heap.cc revision 20ed5af7a623a2d095082f8d6f53151c46fb8842
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/allocator.h"
27#include "base/dumpable.h"
28#include "base/histogram-inl.h"
29#include "base/stl_util.h"
30#include "common_throws.h"
31#include "cutils/sched_policy.h"
32#include "debugger.h"
33#include "gc/accounting/atomic_stack.h"
34#include "gc/accounting/card_table-inl.h"
35#include "gc/accounting/heap_bitmap-inl.h"
36#include "gc/accounting/mod_union_table.h"
37#include "gc/accounting/mod_union_table-inl.h"
38#include "gc/accounting/remembered_set.h"
39#include "gc/accounting/space_bitmap-inl.h"
40#include "gc/collector/concurrent_copying.h"
41#include "gc/collector/mark_compact.h"
42#include "gc/collector/mark_sweep-inl.h"
43#include "gc/collector/partial_mark_sweep.h"
44#include "gc/collector/semi_space.h"
45#include "gc/collector/sticky_mark_sweep.h"
46#include "gc/reference_processor.h"
47#include "gc/space/bump_pointer_space.h"
48#include "gc/space/dlmalloc_space-inl.h"
49#include "gc/space/image_space.h"
50#include "gc/space/large_object_space.h"
51#include "gc/space/rosalloc_space-inl.h"
52#include "gc/space/space-inl.h"
53#include "gc/space/zygote_space.h"
54#include "entrypoints/quick/quick_alloc_entrypoints.h"
55#include "heap-inl.h"
56#include "image.h"
57#include "intern_table.h"
58#include "mirror/art_field-inl.h"
59#include "mirror/class-inl.h"
60#include "mirror/object.h"
61#include "mirror/object-inl.h"
62#include "mirror/object_array-inl.h"
63#include "mirror/reference-inl.h"
64#include "os.h"
65#include "reflection.h"
66#include "runtime.h"
67#include "ScopedLocalRef.h"
68#include "scoped_thread_state_change.h"
69#include "handle_scope-inl.h"
70#include "thread_list.h"
71#include "well_known_classes.h"
72
73namespace art {
74
75namespace gc {
76
77static constexpr size_t kCollectorTransitionStressIterations = 0;
78static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
79static constexpr bool kGCALotMode = false;
80static constexpr size_t kGcAlotInterval = KB;
81// Minimum amount of remaining bytes before a concurrent GC is triggered.
82static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
83static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
84// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
85// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
86// threads (lower pauses, use less memory bandwidth).
87static constexpr double kStickyGcThroughputAdjustment = 1.0;
88// Whether or not we compact the zygote in PreZygoteFork.
89static constexpr bool kCompactZygote = kMovingCollector;
90// How many reserve entries are at the end of the allocation stack, these are only needed if the
91// allocation stack overflows.
92static constexpr size_t kAllocationStackReserveSize = 1024;
93// Default mark stack size in bytes.
94static const size_t kDefaultMarkStackSize = 64 * KB;
95// Define space name.
96static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
97static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
98static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
99static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
100
101Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
102           double target_utilization, double foreground_heap_growth_multiplier,
103           size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
104           const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
105           CollectorType background_collector_type,
106           space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
107           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
108           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
109           bool ignore_max_footprint, bool use_tlab,
110           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
111           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
112           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
113           uint64_t min_interval_homogeneous_space_compaction_by_oom)
114    : non_moving_space_(nullptr),
115      rosalloc_space_(nullptr),
116      dlmalloc_space_(nullptr),
117      main_space_(nullptr),
118      collector_type_(kCollectorTypeNone),
119      foreground_collector_type_(foreground_collector_type),
120      background_collector_type_(background_collector_type),
121      desired_collector_type_(foreground_collector_type_),
122      heap_trim_request_lock_(nullptr),
123      last_trim_time_(0),
124      heap_transition_or_trim_target_time_(0),
125      heap_trim_request_pending_(false),
126      parallel_gc_threads_(parallel_gc_threads),
127      conc_gc_threads_(conc_gc_threads),
128      low_memory_mode_(low_memory_mode),
129      long_pause_log_threshold_(long_pause_log_threshold),
130      long_gc_log_threshold_(long_gc_log_threshold),
131      ignore_max_footprint_(ignore_max_footprint),
132      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
133      zygote_space_(nullptr),
134      large_object_threshold_(large_object_threshold),
135      collector_type_running_(kCollectorTypeNone),
136      last_gc_type_(collector::kGcTypeNone),
137      next_gc_type_(collector::kGcTypePartial),
138      capacity_(capacity),
139      growth_limit_(growth_limit),
140      max_allowed_footprint_(initial_size),
141      native_footprint_gc_watermark_(initial_size),
142      native_need_to_run_finalization_(false),
143      // Initially assume we perceive jank in case the process state is never updated.
144      process_state_(kProcessStateJankPerceptible),
145      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
146      total_bytes_freed_ever_(0),
147      total_objects_freed_ever_(0),
148      num_bytes_allocated_(0),
149      native_bytes_allocated_(0),
150      verify_missing_card_marks_(false),
151      verify_system_weaks_(false),
152      verify_pre_gc_heap_(verify_pre_gc_heap),
153      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
154      verify_post_gc_heap_(verify_post_gc_heap),
155      verify_mod_union_table_(false),
156      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
157      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
158      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
159      last_gc_time_ns_(NanoTime()),
160      allocation_rate_(0),
161      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
162       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
163       * verification is enabled, we limit the size of allocation stacks to speed up their
164       * searching.
165       */
166      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
167          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
168      current_allocator_(kAllocatorTypeDlMalloc),
169      current_non_moving_allocator_(kAllocatorTypeNonMoving),
170      bump_pointer_space_(nullptr),
171      temp_space_(nullptr),
172      min_free_(min_free),
173      max_free_(max_free),
174      target_utilization_(target_utilization),
175      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
176      total_wait_time_(0),
177      total_allocation_time_(0),
178      verify_object_mode_(kVerifyObjectModeDisabled),
179      disable_moving_gc_count_(0),
180      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
181      use_tlab_(use_tlab),
182      main_space_backup_(nullptr),
183      min_interval_homogeneous_space_compaction_by_oom_(
184          min_interval_homogeneous_space_compaction_by_oom),
185      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
186      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
187  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
188    LOG(INFO) << "Heap() entering";
189  }
190  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
191  // entrypoints.
192  const bool is_zygote = Runtime::Current()->IsZygote();
193  if (!is_zygote) {
194    // Background compaction is currently not supported for command line runs.
195    if (background_collector_type_ != foreground_collector_type_) {
196      VLOG(heap) << "Disabling background compaction for non zygote";
197      background_collector_type_ = foreground_collector_type_;
198    }
199  }
200  ChangeCollector(desired_collector_type_);
201  live_bitmap_.reset(new accounting::HeapBitmap(this));
202  mark_bitmap_.reset(new accounting::HeapBitmap(this));
203  // Requested begin for the alloc space, to follow the mapped image and oat files
204  uint8_t* requested_alloc_space_begin = nullptr;
205  if (!image_file_name.empty()) {
206    std::string error_msg;
207    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
208                                                               image_instruction_set,
209                                                               &error_msg);
210    if (image_space != nullptr) {
211      AddSpace(image_space);
212      // Oat files referenced by image files immediately follow them in memory, ensure alloc space
213      // isn't going to get in the middle
214      uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
215      CHECK_GT(oat_file_end_addr, image_space->End());
216      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
217    } else {
218      LOG(WARNING) << "Could not create image space with image file '" << image_file_name << "'. "
219                   << "Attempting to fall back to imageless running. Error was: " << error_msg;
220    }
221  }
222  /*
223  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
224                                     +-  nonmoving space (non_moving_space_capacity)+-
225                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
226                                     +-????????????????????????????????????????????+-
227                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
228                                     +-main alloc space / bump space 1 (capacity_) +-
229                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
230                                     +-????????????????????????????????????????????+-
231                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
232                                     +-main alloc space2 / bump space 2 (capacity_)+-
233                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
234  */
235  // We don't have hspace compaction enabled with GSS.
236  if (foreground_collector_type_ == kCollectorTypeGSS) {
237    use_homogeneous_space_compaction_for_oom_ = false;
238  }
239  bool support_homogeneous_space_compaction =
240      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
241      use_homogeneous_space_compaction_for_oom_;
242  // We may use the same space the main space for the non moving space if we don't need to compact
243  // from the main space.
244  // This is not the case if we support homogeneous compaction or have a moving background
245  // collector type.
246  bool separate_non_moving_space = is_zygote ||
247      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
248      IsMovingGc(background_collector_type_);
249  if (foreground_collector_type == kCollectorTypeGSS) {
250    separate_non_moving_space = false;
251  }
252  std::unique_ptr<MemMap> main_mem_map_1;
253  std::unique_ptr<MemMap> main_mem_map_2;
254  uint8_t* request_begin = requested_alloc_space_begin;
255  if (request_begin != nullptr && separate_non_moving_space) {
256    request_begin += non_moving_space_capacity;
257  }
258  std::string error_str;
259  std::unique_ptr<MemMap> non_moving_space_mem_map;
260  if (separate_non_moving_space) {
261    // Reserve the non moving mem map before the other two since it needs to be at a specific
262    // address.
263    non_moving_space_mem_map.reset(
264        MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
265                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, &error_str));
266    CHECK(non_moving_space_mem_map != nullptr) << error_str;
267    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
268    request_begin = reinterpret_cast<uint8_t*>(300 * MB);
269  }
270  // Attempt to create 2 mem maps at or after the requested begin.
271  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
272                                                    &error_str));
273  CHECK(main_mem_map_1.get() != nullptr) << error_str;
274  if (support_homogeneous_space_compaction ||
275      background_collector_type_ == kCollectorTypeSS ||
276      foreground_collector_type_ == kCollectorTypeSS) {
277    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
278                                                      capacity_, &error_str));
279    CHECK(main_mem_map_2.get() != nullptr) << error_str;
280  }
281  // Create the non moving space first so that bitmaps don't take up the address range.
282  if (separate_non_moving_space) {
283    // Non moving space is always dlmalloc since we currently don't have support for multiple
284    // active rosalloc spaces.
285    const size_t size = non_moving_space_mem_map->Size();
286    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
287        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
288        initial_size, size, size, false);
289    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
290    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
291        << requested_alloc_space_begin;
292    AddSpace(non_moving_space_);
293  }
294  // Create other spaces based on whether or not we have a moving GC.
295  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
296    // Create bump pointer spaces.
297    // We only to create the bump pointer if the foreground collector is a compacting GC.
298    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
299    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
300                                                                    main_mem_map_1.release());
301    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
302    AddSpace(bump_pointer_space_);
303    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
304                                                            main_mem_map_2.release());
305    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
306    AddSpace(temp_space_);
307    CHECK(separate_non_moving_space);
308  } else {
309    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
310    CHECK(main_space_ != nullptr);
311    AddSpace(main_space_);
312    if (!separate_non_moving_space) {
313      non_moving_space_ = main_space_;
314      CHECK(!non_moving_space_->CanMoveObjects());
315    }
316    if (foreground_collector_type_ == kCollectorTypeGSS) {
317      CHECK_EQ(foreground_collector_type_, background_collector_type_);
318      // Create bump pointer spaces instead of a backup space.
319      main_mem_map_2.release();
320      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
321                                                            kGSSBumpPointerSpaceCapacity, nullptr);
322      CHECK(bump_pointer_space_ != nullptr);
323      AddSpace(bump_pointer_space_);
324      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
325                                                    kGSSBumpPointerSpaceCapacity, nullptr);
326      CHECK(temp_space_ != nullptr);
327      AddSpace(temp_space_);
328    } else if (main_mem_map_2.get() != nullptr) {
329      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
330      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
331                                                           growth_limit_, capacity_, name, true));
332      CHECK(main_space_backup_.get() != nullptr);
333      // Add the space so its accounted for in the heap_begin and heap_end.
334      AddSpace(main_space_backup_.get());
335    }
336  }
337  CHECK(non_moving_space_ != nullptr);
338  CHECK(!non_moving_space_->CanMoveObjects());
339  // Allocate the large object space.
340  if (large_object_space_type == space::kLargeObjectSpaceTypeFreeList) {
341    large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
342                                                       capacity_);
343    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
344  } else if (large_object_space_type == space::kLargeObjectSpaceTypeMap) {
345    large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
346    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
347  } else {
348    // Disable the large object space by making the cutoff excessively large.
349    large_object_threshold_ = std::numeric_limits<size_t>::max();
350    large_object_space_ = nullptr;
351  }
352  if (large_object_space_ != nullptr) {
353    AddSpace(large_object_space_);
354  }
355  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
356  CHECK(!continuous_spaces_.empty());
357  // Relies on the spaces being sorted.
358  uint8_t* heap_begin = continuous_spaces_.front()->Begin();
359  uint8_t* heap_end = continuous_spaces_.back()->Limit();
360  size_t heap_capacity = heap_end - heap_begin;
361  // Remove the main backup space since it slows down the GC to have unused extra spaces.
362  if (main_space_backup_.get() != nullptr) {
363    RemoveSpace(main_space_backup_.get());
364  }
365  // Allocate the card table.
366  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
367  CHECK(card_table_.get() != NULL) << "Failed to create card table";
368  // Card cache for now since it makes it easier for us to update the references to the copying
369  // spaces.
370  accounting::ModUnionTable* mod_union_table =
371      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
372                                                      GetImageSpace());
373  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
374  AddModUnionTable(mod_union_table);
375  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
376    accounting::RememberedSet* non_moving_space_rem_set =
377        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
378    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
379    AddRememberedSet(non_moving_space_rem_set);
380  }
381  // TODO: Count objects in the image space here?
382  num_bytes_allocated_.StoreRelaxed(0);
383  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
384                                                    kDefaultMarkStackSize));
385  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
386  allocation_stack_.reset(accounting::ObjectStack::Create(
387      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
388  live_stack_.reset(accounting::ObjectStack::Create(
389      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
390  // It's still too early to take a lock because there are no threads yet, but we can create locks
391  // now. We don't create it earlier to make it clear that you can't use locks during heap
392  // initialization.
393  gc_complete_lock_ = new Mutex("GC complete lock");
394  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
395                                                *gc_complete_lock_));
396  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
397  last_gc_size_ = GetBytesAllocated();
398  if (ignore_max_footprint_) {
399    SetIdealFootprint(std::numeric_limits<size_t>::max());
400    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
401  }
402  CHECK_NE(max_allowed_footprint_, 0U);
403  // Create our garbage collectors.
404  for (size_t i = 0; i < 2; ++i) {
405    const bool concurrent = i != 0;
406    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
407    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
408    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
409  }
410  if (kMovingCollector) {
411    // TODO: Clean this up.
412    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
413    semi_space_collector_ = new collector::SemiSpace(this, generational,
414                                                     generational ? "generational" : "");
415    garbage_collectors_.push_back(semi_space_collector_);
416    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
417    garbage_collectors_.push_back(concurrent_copying_collector_);
418    mark_compact_collector_ = new collector::MarkCompact(this);
419    garbage_collectors_.push_back(mark_compact_collector_);
420  }
421  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
422      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
423    // Check that there's no gap between the image space and the non moving space so that the
424    // immune region won't break (eg. due to a large object allocated in the gap). This is only
425    // required when we're the zygote or using GSS.
426    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
427                                      non_moving_space_->GetMemMap());
428    if (!no_gap) {
429      MemMap::DumpMaps(LOG(ERROR));
430      LOG(FATAL) << "There's a gap between the image space and the main space";
431    }
432  }
433  if (running_on_valgrind_) {
434    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
435  }
436  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
437    LOG(INFO) << "Heap() exiting";
438  }
439}
440
441MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
442                                           size_t capacity, std::string* out_error_str) {
443  while (true) {
444    MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
445                                       PROT_READ | PROT_WRITE, true, out_error_str);
446    if (map != nullptr || request_begin == nullptr) {
447      return map;
448    }
449    // Retry a  second time with no specified request begin.
450    request_begin = nullptr;
451  }
452  return nullptr;
453}
454
455space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
456                                                      size_t growth_limit, size_t capacity,
457                                                      const char* name, bool can_move_objects) {
458  space::MallocSpace* malloc_space = nullptr;
459  if (kUseRosAlloc) {
460    // Create rosalloc space.
461    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
462                                                          initial_size, growth_limit, capacity,
463                                                          low_memory_mode_, can_move_objects);
464  } else {
465    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
466                                                          initial_size, growth_limit, capacity,
467                                                          can_move_objects);
468  }
469  if (collector::SemiSpace::kUseRememberedSet) {
470    accounting::RememberedSet* rem_set  =
471        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
472    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
473    AddRememberedSet(rem_set);
474  }
475  CHECK(malloc_space != nullptr) << "Failed to create " << name;
476  malloc_space->SetFootprintLimit(malloc_space->Capacity());
477  return malloc_space;
478}
479
480void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
481                                 size_t capacity) {
482  // Is background compaction is enabled?
483  bool can_move_objects = IsMovingGc(background_collector_type_) !=
484      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
485  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
486  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
487  // from the main space to the zygote space. If background compaction is enabled, always pass in
488  // that we can move objets.
489  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
490    // After the zygote we want this to be false if we don't have background compaction enabled so
491    // that getting primitive array elements is faster.
492    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
493    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
494  }
495  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
496    RemoveRememberedSet(main_space_);
497  }
498  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
499  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
500                                            can_move_objects);
501  SetSpaceAsDefault(main_space_);
502  VLOG(heap) << "Created main space " << main_space_;
503}
504
505void Heap::ChangeAllocator(AllocatorType allocator) {
506  if (current_allocator_ != allocator) {
507    // These two allocators are only used internally and don't have any entrypoints.
508    CHECK_NE(allocator, kAllocatorTypeLOS);
509    CHECK_NE(allocator, kAllocatorTypeNonMoving);
510    current_allocator_ = allocator;
511    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
512    SetQuickAllocEntryPointsAllocator(current_allocator_);
513    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
514  }
515}
516
517void Heap::DisableMovingGc() {
518  if (IsMovingGc(foreground_collector_type_)) {
519    foreground_collector_type_ = kCollectorTypeCMS;
520  }
521  if (IsMovingGc(background_collector_type_)) {
522    background_collector_type_ = foreground_collector_type_;
523  }
524  TransitionCollector(foreground_collector_type_);
525  ThreadList* tl = Runtime::Current()->GetThreadList();
526  Thread* self = Thread::Current();
527  ScopedThreadStateChange tsc(self, kSuspended);
528  tl->SuspendAll();
529  // Something may have caused the transition to fail.
530  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
531    CHECK(main_space_ != nullptr);
532    // The allocation stack may have non movable objects in it. We need to flush it since the GC
533    // can't only handle marking allocation stack objects of one non moving space and one main
534    // space.
535    {
536      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
537      FlushAllocStack();
538    }
539    main_space_->DisableMovingObjects();
540    non_moving_space_ = main_space_;
541    CHECK(!non_moving_space_->CanMoveObjects());
542  }
543  tl->ResumeAll();
544}
545
546std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
547  if (!IsValidContinuousSpaceObjectAddress(klass)) {
548    return StringPrintf("<non heap address klass %p>", klass);
549  }
550  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
551  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
552    std::string result("[");
553    result += SafeGetClassDescriptor(component_type);
554    return result;
555  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
556    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
557  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
558    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
559  } else {
560    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
561    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
562      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
563    }
564    const DexFile* dex_file = dex_cache->GetDexFile();
565    uint16_t class_def_idx = klass->GetDexClassDefIndex();
566    if (class_def_idx == DexFile::kDexNoIndex16) {
567      return "<class def not found>";
568    }
569    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
570    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
571    return dex_file->GetTypeDescriptor(type_id);
572  }
573}
574
575std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
576  if (obj == nullptr) {
577    return "null";
578  }
579  mirror::Class* klass = obj->GetClass<kVerifyNone>();
580  if (klass == nullptr) {
581    return "(class=null)";
582  }
583  std::string result(SafeGetClassDescriptor(klass));
584  if (obj->IsClass()) {
585    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
586  }
587  return result;
588}
589
590void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
591  if (obj == nullptr) {
592    stream << "(obj=null)";
593    return;
594  }
595  if (IsAligned<kObjectAlignment>(obj)) {
596    space::Space* space = nullptr;
597    // Don't use find space since it only finds spaces which actually contain objects instead of
598    // spaces which may contain objects (e.g. cleared bump pointer spaces).
599    for (const auto& cur_space : continuous_spaces_) {
600      if (cur_space->HasAddress(obj)) {
601        space = cur_space;
602        break;
603      }
604    }
605    // Unprotect all the spaces.
606    for (const auto& con_space : continuous_spaces_) {
607      mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
608    }
609    stream << "Object " << obj;
610    if (space != nullptr) {
611      stream << " in space " << *space;
612    }
613    mirror::Class* klass = obj->GetClass<kVerifyNone>();
614    stream << "\nclass=" << klass;
615    if (klass != nullptr) {
616      stream << " type= " << SafePrettyTypeOf(obj);
617    }
618    // Re-protect the address we faulted on.
619    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
620  }
621}
622
623bool Heap::IsCompilingBoot() const {
624  if (!Runtime::Current()->IsCompiler()) {
625    return false;
626  }
627  for (const auto& space : continuous_spaces_) {
628    if (space->IsImageSpace() || space->IsZygoteSpace()) {
629      return false;
630    }
631  }
632  return true;
633}
634
635bool Heap::HasImageSpace() const {
636  for (const auto& space : continuous_spaces_) {
637    if (space->IsImageSpace()) {
638      return true;
639    }
640  }
641  return false;
642}
643
644void Heap::IncrementDisableMovingGC(Thread* self) {
645  // Need to do this holding the lock to prevent races where the GC is about to run / running when
646  // we attempt to disable it.
647  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
648  MutexLock mu(self, *gc_complete_lock_);
649  ++disable_moving_gc_count_;
650  if (IsMovingGc(collector_type_running_)) {
651    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
652  }
653}
654
655void Heap::DecrementDisableMovingGC(Thread* self) {
656  MutexLock mu(self, *gc_complete_lock_);
657  CHECK_GE(disable_moving_gc_count_, 0U);
658  --disable_moving_gc_count_;
659}
660
661void Heap::UpdateProcessState(ProcessState process_state) {
662  if (process_state_ != process_state) {
663    process_state_ = process_state;
664    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
665      // Start at index 1 to avoid "is always false" warning.
666      // Have iteration 1 always transition the collector.
667      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
668                          ? foreground_collector_type_ : background_collector_type_);
669      usleep(kCollectorTransitionStressWait);
670    }
671    if (process_state_ == kProcessStateJankPerceptible) {
672      // Transition back to foreground right away to prevent jank.
673      RequestCollectorTransition(foreground_collector_type_, 0);
674    } else {
675      // Don't delay for debug builds since we may want to stress test the GC.
676      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
677      // special handling which does a homogenous space compaction once but then doesn't transition
678      // the collector.
679      RequestCollectorTransition(background_collector_type_,
680                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
681    }
682  }
683}
684
685void Heap::CreateThreadPool() {
686  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
687  if (num_threads != 0) {
688    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
689  }
690}
691
692void Heap::VisitObjects(ObjectCallback callback, void* arg) {
693  // GCs can move objects, so don't allow this.
694  ScopedAssertNoThreadSuspension ants(Thread::Current(), "Visiting objects");
695  if (bump_pointer_space_ != nullptr) {
696    // Visit objects in bump pointer space.
697    bump_pointer_space_->Walk(callback, arg);
698  }
699  // TODO: Switch to standard begin and end to use ranged a based loop.
700  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
701      it < end; ++it) {
702    mirror::Object* obj = *it;
703    if (obj != nullptr && obj->GetClass() != nullptr) {
704      // Avoid the race condition caused by the object not yet being written into the allocation
705      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
706      // there can be nulls on the allocation stack.
707      callback(obj, arg);
708    }
709  }
710  GetLiveBitmap()->Walk(callback, arg);
711}
712
713void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
714  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
715  space::ContinuousSpace* space2 = non_moving_space_;
716  // TODO: Generalize this to n bitmaps?
717  CHECK(space1 != nullptr);
718  CHECK(space2 != nullptr);
719  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
720                 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
721                 stack);
722}
723
724void Heap::DeleteThreadPool() {
725  thread_pool_.reset(nullptr);
726}
727
728void Heap::AddSpace(space::Space* space) {
729  CHECK(space != nullptr);
730  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
731  if (space->IsContinuousSpace()) {
732    DCHECK(!space->IsDiscontinuousSpace());
733    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
734    // Continuous spaces don't necessarily have bitmaps.
735    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
736    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
737    if (live_bitmap != nullptr) {
738      CHECK(mark_bitmap != nullptr);
739      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
740      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
741    }
742    continuous_spaces_.push_back(continuous_space);
743    // Ensure that spaces remain sorted in increasing order of start address.
744    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
745              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
746      return a->Begin() < b->Begin();
747    });
748  } else {
749    CHECK(space->IsDiscontinuousSpace());
750    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
751    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
752    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
753    discontinuous_spaces_.push_back(discontinuous_space);
754  }
755  if (space->IsAllocSpace()) {
756    alloc_spaces_.push_back(space->AsAllocSpace());
757  }
758}
759
760void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
761  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
762  if (continuous_space->IsDlMallocSpace()) {
763    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
764  } else if (continuous_space->IsRosAllocSpace()) {
765    rosalloc_space_ = continuous_space->AsRosAllocSpace();
766  }
767}
768
769void Heap::RemoveSpace(space::Space* space) {
770  DCHECK(space != nullptr);
771  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
772  if (space->IsContinuousSpace()) {
773    DCHECK(!space->IsDiscontinuousSpace());
774    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
775    // Continuous spaces don't necessarily have bitmaps.
776    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
777    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
778    if (live_bitmap != nullptr) {
779      DCHECK(mark_bitmap != nullptr);
780      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
781      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
782    }
783    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
784    DCHECK(it != continuous_spaces_.end());
785    continuous_spaces_.erase(it);
786  } else {
787    DCHECK(space->IsDiscontinuousSpace());
788    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
789    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
790    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
791    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
792                        discontinuous_space);
793    DCHECK(it != discontinuous_spaces_.end());
794    discontinuous_spaces_.erase(it);
795  }
796  if (space->IsAllocSpace()) {
797    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
798    DCHECK(it != alloc_spaces_.end());
799    alloc_spaces_.erase(it);
800  }
801}
802
803void Heap::DumpGcPerformanceInfo(std::ostream& os) {
804  // Dump cumulative timings.
805  os << "Dumping cumulative Gc timings\n";
806  uint64_t total_duration = 0;
807  // Dump cumulative loggers for each GC type.
808  uint64_t total_paused_time = 0;
809  for (auto& collector : garbage_collectors_) {
810    total_duration += collector->GetCumulativeTimings().GetTotalNs();
811    total_paused_time += collector->GetTotalPausedTimeNs();
812    collector->DumpPerformanceInfo(os);
813    collector->ResetMeasurements();
814  }
815  uint64_t allocation_time =
816      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
817  if (total_duration != 0) {
818    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
819    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
820    os << "Mean GC size throughput: "
821       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
822    os << "Mean GC object throughput: "
823       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
824  }
825  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
826  os << "Total number of allocations " << total_objects_allocated << "\n";
827  uint64_t total_bytes_allocated = GetBytesAllocatedEver();
828  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
829  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
830  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
831  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
832  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
833  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
834  if (kMeasureAllocationTime) {
835    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
836    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
837       << "\n";
838  }
839  if (HasZygoteSpace()) {
840    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
841  }
842  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
843  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
844  BaseMutex::DumpAll(os);
845}
846
847Heap::~Heap() {
848  VLOG(heap) << "Starting ~Heap()";
849  STLDeleteElements(&garbage_collectors_);
850  // If we don't reset then the mark stack complains in its destructor.
851  allocation_stack_->Reset();
852  live_stack_->Reset();
853  STLDeleteValues(&mod_union_tables_);
854  STLDeleteValues(&remembered_sets_);
855  STLDeleteElements(&continuous_spaces_);
856  STLDeleteElements(&discontinuous_spaces_);
857  delete gc_complete_lock_;
858  delete heap_trim_request_lock_;
859  VLOG(heap) << "Finished ~Heap()";
860}
861
862space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
863                                                            bool fail_ok) const {
864  for (const auto& space : continuous_spaces_) {
865    if (space->Contains(obj)) {
866      return space;
867    }
868  }
869  if (!fail_ok) {
870    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
871  }
872  return NULL;
873}
874
875space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
876                                                                  bool fail_ok) const {
877  for (const auto& space : discontinuous_spaces_) {
878    if (space->Contains(obj)) {
879      return space;
880    }
881  }
882  if (!fail_ok) {
883    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
884  }
885  return NULL;
886}
887
888space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
889  space::Space* result = FindContinuousSpaceFromObject(obj, true);
890  if (result != NULL) {
891    return result;
892  }
893  return FindDiscontinuousSpaceFromObject(obj, fail_ok);
894}
895
896space::ImageSpace* Heap::GetImageSpace() const {
897  for (const auto& space : continuous_spaces_) {
898    if (space->IsImageSpace()) {
899      return space->AsImageSpace();
900    }
901  }
902  return NULL;
903}
904
905void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
906  std::ostringstream oss;
907  size_t total_bytes_free = GetFreeMemory();
908  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
909      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
910  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
911  if (total_bytes_free >= byte_count) {
912    space::AllocSpace* space = nullptr;
913    if (allocator_type == kAllocatorTypeNonMoving) {
914      space = non_moving_space_;
915    } else if (allocator_type == kAllocatorTypeRosAlloc ||
916               allocator_type == kAllocatorTypeDlMalloc) {
917      space = main_space_;
918    } else if (allocator_type == kAllocatorTypeBumpPointer ||
919               allocator_type == kAllocatorTypeTLAB) {
920      space = bump_pointer_space_;
921    }
922    if (space != nullptr) {
923      space->LogFragmentationAllocFailure(oss, byte_count);
924    }
925  }
926  self->ThrowOutOfMemoryError(oss.str().c_str());
927}
928
929void Heap::DoPendingTransitionOrTrim() {
930  Thread* self = Thread::Current();
931  CollectorType desired_collector_type;
932  // Wait until we reach the desired transition time.
933  while (true) {
934    uint64_t wait_time;
935    {
936      MutexLock mu(self, *heap_trim_request_lock_);
937      desired_collector_type = desired_collector_type_;
938      uint64_t current_time = NanoTime();
939      if (current_time >= heap_transition_or_trim_target_time_) {
940        break;
941      }
942      wait_time = heap_transition_or_trim_target_time_ - current_time;
943    }
944    ScopedThreadStateChange tsc(self, kSleeping);
945    usleep(wait_time / 1000);  // Usleep takes microseconds.
946  }
947  // Launch homogeneous space compaction if it is desired.
948  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
949    if (!CareAboutPauseTimes()) {
950      PerformHomogeneousSpaceCompact();
951    }
952    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
953    desired_collector_type = collector_type_;
954    return;
955  }
956  // Transition the collector if the desired collector type is not the same as the current
957  // collector type.
958  TransitionCollector(desired_collector_type);
959  if (!CareAboutPauseTimes()) {
960    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
961    // about pauses.
962    Runtime* runtime = Runtime::Current();
963    runtime->GetThreadList()->SuspendAll();
964    uint64_t start_time = NanoTime();
965    size_t count = runtime->GetMonitorList()->DeflateMonitors();
966    VLOG(heap) << "Deflating " << count << " monitors took "
967        << PrettyDuration(NanoTime() - start_time);
968    runtime->GetThreadList()->ResumeAll();
969  }
970  // Do a heap trim if it is needed.
971  Trim();
972}
973
974void Heap::Trim() {
975  Thread* self = Thread::Current();
976  {
977    MutexLock mu(self, *heap_trim_request_lock_);
978    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
979      return;
980    }
981    last_trim_time_ = NanoTime();
982    heap_trim_request_pending_ = false;
983  }
984  {
985    // Need to do this before acquiring the locks since we don't want to get suspended while
986    // holding any locks.
987    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
988    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
989    // trimming.
990    MutexLock mu(self, *gc_complete_lock_);
991    // Ensure there is only one GC at a time.
992    WaitForGcToCompleteLocked(kGcCauseTrim, self);
993    collector_type_running_ = kCollectorTypeHeapTrim;
994  }
995  uint64_t start_ns = NanoTime();
996  // Trim the managed spaces.
997  uint64_t total_alloc_space_allocated = 0;
998  uint64_t total_alloc_space_size = 0;
999  uint64_t managed_reclaimed = 0;
1000  for (const auto& space : continuous_spaces_) {
1001    if (space->IsMallocSpace()) {
1002      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1003      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1004        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1005        // for a long period of time.
1006        managed_reclaimed += malloc_space->Trim();
1007      }
1008      total_alloc_space_size += malloc_space->Size();
1009    }
1010  }
1011  total_alloc_space_allocated = GetBytesAllocated();
1012  if (large_object_space_ != nullptr) {
1013    total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1014  }
1015  if (bump_pointer_space_ != nullptr) {
1016    total_alloc_space_allocated -= bump_pointer_space_->Size();
1017  }
1018  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1019      static_cast<float>(total_alloc_space_size);
1020  uint64_t gc_heap_end_ns = NanoTime();
1021  // We never move things in the native heap, so we can finish the GC at this point.
1022  FinishGC(self, collector::kGcTypeNone);
1023  size_t native_reclaimed = 0;
1024
1025#ifdef HAVE_ANDROID_OS
1026  // Only trim the native heap if we don't care about pauses.
1027  if (!CareAboutPauseTimes()) {
1028#if defined(USE_DLMALLOC)
1029    // Trim the native heap.
1030    dlmalloc_trim(0);
1031    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1032#elif defined(USE_JEMALLOC)
1033    // Jemalloc does it's own internal trimming.
1034#else
1035    UNIMPLEMENTED(WARNING) << "Add trimming support";
1036#endif
1037  }
1038#endif  // HAVE_ANDROID_OS
1039  uint64_t end_ns = NanoTime();
1040  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1041      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1042      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1043      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1044      << "%.";
1045}
1046
1047bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1048  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1049  // taking the lock.
1050  if (obj == nullptr) {
1051    return true;
1052  }
1053  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1054}
1055
1056bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1057  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1058}
1059
1060bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1061  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1062    return false;
1063  }
1064  for (const auto& space : continuous_spaces_) {
1065    if (space->HasAddress(obj)) {
1066      return true;
1067    }
1068  }
1069  return false;
1070}
1071
1072bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1073                              bool search_live_stack, bool sorted) {
1074  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1075    return false;
1076  }
1077  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1078    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1079    if (obj == klass) {
1080      // This case happens for java.lang.Class.
1081      return true;
1082    }
1083    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1084  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1085    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1086    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1087    return temp_space_->Contains(obj);
1088  }
1089  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1090  space::DiscontinuousSpace* d_space = nullptr;
1091  if (c_space != nullptr) {
1092    if (c_space->GetLiveBitmap()->Test(obj)) {
1093      return true;
1094    }
1095  } else {
1096    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1097    if (d_space != nullptr) {
1098      if (d_space->GetLiveBitmap()->Test(obj)) {
1099        return true;
1100      }
1101    }
1102  }
1103  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1104  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1105    if (i > 0) {
1106      NanoSleep(MsToNs(10));
1107    }
1108    if (search_allocation_stack) {
1109      if (sorted) {
1110        if (allocation_stack_->ContainsSorted(obj)) {
1111          return true;
1112        }
1113      } else if (allocation_stack_->Contains(obj)) {
1114        return true;
1115      }
1116    }
1117
1118    if (search_live_stack) {
1119      if (sorted) {
1120        if (live_stack_->ContainsSorted(obj)) {
1121          return true;
1122        }
1123      } else if (live_stack_->Contains(obj)) {
1124        return true;
1125      }
1126    }
1127  }
1128  // We need to check the bitmaps again since there is a race where we mark something as live and
1129  // then clear the stack containing it.
1130  if (c_space != nullptr) {
1131    if (c_space->GetLiveBitmap()->Test(obj)) {
1132      return true;
1133    }
1134  } else {
1135    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1136    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1137      return true;
1138    }
1139  }
1140  return false;
1141}
1142
1143std::string Heap::DumpSpaces() const {
1144  std::ostringstream oss;
1145  DumpSpaces(oss);
1146  return oss.str();
1147}
1148
1149void Heap::DumpSpaces(std::ostream& stream) const {
1150  for (const auto& space : continuous_spaces_) {
1151    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1152    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1153    stream << space << " " << *space << "\n";
1154    if (live_bitmap != nullptr) {
1155      stream << live_bitmap << " " << *live_bitmap << "\n";
1156    }
1157    if (mark_bitmap != nullptr) {
1158      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1159    }
1160  }
1161  for (const auto& space : discontinuous_spaces_) {
1162    stream << space << " " << *space << "\n";
1163  }
1164}
1165
1166void Heap::VerifyObjectBody(mirror::Object* obj) {
1167  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1168    return;
1169  }
1170
1171  // Ignore early dawn of the universe verifications.
1172  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1173    return;
1174  }
1175  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1176  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1177  CHECK(c != nullptr) << "Null class in object " << obj;
1178  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1179  CHECK(VerifyClassClass(c));
1180
1181  if (verify_object_mode_ > kVerifyObjectModeFast) {
1182    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1183    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1184  }
1185}
1186
1187void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1188  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1189}
1190
1191void Heap::VerifyHeap() {
1192  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1193  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1194}
1195
1196void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1197  // Use signed comparison since freed bytes can be negative when background compaction foreground
1198  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1199  // free list backed space typically increasing memory footprint due to padding and binning.
1200  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1201  // Note: This relies on 2s complement for handling negative freed_bytes.
1202  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1203  if (Runtime::Current()->HasStatsEnabled()) {
1204    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1205    thread_stats->freed_objects += freed_objects;
1206    thread_stats->freed_bytes += freed_bytes;
1207    // TODO: Do this concurrently.
1208    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1209    global_stats->freed_objects += freed_objects;
1210    global_stats->freed_bytes += freed_bytes;
1211  }
1212}
1213
1214space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1215  for (const auto& space : continuous_spaces_) {
1216    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1217      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1218        return space->AsContinuousSpace()->AsRosAllocSpace();
1219      }
1220    }
1221  }
1222  return nullptr;
1223}
1224
1225mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1226                                             size_t alloc_size, size_t* bytes_allocated,
1227                                             size_t* usable_size,
1228                                             mirror::Class** klass) {
1229  bool was_default_allocator = allocator == GetCurrentAllocator();
1230  // Make sure there is no pending exception since we may need to throw an OOME.
1231  self->AssertNoPendingException();
1232  DCHECK(klass != nullptr);
1233  StackHandleScope<1> hs(self);
1234  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1235  klass = nullptr;  // Invalidate for safety.
1236  // The allocation failed. If the GC is running, block until it completes, and then retry the
1237  // allocation.
1238  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1239  if (last_gc != collector::kGcTypeNone) {
1240    // If we were the default allocator but the allocator changed while we were suspended,
1241    // abort the allocation.
1242    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1243      return nullptr;
1244    }
1245    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1246    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1247                                                     usable_size);
1248    if (ptr != nullptr) {
1249      return ptr;
1250    }
1251  }
1252
1253  collector::GcType tried_type = next_gc_type_;
1254  const bool gc_ran =
1255      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1256  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1257    return nullptr;
1258  }
1259  if (gc_ran) {
1260    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1261                                                     usable_size);
1262    if (ptr != nullptr) {
1263      return ptr;
1264    }
1265  }
1266
1267  // Loop through our different Gc types and try to Gc until we get enough free memory.
1268  for (collector::GcType gc_type : gc_plan_) {
1269    if (gc_type == tried_type) {
1270      continue;
1271    }
1272    // Attempt to run the collector, if we succeed, re-try the allocation.
1273    const bool plan_gc_ran =
1274        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1275    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1276      return nullptr;
1277    }
1278    if (plan_gc_ran) {
1279      // Did we free sufficient memory for the allocation to succeed?
1280      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1281                                                       usable_size);
1282      if (ptr != nullptr) {
1283        return ptr;
1284      }
1285    }
1286  }
1287  // Allocations have failed after GCs;  this is an exceptional state.
1288  // Try harder, growing the heap if necessary.
1289  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1290                                                  usable_size);
1291  if (ptr != nullptr) {
1292    return ptr;
1293  }
1294  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1295  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1296  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1297  // OOME.
1298  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1299           << " allocation";
1300  // TODO: Run finalization, but this may cause more allocations to occur.
1301  // We don't need a WaitForGcToComplete here either.
1302  DCHECK(!gc_plan_.empty());
1303  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1304  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1305    return nullptr;
1306  }
1307  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1308  if (ptr == nullptr) {
1309    const uint64_t current_time = NanoTime();
1310    switch (allocator) {
1311      case kAllocatorTypeRosAlloc:
1312        // Fall-through.
1313      case kAllocatorTypeDlMalloc: {
1314        if (use_homogeneous_space_compaction_for_oom_ &&
1315            current_time - last_time_homogeneous_space_compaction_by_oom_ >
1316            min_interval_homogeneous_space_compaction_by_oom_) {
1317          last_time_homogeneous_space_compaction_by_oom_ = current_time;
1318          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1319          switch (result) {
1320            case HomogeneousSpaceCompactResult::kSuccess:
1321              // If the allocation succeeded, we delayed an oom.
1322              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1323                                              usable_size);
1324              if (ptr != nullptr) {
1325                count_delayed_oom_++;
1326              }
1327              break;
1328            case HomogeneousSpaceCompactResult::kErrorReject:
1329              // Reject due to disabled moving GC.
1330              break;
1331            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1332              // Throw OOM by default.
1333              break;
1334            default: {
1335              UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1336                  << static_cast<size_t>(result);
1337              UNREACHABLE();
1338            }
1339          }
1340          // Always print that we ran homogeneous space compation since this can cause jank.
1341          VLOG(heap) << "Ran heap homogeneous space compaction, "
1342                    << " requested defragmentation "
1343                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1344                    << " performed defragmentation "
1345                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1346                    << " ignored homogeneous space compaction "
1347                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1348                    << " delayed count = "
1349                    << count_delayed_oom_.LoadSequentiallyConsistent();
1350        }
1351        break;
1352      }
1353      case kAllocatorTypeNonMoving: {
1354        // Try to transition the heap if the allocation failure was due to the space being full.
1355        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1356          // If we aren't out of memory then the OOM was probably from the non moving space being
1357          // full. Attempt to disable compaction and turn the main space into a non moving space.
1358          DisableMovingGc();
1359          // If we are still a moving GC then something must have caused the transition to fail.
1360          if (IsMovingGc(collector_type_)) {
1361            MutexLock mu(self, *gc_complete_lock_);
1362            // If we couldn't disable moving GC, just throw OOME and return null.
1363            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1364                         << disable_moving_gc_count_;
1365          } else {
1366            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1367            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1368                                            usable_size);
1369          }
1370        }
1371        break;
1372      }
1373      default: {
1374        // Do nothing for others allocators.
1375      }
1376    }
1377  }
1378  // If the allocation hasn't succeeded by this point, throw an OOM error.
1379  if (ptr == nullptr) {
1380    ThrowOutOfMemoryError(self, alloc_size, allocator);
1381  }
1382  return ptr;
1383}
1384
1385void Heap::SetTargetHeapUtilization(float target) {
1386  DCHECK_GT(target, 0.0f);  // asserted in Java code
1387  DCHECK_LT(target, 1.0f);
1388  target_utilization_ = target;
1389}
1390
1391size_t Heap::GetObjectsAllocated() const {
1392  size_t total = 0;
1393  for (space::AllocSpace* space : alloc_spaces_) {
1394    total += space->GetObjectsAllocated();
1395  }
1396  return total;
1397}
1398
1399uint64_t Heap::GetObjectsAllocatedEver() const {
1400  return GetObjectsFreedEver() + GetObjectsAllocated();
1401}
1402
1403uint64_t Heap::GetBytesAllocatedEver() const {
1404  return GetBytesFreedEver() + GetBytesAllocated();
1405}
1406
1407class InstanceCounter {
1408 public:
1409  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1410      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1411      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1412  }
1413  static void Callback(mirror::Object* obj, void* arg)
1414      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1415    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1416    mirror::Class* instance_class = obj->GetClass();
1417    CHECK(instance_class != nullptr);
1418    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1419      if (instance_counter->use_is_assignable_from_) {
1420        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1421          ++instance_counter->counts_[i];
1422        }
1423      } else if (instance_class == instance_counter->classes_[i]) {
1424        ++instance_counter->counts_[i];
1425      }
1426    }
1427  }
1428
1429 private:
1430  const std::vector<mirror::Class*>& classes_;
1431  bool use_is_assignable_from_;
1432  uint64_t* const counts_;
1433  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1434};
1435
1436void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1437                          uint64_t* counts) {
1438  // Can't do any GC in this function since this may move classes.
1439  ScopedAssertNoThreadSuspension ants(Thread::Current(), "CountInstances");
1440  InstanceCounter counter(classes, use_is_assignable_from, counts);
1441  ReaderMutexLock mu(ants.Self(), *Locks::heap_bitmap_lock_);
1442  VisitObjects(InstanceCounter::Callback, &counter);
1443}
1444
1445class InstanceCollector {
1446 public:
1447  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1448      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1449      : class_(c), max_count_(max_count), instances_(instances) {
1450  }
1451  static void Callback(mirror::Object* obj, void* arg)
1452      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1453    DCHECK(arg != nullptr);
1454    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1455    if (obj->GetClass() == instance_collector->class_) {
1456      if (instance_collector->max_count_ == 0 ||
1457          instance_collector->instances_.size() < instance_collector->max_count_) {
1458        instance_collector->instances_.push_back(obj);
1459      }
1460    }
1461  }
1462
1463 private:
1464  const mirror::Class* const class_;
1465  const uint32_t max_count_;
1466  std::vector<mirror::Object*>& instances_;
1467  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1468};
1469
1470void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1471                        std::vector<mirror::Object*>& instances) {
1472  // Can't do any GC in this function since this may move classes.
1473  ScopedAssertNoThreadSuspension ants(Thread::Current(), "GetInstances");
1474  InstanceCollector collector(c, max_count, instances);
1475  ReaderMutexLock mu(ants.Self(), *Locks::heap_bitmap_lock_);
1476  VisitObjects(&InstanceCollector::Callback, &collector);
1477}
1478
1479class ReferringObjectsFinder {
1480 public:
1481  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1482                         std::vector<mirror::Object*>& referring_objects)
1483      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1484      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1485  }
1486
1487  static void Callback(mirror::Object* obj, void* arg)
1488      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1489    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1490  }
1491
1492  // For bitmap Visit.
1493  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1494  // annotalysis on visitors.
1495  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1496    o->VisitReferences<true>(*this, VoidFunctor());
1497  }
1498
1499  // For Object::VisitReferences.
1500  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1501      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1502    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1503    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1504      referring_objects_.push_back(obj);
1505    }
1506  }
1507
1508 private:
1509  const mirror::Object* const object_;
1510  const uint32_t max_count_;
1511  std::vector<mirror::Object*>& referring_objects_;
1512  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1513};
1514
1515void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1516                               std::vector<mirror::Object*>& referring_objects) {
1517  // Can't do any GC in this function since this may move the object o.
1518  ScopedAssertNoThreadSuspension ants(Thread::Current(), "GetReferringObjects");
1519  ReferringObjectsFinder finder(o, max_count, referring_objects);
1520  ReaderMutexLock mu(ants.Self(), *Locks::heap_bitmap_lock_);
1521  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1522}
1523
1524void Heap::CollectGarbage(bool clear_soft_references) {
1525  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1526  // last GC will not have necessarily been cleared.
1527  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1528}
1529
1530HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1531  Thread* self = Thread::Current();
1532  // Inc requested homogeneous space compaction.
1533  count_requested_homogeneous_space_compaction_++;
1534  // Store performed homogeneous space compaction at a new request arrival.
1535  ThreadList* tl = Runtime::Current()->GetThreadList();
1536  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1537  Locks::mutator_lock_->AssertNotHeld(self);
1538  {
1539    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1540    MutexLock mu(self, *gc_complete_lock_);
1541    // Ensure there is only one GC at a time.
1542    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1543    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1544    // is non zero.
1545    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1546    // exit.
1547    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1548        !main_space_->CanMoveObjects()) {
1549      return HomogeneousSpaceCompactResult::kErrorReject;
1550    }
1551    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1552  }
1553  if (Runtime::Current()->IsShuttingDown(self)) {
1554    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1555    // cause objects to get finalized.
1556    FinishGC(self, collector::kGcTypeNone);
1557    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1558  }
1559  // Suspend all threads.
1560  tl->SuspendAll();
1561  uint64_t start_time = NanoTime();
1562  // Launch compaction.
1563  space::MallocSpace* to_space = main_space_backup_.release();
1564  space::MallocSpace* from_space = main_space_;
1565  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1566  const uint64_t space_size_before_compaction = from_space->Size();
1567  AddSpace(to_space);
1568  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1569  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1570  from_space->GetMemMap()->Protect(PROT_READ);
1571  const uint64_t space_size_after_compaction = to_space->Size();
1572  main_space_ = to_space;
1573  main_space_backup_.reset(from_space);
1574  RemoveSpace(from_space);
1575  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1576  // Update performed homogeneous space compaction count.
1577  count_performed_homogeneous_space_compaction_++;
1578  // Print statics log and resume all threads.
1579  uint64_t duration = NanoTime() - start_time;
1580  VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1581             << PrettySize(space_size_before_compaction) << " -> "
1582             << PrettySize(space_size_after_compaction) << " compact-ratio: "
1583             << std::fixed << static_cast<double>(space_size_after_compaction) /
1584             static_cast<double>(space_size_before_compaction);
1585  tl->ResumeAll();
1586  // Finish GC.
1587  reference_processor_.EnqueueClearedReferences(self);
1588  GrowForUtilization(semi_space_collector_);
1589  FinishGC(self, collector::kGcTypeFull);
1590  return HomogeneousSpaceCompactResult::kSuccess;
1591}
1592
1593
1594void Heap::TransitionCollector(CollectorType collector_type) {
1595  if (collector_type == collector_type_) {
1596    return;
1597  }
1598  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1599             << " -> " << static_cast<int>(collector_type);
1600  uint64_t start_time = NanoTime();
1601  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1602  Runtime* const runtime = Runtime::Current();
1603  ThreadList* const tl = runtime->GetThreadList();
1604  Thread* const self = Thread::Current();
1605  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1606  Locks::mutator_lock_->AssertNotHeld(self);
1607  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1608  // compacting_gc_disable_count_, this should rarely occurs).
1609  for (;;) {
1610    {
1611      ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1612      MutexLock mu(self, *gc_complete_lock_);
1613      // Ensure there is only one GC at a time.
1614      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1615      // Currently we only need a heap transition if we switch from a moving collector to a
1616      // non-moving one, or visa versa.
1617      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1618      // If someone else beat us to it and changed the collector before we could, exit.
1619      // This is safe to do before the suspend all since we set the collector_type_running_ before
1620      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1621      // then it would get blocked on WaitForGcToCompleteLocked.
1622      if (collector_type == collector_type_) {
1623        return;
1624      }
1625      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1626      if (!copying_transition || disable_moving_gc_count_ == 0) {
1627        // TODO: Not hard code in semi-space collector?
1628        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1629        break;
1630      }
1631    }
1632    usleep(1000);
1633  }
1634  if (runtime->IsShuttingDown(self)) {
1635    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1636    // cause objects to get finalized.
1637    FinishGC(self, collector::kGcTypeNone);
1638    return;
1639  }
1640  tl->SuspendAll();
1641  switch (collector_type) {
1642    case kCollectorTypeSS: {
1643      if (!IsMovingGc(collector_type_)) {
1644        // Create the bump pointer space from the backup space.
1645        CHECK(main_space_backup_ != nullptr);
1646        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1647        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1648        // pointer space last transition it will be protected.
1649        CHECK(mem_map != nullptr);
1650        mem_map->Protect(PROT_READ | PROT_WRITE);
1651        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1652                                                                        mem_map.release());
1653        AddSpace(bump_pointer_space_);
1654        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1655        // Use the now empty main space mem map for the bump pointer temp space.
1656        mem_map.reset(main_space_->ReleaseMemMap());
1657        // Unset the pointers just in case.
1658        if (dlmalloc_space_ == main_space_) {
1659          dlmalloc_space_ = nullptr;
1660        } else if (rosalloc_space_ == main_space_) {
1661          rosalloc_space_ = nullptr;
1662        }
1663        // Remove the main space so that we don't try to trim it, this doens't work for debug
1664        // builds since RosAlloc attempts to read the magic number from a protected page.
1665        RemoveSpace(main_space_);
1666        RemoveRememberedSet(main_space_);
1667        delete main_space_;  // Delete the space since it has been removed.
1668        main_space_ = nullptr;
1669        RemoveRememberedSet(main_space_backup_.get());
1670        main_space_backup_.reset(nullptr);  // Deletes the space.
1671        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1672                                                                mem_map.release());
1673        AddSpace(temp_space_);
1674      }
1675      break;
1676    }
1677    case kCollectorTypeMS:
1678      // Fall through.
1679    case kCollectorTypeCMS: {
1680      if (IsMovingGc(collector_type_)) {
1681        CHECK(temp_space_ != nullptr);
1682        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1683        RemoveSpace(temp_space_);
1684        temp_space_ = nullptr;
1685        mem_map->Protect(PROT_READ | PROT_WRITE);
1686        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1687                              mem_map->Size());
1688        mem_map.release();
1689        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1690        AddSpace(main_space_);
1691        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1692        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1693        RemoveSpace(bump_pointer_space_);
1694        bump_pointer_space_ = nullptr;
1695        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1696        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1697        if (kIsDebugBuild && kUseRosAlloc) {
1698          mem_map->Protect(PROT_READ | PROT_WRITE);
1699        }
1700        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1701                                                             mem_map->Size(), mem_map->Size(),
1702                                                             name, true));
1703        if (kIsDebugBuild && kUseRosAlloc) {
1704          mem_map->Protect(PROT_NONE);
1705        }
1706        mem_map.release();
1707      }
1708      break;
1709    }
1710    default: {
1711      LOG(FATAL) << "Attempted to transition to invalid collector type "
1712                 << static_cast<size_t>(collector_type);
1713      break;
1714    }
1715  }
1716  ChangeCollector(collector_type);
1717  tl->ResumeAll();
1718  // Can't call into java code with all threads suspended.
1719  reference_processor_.EnqueueClearedReferences(self);
1720  uint64_t duration = NanoTime() - start_time;
1721  GrowForUtilization(semi_space_collector_);
1722  FinishGC(self, collector::kGcTypeFull);
1723  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1724  int32_t delta_allocated = before_allocated - after_allocated;
1725  std::string saved_str;
1726  if (delta_allocated >= 0) {
1727    saved_str = " saved at least " + PrettySize(delta_allocated);
1728  } else {
1729    saved_str = " expanded " + PrettySize(-delta_allocated);
1730  }
1731  VLOG(heap) << "Heap transition to " << process_state_ << " took "
1732      << PrettyDuration(duration) << saved_str;
1733}
1734
1735void Heap::ChangeCollector(CollectorType collector_type) {
1736  // TODO: Only do this with all mutators suspended to avoid races.
1737  if (collector_type != collector_type_) {
1738    if (collector_type == kCollectorTypeMC) {
1739      // Don't allow mark compact unless support is compiled in.
1740      CHECK(kMarkCompactSupport);
1741    }
1742    collector_type_ = collector_type;
1743    gc_plan_.clear();
1744    switch (collector_type_) {
1745      case kCollectorTypeCC:  // Fall-through.
1746      case kCollectorTypeMC:  // Fall-through.
1747      case kCollectorTypeSS:  // Fall-through.
1748      case kCollectorTypeGSS: {
1749        gc_plan_.push_back(collector::kGcTypeFull);
1750        if (use_tlab_) {
1751          ChangeAllocator(kAllocatorTypeTLAB);
1752        } else {
1753          ChangeAllocator(kAllocatorTypeBumpPointer);
1754        }
1755        break;
1756      }
1757      case kCollectorTypeMS: {
1758        gc_plan_.push_back(collector::kGcTypeSticky);
1759        gc_plan_.push_back(collector::kGcTypePartial);
1760        gc_plan_.push_back(collector::kGcTypeFull);
1761        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1762        break;
1763      }
1764      case kCollectorTypeCMS: {
1765        gc_plan_.push_back(collector::kGcTypeSticky);
1766        gc_plan_.push_back(collector::kGcTypePartial);
1767        gc_plan_.push_back(collector::kGcTypeFull);
1768        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1769        break;
1770      }
1771      default: {
1772        UNIMPLEMENTED(FATAL);
1773        UNREACHABLE();
1774      }
1775    }
1776    if (IsGcConcurrent()) {
1777      concurrent_start_bytes_ =
1778          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1779    } else {
1780      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1781    }
1782  }
1783}
1784
1785// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1786class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1787 public:
1788  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1789      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1790  }
1791
1792  void BuildBins(space::ContinuousSpace* space) {
1793    bin_live_bitmap_ = space->GetLiveBitmap();
1794    bin_mark_bitmap_ = space->GetMarkBitmap();
1795    BinContext context;
1796    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1797    context.collector_ = this;
1798    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1799    // Note: This requires traversing the space in increasing order of object addresses.
1800    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1801    // Add the last bin which spans after the last object to the end of the space.
1802    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1803  }
1804
1805 private:
1806  struct BinContext {
1807    uintptr_t prev_;  // The end of the previous object.
1808    ZygoteCompactingCollector* collector_;
1809  };
1810  // Maps from bin sizes to locations.
1811  std::multimap<size_t, uintptr_t> bins_;
1812  // Live bitmap of the space which contains the bins.
1813  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1814  // Mark bitmap of the space which contains the bins.
1815  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1816
1817  static void Callback(mirror::Object* obj, void* arg)
1818      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1819    DCHECK(arg != nullptr);
1820    BinContext* context = reinterpret_cast<BinContext*>(arg);
1821    ZygoteCompactingCollector* collector = context->collector_;
1822    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1823    size_t bin_size = object_addr - context->prev_;
1824    // Add the bin consisting of the end of the previous object to the start of the current object.
1825    collector->AddBin(bin_size, context->prev_);
1826    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1827  }
1828
1829  void AddBin(size_t size, uintptr_t position) {
1830    if (size != 0) {
1831      bins_.insert(std::make_pair(size, position));
1832    }
1833  }
1834
1835  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1836    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1837    // allocator.
1838    UNUSED(space);
1839    return false;
1840  }
1841
1842  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1843      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1844    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1845    mirror::Object* forward_address;
1846    // Find the smallest bin which we can move obj in.
1847    auto it = bins_.lower_bound(object_size);
1848    if (it == bins_.end()) {
1849      // No available space in the bins, place it in the target space instead (grows the zygote
1850      // space).
1851      size_t bytes_allocated;
1852      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1853      if (to_space_live_bitmap_ != nullptr) {
1854        to_space_live_bitmap_->Set(forward_address);
1855      } else {
1856        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1857        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1858      }
1859    } else {
1860      size_t size = it->first;
1861      uintptr_t pos = it->second;
1862      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1863      forward_address = reinterpret_cast<mirror::Object*>(pos);
1864      // Set the live and mark bits so that sweeping system weaks works properly.
1865      bin_live_bitmap_->Set(forward_address);
1866      bin_mark_bitmap_->Set(forward_address);
1867      DCHECK_GE(size, object_size);
1868      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1869    }
1870    // Copy the object over to its new location.
1871    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1872    if (kUseBakerOrBrooksReadBarrier) {
1873      obj->AssertReadBarrierPointer();
1874      if (kUseBrooksReadBarrier) {
1875        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1876        forward_address->SetReadBarrierPointer(forward_address);
1877      }
1878      forward_address->AssertReadBarrierPointer();
1879    }
1880    return forward_address;
1881  }
1882};
1883
1884void Heap::UnBindBitmaps() {
1885  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1886  for (const auto& space : GetContinuousSpaces()) {
1887    if (space->IsContinuousMemMapAllocSpace()) {
1888      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1889      if (alloc_space->HasBoundBitmaps()) {
1890        alloc_space->UnBindBitmaps();
1891      }
1892    }
1893  }
1894}
1895
1896void Heap::PreZygoteFork() {
1897  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1898  Thread* self = Thread::Current();
1899  MutexLock mu(self, zygote_creation_lock_);
1900  // Try to see if we have any Zygote spaces.
1901  if (HasZygoteSpace()) {
1902    LOG(WARNING) << __FUNCTION__ << " called when we already have a zygote space.";
1903    return;
1904  }
1905  Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
1906  Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
1907  VLOG(heap) << "Starting PreZygoteFork";
1908  // Trim the pages at the end of the non moving space.
1909  non_moving_space_->Trim();
1910  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1911  // there.
1912  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1913  const bool same_space = non_moving_space_ == main_space_;
1914  if (kCompactZygote) {
1915    // Can't compact if the non moving space is the same as the main space.
1916    DCHECK(semi_space_collector_ != nullptr);
1917    // Temporarily disable rosalloc verification because the zygote
1918    // compaction will mess up the rosalloc internal metadata.
1919    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1920    ZygoteCompactingCollector zygote_collector(this);
1921    zygote_collector.BuildBins(non_moving_space_);
1922    // Create a new bump pointer space which we will compact into.
1923    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1924                                         non_moving_space_->Limit());
1925    // Compact the bump pointer space to a new zygote bump pointer space.
1926    bool reset_main_space = false;
1927    if (IsMovingGc(collector_type_)) {
1928      zygote_collector.SetFromSpace(bump_pointer_space_);
1929    } else {
1930      CHECK(main_space_ != nullptr);
1931      // Copy from the main space.
1932      zygote_collector.SetFromSpace(main_space_);
1933      reset_main_space = true;
1934    }
1935    zygote_collector.SetToSpace(&target_space);
1936    zygote_collector.SetSwapSemiSpaces(false);
1937    zygote_collector.Run(kGcCauseCollectorTransition, false);
1938    if (reset_main_space) {
1939      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1940      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1941      MemMap* mem_map = main_space_->ReleaseMemMap();
1942      RemoveSpace(main_space_);
1943      space::Space* old_main_space = main_space_;
1944      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1945      delete old_main_space;
1946      AddSpace(main_space_);
1947    } else {
1948      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1949    }
1950    if (temp_space_ != nullptr) {
1951      CHECK(temp_space_->IsEmpty());
1952    }
1953    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1954    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1955    // Update the end and write out image.
1956    non_moving_space_->SetEnd(target_space.End());
1957    non_moving_space_->SetLimit(target_space.Limit());
1958    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1959  }
1960  // Change the collector to the post zygote one.
1961  ChangeCollector(foreground_collector_type_);
1962  // Save the old space so that we can remove it after we complete creating the zygote space.
1963  space::MallocSpace* old_alloc_space = non_moving_space_;
1964  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1965  // the remaining available space.
1966  // Remove the old space before creating the zygote space since creating the zygote space sets
1967  // the old alloc space's bitmaps to nullptr.
1968  RemoveSpace(old_alloc_space);
1969  if (collector::SemiSpace::kUseRememberedSet) {
1970    // Sanity bound check.
1971    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1972    // Remove the remembered set for the now zygote space (the old
1973    // non-moving space). Note now that we have compacted objects into
1974    // the zygote space, the data in the remembered set is no longer
1975    // needed. The zygote space will instead have a mod-union table
1976    // from this point on.
1977    RemoveRememberedSet(old_alloc_space);
1978  }
1979  zygote_space_ = old_alloc_space->CreateZygoteSpace("alloc space", low_memory_mode_,
1980                                                     &non_moving_space_);
1981  CHECK(!non_moving_space_->CanMoveObjects());
1982  if (same_space) {
1983    main_space_ = non_moving_space_;
1984    SetSpaceAsDefault(main_space_);
1985  }
1986  delete old_alloc_space;
1987  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
1988  AddSpace(zygote_space_);
1989  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1990  AddSpace(non_moving_space_);
1991  // Create the zygote space mod union table.
1992  accounting::ModUnionTable* mod_union_table =
1993      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
1994                                             zygote_space_);
1995  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1996  // Set all the cards in the mod-union table since we don't know which objects contain references
1997  // to large objects.
1998  mod_union_table->SetCards();
1999  AddModUnionTable(mod_union_table);
2000  if (collector::SemiSpace::kUseRememberedSet) {
2001    // Add a new remembered set for the post-zygote non-moving space.
2002    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2003        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2004                                      non_moving_space_);
2005    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2006        << "Failed to create post-zygote non-moving space remembered set";
2007    AddRememberedSet(post_zygote_non_moving_space_rem_set);
2008  }
2009}
2010
2011void Heap::FlushAllocStack() {
2012  MarkAllocStackAsLive(allocation_stack_.get());
2013  allocation_stack_->Reset();
2014}
2015
2016void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2017                          accounting::ContinuousSpaceBitmap* bitmap2,
2018                          accounting::LargeObjectBitmap* large_objects,
2019                          accounting::ObjectStack* stack) {
2020  DCHECK(bitmap1 != nullptr);
2021  DCHECK(bitmap2 != nullptr);
2022  mirror::Object** limit = stack->End();
2023  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
2024    const mirror::Object* obj = *it;
2025    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2026      if (bitmap1->HasAddress(obj)) {
2027        bitmap1->Set(obj);
2028      } else if (bitmap2->HasAddress(obj)) {
2029        bitmap2->Set(obj);
2030      } else {
2031        DCHECK(large_objects != nullptr);
2032        large_objects->Set(obj);
2033      }
2034    }
2035  }
2036}
2037
2038void Heap::SwapSemiSpaces() {
2039  CHECK(bump_pointer_space_ != nullptr);
2040  CHECK(temp_space_ != nullptr);
2041  std::swap(bump_pointer_space_, temp_space_);
2042}
2043
2044void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2045                   space::ContinuousMemMapAllocSpace* source_space,
2046                   GcCause gc_cause) {
2047  CHECK(kMovingCollector);
2048  if (target_space != source_space) {
2049    // Don't swap spaces since this isn't a typical semi space collection.
2050    semi_space_collector_->SetSwapSemiSpaces(false);
2051    semi_space_collector_->SetFromSpace(source_space);
2052    semi_space_collector_->SetToSpace(target_space);
2053    semi_space_collector_->Run(gc_cause, false);
2054  } else {
2055    CHECK(target_space->IsBumpPointerSpace())
2056        << "In-place compaction is only supported for bump pointer spaces";
2057    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2058    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2059  }
2060}
2061
2062collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2063                                               bool clear_soft_references) {
2064  Thread* self = Thread::Current();
2065  Runtime* runtime = Runtime::Current();
2066  // If the heap can't run the GC, silently fail and return that no GC was run.
2067  switch (gc_type) {
2068    case collector::kGcTypePartial: {
2069      if (!HasZygoteSpace()) {
2070        return collector::kGcTypeNone;
2071      }
2072      break;
2073    }
2074    default: {
2075      // Other GC types don't have any special cases which makes them not runnable. The main case
2076      // here is full GC.
2077    }
2078  }
2079  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2080  Locks::mutator_lock_->AssertNotHeld(self);
2081  if (self->IsHandlingStackOverflow()) {
2082    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2083  }
2084  bool compacting_gc;
2085  {
2086    gc_complete_lock_->AssertNotHeld(self);
2087    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2088    MutexLock mu(self, *gc_complete_lock_);
2089    // Ensure there is only one GC at a time.
2090    WaitForGcToCompleteLocked(gc_cause, self);
2091    compacting_gc = IsMovingGc(collector_type_);
2092    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2093    if (compacting_gc && disable_moving_gc_count_ != 0) {
2094      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2095      return collector::kGcTypeNone;
2096    }
2097    collector_type_running_ = collector_type_;
2098  }
2099
2100  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2101    ++runtime->GetStats()->gc_for_alloc_count;
2102    ++self->GetStats()->gc_for_alloc_count;
2103  }
2104  uint64_t gc_start_time_ns = NanoTime();
2105  uint64_t gc_start_size = GetBytesAllocated();
2106  // Approximate allocation rate in bytes / second.
2107  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2108  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2109  if (LIKELY(ms_delta != 0)) {
2110    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2111    ATRACE_INT("Allocation rate KB/s", allocation_rate_ / KB);
2112    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2113  }
2114
2115  DCHECK_LT(gc_type, collector::kGcTypeMax);
2116  DCHECK_NE(gc_type, collector::kGcTypeNone);
2117
2118  collector::GarbageCollector* collector = nullptr;
2119  // TODO: Clean this up.
2120  if (compacting_gc) {
2121    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2122           current_allocator_ == kAllocatorTypeTLAB);
2123    switch (collector_type_) {
2124      case kCollectorTypeSS:
2125        // Fall-through.
2126      case kCollectorTypeGSS:
2127        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2128        semi_space_collector_->SetToSpace(temp_space_);
2129        semi_space_collector_->SetSwapSemiSpaces(true);
2130        collector = semi_space_collector_;
2131        break;
2132      case kCollectorTypeCC:
2133        collector = concurrent_copying_collector_;
2134        break;
2135      case kCollectorTypeMC:
2136        mark_compact_collector_->SetSpace(bump_pointer_space_);
2137        collector = mark_compact_collector_;
2138        break;
2139      default:
2140        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2141    }
2142    if (collector != mark_compact_collector_) {
2143      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2144      CHECK(temp_space_->IsEmpty());
2145    }
2146    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2147  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2148      current_allocator_ == kAllocatorTypeDlMalloc) {
2149    collector = FindCollectorByGcType(gc_type);
2150  } else {
2151    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2152  }
2153  if (IsGcConcurrent()) {
2154    // Disable concurrent GC check so that we don't have spammy JNI requests.
2155    // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2156    // calculated in the same thread so that there aren't any races that can cause it to become
2157    // permanantly disabled. b/17942071
2158    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2159  }
2160  CHECK(collector != nullptr)
2161      << "Could not find garbage collector with collector_type="
2162      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2163  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2164  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2165  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2166  RequestHeapTrim();
2167  // Enqueue cleared references.
2168  reference_processor_.EnqueueClearedReferences(self);
2169  // Grow the heap so that we know when to perform the next GC.
2170  GrowForUtilization(collector);
2171  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2172  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2173  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2174  // (mutator time blocked >= long_pause_log_threshold_).
2175  bool log_gc = gc_cause == kGcCauseExplicit;
2176  if (!log_gc && CareAboutPauseTimes()) {
2177    // GC for alloc pauses the allocating thread, so consider it as a pause.
2178    log_gc = duration > long_gc_log_threshold_ ||
2179        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2180    for (uint64_t pause : pause_times) {
2181      log_gc = log_gc || pause >= long_pause_log_threshold_;
2182    }
2183  }
2184  if (log_gc) {
2185    const size_t percent_free = GetPercentFree();
2186    const size_t current_heap_size = GetBytesAllocated();
2187    const size_t total_memory = GetTotalMemory();
2188    std::ostringstream pause_string;
2189    for (size_t i = 0; i < pause_times.size(); ++i) {
2190        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2191                     << ((i != pause_times.size() - 1) ? "," : "");
2192    }
2193    LOG(INFO) << gc_cause << " " << collector->GetName()
2194              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2195              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2196              << current_gc_iteration_.GetFreedLargeObjects() << "("
2197              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2198              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2199              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2200              << " total " << PrettyDuration((duration / 1000) * 1000);
2201    VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2202  }
2203  FinishGC(self, gc_type);
2204  // Inform DDMS that a GC completed.
2205  Dbg::GcDidFinish();
2206  return gc_type;
2207}
2208
2209void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2210  MutexLock mu(self, *gc_complete_lock_);
2211  collector_type_running_ = kCollectorTypeNone;
2212  if (gc_type != collector::kGcTypeNone) {
2213    last_gc_type_ = gc_type;
2214  }
2215  // Wake anyone who may have been waiting for the GC to complete.
2216  gc_complete_cond_->Broadcast(self);
2217}
2218
2219static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2220                                     RootType /*root_type*/) {
2221  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2222  if (*root == obj) {
2223    LOG(INFO) << "Object " << obj << " is a root";
2224  }
2225}
2226
2227class ScanVisitor {
2228 public:
2229  void operator()(const mirror::Object* obj) const {
2230    LOG(ERROR) << "Would have rescanned object " << obj;
2231  }
2232};
2233
2234// Verify a reference from an object.
2235class VerifyReferenceVisitor {
2236 public:
2237  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2238      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2239      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2240
2241  size_t GetFailureCount() const {
2242    return fail_count_->LoadSequentiallyConsistent();
2243  }
2244
2245  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2246      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2247    UNUSED(klass);
2248    if (verify_referent_) {
2249      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2250    }
2251  }
2252
2253  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2254      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2255    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2256  }
2257
2258  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2259    return heap_->IsLiveObjectLocked(obj, true, false, true);
2260  }
2261
2262  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2263                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2264    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2265    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2266      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2267          << " thread_id= " << thread_id << " root_type= " << root_type;
2268    }
2269  }
2270
2271 private:
2272  // TODO: Fix the no thread safety analysis.
2273  // Returns false on failure.
2274  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2275      NO_THREAD_SAFETY_ANALYSIS {
2276    if (ref == nullptr || IsLive(ref)) {
2277      // Verify that the reference is live.
2278      return true;
2279    }
2280    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2281      // Print message on only on first failure to prevent spam.
2282      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2283    }
2284    if (obj != nullptr) {
2285      // Only do this part for non roots.
2286      accounting::CardTable* card_table = heap_->GetCardTable();
2287      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2288      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2289      uint8_t* card_addr = card_table->CardFromAddr(obj);
2290      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2291                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2292      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2293        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2294      } else {
2295        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2296      }
2297
2298      // Attempt to find the class inside of the recently freed objects.
2299      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2300      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2301        space::MallocSpace* space = ref_space->AsMallocSpace();
2302        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2303        if (ref_class != nullptr) {
2304          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2305                     << PrettyClass(ref_class);
2306        } else {
2307          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2308        }
2309      }
2310
2311      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2312          ref->GetClass()->IsClass()) {
2313        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2314      } else {
2315        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2316                   << ") is not a valid heap address";
2317      }
2318
2319      card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2320      void* cover_begin = card_table->AddrFromCard(card_addr);
2321      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2322          accounting::CardTable::kCardSize);
2323      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2324          << "-" << cover_end;
2325      accounting::ContinuousSpaceBitmap* bitmap =
2326          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2327
2328      if (bitmap == nullptr) {
2329        LOG(ERROR) << "Object " << obj << " has no bitmap";
2330        if (!VerifyClassClass(obj->GetClass())) {
2331          LOG(ERROR) << "Object " << obj << " failed class verification!";
2332        }
2333      } else {
2334        // Print out how the object is live.
2335        if (bitmap->Test(obj)) {
2336          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2337        }
2338        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2339          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2340        }
2341        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2342          LOG(ERROR) << "Object " << obj << " found in live stack";
2343        }
2344        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2345          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2346        }
2347        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2348          LOG(ERROR) << "Ref " << ref << " found in live stack";
2349        }
2350        // Attempt to see if the card table missed the reference.
2351        ScanVisitor scan_visitor;
2352        uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2353        card_table->Scan(bitmap, byte_cover_begin,
2354                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2355      }
2356
2357      // Search to see if any of the roots reference our object.
2358      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2359      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2360
2361      // Search to see if any of the roots reference our reference.
2362      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2363      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2364    }
2365    return false;
2366  }
2367
2368  Heap* const heap_;
2369  Atomic<size_t>* const fail_count_;
2370  const bool verify_referent_;
2371};
2372
2373// Verify all references within an object, for use with HeapBitmap::Visit.
2374class VerifyObjectVisitor {
2375 public:
2376  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2377      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2378  }
2379
2380  void operator()(mirror::Object* obj) const
2381      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2382    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2383    // be live or else how did we find it in the live bitmap?
2384    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2385    // The class doesn't count as a reference but we should verify it anyways.
2386    obj->VisitReferences<true>(visitor, visitor);
2387  }
2388
2389  static void VisitCallback(mirror::Object* obj, void* arg)
2390      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2391    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2392    visitor->operator()(obj);
2393  }
2394
2395  size_t GetFailureCount() const {
2396    return fail_count_->LoadSequentiallyConsistent();
2397  }
2398
2399 private:
2400  Heap* const heap_;
2401  Atomic<size_t>* const fail_count_;
2402  const bool verify_referent_;
2403};
2404
2405void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2406  // Slow path, the allocation stack push back must have already failed.
2407  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2408  do {
2409    // TODO: Add handle VerifyObject.
2410    StackHandleScope<1> hs(self);
2411    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2412    // Push our object into the reserve region of the allocaiton stack. This is only required due
2413    // to heap verification requiring that roots are live (either in the live bitmap or in the
2414    // allocation stack).
2415    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2416    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2417  } while (!allocation_stack_->AtomicPushBack(*obj));
2418}
2419
2420void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2421  // Slow path, the allocation stack push back must have already failed.
2422  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2423  mirror::Object** start_address;
2424  mirror::Object** end_address;
2425  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2426                                            &end_address)) {
2427    // TODO: Add handle VerifyObject.
2428    StackHandleScope<1> hs(self);
2429    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2430    // Push our object into the reserve region of the allocaiton stack. This is only required due
2431    // to heap verification requiring that roots are live (either in the live bitmap or in the
2432    // allocation stack).
2433    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2434    // Push into the reserve allocation stack.
2435    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2436  }
2437  self->SetThreadLocalAllocationStack(start_address, end_address);
2438  // Retry on the new thread-local allocation stack.
2439  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2440}
2441
2442// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2443size_t Heap::VerifyHeapReferences(bool verify_referents) {
2444  Thread* self = Thread::Current();
2445  Locks::mutator_lock_->AssertExclusiveHeld(self);
2446  // Lets sort our allocation stacks so that we can efficiently binary search them.
2447  allocation_stack_->Sort();
2448  live_stack_->Sort();
2449  // Since we sorted the allocation stack content, need to revoke all
2450  // thread-local allocation stacks.
2451  RevokeAllThreadLocalAllocationStacks(self);
2452  Atomic<size_t> fail_count_(0);
2453  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2454  // Verify objects in the allocation stack since these will be objects which were:
2455  // 1. Allocated prior to the GC (pre GC verification).
2456  // 2. Allocated during the GC (pre sweep GC verification).
2457  // We don't want to verify the objects in the live stack since they themselves may be
2458  // pointing to dead objects if they are not reachable.
2459  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2460  // Verify the roots:
2461  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2462  if (visitor.GetFailureCount() > 0) {
2463    // Dump mod-union tables.
2464    for (const auto& table_pair : mod_union_tables_) {
2465      accounting::ModUnionTable* mod_union_table = table_pair.second;
2466      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2467    }
2468    // Dump remembered sets.
2469    for (const auto& table_pair : remembered_sets_) {
2470      accounting::RememberedSet* remembered_set = table_pair.second;
2471      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2472    }
2473    DumpSpaces(LOG(ERROR));
2474  }
2475  return visitor.GetFailureCount();
2476}
2477
2478class VerifyReferenceCardVisitor {
2479 public:
2480  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2481      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2482                            Locks::heap_bitmap_lock_)
2483      : heap_(heap), failed_(failed) {
2484  }
2485
2486  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2487  // annotalysis on visitors.
2488  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2489      NO_THREAD_SAFETY_ANALYSIS {
2490    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2491    // Filter out class references since changing an object's class does not mark the card as dirty.
2492    // Also handles large objects, since the only reference they hold is a class reference.
2493    if (ref != nullptr && !ref->IsClass()) {
2494      accounting::CardTable* card_table = heap_->GetCardTable();
2495      // If the object is not dirty and it is referencing something in the live stack other than
2496      // class, then it must be on a dirty card.
2497      if (!card_table->AddrIsInCardTable(obj)) {
2498        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2499        *failed_ = true;
2500      } else if (!card_table->IsDirty(obj)) {
2501        // TODO: Check mod-union tables.
2502        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2503        // kCardDirty - 1 if it didnt get touched since we aged it.
2504        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2505        if (live_stack->ContainsSorted(ref)) {
2506          if (live_stack->ContainsSorted(obj)) {
2507            LOG(ERROR) << "Object " << obj << " found in live stack";
2508          }
2509          if (heap_->GetLiveBitmap()->Test(obj)) {
2510            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2511          }
2512          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2513                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2514
2515          // Print which field of the object is dead.
2516          if (!obj->IsObjectArray()) {
2517            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2518            CHECK(klass != NULL);
2519            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2520                                                                      : klass->GetIFields();
2521            CHECK(fields != NULL);
2522            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2523              mirror::ArtField* cur = fields->Get(i);
2524              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2525                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2526                          << PrettyField(cur);
2527                break;
2528              }
2529            }
2530          } else {
2531            mirror::ObjectArray<mirror::Object>* object_array =
2532                obj->AsObjectArray<mirror::Object>();
2533            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2534              if (object_array->Get(i) == ref) {
2535                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2536              }
2537            }
2538          }
2539
2540          *failed_ = true;
2541        }
2542      }
2543    }
2544  }
2545
2546 private:
2547  Heap* const heap_;
2548  bool* const failed_;
2549};
2550
2551class VerifyLiveStackReferences {
2552 public:
2553  explicit VerifyLiveStackReferences(Heap* heap)
2554      : heap_(heap),
2555        failed_(false) {}
2556
2557  void operator()(mirror::Object* obj) const
2558      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2559    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2560    obj->VisitReferences<true>(visitor, VoidFunctor());
2561  }
2562
2563  bool Failed() const {
2564    return failed_;
2565  }
2566
2567 private:
2568  Heap* const heap_;
2569  bool failed_;
2570};
2571
2572bool Heap::VerifyMissingCardMarks() {
2573  Thread* self = Thread::Current();
2574  Locks::mutator_lock_->AssertExclusiveHeld(self);
2575  // We need to sort the live stack since we binary search it.
2576  live_stack_->Sort();
2577  // Since we sorted the allocation stack content, need to revoke all
2578  // thread-local allocation stacks.
2579  RevokeAllThreadLocalAllocationStacks(self);
2580  VerifyLiveStackReferences visitor(this);
2581  GetLiveBitmap()->Visit(visitor);
2582  // We can verify objects in the live stack since none of these should reference dead objects.
2583  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2584    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2585      visitor(*it);
2586    }
2587  }
2588  return !visitor.Failed();
2589}
2590
2591void Heap::SwapStacks(Thread* self) {
2592  UNUSED(self);
2593  if (kUseThreadLocalAllocationStack) {
2594    live_stack_->AssertAllZero();
2595  }
2596  allocation_stack_.swap(live_stack_);
2597}
2598
2599void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2600  // This must be called only during the pause.
2601  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2602  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2603  MutexLock mu2(self, *Locks::thread_list_lock_);
2604  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2605  for (Thread* t : thread_list) {
2606    t->RevokeThreadLocalAllocationStack();
2607  }
2608}
2609
2610void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
2611  if (kIsDebugBuild) {
2612    if (rosalloc_space_ != nullptr) {
2613      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
2614    }
2615    if (bump_pointer_space_ != nullptr) {
2616      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
2617    }
2618  }
2619}
2620
2621void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2622  if (kIsDebugBuild) {
2623    if (bump_pointer_space_ != nullptr) {
2624      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2625    }
2626  }
2627}
2628
2629accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2630  auto it = mod_union_tables_.find(space);
2631  if (it == mod_union_tables_.end()) {
2632    return nullptr;
2633  }
2634  return it->second;
2635}
2636
2637accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2638  auto it = remembered_sets_.find(space);
2639  if (it == remembered_sets_.end()) {
2640    return nullptr;
2641  }
2642  return it->second;
2643}
2644
2645void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2646  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2647  // Clear cards and keep track of cards cleared in the mod-union table.
2648  for (const auto& space : continuous_spaces_) {
2649    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2650    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2651    if (table != nullptr) {
2652      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2653          "ImageModUnionClearCards";
2654      TimingLogger::ScopedTiming t2(name, timings);
2655      table->ClearCards();
2656    } else if (use_rem_sets && rem_set != nullptr) {
2657      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2658          << static_cast<int>(collector_type_);
2659      TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
2660      rem_set->ClearCards();
2661    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2662      TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
2663      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2664      // were dirty before the GC started.
2665      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2666      // -> clean(cleaning thread).
2667      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2668      // roots and then we scan / update mod union tables after. We will always scan either card.
2669      // If we end up with the non aged card, we scan it it in the pause.
2670      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2671                                     VoidFunctor());
2672    }
2673  }
2674}
2675
2676static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2677}
2678
2679void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2680  Thread* const self = Thread::Current();
2681  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2682  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2683  if (verify_pre_gc_heap_) {
2684    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
2685    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2686    size_t failures = VerifyHeapReferences();
2687    if (failures > 0) {
2688      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2689          << " failures";
2690    }
2691  }
2692  // Check that all objects which reference things in the live stack are on dirty cards.
2693  if (verify_missing_card_marks_) {
2694    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
2695    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2696    SwapStacks(self);
2697    // Sort the live stack so that we can quickly binary search it later.
2698    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2699                                    << " missing card mark verification failed\n" << DumpSpaces();
2700    SwapStacks(self);
2701  }
2702  if (verify_mod_union_table_) {
2703    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
2704    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2705    for (const auto& table_pair : mod_union_tables_) {
2706      accounting::ModUnionTable* mod_union_table = table_pair.second;
2707      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2708      mod_union_table->Verify();
2709    }
2710  }
2711}
2712
2713void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2714  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2715    collector::GarbageCollector::ScopedPause pause(gc);
2716    PreGcVerificationPaused(gc);
2717  }
2718}
2719
2720void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2721  UNUSED(gc);
2722  // TODO: Add a new runtime option for this?
2723  if (verify_pre_gc_rosalloc_) {
2724    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2725  }
2726}
2727
2728void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2729  Thread* const self = Thread::Current();
2730  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2731  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2732  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2733  // reachable objects.
2734  if (verify_pre_sweeping_heap_) {
2735    TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
2736    CHECK_NE(self->GetState(), kRunnable);
2737    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2738    // Swapping bound bitmaps does nothing.
2739    gc->SwapBitmaps();
2740    // Pass in false since concurrent reference processing can mean that the reference referents
2741    // may point to dead objects at the point which PreSweepingGcVerification is called.
2742    size_t failures = VerifyHeapReferences(false);
2743    if (failures > 0) {
2744      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2745          << " failures";
2746    }
2747    gc->SwapBitmaps();
2748  }
2749  if (verify_pre_sweeping_rosalloc_) {
2750    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2751  }
2752}
2753
2754void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2755  // Only pause if we have to do some verification.
2756  Thread* const self = Thread::Current();
2757  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2758  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2759  if (verify_system_weaks_) {
2760    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2761    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2762    mark_sweep->VerifySystemWeaks();
2763  }
2764  if (verify_post_gc_rosalloc_) {
2765    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2766  }
2767  if (verify_post_gc_heap_) {
2768    TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
2769    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2770    size_t failures = VerifyHeapReferences();
2771    if (failures > 0) {
2772      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2773          << " failures";
2774    }
2775  }
2776}
2777
2778void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2779  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2780    collector::GarbageCollector::ScopedPause pause(gc);
2781    PostGcVerificationPaused(gc);
2782  }
2783}
2784
2785void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2786  TimingLogger::ScopedTiming t(name, timings);
2787  for (const auto& space : continuous_spaces_) {
2788    if (space->IsRosAllocSpace()) {
2789      VLOG(heap) << name << " : " << space->GetName();
2790      space->AsRosAllocSpace()->Verify();
2791    }
2792  }
2793}
2794
2795collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2796  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2797  MutexLock mu(self, *gc_complete_lock_);
2798  return WaitForGcToCompleteLocked(cause, self);
2799}
2800
2801collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2802  collector::GcType last_gc_type = collector::kGcTypeNone;
2803  uint64_t wait_start = NanoTime();
2804  while (collector_type_running_ != kCollectorTypeNone) {
2805    ATRACE_BEGIN("GC: Wait For Completion");
2806    // We must wait, change thread state then sleep on gc_complete_cond_;
2807    gc_complete_cond_->Wait(self);
2808    last_gc_type = last_gc_type_;
2809    ATRACE_END();
2810  }
2811  uint64_t wait_time = NanoTime() - wait_start;
2812  total_wait_time_ += wait_time;
2813  if (wait_time > long_pause_log_threshold_) {
2814    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2815        << " for cause " << cause;
2816  }
2817  return last_gc_type;
2818}
2819
2820void Heap::DumpForSigQuit(std::ostream& os) {
2821  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2822     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2823  DumpGcPerformanceInfo(os);
2824}
2825
2826size_t Heap::GetPercentFree() {
2827  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2828}
2829
2830void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2831  if (max_allowed_footprint > GetMaxMemory()) {
2832    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2833             << PrettySize(GetMaxMemory());
2834    max_allowed_footprint = GetMaxMemory();
2835  }
2836  max_allowed_footprint_ = max_allowed_footprint;
2837}
2838
2839bool Heap::IsMovableObject(const mirror::Object* obj) const {
2840  if (kMovingCollector) {
2841    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2842    if (space != nullptr) {
2843      // TODO: Check large object?
2844      return space->CanMoveObjects();
2845    }
2846  }
2847  return false;
2848}
2849
2850void Heap::UpdateMaxNativeFootprint() {
2851  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2852  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2853  size_t target_size = native_size / GetTargetHeapUtilization();
2854  if (target_size > native_size + max_free_) {
2855    target_size = native_size + max_free_;
2856  } else if (target_size < native_size + min_free_) {
2857    target_size = native_size + min_free_;
2858  }
2859  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
2860}
2861
2862collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2863  for (const auto& collector : garbage_collectors_) {
2864    if (collector->GetCollectorType() == collector_type_ &&
2865        collector->GetGcType() == gc_type) {
2866      return collector;
2867    }
2868  }
2869  return nullptr;
2870}
2871
2872double Heap::HeapGrowthMultiplier() const {
2873  // If we don't care about pause times we are background, so return 1.0.
2874  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2875    return 1.0;
2876  }
2877  return foreground_heap_growth_multiplier_;
2878}
2879
2880void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2881  // We know what our utilization is at this moment.
2882  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2883  const uint64_t bytes_allocated = GetBytesAllocated();
2884  last_gc_size_ = bytes_allocated;
2885  last_gc_time_ns_ = NanoTime();
2886  uint64_t target_size;
2887  collector::GcType gc_type = collector_ran->GetGcType();
2888  if (gc_type != collector::kGcTypeSticky) {
2889    // Grow the heap for non sticky GC.
2890    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2891    // foreground.
2892    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2893    CHECK_GE(delta, 0);
2894    target_size = bytes_allocated + delta * multiplier;
2895    target_size = std::min(target_size,
2896                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2897    target_size = std::max(target_size,
2898                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2899    native_need_to_run_finalization_ = true;
2900    next_gc_type_ = collector::kGcTypeSticky;
2901  } else {
2902    collector::GcType non_sticky_gc_type =
2903        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
2904    // Find what the next non sticky collector will be.
2905    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2906    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2907    // do another sticky collection next.
2908    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2909    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2910    // if the sticky GC throughput always remained >= the full/partial throughput.
2911    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2912        non_sticky_collector->GetEstimatedMeanThroughput() &&
2913        non_sticky_collector->NumberOfIterations() > 0 &&
2914        bytes_allocated <= max_allowed_footprint_) {
2915      next_gc_type_ = collector::kGcTypeSticky;
2916    } else {
2917      next_gc_type_ = non_sticky_gc_type;
2918    }
2919    // If we have freed enough memory, shrink the heap back down.
2920    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2921      target_size = bytes_allocated + max_free_;
2922    } else {
2923      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2924    }
2925  }
2926  if (!ignore_max_footprint_) {
2927    SetIdealFootprint(target_size);
2928    if (IsGcConcurrent()) {
2929      // Calculate when to perform the next ConcurrentGC.
2930      // Calculate the estimated GC duration.
2931      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2932      // Estimate how many remaining bytes we will have when we need to start the next GC.
2933      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2934      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2935      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2936      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2937        // A never going to happen situation that from the estimated allocation rate we will exceed
2938        // the applications entire footprint with the given estimated allocation rate. Schedule
2939        // another GC nearly straight away.
2940        remaining_bytes = kMinConcurrentRemainingBytes;
2941      }
2942      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2943      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
2944      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2945      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2946      // right away.
2947      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2948                                         static_cast<size_t>(bytes_allocated));
2949    }
2950  }
2951}
2952
2953void Heap::ClearGrowthLimit() {
2954  growth_limit_ = capacity_;
2955  non_moving_space_->ClearGrowthLimit();
2956}
2957
2958void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2959  ScopedObjectAccess soa(self);
2960  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2961  jvalue args[1];
2962  args[0].l = arg.get();
2963  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2964  // Restore object in case it gets moved.
2965  *object = soa.Decode<mirror::Object*>(arg.get());
2966}
2967
2968void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2969  StackHandleScope<1> hs(self);
2970  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2971  RequestConcurrentGC(self);
2972}
2973
2974void Heap::RequestConcurrentGC(Thread* self) {
2975  // Make sure that we can do a concurrent GC.
2976  Runtime* runtime = Runtime::Current();
2977  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2978      self->IsHandlingStackOverflow()) {
2979    return;
2980  }
2981  JNIEnv* env = self->GetJniEnv();
2982  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2983  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2984  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2985                            WellKnownClasses::java_lang_Daemons_requestGC);
2986  CHECK(!env->ExceptionCheck());
2987}
2988
2989void Heap::ConcurrentGC(Thread* self) {
2990  if (Runtime::Current()->IsShuttingDown(self)) {
2991    return;
2992  }
2993  // Wait for any GCs currently running to finish.
2994  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2995    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2996    // instead. E.g. can't do partial, so do full instead.
2997    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2998        collector::kGcTypeNone) {
2999      for (collector::GcType gc_type : gc_plan_) {
3000        // Attempt to run the collector, if we succeed, we are done.
3001        if (gc_type > next_gc_type_ &&
3002            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
3003          break;
3004        }
3005      }
3006    }
3007  }
3008}
3009
3010void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3011  Thread* self = Thread::Current();
3012  {
3013    MutexLock mu(self, *heap_trim_request_lock_);
3014    if (desired_collector_type_ == desired_collector_type) {
3015      return;
3016    }
3017    heap_transition_or_trim_target_time_ =
3018        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
3019    desired_collector_type_ = desired_collector_type;
3020  }
3021  SignalHeapTrimDaemon(self);
3022}
3023
3024void Heap::RequestHeapTrim() {
3025  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3026  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3027  // a space it will hold its lock and can become a cause of jank.
3028  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3029  // forking.
3030
3031  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3032  // because that only marks object heads, so a large array looks like lots of empty space. We
3033  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3034  // to utilization (which is probably inversely proportional to how much benefit we can expect).
3035  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3036  // not how much use we're making of those pages.
3037
3038  Thread* self = Thread::Current();
3039  Runtime* runtime = Runtime::Current();
3040  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
3041      runtime->IsZygote()) {
3042    // Ignore the request if we are the zygote to prevent app launching lag due to sleep in heap
3043    // trimmer daemon. b/17310019
3044    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
3045    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
3046    // as we don't hold the lock while requesting the trim).
3047    return;
3048  }
3049  {
3050    MutexLock mu(self, *heap_trim_request_lock_);
3051    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
3052      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
3053      // just yet.
3054      return;
3055    }
3056    heap_trim_request_pending_ = true;
3057    uint64_t current_time = NanoTime();
3058    if (heap_transition_or_trim_target_time_ < current_time) {
3059      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
3060    }
3061  }
3062  // Notify the daemon thread which will actually do the heap trim.
3063  SignalHeapTrimDaemon(self);
3064}
3065
3066void Heap::SignalHeapTrimDaemon(Thread* self) {
3067  JNIEnv* env = self->GetJniEnv();
3068  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
3069  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
3070  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
3071                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
3072  CHECK(!env->ExceptionCheck());
3073}
3074
3075void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3076  if (rosalloc_space_ != nullptr) {
3077    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3078  }
3079  if (bump_pointer_space_ != nullptr) {
3080    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
3081  }
3082}
3083
3084void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3085  if (rosalloc_space_ != nullptr) {
3086    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3087  }
3088}
3089
3090void Heap::RevokeAllThreadLocalBuffers() {
3091  if (rosalloc_space_ != nullptr) {
3092    rosalloc_space_->RevokeAllThreadLocalBuffers();
3093  }
3094  if (bump_pointer_space_ != nullptr) {
3095    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3096  }
3097}
3098
3099bool Heap::IsGCRequestPending() const {
3100  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3101}
3102
3103void Heap::RunFinalization(JNIEnv* env) {
3104  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3105  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3106    CHECK(WellKnownClasses::java_lang_System != nullptr);
3107    WellKnownClasses::java_lang_System_runFinalization =
3108        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3109    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3110  }
3111  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3112                            WellKnownClasses::java_lang_System_runFinalization);
3113}
3114
3115void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3116  Thread* self = ThreadForEnv(env);
3117  if (native_need_to_run_finalization_) {
3118    RunFinalization(env);
3119    UpdateMaxNativeFootprint();
3120    native_need_to_run_finalization_ = false;
3121  }
3122  // Total number of native bytes allocated.
3123  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3124  new_native_bytes_allocated += bytes;
3125  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3126    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3127        collector::kGcTypeFull;
3128
3129    // The second watermark is higher than the gc watermark. If you hit this it means you are
3130    // allocating native objects faster than the GC can keep up with.
3131    if (new_native_bytes_allocated > growth_limit_) {
3132      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3133        // Just finished a GC, attempt to run finalizers.
3134        RunFinalization(env);
3135        CHECK(!env->ExceptionCheck());
3136      }
3137      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3138      if (new_native_bytes_allocated > growth_limit_) {
3139        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3140        RunFinalization(env);
3141        native_need_to_run_finalization_ = false;
3142        CHECK(!env->ExceptionCheck());
3143      }
3144      // We have just run finalizers, update the native watermark since it is very likely that
3145      // finalizers released native managed allocations.
3146      UpdateMaxNativeFootprint();
3147    } else if (!IsGCRequestPending()) {
3148      if (IsGcConcurrent()) {
3149        RequestConcurrentGC(self);
3150      } else {
3151        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3152      }
3153    }
3154  }
3155}
3156
3157void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3158  size_t expected_size;
3159  do {
3160    expected_size = native_bytes_allocated_.LoadRelaxed();
3161    if (UNLIKELY(bytes > expected_size)) {
3162      ScopedObjectAccess soa(env);
3163      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3164                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3165                                 "registered as allocated", bytes, expected_size).c_str());
3166      break;
3167    }
3168  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3169                                                               expected_size - bytes));
3170}
3171
3172size_t Heap::GetTotalMemory() const {
3173  return std::max(max_allowed_footprint_, GetBytesAllocated());
3174}
3175
3176void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3177  DCHECK(mod_union_table != nullptr);
3178  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3179}
3180
3181void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3182  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3183        (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3184  CHECK_GE(byte_count, sizeof(mirror::Object));
3185}
3186
3187void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3188  CHECK(remembered_set != nullptr);
3189  space::Space* space = remembered_set->GetSpace();
3190  CHECK(space != nullptr);
3191  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3192  remembered_sets_.Put(space, remembered_set);
3193  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3194}
3195
3196void Heap::RemoveRememberedSet(space::Space* space) {
3197  CHECK(space != nullptr);
3198  auto it = remembered_sets_.find(space);
3199  CHECK(it != remembered_sets_.end());
3200  delete it->second;
3201  remembered_sets_.erase(it);
3202  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3203}
3204
3205void Heap::ClearMarkedObjects() {
3206  // Clear all of the spaces' mark bitmaps.
3207  for (const auto& space : GetContinuousSpaces()) {
3208    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3209    if (space->GetLiveBitmap() != mark_bitmap) {
3210      mark_bitmap->Clear();
3211    }
3212  }
3213  // Clear the marked objects in the discontinous space object sets.
3214  for (const auto& space : GetDiscontinuousSpaces()) {
3215    space->GetMarkBitmap()->Clear();
3216  }
3217}
3218
3219}  // namespace gc
3220}  // namespace art
3221