1254  // taking the lock.
1255  if (obj == nullptr) {
1256    return true;
1257  }
1258  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1259}
1260
1261bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1262  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1263}
1264
1265bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1266  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1267    return false;
1268  }
1269  for (const auto& space : continuous_spaces_) {
1270    if (space->HasAddress(obj)) {
1271      return true;
1272    }
1273  }
1274  return false;
1275}
1276
1277bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1278                              bool search_live_stack, bool sorted) {
1279  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1280    return false;
1281  }
1282  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1283    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1284    if (obj == klass) {
1285      // This case happens for java.lang.Class.
1286      return true;
1287    }
1288    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1289  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1290    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1291    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1292    return temp_space_->Contains(obj);
1293  }
1294  if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
1295    return true;
1296  }
1297  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1298  space::DiscontinuousSpace* d_space = nullptr;
1299  if (c_space != nullptr) {
1300    if (c_space->GetLiveBitmap()->Test(obj)) {
1301      return true;
1302    }
1303  } else {
1304    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1305    if (d_space != nullptr) {
1306      if (d_space->GetLiveBitmap()->Test(obj)) {
1307        return true;
1308      }
1309    }
1310  }
1311  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1312  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1313    if (i > 0) {
1314      NanoSleep(MsToNs(10));
1315    }
1316    if (search_allocation_stack) {
1317      if (sorted) {
1318        if (allocation_stack_->ContainsSorted(obj)) {
1319          return true;
1320        }
1321      } else if (allocation_stack_->Contains(obj)) {
1322        return true;
1323      }
1324    }
1325
1326    if (search_live_stack) {
1327      if (sorted) {
1328        if (live_stack_->ContainsSorted(obj)) {
1329          return true;
1330        }
1331      } else if (live_stack_->Contains(obj)) {
1332        return true;
1333      }
1334    }
1335  }
1336  // We need to check the bitmaps again since there is a race where we mark something as live and
1337  // then clear the stack containing it.
1338  if (c_space != nullptr) {
1339    if (c_space->GetLiveBitmap()->Test(obj)) {
1340      return true;
1341    }
1342  } else {
1343    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1344    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1345      return true;
1346    }
1347  }
1348  return false;
1349}
1350
1351std::string Heap::DumpSpaces() const {
1352  std::ostringstream oss;
1353  DumpSpaces(oss);
1354  return oss.str();
1355}
1356
1357void Heap::DumpSpaces(std::ostream& stream) const {
1358  for (const auto& space : continuous_spaces_) {
1359    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1360    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1361    stream << space << " " << *space << "\n";
1362    if (live_bitmap != nullptr) {
1363      stream << live_bitmap << " " << *live_bitmap << "\n";
1364    }
1365    if (mark_bitmap != nullptr) {
1366      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1367    }
1368  }
1369  for (const auto& space : discontinuous_spaces_) {
1370    stream << space << " " << *space << "\n";
1371  }
1372}
1373
1374void Heap::VerifyObjectBody(mirror::Object* obj) {
1375  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1376    return;
1377  }
1378
1379  // Ignore early dawn of the universe verifications.
1380  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1381    return;
1382  }
1383  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1384  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1385  CHECK(c != nullptr) << "Null class in object " << obj;
1386  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1387  CHECK(VerifyClassClass(c));
1388
1389  if (verify_object_mode_ > kVerifyObjectModeFast) {
1390    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1391    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1392  }
1393}
1394
1395void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1396  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1397}
1398
1399void Heap::VerifyHeap() {
1400  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1401  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1402}
1403
1404void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1405  // Use signed comparison since freed bytes can be negative when background compaction foreground
1406  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1407  // free list backed space typically increasing memory footprint due to padding and binning.
1408  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1409  // Note: This relies on 2s complement for handling negative freed_bytes.
1410  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1411  if (Runtime::Current()->HasStatsEnabled()) {
1412    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1413    thread_stats->freed_objects += freed_objects;
1414    thread_stats->freed_bytes += freed_bytes;
1415    // TODO: Do this concurrently.
1416    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1417    global_stats->freed_objects += freed_objects;
1418    global_stats->freed_bytes += freed_bytes;
1419  }
1420}
1421
1422void Heap::RecordFreeRevoke() {
1423  // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1424  // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1425  // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1426  // all the way to zero exactly as the remainder will be subtracted at the next GC.
1427  size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
1428  CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
1429           bytes_freed) << "num_bytes_freed_revoke_ underflow";
1430  CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
1431           bytes_freed) << "num_bytes_allocated_ underflow";
1432  GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1433}
1434
1435space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1436  for (const auto& space : continuous_spaces_) {
1437    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1438      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1439        return space->AsContinuousSpace()->AsRosAllocSpace();
1440      }
1441    }
1442  }
1443  return nullptr;
1444}
1445
1446mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1447                                             size_t alloc_size, size_t* bytes_allocated,
1448                                             size_t* usable_size,
1449                                             size_t* bytes_tl_bulk_allocated,
1450                                             mirror::Class** klass) {
1451  bool was_default_allocator = allocator == GetCurrentAllocator();
1452  // Make sure there is no pending exception since we may need to throw an OOME.
1453  self->AssertNoPendingException();
1454  DCHECK(klass != nullptr);
1455  StackHandleScope<1> hs(self);
1456  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1457  klass = nullptr;  // Invalidate for safety.
1458  // The allocation failed. If the GC is running, block until it completes, and then retry the
1459  // allocation.
1460  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1461  if (last_gc != collector::kGcTypeNone) {
1462    // If we were the default allocator but the allocator changed while we were suspended,
1463    // abort the allocation.
1464    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1465      return nullptr;
1466    }
1467    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1468    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1469                                                     usable_size, bytes_tl_bulk_allocated);
1470    if (ptr != nullptr) {
1471      return ptr;
1472    }
1473  }
1474
1475  collector::GcType tried_type = next_gc_type_;
1476  const bool gc_ran =
1477      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1478  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1479    return nullptr;
1480  }
1481  if (gc_ran) {
1482    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1483                                                     usable_size, bytes_tl_bulk_allocated);
1484    if (ptr != nullptr) {
1485      return ptr;
1486    }
1487  }
1488
1489  // Loop through our different Gc types and try to Gc until we get enough free memory.
1490  for (collector::GcType gc_type : gc_plan_) {
1491    if (gc_type == tried_type) {
1492      continue;
1493    }
1494    // Attempt to run the collector, if we succeed, re-try the allocation.
1495    const bool plan_gc_ran =
1496        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1497    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1498      return nullptr;
1499    }
1500    if (plan_gc_ran) {
1501      // Did we free sufficient memory for the allocation to succeed?
1502      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1503                                                       usable_size, bytes_tl_bulk_allocated);
1504      if (ptr != nullptr) {
1505        return ptr;
1506      }
1507    }
1508  }
1509  // Allocations have failed after GCs;  this is an exceptional state.
1510  // Try harder, growing the heap if necessary.
1511  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1512                                                  usable_size, bytes_tl_bulk_allocated);
1513  if (ptr != nullptr) {
1514    return ptr;
1515  }
1516  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1517  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1518  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1519  // OOME.
1520  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1521           << " allocation";
1522  // TODO: Run finalization, but this may cause more allocations to occur.
1523  // We don't need a WaitForGcToComplete here either.
1524  DCHECK(!gc_plan_.empty());
1525  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1526  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1527    return nullptr;
1528  }
1529  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1530                                  bytes_tl_bulk_allocated);
1531  if (ptr == nullptr) {
1532    const uint64_t current_time = NanoTime();
1533    switch (allocator) {
1534      case kAllocatorTypeRosAlloc:
1535        // Fall-through.
1536      case kAllocatorTypeDlMalloc: {
1537        if (use_homogeneous_space_compaction_for_oom_ &&
1538            current_time - last_time_homogeneous_space_compaction_by_oom_ >
1539            min_interval_homogeneous_space_compaction_by_oom_) {
1540          last_time_homogeneous_space_compaction_by_oom_ = current_time;
1541          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1542          switch (result) {
1543            case HomogeneousSpaceCompactResult::kSuccess:
1544              // If the allocation succeeded, we delayed an oom.
1545              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1546                                              usable_size, bytes_tl_bulk_allocated);
1547              if (ptr != nullptr) {
1548                count_delayed_oom_++;
1549              }
1550              break;
1551            case HomogeneousSpaceCompactResult::kErrorReject:
1552              // Reject due to disabled moving GC.
1553              break;
1554            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1555              // Throw OOM by default.
1556              break;
1557            default: {
1558              UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1559                  << static_cast<size_t>(result);
1560              UNREACHABLE();
1561            }
1562          }
1563          // Always print that we ran homogeneous space compation since this can cause jank.
1564          VLOG(heap) << "Ran heap homogeneous space compaction, "
1565                    << " requested defragmentation "
1566                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1567                    << " performed defragmentation "
1568                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1569                    << " ignored homogeneous space compaction "
1570                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1571                    << " delayed count = "
1572                    << count_delayed_oom_.LoadSequentiallyConsistent();
1573        }
1574        break;
1575      }
1576      case kAllocatorTypeNonMoving: {
1577        // Try to transition the heap if the allocation failure was due to the space being full.
1578        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1579          // If we aren't out of memory then the OOM was probably from the non moving space being
1580          // full. Attempt to disable compaction and turn the main space into a non moving space.
1581          DisableMovingGc();
1582          // If we are still a moving GC then something must have caused the transition to fail.
1583          if (IsMovingGc(collector_type_)) {
1584            MutexLock mu(self, *gc_complete_lock_);
1585            // If we couldn't disable moving GC, just throw OOME and return null.
1586            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1587                         << disable_moving_gc_count_;
1588          } else {
1589            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1590            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1591                                            usable_size, bytes_tl_bulk_allocated);
1592          }
1593        }
1594        break;
1595      }
1596      default: {
1597        // Do nothing for others allocators.
1598      }
1599    }
1600  }
1601  // If the allocation hasn't succeeded by this point, throw an OOM error.
1602  if (ptr == nullptr) {
1603    ThrowOutOfMemoryError(self, alloc_size, allocator);
1604  }
1605  return ptr;
1606}
1607
1608void Heap::SetTargetHeapUtilization(float target) {
1609  DCHECK_GT(target, 0.0f);  // asserted in Java code
1610  DCHECK_LT(target, 1.0f);
1611  target_utilization_ = target;
1612}
1613
1614size_t Heap::GetObjectsAllocated() const {
1615  size_t total = 0;
1616  for (space::AllocSpace* space : alloc_spaces_) {
1617    total += space->GetObjectsAllocated();
1618  }
1619  return total;
1620}
1621
1622uint64_t Heap::GetObjectsAllocatedEver() const {
1623  return GetObjectsFreedEver() + GetObjectsAllocated();
1624}
1625
1626uint64_t Heap::GetBytesAllocatedEver() const {
1627  return GetBytesFreedEver() + GetBytesAllocated();
1628}
1629
1630class InstanceCounter {
1631 public:
1632  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1633      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1634      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1635  }
1636  static void Callback(mirror::Object* obj, void* arg)
1637      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1638    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1639    mirror::Class* instance_class = obj->GetClass();
1640    CHECK(instance_class != nullptr);
1641    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1642      if (instance_counter->use_is_assignable_from_) {
1643        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1644          ++instance_counter->counts_[i];
1645        }
1646      } else if (instance_class == instance_counter->classes_[i]) {
1647        ++instance_counter->counts_[i];
1648      }
1649    }
1650  }
1651
1652 private:
1653  const std::vector<mirror::Class*>& classes_;
1654  bool use_is_assignable_from_;
1655  uint64_t* const counts_;
1656  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1657};
1658
1659void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1660                          uint64_t* counts) {
1661  InstanceCounter counter(classes, use_is_assignable_from, counts);
1662  VisitObjects(InstanceCounter::Callback, &counter);
1663}
1664
1665class InstanceCollector {
1666 public:
1667  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1668      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1669      : class_(c), max_count_(max_count), instances_(instances) {
1670  }
1671  static void Callback(mirror::Object* obj, void* arg)
1672      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1673    DCHECK(arg != nullptr);
1674    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1675    if (obj->GetClass() == instance_collector->class_) {
1676      if (instance_collector->max_count_ == 0 ||
1677          instance_collector->instances_.size() < instance_collector->max_count_) {
1678        instance_collector->instances_.push_back(obj);
1679      }
1680    }
1681  }
1682
1683 private:
1684  const mirror::Class* const class_;
1685  const uint32_t max_count_;
1686  std::vector<mirror::Object*>& instances_;
1687  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1688};
1689
1690void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1691                        std::vector<mirror::Object*>& instances) {
1692  InstanceCollector collector(c, max_count, instances);
1693  VisitObjects(&InstanceCollector::Callback, &collector);
1694}
1695
1696class ReferringObjectsFinder {
1697 public:
1698  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1699                         std::vector<mirror::Object*>& referring_objects)
1700      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1701      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1702  }
1703
1704  static void Callback(mirror::Object* obj, void* arg)
1705      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1706    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1707  }
1708
1709  // For bitmap Visit.
1710  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1711  // annotalysis on visitors.
1712  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1713    o->VisitReferences<true>(*this, VoidFunctor());
1714  }
1715
1716  // For Object::VisitReferences.
1717  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1718      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1719    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1720    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1721      referring_objects_.push_back(obj);
1722    }
1723  }
1724
1725 private:
1726  const mirror::Object* const object_;
1727  const uint32_t max_count_;
1728  std::vector<mirror::Object*>& referring_objects_;
1729  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1730};
1731
1732void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1733                               std::vector<mirror::Object*>& referring_objects) {
1734  ReferringObjectsFinder finder(o, max_count, referring_objects);
1735  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1736}
1737
1738void Heap::CollectGarbage(bool clear_soft_references) {
1739  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1740  // last GC will not have necessarily been cleared.
1741  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1742}
1743
1744HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1745  Thread* self = Thread::Current();
1746  // Inc requested homogeneous space compaction.
1747  count_requested_homogeneous_space_compaction_++;
1748  // Store performed homogeneous space compaction at a new request arrival.
1749  ThreadList* tl = Runtime::Current()->GetThreadList();
1750  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1751  Locks::mutator_lock_->AssertNotHeld(self);
1752  {
1753    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1754    MutexLock mu(self, *gc_complete_lock_);
1755    // Ensure there is only one GC at a time.
1756    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1757    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1758    // is non zero.
1759    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1760    // exit.
1761    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1762        !main_space_->CanMoveObjects()) {
1763      return HomogeneousSpaceCompactResult::kErrorReject;
1764    }
1765    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1766  }
1767  if (Runtime::Current()->IsShuttingDown(self)) {
1768    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1769    // cause objects to get finalized.
1770    FinishGC(self, collector::kGcTypeNone);
1771    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1772  }
1773  // Suspend all threads.
1774  tl->SuspendAll(__FUNCTION__);
1775  uint64_t start_time = NanoTime();
1776  // Launch compaction.
1777  space::MallocSpace* to_space = main_space_backup_.release();
1778  space::MallocSpace* from_space = main_space_;
1779  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1780  const uint64_t space_size_before_compaction = from_space->Size();
1781  AddSpace(to_space);
1782  // Make sure that we will have enough room to copy.
1783  CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1784  collector::GarbageCollector* collector = Compact(to_space, from_space,
1785                                                   kGcCauseHomogeneousSpaceCompact);
1786  const uint64_t space_size_after_compaction = to_space->Size();
1787  main_space_ = to_space;
1788  main_space_backup_.reset(from_space);
1789  RemoveSpace(from_space);
1790  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1791  // Update performed homogeneous space compaction count.
1792  count_performed_homogeneous_space_compaction_++;
1793  // Print statics log and resume all threads.
1794  uint64_t duration = NanoTime() - start_time;
1795  VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1796             << PrettySize(space_size_before_compaction) << " -> "
1797             << PrettySize(space_size_after_compaction) << " compact-ratio: "
1798             << std::fixed << static_cast<double>(space_size_after_compaction) /
1799             static_cast<double>(space_size_before_compaction);
1800  tl->ResumeAll();
1801  // Finish GC.
1802  reference_processor_.EnqueueClearedReferences(self);
1803  GrowForUtilization(semi_space_collector_);
1804  LogGC(kGcCauseHomogeneousSpaceCompact, collector);
1805  FinishGC(self, collector::kGcTypeFull);
1806  return HomogeneousSpaceCompactResult::kSuccess;
1807}
1808
1809void Heap::TransitionCollector(CollectorType collector_type) {
1810  if (collector_type == collector_type_) {
1811    return;
1812  }
1813  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1814             << " -> " << static_cast<int>(collector_type);
1815  uint64_t start_time = NanoTime();
1816  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1817  Runtime* const runtime = Runtime::Current();
1818  ThreadList* const tl = runtime->GetThreadList();
1819  Thread* const self = Thread::Current();
1820  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1821  Locks::mutator_lock_->AssertNotHeld(self);
1822  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1823  // compacting_gc_disable_count_, this should rarely occurs).
1824  for (;;) {
1825    {
1826      ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1827      MutexLock mu(self, *gc_complete_lock_);
1828      // Ensure there is only one GC at a time.
1829      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1830      // Currently we only need a heap transition if we switch from a moving collector to a
1831      // non-moving one, or visa versa.
1832      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1833      // If someone else beat us to it and changed the collector before we could, exit.
1834      // This is safe to do before the suspend all since we set the collector_type_running_ before
1835      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1836      // then it would get blocked on WaitForGcToCompleteLocked.
1837      if (collector_type == collector_type_) {
1838        return;
1839      }
1840      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1841      if (!copying_transition || disable_moving_gc_count_ == 0) {
1842        // TODO: Not hard code in semi-space collector?
1843        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1844        break;
1845      }
1846    }
1847    usleep(1000);
1848  }
1849  if (runtime->IsShuttingDown(self)) {
1850    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1851    // cause objects to get finalized.
1852    FinishGC(self, collector::kGcTypeNone);
1853    return;
1854  }
1855  collector::GarbageCollector* collector = nullptr;
1856  tl->SuspendAll(__FUNCTION__);
1857  switch (collector_type) {
1858    case kCollectorTypeSS: {
1859      if (!IsMovingGc(collector_type_)) {
1860        // Create the bump pointer space from the backup space.
1861        CHECK(main_space_backup_ != nullptr);
1862        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1863        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1864        // pointer space last transition it will be protected.
1865        CHECK(mem_map != nullptr);
1866        mem_map->Protect(PROT_READ | PROT_WRITE);
1867        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1868                                                                        mem_map.release());
1869        AddSpace(bump_pointer_space_);
1870        collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1871        // Use the now empty main space mem map for the bump pointer temp space.
1872        mem_map.reset(main_space_->ReleaseMemMap());
1873        // Unset the pointers just in case.
1874        if (dlmalloc_space_ == main_space_) {
1875          dlmalloc_space_ = nullptr;
1876        } else if (rosalloc_space_ == main_space_) {
1877          rosalloc_space_ = nullptr;
1878        }
1879        // Remove the main space so that we don't try to trim it, this doens't work for debug
1880        // builds since RosAlloc attempts to read the magic number from a protected page.
1881        RemoveSpace(main_space_);
1882        RemoveRememberedSet(main_space_);
1883        delete main_space_;  // Delete the space since it has been removed.
1884        main_space_ = nullptr;
1885        RemoveRememberedSet(main_space_backup_.get());
1886        main_space_backup_.reset(nullptr);  // Deletes the space.
1887        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1888                                                                mem_map.release());
1889        AddSpace(temp_space_);
1890      }
1891      break;
1892    }
1893    case kCollectorTypeMS:
1894      // Fall through.
1895    case kCollectorTypeCMS: {
1896      if (IsMovingGc(collector_type_)) {
1897        CHECK(temp_space_ != nullptr);
1898        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1899        RemoveSpace(temp_space_);
1900        temp_space_ = nullptr;
1901        mem_map->Protect(PROT_READ | PROT_WRITE);
1902        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
1903                              std::min(mem_map->Size(), growth_limit_), mem_map->Size());
1904        mem_map.release();
1905        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1906        AddSpace(main_space_);
1907        collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1908        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1909        RemoveSpace(bump_pointer_space_);
1910        bump_pointer_space_ = nullptr;
1911        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1912        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1913        if (kIsDebugBuild && kUseRosAlloc) {
1914          mem_map->Protect(PROT_READ | PROT_WRITE);
1915        }
1916        main_space_backup_.reset(CreateMallocSpaceFromMemMap(
1917            mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
1918            mem_map->Size(), name, true));
1919        if (kIsDebugBuild && kUseRosAlloc) {
1920          mem_map->Protect(PROT_NONE);
1921        }
1922        mem_map.release();
1923      }
1924      break;
1925    }
1926    default: {
1927      LOG(FATAL) << "Attempted to transition to invalid collector type "
1928                 << static_cast<size_t>(collector_type);
1929      break;
1930    }
1931  }
1932  ChangeCollector(collector_type);
1933  tl->ResumeAll();
1934  // Can't call into java code with all threads suspended.
1935  reference_processor_.EnqueueClearedReferences(self);
1936  uint64_t duration = NanoTime() - start_time;
1937  GrowForUtilization(semi_space_collector_);
1938  DCHECK(collector != nullptr);
1939  LogGC(kGcCauseCollectorTransition, collector);
1940  FinishGC(self, collector::kGcTypeFull);
1941  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1942  int32_t delta_allocated = before_allocated - after_allocated;
1943  std::string saved_str;
1944  if (delta_allocated >= 0) {
1945    saved_str = " saved at least " + PrettySize(delta_allocated);
1946  } else {
1947    saved_str = " expanded " + PrettySize(-delta_allocated);
1948  }
1949  VLOG(heap) << "Heap transition to " << process_state_ << " took "
1950      << PrettyDuration(duration) << saved_str;
1951}
1952
1953void Heap::ChangeCollector(CollectorType collector_type) {
1954  // TODO: Only do this with all mutators suspended to avoid races.
1955  if (collector_type != collector_type_) {
1956    if (collector_type == kCollectorTypeMC) {
1957      // Don't allow mark compact unless support is compiled in.
1958      CHECK(kMarkCompactSupport);
1959    }
1960    collector_type_ = collector_type;
1961    gc_plan_.clear();
1962    switch (collector_type_) {
1963      case kCollectorTypeCC: {
1964        gc_plan_.push_back(collector::kGcTypeFull);
1965        if (use_tlab_) {
1966          ChangeAllocator(kAllocatorTypeRegionTLAB);
1967        } else {
1968          ChangeAllocator(kAllocatorTypeRegion);
1969        }
1970        break;
1971      }
1972      case kCollectorTypeMC:  // Fall-through.
1973      case kCollectorTypeSS:  // Fall-through.
1974      case kCollectorTypeGSS: {
1975        gc_plan_.push_back(collector::kGcTypeFull);
1976        if (use_tlab_) {
1977          ChangeAllocator(kAllocatorTypeTLAB);
1978        } else {
1979          ChangeAllocator(kAllocatorTypeBumpPointer);
1980        }
1981        break;
1982      }
1983      case kCollectorTypeMS: {
1984        gc_plan_.push_back(collector::kGcTypeSticky);
1985        gc_plan_.push_back(collector::kGcTypePartial);
1986        gc_plan_.push_back(collector::kGcTypeFull);
1987        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1988        break;
1989      }
1990      case kCollectorTypeCMS: {
1991        gc_plan_.push_back(collector::kGcTypeSticky);
1992        gc_plan_.push_back(collector::kGcTypePartial);
1993        gc_plan_.push_back(collector::kGcTypeFull);
1994        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1995        break;
1996      }
1997      default: {
1998        UNIMPLEMENTED(FATAL);
1999        UNREACHABLE();
2000      }
2001    }
2002    if (IsGcConcurrent()) {
2003      concurrent_start_bytes_ =
2004          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
2005    } else {
2006      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2007    }
2008  }
2009}
2010
2011// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2012class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
2013 public:
2014  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
2015      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
2016  }
2017
2018  void BuildBins(space::ContinuousSpace* space) {
2019    bin_live_bitmap_ = space->GetLiveBitmap();
2020    bin_mark_bitmap_ = space->GetMarkBitmap();
2021    BinContext context;
2022    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
2023    context.collector_ = this;
2024    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2025    // Note: This requires traversing the space in increasing order of object addresses.
2026    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
2027    // Add the last bin which spans after the last object to the end of the space.
2028    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
2029  }
2030
2031 private:
2032  struct BinContext {
2033    uintptr_t prev_;  // The end of the previous object.
2034    ZygoteCompactingCollector* collector_;
2035  };
2036  // Maps from bin sizes to locations.
2037  std::multimap<size_t, uintptr_t> bins_;
2038  // Live bitmap of the space which contains the bins.
2039  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2040  // Mark bitmap of the space which contains the bins.
2041  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2042
2043  static void Callback(mirror::Object* obj, void* arg)
2044      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2045    DCHECK(arg != nullptr);
2046    BinContext* context = reinterpret_cast<BinContext*>(arg);
2047    ZygoteCompactingCollector* collector = context->collector_;
2048    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2049    size_t bin_size = object_addr - context->prev_;
2050    // Add the bin consisting of the end of the previous object to the start of the current object.
2051    collector->AddBin(bin_size, context->prev_);
2052    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
2053  }
2054
2055  void AddBin(size_t size, uintptr_t position) {
2056    if (size != 0) {
2057      bins_.insert(std::make_pair(size, position));
2058    }
2059  }
2060
2061  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
2062    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2063    // allocator.
2064    UNUSED(space);
2065    return false;
2066  }
2067
2068  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
2069      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2070    size_t obj_size = obj->SizeOf();
2071    size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2072    mirror::Object* forward_address;
2073    // Find the smallest bin which we can move obj in.
2074    auto it = bins_.lower_bound(alloc_size);
2075    if (it == bins_.end()) {
2076      // No available space in the bins, place it in the target space instead (grows the zygote
2077      // space).
2078      size_t bytes_allocated, dummy;
2079      forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2080      if (to_space_live_bitmap_ != nullptr) {
2081        to_space_live_bitmap_->Set(forward_address);
2082      } else {
2083        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2084        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2085      }
2086    } else {
2087      size_t size = it->first;
2088      uintptr_t pos = it->second;
2089      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
2090      forward_address = reinterpret_cast<mirror::Object*>(pos);
2091      // Set the live and mark bits so that sweeping system weaks works properly.
2092      bin_live_bitmap_->Set(forward_address);
2093      bin_mark_bitmap_->Set(forward_address);
2094      DCHECK_GE(size, alloc_size);
2095      // Add a new bin with the remaining space.
2096      AddBin(size - alloc_size, pos + alloc_size);
2097    }
2098    // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
2099    memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2100    if (kUseBakerOrBrooksReadBarrier) {
2101      obj->AssertReadBarrierPointer();
2102      if (kUseBrooksReadBarrier) {
2103        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
2104        forward_address->SetReadBarrierPointer(forward_address);
2105      }
2106      forward_address->AssertReadBarrierPointer();
2107    }
2108    return forward_address;
2109  }
2110};
2111
2112void Heap::UnBindBitmaps() {
2113  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2114  for (const auto& space : GetContinuousSpaces()) {
2115    if (space->IsContinuousMemMapAllocSpace()) {
2116      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2117      if (alloc_space->HasBoundBitmaps()) {
2118        alloc_space->UnBindBitmaps();
2119      }
2120    }
2121  }
2122}
2123
2124void Heap::PreZygoteFork() {
2125  if (!HasZygoteSpace()) {
2126    // We still want to GC in case there is some unreachable non moving objects that could cause a
2127    // suboptimal bin packing when we compact the zygote space.
2128    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2129  }
2130  Thread* self = Thread::Current();
2131  MutexLock mu(self, zygote_creation_lock_);
2132  // Try to see if we have any Zygote spaces.
2133  if (HasZygoteSpace()) {
2134    return;
2135  }
2136  Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
2137  Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2138  VLOG(heap) << "Starting PreZygoteFork";
2139  // Trim the pages at the end of the non moving space.
2140  non_moving_space_->Trim();
2141  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2142  // there.
2143  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2144  const bool same_space = non_moving_space_ == main_space_;
2145  if (kCompactZygote) {
2146    // Temporarily disable rosalloc verification because the zygote
2147    // compaction will mess up the rosalloc internal metadata.
2148    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2149    ZygoteCompactingCollector zygote_collector(this);
2150    zygote_collector.BuildBins(non_moving_space_);
2151    // Create a new bump pointer space which we will compact into.
2152    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2153                                         non_moving_space_->Limit());
2154    // Compact the bump pointer space to a new zygote bump pointer space.
2155    bool reset_main_space = false;
2156    if (IsMovingGc(collector_type_)) {
2157      if (collector_type_ == kCollectorTypeCC) {
2158        zygote_collector.SetFromSpace(region_space_);
2159      } else {
2160        zygote_collector.SetFromSpace(bump_pointer_space_);
2161      }
2162    } else {
2163      CHECK(main_space_ != nullptr);
2164      CHECK_NE(main_space_, non_moving_space_)
2165          << "Does not make sense to compact within the same space";
2166      // Copy from the main space.
2167      zygote_collector.SetFromSpace(main_space_);
2168      reset_main_space = true;
2169    }
2170    zygote_collector.SetToSpace(&target_space);
2171    zygote_collector.SetSwapSemiSpaces(false);
2172    zygote_collector.Run(kGcCauseCollectorTransition, false);
2173    if (reset_main_space) {
2174      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2175      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2176      MemMap* mem_map = main_space_->ReleaseMemMap();
2177      RemoveSpace(main_space_);
2178      space::Space* old_main_space = main_space_;
2179      CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2180                            mem_map->Size());
2181      delete old_main_space;
2182      AddSpace(main_space_);
2183    } else {
2184      if (collector_type_ == kCollectorTypeCC) {
2185        region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2186      } else {
2187        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2188      }
2189    }
2190    if (temp_space_ != nullptr) {
2191      CHECK(temp_space_->IsEmpty());
2192    }
2193    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2194    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2195    // Update the end and write out image.
2196    non_moving_space_->SetEnd(target_space.End());
2197    non_moving_space_->SetLimit(target_space.Limit());
2198    VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2199  }
2200  // Change the collector to the post zygote one.
2201  ChangeCollector(foreground_collector_type_);
2202  // Save the old space so that we can remove it after we complete creating the zygote space.
2203  space::MallocSpace* old_alloc_space = non_moving_space_;
2204  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2205  // the remaining available space.
2206  // Remove the old space before creating the zygote space since creating the zygote space sets
2207  // the old alloc space's bitmaps to null.
2208  RemoveSpace(old_alloc_space);
2209  if (collector::SemiSpace::kUseRememberedSet) {
2210    // Sanity bound check.
2211    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2212    // Remove the remembered set for the now zygote space (the old
2213    // non-moving space). Note now that we have compacted objects into
2214    // the zygote space, the data in the remembered set is no longer
2215    // needed. The zygote space will instead have a mod-union table
2216    // from this point on.
2217    RemoveRememberedSet(old_alloc_space);
2218  }
2219  // Remaining space becomes the new non moving space.
2220  zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2221                                                     &non_moving_space_);
2222  CHECK(!non_moving_space_->CanMoveObjects());
2223  if (same_space) {
2224    main_space_ = non_moving_space_;
2225    SetSpaceAsDefault(main_space_);
2226  }
2227  delete old_alloc_space;
2228  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2229  AddSpace(zygote_space_);
2230  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2231  AddSpace(non_moving_space_);
2232  // Create the zygote space mod union table.
2233  accounting::ModUnionTable* mod_union_table =
2234      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
2235                                             zygote_space_);
2236  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2237  // Set all the cards in the mod-union table since we don't know which objects contain references
2238  // to large objects.
2239  mod_union_table->SetCards();
2240  AddModUnionTable(mod_union_table);
2241  if (collector::SemiSpace::kUseRememberedSet) {
2242    // Add a new remembered set for the post-zygote non-moving space.
2243    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2244        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2245                                      non_moving_space_);
2246    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2247        << "Failed to create post-zygote non-moving space remembered set";
2248    AddRememberedSet(post_zygote_non_moving_space_rem_set);
2249  }
2250}
2251
2252void Heap::FlushAllocStack() {
2253  MarkAllocStackAsLive(allocation_stack_.get());
2254  allocation_stack_->Reset();
2255}
2256
2257void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2258                          accounting::ContinuousSpaceBitmap* bitmap2,
2259                          accounting::LargeObjectBitmap* large_objects,
2260                          accounting::ObjectStack* stack) {
2261  DCHECK(bitmap1 != nullptr);
2262  DCHECK(bitmap2 != nullptr);
2263  const auto* limit = stack->End();
2264  for (auto* it = stack->Begin(); it != limit; ++it) {
2265    const mirror::Object* obj = it->AsMirrorPtr();
2266    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2267      if (bitmap1->HasAddress(obj)) {
2268        bitmap1->Set(obj);
2269      } else if (bitmap2->HasAddress(obj)) {
2270        bitmap2->Set(obj);
2271      } else {
2272        DCHECK(large_objects != nullptr);
2273        large_objects->Set(obj);
2274      }
2275    }
2276  }
2277}
2278
2279void Heap::SwapSemiSpaces() {
2280  CHECK(bump_pointer_space_ != nullptr);
2281  CHECK(temp_space_ != nullptr);
2282  std::swap(bump_pointer_space_, temp_space_);
2283}
2284
2285collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2286                                           space::ContinuousMemMapAllocSpace* source_space,
2287                                           GcCause gc_cause) {
2288  CHECK(kMovingCollector);
2289  if (target_space != source_space) {
2290    // Don't swap spaces since this isn't a typical semi space collection.
2291    semi_space_collector_->SetSwapSemiSpaces(false);
2292    semi_space_collector_->SetFromSpace(source_space);
2293    semi_space_collector_->SetToSpace(target_space);
2294    semi_space_collector_->Run(gc_cause, false);
2295    return semi_space_collector_;
2296  } else {
2297    CHECK(target_space->IsBumpPointerSpace())
2298        << "In-place compaction is only supported for bump pointer spaces";
2299    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2300    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2301    return mark_compact_collector_;
2302  }
2303}
2304
2305collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2306                                               bool clear_soft_references) {
2307  Thread* self = Thread::Current();
2308  Runtime* runtime = Runtime::Current();
2309  // If the heap can't run the GC, silently fail and return that no GC was run.
2310  switch (gc_type) {
2311    case collector::kGcTypePartial: {
2312      if (!HasZygoteSpace()) {
2313        return collector::kGcTypeNone;
2314      }
2315      break;
2316    }
2317    default: {
2318      // Other GC types don't have any special cases which makes them not runnable. The main case
2319      // here is full GC.
2320    }
2321  }
2322  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2323  Locks::mutator_lock_->AssertNotHeld(self);
2324  if (self->IsHandlingStackOverflow()) {
2325    // If we are throwing a stack overflow error we probably don't have enough remaining stack
2326    // space to run the GC.
2327    return collector::kGcTypeNone;
2328  }
2329  bool compacting_gc;
2330  {
2331    gc_complete_lock_->AssertNotHeld(self);
2332    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2333    MutexLock mu(self, *gc_complete_lock_);
2334    // Ensure there is only one GC at a time.
2335    WaitForGcToCompleteLocked(gc_cause, self);
2336    compacting_gc = IsMovingGc(collector_type_);
2337    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2338    if (compacting_gc && disable_moving_gc_count_ != 0) {
2339      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2340      return collector::kGcTypeNone;
2341    }
2342    collector_type_running_ = collector_type_;
2343  }
2344  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2345    ++runtime->GetStats()->gc_for_alloc_count;
2346    ++self->GetStats()->gc_for_alloc_count;
2347  }
2348  const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2349  // Approximate heap size.
2350  ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
2351
2352  DCHECK_LT(gc_type, collector::kGcTypeMax);
2353  DCHECK_NE(gc_type, collector::kGcTypeNone);
2354
2355  collector::GarbageCollector* collector = nullptr;
2356  // TODO: Clean this up.
2357  if (compacting_gc) {
2358    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2359           current_allocator_ == kAllocatorTypeTLAB ||
2360           current_allocator_ == kAllocatorTypeRegion ||
2361           current_allocator_ == kAllocatorTypeRegionTLAB);
2362    switch (collector_type_) {
2363      case kCollectorTypeSS:
2364        // Fall-through.
2365      case kCollectorTypeGSS:
2366        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2367        semi_space_collector_->SetToSpace(temp_space_);
2368        semi_space_collector_->SetSwapSemiSpaces(true);
2369        collector = semi_space_collector_;
2370        break;
2371      case kCollectorTypeCC:
2372        concurrent_copying_collector_->SetRegionSpace(region_space_);
2373        collector = concurrent_copying_collector_;
2374        break;
2375      case kCollectorTypeMC:
2376        mark_compact_collector_->SetSpace(bump_pointer_space_);
2377        collector = mark_compact_collector_;
2378        break;
2379      default:
2380        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2381    }
2382    if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
2383      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2384      CHECK(temp_space_->IsEmpty());
2385    }
2386    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2387  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2388      current_allocator_ == kAllocatorTypeDlMalloc) {
2389    collector = FindCollectorByGcType(gc_type);
2390  } else {
2391    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2392  }
2393  if (IsGcConcurrent()) {
2394    // Disable concurrent GC check so that we don't have spammy JNI requests.
2395    // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2396    // calculated in the same thread so that there aren't any races that can cause it to become
2397    // permanantly disabled. b/17942071
2398    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2399  }
2400  CHECK(collector != nullptr)
2401      << "Could not find garbage collector with collector_type="
2402      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2403  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2404  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2405  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2406  RequestTrim(self);
2407  // Enqueue cleared references.
2408  reference_processor_.EnqueueClearedReferences(self);
2409  // Grow the heap so that we know when to perform the next GC.
2410  GrowForUtilization(collector, bytes_allocated_before_gc);
2411  LogGC(gc_cause, collector);
2412  FinishGC(self, gc_type);
2413  // Inform DDMS that a GC completed.
2414  Dbg::GcDidFinish();
2415  return gc_type;
2416}
2417
2418void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2419  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2420  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2421  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2422  // (mutator time blocked >= long_pause_log_threshold_).
2423  bool log_gc = gc_cause == kGcCauseExplicit;
2424  if (!log_gc && CareAboutPauseTimes()) {
2425    // GC for alloc pauses the allocating thread, so consider it as a pause.
2426    log_gc = duration > long_gc_log_threshold_ ||
2427        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2428    for (uint64_t pause : pause_times) {
2429      log_gc = log_gc || pause >= long_pause_log_threshold_;
2430    }
2431  }
2432  if (log_gc) {
2433    const size_t percent_free = GetPercentFree();
2434    const size_t current_heap_size = GetBytesAllocated();
2435    const size_t total_memory = GetTotalMemory();
2436    std::ostringstream pause_string;
2437    for (size_t i = 0; i < pause_times.size(); ++i) {
2438      pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2439                   << ((i != pause_times.size() - 1) ? "," : "");
2440    }
2441    LOG(INFO) << gc_cause << " " << collector->GetName()
2442              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2443              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2444              << current_gc_iteration_.GetFreedLargeObjects() << "("
2445              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2446              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2447              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2448              << " total " << PrettyDuration((duration / 1000) * 1000);
2449    VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2450  }
2451}
2452
2453void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2454  MutexLock mu(self, *gc_complete_lock_);
2455  collector_type_running_ = kCollectorTypeNone;
2456  if (gc_type != collector::kGcTypeNone) {
2457    last_gc_type_ = gc_type;
2458
2459    // Update stats.
2460    ++gc_count_last_window_;
2461    if (running_collection_is_blocking_) {
2462      // If the currently running collection was a blocking one,
2463      // increment the counters and reset the flag.
2464      ++blocking_gc_count_;
2465      blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2466      ++blocking_gc_count_last_window_;
2467    }
2468    // Update the gc count rate histograms if due.
2469    UpdateGcCountRateHistograms();
2470  }
2471  // Reset.
2472  running_collection_is_blocking_ = false;
2473  // Wake anyone who may have been waiting for the GC to complete.
2474  gc_complete_cond_->Broadcast(self);
2475}
2476
2477void Heap::UpdateGcCountRateHistograms() {
2478  // Invariant: if the time since the last update includes more than
2479  // one windows, all the GC runs (if > 0) must have happened in first
2480  // window because otherwise the update must have already taken place
2481  // at an earlier GC run. So, we report the non-first windows with
2482  // zero counts to the histograms.
2483  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2484  uint64_t now = NanoTime();
2485  DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2486  uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2487  uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2488  if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2489    // Record the first window.
2490    gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
2491    blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2492        blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2493    // Record the other windows (with zero counts).
2494    for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2495      gc_count_rate_histogram_.AddValue(0);
2496      blocking_gc_count_rate_histogram_.AddValue(0);
2497    }
2498    // Update the last update time and reset the counters.
2499    last_update_time_gc_count_rate_histograms_ =
2500        (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2501    gc_count_last_window_ = 1;  // Include the current run.
2502    blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2503  }
2504  DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2505}
2506
2507class RootMatchesObjectVisitor : public SingleRootVisitor {
2508 public:
2509  explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2510
2511  void VisitRoot(mirror::Object* root, const RootInfo& info)
2512      OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2513    if (root == obj_) {
2514      LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2515    }
2516  }
2517
2518 private:
2519  const mirror::Object* const obj_;
2520};
2521
2522
2523class ScanVisitor {
2524 public:
2525  void operator()(const mirror::Object* obj) const {
2526    LOG(ERROR) << "Would have rescanned object " << obj;
2527  }
2528};
2529
2530// Verify a reference from an object.
2531class VerifyReferenceVisitor : public SingleRootVisitor {
2532 public:
2533  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2534      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2535      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2536
2537  size_t GetFailureCount() const {
2538    return fail_count_->LoadSequentiallyConsistent();
2539  }
2540
2541  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2542      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2543    UNUSED(klass);
2544    if (verify_referent_) {
2545      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2546    }
2547  }
2548
2549  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2550      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2551    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2552  }
2553
2554  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2555    return heap_->IsLiveObjectLocked(obj, true, false, true);
2556  }
2557
2558  void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
2559      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2560    if (root == nullptr) {
2561      LOG(ERROR) << "Root is null with info " << root_info.GetType();
2562    } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2563      LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root)
2564          << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2565    }
2566  }
2567
2568 private:
2569  // TODO: Fix the no thread safety analysis.
2570  // Returns false on failure.
2571  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2572      NO_THREAD_SAFETY_ANALYSIS {
2573    if (ref == nullptr || IsLive(ref)) {
2574      // Verify that the reference is live.
2575      return true;
2576    }
2577    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2578      // Print message on only on first failure to prevent spam.
2579      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2580    }
2581    if (obj != nullptr) {
2582      // Only do this part for non roots.
2583      accounting::CardTable* card_table = heap_->GetCardTable();
2584      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2585      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2586      uint8_t* card_addr = card_table->CardFromAddr(obj);
2587      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2588                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2589      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2590        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2591      } else {
2592        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2593      }
2594
2595      // Attempt to find the class inside of the recently freed objects.
2596      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2597      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2598        space::MallocSpace* space = ref_space->AsMallocSpace();
2599        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2600        if (ref_class != nullptr) {
2601          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2602                     << PrettyClass(ref_class);
2603        } else {
2604          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2605        }
2606      }
2607
2608      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2609          ref->GetClass()->IsClass()) {
2610        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2611      } else {
2612        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2613                   << ") is not a valid heap address";
2614      }
2615
2616      card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2617      void* cover_begin = card_table->AddrFromCard(card_addr);
2618      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2619          accounting::CardTable::kCardSize);
2620      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2621          << "-" << cover_end;
2622      accounting::ContinuousSpaceBitmap* bitmap =
2623          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2624
2625      if (bitmap == nullptr) {
2626        LOG(ERROR) << "Object " << obj << " has no bitmap";
2627        if (!VerifyClassClass(obj->GetClass())) {
2628          LOG(ERROR) << "Object " << obj << " failed class verification!";
2629        }
2630      } else {
2631        // Print out how the object is live.
2632        if (bitmap->Test(obj)) {
2633          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2634        }
2635        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2636          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2637        }
2638        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2639          LOG(ERROR) << "Object " << obj << " found in live stack";
2640        }
2641        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2642          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2643        }
2644        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2645          LOG(ERROR) << "Ref " << ref << " found in live stack";
2646        }
2647        // Attempt to see if the card table missed the reference.
2648        ScanVisitor scan_visitor;
2649        uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2650        card_table->Scan<false>(bitmap, byte_cover_begin,
2651                                byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2652      }
2653
2654      // Search to see if any of the roots reference our object.
2655      RootMatchesObjectVisitor visitor1(obj);
2656      Runtime::Current()->VisitRoots(&visitor1);
2657      // Search to see if any of the roots reference our reference.
2658      RootMatchesObjectVisitor visitor2(ref);
2659      Runtime::Current()->VisitRoots(&visitor2);
2660    }
2661    return false;
2662  }
2663
2664  Heap* const heap_;
2665  Atomic<size_t>* const fail_count_;
2666  const bool verify_referent_;
2667};
2668
2669// Verify all references within an object, for use with HeapBitmap::Visit.
2670class VerifyObjectVisitor {
2671 public:
2672  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2673      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2674  }
2675
2676  void operator()(mirror::Object* obj) const
2677      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2678    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2679    // be live or else how did we find it in the live bitmap?
2680    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2681    // The class doesn't count as a reference but we should verify it anyways.
2682    obj->VisitReferences<true>(visitor, visitor);
2683  }
2684
2685  static void VisitCallback(mirror::Object* obj, void* arg)
2686      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2687    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2688    visitor->operator()(obj);
2689  }
2690
2691  void VerifyRoots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2692      LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) {
2693    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2694    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2695    Runtime::Current()->VisitRoots(&visitor);
2696  }
2697
2698  size_t GetFailureCount() const {
2699    return fail_count_->LoadSequentiallyConsistent();
2700  }
2701
2702 private:
2703  Heap* const heap_;
2704  Atomic<size_t>* const fail_count_;
2705  const bool verify_referent_;
2706};
2707
2708void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2709  // Slow path, the allocation stack push back must have already failed.
2710  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2711  do {
2712    // TODO: Add handle VerifyObject.
2713    StackHandleScope<1> hs(self);
2714    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2715    // Push our object into the reserve region of the allocaiton stack. This is only required due
2716    // to heap verification requiring that roots are live (either in the live bitmap or in the
2717    // allocation stack).
2718    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2719    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2720  } while (!allocation_stack_->AtomicPushBack(*obj));
2721}
2722
2723void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2724  // Slow path, the allocation stack push back must have already failed.
2725  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2726  StackReference<mirror::Object>* start_address;
2727  StackReference<mirror::Object>* end_address;
2728  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2729                                            &end_address)) {
2730    // TODO: Add handle VerifyObject.
2731    StackHandleScope<1> hs(self);
2732    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2733    // Push our object into the reserve region of the allocaiton stack. This is only required due
2734    // to heap verification requiring that roots are live (either in the live bitmap or in the
2735    // allocation stack).
2736    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2737    // Push into the reserve allocation stack.
2738    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2739  }
2740  self->SetThreadLocalAllocationStack(start_address, end_address);
2741  // Retry on the new thread-local allocation stack.
2742  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2743}
2744
2745// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2746size_t Heap::VerifyHeapReferences(bool verify_referents) {
2747  Thread* self = Thread::Current();
2748  Locks::mutator_lock_->AssertExclusiveHeld(self);
2749  // Lets sort our allocation stacks so that we can efficiently binary search them.
2750  allocation_stack_->Sort();
2751  live_stack_->Sort();
2752  // Since we sorted the allocation stack content, need to revoke all
2753  // thread-local allocation stacks.
2754  RevokeAllThreadLocalAllocationStacks(self);
2755  Atomic<size_t> fail_count_(0);
2756  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2757  // Verify objects in the allocation stack since these will be objects which were:
2758  // 1. Allocated prior to the GC (pre GC verification).
2759  // 2. Allocated during the GC (pre sweep GC verification).
2760  // We don't want to verify the objects in the live stack since they themselves may be
2761  // pointing to dead objects if they are not reachable.
2762  VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
2763  // Verify the roots:
2764  visitor.VerifyRoots();
2765  if (visitor.GetFailureCount() > 0) {
2766    // Dump mod-union tables.
2767    for (const auto& table_pair : mod_union_tables_) {
2768      accounting::ModUnionTable* mod_union_table = table_pair.second;
2769      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2770    }
2771    // Dump remembered sets.
2772    for (const auto& table_pair : remembered_sets_) {
2773      accounting::RememberedSet* remembered_set = table_pair.second;
2774      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2775    }
2776    DumpSpaces(LOG(ERROR));
2777  }
2778  return visitor.GetFailureCount();
2779}
2780
2781class VerifyReferenceCardVisitor {
2782 public:
2783  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2784      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2785                            Locks::heap_bitmap_lock_)
2786      : heap_(heap), failed_(failed) {
2787  }
2788
2789  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2790  // annotalysis on visitors.
2791  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2792      NO_THREAD_SAFETY_ANALYSIS {
2793    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2794    // Filter out class references since changing an object's class does not mark the card as dirty.
2795    // Also handles large objects, since the only reference they hold is a class reference.
2796    if (ref != nullptr && !ref->IsClass()) {
2797      accounting::CardTable* card_table = heap_->GetCardTable();
2798      // If the object is not dirty and it is referencing something in the live stack other than
2799      // class, then it must be on a dirty card.
2800      if (!card_table->AddrIsInCardTable(obj)) {
2801        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2802        *failed_ = true;
2803      } else if (!card_table->IsDirty(obj)) {
2804        // TODO: Check mod-union tables.
2805        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2806        // kCardDirty - 1 if it didnt get touched since we aged it.
2807        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2808        if (live_stack->ContainsSorted(ref)) {
2809          if (live_stack->ContainsSorted(obj)) {
2810            LOG(ERROR) << "Object " << obj << " found in live stack";
2811          }
2812          if (heap_->GetLiveBitmap()->Test(obj)) {
2813            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2814          }
2815          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2816                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2817
2818          // Print which field of the object is dead.
2819          if (!obj->IsObjectArray()) {
2820            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2821            CHECK(klass != nullptr);
2822            auto* fields = is_static ? klass->GetSFields() : klass->GetIFields();
2823            auto num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
2824            CHECK_EQ(fields == nullptr, num_fields == 0u);
2825            for (size_t i = 0; i < num_fields; ++i) {
2826              ArtField* cur = &fields[i];
2827              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2828                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2829                          << PrettyField(cur);
2830                break;
2831              }
2832            }
2833          } else {
2834            mirror::ObjectArray<mirror::Object>* object_array =
2835                obj->AsObjectArray<mirror::Object>();
2836            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2837              if (object_array->Get(i) == ref) {
2838                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2839              }
2840            }
2841          }
2842
2843          *failed_ = true;
2844        }
2845      }
2846    }
2847  }
2848
2849 private:
2850  Heap* const heap_;
2851  bool* const failed_;
2852};
2853
2854class VerifyLiveStackReferences {
2855 public:
2856  explicit VerifyLiveStackReferences(Heap* heap)
2857      : heap_(heap),
2858        failed_(false) {}
2859
2860  void operator()(mirror::Object* obj) const
2861      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2862    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2863    obj->VisitReferences<true>(visitor, VoidFunctor());
2864  }
2865
2866  bool Failed() const {
2867    return failed_;
2868  }
2869
2870 private:
2871  Heap* const heap_;
2872  bool failed_;
2873};
2874
2875bool Heap::VerifyMissingCardMarks() {
2876  Thread* self = Thread::Current();
2877  Locks::mutator_lock_->AssertExclusiveHeld(self);
2878  // We need to sort the live stack since we binary search it.
2879  live_stack_->Sort();
2880  // Since we sorted the allocation stack content, need to revoke all
2881  // thread-local allocation stacks.
2882  RevokeAllThreadLocalAllocationStacks(self);
2883  VerifyLiveStackReferences visitor(this);
2884  GetLiveBitmap()->Visit(visitor);
2885  // We can verify objects in the live stack since none of these should reference dead objects.
2886  for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2887    if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
2888      visitor(it->AsMirrorPtr());
2889    }
2890  }
2891  return !visitor.Failed();
2892}
2893
2894void Heap::SwapStacks(Thread* self) {
2895  UNUSED(self);
2896  if (kUseThreadLocalAllocationStack) {
2897    live_stack_->AssertAllZero();
2898  }
2899  allocation_stack_.swap(live_stack_);
2900}
2901
2902void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2903  // This must be called only during the pause.
2904  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2905  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2906  MutexLock mu2(self, *Locks::thread_list_lock_);
2907  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2908  for (Thread* t : thread_list) {
2909    t->RevokeThreadLocalAllocationStack();
2910  }
2911}
2912
2913void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
2914  if (kIsDebugBuild) {
2915    if (rosalloc_space_ != nullptr) {
2916      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
2917    }
2918    if (bump_pointer_space_ != nullptr) {
2919      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
2920    }
2921  }
2922}
2923
2924void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2925  if (kIsDebugBuild) {
2926    if (bump_pointer_space_ != nullptr) {
2927      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2928    }
2929  }
2930}
2931
2932accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2933  auto it = mod_union_tables_.find(space);
2934  if (it == mod_union_tables_.end()) {
2935    return nullptr;
2936  }
2937  return it->second;
2938}
2939
2940accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2941  auto it = remembered_sets_.find(space);
2942  if (it == remembered_sets_.end()) {
2943    return nullptr;
2944  }
2945  return it->second;
2946}
2947
2948void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards,
2949                        bool clear_alloc_space_cards) {
2950  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2951  // Clear cards and keep track of cards cleared in the mod-union table.
2952  for (const auto& space : continuous_spaces_) {
2953    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2954    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2955    if (table != nullptr) {
2956      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2957          "ImageModUnionClearCards";
2958      TimingLogger::ScopedTiming t2(name, timings);
2959      table->ClearCards();
2960    } else if (use_rem_sets && rem_set != nullptr) {
2961      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2962          << static_cast<int>(collector_type_);
2963      TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
2964      rem_set->ClearCards();
2965    } else if (process_alloc_space_cards) {
2966      TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
2967      if (clear_alloc_space_cards) {
2968        card_table_->ClearCardRange(space->Begin(), space->End());
2969      } else {
2970        // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
2971        // cards were dirty before the GC started.
2972        // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2973        // -> clean(cleaning thread).
2974        // The races are we either end up with: Aged card, unaged card. Since we have the
2975        // checkpoint roots and then we scan / update mod union tables after. We will always
2976        // scan either card. If we end up with the non aged card, we scan it it in the pause.
2977        card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2978                                       VoidFunctor());
2979      }
2980    }
2981  }
2982}
2983
2984static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2985}
2986
2987void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2988  Thread* const self = Thread::Current();
2989  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2990  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2991  if (verify_pre_gc_heap_) {
2992    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
2993    size_t failures = VerifyHeapReferences();
2994    if (failures > 0) {
2995      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2996          << " failures";
2997    }
2998  }
2999  // Check that all objects which reference things in the live stack are on dirty cards.
3000  if (verify_missing_card_marks_) {
3001    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3002    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3003    SwapStacks(self);
3004    // Sort the live stack so that we can quickly binary search it later.
3005    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3006                                    << " missing card mark verification failed\n" << DumpSpaces();
3007    SwapStacks(self);
3008  }
3009  if (verify_mod_union_table_) {
3010    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3011    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3012    for (const auto& table_pair : mod_union_tables_) {
3013      accounting::ModUnionTable* mod_union_table = table_pair.second;
3014      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
3015      mod_union_table->Verify();
3016    }
3017  }
3018}
3019
3020void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3021  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3022    collector::GarbageCollector::ScopedPause pause(gc);
3023    PreGcVerificationPaused(gc);
3024  }
3025}
3026
3027void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
3028  UNUSED(gc);
3029  // TODO: Add a new runtime option for this?
3030  if (verify_pre_gc_rosalloc_) {
3031    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3032  }
3033}
3034
3035void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3036  Thread* const self = Thread::Current();
3037  TimingLogger* const timings = current_gc_iteration_.GetTimings();
3038  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3039  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3040  // reachable objects.
3041  if (verify_pre_sweeping_heap_) {
3042    TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3043    CHECK_NE(self->GetState(), kRunnable);
3044    {
3045      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3046      // Swapping bound bitmaps does nothing.
3047      gc->SwapBitmaps();
3048    }
3049    // Pass in false since concurrent reference processing can mean that the reference referents
3050    // may point to dead objects at the point which PreSweepingGcVerification is called.
3051    size_t failures = VerifyHeapReferences(false);
3052    if (failures > 0) {
3053      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3054          << " failures";
3055    }
3056    {
3057      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3058      gc->SwapBitmaps();
3059    }
3060  }
3061  if (verify_pre_sweeping_rosalloc_) {
3062    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3063  }
3064}
3065
3066void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3067  // Only pause if we have to do some verification.
3068  Thread* const self = Thread::Current();
3069  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3070  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3071  if (verify_system_weaks_) {
3072    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3073    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3074    mark_sweep->VerifySystemWeaks();
3075  }
3076  if (verify_post_gc_rosalloc_) {
3077    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3078  }
3079  if (verify_post_gc_heap_) {
3080    TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3081    size_t failures = VerifyHeapReferences();
3082    if (failures > 0) {
3083      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3084          << " failures";
3085    }
3086  }
3087}
3088
3089void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3090  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3091    collector::GarbageCollector::ScopedPause pause(gc);
3092    PostGcVerificationPaused(gc);
3093  }
3094}
3095
3096void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3097  TimingLogger::ScopedTiming t(name, timings);
3098  for (const auto& space : continuous_spaces_) {
3099    if (space->IsRosAllocSpace()) {
3100      VLOG(heap) << name << " : " << space->GetName();
3101      space->AsRosAllocSpace()->Verify();
3102    }
3103  }
3104}
3105
3106collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3107  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3108  MutexLock mu(self, *gc_complete_lock_);
3109  return WaitForGcToCompleteLocked(cause, self);
3110}
3111
3112collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3113  collector::GcType last_gc_type = collector::kGcTypeNone;
3114  uint64_t wait_start = NanoTime();
3115  while (collector_type_running_ != kCollectorTypeNone) {
3116    if (self != task_processor_->GetRunningThread()) {
3117      // The current thread is about to wait for a currently running
3118      // collection to finish. If the waiting thread is not the heap
3119      // task daemon thread, the currently running collection is
3120      // considered as a blocking GC.
3121      running_collection_is_blocking_ = true;
3122      VLOG(gc) << "Waiting for a blocking GC " << cause;
3123    }
3124    ATRACE_BEGIN("GC: Wait For Completion");
3125    // We must wait, change thread state then sleep on gc_complete_cond_;
3126    gc_complete_cond_->Wait(self);
3127    last_gc_type = last_gc_type_;
3128    ATRACE_END();
3129  }
3130  uint64_t wait_time = NanoTime() - wait_start;
3131  total_wait_time_ += wait_time;
3132  if (wait_time > long_pause_log_threshold_) {
3133    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
3134        << " for cause " << cause;
3135  }
3136  if (self != task_processor_->GetRunningThread()) {
3137    // The current thread is about to run a collection. If the thread
3138    // is not the heap task daemon thread, it's considered as a
3139    // blocking GC (i.e., blocking itself).
3140    running_collection_is_blocking_ = true;
3141    VLOG(gc) << "Starting a blocking GC " << cause;
3142  }
3143  return last_gc_type;
3144}
3145
3146void Heap::DumpForSigQuit(std::ostream& os) {
3147  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3148     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3149  DumpGcPerformanceInfo(os);
3150}
3151
3152size_t Heap::GetPercentFree() {
3153  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
3154}
3155
3156void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
3157  if (max_allowed_footprint > GetMaxMemory()) {
3158    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
3159             << PrettySize(GetMaxMemory());
3160    max_allowed_footprint = GetMaxMemory();
3161  }
3162  max_allowed_footprint_ = max_allowed_footprint;
3163}
3164
3165bool Heap::IsMovableObject(const mirror::Object* obj) const {
3166  if (kMovingCollector) {
3167    space::Space* space = FindContinuousSpaceFromObject(obj, true);
3168    if (space != nullptr) {
3169      // TODO: Check large object?
3170      return space->CanMoveObjects();
3171    }
3172  }
3173  return false;
3174}
3175
3176void Heap::UpdateMaxNativeFootprint() {
3177  size_t native_size = native_bytes_allocated_.LoadRelaxed();
3178  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
3179  size_t target_size = native_size / GetTargetHeapUtilization();
3180  if (target_size > native_size + max_free_) {
3181    target_size = native_size + max_free_;
3182  } else if (target_size < native_size + min_free_) {
3183    target_size = native_size + min_free_;
3184  }
3185  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
3186}
3187
3188collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3189  for (const auto& collector : garbage_collectors_) {
3190    if (collector->GetCollectorType() == collector_type_ &&
3191        collector->GetGcType() == gc_type) {
3192      return collector;
3193    }
3194  }
3195  return nullptr;
3196}
3197
3198double Heap::HeapGrowthMultiplier() const {
3199  // If we don't care about pause times we are background, so return 1.0.
3200  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
3201    return 1.0;
3202  }
3203  return foreground_heap_growth_multiplier_;
3204}
3205
3206void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3207                              uint64_t bytes_allocated_before_gc) {
3208  // We know what our utilization is at this moment.
3209  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3210  const uint64_t bytes_allocated = GetBytesAllocated();
3211  uint64_t target_size;
3212  collector::GcType gc_type = collector_ran->GetGcType();
3213  const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
3214  // foreground.
3215  const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
3216  const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
3217  if (gc_type != collector::kGcTypeSticky) {
3218    // Grow the heap for non sticky GC.
3219    ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
3220    CHECK_GE(delta, 0);
3221    target_size = bytes_allocated + delta * multiplier;
3222    target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
3223    target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
3224    native_need_to_run_finalization_ = true;
3225    next_gc_type_ = collector::kGcTypeSticky;
3226  } else {
3227    collector::GcType non_sticky_gc_type =
3228        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3229    // Find what the next non sticky collector will be.
3230    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3231    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3232    // do another sticky collection next.
3233    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
3234    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3235    // if the sticky GC throughput always remained >= the full/partial throughput.
3236    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
3237        non_sticky_collector->GetEstimatedMeanThroughput() &&
3238        non_sticky_collector->NumberOfIterations() > 0 &&
3239        bytes_allocated <= max_allowed_footprint_) {
3240      next_gc_type_ = collector::kGcTypeSticky;
3241    } else {
3242      next_gc_type_ = non_sticky_gc_type;
3243    }
3244    // If we have freed enough memory, shrink the heap back down.
3245    if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
3246      target_size = bytes_allocated + adjusted_max_free;
3247    } else {
3248      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
3249    }
3250  }
3251  if (!ignore_max_footprint_) {
3252    SetIdealFootprint(target_size);
3253    if (IsGcConcurrent()) {
3254      const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3255          current_gc_iteration_.GetFreedLargeObjectBytes() +
3256          current_gc_iteration_.GetFreedRevokeBytes();
3257      // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3258      // how many bytes were allocated during the GC we need to add freed_bytes back on.
3259      CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3260      const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3261          bytes_allocated_before_gc;
3262      // Calculate when to perform the next ConcurrentGC.
3263      // Calculate the estimated GC duration.
3264      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
3265      // Estimate how many remaining bytes we will have when we need to start the next GC.
3266      size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
3267      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3268      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3269      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
3270        // A never going to happen situation that from the estimated allocation rate we will exceed
3271        // the applications entire footprint with the given estimated allocation rate. Schedule
3272        // another GC nearly straight away.
3273        remaining_bytes = kMinConcurrentRemainingBytes;
3274      }
3275      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
3276      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
3277      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3278      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3279      // right away.
3280      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
3281                                         static_cast<size_t>(bytes_allocated));
3282    }
3283  }
3284}
3285
3286void Heap::ClampGrowthLimit() {
3287  // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3288  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3289  capacity_ = growth_limit_;
3290  for (const auto& space : continuous_spaces_) {
3291    if (space->IsMallocSpace()) {
3292      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3293      malloc_space->ClampGrowthLimit();
3294    }
3295  }
3296  // This space isn't added for performance reasons.
3297  if (main_space_backup_.get() != nullptr) {
3298    main_space_backup_->ClampGrowthLimit();
3299  }
3300}
3301
3302void Heap::ClearGrowthLimit() {
3303  growth_limit_ = capacity_;
3304  for (const auto& space : continuous_spaces_) {
3305    if (space->IsMallocSpace()) {
3306      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3307      malloc_space->ClearGrowthLimit();
3308      malloc_space->SetFootprintLimit(malloc_space->Capacity());
3309    }
3310  }
3311  // This space isn't added for performance reasons.
3312  if (main_space_backup_.get() != nullptr) {
3313    main_space_backup_->ClearGrowthLimit();
3314    main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3315  }
3316}
3317
3318void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
3319  ScopedObjectAccess soa(self);
3320  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3321  jvalue args[1];
3322  args[0].l = arg.get();
3323  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3324  // Restore object in case it gets moved.
3325  *object = soa.Decode<mirror::Object*>(arg.get());
3326}
3327
3328void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) {
3329  StackHandleScope<1> hs(self);
3330  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3331  RequestConcurrentGC(self, force_full);
3332}
3333
3334class Heap::ConcurrentGCTask : public HeapTask {
3335 public:
3336  explicit ConcurrentGCTask(uint64_t target_time, bool force_full)
3337    : HeapTask(target_time), force_full_(force_full) { }
3338  virtual void Run(Thread* self) OVERRIDE {
3339    gc::Heap* heap = Runtime::Current()->GetHeap();
3340    heap->ConcurrentGC(self, force_full_);
3341    heap->ClearConcurrentGCRequest();
3342  }
3343
3344 private:
3345  const bool force_full_;  // If true, force full (or partial) collection.
3346};
3347
3348static bool CanAddHeapTask(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_) {
3349  Runtime* runtime = Runtime::Current();
3350  return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3351      !self->IsHandlingStackOverflow();
3352}
3353
3354void Heap::ClearConcurrentGCRequest() {
3355  concurrent_gc_pending_.StoreRelaxed(false);
3356}
3357
3358void Heap::RequestConcurrentGC(Thread* self, bool force_full) {
3359  if (CanAddHeapTask(self) &&
3360      concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
3361    task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
3362                                                        force_full));
3363  }
3364}
3365
3366void Heap::ConcurrentGC(Thread* self, bool force_full) {
3367  if (!Runtime::Current()->IsShuttingDown(self)) {
3368    // Wait for any GCs currently running to finish.
3369    if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
3370      // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
3371      // instead. E.g. can't do partial, so do full instead.
3372      collector::GcType next_gc_type = next_gc_type_;
3373      // If forcing full and next gc type is sticky, override with a non-sticky type.
3374      if (force_full && next_gc_type == collector::kGcTypeSticky) {
3375        next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3376      }
3377      if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) ==
3378          collector::kGcTypeNone) {
3379        for (collector::GcType gc_type : gc_plan_) {
3380          // Attempt to run the collector, if we succeed, we are done.
3381          if (gc_type > next_gc_type &&
3382              CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
3383                  collector::kGcTypeNone) {
3384            break;
3385          }
3386        }
3387      }
3388    }
3389  }
3390}
3391
3392class Heap::CollectorTransitionTask : public HeapTask {
3393 public:
3394  explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) { }
3395  virtual void Run(Thread* self) OVERRIDE {
3396    gc::Heap* heap = Runtime::Current()->GetHeap();
3397    heap->DoPendingCollectorTransition();
3398    heap->ClearPendingCollectorTransition(self);
3399  }
3400};
3401
3402void Heap::ClearPendingCollectorTransition(Thread* self) {
3403  MutexLock mu(self, *pending_task_lock_);
3404  pending_collector_transition_ = nullptr;
3405}
3406
3407void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3408  Thread* self = Thread::Current();
3409  desired_collector_type_ = desired_collector_type;
3410  if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3411    return;
3412  }
3413  CollectorTransitionTask* added_task = nullptr;
3414  const uint64_t target_time = NanoTime() + delta_time;
3415  {
3416    MutexLock mu(self, *pending_task_lock_);
3417    // If we have an existing collector transition, update the targe time to be the new target.
3418    if (pending_collector_transition_ != nullptr) {
3419      task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3420      return;
3421    }
3422    added_task = new CollectorTransitionTask(target_time);
3423    pending_collector_transition_ = added_task;
3424  }
3425  task_processor_->AddTask(self, added_task);
3426}
3427
3428class Heap::HeapTrimTask : public HeapTask {
3429 public:
3430  explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
3431  virtual void Run(Thread* self) OVERRIDE {
3432    gc::Heap* heap = Runtime::Current()->GetHeap();
3433    heap->Trim(self);
3434    heap->ClearPendingTrim(self);
3435  }
3436};
3437
3438void Heap::ClearPendingTrim(Thread* self) {
3439  MutexLock mu(self, *pending_task_lock_);
3440  pending_heap_trim_ = nullptr;
3441}
3442
3443void Heap::RequestTrim(Thread* self) {
3444  if (!CanAddHeapTask(self)) {
3445    return;
3446  }
3447  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3448  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3449  // a space it will hold its lock and can become a cause of jank.
3450  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3451  // forking.
3452
3453  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3454  // because that only marks object heads, so a large array looks like lots of empty space. We
3455  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3456  // to utilization (which is probably inversely proportional to how much benefit we can expect).
3457  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3458  // not how much use we're making of those pages.
3459  HeapTrimTask* added_task = nullptr;
3460  {
3461    MutexLock mu(self, *pending_task_lock_);
3462    if (pending_heap_trim_ != nullptr) {
3463      // Already have a heap trim request in task processor, ignore this request.
3464      return;
3465    }
3466    added_task = new HeapTrimTask(kHeapTrimWait);
3467    pending_heap_trim_ = added_task;
3468  }
3469  task_processor_->AddTask(self, added_task);
3470}
3471
3472void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3473  if (rosalloc_space_ != nullptr) {
3474    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3475    if (freed_bytes_revoke > 0U) {
3476      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3477      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3478    }
3479  }
3480  if (bump_pointer_space_ != nullptr) {
3481    CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3482  }
3483  if (region_space_ != nullptr) {
3484    CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3485  }
3486}
3487
3488void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3489  if (rosalloc_space_ != nullptr) {
3490    size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3491    if (freed_bytes_revoke > 0U) {
3492      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3493      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3494    }
3495  }
3496}
3497
3498void Heap::RevokeAllThreadLocalBuffers() {
3499  if (rosalloc_space_ != nullptr) {
3500    size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3501    if (freed_bytes_revoke > 0U) {
3502      num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3503      CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3504    }
3505  }
3506  if (bump_pointer_space_ != nullptr) {
3507    CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3508  }
3509  if (region_space_ != nullptr) {
3510    CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3511  }
3512}
3513
3514bool Heap::IsGCRequestPending() const {
3515  return concurrent_gc_pending_.LoadRelaxed();
3516}
3517
3518void Heap::RunFinalization(JNIEnv* env) {
3519  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3520  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3521    CHECK(WellKnownClasses::java_lang_System != nullptr);
3522    WellKnownClasses::java_lang_System_runFinalization =
3523        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3524    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3525  }
3526  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3527                            WellKnownClasses::java_lang_System_runFinalization);
3528}
3529
3530void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3531  Thread* self = ThreadForEnv(env);
3532  if (native_need_to_run_finalization_) {
3533    RunFinalization(env);
3534    UpdateMaxNativeFootprint();
3535    native_need_to_run_finalization_ = false;
3536  }
3537  // Total number of native bytes allocated.
3538  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3539  new_native_bytes_allocated += bytes;
3540  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3541    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3542        collector::kGcTypeFull;
3543
3544    // The second watermark is higher than the gc watermark. If you hit this it means you are
3545    // allocating native objects faster than the GC can keep up with.
3546    if (new_native_bytes_allocated > growth_limit_) {
3547      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3548        // Just finished a GC, attempt to run finalizers.
3549        RunFinalization(env);
3550        CHECK(!env->ExceptionCheck());
3551        // Native bytes allocated may be updated by finalization, refresh it.
3552        new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed();
3553      }
3554      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3555      if (new_native_bytes_allocated > growth_limit_) {
3556        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3557        RunFinalization(env);
3558        native_need_to_run_finalization_ = false;
3559        CHECK(!env->ExceptionCheck());
3560      }
3561      // We have just run finalizers, update the native watermark since it is very likely that
3562      // finalizers released native managed allocations.
3563      UpdateMaxNativeFootprint();
3564    } else if (!IsGCRequestPending()) {
3565      if (IsGcConcurrent()) {
3566        RequestConcurrentGC(self, true);  // Request non-sticky type.
3567      } else {
3568        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3569      }
3570    }
3571  }
3572}
3573
3574void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3575  size_t expected_size;
3576  do {
3577    expected_size = native_bytes_allocated_.LoadRelaxed();
3578    if (UNLIKELY(bytes > expected_size)) {
3579      ScopedObjectAccess soa(env);
3580      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3581                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3582                                 "registered as allocated", bytes, expected_size).c_str());
3583      break;
3584    }
3585  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3586                                                               expected_size - bytes));
3587}
3588
3589size_t Heap::GetTotalMemory() const {
3590  return std::max(max_allowed_footprint_, GetBytesAllocated());
3591}
3592
3593void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3594  DCHECK(mod_union_table != nullptr);
3595  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3596}
3597
3598void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3599  CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3600        (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3601  CHECK_GE(byte_count, sizeof(mirror::Object));
3602}
3603
3604void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3605  CHECK(remembered_set != nullptr);
3606  space::Space* space = remembered_set->GetSpace();
3607  CHECK(space != nullptr);
3608  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3609  remembered_sets_.Put(space, remembered_set);
3610  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3611}
3612
3613void Heap::RemoveRememberedSet(space::Space* space) {
3614  CHECK(space != nullptr);
3615  auto it = remembered_sets_.find(space);
3616  CHECK(it != remembered_sets_.end());
3617  delete it->second;
3618  remembered_sets_.erase(it);
3619  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3620}
3621
3622void Heap::ClearMarkedObjects() {
3623  // Clear all of the spaces' mark bitmaps.
3624  for (const auto& space : GetContinuousSpaces()) {
3625    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3626    if (space->GetLiveBitmap() != mark_bitmap) {
3627      mark_bitmap->Clear();
3628    }
3629  }
3630  // Clear the marked objects in the discontinous space object sets.
3631  for (const auto& space : GetDiscontinuousSpaces()) {
3632    space->GetMarkBitmap()->Clear();
3633  }
3634}
3635
3636}  // namespace gc
3637}  // namespace art
3638