heap.cc revision 2cd334ae2d4287216523882f0d298cf3901b7ab1
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/allocator.h"
27#include "base/dumpable.h"
28#include "base/histogram-inl.h"
29#include "base/stl_util.h"
30#include "common_throws.h"
31#include "cutils/sched_policy.h"
32#include "debugger.h"
33#include "dex_file-inl.h"
34#include "gc/accounting/atomic_stack.h"
35#include "gc/accounting/card_table-inl.h"
36#include "gc/accounting/heap_bitmap-inl.h"
37#include "gc/accounting/mod_union_table.h"
38#include "gc/accounting/mod_union_table-inl.h"
39#include "gc/accounting/remembered_set.h"
40#include "gc/accounting/space_bitmap-inl.h"
41#include "gc/collector/concurrent_copying.h"
42#include "gc/collector/mark_compact.h"
43#include "gc/collector/mark_sweep-inl.h"
44#include "gc/collector/partial_mark_sweep.h"
45#include "gc/collector/semi_space.h"
46#include "gc/collector/sticky_mark_sweep.h"
47#include "gc/reference_processor.h"
48#include "gc/space/bump_pointer_space.h"
49#include "gc/space/dlmalloc_space-inl.h"
50#include "gc/space/image_space.h"
51#include "gc/space/large_object_space.h"
52#include "gc/space/region_space.h"
53#include "gc/space/rosalloc_space-inl.h"
54#include "gc/space/space-inl.h"
55#include "gc/space/zygote_space.h"
56#include "gc/task_processor.h"
57#include "entrypoints/quick/quick_alloc_entrypoints.h"
58#include "heap-inl.h"
59#include "image.h"
60#include "intern_table.h"
61#include "mirror/art_field-inl.h"
62#include "mirror/class-inl.h"
63#include "mirror/object.h"
64#include "mirror/object-inl.h"
65#include "mirror/object_array-inl.h"
66#include "mirror/reference-inl.h"
67#include "os.h"
68#include "reflection.h"
69#include "runtime.h"
70#include "ScopedLocalRef.h"
71#include "scoped_thread_state_change.h"
72#include "handle_scope-inl.h"
73#include "thread_list.h"
74#include "well_known_classes.h"
75
76namespace art {
77
78namespace gc {
79
80static constexpr size_t kCollectorTransitionStressIterations = 0;
81static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
82// Minimum amount of remaining bytes before a concurrent GC is triggered.
83static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
84static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
85// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
86// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
87// threads (lower pauses, use less memory bandwidth).
88static constexpr double kStickyGcThroughputAdjustment = 1.0;
89// Whether or not we compact the zygote in PreZygoteFork.
90static constexpr bool kCompactZygote = kMovingCollector;
91// How many reserve entries are at the end of the allocation stack, these are only needed if the
92// allocation stack overflows.
93static constexpr size_t kAllocationStackReserveSize = 1024;
94// Default mark stack size in bytes.
95static const size_t kDefaultMarkStackSize = 64 * KB;
96// Define space name.
97static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
98static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
99static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
100static const char* kNonMovingSpaceName = "non moving space";
101static const char* kZygoteSpaceName = "zygote space";
102static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
103static constexpr bool kGCALotMode = false;
104// GC alot mode uses a small allocation stack to stress test a lot of GC.
105static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
106    sizeof(mirror::HeapReference<mirror::Object>);
107// Verify objet has a small allocation stack size since searching the allocation stack is slow.
108static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
109    sizeof(mirror::HeapReference<mirror::Object>);
110static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
111    sizeof(mirror::HeapReference<mirror::Object>);
112
113Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
114           double target_utilization, double foreground_heap_growth_multiplier,
115           size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
116           const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
117           CollectorType background_collector_type,
118           space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
119           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
120           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
121           bool ignore_max_footprint, bool use_tlab,
122           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
123           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
124           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
125           uint64_t min_interval_homogeneous_space_compaction_by_oom)
126    : non_moving_space_(nullptr),
127      rosalloc_space_(nullptr),
128      dlmalloc_space_(nullptr),
129      main_space_(nullptr),
130      collector_type_(kCollectorTypeNone),
131      foreground_collector_type_(foreground_collector_type),
132      background_collector_type_(background_collector_type),
133      desired_collector_type_(foreground_collector_type_),
134      pending_task_lock_(nullptr),
135      parallel_gc_threads_(parallel_gc_threads),
136      conc_gc_threads_(conc_gc_threads),
137      low_memory_mode_(low_memory_mode),
138      long_pause_log_threshold_(long_pause_log_threshold),
139      long_gc_log_threshold_(long_gc_log_threshold),
140      ignore_max_footprint_(ignore_max_footprint),
141      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
142      zygote_space_(nullptr),
143      large_object_threshold_(large_object_threshold),
144      collector_type_running_(kCollectorTypeNone),
145      last_gc_type_(collector::kGcTypeNone),
146      next_gc_type_(collector::kGcTypePartial),
147      capacity_(capacity),
148      growth_limit_(growth_limit),
149      max_allowed_footprint_(initial_size),
150      native_footprint_gc_watermark_(initial_size),
151      native_need_to_run_finalization_(false),
152      // Initially assume we perceive jank in case the process state is never updated.
153      process_state_(kProcessStateJankPerceptible),
154      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
155      total_bytes_freed_ever_(0),
156      total_objects_freed_ever_(0),
157      num_bytes_allocated_(0),
158      native_bytes_allocated_(0),
159      verify_missing_card_marks_(false),
160      verify_system_weaks_(false),
161      verify_pre_gc_heap_(verify_pre_gc_heap),
162      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
163      verify_post_gc_heap_(verify_post_gc_heap),
164      verify_mod_union_table_(false),
165      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
166      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
167      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
168      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
169       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
170       * verification is enabled, we limit the size of allocation stacks to speed up their
171       * searching.
172       */
173      max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
174          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
175          kDefaultAllocationStackSize),
176      current_allocator_(kAllocatorTypeDlMalloc),
177      current_non_moving_allocator_(kAllocatorTypeNonMoving),
178      bump_pointer_space_(nullptr),
179      temp_space_(nullptr),
180      region_space_(nullptr),
181      min_free_(min_free),
182      max_free_(max_free),
183      target_utilization_(target_utilization),
184      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
185      total_wait_time_(0),
186      total_allocation_time_(0),
187      verify_object_mode_(kVerifyObjectModeDisabled),
188      disable_moving_gc_count_(0),
189      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
190      use_tlab_(use_tlab),
191      main_space_backup_(nullptr),
192      min_interval_homogeneous_space_compaction_by_oom_(
193          min_interval_homogeneous_space_compaction_by_oom),
194      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
195      pending_collector_transition_(nullptr),
196      pending_heap_trim_(nullptr),
197      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
198  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
199    LOG(INFO) << "Heap() entering";
200  }
201  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
202  // entrypoints.
203  const bool is_zygote = Runtime::Current()->IsZygote();
204  if (!is_zygote) {
205    // Background compaction is currently not supported for command line runs.
206    if (background_collector_type_ != foreground_collector_type_) {
207      VLOG(heap) << "Disabling background compaction for non zygote";
208      background_collector_type_ = foreground_collector_type_;
209    }
210  }
211  ChangeCollector(desired_collector_type_);
212  live_bitmap_.reset(new accounting::HeapBitmap(this));
213  mark_bitmap_.reset(new accounting::HeapBitmap(this));
214  // Requested begin for the alloc space, to follow the mapped image and oat files
215  uint8_t* requested_alloc_space_begin = nullptr;
216  if (foreground_collector_type_ == kCollectorTypeCC) {
217    // Need to use a low address so that we can allocate a contiguous
218    // 2 * Xmx space when there's no image (dex2oat for target).
219    CHECK_GE(300 * MB, non_moving_space_capacity);
220    requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
221  }
222  if (!image_file_name.empty()) {
223    std::string error_msg;
224    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
225                                                               image_instruction_set,
226                                                               &error_msg);
227    if (image_space != nullptr) {
228      AddSpace(image_space);
229      // Oat files referenced by image files immediately follow them in memory, ensure alloc space
230      // isn't going to get in the middle
231      uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
232      CHECK_GT(oat_file_end_addr, image_space->End());
233      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
234    } else {
235      LOG(WARNING) << "Could not create image space with image file '" << image_file_name << "'. "
236                   << "Attempting to fall back to imageless running. Error was: " << error_msg;
237    }
238  }
239  /*
240  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
241                                     +-  nonmoving space (non_moving_space_capacity)+-
242                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
243                                     +-????????????????????????????????????????????+-
244                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
245                                     +-main alloc space / bump space 1 (capacity_) +-
246                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
247                                     +-????????????????????????????????????????????+-
248                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
249                                     +-main alloc space2 / bump space 2 (capacity_)+-
250                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
251  */
252  // We don't have hspace compaction enabled with GSS or CC.
253  if (foreground_collector_type_ == kCollectorTypeGSS ||
254      foreground_collector_type_ == kCollectorTypeCC) {
255    use_homogeneous_space_compaction_for_oom_ = false;
256  }
257  bool support_homogeneous_space_compaction =
258      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
259      use_homogeneous_space_compaction_for_oom_;
260  // We may use the same space the main space for the non moving space if we don't need to compact
261  // from the main space.
262  // This is not the case if we support homogeneous compaction or have a moving background
263  // collector type.
264  bool separate_non_moving_space = is_zygote ||
265      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
266      IsMovingGc(background_collector_type_);
267  if (foreground_collector_type == kCollectorTypeGSS) {
268    separate_non_moving_space = false;
269  }
270  std::unique_ptr<MemMap> main_mem_map_1;
271  std::unique_ptr<MemMap> main_mem_map_2;
272  uint8_t* request_begin = requested_alloc_space_begin;
273  if (request_begin != nullptr && separate_non_moving_space) {
274    request_begin += non_moving_space_capacity;
275  }
276  std::string error_str;
277  std::unique_ptr<MemMap> non_moving_space_mem_map;
278  if (separate_non_moving_space) {
279    // If we are the zygote, the non moving space becomes the zygote space when we run
280    // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
281    // rename the mem map later.
282    const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
283    // Reserve the non moving mem map before the other two since it needs to be at a specific
284    // address.
285    non_moving_space_mem_map.reset(
286        MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
287                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, &error_str));
288    CHECK(non_moving_space_mem_map != nullptr) << error_str;
289    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
290    request_begin = reinterpret_cast<uint8_t*>(300 * MB);
291  }
292  if (foreground_collector_type_ != kCollectorTypeCC) {
293    // Attempt to create 2 mem maps at or after the requested begin.
294    main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
295                                                      &error_str));
296    CHECK(main_mem_map_1.get() != nullptr) << error_str;
297  }
298  if (support_homogeneous_space_compaction ||
299      background_collector_type_ == kCollectorTypeSS ||
300      foreground_collector_type_ == kCollectorTypeSS) {
301    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
302                                                      capacity_, &error_str));
303    CHECK(main_mem_map_2.get() != nullptr) << error_str;
304  }
305  // Create the non moving space first so that bitmaps don't take up the address range.
306  if (separate_non_moving_space) {
307    // Non moving space is always dlmalloc since we currently don't have support for multiple
308    // active rosalloc spaces.
309    const size_t size = non_moving_space_mem_map->Size();
310    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
311        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
312        initial_size, size, size, false);
313    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
314    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
315        << requested_alloc_space_begin;
316    AddSpace(non_moving_space_);
317  }
318  // Create other spaces based on whether or not we have a moving GC.
319  if (foreground_collector_type_ == kCollectorTypeCC) {
320    region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
321    AddSpace(region_space_);
322  } else if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
323    // Create bump pointer spaces.
324    // We only to create the bump pointer if the foreground collector is a compacting GC.
325    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
326    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
327                                                                    main_mem_map_1.release());
328    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
329    AddSpace(bump_pointer_space_);
330    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
331                                                            main_mem_map_2.release());
332    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
333    AddSpace(temp_space_);
334    CHECK(separate_non_moving_space);
335  } else {
336    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
337    CHECK(main_space_ != nullptr);
338    AddSpace(main_space_);
339    if (!separate_non_moving_space) {
340      non_moving_space_ = main_space_;
341      CHECK(!non_moving_space_->CanMoveObjects());
342    }
343    if (foreground_collector_type_ == kCollectorTypeGSS) {
344      CHECK_EQ(foreground_collector_type_, background_collector_type_);
345      // Create bump pointer spaces instead of a backup space.
346      main_mem_map_2.release();
347      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
348                                                            kGSSBumpPointerSpaceCapacity, nullptr);
349      CHECK(bump_pointer_space_ != nullptr);
350      AddSpace(bump_pointer_space_);
351      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
352                                                    kGSSBumpPointerSpaceCapacity, nullptr);
353      CHECK(temp_space_ != nullptr);
354      AddSpace(temp_space_);
355    } else if (main_mem_map_2.get() != nullptr) {
356      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
357      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
358                                                           growth_limit_, capacity_, name, true));
359      CHECK(main_space_backup_.get() != nullptr);
360      // Add the space so its accounted for in the heap_begin and heap_end.
361      AddSpace(main_space_backup_.get());
362    }
363  }
364  CHECK(non_moving_space_ != nullptr);
365  CHECK(!non_moving_space_->CanMoveObjects());
366  // Allocate the large object space.
367  if (large_object_space_type == space::kLargeObjectSpaceTypeFreeList) {
368    large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
369                                                       capacity_);
370    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
371  } else if (large_object_space_type == space::kLargeObjectSpaceTypeMap) {
372    large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
373    CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
374  } else {
375    // Disable the large object space by making the cutoff excessively large.
376    large_object_threshold_ = std::numeric_limits<size_t>::max();
377    large_object_space_ = nullptr;
378  }
379  if (large_object_space_ != nullptr) {
380    AddSpace(large_object_space_);
381  }
382  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
383  CHECK(!continuous_spaces_.empty());
384  // Relies on the spaces being sorted.
385  uint8_t* heap_begin = continuous_spaces_.front()->Begin();
386  uint8_t* heap_end = continuous_spaces_.back()->Limit();
387  size_t heap_capacity = heap_end - heap_begin;
388  // Remove the main backup space since it slows down the GC to have unused extra spaces.
389  // TODO: Avoid needing to do this.
390  if (main_space_backup_.get() != nullptr) {
391    RemoveSpace(main_space_backup_.get());
392  }
393  // Allocate the card table.
394  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
395  CHECK(card_table_.get() != NULL) << "Failed to create card table";
396
397  if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
398    rb_table_.reset(new accounting::ReadBarrierTable());
399    DCHECK(rb_table_->IsAllCleared());
400  }
401
402  // Card cache for now since it makes it easier for us to update the references to the copying
403  // spaces.
404  accounting::ModUnionTable* mod_union_table =
405      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
406                                                      GetImageSpace());
407  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
408  AddModUnionTable(mod_union_table);
409  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
410    accounting::RememberedSet* non_moving_space_rem_set =
411        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
412    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
413    AddRememberedSet(non_moving_space_rem_set);
414  }
415  // TODO: Count objects in the image space here?
416  num_bytes_allocated_.StoreRelaxed(0);
417  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
418                                                    kDefaultMarkStackSize));
419  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
420  allocation_stack_.reset(accounting::ObjectStack::Create(
421      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
422  live_stack_.reset(accounting::ObjectStack::Create(
423      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
424  // It's still too early to take a lock because there are no threads yet, but we can create locks
425  // now. We don't create it earlier to make it clear that you can't use locks during heap
426  // initialization.
427  gc_complete_lock_ = new Mutex("GC complete lock");
428  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
429                                                *gc_complete_lock_));
430  task_processor_.reset(new TaskProcessor());
431  pending_task_lock_ = new Mutex("Pending task lock");
432  if (ignore_max_footprint_) {
433    SetIdealFootprint(std::numeric_limits<size_t>::max());
434    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
435  }
436  CHECK_NE(max_allowed_footprint_, 0U);
437  // Create our garbage collectors.
438  for (size_t i = 0; i < 2; ++i) {
439    const bool concurrent = i != 0;
440    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
441    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
442    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
443  }
444  if (kMovingCollector) {
445    // TODO: Clean this up.
446    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
447    semi_space_collector_ = new collector::SemiSpace(this, generational,
448                                                     generational ? "generational" : "");
449    garbage_collectors_.push_back(semi_space_collector_);
450    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
451    garbage_collectors_.push_back(concurrent_copying_collector_);
452    mark_compact_collector_ = new collector::MarkCompact(this);
453    garbage_collectors_.push_back(mark_compact_collector_);
454  }
455  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
456      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
457    // Check that there's no gap between the image space and the non moving space so that the
458    // immune region won't break (eg. due to a large object allocated in the gap). This is only
459    // required when we're the zygote or using GSS.
460    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
461                                      non_moving_space_->GetMemMap());
462    if (!no_gap) {
463      MemMap::DumpMaps(LOG(ERROR));
464      LOG(FATAL) << "There's a gap between the image space and the main space";
465    }
466  }
467  if (running_on_valgrind_) {
468    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
469  }
470  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
471    LOG(INFO) << "Heap() exiting";
472  }
473}
474
475MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
476                                           size_t capacity, std::string* out_error_str) {
477  while (true) {
478    MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
479                                       PROT_READ | PROT_WRITE, true, out_error_str);
480    if (map != nullptr || request_begin == nullptr) {
481      return map;
482    }
483    // Retry a  second time with no specified request begin.
484    request_begin = nullptr;
485  }
486  return nullptr;
487}
488
489space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
490                                                      size_t growth_limit, size_t capacity,
491                                                      const char* name, bool can_move_objects) {
492  space::MallocSpace* malloc_space = nullptr;
493  if (kUseRosAlloc) {
494    // Create rosalloc space.
495    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
496                                                          initial_size, growth_limit, capacity,
497                                                          low_memory_mode_, can_move_objects);
498  } else {
499    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
500                                                          initial_size, growth_limit, capacity,
501                                                          can_move_objects);
502  }
503  if (collector::SemiSpace::kUseRememberedSet) {
504    accounting::RememberedSet* rem_set  =
505        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
506    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
507    AddRememberedSet(rem_set);
508  }
509  CHECK(malloc_space != nullptr) << "Failed to create " << name;
510  malloc_space->SetFootprintLimit(malloc_space->Capacity());
511  return malloc_space;
512}
513
514void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
515                                 size_t capacity) {
516  // Is background compaction is enabled?
517  bool can_move_objects = IsMovingGc(background_collector_type_) !=
518      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
519  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
520  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
521  // from the main space to the zygote space. If background compaction is enabled, always pass in
522  // that we can move objets.
523  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
524    // After the zygote we want this to be false if we don't have background compaction enabled so
525    // that getting primitive array elements is faster.
526    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
527    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
528  }
529  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
530    RemoveRememberedSet(main_space_);
531  }
532  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
533  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
534                                            can_move_objects);
535  SetSpaceAsDefault(main_space_);
536  VLOG(heap) << "Created main space " << main_space_;
537}
538
539void Heap::ChangeAllocator(AllocatorType allocator) {
540  if (current_allocator_ != allocator) {
541    // These two allocators are only used internally and don't have any entrypoints.
542    CHECK_NE(allocator, kAllocatorTypeLOS);
543    CHECK_NE(allocator, kAllocatorTypeNonMoving);
544    current_allocator_ = allocator;
545    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
546    SetQuickAllocEntryPointsAllocator(current_allocator_);
547    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
548  }
549}
550
551void Heap::DisableMovingGc() {
552  if (IsMovingGc(foreground_collector_type_)) {
553    foreground_collector_type_ = kCollectorTypeCMS;
554  }
555  if (IsMovingGc(background_collector_type_)) {
556    background_collector_type_ = foreground_collector_type_;
557  }
558  TransitionCollector(foreground_collector_type_);
559  ThreadList* tl = Runtime::Current()->GetThreadList();
560  Thread* self = Thread::Current();
561  ScopedThreadStateChange tsc(self, kSuspended);
562  tl->SuspendAll();
563  // Something may have caused the transition to fail.
564  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
565    CHECK(main_space_ != nullptr);
566    // The allocation stack may have non movable objects in it. We need to flush it since the GC
567    // can't only handle marking allocation stack objects of one non moving space and one main
568    // space.
569    {
570      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
571      FlushAllocStack();
572    }
573    main_space_->DisableMovingObjects();
574    non_moving_space_ = main_space_;
575    CHECK(!non_moving_space_->CanMoveObjects());
576  }
577  tl->ResumeAll();
578}
579
580std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
581  if (!IsValidContinuousSpaceObjectAddress(klass)) {
582    return StringPrintf("<non heap address klass %p>", klass);
583  }
584  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
585  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
586    std::string result("[");
587    result += SafeGetClassDescriptor(component_type);
588    return result;
589  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
590    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
591  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
592    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
593  } else {
594    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
595    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
596      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
597    }
598    const DexFile* dex_file = dex_cache->GetDexFile();
599    uint16_t class_def_idx = klass->GetDexClassDefIndex();
600    if (class_def_idx == DexFile::kDexNoIndex16) {
601      return "<class def not found>";
602    }
603    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
604    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
605    return dex_file->GetTypeDescriptor(type_id);
606  }
607}
608
609std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
610  if (obj == nullptr) {
611    return "null";
612  }
613  mirror::Class* klass = obj->GetClass<kVerifyNone>();
614  if (klass == nullptr) {
615    return "(class=null)";
616  }
617  std::string result(SafeGetClassDescriptor(klass));
618  if (obj->IsClass()) {
619    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
620  }
621  return result;
622}
623
624void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
625  if (obj == nullptr) {
626    stream << "(obj=null)";
627    return;
628  }
629  if (IsAligned<kObjectAlignment>(obj)) {
630    space::Space* space = nullptr;
631    // Don't use find space since it only finds spaces which actually contain objects instead of
632    // spaces which may contain objects (e.g. cleared bump pointer spaces).
633    for (const auto& cur_space : continuous_spaces_) {
634      if (cur_space->HasAddress(obj)) {
635        space = cur_space;
636        break;
637      }
638    }
639    // Unprotect all the spaces.
640    for (const auto& con_space : continuous_spaces_) {
641      mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
642    }
643    stream << "Object " << obj;
644    if (space != nullptr) {
645      stream << " in space " << *space;
646    }
647    mirror::Class* klass = obj->GetClass<kVerifyNone>();
648    stream << "\nclass=" << klass;
649    if (klass != nullptr) {
650      stream << " type= " << SafePrettyTypeOf(obj);
651    }
652    // Re-protect the address we faulted on.
653    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
654  }
655}
656
657bool Heap::IsCompilingBoot() const {
658  if (!Runtime::Current()->IsCompiler()) {
659    return false;
660  }
661  for (const auto& space : continuous_spaces_) {
662    if (space->IsImageSpace() || space->IsZygoteSpace()) {
663      return false;
664    }
665  }
666  return true;
667}
668
669bool Heap::HasImageSpace() const {
670  for (const auto& space : continuous_spaces_) {
671    if (space->IsImageSpace()) {
672      return true;
673    }
674  }
675  return false;
676}
677
678void Heap::IncrementDisableMovingGC(Thread* self) {
679  // Need to do this holding the lock to prevent races where the GC is about to run / running when
680  // we attempt to disable it.
681  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
682  MutexLock mu(self, *gc_complete_lock_);
683  ++disable_moving_gc_count_;
684  if (IsMovingGc(collector_type_running_)) {
685    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
686  }
687}
688
689void Heap::DecrementDisableMovingGC(Thread* self) {
690  MutexLock mu(self, *gc_complete_lock_);
691  CHECK_GE(disable_moving_gc_count_, 0U);
692  --disable_moving_gc_count_;
693}
694
695void Heap::UpdateProcessState(ProcessState process_state) {
696  if (process_state_ != process_state) {
697    process_state_ = process_state;
698    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
699      // Start at index 1 to avoid "is always false" warning.
700      // Have iteration 1 always transition the collector.
701      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
702                          ? foreground_collector_type_ : background_collector_type_);
703      usleep(kCollectorTransitionStressWait);
704    }
705    if (process_state_ == kProcessStateJankPerceptible) {
706      // Transition back to foreground right away to prevent jank.
707      RequestCollectorTransition(foreground_collector_type_, 0);
708    } else {
709      // Don't delay for debug builds since we may want to stress test the GC.
710      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
711      // special handling which does a homogenous space compaction once but then doesn't transition
712      // the collector.
713      RequestCollectorTransition(background_collector_type_,
714                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
715    }
716  }
717}
718
719void Heap::CreateThreadPool() {
720  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
721  if (num_threads != 0) {
722    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
723  }
724}
725
726// Visit objects when threads aren't suspended. If concurrent moving
727// GC, disable moving GC and suspend threads and then visit objects.
728void Heap::VisitObjects(ObjectCallback callback, void* arg) {
729  Thread* self = Thread::Current();
730  Locks::mutator_lock_->AssertSharedHeld(self);
731  DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
732  if (IsGcConcurrentAndMoving()) {
733    // Concurrent moving GC. Just suspending threads isn't sufficient
734    // because a collection isn't one big pause and we could suspend
735    // threads in the middle (between phases) of a concurrent moving
736    // collection where it's not easily known which objects are alive
737    // (both the region space and the non-moving space) or which
738    // copies of objects to visit, and the to-space invariant could be
739    // easily broken. Visit objects while GC isn't running by using
740    // IncrementDisableMovingGC() and threads are suspended.
741    IncrementDisableMovingGC(self);
742    self->TransitionFromRunnableToSuspended(kWaitingForVisitObjects);
743    ThreadList* tl = Runtime::Current()->GetThreadList();
744    tl->SuspendAll();
745    VisitObjectsInternalRegionSpace(callback, arg);
746    VisitObjectsInternal(callback, arg);
747    tl->ResumeAll();
748    self->TransitionFromSuspendedToRunnable();
749    DecrementDisableMovingGC(self);
750  } else {
751    // GCs can move objects, so don't allow this.
752    ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
753    DCHECK(region_space_ == nullptr);
754    VisitObjectsInternal(callback, arg);
755  }
756}
757
758// Visit objects when threads are already suspended.
759void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
760  Thread* self = Thread::Current();
761  Locks::mutator_lock_->AssertExclusiveHeld(self);
762  VisitObjectsInternalRegionSpace(callback, arg);
763  VisitObjectsInternal(callback, arg);
764}
765
766// Visit objects in the region spaces.
767void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
768  Thread* self = Thread::Current();
769  Locks::mutator_lock_->AssertExclusiveHeld(self);
770  if (region_space_ != nullptr) {
771    DCHECK(IsGcConcurrentAndMoving());
772    if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
773      // Exclude the pre-zygote fork time where the semi-space collector
774      // calls VerifyHeapReferences() as part of the zygote compaction
775      // which then would call here without the moving GC disabled,
776      // which is fine.
777      DCHECK(IsMovingGCDisabled(self));
778    }
779    region_space_->Walk(callback, arg);
780  }
781}
782
783// Visit objects in the other spaces.
784void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
785  if (bump_pointer_space_ != nullptr) {
786    // Visit objects in bump pointer space.
787    bump_pointer_space_->Walk(callback, arg);
788  }
789  // TODO: Switch to standard begin and end to use ranged a based loop.
790  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
791      it < end; ++it) {
792    mirror::Object* obj = *it;
793    if (obj != nullptr && obj->GetClass() != nullptr) {
794      // Avoid the race condition caused by the object not yet being written into the allocation
795      // stack or the class not yet being written in the object. Or, if
796      // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
797      callback(obj, arg);
798    }
799  }
800  {
801    ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
802    GetLiveBitmap()->Walk(callback, arg);
803  }
804}
805
806void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
807  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
808  space::ContinuousSpace* space2 = non_moving_space_;
809  // TODO: Generalize this to n bitmaps?
810  CHECK(space1 != nullptr);
811  CHECK(space2 != nullptr);
812  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
813                 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
814                 stack);
815}
816
817void Heap::DeleteThreadPool() {
818  thread_pool_.reset(nullptr);
819}
820
821void Heap::AddSpace(space::Space* space) {
822  CHECK(space != nullptr);
823  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
824  if (space->IsContinuousSpace()) {
825    DCHECK(!space->IsDiscontinuousSpace());
826    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
827    // Continuous spaces don't necessarily have bitmaps.
828    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
829    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
830    if (live_bitmap != nullptr) {
831      CHECK(mark_bitmap != nullptr);
832      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
833      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
834    }
835    continuous_spaces_.push_back(continuous_space);
836    // Ensure that spaces remain sorted in increasing order of start address.
837    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
838              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
839      return a->Begin() < b->Begin();
840    });
841  } else {
842    CHECK(space->IsDiscontinuousSpace());
843    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
844    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
845    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
846    discontinuous_spaces_.push_back(discontinuous_space);
847  }
848  if (space->IsAllocSpace()) {
849    alloc_spaces_.push_back(space->AsAllocSpace());
850  }
851}
852
853void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
854  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
855  if (continuous_space->IsDlMallocSpace()) {
856    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
857  } else if (continuous_space->IsRosAllocSpace()) {
858    rosalloc_space_ = continuous_space->AsRosAllocSpace();
859  }
860}
861
862void Heap::RemoveSpace(space::Space* space) {
863  DCHECK(space != nullptr);
864  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
865  if (space->IsContinuousSpace()) {
866    DCHECK(!space->IsDiscontinuousSpace());
867    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
868    // Continuous spaces don't necessarily have bitmaps.
869    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
870    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
871    if (live_bitmap != nullptr) {
872      DCHECK(mark_bitmap != nullptr);
873      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
874      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
875    }
876    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
877    DCHECK(it != continuous_spaces_.end());
878    continuous_spaces_.erase(it);
879  } else {
880    DCHECK(space->IsDiscontinuousSpace());
881    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
882    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
883    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
884    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
885                        discontinuous_space);
886    DCHECK(it != discontinuous_spaces_.end());
887    discontinuous_spaces_.erase(it);
888  }
889  if (space->IsAllocSpace()) {
890    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
891    DCHECK(it != alloc_spaces_.end());
892    alloc_spaces_.erase(it);
893  }
894}
895
896void Heap::DumpGcPerformanceInfo(std::ostream& os) {
897  // Dump cumulative timings.
898  os << "Dumping cumulative Gc timings\n";
899  uint64_t total_duration = 0;
900  // Dump cumulative loggers for each GC type.
901  uint64_t total_paused_time = 0;
902  for (auto& collector : garbage_collectors_) {
903    total_duration += collector->GetCumulativeTimings().GetTotalNs();
904    total_paused_time += collector->GetTotalPausedTimeNs();
905    collector->DumpPerformanceInfo(os);
906    collector->ResetMeasurements();
907  }
908  uint64_t allocation_time =
909      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
910  if (total_duration != 0) {
911    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
912    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
913    os << "Mean GC size throughput: "
914       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
915    os << "Mean GC object throughput: "
916       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
917  }
918  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
919  os << "Total number of allocations " << total_objects_allocated << "\n";
920  uint64_t total_bytes_allocated = GetBytesAllocatedEver();
921  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
922  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
923  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
924  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
925  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
926  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
927  if (kMeasureAllocationTime) {
928    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
929    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
930       << "\n";
931  }
932  if (HasZygoteSpace()) {
933    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
934  }
935  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
936  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_);
937  BaseMutex::DumpAll(os);
938}
939
940Heap::~Heap() {
941  VLOG(heap) << "Starting ~Heap()";
942  STLDeleteElements(&garbage_collectors_);
943  // If we don't reset then the mark stack complains in its destructor.
944  allocation_stack_->Reset();
945  live_stack_->Reset();
946  STLDeleteValues(&mod_union_tables_);
947  STLDeleteValues(&remembered_sets_);
948  STLDeleteElements(&continuous_spaces_);
949  STLDeleteElements(&discontinuous_spaces_);
950  delete gc_complete_lock_;
951  delete pending_task_lock_;
952  VLOG(heap) << "Finished ~Heap()";
953}
954
955space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
956                                                            bool fail_ok) const {
957  for (const auto& space : continuous_spaces_) {
958    if (space->Contains(obj)) {
959      return space;
960    }
961  }
962  if (!fail_ok) {
963    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
964  }
965  return NULL;
966}
967
968space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
969                                                                  bool fail_ok) const {
970  for (const auto& space : discontinuous_spaces_) {
971    if (space->Contains(obj)) {
972      return space;
973    }
974  }
975  if (!fail_ok) {
976    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
977  }
978  return NULL;
979}
980
981space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
982  space::Space* result = FindContinuousSpaceFromObject(obj, true);
983  if (result != NULL) {
984    return result;
985  }
986  return FindDiscontinuousSpaceFromObject(obj, fail_ok);
987}
988
989space::ImageSpace* Heap::GetImageSpace() const {
990  for (const auto& space : continuous_spaces_) {
991    if (space->IsImageSpace()) {
992      return space->AsImageSpace();
993    }
994  }
995  return NULL;
996}
997
998void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
999  std::ostringstream oss;
1000  size_t total_bytes_free = GetFreeMemory();
1001  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1002      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
1003  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1004  if (total_bytes_free >= byte_count) {
1005    space::AllocSpace* space = nullptr;
1006    if (allocator_type == kAllocatorTypeNonMoving) {
1007      space = non_moving_space_;
1008    } else if (allocator_type == kAllocatorTypeRosAlloc ||
1009               allocator_type == kAllocatorTypeDlMalloc) {
1010      space = main_space_;
1011    } else if (allocator_type == kAllocatorTypeBumpPointer ||
1012               allocator_type == kAllocatorTypeTLAB) {
1013      space = bump_pointer_space_;
1014    } else if (allocator_type == kAllocatorTypeRegion ||
1015               allocator_type == kAllocatorTypeRegionTLAB) {
1016      space = region_space_;
1017    }
1018    if (space != nullptr) {
1019      space->LogFragmentationAllocFailure(oss, byte_count);
1020    }
1021  }
1022  self->ThrowOutOfMemoryError(oss.str().c_str());
1023}
1024
1025void Heap::DoPendingCollectorTransition() {
1026  CollectorType desired_collector_type = desired_collector_type_;
1027  // Launch homogeneous space compaction if it is desired.
1028  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1029    if (!CareAboutPauseTimes()) {
1030      PerformHomogeneousSpaceCompact();
1031    } else {
1032      VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1033    }
1034  } else {
1035    TransitionCollector(desired_collector_type);
1036  }
1037}
1038
1039void Heap::Trim(Thread* self) {
1040  if (!CareAboutPauseTimes()) {
1041    ATRACE_BEGIN("Deflating monitors");
1042    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1043    // about pauses.
1044    Runtime* runtime = Runtime::Current();
1045    runtime->GetThreadList()->SuspendAll();
1046    uint64_t start_time = NanoTime();
1047    size_t count = runtime->GetMonitorList()->DeflateMonitors();
1048    VLOG(heap) << "Deflating " << count << " monitors took "
1049        << PrettyDuration(NanoTime() - start_time);
1050    runtime->GetThreadList()->ResumeAll();
1051    ATRACE_END();
1052  }
1053  TrimIndirectReferenceTables(self);
1054  TrimSpaces(self);
1055}
1056
1057class TrimIndirectReferenceTableClosure : public Closure {
1058 public:
1059  explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1060  }
1061  virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1062    ATRACE_BEGIN("Trimming reference table");
1063    thread->GetJniEnv()->locals.Trim();
1064    ATRACE_END();
1065    barrier_->Pass(Thread::Current());
1066  }
1067
1068 private:
1069  Barrier* const barrier_;
1070};
1071
1072void Heap::TrimIndirectReferenceTables(Thread* self) {
1073  ScopedObjectAccess soa(self);
1074  ATRACE_BEGIN(__FUNCTION__);
1075  JavaVMExt* vm = soa.Vm();
1076  // Trim globals indirect reference table.
1077  vm->TrimGlobals();
1078  // Trim locals indirect reference tables.
1079  Barrier barrier(0);
1080  TrimIndirectReferenceTableClosure closure(&barrier);
1081  ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1082  size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1083  barrier.Increment(self, barrier_count);
1084  ATRACE_END();
1085}
1086
1087void Heap::TrimSpaces(Thread* self) {
1088  {
1089    // Need to do this before acquiring the locks since we don't want to get suspended while
1090    // holding any locks.
1091    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1092    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1093    // trimming.
1094    MutexLock mu(self, *gc_complete_lock_);
1095    // Ensure there is only one GC at a time.
1096    WaitForGcToCompleteLocked(kGcCauseTrim, self);
1097    collector_type_running_ = kCollectorTypeHeapTrim;
1098  }
1099  ATRACE_BEGIN(__FUNCTION__);
1100  const uint64_t start_ns = NanoTime();
1101  // Trim the managed spaces.
1102  uint64_t total_alloc_space_allocated = 0;
1103  uint64_t total_alloc_space_size = 0;
1104  uint64_t managed_reclaimed = 0;
1105  for (const auto& space : continuous_spaces_) {
1106    if (space->IsMallocSpace()) {
1107      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1108      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1109        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1110        // for a long period of time.
1111        managed_reclaimed += malloc_space->Trim();
1112      }
1113      total_alloc_space_size += malloc_space->Size();
1114    }
1115  }
1116  total_alloc_space_allocated = GetBytesAllocated();
1117  if (large_object_space_ != nullptr) {
1118    total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1119  }
1120  if (bump_pointer_space_ != nullptr) {
1121    total_alloc_space_allocated -= bump_pointer_space_->Size();
1122  }
1123  if (region_space_ != nullptr) {
1124    total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1125  }
1126  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1127      static_cast<float>(total_alloc_space_size);
1128  uint64_t gc_heap_end_ns = NanoTime();
1129  // We never move things in the native heap, so we can finish the GC at this point.
1130  FinishGC(self, collector::kGcTypeNone);
1131  size_t native_reclaimed = 0;
1132
1133#ifdef HAVE_ANDROID_OS
1134  // Only trim the native heap if we don't care about pauses.
1135  if (!CareAboutPauseTimes()) {
1136#if defined(USE_DLMALLOC)
1137    // Trim the native heap.
1138    dlmalloc_trim(0);
1139    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1140#elif defined(USE_JEMALLOC)
1141    // Jemalloc does it's own internal trimming.
1142#else
1143    UNIMPLEMENTED(WARNING) << "Add trimming support";
1144#endif
1145  }
1146#endif  // HAVE_ANDROID_OS
1147  uint64_t end_ns = NanoTime();
1148  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1149      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1150      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1151      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1152      << "%.";
1153  ATRACE_END();
1154}
1155
1156bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1157  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1158  // taking the lock.
1159  if (obj == nullptr) {
1160    return true;
1161  }
1162  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1163}
1164
1165bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1166  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1167}
1168
1169bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1170  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1171    return false;
1172  }
1173  for (const auto& space : continuous_spaces_) {
1174    if (space->HasAddress(obj)) {
1175      return true;
1176    }
1177  }
1178  return false;
1179}
1180
1181bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1182                              bool search_live_stack, bool sorted) {
1183  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1184    return false;
1185  }
1186  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1187    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1188    if (obj == klass) {
1189      // This case happens for java.lang.Class.
1190      return true;
1191    }
1192    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1193  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1194    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1195    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1196    return temp_space_->Contains(obj);
1197  }
1198  if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
1199    return true;
1200  }
1201  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1202  space::DiscontinuousSpace* d_space = nullptr;
1203  if (c_space != nullptr) {
1204    if (c_space->GetLiveBitmap()->Test(obj)) {
1205      return true;
1206    }
1207  } else {
1208    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1209    if (d_space != nullptr) {
1210      if (d_space->GetLiveBitmap()->Test(obj)) {
1211        return true;
1212      }
1213    }
1214  }
1215  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1216  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1217    if (i > 0) {
1218      NanoSleep(MsToNs(10));
1219    }
1220    if (search_allocation_stack) {
1221      if (sorted) {
1222        if (allocation_stack_->ContainsSorted(obj)) {
1223          return true;
1224        }
1225      } else if (allocation_stack_->Contains(obj)) {
1226        return true;
1227      }
1228    }
1229
1230    if (search_live_stack) {
1231      if (sorted) {
1232        if (live_stack_->ContainsSorted(obj)) {
1233          return true;
1234        }
1235      } else if (live_stack_->Contains(obj)) {
1236        return true;
1237      }
1238    }
1239  }
1240  // We need to check the bitmaps again since there is a race where we mark something as live and
1241  // then clear the stack containing it.
1242  if (c_space != nullptr) {
1243    if (c_space->GetLiveBitmap()->Test(obj)) {
1244      return true;
1245    }
1246  } else {
1247    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1248    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1249      return true;
1250    }
1251  }
1252  return false;
1253}
1254
1255std::string Heap::DumpSpaces() const {
1256  std::ostringstream oss;
1257  DumpSpaces(oss);
1258  return oss.str();
1259}
1260
1261void Heap::DumpSpaces(std::ostream& stream) const {
1262  for (const auto& space : continuous_spaces_) {
1263    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1264    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1265    stream << space << " " << *space << "\n";
1266    if (live_bitmap != nullptr) {
1267      stream << live_bitmap << " " << *live_bitmap << "\n";
1268    }
1269    if (mark_bitmap != nullptr) {
1270      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1271    }
1272  }
1273  for (const auto& space : discontinuous_spaces_) {
1274    stream << space << " " << *space << "\n";
1275  }
1276}
1277
1278void Heap::VerifyObjectBody(mirror::Object* obj) {
1279  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1280    return;
1281  }
1282
1283  // Ignore early dawn of the universe verifications.
1284  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1285    return;
1286  }
1287  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1288  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1289  CHECK(c != nullptr) << "Null class in object " << obj;
1290  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1291  CHECK(VerifyClassClass(c));
1292
1293  if (verify_object_mode_ > kVerifyObjectModeFast) {
1294    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1295    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1296  }
1297}
1298
1299void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1300  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1301}
1302
1303void Heap::VerifyHeap() {
1304  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1305  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1306}
1307
1308void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1309  // Use signed comparison since freed bytes can be negative when background compaction foreground
1310  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1311  // free list backed space typically increasing memory footprint due to padding and binning.
1312  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1313  // Note: This relies on 2s complement for handling negative freed_bytes.
1314  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1315  if (Runtime::Current()->HasStatsEnabled()) {
1316    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1317    thread_stats->freed_objects += freed_objects;
1318    thread_stats->freed_bytes += freed_bytes;
1319    // TODO: Do this concurrently.
1320    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1321    global_stats->freed_objects += freed_objects;
1322    global_stats->freed_bytes += freed_bytes;
1323  }
1324}
1325
1326space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1327  for (const auto& space : continuous_spaces_) {
1328    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1329      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1330        return space->AsContinuousSpace()->AsRosAllocSpace();
1331      }
1332    }
1333  }
1334  return nullptr;
1335}
1336
1337mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1338                                             size_t alloc_size, size_t* bytes_allocated,
1339                                             size_t* usable_size,
1340                                             mirror::Class** klass) {
1341  bool was_default_allocator = allocator == GetCurrentAllocator();
1342  // Make sure there is no pending exception since we may need to throw an OOME.
1343  self->AssertNoPendingException();
1344  DCHECK(klass != nullptr);
1345  StackHandleScope<1> hs(self);
1346  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1347  klass = nullptr;  // Invalidate for safety.
1348  // The allocation failed. If the GC is running, block until it completes, and then retry the
1349  // allocation.
1350  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1351  if (last_gc != collector::kGcTypeNone) {
1352    // If we were the default allocator but the allocator changed while we were suspended,
1353    // abort the allocation.
1354    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1355      return nullptr;
1356    }
1357    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1358    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1359                                                     usable_size);
1360    if (ptr != nullptr) {
1361      return ptr;
1362    }
1363  }
1364
1365  collector::GcType tried_type = next_gc_type_;
1366  const bool gc_ran =
1367      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1368  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1369    return nullptr;
1370  }
1371  if (gc_ran) {
1372    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1373                                                     usable_size);
1374    if (ptr != nullptr) {
1375      return ptr;
1376    }
1377  }
1378
1379  // Loop through our different Gc types and try to Gc until we get enough free memory.
1380  for (collector::GcType gc_type : gc_plan_) {
1381    if (gc_type == tried_type) {
1382      continue;
1383    }
1384    // Attempt to run the collector, if we succeed, re-try the allocation.
1385    const bool plan_gc_ran =
1386        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1387    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1388      return nullptr;
1389    }
1390    if (plan_gc_ran) {
1391      // Did we free sufficient memory for the allocation to succeed?
1392      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1393                                                       usable_size);
1394      if (ptr != nullptr) {
1395        return ptr;
1396      }
1397    }
1398  }
1399  // Allocations have failed after GCs;  this is an exceptional state.
1400  // Try harder, growing the heap if necessary.
1401  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1402                                                  usable_size);
1403  if (ptr != nullptr) {
1404    return ptr;
1405  }
1406  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1407  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1408  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1409  // OOME.
1410  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1411           << " allocation";
1412  // TODO: Run finalization, but this may cause more allocations to occur.
1413  // We don't need a WaitForGcToComplete here either.
1414  DCHECK(!gc_plan_.empty());
1415  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1416  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1417    return nullptr;
1418  }
1419  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1420  if (ptr == nullptr) {
1421    const uint64_t current_time = NanoTime();
1422    switch (allocator) {
1423      case kAllocatorTypeRosAlloc:
1424        // Fall-through.
1425      case kAllocatorTypeDlMalloc: {
1426        if (use_homogeneous_space_compaction_for_oom_ &&
1427            current_time - last_time_homogeneous_space_compaction_by_oom_ >
1428            min_interval_homogeneous_space_compaction_by_oom_) {
1429          last_time_homogeneous_space_compaction_by_oom_ = current_time;
1430          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1431          switch (result) {
1432            case HomogeneousSpaceCompactResult::kSuccess:
1433              // If the allocation succeeded, we delayed an oom.
1434              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1435                                              usable_size);
1436              if (ptr != nullptr) {
1437                count_delayed_oom_++;
1438              }
1439              break;
1440            case HomogeneousSpaceCompactResult::kErrorReject:
1441              // Reject due to disabled moving GC.
1442              break;
1443            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1444              // Throw OOM by default.
1445              break;
1446            default: {
1447              UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1448                  << static_cast<size_t>(result);
1449              UNREACHABLE();
1450            }
1451          }
1452          // Always print that we ran homogeneous space compation since this can cause jank.
1453          VLOG(heap) << "Ran heap homogeneous space compaction, "
1454                    << " requested defragmentation "
1455                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1456                    << " performed defragmentation "
1457                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1458                    << " ignored homogeneous space compaction "
1459                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1460                    << " delayed count = "
1461                    << count_delayed_oom_.LoadSequentiallyConsistent();
1462        }
1463        break;
1464      }
1465      case kAllocatorTypeNonMoving: {
1466        // Try to transition the heap if the allocation failure was due to the space being full.
1467        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1468          // If we aren't out of memory then the OOM was probably from the non moving space being
1469          // full. Attempt to disable compaction and turn the main space into a non moving space.
1470          DisableMovingGc();
1471          // If we are still a moving GC then something must have caused the transition to fail.
1472          if (IsMovingGc(collector_type_)) {
1473            MutexLock mu(self, *gc_complete_lock_);
1474            // If we couldn't disable moving GC, just throw OOME and return null.
1475            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1476                         << disable_moving_gc_count_;
1477          } else {
1478            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1479            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1480                                            usable_size);
1481          }
1482        }
1483        break;
1484      }
1485      default: {
1486        // Do nothing for others allocators.
1487      }
1488    }
1489  }
1490  // If the allocation hasn't succeeded by this point, throw an OOM error.
1491  if (ptr == nullptr) {
1492    ThrowOutOfMemoryError(self, alloc_size, allocator);
1493  }
1494  return ptr;
1495}
1496
1497void Heap::SetTargetHeapUtilization(float target) {
1498  DCHECK_GT(target, 0.0f);  // asserted in Java code
1499  DCHECK_LT(target, 1.0f);
1500  target_utilization_ = target;
1501}
1502
1503size_t Heap::GetObjectsAllocated() const {
1504  size_t total = 0;
1505  for (space::AllocSpace* space : alloc_spaces_) {
1506    total += space->GetObjectsAllocated();
1507  }
1508  return total;
1509}
1510
1511uint64_t Heap::GetObjectsAllocatedEver() const {
1512  return GetObjectsFreedEver() + GetObjectsAllocated();
1513}
1514
1515uint64_t Heap::GetBytesAllocatedEver() const {
1516  return GetBytesFreedEver() + GetBytesAllocated();
1517}
1518
1519class InstanceCounter {
1520 public:
1521  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1522      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1523      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1524  }
1525  static void Callback(mirror::Object* obj, void* arg)
1526      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1527    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1528    mirror::Class* instance_class = obj->GetClass();
1529    CHECK(instance_class != nullptr);
1530    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1531      if (instance_counter->use_is_assignable_from_) {
1532        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1533          ++instance_counter->counts_[i];
1534        }
1535      } else if (instance_class == instance_counter->classes_[i]) {
1536        ++instance_counter->counts_[i];
1537      }
1538    }
1539  }
1540
1541 private:
1542  const std::vector<mirror::Class*>& classes_;
1543  bool use_is_assignable_from_;
1544  uint64_t* const counts_;
1545  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1546};
1547
1548void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1549                          uint64_t* counts) {
1550  InstanceCounter counter(classes, use_is_assignable_from, counts);
1551  VisitObjects(InstanceCounter::Callback, &counter);
1552}
1553
1554class InstanceCollector {
1555 public:
1556  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1557      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1558      : class_(c), max_count_(max_count), instances_(instances) {
1559  }
1560  static void Callback(mirror::Object* obj, void* arg)
1561      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1562    DCHECK(arg != nullptr);
1563    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1564    if (obj->GetClass() == instance_collector->class_) {
1565      if (instance_collector->max_count_ == 0 ||
1566          instance_collector->instances_.size() < instance_collector->max_count_) {
1567        instance_collector->instances_.push_back(obj);
1568      }
1569    }
1570  }
1571
1572 private:
1573  const mirror::Class* const class_;
1574  const uint32_t max_count_;
1575  std::vector<mirror::Object*>& instances_;
1576  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1577};
1578
1579void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1580                        std::vector<mirror::Object*>& instances) {
1581  InstanceCollector collector(c, max_count, instances);
1582  VisitObjects(&InstanceCollector::Callback, &collector);
1583}
1584
1585class ReferringObjectsFinder {
1586 public:
1587  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1588                         std::vector<mirror::Object*>& referring_objects)
1589      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1590      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1591  }
1592
1593  static void Callback(mirror::Object* obj, void* arg)
1594      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1595    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1596  }
1597
1598  // For bitmap Visit.
1599  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1600  // annotalysis on visitors.
1601  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1602    o->VisitReferences<true>(*this, VoidFunctor());
1603  }
1604
1605  // For Object::VisitReferences.
1606  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1607      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1608    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1609    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1610      referring_objects_.push_back(obj);
1611    }
1612  }
1613
1614 private:
1615  const mirror::Object* const object_;
1616  const uint32_t max_count_;
1617  std::vector<mirror::Object*>& referring_objects_;
1618  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1619};
1620
1621void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1622                               std::vector<mirror::Object*>& referring_objects) {
1623  ReferringObjectsFinder finder(o, max_count, referring_objects);
1624  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1625}
1626
1627void Heap::CollectGarbage(bool clear_soft_references) {
1628  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1629  // last GC will not have necessarily been cleared.
1630  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1631}
1632
1633HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1634  Thread* self = Thread::Current();
1635  // Inc requested homogeneous space compaction.
1636  count_requested_homogeneous_space_compaction_++;
1637  // Store performed homogeneous space compaction at a new request arrival.
1638  ThreadList* tl = Runtime::Current()->GetThreadList();
1639  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1640  Locks::mutator_lock_->AssertNotHeld(self);
1641  {
1642    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1643    MutexLock mu(self, *gc_complete_lock_);
1644    // Ensure there is only one GC at a time.
1645    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1646    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1647    // is non zero.
1648    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1649    // exit.
1650    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1651        !main_space_->CanMoveObjects()) {
1652      return HomogeneousSpaceCompactResult::kErrorReject;
1653    }
1654    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1655  }
1656  if (Runtime::Current()->IsShuttingDown(self)) {
1657    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1658    // cause objects to get finalized.
1659    FinishGC(self, collector::kGcTypeNone);
1660    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1661  }
1662  // Suspend all threads.
1663  tl->SuspendAll();
1664  uint64_t start_time = NanoTime();
1665  // Launch compaction.
1666  space::MallocSpace* to_space = main_space_backup_.release();
1667  space::MallocSpace* from_space = main_space_;
1668  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1669  const uint64_t space_size_before_compaction = from_space->Size();
1670  AddSpace(to_space);
1671  // Make sure that we will have enough room to copy.
1672  CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1673  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1674  const uint64_t space_size_after_compaction = to_space->Size();
1675  main_space_ = to_space;
1676  main_space_backup_.reset(from_space);
1677  RemoveSpace(from_space);
1678  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1679  // Update performed homogeneous space compaction count.
1680  count_performed_homogeneous_space_compaction_++;
1681  // Print statics log and resume all threads.
1682  uint64_t duration = NanoTime() - start_time;
1683  VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1684             << PrettySize(space_size_before_compaction) << " -> "
1685             << PrettySize(space_size_after_compaction) << " compact-ratio: "
1686             << std::fixed << static_cast<double>(space_size_after_compaction) /
1687             static_cast<double>(space_size_before_compaction);
1688  tl->ResumeAll();
1689  // Finish GC.
1690  reference_processor_.EnqueueClearedReferences(self);
1691  GrowForUtilization(semi_space_collector_);
1692  FinishGC(self, collector::kGcTypeFull);
1693  return HomogeneousSpaceCompactResult::kSuccess;
1694}
1695
1696void Heap::TransitionCollector(CollectorType collector_type) {
1697  if (collector_type == collector_type_) {
1698    return;
1699  }
1700  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1701             << " -> " << static_cast<int>(collector_type);
1702  uint64_t start_time = NanoTime();
1703  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1704  Runtime* const runtime = Runtime::Current();
1705  ThreadList* const tl = runtime->GetThreadList();
1706  Thread* const self = Thread::Current();
1707  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1708  Locks::mutator_lock_->AssertNotHeld(self);
1709  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1710  // compacting_gc_disable_count_, this should rarely occurs).
1711  for (;;) {
1712    {
1713      ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1714      MutexLock mu(self, *gc_complete_lock_);
1715      // Ensure there is only one GC at a time.
1716      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1717      // Currently we only need a heap transition if we switch from a moving collector to a
1718      // non-moving one, or visa versa.
1719      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1720      // If someone else beat us to it and changed the collector before we could, exit.
1721      // This is safe to do before the suspend all since we set the collector_type_running_ before
1722      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1723      // then it would get blocked on WaitForGcToCompleteLocked.
1724      if (collector_type == collector_type_) {
1725        return;
1726      }
1727      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1728      if (!copying_transition || disable_moving_gc_count_ == 0) {
1729        // TODO: Not hard code in semi-space collector?
1730        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1731        break;
1732      }
1733    }
1734    usleep(1000);
1735  }
1736  if (runtime->IsShuttingDown(self)) {
1737    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1738    // cause objects to get finalized.
1739    FinishGC(self, collector::kGcTypeNone);
1740    return;
1741  }
1742  tl->SuspendAll();
1743  switch (collector_type) {
1744    case kCollectorTypeSS: {
1745      if (!IsMovingGc(collector_type_)) {
1746        // Create the bump pointer space from the backup space.
1747        CHECK(main_space_backup_ != nullptr);
1748        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1749        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1750        // pointer space last transition it will be protected.
1751        CHECK(mem_map != nullptr);
1752        mem_map->Protect(PROT_READ | PROT_WRITE);
1753        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1754                                                                        mem_map.release());
1755        AddSpace(bump_pointer_space_);
1756        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1757        // Use the now empty main space mem map for the bump pointer temp space.
1758        mem_map.reset(main_space_->ReleaseMemMap());
1759        // Unset the pointers just in case.
1760        if (dlmalloc_space_ == main_space_) {
1761          dlmalloc_space_ = nullptr;
1762        } else if (rosalloc_space_ == main_space_) {
1763          rosalloc_space_ = nullptr;
1764        }
1765        // Remove the main space so that we don't try to trim it, this doens't work for debug
1766        // builds since RosAlloc attempts to read the magic number from a protected page.
1767        RemoveSpace(main_space_);
1768        RemoveRememberedSet(main_space_);
1769        delete main_space_;  // Delete the space since it has been removed.
1770        main_space_ = nullptr;
1771        RemoveRememberedSet(main_space_backup_.get());
1772        main_space_backup_.reset(nullptr);  // Deletes the space.
1773        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1774                                                                mem_map.release());
1775        AddSpace(temp_space_);
1776      }
1777      break;
1778    }
1779    case kCollectorTypeMS:
1780      // Fall through.
1781    case kCollectorTypeCMS: {
1782      if (IsMovingGc(collector_type_)) {
1783        CHECK(temp_space_ != nullptr);
1784        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1785        RemoveSpace(temp_space_);
1786        temp_space_ = nullptr;
1787        mem_map->Protect(PROT_READ | PROT_WRITE);
1788        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
1789                              std::min(mem_map->Size(), growth_limit_), mem_map->Size());
1790        mem_map.release();
1791        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1792        AddSpace(main_space_);
1793        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1794        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1795        RemoveSpace(bump_pointer_space_);
1796        bump_pointer_space_ = nullptr;
1797        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1798        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1799        if (kIsDebugBuild && kUseRosAlloc) {
1800          mem_map->Protect(PROT_READ | PROT_WRITE);
1801        }
1802        main_space_backup_.reset(CreateMallocSpaceFromMemMap(
1803            mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
1804            mem_map->Size(), name, true));
1805        if (kIsDebugBuild && kUseRosAlloc) {
1806          mem_map->Protect(PROT_NONE);
1807        }
1808        mem_map.release();
1809      }
1810      break;
1811    }
1812    default: {
1813      LOG(FATAL) << "Attempted to transition to invalid collector type "
1814                 << static_cast<size_t>(collector_type);
1815      break;
1816    }
1817  }
1818  ChangeCollector(collector_type);
1819  tl->ResumeAll();
1820  // Can't call into java code with all threads suspended.
1821  reference_processor_.EnqueueClearedReferences(self);
1822  uint64_t duration = NanoTime() - start_time;
1823  GrowForUtilization(semi_space_collector_);
1824  FinishGC(self, collector::kGcTypeFull);
1825  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1826  int32_t delta_allocated = before_allocated - after_allocated;
1827  std::string saved_str;
1828  if (delta_allocated >= 0) {
1829    saved_str = " saved at least " + PrettySize(delta_allocated);
1830  } else {
1831    saved_str = " expanded " + PrettySize(-delta_allocated);
1832  }
1833  VLOG(heap) << "Heap transition to " << process_state_ << " took "
1834      << PrettyDuration(duration) << saved_str;
1835}
1836
1837void Heap::ChangeCollector(CollectorType collector_type) {
1838  // TODO: Only do this with all mutators suspended to avoid races.
1839  if (collector_type != collector_type_) {
1840    if (collector_type == kCollectorTypeMC) {
1841      // Don't allow mark compact unless support is compiled in.
1842      CHECK(kMarkCompactSupport);
1843    }
1844    collector_type_ = collector_type;
1845    gc_plan_.clear();
1846    switch (collector_type_) {
1847      case kCollectorTypeCC: {
1848        gc_plan_.push_back(collector::kGcTypeFull);
1849        if (use_tlab_) {
1850          ChangeAllocator(kAllocatorTypeRegionTLAB);
1851        } else {
1852          ChangeAllocator(kAllocatorTypeRegion);
1853        }
1854        break;
1855      }
1856      case kCollectorTypeMC:  // Fall-through.
1857      case kCollectorTypeSS:  // Fall-through.
1858      case kCollectorTypeGSS: {
1859        gc_plan_.push_back(collector::kGcTypeFull);
1860        if (use_tlab_) {
1861          ChangeAllocator(kAllocatorTypeTLAB);
1862        } else {
1863          ChangeAllocator(kAllocatorTypeBumpPointer);
1864        }
1865        break;
1866      }
1867      case kCollectorTypeMS: {
1868        gc_plan_.push_back(collector::kGcTypeSticky);
1869        gc_plan_.push_back(collector::kGcTypePartial);
1870        gc_plan_.push_back(collector::kGcTypeFull);
1871        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1872        break;
1873      }
1874      case kCollectorTypeCMS: {
1875        gc_plan_.push_back(collector::kGcTypeSticky);
1876        gc_plan_.push_back(collector::kGcTypePartial);
1877        gc_plan_.push_back(collector::kGcTypeFull);
1878        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1879        break;
1880      }
1881      default: {
1882        UNIMPLEMENTED(FATAL);
1883        UNREACHABLE();
1884      }
1885    }
1886    if (IsGcConcurrent()) {
1887      concurrent_start_bytes_ =
1888          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1889    } else {
1890      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1891    }
1892  }
1893}
1894
1895// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1896class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1897 public:
1898  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1899      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1900  }
1901
1902  void BuildBins(space::ContinuousSpace* space) {
1903    bin_live_bitmap_ = space->GetLiveBitmap();
1904    bin_mark_bitmap_ = space->GetMarkBitmap();
1905    BinContext context;
1906    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1907    context.collector_ = this;
1908    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1909    // Note: This requires traversing the space in increasing order of object addresses.
1910    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1911    // Add the last bin which spans after the last object to the end of the space.
1912    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1913  }
1914
1915 private:
1916  struct BinContext {
1917    uintptr_t prev_;  // The end of the previous object.
1918    ZygoteCompactingCollector* collector_;
1919  };
1920  // Maps from bin sizes to locations.
1921  std::multimap<size_t, uintptr_t> bins_;
1922  // Live bitmap of the space which contains the bins.
1923  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1924  // Mark bitmap of the space which contains the bins.
1925  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1926
1927  static void Callback(mirror::Object* obj, void* arg)
1928      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1929    DCHECK(arg != nullptr);
1930    BinContext* context = reinterpret_cast<BinContext*>(arg);
1931    ZygoteCompactingCollector* collector = context->collector_;
1932    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1933    size_t bin_size = object_addr - context->prev_;
1934    // Add the bin consisting of the end of the previous object to the start of the current object.
1935    collector->AddBin(bin_size, context->prev_);
1936    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1937  }
1938
1939  void AddBin(size_t size, uintptr_t position) {
1940    if (size != 0) {
1941      bins_.insert(std::make_pair(size, position));
1942    }
1943  }
1944
1945  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1946    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1947    // allocator.
1948    UNUSED(space);
1949    return false;
1950  }
1951
1952  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1953      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1954    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1955    mirror::Object* forward_address;
1956    // Find the smallest bin which we can move obj in.
1957    auto it = bins_.lower_bound(object_size);
1958    if (it == bins_.end()) {
1959      // No available space in the bins, place it in the target space instead (grows the zygote
1960      // space).
1961      size_t bytes_allocated;
1962      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1963      if (to_space_live_bitmap_ != nullptr) {
1964        to_space_live_bitmap_->Set(forward_address);
1965      } else {
1966        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1967        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1968      }
1969    } else {
1970      size_t size = it->first;
1971      uintptr_t pos = it->second;
1972      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1973      forward_address = reinterpret_cast<mirror::Object*>(pos);
1974      // Set the live and mark bits so that sweeping system weaks works properly.
1975      bin_live_bitmap_->Set(forward_address);
1976      bin_mark_bitmap_->Set(forward_address);
1977      DCHECK_GE(size, object_size);
1978      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1979    }
1980    // Copy the object over to its new location.
1981    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1982    if (kUseBakerOrBrooksReadBarrier) {
1983      obj->AssertReadBarrierPointer();
1984      if (kUseBrooksReadBarrier) {
1985        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1986        forward_address->SetReadBarrierPointer(forward_address);
1987      }
1988      forward_address->AssertReadBarrierPointer();
1989    }
1990    return forward_address;
1991  }
1992};
1993
1994void Heap::UnBindBitmaps() {
1995  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1996  for (const auto& space : GetContinuousSpaces()) {
1997    if (space->IsContinuousMemMapAllocSpace()) {
1998      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1999      if (alloc_space->HasBoundBitmaps()) {
2000        alloc_space->UnBindBitmaps();
2001      }
2002    }
2003  }
2004}
2005
2006void Heap::PreZygoteFork() {
2007  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2008  Thread* self = Thread::Current();
2009  MutexLock mu(self, zygote_creation_lock_);
2010  // Try to see if we have any Zygote spaces.
2011  if (HasZygoteSpace()) {
2012    LOG(WARNING) << __FUNCTION__ << " called when we already have a zygote space.";
2013    return;
2014  }
2015  Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
2016  Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2017  VLOG(heap) << "Starting PreZygoteFork";
2018  // Trim the pages at the end of the non moving space.
2019  non_moving_space_->Trim();
2020  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2021  // there.
2022  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2023  const bool same_space = non_moving_space_ == main_space_;
2024  if (kCompactZygote) {
2025    // Can't compact if the non moving space is the same as the main space.
2026    DCHECK(semi_space_collector_ != nullptr);
2027    // Temporarily disable rosalloc verification because the zygote
2028    // compaction will mess up the rosalloc internal metadata.
2029    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2030    ZygoteCompactingCollector zygote_collector(this);
2031    zygote_collector.BuildBins(non_moving_space_);
2032    // Create a new bump pointer space which we will compact into.
2033    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2034                                         non_moving_space_->Limit());
2035    // Compact the bump pointer space to a new zygote bump pointer space.
2036    bool reset_main_space = false;
2037    if (IsMovingGc(collector_type_)) {
2038      if (collector_type_ == kCollectorTypeCC) {
2039        zygote_collector.SetFromSpace(region_space_);
2040      } else {
2041        zygote_collector.SetFromSpace(bump_pointer_space_);
2042      }
2043    } else {
2044      CHECK(main_space_ != nullptr);
2045      // Copy from the main space.
2046      zygote_collector.SetFromSpace(main_space_);
2047      reset_main_space = true;
2048    }
2049    zygote_collector.SetToSpace(&target_space);
2050    zygote_collector.SetSwapSemiSpaces(false);
2051    zygote_collector.Run(kGcCauseCollectorTransition, false);
2052    if (reset_main_space) {
2053      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2054      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2055      MemMap* mem_map = main_space_->ReleaseMemMap();
2056      RemoveSpace(main_space_);
2057      space::Space* old_main_space = main_space_;
2058      CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2059                            mem_map->Size());
2060      delete old_main_space;
2061      AddSpace(main_space_);
2062    } else {
2063      if (collector_type_ == kCollectorTypeCC) {
2064        region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2065      } else {
2066        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2067      }
2068    }
2069    if (temp_space_ != nullptr) {
2070      CHECK(temp_space_->IsEmpty());
2071    }
2072    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2073    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2074    // Update the end and write out image.
2075    non_moving_space_->SetEnd(target_space.End());
2076    non_moving_space_->SetLimit(target_space.Limit());
2077    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
2078  }
2079  // Change the collector to the post zygote one.
2080  ChangeCollector(foreground_collector_type_);
2081  // Save the old space so that we can remove it after we complete creating the zygote space.
2082  space::MallocSpace* old_alloc_space = non_moving_space_;
2083  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2084  // the remaining available space.
2085  // Remove the old space before creating the zygote space since creating the zygote space sets
2086  // the old alloc space's bitmaps to nullptr.
2087  RemoveSpace(old_alloc_space);
2088  if (collector::SemiSpace::kUseRememberedSet) {
2089    // Sanity bound check.
2090    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2091    // Remove the remembered set for the now zygote space (the old
2092    // non-moving space). Note now that we have compacted objects into
2093    // the zygote space, the data in the remembered set is no longer
2094    // needed. The zygote space will instead have a mod-union table
2095    // from this point on.
2096    RemoveRememberedSet(old_alloc_space);
2097  }
2098  // Remaining space becomes the new non moving space.
2099  zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2100                                                     &non_moving_space_);
2101  CHECK(!non_moving_space_->CanMoveObjects());
2102  if (same_space) {
2103    main_space_ = non_moving_space_;
2104    SetSpaceAsDefault(main_space_);
2105  }
2106  delete old_alloc_space;
2107  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2108  AddSpace(zygote_space_);
2109  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2110  AddSpace(non_moving_space_);
2111  // Create the zygote space mod union table.
2112  accounting::ModUnionTable* mod_union_table =
2113      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
2114                                             zygote_space_);
2115  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2116  // Set all the cards in the mod-union table since we don't know which objects contain references
2117  // to large objects.
2118  mod_union_table->SetCards();
2119  AddModUnionTable(mod_union_table);
2120  if (collector::SemiSpace::kUseRememberedSet) {
2121    // Add a new remembered set for the post-zygote non-moving space.
2122    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2123        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2124                                      non_moving_space_);
2125    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2126        << "Failed to create post-zygote non-moving space remembered set";
2127    AddRememberedSet(post_zygote_non_moving_space_rem_set);
2128  }
2129}
2130
2131void Heap::FlushAllocStack() {
2132  MarkAllocStackAsLive(allocation_stack_.get());
2133  allocation_stack_->Reset();
2134}
2135
2136void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2137                          accounting::ContinuousSpaceBitmap* bitmap2,
2138                          accounting::LargeObjectBitmap* large_objects,
2139                          accounting::ObjectStack* stack) {
2140  DCHECK(bitmap1 != nullptr);
2141  DCHECK(bitmap2 != nullptr);
2142  mirror::Object** limit = stack->End();
2143  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
2144    const mirror::Object* obj = *it;
2145    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2146      if (bitmap1->HasAddress(obj)) {
2147        bitmap1->Set(obj);
2148      } else if (bitmap2->HasAddress(obj)) {
2149        bitmap2->Set(obj);
2150      } else {
2151        DCHECK(large_objects != nullptr);
2152        large_objects->Set(obj);
2153      }
2154    }
2155  }
2156}
2157
2158void Heap::SwapSemiSpaces() {
2159  CHECK(bump_pointer_space_ != nullptr);
2160  CHECK(temp_space_ != nullptr);
2161  std::swap(bump_pointer_space_, temp_space_);
2162}
2163
2164void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2165                   space::ContinuousMemMapAllocSpace* source_space,
2166                   GcCause gc_cause) {
2167  CHECK(kMovingCollector);
2168  if (target_space != source_space) {
2169    // Don't swap spaces since this isn't a typical semi space collection.
2170    semi_space_collector_->SetSwapSemiSpaces(false);
2171    semi_space_collector_->SetFromSpace(source_space);
2172    semi_space_collector_->SetToSpace(target_space);
2173    semi_space_collector_->Run(gc_cause, false);
2174  } else {
2175    CHECK(target_space->IsBumpPointerSpace())
2176        << "In-place compaction is only supported for bump pointer spaces";
2177    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2178    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2179  }
2180}
2181
2182collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2183                                               bool clear_soft_references) {
2184  Thread* self = Thread::Current();
2185  Runtime* runtime = Runtime::Current();
2186  // If the heap can't run the GC, silently fail and return that no GC was run.
2187  switch (gc_type) {
2188    case collector::kGcTypePartial: {
2189      if (!HasZygoteSpace()) {
2190        return collector::kGcTypeNone;
2191      }
2192      break;
2193    }
2194    default: {
2195      // Other GC types don't have any special cases which makes them not runnable. The main case
2196      // here is full GC.
2197    }
2198  }
2199  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2200  Locks::mutator_lock_->AssertNotHeld(self);
2201  if (self->IsHandlingStackOverflow()) {
2202    // If we are throwing a stack overflow error we probably don't have enough remaining stack
2203    // space to run the GC.
2204    return collector::kGcTypeNone;
2205  }
2206  bool compacting_gc;
2207  {
2208    gc_complete_lock_->AssertNotHeld(self);
2209    ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2210    MutexLock mu(self, *gc_complete_lock_);
2211    // Ensure there is only one GC at a time.
2212    WaitForGcToCompleteLocked(gc_cause, self);
2213    compacting_gc = IsMovingGc(collector_type_);
2214    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2215    if (compacting_gc && disable_moving_gc_count_ != 0) {
2216      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2217      return collector::kGcTypeNone;
2218    }
2219    collector_type_running_ = collector_type_;
2220  }
2221
2222  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2223    ++runtime->GetStats()->gc_for_alloc_count;
2224    ++self->GetStats()->gc_for_alloc_count;
2225  }
2226  const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2227  // Approximate heap size.
2228  ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
2229
2230  DCHECK_LT(gc_type, collector::kGcTypeMax);
2231  DCHECK_NE(gc_type, collector::kGcTypeNone);
2232
2233  collector::GarbageCollector* collector = nullptr;
2234  // TODO: Clean this up.
2235  if (compacting_gc) {
2236    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2237           current_allocator_ == kAllocatorTypeTLAB ||
2238           current_allocator_ == kAllocatorTypeRegion ||
2239           current_allocator_ == kAllocatorTypeRegionTLAB);
2240    switch (collector_type_) {
2241      case kCollectorTypeSS:
2242        // Fall-through.
2243      case kCollectorTypeGSS:
2244        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2245        semi_space_collector_->SetToSpace(temp_space_);
2246        semi_space_collector_->SetSwapSemiSpaces(true);
2247        collector = semi_space_collector_;
2248        break;
2249      case kCollectorTypeCC:
2250        concurrent_copying_collector_->SetRegionSpace(region_space_);
2251        collector = concurrent_copying_collector_;
2252        break;
2253      case kCollectorTypeMC:
2254        mark_compact_collector_->SetSpace(bump_pointer_space_);
2255        collector = mark_compact_collector_;
2256        break;
2257      default:
2258        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2259    }
2260    if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
2261      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2262      CHECK(temp_space_->IsEmpty());
2263    }
2264    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2265  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2266      current_allocator_ == kAllocatorTypeDlMalloc) {
2267    collector = FindCollectorByGcType(gc_type);
2268  } else {
2269    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2270  }
2271  if (IsGcConcurrent()) {
2272    // Disable concurrent GC check so that we don't have spammy JNI requests.
2273    // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2274    // calculated in the same thread so that there aren't any races that can cause it to become
2275    // permanantly disabled. b/17942071
2276    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2277  }
2278  CHECK(collector != nullptr)
2279      << "Could not find garbage collector with collector_type="
2280      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2281  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2282  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2283  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2284  RequestTrim(self);
2285  // Enqueue cleared references.
2286  reference_processor_.EnqueueClearedReferences(self);
2287  // Grow the heap so that we know when to perform the next GC.
2288  GrowForUtilization(collector, bytes_allocated_before_gc);
2289  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2290  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2291  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2292  // (mutator time blocked >= long_pause_log_threshold_).
2293  bool log_gc = gc_cause == kGcCauseExplicit;
2294  if (!log_gc && CareAboutPauseTimes()) {
2295    // GC for alloc pauses the allocating thread, so consider it as a pause.
2296    log_gc = duration > long_gc_log_threshold_ ||
2297        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2298    for (uint64_t pause : pause_times) {
2299      log_gc = log_gc || pause >= long_pause_log_threshold_;
2300    }
2301  }
2302  if (log_gc) {
2303    const size_t percent_free = GetPercentFree();
2304    const size_t current_heap_size = GetBytesAllocated();
2305    const size_t total_memory = GetTotalMemory();
2306    std::ostringstream pause_string;
2307    for (size_t i = 0; i < pause_times.size(); ++i) {
2308        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2309                     << ((i != pause_times.size() - 1) ? "," : "");
2310    }
2311    LOG(INFO) << gc_cause << " " << collector->GetName()
2312              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2313              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2314              << current_gc_iteration_.GetFreedLargeObjects() << "("
2315              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2316              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2317              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2318              << " total " << PrettyDuration((duration / 1000) * 1000);
2319    VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2320  }
2321  FinishGC(self, gc_type);
2322  // Inform DDMS that a GC completed.
2323  Dbg::GcDidFinish();
2324  return gc_type;
2325}
2326
2327void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2328  MutexLock mu(self, *gc_complete_lock_);
2329  collector_type_running_ = kCollectorTypeNone;
2330  if (gc_type != collector::kGcTypeNone) {
2331    last_gc_type_ = gc_type;
2332  }
2333  // Wake anyone who may have been waiting for the GC to complete.
2334  gc_complete_cond_->Broadcast(self);
2335}
2336
2337static void RootMatchesObjectVisitor(mirror::Object** root, void* arg,
2338                                     const RootInfo& /*root_info*/) {
2339  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2340  if (*root == obj) {
2341    LOG(INFO) << "Object " << obj << " is a root";
2342  }
2343}
2344
2345class ScanVisitor {
2346 public:
2347  void operator()(const mirror::Object* obj) const {
2348    LOG(ERROR) << "Would have rescanned object " << obj;
2349  }
2350};
2351
2352// Verify a reference from an object.
2353class VerifyReferenceVisitor {
2354 public:
2355  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2356      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2357      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2358
2359  size_t GetFailureCount() const {
2360    return fail_count_->LoadSequentiallyConsistent();
2361  }
2362
2363  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2364      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2365    UNUSED(klass);
2366    if (verify_referent_) {
2367      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2368    }
2369  }
2370
2371  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2372      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2373    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2374  }
2375
2376  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2377    return heap_->IsLiveObjectLocked(obj, true, false, true);
2378  }
2379
2380  static void VerifyRootCallback(mirror::Object** root, void* arg, const RootInfo& root_info)
2381      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2382    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2383    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2384      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2385          << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2386    }
2387  }
2388
2389 private:
2390  // TODO: Fix the no thread safety analysis.
2391  // Returns false on failure.
2392  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2393      NO_THREAD_SAFETY_ANALYSIS {
2394    if (ref == nullptr || IsLive(ref)) {
2395      // Verify that the reference is live.
2396      return true;
2397    }
2398    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2399      // Print message on only on first failure to prevent spam.
2400      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2401    }
2402    if (obj != nullptr) {
2403      // Only do this part for non roots.
2404      accounting::CardTable* card_table = heap_->GetCardTable();
2405      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2406      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2407      uint8_t* card_addr = card_table->CardFromAddr(obj);
2408      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2409                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2410      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2411        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2412      } else {
2413        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2414      }
2415
2416      // Attempt to find the class inside of the recently freed objects.
2417      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2418      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2419        space::MallocSpace* space = ref_space->AsMallocSpace();
2420        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2421        if (ref_class != nullptr) {
2422          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2423                     << PrettyClass(ref_class);
2424        } else {
2425          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2426        }
2427      }
2428
2429      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2430          ref->GetClass()->IsClass()) {
2431        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2432      } else {
2433        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2434                   << ") is not a valid heap address";
2435      }
2436
2437      card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2438      void* cover_begin = card_table->AddrFromCard(card_addr);
2439      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2440          accounting::CardTable::kCardSize);
2441      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2442          << "-" << cover_end;
2443      accounting::ContinuousSpaceBitmap* bitmap =
2444          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2445
2446      if (bitmap == nullptr) {
2447        LOG(ERROR) << "Object " << obj << " has no bitmap";
2448        if (!VerifyClassClass(obj->GetClass())) {
2449          LOG(ERROR) << "Object " << obj << " failed class verification!";
2450        }
2451      } else {
2452        // Print out how the object is live.
2453        if (bitmap->Test(obj)) {
2454          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2455        }
2456        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2457          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2458        }
2459        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2460          LOG(ERROR) << "Object " << obj << " found in live stack";
2461        }
2462        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2463          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2464        }
2465        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2466          LOG(ERROR) << "Ref " << ref << " found in live stack";
2467        }
2468        // Attempt to see if the card table missed the reference.
2469        ScanVisitor scan_visitor;
2470        uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2471        card_table->Scan<false>(bitmap, byte_cover_begin,
2472                                byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2473      }
2474
2475      // Search to see if any of the roots reference our object.
2476      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2477      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2478
2479      // Search to see if any of the roots reference our reference.
2480      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2481      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2482    }
2483    return false;
2484  }
2485
2486  Heap* const heap_;
2487  Atomic<size_t>* const fail_count_;
2488  const bool verify_referent_;
2489};
2490
2491// Verify all references within an object, for use with HeapBitmap::Visit.
2492class VerifyObjectVisitor {
2493 public:
2494  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2495      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2496  }
2497
2498  void operator()(mirror::Object* obj) const
2499      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2500    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2501    // be live or else how did we find it in the live bitmap?
2502    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2503    // The class doesn't count as a reference but we should verify it anyways.
2504    obj->VisitReferences<true>(visitor, visitor);
2505  }
2506
2507  static void VisitCallback(mirror::Object* obj, void* arg)
2508      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2509    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2510    visitor->operator()(obj);
2511  }
2512
2513  size_t GetFailureCount() const {
2514    return fail_count_->LoadSequentiallyConsistent();
2515  }
2516
2517 private:
2518  Heap* const heap_;
2519  Atomic<size_t>* const fail_count_;
2520  const bool verify_referent_;
2521};
2522
2523void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2524  // Slow path, the allocation stack push back must have already failed.
2525  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2526  do {
2527    // TODO: Add handle VerifyObject.
2528    StackHandleScope<1> hs(self);
2529    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2530    // Push our object into the reserve region of the allocaiton stack. This is only required due
2531    // to heap verification requiring that roots are live (either in the live bitmap or in the
2532    // allocation stack).
2533    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2534    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2535  } while (!allocation_stack_->AtomicPushBack(*obj));
2536}
2537
2538void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2539  // Slow path, the allocation stack push back must have already failed.
2540  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2541  mirror::Object** start_address;
2542  mirror::Object** end_address;
2543  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2544                                            &end_address)) {
2545    // TODO: Add handle VerifyObject.
2546    StackHandleScope<1> hs(self);
2547    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2548    // Push our object into the reserve region of the allocaiton stack. This is only required due
2549    // to heap verification requiring that roots are live (either in the live bitmap or in the
2550    // allocation stack).
2551    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2552    // Push into the reserve allocation stack.
2553    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2554  }
2555  self->SetThreadLocalAllocationStack(start_address, end_address);
2556  // Retry on the new thread-local allocation stack.
2557  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2558}
2559
2560// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2561size_t Heap::VerifyHeapReferences(bool verify_referents) {
2562  Thread* self = Thread::Current();
2563  Locks::mutator_lock_->AssertExclusiveHeld(self);
2564  // Lets sort our allocation stacks so that we can efficiently binary search them.
2565  allocation_stack_->Sort();
2566  live_stack_->Sort();
2567  // Since we sorted the allocation stack content, need to revoke all
2568  // thread-local allocation stacks.
2569  RevokeAllThreadLocalAllocationStacks(self);
2570  Atomic<size_t> fail_count_(0);
2571  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2572  // Verify objects in the allocation stack since these will be objects which were:
2573  // 1. Allocated prior to the GC (pre GC verification).
2574  // 2. Allocated during the GC (pre sweep GC verification).
2575  // We don't want to verify the objects in the live stack since they themselves may be
2576  // pointing to dead objects if they are not reachable.
2577  VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
2578  // Verify the roots:
2579  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2580  if (visitor.GetFailureCount() > 0) {
2581    // Dump mod-union tables.
2582    for (const auto& table_pair : mod_union_tables_) {
2583      accounting::ModUnionTable* mod_union_table = table_pair.second;
2584      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2585    }
2586    // Dump remembered sets.
2587    for (const auto& table_pair : remembered_sets_) {
2588      accounting::RememberedSet* remembered_set = table_pair.second;
2589      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2590    }
2591    DumpSpaces(LOG(ERROR));
2592  }
2593  return visitor.GetFailureCount();
2594}
2595
2596class VerifyReferenceCardVisitor {
2597 public:
2598  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2599      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2600                            Locks::heap_bitmap_lock_)
2601      : heap_(heap), failed_(failed) {
2602  }
2603
2604  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2605  // annotalysis on visitors.
2606  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2607      NO_THREAD_SAFETY_ANALYSIS {
2608    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2609    // Filter out class references since changing an object's class does not mark the card as dirty.
2610    // Also handles large objects, since the only reference they hold is a class reference.
2611    if (ref != nullptr && !ref->IsClass()) {
2612      accounting::CardTable* card_table = heap_->GetCardTable();
2613      // If the object is not dirty and it is referencing something in the live stack other than
2614      // class, then it must be on a dirty card.
2615      if (!card_table->AddrIsInCardTable(obj)) {
2616        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2617        *failed_ = true;
2618      } else if (!card_table->IsDirty(obj)) {
2619        // TODO: Check mod-union tables.
2620        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2621        // kCardDirty - 1 if it didnt get touched since we aged it.
2622        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2623        if (live_stack->ContainsSorted(ref)) {
2624          if (live_stack->ContainsSorted(obj)) {
2625            LOG(ERROR) << "Object " << obj << " found in live stack";
2626          }
2627          if (heap_->GetLiveBitmap()->Test(obj)) {
2628            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2629          }
2630          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2631                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2632
2633          // Print which field of the object is dead.
2634          if (!obj->IsObjectArray()) {
2635            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2636            CHECK(klass != NULL);
2637            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2638                                                                      : klass->GetIFields();
2639            CHECK(fields != NULL);
2640            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2641              mirror::ArtField* cur = fields->Get(i);
2642              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2643                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2644                          << PrettyField(cur);
2645                break;
2646              }
2647            }
2648          } else {
2649            mirror::ObjectArray<mirror::Object>* object_array =
2650                obj->AsObjectArray<mirror::Object>();
2651            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2652              if (object_array->Get(i) == ref) {
2653                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2654              }
2655            }
2656          }
2657
2658          *failed_ = true;
2659        }
2660      }
2661    }
2662  }
2663
2664 private:
2665  Heap* const heap_;
2666  bool* const failed_;
2667};
2668
2669class VerifyLiveStackReferences {
2670 public:
2671  explicit VerifyLiveStackReferences(Heap* heap)
2672      : heap_(heap),
2673        failed_(false) {}
2674
2675  void operator()(mirror::Object* obj) const
2676      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2677    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2678    obj->VisitReferences<true>(visitor, VoidFunctor());
2679  }
2680
2681  bool Failed() const {
2682    return failed_;
2683  }
2684
2685 private:
2686  Heap* const heap_;
2687  bool failed_;
2688};
2689
2690bool Heap::VerifyMissingCardMarks() {
2691  Thread* self = Thread::Current();
2692  Locks::mutator_lock_->AssertExclusiveHeld(self);
2693  // We need to sort the live stack since we binary search it.
2694  live_stack_->Sort();
2695  // Since we sorted the allocation stack content, need to revoke all
2696  // thread-local allocation stacks.
2697  RevokeAllThreadLocalAllocationStacks(self);
2698  VerifyLiveStackReferences visitor(this);
2699  GetLiveBitmap()->Visit(visitor);
2700  // We can verify objects in the live stack since none of these should reference dead objects.
2701  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2702    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2703      visitor(*it);
2704    }
2705  }
2706  return !visitor.Failed();
2707}
2708
2709void Heap::SwapStacks(Thread* self) {
2710  UNUSED(self);
2711  if (kUseThreadLocalAllocationStack) {
2712    live_stack_->AssertAllZero();
2713  }
2714  allocation_stack_.swap(live_stack_);
2715}
2716
2717void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2718  // This must be called only during the pause.
2719  DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2720  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2721  MutexLock mu2(self, *Locks::thread_list_lock_);
2722  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2723  for (Thread* t : thread_list) {
2724    t->RevokeThreadLocalAllocationStack();
2725  }
2726}
2727
2728void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
2729  if (kIsDebugBuild) {
2730    if (rosalloc_space_ != nullptr) {
2731      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
2732    }
2733    if (bump_pointer_space_ != nullptr) {
2734      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
2735    }
2736  }
2737}
2738
2739void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2740  if (kIsDebugBuild) {
2741    if (bump_pointer_space_ != nullptr) {
2742      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2743    }
2744  }
2745}
2746
2747accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2748  auto it = mod_union_tables_.find(space);
2749  if (it == mod_union_tables_.end()) {
2750    return nullptr;
2751  }
2752  return it->second;
2753}
2754
2755accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2756  auto it = remembered_sets_.find(space);
2757  if (it == remembered_sets_.end()) {
2758    return nullptr;
2759  }
2760  return it->second;
2761}
2762
2763void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2764  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2765  // Clear cards and keep track of cards cleared in the mod-union table.
2766  for (const auto& space : continuous_spaces_) {
2767    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2768    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2769    if (table != nullptr) {
2770      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2771          "ImageModUnionClearCards";
2772      TimingLogger::ScopedTiming t2(name, timings);
2773      table->ClearCards();
2774    } else if (use_rem_sets && rem_set != nullptr) {
2775      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2776          << static_cast<int>(collector_type_);
2777      TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
2778      rem_set->ClearCards();
2779    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2780      TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
2781      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2782      // were dirty before the GC started.
2783      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2784      // -> clean(cleaning thread).
2785      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2786      // roots and then we scan / update mod union tables after. We will always scan either card.
2787      // If we end up with the non aged card, we scan it it in the pause.
2788      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2789                                     VoidFunctor());
2790    }
2791  }
2792}
2793
2794static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2795}
2796
2797void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2798  Thread* const self = Thread::Current();
2799  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2800  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2801  if (verify_pre_gc_heap_) {
2802    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
2803    size_t failures = VerifyHeapReferences();
2804    if (failures > 0) {
2805      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2806          << " failures";
2807    }
2808  }
2809  // Check that all objects which reference things in the live stack are on dirty cards.
2810  if (verify_missing_card_marks_) {
2811    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
2812    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2813    SwapStacks(self);
2814    // Sort the live stack so that we can quickly binary search it later.
2815    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2816                                    << " missing card mark verification failed\n" << DumpSpaces();
2817    SwapStacks(self);
2818  }
2819  if (verify_mod_union_table_) {
2820    TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
2821    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2822    for (const auto& table_pair : mod_union_tables_) {
2823      accounting::ModUnionTable* mod_union_table = table_pair.second;
2824      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2825      mod_union_table->Verify();
2826    }
2827  }
2828}
2829
2830void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2831  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2832    collector::GarbageCollector::ScopedPause pause(gc);
2833    PreGcVerificationPaused(gc);
2834  }
2835}
2836
2837void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2838  UNUSED(gc);
2839  // TODO: Add a new runtime option for this?
2840  if (verify_pre_gc_rosalloc_) {
2841    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2842  }
2843}
2844
2845void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2846  Thread* const self = Thread::Current();
2847  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2848  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2849  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2850  // reachable objects.
2851  if (verify_pre_sweeping_heap_) {
2852    TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
2853    CHECK_NE(self->GetState(), kRunnable);
2854    {
2855      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2856      // Swapping bound bitmaps does nothing.
2857      gc->SwapBitmaps();
2858    }
2859    // Pass in false since concurrent reference processing can mean that the reference referents
2860    // may point to dead objects at the point which PreSweepingGcVerification is called.
2861    size_t failures = VerifyHeapReferences(false);
2862    if (failures > 0) {
2863      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2864          << " failures";
2865    }
2866    {
2867      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2868      gc->SwapBitmaps();
2869    }
2870  }
2871  if (verify_pre_sweeping_rosalloc_) {
2872    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2873  }
2874}
2875
2876void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2877  // Only pause if we have to do some verification.
2878  Thread* const self = Thread::Current();
2879  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2880  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2881  if (verify_system_weaks_) {
2882    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2883    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2884    mark_sweep->VerifySystemWeaks();
2885  }
2886  if (verify_post_gc_rosalloc_) {
2887    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2888  }
2889  if (verify_post_gc_heap_) {
2890    TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
2891    size_t failures = VerifyHeapReferences();
2892    if (failures > 0) {
2893      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2894          << " failures";
2895    }
2896  }
2897}
2898
2899void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2900  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2901    collector::GarbageCollector::ScopedPause pause(gc);
2902    PostGcVerificationPaused(gc);
2903  }
2904}
2905
2906void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2907  TimingLogger::ScopedTiming t(name, timings);
2908  for (const auto& space : continuous_spaces_) {
2909    if (space->IsRosAllocSpace()) {
2910      VLOG(heap) << name << " : " << space->GetName();
2911      space->AsRosAllocSpace()->Verify();
2912    }
2913  }
2914}
2915
2916collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2917  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2918  MutexLock mu(self, *gc_complete_lock_);
2919  return WaitForGcToCompleteLocked(cause, self);
2920}
2921
2922collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2923  collector::GcType last_gc_type = collector::kGcTypeNone;
2924  uint64_t wait_start = NanoTime();
2925  while (collector_type_running_ != kCollectorTypeNone) {
2926    ATRACE_BEGIN("GC: Wait For Completion");
2927    // We must wait, change thread state then sleep on gc_complete_cond_;
2928    gc_complete_cond_->Wait(self);
2929    last_gc_type = last_gc_type_;
2930    ATRACE_END();
2931  }
2932  uint64_t wait_time = NanoTime() - wait_start;
2933  total_wait_time_ += wait_time;
2934  if (wait_time > long_pause_log_threshold_) {
2935    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2936        << " for cause " << cause;
2937  }
2938  return last_gc_type;
2939}
2940
2941void Heap::DumpForSigQuit(std::ostream& os) {
2942  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2943     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2944  DumpGcPerformanceInfo(os);
2945}
2946
2947size_t Heap::GetPercentFree() {
2948  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2949}
2950
2951void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2952  if (max_allowed_footprint > GetMaxMemory()) {
2953    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2954             << PrettySize(GetMaxMemory());
2955    max_allowed_footprint = GetMaxMemory();
2956  }
2957  max_allowed_footprint_ = max_allowed_footprint;
2958}
2959
2960bool Heap::IsMovableObject(const mirror::Object* obj) const {
2961  if (kMovingCollector) {
2962    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2963    if (space != nullptr) {
2964      // TODO: Check large object?
2965      return space->CanMoveObjects();
2966    }
2967  }
2968  return false;
2969}
2970
2971void Heap::UpdateMaxNativeFootprint() {
2972  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2973  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2974  size_t target_size = native_size / GetTargetHeapUtilization();
2975  if (target_size > native_size + max_free_) {
2976    target_size = native_size + max_free_;
2977  } else if (target_size < native_size + min_free_) {
2978    target_size = native_size + min_free_;
2979  }
2980  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
2981}
2982
2983collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2984  for (const auto& collector : garbage_collectors_) {
2985    if (collector->GetCollectorType() == collector_type_ &&
2986        collector->GetGcType() == gc_type) {
2987      return collector;
2988    }
2989  }
2990  return nullptr;
2991}
2992
2993double Heap::HeapGrowthMultiplier() const {
2994  // If we don't care about pause times we are background, so return 1.0.
2995  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2996    return 1.0;
2997  }
2998  return foreground_heap_growth_multiplier_;
2999}
3000
3001void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3002                              uint64_t bytes_allocated_before_gc) {
3003  // We know what our utilization is at this moment.
3004  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3005  const uint64_t bytes_allocated = GetBytesAllocated();
3006  uint64_t target_size;
3007  collector::GcType gc_type = collector_ran->GetGcType();
3008  const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
3009  // foreground.
3010  const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
3011  const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
3012  if (gc_type != collector::kGcTypeSticky) {
3013    // Grow the heap for non sticky GC.
3014    ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
3015    CHECK_GE(delta, 0);
3016    target_size = bytes_allocated + delta * multiplier;
3017    target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
3018    target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
3019    native_need_to_run_finalization_ = true;
3020    next_gc_type_ = collector::kGcTypeSticky;
3021  } else {
3022    collector::GcType non_sticky_gc_type =
3023        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3024    // Find what the next non sticky collector will be.
3025    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3026    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3027    // do another sticky collection next.
3028    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
3029    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3030    // if the sticky GC throughput always remained >= the full/partial throughput.
3031    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
3032        non_sticky_collector->GetEstimatedMeanThroughput() &&
3033        non_sticky_collector->NumberOfIterations() > 0 &&
3034        bytes_allocated <= max_allowed_footprint_) {
3035      next_gc_type_ = collector::kGcTypeSticky;
3036    } else {
3037      next_gc_type_ = non_sticky_gc_type;
3038    }
3039    // If we have freed enough memory, shrink the heap back down.
3040    if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
3041      target_size = bytes_allocated + adjusted_max_free;
3042    } else {
3043      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
3044    }
3045  }
3046  if (!ignore_max_footprint_) {
3047    SetIdealFootprint(target_size);
3048    if (IsGcConcurrent()) {
3049      const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3050          current_gc_iteration_.GetFreedLargeObjectBytes();
3051      // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3052      // how many bytes were allocated during the GC we need to add freed_bytes back on.
3053      CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3054      const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3055          bytes_allocated_before_gc;
3056      // Calculate when to perform the next ConcurrentGC.
3057      // Calculate the estimated GC duration.
3058      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
3059      // Estimate how many remaining bytes we will have when we need to start the next GC.
3060      size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
3061      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3062      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3063      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
3064        // A never going to happen situation that from the estimated allocation rate we will exceed
3065        // the applications entire footprint with the given estimated allocation rate. Schedule
3066        // another GC nearly straight away.
3067        remaining_bytes = kMinConcurrentRemainingBytes;
3068      }
3069      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
3070      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
3071      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3072      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3073      // right away.
3074      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
3075                                         static_cast<size_t>(bytes_allocated));
3076    }
3077  }
3078}
3079
3080void Heap::ClampGrowthLimit() {
3081  capacity_ = growth_limit_;
3082  for (const auto& space : continuous_spaces_) {
3083    if (space->IsMallocSpace()) {
3084      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3085      malloc_space->ClampGrowthLimit();
3086    }
3087  }
3088  // This space isn't added for performance reasons.
3089  if (main_space_backup_.get() != nullptr) {
3090    main_space_backup_->ClampGrowthLimit();
3091  }
3092}
3093
3094void Heap::ClearGrowthLimit() {
3095  growth_limit_ = capacity_;
3096  for (const auto& space : continuous_spaces_) {
3097    if (space->IsMallocSpace()) {
3098      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3099      malloc_space->ClearGrowthLimit();
3100      malloc_space->SetFootprintLimit(malloc_space->Capacity());
3101    }
3102  }
3103  // This space isn't added for performance reasons.
3104  if (main_space_backup_.get() != nullptr) {
3105    main_space_backup_->ClearGrowthLimit();
3106    main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3107  }
3108}
3109
3110void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
3111  ScopedObjectAccess soa(self);
3112  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3113  jvalue args[1];
3114  args[0].l = arg.get();
3115  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3116  // Restore object in case it gets moved.
3117  *object = soa.Decode<mirror::Object*>(arg.get());
3118}
3119
3120void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
3121  StackHandleScope<1> hs(self);
3122  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3123  RequestConcurrentGC(self);
3124}
3125
3126class Heap::ConcurrentGCTask : public HeapTask {
3127 public:
3128  explicit ConcurrentGCTask(uint64_t target_time) : HeapTask(target_time) { }
3129  virtual void Run(Thread* self) OVERRIDE {
3130    gc::Heap* heap = Runtime::Current()->GetHeap();
3131    heap->ConcurrentGC(self);
3132    heap->ClearConcurrentGCRequest();
3133  }
3134};
3135
3136static bool CanAddHeapTask(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_) {
3137  Runtime* runtime = Runtime::Current();
3138  return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3139      !self->IsHandlingStackOverflow();
3140}
3141
3142void Heap::ClearConcurrentGCRequest() {
3143  concurrent_gc_pending_.StoreRelaxed(false);
3144}
3145
3146void Heap::RequestConcurrentGC(Thread* self) {
3147  if (CanAddHeapTask(self) &&
3148      concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
3149    task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime()));  // Start straight away.
3150  }
3151}
3152
3153void Heap::ConcurrentGC(Thread* self) {
3154  if (!Runtime::Current()->IsShuttingDown(self)) {
3155    // Wait for any GCs currently running to finish.
3156    if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
3157      // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
3158      // instead. E.g. can't do partial, so do full instead.
3159      if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
3160          collector::kGcTypeNone) {
3161        for (collector::GcType gc_type : gc_plan_) {
3162          // Attempt to run the collector, if we succeed, we are done.
3163          if (gc_type > next_gc_type_ &&
3164              CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
3165                  collector::kGcTypeNone) {
3166            break;
3167          }
3168        }
3169      }
3170    }
3171  }
3172}
3173
3174class Heap::CollectorTransitionTask : public HeapTask {
3175 public:
3176  explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) { }
3177  virtual void Run(Thread* self) OVERRIDE {
3178    gc::Heap* heap = Runtime::Current()->GetHeap();
3179    heap->DoPendingCollectorTransition();
3180    heap->ClearPendingCollectorTransition(self);
3181  }
3182};
3183
3184void Heap::ClearPendingCollectorTransition(Thread* self) {
3185  MutexLock mu(self, *pending_task_lock_);
3186  pending_collector_transition_ = nullptr;
3187}
3188
3189void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3190  Thread* self = Thread::Current();
3191  desired_collector_type_ = desired_collector_type;
3192  if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3193    return;
3194  }
3195  CollectorTransitionTask* added_task = nullptr;
3196  const uint64_t target_time = NanoTime() + delta_time;
3197  {
3198    MutexLock mu(self, *pending_task_lock_);
3199    // If we have an existing collector transition, update the targe time to be the new target.
3200    if (pending_collector_transition_ != nullptr) {
3201      task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3202      return;
3203    }
3204    added_task = new CollectorTransitionTask(target_time);
3205    pending_collector_transition_ = added_task;
3206  }
3207  task_processor_->AddTask(self, added_task);
3208}
3209
3210class Heap::HeapTrimTask : public HeapTask {
3211 public:
3212  explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
3213  virtual void Run(Thread* self) OVERRIDE {
3214    gc::Heap* heap = Runtime::Current()->GetHeap();
3215    heap->Trim(self);
3216    heap->ClearPendingTrim(self);
3217  }
3218};
3219
3220void Heap::ClearPendingTrim(Thread* self) {
3221  MutexLock mu(self, *pending_task_lock_);
3222  pending_heap_trim_ = nullptr;
3223}
3224
3225void Heap::RequestTrim(Thread* self) {
3226  if (!CanAddHeapTask(self)) {
3227    return;
3228  }
3229  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3230  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3231  // a space it will hold its lock and can become a cause of jank.
3232  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3233  // forking.
3234
3235  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3236  // because that only marks object heads, so a large array looks like lots of empty space. We
3237  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3238  // to utilization (which is probably inversely proportional to how much benefit we can expect).
3239  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3240  // not how much use we're making of those pages.
3241  HeapTrimTask* added_task = nullptr;
3242  {
3243    MutexLock mu(self, *pending_task_lock_);
3244    if (pending_heap_trim_ != nullptr) {
3245      // Already have a heap trim request in task processor, ignore this request.
3246      return;
3247    }
3248    added_task = new HeapTrimTask(kHeapTrimWait);
3249    pending_heap_trim_ = added_task;
3250  }
3251  task_processor_->AddTask(self, added_task);
3252}
3253
3254void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3255  if (rosalloc_space_ != nullptr) {
3256    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3257  }
3258  if (bump_pointer_space_ != nullptr) {
3259    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
3260  }
3261  if (region_space_ != nullptr) {
3262    region_space_->RevokeThreadLocalBuffers(thread);
3263  }
3264}
3265
3266void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3267  if (rosalloc_space_ != nullptr) {
3268    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3269  }
3270}
3271
3272void Heap::RevokeAllThreadLocalBuffers() {
3273  if (rosalloc_space_ != nullptr) {
3274    rosalloc_space_->RevokeAllThreadLocalBuffers();
3275  }
3276  if (bump_pointer_space_ != nullptr) {
3277    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3278  }
3279  if (region_space_ != nullptr) {
3280    region_space_->RevokeAllThreadLocalBuffers();
3281  }
3282}
3283
3284bool Heap::IsGCRequestPending() const {
3285  return concurrent_gc_pending_.LoadRelaxed();
3286}
3287
3288void Heap::RunFinalization(JNIEnv* env) {
3289  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3290  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3291    CHECK(WellKnownClasses::java_lang_System != nullptr);
3292    WellKnownClasses::java_lang_System_runFinalization =
3293        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3294    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3295  }
3296  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3297                            WellKnownClasses::java_lang_System_runFinalization);
3298}
3299
3300void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3301  Thread* self = ThreadForEnv(env);
3302  if (native_need_to_run_finalization_) {
3303    RunFinalization(env);
3304    UpdateMaxNativeFootprint();
3305    native_need_to_run_finalization_ = false;
3306  }
3307  // Total number of native bytes allocated.
3308  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3309  new_native_bytes_allocated += bytes;
3310  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3311    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3312        collector::kGcTypeFull;
3313
3314    // The second watermark is higher than the gc watermark. If you hit this it means you are
3315    // allocating native objects faster than the GC can keep up with.
3316    if (new_native_bytes_allocated > growth_limit_) {
3317      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3318        // Just finished a GC, attempt to run finalizers.
3319        RunFinalization(env);
3320        CHECK(!env->ExceptionCheck());
3321      }
3322      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3323      if (new_native_bytes_allocated > growth_limit_) {
3324        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3325        RunFinalization(env);
3326        native_need_to_run_finalization_ = false;
3327        CHECK(!env->ExceptionCheck());
3328      }
3329      // We have just run finalizers, update the native watermark since it is very likely that
3330      // finalizers released native managed allocations.
3331      UpdateMaxNativeFootprint();
3332    } else if (!IsGCRequestPending()) {
3333      if (IsGcConcurrent()) {
3334        RequestConcurrentGC(self);
3335      } else {
3336        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3337      }
3338    }
3339  }
3340}
3341
3342void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3343  size_t expected_size;
3344  do {
3345    expected_size = native_bytes_allocated_.LoadRelaxed();
3346    if (UNLIKELY(bytes > expected_size)) {
3347      ScopedObjectAccess soa(env);
3348      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3349                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3350                                 "registered as allocated", bytes, expected_size).c_str());
3351      break;
3352    }
3353  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3354                                                               expected_size - bytes));
3355}
3356
3357size_t Heap::GetTotalMemory() const {
3358  return std::max(max_allowed_footprint_, GetBytesAllocated());
3359}
3360
3361void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3362  DCHECK(mod_union_table != nullptr);
3363  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3364}
3365
3366void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3367  CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3368        (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3369  CHECK_GE(byte_count, sizeof(mirror::Object));
3370}
3371
3372void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3373  CHECK(remembered_set != nullptr);
3374  space::Space* space = remembered_set->GetSpace();
3375  CHECK(space != nullptr);
3376  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3377  remembered_sets_.Put(space, remembered_set);
3378  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3379}
3380
3381void Heap::RemoveRememberedSet(space::Space* space) {
3382  CHECK(space != nullptr);
3383  auto it = remembered_sets_.find(space);
3384  CHECK(it != remembered_sets_.end());
3385  delete it->second;
3386  remembered_sets_.erase(it);
3387  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3388}
3389
3390void Heap::ClearMarkedObjects() {
3391  // Clear all of the spaces' mark bitmaps.
3392  for (const auto& space : GetContinuousSpaces()) {
3393    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3394    if (space->GetLiveBitmap() != mark_bitmap) {
3395      mark_bitmap->Clear();
3396    }
3397  }
3398  // Clear the marked objects in the discontinous space object sets.
3399  for (const auto& space : GetDiscontinuousSpaces()) {
3400    space->GetMarkBitmap()->Clear();
3401  }
3402}
3403
3404}  // namespace gc
3405}  // namespace art
3406