heap.cc revision 407f702da4f867c074fc3c8c688b8f8c32279eff
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/mark_sweep-inl.h"
39#include "gc/collector/partial_mark_sweep.h"
40#include "gc/collector/semi_space.h"
41#include "gc/collector/sticky_mark_sweep.h"
42#include "gc/space/bump_pointer_space.h"
43#include "gc/space/dlmalloc_space-inl.h"
44#include "gc/space/image_space.h"
45#include "gc/space/large_object_space.h"
46#include "gc/space/rosalloc_space-inl.h"
47#include "gc/space/space-inl.h"
48#include "gc/space/zygote_space.h"
49#include "entrypoints/quick/quick_alloc_entrypoints.h"
50#include "heap-inl.h"
51#include "image.h"
52#include "mirror/art_field-inl.h"
53#include "mirror/class-inl.h"
54#include "mirror/object.h"
55#include "mirror/object-inl.h"
56#include "mirror/object_array-inl.h"
57#include "mirror/reference-inl.h"
58#include "object_utils.h"
59#include "os.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "ScopedLocalRef.h"
63#include "scoped_thread_state_change.h"
64#include "sirt_ref.h"
65#include "thread_list.h"
66#include "UniquePtr.h"
67#include "well_known_classes.h"
68
69namespace art {
70
71namespace gc {
72
73static constexpr bool kGCALotMode = false;
74static constexpr size_t kGcAlotInterval = KB;
75// Minimum amount of remaining bytes before a concurrent GC is triggered.
76static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
77static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
78
79Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
80           double target_utilization, size_t capacity, const std::string& image_file_name,
81           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
82           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
83           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
84           bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap,
85           bool verify_post_gc_heap, bool verify_pre_gc_rosalloc,
86           bool verify_post_gc_rosalloc)
87    : non_moving_space_(nullptr),
88      rosalloc_space_(nullptr),
89      dlmalloc_space_(nullptr),
90      main_space_(nullptr),
91      collector_type_(kCollectorTypeNone),
92      post_zygote_collector_type_(post_zygote_collector_type),
93      background_collector_type_(background_collector_type),
94      desired_collector_type_(collector_type_),
95      heap_trim_request_lock_(nullptr),
96      last_trim_time_(0),
97      heap_transition_target_time_(0),
98      heap_trim_request_pending_(false),
99      parallel_gc_threads_(parallel_gc_threads),
100      conc_gc_threads_(conc_gc_threads),
101      low_memory_mode_(low_memory_mode),
102      long_pause_log_threshold_(long_pause_log_threshold),
103      long_gc_log_threshold_(long_gc_log_threshold),
104      ignore_max_footprint_(ignore_max_footprint),
105      have_zygote_space_(false),
106      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
107      collector_type_running_(kCollectorTypeNone),
108      last_gc_type_(collector::kGcTypeNone),
109      next_gc_type_(collector::kGcTypePartial),
110      capacity_(capacity),
111      growth_limit_(growth_limit),
112      max_allowed_footprint_(initial_size),
113      native_footprint_gc_watermark_(initial_size),
114      native_footprint_limit_(2 * initial_size),
115      native_need_to_run_finalization_(false),
116      // Initially assume we perceive jank in case the process state is never updated.
117      process_state_(kProcessStateJankPerceptible),
118      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
119      total_bytes_freed_ever_(0),
120      total_objects_freed_ever_(0),
121      num_bytes_allocated_(0),
122      native_bytes_allocated_(0),
123      gc_memory_overhead_(0),
124      verify_missing_card_marks_(false),
125      verify_system_weaks_(false),
126      verify_pre_gc_heap_(verify_pre_gc_heap),
127      verify_post_gc_heap_(verify_post_gc_heap),
128      verify_mod_union_table_(false),
129      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
130      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
131      allocation_rate_(0),
132      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
133       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
134       * verification is enabled, we limit the size of allocation stacks to speed up their
135       * searching.
136       */
137      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
138          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
139      current_allocator_(kAllocatorTypeDlMalloc),
140      current_non_moving_allocator_(kAllocatorTypeNonMoving),
141      bump_pointer_space_(nullptr),
142      temp_space_(nullptr),
143      min_free_(min_free),
144      max_free_(max_free),
145      target_utilization_(target_utilization),
146      total_wait_time_(0),
147      total_allocation_time_(0),
148      verify_object_mode_(kVerifyObjectModeDisabled),
149      disable_moving_gc_count_(0),
150      running_on_valgrind_(RUNNING_ON_VALGRIND > 0),
151      use_tlab_(use_tlab) {
152  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
153    LOG(INFO) << "Heap() entering";
154  }
155  const bool is_zygote = Runtime::Current()->IsZygote();
156  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
157  // entrypoints.
158  if (!is_zygote) {
159    desired_collector_type_ = post_zygote_collector_type_;
160    large_object_threshold_ = kDefaultLargeObjectThreshold;
161  } else {
162    if (kMovingCollector) {
163      // We are the zygote, use bump pointer allocation + semi space collector.
164      bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
165      desired_collector_type_ = generational ? kCollectorTypeGSS : kCollectorTypeSS;
166    } else {
167      desired_collector_type_ = post_zygote_collector_type_;
168    }
169  }
170  ChangeCollector(desired_collector_type_);
171
172  live_bitmap_.reset(new accounting::HeapBitmap(this));
173  mark_bitmap_.reset(new accounting::HeapBitmap(this));
174  // Requested begin for the alloc space, to follow the mapped image and oat files
175  byte* requested_alloc_space_begin = nullptr;
176  if (!image_file_name.empty()) {
177    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
178    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
179    AddSpace(image_space);
180    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
181    // isn't going to get in the middle
182    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
183    CHECK_GT(oat_file_end_addr, image_space->End());
184    if (oat_file_end_addr > requested_alloc_space_begin) {
185      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
186    }
187  }
188  MemMap* malloc_space_mem_map = nullptr;
189  const char* malloc_space_name = is_zygote ? "zygote space" : "alloc space";
190  if (is_zygote) {
191    // Allocate a single mem map that is split into the malloc space
192    // and the post zygote non-moving space to put them adjacent.
193    size_t post_zygote_non_moving_space_size = 64 * MB;
194    size_t non_moving_spaces_size = capacity + post_zygote_non_moving_space_size;
195    std::string error_str;
196    malloc_space_mem_map = MemMap::MapAnonymous(malloc_space_name, requested_alloc_space_begin,
197                                                non_moving_spaces_size, PROT_READ | PROT_WRITE,
198                                                true, &error_str);
199    CHECK(malloc_space_mem_map != nullptr) << error_str;
200    post_zygote_non_moving_space_mem_map_.reset(malloc_space_mem_map->RemapAtEnd(
201        malloc_space_mem_map->Begin() + capacity, "post zygote non-moving space",
202        PROT_READ | PROT_WRITE, &error_str));
203    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr) << error_str;
204    VLOG(heap) << "malloc space mem map : " << malloc_space_mem_map;
205    VLOG(heap) << "post zygote non-moving space mem map : "
206               << post_zygote_non_moving_space_mem_map_.get();
207  } else {
208    // Allocate a mem map for the malloc space.
209    std::string error_str;
210    malloc_space_mem_map = MemMap::MapAnonymous(malloc_space_name, requested_alloc_space_begin,
211                                                capacity, PROT_READ | PROT_WRITE, true, &error_str);
212    CHECK(malloc_space_mem_map != nullptr) << error_str;
213    VLOG(heap) << "malloc space mem map : " << malloc_space_mem_map;
214  }
215  CHECK(malloc_space_mem_map != nullptr);
216  space::MallocSpace* malloc_space;
217  if (kUseRosAlloc) {
218    malloc_space = space::RosAllocSpace::CreateFromMemMap(malloc_space_mem_map, malloc_space_name,
219                                                          kDefaultStartingSize, initial_size,
220                                                          growth_limit, capacity, low_memory_mode_);
221    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
222  } else {
223    malloc_space = space::DlMallocSpace::CreateFromMemMap(malloc_space_mem_map, malloc_space_name,
224                                                          kDefaultStartingSize, initial_size,
225                                                          growth_limit, capacity);
226    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
227  }
228  VLOG(heap) << "malloc_space : " << malloc_space;
229  if (kMovingCollector) {
230    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
231    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
232    // issues.
233    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
234    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
235                                                          bump_pointer_space_size, nullptr);
236    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
237    AddSpace(bump_pointer_space_);
238    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
239                                                  nullptr);
240    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
241    AddSpace(temp_space_);
242    VLOG(heap) << "bump_pointer_space : " << bump_pointer_space_;
243    VLOG(heap) << "temp_space : " << temp_space_;
244  }
245  non_moving_space_ = malloc_space;
246  malloc_space->SetFootprintLimit(malloc_space->Capacity());
247  AddSpace(malloc_space);
248
249  // Allocate the large object space.
250  constexpr bool kUseFreeListSpaceForLOS = false;
251  if (kUseFreeListSpaceForLOS) {
252    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
253  } else {
254    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
255  }
256  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
257  AddSpace(large_object_space_);
258
259  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
260  CHECK(!continuous_spaces_.empty());
261
262  // Relies on the spaces being sorted.
263  byte* heap_begin = continuous_spaces_.front()->Begin();
264  byte* heap_end = continuous_spaces_.back()->Limit();
265  if (is_zygote) {
266    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr);
267    heap_begin = std::min(post_zygote_non_moving_space_mem_map_->Begin(), heap_begin);
268    heap_end = std::max(post_zygote_non_moving_space_mem_map_->End(), heap_end);
269  }
270  size_t heap_capacity = heap_end - heap_begin;
271
272  // Allocate the card table.
273  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
274  CHECK(card_table_.get() != NULL) << "Failed to create card table";
275
276  // Card cache for now since it makes it easier for us to update the references to the copying
277  // spaces.
278  accounting::ModUnionTable* mod_union_table =
279      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
280                                                      GetImageSpace());
281  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
282  AddModUnionTable(mod_union_table);
283
284  if (collector::SemiSpace::kUseRememberedSet) {
285    accounting::RememberedSet* non_moving_space_rem_set =
286        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
287    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
288    AddRememberedSet(non_moving_space_rem_set);
289  }
290
291  // TODO: Count objects in the image space here.
292  num_bytes_allocated_ = 0;
293
294  // Default mark stack size in bytes.
295  static const size_t default_mark_stack_size = 64 * KB;
296  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
297  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
298                                                          max_allocation_stack_size_));
299  live_stack_.reset(accounting::ObjectStack::Create("live stack",
300                                                    max_allocation_stack_size_));
301
302  // It's still too early to take a lock because there are no threads yet, but we can create locks
303  // now. We don't create it earlier to make it clear that you can't use locks during heap
304  // initialization.
305  gc_complete_lock_ = new Mutex("GC complete lock");
306  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
307                                                *gc_complete_lock_));
308  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
309  last_gc_size_ = GetBytesAllocated();
310
311  if (ignore_max_footprint_) {
312    SetIdealFootprint(std::numeric_limits<size_t>::max());
313    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
314  }
315  CHECK_NE(max_allowed_footprint_, 0U);
316
317  // Create our garbage collectors.
318  for (size_t i = 0; i < 2; ++i) {
319    const bool concurrent = i != 0;
320    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
321    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
322    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
323  }
324  if (kMovingCollector) {
325    // TODO: Clean this up.
326    bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
327    semi_space_collector_ = new collector::SemiSpace(this, generational);
328    garbage_collectors_.push_back(semi_space_collector_);
329  }
330
331  if (running_on_valgrind_) {
332    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
333  }
334
335  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
336    LOG(INFO) << "Heap() exiting";
337  }
338}
339
340void Heap::ChangeAllocator(AllocatorType allocator) {
341  if (current_allocator_ != allocator) {
342    // These two allocators are only used internally and don't have any entrypoints.
343    CHECK_NE(allocator, kAllocatorTypeLOS);
344    CHECK_NE(allocator, kAllocatorTypeNonMoving);
345    current_allocator_ = allocator;
346    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
347    SetQuickAllocEntryPointsAllocator(current_allocator_);
348    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
349  }
350}
351
352void Heap::DisableCompaction() {
353  if (IsCompactingGC(post_zygote_collector_type_)) {
354    post_zygote_collector_type_ = kCollectorTypeCMS;
355  }
356  if (IsCompactingGC(background_collector_type_)) {
357    background_collector_type_ = post_zygote_collector_type_;
358  }
359  TransitionCollector(post_zygote_collector_type_);
360}
361
362std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
363  if (!IsValidContinuousSpaceObjectAddress(klass)) {
364    return StringPrintf("<non heap address klass %p>", klass);
365  }
366  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
367  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
368    std::string result("[");
369    result += SafeGetClassDescriptor(component_type);
370    return result;
371  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
372    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
373  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
374    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
375  } else {
376    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
377    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
378      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
379    }
380    const DexFile* dex_file = dex_cache->GetDexFile();
381    uint16_t class_def_idx = klass->GetDexClassDefIndex();
382    if (class_def_idx == DexFile::kDexNoIndex16) {
383      return "<class def not found>";
384    }
385    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
386    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
387    return dex_file->GetTypeDescriptor(type_id);
388  }
389}
390
391std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
392  if (obj == nullptr) {
393    return "null";
394  }
395  mirror::Class* klass = obj->GetClass<kVerifyNone>();
396  if (klass == nullptr) {
397    return "(class=null)";
398  }
399  std::string result(SafeGetClassDescriptor(klass));
400  if (obj->IsClass()) {
401    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
402  }
403  return result;
404}
405
406void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
407  if (obj == nullptr) {
408    stream << "(obj=null)";
409    return;
410  }
411  if (IsAligned<kObjectAlignment>(obj)) {
412    space::Space* space = nullptr;
413    // Don't use find space since it only finds spaces which actually contain objects instead of
414    // spaces which may contain objects (e.g. cleared bump pointer spaces).
415    for (const auto& cur_space : continuous_spaces_) {
416      if (cur_space->HasAddress(obj)) {
417        space = cur_space;
418        break;
419      }
420    }
421    if (space == nullptr) {
422      if (allocator_mem_map_.get() == nullptr || !allocator_mem_map_->HasAddress(obj)) {
423        stream << "obj " << obj << " not a valid heap address";
424        return;
425      } else if (allocator_mem_map_.get() != nullptr) {
426        allocator_mem_map_->Protect(PROT_READ | PROT_WRITE);
427      }
428    }
429    // Unprotect all the spaces.
430    for (const auto& space : continuous_spaces_) {
431      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
432    }
433    stream << "Object " << obj;
434    if (space != nullptr) {
435      stream << " in space " << *space;
436    }
437    mirror::Class* klass = obj->GetClass<kVerifyNone>();
438    stream << "\nclass=" << klass;
439    if (klass != nullptr) {
440      stream << " type= " << SafePrettyTypeOf(obj);
441    }
442    // Re-protect the address we faulted on.
443    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
444  }
445}
446
447bool Heap::IsCompilingBoot() const {
448  for (const auto& space : continuous_spaces_) {
449    if (space->IsImageSpace() || space->IsZygoteSpace()) {
450      return false;
451    }
452  }
453  return true;
454}
455
456bool Heap::HasImageSpace() const {
457  for (const auto& space : continuous_spaces_) {
458    if (space->IsImageSpace()) {
459      return true;
460    }
461  }
462  return false;
463}
464
465void Heap::IncrementDisableMovingGC(Thread* self) {
466  // Need to do this holding the lock to prevent races where the GC is about to run / running when
467  // we attempt to disable it.
468  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
469  MutexLock mu(self, *gc_complete_lock_);
470  ++disable_moving_gc_count_;
471  if (IsCompactingGC(collector_type_running_)) {
472    WaitForGcToCompleteLocked(self);
473  }
474}
475
476void Heap::DecrementDisableMovingGC(Thread* self) {
477  MutexLock mu(self, *gc_complete_lock_);
478  CHECK_GE(disable_moving_gc_count_, 0U);
479  --disable_moving_gc_count_;
480}
481
482void Heap::UpdateProcessState(ProcessState process_state) {
483  if (process_state_ != process_state) {
484    process_state_ = process_state;
485    if (process_state_ == kProcessStateJankPerceptible) {
486      // Transition back to foreground right away to prevent jank.
487      RequestCollectorTransition(post_zygote_collector_type_, 0);
488    } else {
489      // Don't delay for debug builds since we may want to stress test the GC.
490      RequestCollectorTransition(background_collector_type_, kIsDebugBuild ? 0 :
491          kCollectorTransitionWait);
492    }
493  }
494}
495
496void Heap::CreateThreadPool() {
497  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
498  if (num_threads != 0) {
499    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
500  }
501}
502
503void Heap::VisitObjects(ObjectCallback callback, void* arg) {
504  Thread* self = Thread::Current();
505  // GCs can move objects, so don't allow this.
506  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
507  if (bump_pointer_space_ != nullptr) {
508    // Visit objects in bump pointer space.
509    bump_pointer_space_->Walk(callback, arg);
510  }
511  // TODO: Switch to standard begin and end to use ranged a based loop.
512  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
513      it < end; ++it) {
514    mirror::Object* obj = *it;
515    if (obj != nullptr && obj->GetClass() != nullptr) {
516      // Avoid the race condition caused by the object not yet being written into the allocation
517      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
518      // there can be nulls on the allocation stack.
519      callback(obj, arg);
520    }
521  }
522  GetLiveBitmap()->Walk(callback, arg);
523  self->EndAssertNoThreadSuspension(old_cause);
524}
525
526void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
527  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
528  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
529  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
530  // TODO: Generalize this to n bitmaps?
531  if (space1 == nullptr) {
532    DCHECK(space2 != nullptr);
533    space1 = space2;
534  }
535  if (space2 == nullptr) {
536    DCHECK(space1 != nullptr);
537    space2 = space1;
538  }
539  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
540                 large_object_space_->GetLiveObjects(), stack);
541}
542
543void Heap::DeleteThreadPool() {
544  thread_pool_.reset(nullptr);
545}
546
547void Heap::AddSpace(space::Space* space, bool set_as_default) {
548  DCHECK(space != nullptr);
549  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
550  if (space->IsContinuousSpace()) {
551    DCHECK(!space->IsDiscontinuousSpace());
552    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
553    // Continuous spaces don't necessarily have bitmaps.
554    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
555    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
556    if (live_bitmap != nullptr) {
557      DCHECK(mark_bitmap != nullptr);
558      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
559      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
560    }
561    continuous_spaces_.push_back(continuous_space);
562    if (set_as_default) {
563      if (continuous_space->IsDlMallocSpace()) {
564        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
565      } else if (continuous_space->IsRosAllocSpace()) {
566        rosalloc_space_ = continuous_space->AsRosAllocSpace();
567      }
568    }
569    // Ensure that spaces remain sorted in increasing order of start address.
570    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
571              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
572      return a->Begin() < b->Begin();
573    });
574  } else {
575    DCHECK(space->IsDiscontinuousSpace());
576    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
577    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
578    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
579    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
580    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
581    discontinuous_spaces_.push_back(discontinuous_space);
582  }
583  if (space->IsAllocSpace()) {
584    alloc_spaces_.push_back(space->AsAllocSpace());
585  }
586}
587
588void Heap::RemoveSpace(space::Space* space) {
589  DCHECK(space != nullptr);
590  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
591  if (space->IsContinuousSpace()) {
592    DCHECK(!space->IsDiscontinuousSpace());
593    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
594    // Continuous spaces don't necessarily have bitmaps.
595    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
596    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
597    if (live_bitmap != nullptr) {
598      DCHECK(mark_bitmap != nullptr);
599      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
600      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
601    }
602    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
603    DCHECK(it != continuous_spaces_.end());
604    continuous_spaces_.erase(it);
605    if (continuous_space == dlmalloc_space_) {
606      dlmalloc_space_ = nullptr;
607    } else if (continuous_space == rosalloc_space_) {
608      rosalloc_space_ = nullptr;
609    }
610    if (continuous_space == main_space_) {
611      main_space_ = nullptr;
612    }
613  } else {
614    DCHECK(space->IsDiscontinuousSpace());
615    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
616    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
617    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
618    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
619    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
620    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
621                        discontinuous_space);
622    DCHECK(it != discontinuous_spaces_.end());
623    discontinuous_spaces_.erase(it);
624  }
625  if (space->IsAllocSpace()) {
626    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
627    DCHECK(it != alloc_spaces_.end());
628    alloc_spaces_.erase(it);
629  }
630}
631
632void Heap::RegisterGCAllocation(size_t bytes) {
633  if (this != nullptr) {
634    gc_memory_overhead_.FetchAndAdd(bytes);
635  }
636}
637
638void Heap::RegisterGCDeAllocation(size_t bytes) {
639  if (this != nullptr) {
640    gc_memory_overhead_.FetchAndSub(bytes);
641  }
642}
643
644void Heap::DumpGcPerformanceInfo(std::ostream& os) {
645  // Dump cumulative timings.
646  os << "Dumping cumulative Gc timings\n";
647  uint64_t total_duration = 0;
648
649  // Dump cumulative loggers for each GC type.
650  uint64_t total_paused_time = 0;
651  for (const auto& collector : garbage_collectors_) {
652    CumulativeLogger& logger = collector->GetCumulativeTimings();
653    if (logger.GetTotalNs() != 0) {
654      os << Dumpable<CumulativeLogger>(logger);
655      const uint64_t total_ns = logger.GetTotalNs();
656      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
657      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
658      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
659      const uint64_t freed_objects = collector->GetTotalFreedObjects();
660      Histogram<uint64_t>::CumulativeData cumulative_data;
661      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
662      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
663      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
664         << collector->GetName() << " freed: " << freed_objects
665         << " objects with total size " << PrettySize(freed_bytes) << "\n"
666         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
667         << PrettySize(freed_bytes / seconds) << "/s\n";
668      total_duration += total_ns;
669      total_paused_time += total_pause_ns;
670    }
671  }
672  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
673  if (total_duration != 0) {
674    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
675    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
676    os << "Mean GC size throughput: "
677       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
678    os << "Mean GC object throughput: "
679       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
680  }
681  size_t total_objects_allocated = GetObjectsAllocatedEver();
682  os << "Total number of allocations: " << total_objects_allocated << "\n";
683  size_t total_bytes_allocated = GetBytesAllocatedEver();
684  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
685  if (kMeasureAllocationTime) {
686    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
687    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
688       << "\n";
689  }
690  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
691  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
692  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
693}
694
695Heap::~Heap() {
696  VLOG(heap) << "Starting ~Heap()";
697  STLDeleteElements(&garbage_collectors_);
698  // If we don't reset then the mark stack complains in its destructor.
699  allocation_stack_->Reset();
700  live_stack_->Reset();
701  STLDeleteValues(&mod_union_tables_);
702  STLDeleteElements(&continuous_spaces_);
703  STLDeleteElements(&discontinuous_spaces_);
704  delete gc_complete_lock_;
705  VLOG(heap) << "Finished ~Heap()";
706}
707
708space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
709                                                            bool fail_ok) const {
710  for (const auto& space : continuous_spaces_) {
711    if (space->Contains(obj)) {
712      return space;
713    }
714  }
715  if (!fail_ok) {
716    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
717  }
718  return NULL;
719}
720
721space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
722                                                                  bool fail_ok) const {
723  for (const auto& space : discontinuous_spaces_) {
724    if (space->Contains(obj)) {
725      return space;
726    }
727  }
728  if (!fail_ok) {
729    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
730  }
731  return NULL;
732}
733
734space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
735  space::Space* result = FindContinuousSpaceFromObject(obj, true);
736  if (result != NULL) {
737    return result;
738  }
739  return FindDiscontinuousSpaceFromObject(obj, true);
740}
741
742struct SoftReferenceArgs {
743  IsMarkedCallback* is_marked_callback_;
744  MarkObjectCallback* mark_callback_;
745  void* arg_;
746};
747
748mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
749  SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg);
750  // TODO: Not preserve all soft references.
751  return args->mark_callback_(obj, args->arg_);
752}
753
754void Heap::ProcessSoftReferences(TimingLogger& timings, bool clear_soft,
755                                 IsMarkedCallback* is_marked_callback,
756                                 MarkObjectCallback* mark_object_callback,
757                                 ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
758  // Unless required to clear soft references with white references, preserve some white referents.
759  if (!clear_soft) {
760    // Don't clear for sticky GC.
761    SoftReferenceArgs soft_reference_args;
762    soft_reference_args.is_marked_callback_ = is_marked_callback;
763    soft_reference_args.mark_callback_ = mark_object_callback;
764    soft_reference_args.arg_ = arg;
765    // References with a marked referent are removed from the list.
766    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
767                                                     &soft_reference_args);
768    process_mark_stack_callback(arg);
769  }
770}
771
772// Process reference class instances and schedule finalizations.
773void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
774                             IsMarkedCallback* is_marked_callback,
775                             MarkObjectCallback* mark_object_callback,
776                             ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
777  timings.StartSplit("(Paused)ProcessReferences");
778  ProcessSoftReferences(timings, clear_soft, is_marked_callback, mark_object_callback,
779                        process_mark_stack_callback, arg);
780  // Clear all remaining soft and weak references with white referents.
781  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
782  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
783  timings.EndSplit();
784  // Preserve all white objects with finalize methods and schedule them for finalization.
785  timings.StartSplit("(Paused)EnqueueFinalizerReferences");
786  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
787                                                        mark_object_callback, arg);
788  process_mark_stack_callback(arg);
789  timings.EndSplit();
790  timings.StartSplit("(Paused)ProcessReferences");
791  // Clear all f-reachable soft and weak references with white referents.
792  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
793  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
794  // Clear all phantom references with white referents.
795  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
796  // At this point all reference queues other than the cleared references should be empty.
797  DCHECK(soft_reference_queue_.IsEmpty());
798  DCHECK(weak_reference_queue_.IsEmpty());
799  DCHECK(finalizer_reference_queue_.IsEmpty());
800  DCHECK(phantom_reference_queue_.IsEmpty());
801  timings.EndSplit();
802}
803
804// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
805// marked, put it on the appropriate list in the heap for later processing.
806void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
807                                  IsMarkedCallback is_marked_callback, void* arg) {
808  DCHECK_EQ(klass, ref->GetClass());
809  mirror::Object* referent = ref->GetReferent();
810  if (referent != nullptr) {
811    mirror::Object* forward_address = is_marked_callback(referent, arg);
812    // Null means that the object is not currently marked.
813    if (forward_address == nullptr) {
814      Thread* self = Thread::Current();
815      // TODO: Remove these locks, and use atomic stacks for storing references?
816      // We need to check that the references haven't already been enqueued since we can end up
817      // scanning the same reference multiple times due to dirty cards.
818      if (klass->IsSoftReferenceClass()) {
819        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
820      } else if (klass->IsWeakReferenceClass()) {
821        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
822      } else if (klass->IsFinalizerReferenceClass()) {
823        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
824      } else if (klass->IsPhantomReferenceClass()) {
825        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
826      } else {
827        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
828                   << klass->GetAccessFlags();
829      }
830    } else if (referent != forward_address) {
831      // Referent is already marked and we need to update it.
832      ref->SetReferent<false>(forward_address);
833    }
834  }
835}
836
837space::ImageSpace* Heap::GetImageSpace() const {
838  for (const auto& space : continuous_spaces_) {
839    if (space->IsImageSpace()) {
840      return space->AsImageSpace();
841    }
842  }
843  return NULL;
844}
845
846static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
847  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
848  if (used_bytes < chunk_size) {
849    size_t chunk_free_bytes = chunk_size - used_bytes;
850    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
851    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
852  }
853}
854
855void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
856  std::ostringstream oss;
857  size_t total_bytes_free = GetFreeMemory();
858  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
859      << " free bytes";
860  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
861  if (!large_object_allocation && total_bytes_free >= byte_count) {
862    size_t max_contiguous_allocation = 0;
863    for (const auto& space : continuous_spaces_) {
864      if (space->IsMallocSpace()) {
865        // To allow the Walk/InspectAll() to exclusively-lock the mutator
866        // lock, temporarily release the shared access to the mutator
867        // lock here by transitioning to the suspended state.
868        Locks::mutator_lock_->AssertSharedHeld(self);
869        self->TransitionFromRunnableToSuspended(kSuspended);
870        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
871        self->TransitionFromSuspendedToRunnable();
872        Locks::mutator_lock_->AssertSharedHeld(self);
873      }
874    }
875    oss << "; failed due to fragmentation (largest possible contiguous allocation "
876        <<  max_contiguous_allocation << " bytes)";
877  }
878  self->ThrowOutOfMemoryError(oss.str().c_str());
879}
880
881void Heap::DoPendingTransitionOrTrim() {
882  Thread* self = Thread::Current();
883  CollectorType desired_collector_type;
884  // Wait until we reach the desired transition time.
885  while (true) {
886    uint64_t wait_time;
887    {
888      MutexLock mu(self, *heap_trim_request_lock_);
889      desired_collector_type = desired_collector_type_;
890      uint64_t current_time = NanoTime();
891      if (current_time >= heap_transition_target_time_) {
892        break;
893      }
894      wait_time = heap_transition_target_time_ - current_time;
895    }
896    ScopedThreadStateChange tsc(self, kSleeping);
897    usleep(wait_time / 1000);  // Usleep takes microseconds.
898  }
899  // Transition the collector if the desired collector type is not the same as the current
900  // collector type.
901  TransitionCollector(desired_collector_type);
902  // Do a heap trim if it is needed.
903  Trim();
904}
905
906void Heap::Trim() {
907  Thread* self = Thread::Current();
908  {
909    MutexLock mu(self, *heap_trim_request_lock_);
910    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
911      return;
912    }
913    last_trim_time_ = NanoTime();
914    heap_trim_request_pending_ = false;
915  }
916  {
917    // Need to do this before acquiring the locks since we don't want to get suspended while
918    // holding any locks.
919    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
920    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
921    // trimming.
922    MutexLock mu(self, *gc_complete_lock_);
923    // Ensure there is only one GC at a time.
924    WaitForGcToCompleteLocked(self);
925    collector_type_running_ = kCollectorTypeHeapTrim;
926  }
927  uint64_t start_ns = NanoTime();
928  // Trim the managed spaces.
929  uint64_t total_alloc_space_allocated = 0;
930  uint64_t total_alloc_space_size = 0;
931  uint64_t managed_reclaimed = 0;
932  for (const auto& space : continuous_spaces_) {
933    if (space->IsMallocSpace()) {
934      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
935      total_alloc_space_size += alloc_space->Size();
936      managed_reclaimed += alloc_space->Trim();
937    }
938  }
939  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
940      bump_pointer_space_->Size();
941  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
942      static_cast<float>(total_alloc_space_size);
943  uint64_t gc_heap_end_ns = NanoTime();
944  // We never move things in the native heap, so we can finish the GC at this point.
945  FinishGC(self, collector::kGcTypeNone);
946  // Trim the native heap.
947  dlmalloc_trim(0);
948  size_t native_reclaimed = 0;
949  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
950  uint64_t end_ns = NanoTime();
951  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
952      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
953      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
954      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
955      << "%.";
956}
957
958bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
959  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
960  // taking the lock.
961  if (obj == nullptr) {
962    return true;
963  }
964  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
965}
966
967bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
968  return FindContinuousSpaceFromObject(obj, true) != nullptr;
969}
970
971bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
972  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
973    return false;
974  }
975  for (const auto& space : continuous_spaces_) {
976    if (space->HasAddress(obj)) {
977      return true;
978    }
979  }
980  return false;
981}
982
983bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
984                              bool search_live_stack, bool sorted) {
985  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
986    return false;
987  }
988  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
989    mirror::Class* klass = obj->GetClass<kVerifyNone>();
990    if (obj == klass) {
991      // This case happens for java.lang.Class.
992      return true;
993    }
994    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
995  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
996    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
997    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
998    return temp_space_->Contains(obj);
999  }
1000  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1001  space::DiscontinuousSpace* d_space = NULL;
1002  if (c_space != nullptr) {
1003    if (c_space->GetLiveBitmap()->Test(obj)) {
1004      return true;
1005    }
1006  } else {
1007    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1008    if (d_space != nullptr) {
1009      if (d_space->GetLiveObjects()->Test(obj)) {
1010        return true;
1011      }
1012    }
1013  }
1014  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1015  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1016    if (i > 0) {
1017      NanoSleep(MsToNs(10));
1018    }
1019    if (search_allocation_stack) {
1020      if (sorted) {
1021        if (allocation_stack_->ContainsSorted(obj)) {
1022          return true;
1023        }
1024      } else if (allocation_stack_->Contains(obj)) {
1025        return true;
1026      }
1027    }
1028
1029    if (search_live_stack) {
1030      if (sorted) {
1031        if (live_stack_->ContainsSorted(obj)) {
1032          return true;
1033        }
1034      } else if (live_stack_->Contains(obj)) {
1035        return true;
1036      }
1037    }
1038  }
1039  // We need to check the bitmaps again since there is a race where we mark something as live and
1040  // then clear the stack containing it.
1041  if (c_space != nullptr) {
1042    if (c_space->GetLiveBitmap()->Test(obj)) {
1043      return true;
1044    }
1045  } else {
1046    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1047    if (d_space != nullptr && d_space->GetLiveObjects()->Test(obj)) {
1048      return true;
1049    }
1050  }
1051  return false;
1052}
1053
1054void Heap::DumpSpaces(std::ostream& stream) {
1055  for (const auto& space : continuous_spaces_) {
1056    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
1057    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1058    stream << space << " " << *space << "\n";
1059    if (live_bitmap != nullptr) {
1060      stream << live_bitmap << " " << *live_bitmap << "\n";
1061    }
1062    if (mark_bitmap != nullptr) {
1063      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1064    }
1065  }
1066  for (const auto& space : discontinuous_spaces_) {
1067    stream << space << " " << *space << "\n";
1068  }
1069}
1070
1071void Heap::VerifyObjectBody(mirror::Object* obj) {
1072  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
1073    return;
1074  }
1075  // Ignore early dawn of the universe verifications.
1076  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
1077    return;
1078  }
1079  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1080  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(
1081      mirror::Object::ClassOffset(), false);
1082  CHECK(c != nullptr) << "Null class in object " << obj;
1083  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1084  CHECK(VerifyClassClass(c));
1085
1086  if (verify_object_mode_ > kVerifyObjectModeFast) {
1087    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1088    if (!IsLiveObjectLocked(obj)) {
1089      DumpSpaces();
1090      LOG(FATAL) << "Object is dead: " << obj;
1091    }
1092  }
1093}
1094
1095void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1096  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1097}
1098
1099void Heap::VerifyHeap() {
1100  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1101  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1102}
1103
1104void Heap::RecordFree(ssize_t freed_objects, ssize_t freed_bytes) {
1105  // Use signed comparison since freed bytes can be negative when background compaction foreground
1106  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1107  // free list backed space typically increasing memory footprint due to padding and binning.
1108  DCHECK_LE(freed_bytes, static_cast<ssize_t>(num_bytes_allocated_.Load()));
1109  DCHECK_GE(freed_objects, 0);
1110  num_bytes_allocated_.FetchAndSub(freed_bytes);
1111  if (Runtime::Current()->HasStatsEnabled()) {
1112    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1113    thread_stats->freed_objects += freed_objects;
1114    thread_stats->freed_bytes += freed_bytes;
1115    // TODO: Do this concurrently.
1116    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1117    global_stats->freed_objects += freed_objects;
1118    global_stats->freed_bytes += freed_bytes;
1119  }
1120}
1121
1122mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1123                                             size_t alloc_size, size_t* bytes_allocated,
1124                                             size_t* usable_size,
1125                                             mirror::Class** klass) {
1126  mirror::Object* ptr = nullptr;
1127  bool was_default_allocator = allocator == GetCurrentAllocator();
1128  DCHECK(klass != nullptr);
1129  SirtRef<mirror::Class> sirt_klass(self, *klass);
1130  // The allocation failed. If the GC is running, block until it completes, and then retry the
1131  // allocation.
1132  collector::GcType last_gc = WaitForGcToComplete(self);
1133  if (last_gc != collector::kGcTypeNone) {
1134    // If we were the default allocator but the allocator changed while we were suspended,
1135    // abort the allocation.
1136    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1137      *klass = sirt_klass.get();
1138      return nullptr;
1139    }
1140    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1141    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1142  }
1143
1144  // Loop through our different Gc types and try to Gc until we get enough free memory.
1145  for (collector::GcType gc_type : gc_plan_) {
1146    if (ptr != nullptr) {
1147      break;
1148    }
1149    // Attempt to run the collector, if we succeed, re-try the allocation.
1150    bool gc_ran =
1151        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1152    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1153      *klass = sirt_klass.get();
1154      return nullptr;
1155    }
1156    if (gc_ran) {
1157      // Did we free sufficient memory for the allocation to succeed?
1158      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1159    }
1160  }
1161  // Allocations have failed after GCs;  this is an exceptional state.
1162  if (ptr == nullptr) {
1163    // Try harder, growing the heap if necessary.
1164    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1165  }
1166  if (ptr == nullptr) {
1167    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1168    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1169    // VM spec requires that all SoftReferences have been collected and cleared before throwing
1170    // OOME.
1171    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1172             << " allocation";
1173    // TODO: Run finalization, but this may cause more allocations to occur.
1174    // We don't need a WaitForGcToComplete here either.
1175    DCHECK(!gc_plan_.empty());
1176    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1177    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1178      *klass = sirt_klass.get();
1179      return nullptr;
1180    }
1181    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1182    if (ptr == nullptr) {
1183      ThrowOutOfMemoryError(self, alloc_size, false);
1184    }
1185  }
1186  *klass = sirt_klass.get();
1187  return ptr;
1188}
1189
1190void Heap::SetTargetHeapUtilization(float target) {
1191  DCHECK_GT(target, 0.0f);  // asserted in Java code
1192  DCHECK_LT(target, 1.0f);
1193  target_utilization_ = target;
1194}
1195
1196size_t Heap::GetObjectsAllocated() const {
1197  size_t total = 0;
1198  for (space::AllocSpace* space : alloc_spaces_) {
1199    total += space->GetObjectsAllocated();
1200  }
1201  return total;
1202}
1203
1204size_t Heap::GetObjectsAllocatedEver() const {
1205  return GetObjectsFreedEver() + GetObjectsAllocated();
1206}
1207
1208size_t Heap::GetBytesAllocatedEver() const {
1209  return GetBytesFreedEver() + GetBytesAllocated();
1210}
1211
1212class InstanceCounter {
1213 public:
1214  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1215      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1216      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1217  }
1218  static void Callback(mirror::Object* obj, void* arg)
1219      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1220    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1221    mirror::Class* instance_class = obj->GetClass();
1222    CHECK(instance_class != nullptr);
1223    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1224      if (instance_counter->use_is_assignable_from_) {
1225        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1226          ++instance_counter->counts_[i];
1227        }
1228      } else if (instance_class == instance_counter->classes_[i]) {
1229        ++instance_counter->counts_[i];
1230      }
1231    }
1232  }
1233
1234 private:
1235  const std::vector<mirror::Class*>& classes_;
1236  bool use_is_assignable_from_;
1237  uint64_t* const counts_;
1238  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1239};
1240
1241void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1242                          uint64_t* counts) {
1243  // Can't do any GC in this function since this may move classes.
1244  Thread* self = Thread::Current();
1245  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1246  InstanceCounter counter(classes, use_is_assignable_from, counts);
1247  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1248  VisitObjects(InstanceCounter::Callback, &counter);
1249  self->EndAssertNoThreadSuspension(old_cause);
1250}
1251
1252class InstanceCollector {
1253 public:
1254  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1255      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1256      : class_(c), max_count_(max_count), instances_(instances) {
1257  }
1258  static void Callback(mirror::Object* obj, void* arg)
1259      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1260    DCHECK(arg != nullptr);
1261    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1262    mirror::Class* instance_class = obj->GetClass();
1263    if (instance_class == instance_collector->class_) {
1264      if (instance_collector->max_count_ == 0 ||
1265          instance_collector->instances_.size() < instance_collector->max_count_) {
1266        instance_collector->instances_.push_back(obj);
1267      }
1268    }
1269  }
1270
1271 private:
1272  mirror::Class* class_;
1273  uint32_t max_count_;
1274  std::vector<mirror::Object*>& instances_;
1275  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1276};
1277
1278void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1279                        std::vector<mirror::Object*>& instances) {
1280  // Can't do any GC in this function since this may move classes.
1281  Thread* self = Thread::Current();
1282  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1283  InstanceCollector collector(c, max_count, instances);
1284  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1285  VisitObjects(&InstanceCollector::Callback, &collector);
1286  self->EndAssertNoThreadSuspension(old_cause);
1287}
1288
1289class ReferringObjectsFinder {
1290 public:
1291  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1292                         std::vector<mirror::Object*>& referring_objects)
1293      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1294      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1295  }
1296
1297  static void Callback(mirror::Object* obj, void* arg)
1298      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1299    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1300  }
1301
1302  // For bitmap Visit.
1303  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1304  // annotalysis on visitors.
1305  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1306    o->VisitReferences<true>(*this);
1307  }
1308
1309  // For MarkSweep::VisitObjectReferences.
1310  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1311      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1312    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
1313    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1314      referring_objects_.push_back(obj);
1315    }
1316  }
1317
1318 private:
1319  mirror::Object* object_;
1320  uint32_t max_count_;
1321  std::vector<mirror::Object*>& referring_objects_;
1322  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1323};
1324
1325void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1326                               std::vector<mirror::Object*>& referring_objects) {
1327  // Can't do any GC in this function since this may move the object o.
1328  Thread* self = Thread::Current();
1329  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1330  ReferringObjectsFinder finder(o, max_count, referring_objects);
1331  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1332  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1333  self->EndAssertNoThreadSuspension(old_cause);
1334}
1335
1336void Heap::CollectGarbage(bool clear_soft_references) {
1337  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1338  // last GC will not have necessarily been cleared.
1339  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1340}
1341
1342void Heap::TransitionCollector(CollectorType collector_type) {
1343  if (collector_type == collector_type_) {
1344    return;
1345  }
1346  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1347             << " -> " << static_cast<int>(collector_type);
1348  uint64_t start_time = NanoTime();
1349  uint32_t before_size  = GetTotalMemory();
1350  uint32_t before_allocated = num_bytes_allocated_.Load();
1351  ThreadList* tl = Runtime::Current()->GetThreadList();
1352  Thread* self = Thread::Current();
1353  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1354  Locks::mutator_lock_->AssertNotHeld(self);
1355  const bool copying_transition =
1356      IsCompactingGC(background_collector_type_) || IsCompactingGC(post_zygote_collector_type_);
1357  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1358  // compacting_gc_disable_count_, this should rarely occurs).
1359  for (;;) {
1360    {
1361      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1362      MutexLock mu(self, *gc_complete_lock_);
1363      // Ensure there is only one GC at a time.
1364      WaitForGcToCompleteLocked(self);
1365      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1366      if (!copying_transition || disable_moving_gc_count_ == 0) {
1367        // TODO: Not hard code in semi-space collector?
1368        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1369        break;
1370      }
1371    }
1372    usleep(1000);
1373  }
1374  tl->SuspendAll();
1375  PreGcRosAllocVerification(&semi_space_collector_->GetTimings());
1376  switch (collector_type) {
1377    case kCollectorTypeSS:
1378      // Fall-through.
1379    case kCollectorTypeGSS: {
1380      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1381      CHECK(main_space_ != nullptr);
1382      Compact(temp_space_, main_space_);
1383      DCHECK(allocator_mem_map_.get() == nullptr);
1384      allocator_mem_map_.reset(main_space_->ReleaseMemMap());
1385      madvise(main_space_->Begin(), main_space_->Size(), MADV_DONTNEED);
1386      // RemoveSpace does not delete the removed space.
1387      space::Space* old_space = main_space_;
1388      RemoveSpace(old_space);
1389      delete old_space;
1390      break;
1391    }
1392    case kCollectorTypeMS:
1393      // Fall through.
1394    case kCollectorTypeCMS: {
1395      if (IsCompactingGC(collector_type_)) {
1396        // TODO: Use mem-map from temp space?
1397        MemMap* mem_map = allocator_mem_map_.release();
1398        CHECK(mem_map != nullptr);
1399        size_t starting_size = kDefaultStartingSize;
1400        size_t initial_size = kDefaultInitialSize;
1401        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1402        CHECK(main_space_ == nullptr);
1403        if (kUseRosAlloc) {
1404          main_space_ =
1405              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", starting_size,
1406                                                     initial_size, mem_map->Size(),
1407                                                     mem_map->Size(), low_memory_mode_);
1408        } else {
1409          main_space_ =
1410              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", starting_size,
1411                                                     initial_size, mem_map->Size(),
1412                                                     mem_map->Size());
1413        }
1414        main_space_->SetFootprintLimit(main_space_->Capacity());
1415        AddSpace(main_space_);
1416        Compact(main_space_, bump_pointer_space_);
1417      }
1418      break;
1419    }
1420    default: {
1421      LOG(FATAL) << "Attempted to transition to invalid collector type";
1422      break;
1423    }
1424  }
1425  ChangeCollector(collector_type);
1426  PostGcRosAllocVerification(&semi_space_collector_->GetTimings());
1427  tl->ResumeAll();
1428  // Can't call into java code with all threads suspended.
1429  EnqueueClearedReferences();
1430  uint64_t duration = NanoTime() - start_time;
1431  GrowForUtilization(collector::kGcTypeFull, duration);
1432  FinishGC(self, collector::kGcTypeFull);
1433  int32_t after_size = GetTotalMemory();
1434  int32_t delta_size = before_size - after_size;
1435  int32_t after_allocated = num_bytes_allocated_.Load();
1436  int32_t delta_allocated = before_allocated - after_allocated;
1437  const std::string saved_bytes_str =
1438      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1439  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1440      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1441      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1442      << PrettySize(delta_size) << " saved";
1443}
1444
1445void Heap::ChangeCollector(CollectorType collector_type) {
1446  // TODO: Only do this with all mutators suspended to avoid races.
1447  if (collector_type != collector_type_) {
1448    collector_type_ = collector_type;
1449    gc_plan_.clear();
1450    switch (collector_type_) {
1451      case kCollectorTypeSS:  // Fall-through.
1452      case kCollectorTypeGSS: {
1453        gc_plan_.push_back(collector::kGcTypeFull);
1454        if (use_tlab_) {
1455          ChangeAllocator(kAllocatorTypeTLAB);
1456        } else {
1457          ChangeAllocator(kAllocatorTypeBumpPointer);
1458        }
1459        break;
1460      }
1461      case kCollectorTypeMS: {
1462        gc_plan_.push_back(collector::kGcTypeSticky);
1463        gc_plan_.push_back(collector::kGcTypePartial);
1464        gc_plan_.push_back(collector::kGcTypeFull);
1465        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1466        break;
1467      }
1468      case kCollectorTypeCMS: {
1469        gc_plan_.push_back(collector::kGcTypeSticky);
1470        gc_plan_.push_back(collector::kGcTypePartial);
1471        gc_plan_.push_back(collector::kGcTypeFull);
1472        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1473        break;
1474      }
1475      default: {
1476        LOG(FATAL) << "Unimplemented";
1477      }
1478    }
1479    if (IsGcConcurrent()) {
1480      concurrent_start_bytes_ =
1481          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1482    } else {
1483      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1484    }
1485  }
1486}
1487
1488// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1489class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1490 public:
1491  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1492      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1493  }
1494
1495  void BuildBins(space::ContinuousSpace* space) {
1496    bin_live_bitmap_ = space->GetLiveBitmap();
1497    bin_mark_bitmap_ = space->GetMarkBitmap();
1498    BinContext context;
1499    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1500    context.collector_ = this;
1501    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1502    // Note: This requires traversing the space in increasing order of object addresses.
1503    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1504    // Add the last bin which spans after the last object to the end of the space.
1505    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1506  }
1507
1508 private:
1509  struct BinContext {
1510    uintptr_t prev_;  // The end of the previous object.
1511    ZygoteCompactingCollector* collector_;
1512  };
1513  // Maps from bin sizes to locations.
1514  std::multimap<size_t, uintptr_t> bins_;
1515  // Live bitmap of the space which contains the bins.
1516  accounting::SpaceBitmap* bin_live_bitmap_;
1517  // Mark bitmap of the space which contains the bins.
1518  accounting::SpaceBitmap* bin_mark_bitmap_;
1519
1520  static void Callback(mirror::Object* obj, void* arg)
1521      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1522    DCHECK(arg != nullptr);
1523    BinContext* context = reinterpret_cast<BinContext*>(arg);
1524    ZygoteCompactingCollector* collector = context->collector_;
1525    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1526    size_t bin_size = object_addr - context->prev_;
1527    // Add the bin consisting of the end of the previous object to the start of the current object.
1528    collector->AddBin(bin_size, context->prev_);
1529    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1530  }
1531
1532  void AddBin(size_t size, uintptr_t position) {
1533    if (size != 0) {
1534      bins_.insert(std::make_pair(size, position));
1535    }
1536  }
1537
1538  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1539    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1540    // allocator.
1541    return false;
1542  }
1543
1544  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1545      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1546    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1547    mirror::Object* forward_address;
1548    // Find the smallest bin which we can move obj in.
1549    auto it = bins_.lower_bound(object_size);
1550    if (it == bins_.end()) {
1551      // No available space in the bins, place it in the target space instead (grows the zygote
1552      // space).
1553      size_t bytes_allocated;
1554      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1555      if (to_space_live_bitmap_ != nullptr) {
1556        to_space_live_bitmap_->Set(forward_address);
1557      } else {
1558        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1559        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1560      }
1561    } else {
1562      size_t size = it->first;
1563      uintptr_t pos = it->second;
1564      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1565      forward_address = reinterpret_cast<mirror::Object*>(pos);
1566      // Set the live and mark bits so that sweeping system weaks works properly.
1567      bin_live_bitmap_->Set(forward_address);
1568      bin_mark_bitmap_->Set(forward_address);
1569      DCHECK_GE(size, object_size);
1570      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1571    }
1572    // Copy the object over to its new location.
1573    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1574    if (kUseBrooksPointer) {
1575      obj->AssertSelfBrooksPointer();
1576      DCHECK_EQ(forward_address->GetBrooksPointer(), obj);
1577      forward_address->SetBrooksPointer(forward_address);
1578      forward_address->AssertSelfBrooksPointer();
1579    }
1580    return forward_address;
1581  }
1582};
1583
1584void Heap::UnBindBitmaps() {
1585  for (const auto& space : GetContinuousSpaces()) {
1586    if (space->IsContinuousMemMapAllocSpace()) {
1587      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1588      if (alloc_space->HasBoundBitmaps()) {
1589        alloc_space->UnBindBitmaps();
1590      }
1591    }
1592  }
1593}
1594
1595void Heap::PreZygoteFork() {
1596  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1597  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1598  Thread* self = Thread::Current();
1599  MutexLock mu(self, zygote_creation_lock_);
1600  // Try to see if we have any Zygote spaces.
1601  if (have_zygote_space_) {
1602    return;
1603  }
1604  VLOG(heap) << "Starting PreZygoteFork";
1605  // Trim the pages at the end of the non moving space.
1606  non_moving_space_->Trim();
1607  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1608  // Change the collector to the post zygote one.
1609  ChangeCollector(post_zygote_collector_type_);
1610  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1611  if (semi_space_collector_ != nullptr) {
1612    // Temporarily disable rosalloc verification because the zygote
1613    // compaction will mess up the rosalloc internal metadata.
1614    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1615    ZygoteCompactingCollector zygote_collector(this);
1616    zygote_collector.BuildBins(non_moving_space_);
1617    // Create a new bump pointer space which we will compact into.
1618    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1619                                         non_moving_space_->Limit());
1620    // Compact the bump pointer space to a new zygote bump pointer space.
1621    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1622    zygote_collector.SetFromSpace(bump_pointer_space_);
1623    zygote_collector.SetToSpace(&target_space);
1624    zygote_collector.Run(kGcCauseCollectorTransition, false);
1625    CHECK(temp_space_->IsEmpty());
1626    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1627    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1628    // Update the end and write out image.
1629    non_moving_space_->SetEnd(target_space.End());
1630    non_moving_space_->SetLimit(target_space.Limit());
1631    VLOG(heap) << "Zygote size " << non_moving_space_->Size() << " bytes";
1632  }
1633  // Save the old space so that we can remove it after we complete creating the zygote space.
1634  space::MallocSpace* old_alloc_space = non_moving_space_;
1635  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1636  // the remaining available space.
1637  // Remove the old space before creating the zygote space since creating the zygote space sets
1638  // the old alloc space's bitmaps to nullptr.
1639  RemoveSpace(old_alloc_space);
1640  if (collector::SemiSpace::kUseRememberedSet) {
1641    // Sanity bound check.
1642    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1643    // Remove the remembered set for the now zygote space (the old
1644    // non-moving space). Note now that we have compacted objects into
1645    // the zygote space, the data in the remembered set is no longer
1646    // needed. The zygote space will instead have a mod-union table
1647    // from this point on.
1648    RemoveRememberedSet(old_alloc_space);
1649  }
1650  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1651                                                                        low_memory_mode_,
1652                                                                        &main_space_);
1653  delete old_alloc_space;
1654  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1655  AddSpace(zygote_space, false);
1656  CHECK(main_space_ != nullptr);
1657  if (main_space_->IsRosAllocSpace()) {
1658    rosalloc_space_ = main_space_->AsRosAllocSpace();
1659  } else if (main_space_->IsDlMallocSpace()) {
1660    dlmalloc_space_ = main_space_->AsDlMallocSpace();
1661  }
1662  main_space_->SetFootprintLimit(main_space_->Capacity());
1663  AddSpace(main_space_);
1664  have_zygote_space_ = true;
1665  // Enable large object space allocations.
1666  large_object_threshold_ = kDefaultLargeObjectThreshold;
1667  // Create the zygote space mod union table.
1668  accounting::ModUnionTable* mod_union_table =
1669      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1670  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1671  AddModUnionTable(mod_union_table);
1672  if (collector::SemiSpace::kUseRememberedSet) {
1673    // Add a new remembered set for the new main space.
1674    accounting::RememberedSet* main_space_rem_set =
1675        new accounting::RememberedSet("Main space remembered set", this, main_space_);
1676    CHECK(main_space_rem_set != nullptr) << "Failed to create main space remembered set";
1677    AddRememberedSet(main_space_rem_set);
1678  }
1679  // Can't use RosAlloc for non moving space due to thread local buffers.
1680  // TODO: Non limited space for non-movable objects?
1681  MemMap* mem_map = post_zygote_non_moving_space_mem_map_.release();
1682  space::MallocSpace* new_non_moving_space =
1683      space::DlMallocSpace::CreateFromMemMap(mem_map, "Non moving dlmalloc space", kPageSize,
1684                                             2 * MB, mem_map->Size(), mem_map->Size());
1685  AddSpace(new_non_moving_space, false);
1686  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1687  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1688  non_moving_space_ = new_non_moving_space;
1689  if (collector::SemiSpace::kUseRememberedSet) {
1690    // Add a new remembered set for the post-zygote non-moving space.
1691    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1692        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1693                                      non_moving_space_);
1694    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1695        << "Failed to create post-zygote non-moving space remembered set";
1696    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1697  }
1698}
1699
1700void Heap::FlushAllocStack() {
1701  MarkAllocStackAsLive(allocation_stack_.get());
1702  allocation_stack_->Reset();
1703}
1704
1705void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1706                          accounting::SpaceBitmap* bitmap2,
1707                          accounting::ObjectSet* large_objects,
1708                          accounting::ObjectStack* stack) {
1709  DCHECK(bitmap1 != nullptr);
1710  DCHECK(bitmap2 != nullptr);
1711  mirror::Object** limit = stack->End();
1712  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1713    const mirror::Object* obj = *it;
1714    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1715      if (bitmap1->HasAddress(obj)) {
1716        bitmap1->Set(obj);
1717      } else if (bitmap2->HasAddress(obj)) {
1718        bitmap2->Set(obj);
1719      } else {
1720        large_objects->Set(obj);
1721      }
1722    }
1723  }
1724}
1725
1726void Heap::SwapSemiSpaces() {
1727  // Swap the spaces so we allocate into the space which we just evacuated.
1728  std::swap(bump_pointer_space_, temp_space_);
1729  bump_pointer_space_->Clear();
1730}
1731
1732void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1733                   space::ContinuousMemMapAllocSpace* source_space) {
1734  CHECK(kMovingCollector);
1735  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1736  if (target_space != source_space) {
1737    semi_space_collector_->SetFromSpace(source_space);
1738    semi_space_collector_->SetToSpace(target_space);
1739    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1740  }
1741}
1742
1743collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1744                                               bool clear_soft_references) {
1745  Thread* self = Thread::Current();
1746  Runtime* runtime = Runtime::Current();
1747  // If the heap can't run the GC, silently fail and return that no GC was run.
1748  switch (gc_type) {
1749    case collector::kGcTypePartial: {
1750      if (!have_zygote_space_) {
1751        return collector::kGcTypeNone;
1752      }
1753      break;
1754    }
1755    default: {
1756      // Other GC types don't have any special cases which makes them not runnable. The main case
1757      // here is full GC.
1758    }
1759  }
1760  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1761  Locks::mutator_lock_->AssertNotHeld(self);
1762  if (self->IsHandlingStackOverflow()) {
1763    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1764  }
1765  bool compacting_gc;
1766  {
1767    gc_complete_lock_->AssertNotHeld(self);
1768    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1769    MutexLock mu(self, *gc_complete_lock_);
1770    // Ensure there is only one GC at a time.
1771    WaitForGcToCompleteLocked(self);
1772    compacting_gc = IsCompactingGC(collector_type_);
1773    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1774    if (compacting_gc && disable_moving_gc_count_ != 0) {
1775      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1776      return collector::kGcTypeNone;
1777    }
1778    collector_type_running_ = collector_type_;
1779  }
1780
1781  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1782    ++runtime->GetStats()->gc_for_alloc_count;
1783    ++self->GetStats()->gc_for_alloc_count;
1784  }
1785  uint64_t gc_start_time_ns = NanoTime();
1786  uint64_t gc_start_size = GetBytesAllocated();
1787  // Approximate allocation rate in bytes / second.
1788  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1789  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1790  if (LIKELY(ms_delta != 0)) {
1791    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1792    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1793  }
1794
1795  DCHECK_LT(gc_type, collector::kGcTypeMax);
1796  DCHECK_NE(gc_type, collector::kGcTypeNone);
1797
1798  collector::GarbageCollector* collector = nullptr;
1799  // TODO: Clean this up.
1800  if (compacting_gc) {
1801    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1802           current_allocator_ == kAllocatorTypeTLAB);
1803    gc_type = semi_space_collector_->GetGcType();
1804    CHECK(temp_space_->IsEmpty());
1805    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1806    semi_space_collector_->SetToSpace(temp_space_);
1807    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1808    collector = semi_space_collector_;
1809    gc_type = collector::kGcTypeFull;
1810  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1811      current_allocator_ == kAllocatorTypeDlMalloc) {
1812    for (const auto& cur_collector : garbage_collectors_) {
1813      if (cur_collector->GetCollectorType() == collector_type_ &&
1814          cur_collector->GetGcType() == gc_type) {
1815        collector = cur_collector;
1816        break;
1817      }
1818    }
1819  } else {
1820    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1821  }
1822  CHECK(collector != nullptr)
1823      << "Could not find garbage collector with collector_type="
1824      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
1825  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1826  if (!clear_soft_references) {
1827    clear_soft_references = gc_type != collector::kGcTypeSticky;  // TODO: GSS?
1828  }
1829  collector->Run(gc_cause, clear_soft_references || Runtime::Current()->IsZygote());
1830  total_objects_freed_ever_ += collector->GetFreedObjects();
1831  total_bytes_freed_ever_ += collector->GetFreedBytes();
1832  RequestHeapTrim();
1833  // Enqueue cleared references.
1834  EnqueueClearedReferences();
1835  // Grow the heap so that we know when to perform the next GC.
1836  GrowForUtilization(gc_type, collector->GetDurationNs());
1837  if (CareAboutPauseTimes()) {
1838    const size_t duration = collector->GetDurationNs();
1839    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1840    // GC for alloc pauses the allocating thread, so consider it as a pause.
1841    bool was_slow = duration > long_gc_log_threshold_ ||
1842        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1843    if (!was_slow) {
1844      for (uint64_t pause : pauses) {
1845        was_slow = was_slow || pause > long_pause_log_threshold_;
1846      }
1847    }
1848    if (was_slow) {
1849        const size_t percent_free = GetPercentFree();
1850        const size_t current_heap_size = GetBytesAllocated();
1851        const size_t total_memory = GetTotalMemory();
1852        std::ostringstream pause_string;
1853        for (size_t i = 0; i < pauses.size(); ++i) {
1854            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1855                         << ((i != pauses.size() - 1) ? ", " : "");
1856        }
1857        LOG(INFO) << gc_cause << " " << collector->GetName()
1858                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1859                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1860                  << collector->GetFreedLargeObjects() << "("
1861                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1862                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1863                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1864                  << " total " << PrettyDuration((duration / 1000) * 1000);
1865        if (VLOG_IS_ON(heap)) {
1866            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1867        }
1868    }
1869  }
1870  FinishGC(self, gc_type);
1871  ATRACE_END();
1872
1873  // Inform DDMS that a GC completed.
1874  Dbg::GcDidFinish();
1875  return gc_type;
1876}
1877
1878void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1879  MutexLock mu(self, *gc_complete_lock_);
1880  collector_type_running_ = kCollectorTypeNone;
1881  if (gc_type != collector::kGcTypeNone) {
1882    last_gc_type_ = gc_type;
1883  }
1884  // Wake anyone who may have been waiting for the GC to complete.
1885  gc_complete_cond_->Broadcast(self);
1886}
1887
1888static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
1889                                     RootType /*root_type*/) {
1890  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1891  if (*root == obj) {
1892    LOG(INFO) << "Object " << obj << " is a root";
1893  }
1894}
1895
1896class ScanVisitor {
1897 public:
1898  void operator()(const mirror::Object* obj) const {
1899    LOG(ERROR) << "Would have rescanned object " << obj;
1900  }
1901};
1902
1903// Verify a reference from an object.
1904class VerifyReferenceVisitor {
1905 public:
1906  explicit VerifyReferenceVisitor(Heap* heap)
1907      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1908      : heap_(heap), failed_(false) {}
1909
1910  bool Failed() const {
1911    return failed_;
1912  }
1913
1914  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1915      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1916    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1917  }
1918
1919  void operator()(mirror::Object* obj, MemberOffset offset, bool /* static */) const
1920      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1921    this->operator()(obj, obj->GetFieldObject<mirror::Object>(offset, false), offset);
1922  }
1923
1924  // TODO: Fix the no thread safety analysis.
1925  void operator()(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
1926      NO_THREAD_SAFETY_ANALYSIS {
1927    if (ref == nullptr || IsLive(ref)) {
1928      // Verify that the reference is live.
1929      return;
1930    }
1931    if (!failed_) {
1932      // Print message on only on first failure to prevent spam.
1933      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1934      failed_ = true;
1935    }
1936    if (obj != nullptr) {
1937      accounting::CardTable* card_table = heap_->GetCardTable();
1938      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1939      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1940      byte* card_addr = card_table->CardFromAddr(obj);
1941      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1942                 << offset << "\n card value = " << static_cast<int>(*card_addr);
1943      if (heap_->IsValidObjectAddress(obj->GetClass())) {
1944        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1945      } else {
1946        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1947      }
1948
1949      // Attmept to find the class inside of the recently freed objects.
1950      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1951      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1952        space::MallocSpace* space = ref_space->AsMallocSpace();
1953        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1954        if (ref_class != nullptr) {
1955          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1956                     << PrettyClass(ref_class);
1957        } else {
1958          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1959        }
1960      }
1961
1962      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1963          ref->GetClass()->IsClass()) {
1964        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1965      } else {
1966        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1967                   << ") is not a valid heap address";
1968      }
1969
1970      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1971      void* cover_begin = card_table->AddrFromCard(card_addr);
1972      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1973          accounting::CardTable::kCardSize);
1974      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1975          << "-" << cover_end;
1976      accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1977
1978      if (bitmap == nullptr) {
1979        LOG(ERROR) << "Object " << obj << " has no bitmap";
1980        if (!VerifyClassClass(obj->GetClass())) {
1981          LOG(ERROR) << "Object " << obj << " failed class verification!";
1982        }
1983      } else {
1984        // Print out how the object is live.
1985        if (bitmap->Test(obj)) {
1986          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1987        }
1988        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1989          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1990        }
1991        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1992          LOG(ERROR) << "Object " << obj << " found in live stack";
1993        }
1994        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1995          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1996        }
1997        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1998          LOG(ERROR) << "Ref " << ref << " found in live stack";
1999        }
2000        // Attempt to see if the card table missed the reference.
2001        ScanVisitor scan_visitor;
2002        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2003        card_table->Scan(bitmap, byte_cover_begin,
2004                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2005      }
2006
2007      // Search to see if any of the roots reference our object.
2008      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2009      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2010
2011      // Search to see if any of the roots reference our reference.
2012      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2013      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2014    } else {
2015      LOG(ERROR) << "Root " << ref << " is dead with type " << PrettyTypeOf(ref);
2016    }
2017  }
2018
2019  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2020    return heap_->IsLiveObjectLocked(obj, true, false, true);
2021  }
2022
2023  static void VerifyRoots(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2024                          RootType /*root_type*/) {
2025    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2026    (*visitor)(nullptr, *root, MemberOffset(0));
2027  }
2028
2029 private:
2030  Heap* const heap_;
2031  mutable bool failed_;
2032};
2033
2034// Verify all references within an object, for use with HeapBitmap::Visit.
2035class VerifyObjectVisitor {
2036 public:
2037  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
2038
2039  void operator()(mirror::Object* obj) const
2040      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2041    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2042    // be live or else how did we find it in the live bitmap?
2043    VerifyReferenceVisitor visitor(heap_);
2044    // The class doesn't count as a reference but we should verify it anyways.
2045    obj->VisitReferences<true>(visitor, visitor);
2046    failed_ = failed_ || visitor.Failed();
2047  }
2048
2049  static void VisitCallback(mirror::Object* obj, void* arg)
2050      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2051    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2052    visitor->operator()(obj);
2053  }
2054
2055  bool Failed() const {
2056    return failed_;
2057  }
2058
2059 private:
2060  Heap* const heap_;
2061  mutable bool failed_;
2062};
2063
2064// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2065bool Heap::VerifyHeapReferences() {
2066  Thread* self = Thread::Current();
2067  Locks::mutator_lock_->AssertExclusiveHeld(self);
2068  // Lets sort our allocation stacks so that we can efficiently binary search them.
2069  allocation_stack_->Sort();
2070  live_stack_->Sort();
2071  // Since we sorted the allocation stack content, need to revoke all
2072  // thread-local allocation stacks.
2073  RevokeAllThreadLocalAllocationStacks(self);
2074  VerifyObjectVisitor visitor(this);
2075  // Verify objects in the allocation stack since these will be objects which were:
2076  // 1. Allocated prior to the GC (pre GC verification).
2077  // 2. Allocated during the GC (pre sweep GC verification).
2078  // We don't want to verify the objects in the live stack since they themselves may be
2079  // pointing to dead objects if they are not reachable.
2080  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2081  // Verify the roots:
2082  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor);
2083  if (visitor.Failed()) {
2084    // Dump mod-union tables.
2085    for (const auto& table_pair : mod_union_tables_) {
2086      accounting::ModUnionTable* mod_union_table = table_pair.second;
2087      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2088    }
2089    // Dump remembered sets.
2090    for (const auto& table_pair : remembered_sets_) {
2091      accounting::RememberedSet* remembered_set = table_pair.second;
2092      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2093    }
2094    DumpSpaces();
2095    return false;
2096  }
2097  return true;
2098}
2099
2100class VerifyReferenceCardVisitor {
2101 public:
2102  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2103      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2104                            Locks::heap_bitmap_lock_)
2105      : heap_(heap), failed_(failed) {
2106  }
2107
2108  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2109  // annotalysis on visitors.
2110  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2111      NO_THREAD_SAFETY_ANALYSIS {
2112    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
2113    // Filter out class references since changing an object's class does not mark the card as dirty.
2114    // Also handles large objects, since the only reference they hold is a class reference.
2115    if (ref != nullptr && !ref->IsClass()) {
2116      accounting::CardTable* card_table = heap_->GetCardTable();
2117      // If the object is not dirty and it is referencing something in the live stack other than
2118      // class, then it must be on a dirty card.
2119      if (!card_table->AddrIsInCardTable(obj)) {
2120        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2121        *failed_ = true;
2122      } else if (!card_table->IsDirty(obj)) {
2123        // TODO: Check mod-union tables.
2124        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2125        // kCardDirty - 1 if it didnt get touched since we aged it.
2126        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2127        if (live_stack->ContainsSorted(ref)) {
2128          if (live_stack->ContainsSorted(obj)) {
2129            LOG(ERROR) << "Object " << obj << " found in live stack";
2130          }
2131          if (heap_->GetLiveBitmap()->Test(obj)) {
2132            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2133          }
2134          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2135                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2136
2137          // Print which field of the object is dead.
2138          if (!obj->IsObjectArray()) {
2139            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2140            CHECK(klass != NULL);
2141            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2142                                                                      : klass->GetIFields();
2143            CHECK(fields != NULL);
2144            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2145              mirror::ArtField* cur = fields->Get(i);
2146              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2147                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2148                          << PrettyField(cur);
2149                break;
2150              }
2151            }
2152          } else {
2153            mirror::ObjectArray<mirror::Object>* object_array =
2154                obj->AsObjectArray<mirror::Object>();
2155            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2156              if (object_array->Get(i) == ref) {
2157                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2158              }
2159            }
2160          }
2161
2162          *failed_ = true;
2163        }
2164      }
2165    }
2166  }
2167
2168 private:
2169  Heap* const heap_;
2170  bool* const failed_;
2171};
2172
2173class VerifyLiveStackReferences {
2174 public:
2175  explicit VerifyLiveStackReferences(Heap* heap)
2176      : heap_(heap),
2177        failed_(false) {}
2178
2179  void operator()(mirror::Object* obj) const
2180      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2181    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2182    obj->VisitReferences<true>(visitor);
2183  }
2184
2185  bool Failed() const {
2186    return failed_;
2187  }
2188
2189 private:
2190  Heap* const heap_;
2191  bool failed_;
2192};
2193
2194bool Heap::VerifyMissingCardMarks() {
2195  Thread* self = Thread::Current();
2196  Locks::mutator_lock_->AssertExclusiveHeld(self);
2197
2198  // We need to sort the live stack since we binary search it.
2199  live_stack_->Sort();
2200  // Since we sorted the allocation stack content, need to revoke all
2201  // thread-local allocation stacks.
2202  RevokeAllThreadLocalAllocationStacks(self);
2203  VerifyLiveStackReferences visitor(this);
2204  GetLiveBitmap()->Visit(visitor);
2205
2206  // We can verify objects in the live stack since none of these should reference dead objects.
2207  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2208    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2209      visitor(*it);
2210    }
2211  }
2212
2213  if (visitor.Failed()) {
2214    DumpSpaces();
2215    return false;
2216  }
2217  return true;
2218}
2219
2220void Heap::SwapStacks(Thread* self) {
2221  if (kUseThreadLocalAllocationStack) {
2222    live_stack_->AssertAllZero();
2223  }
2224  allocation_stack_.swap(live_stack_);
2225}
2226
2227void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2228  // This must be called only during the pause.
2229  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2230  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2231  MutexLock mu2(self, *Locks::thread_list_lock_);
2232  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2233  for (Thread* t : thread_list) {
2234    t->RevokeThreadLocalAllocationStack();
2235  }
2236}
2237
2238void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2239  if (kIsDebugBuild) {
2240    if (bump_pointer_space_ != nullptr) {
2241      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2242    }
2243  }
2244}
2245
2246accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2247  auto it = mod_union_tables_.find(space);
2248  if (it == mod_union_tables_.end()) {
2249    return nullptr;
2250  }
2251  return it->second;
2252}
2253
2254accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2255  auto it = remembered_sets_.find(space);
2256  if (it == remembered_sets_.end()) {
2257    return nullptr;
2258  }
2259  return it->second;
2260}
2261
2262void Heap::ProcessCards(TimingLogger& timings, bool use_rem_sets) {
2263  // Clear cards and keep track of cards cleared in the mod-union table.
2264  for (const auto& space : continuous_spaces_) {
2265    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2266    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2267    if (table != nullptr) {
2268      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2269          "ImageModUnionClearCards";
2270      TimingLogger::ScopedSplit split(name, &timings);
2271      table->ClearCards();
2272    } else if (use_rem_sets && rem_set != nullptr) {
2273      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2274          << static_cast<int>(collector_type_);
2275      TimingLogger::ScopedSplit split("AllocSpaceRemSetClearCards", &timings);
2276      rem_set->ClearCards();
2277    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2278      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
2279      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2280      // were dirty before the GC started.
2281      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2282      // -> clean(cleaning thread).
2283      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2284      // roots and then we scan / update mod union tables after. We will always scan either card.
2285      // If we end up with the non aged card, we scan it it in the pause.
2286      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
2287    }
2288  }
2289}
2290
2291static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2292}
2293
2294void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2295  ThreadList* thread_list = Runtime::Current()->GetThreadList();
2296  Thread* self = Thread::Current();
2297
2298  if (verify_pre_gc_heap_) {
2299    thread_list->SuspendAll();
2300    {
2301      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2302      if (!VerifyHeapReferences()) {
2303        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2304      }
2305    }
2306    thread_list->ResumeAll();
2307  }
2308
2309  // Check that all objects which reference things in the live stack are on dirty cards.
2310  if (verify_missing_card_marks_) {
2311    thread_list->SuspendAll();
2312    {
2313      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2314      SwapStacks(self);
2315      // Sort the live stack so that we can quickly binary search it later.
2316      if (!VerifyMissingCardMarks()) {
2317        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2318      }
2319      SwapStacks(self);
2320    }
2321    thread_list->ResumeAll();
2322  }
2323
2324  if (verify_mod_union_table_) {
2325    thread_list->SuspendAll();
2326    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2327    for (const auto& table_pair : mod_union_tables_) {
2328      accounting::ModUnionTable* mod_union_table = table_pair.second;
2329      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2330      mod_union_table->Verify();
2331    }
2332    thread_list->ResumeAll();
2333  }
2334}
2335
2336void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2337  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2338  // reachable objects.
2339  if (verify_post_gc_heap_) {
2340    Thread* self = Thread::Current();
2341    CHECK_NE(self->GetState(), kRunnable);
2342    {
2343      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2344      // Swapping bound bitmaps does nothing.
2345      gc->SwapBitmaps();
2346      if (!VerifyHeapReferences()) {
2347        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2348      }
2349      gc->SwapBitmaps();
2350    }
2351  }
2352}
2353
2354void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2355  if (verify_system_weaks_) {
2356    Thread* self = Thread::Current();
2357    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2358    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2359    mark_sweep->VerifySystemWeaks();
2360  }
2361}
2362
2363void Heap::PreGcRosAllocVerification(TimingLogger* timings) {
2364  if (verify_pre_gc_rosalloc_) {
2365    TimingLogger::ScopedSplit split("PreGcRosAllocVerification", timings);
2366    for (const auto& space : continuous_spaces_) {
2367      if (space->IsRosAllocSpace()) {
2368        VLOG(heap) << "PreGcRosAllocVerification : " << space->GetName();
2369        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2370        rosalloc_space->Verify();
2371      }
2372    }
2373  }
2374}
2375
2376void Heap::PostGcRosAllocVerification(TimingLogger* timings) {
2377  if (verify_post_gc_rosalloc_) {
2378    TimingLogger::ScopedSplit split("PostGcRosAllocVerification", timings);
2379    for (const auto& space : continuous_spaces_) {
2380      if (space->IsRosAllocSpace()) {
2381        VLOG(heap) << "PostGcRosAllocVerification : " << space->GetName();
2382        space::RosAllocSpace* rosalloc_space = space->AsRosAllocSpace();
2383        rosalloc_space->Verify();
2384      }
2385    }
2386  }
2387}
2388
2389collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2390  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2391  MutexLock mu(self, *gc_complete_lock_);
2392  return WaitForGcToCompleteLocked(self);
2393}
2394
2395collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2396  collector::GcType last_gc_type = collector::kGcTypeNone;
2397  uint64_t wait_start = NanoTime();
2398  while (collector_type_running_ != kCollectorTypeNone) {
2399    ATRACE_BEGIN("GC: Wait For Completion");
2400    // We must wait, change thread state then sleep on gc_complete_cond_;
2401    gc_complete_cond_->Wait(self);
2402    last_gc_type = last_gc_type_;
2403    ATRACE_END();
2404  }
2405  uint64_t wait_time = NanoTime() - wait_start;
2406  total_wait_time_ += wait_time;
2407  if (wait_time > long_pause_log_threshold_) {
2408    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2409  }
2410  return last_gc_type;
2411}
2412
2413void Heap::DumpForSigQuit(std::ostream& os) {
2414  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2415     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2416  DumpGcPerformanceInfo(os);
2417}
2418
2419size_t Heap::GetPercentFree() {
2420  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2421}
2422
2423void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2424  if (max_allowed_footprint > GetMaxMemory()) {
2425    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2426             << PrettySize(GetMaxMemory());
2427    max_allowed_footprint = GetMaxMemory();
2428  }
2429  max_allowed_footprint_ = max_allowed_footprint;
2430}
2431
2432bool Heap::IsMovableObject(const mirror::Object* obj) const {
2433  if (kMovingCollector) {
2434    DCHECK(!IsInTempSpace(obj));
2435    if (bump_pointer_space_->HasAddress(obj)) {
2436      return true;
2437    }
2438    // TODO: Refactor this logic into the space itself?
2439    // Objects in the main space are only copied during background -> foreground transitions or
2440    // visa versa.
2441    if (main_space_ != nullptr && main_space_->HasAddress(obj) &&
2442        (IsCompactingGC(background_collector_type_) ||
2443            IsCompactingGC(post_zygote_collector_type_))) {
2444      return true;
2445    }
2446  }
2447  return false;
2448}
2449
2450bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2451  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2452    return true;
2453  }
2454  return false;
2455}
2456
2457void Heap::UpdateMaxNativeFootprint() {
2458  size_t native_size = native_bytes_allocated_;
2459  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2460  size_t target_size = native_size / GetTargetHeapUtilization();
2461  if (target_size > native_size + max_free_) {
2462    target_size = native_size + max_free_;
2463  } else if (target_size < native_size + min_free_) {
2464    target_size = native_size + min_free_;
2465  }
2466  native_footprint_gc_watermark_ = target_size;
2467  native_footprint_limit_ = 2 * target_size - native_size;
2468}
2469
2470void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2471  // We know what our utilization is at this moment.
2472  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2473  const size_t bytes_allocated = GetBytesAllocated();
2474  last_gc_size_ = bytes_allocated;
2475  last_gc_time_ns_ = NanoTime();
2476  size_t target_size;
2477  if (gc_type != collector::kGcTypeSticky) {
2478    // Grow the heap for non sticky GC.
2479    target_size = bytes_allocated / GetTargetHeapUtilization();
2480    if (target_size > bytes_allocated + max_free_) {
2481      target_size = bytes_allocated + max_free_;
2482    } else if (target_size < bytes_allocated + min_free_) {
2483      target_size = bytes_allocated + min_free_;
2484    }
2485    native_need_to_run_finalization_ = true;
2486    next_gc_type_ = collector::kGcTypeSticky;
2487  } else {
2488    // Based on how close the current heap size is to the target size, decide
2489    // whether or not to do a partial or sticky GC next.
2490    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2491      next_gc_type_ = collector::kGcTypeSticky;
2492    } else {
2493      next_gc_type_ = have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2494    }
2495    // If we have freed enough memory, shrink the heap back down.
2496    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2497      target_size = bytes_allocated + max_free_;
2498    } else {
2499      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2500    }
2501  }
2502  if (!ignore_max_footprint_) {
2503    SetIdealFootprint(target_size);
2504    if (IsGcConcurrent()) {
2505      // Calculate when to perform the next ConcurrentGC.
2506      // Calculate the estimated GC duration.
2507      const double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2508      // Estimate how many remaining bytes we will have when we need to start the next GC.
2509      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2510      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2511      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2512      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2513        // A never going to happen situation that from the estimated allocation rate we will exceed
2514        // the applications entire footprint with the given estimated allocation rate. Schedule
2515        // another GC nearly straight away.
2516        remaining_bytes = kMinConcurrentRemainingBytes;
2517      }
2518      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2519      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2520      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2521      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2522      // right away.
2523      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
2524    }
2525  }
2526}
2527
2528void Heap::ClearGrowthLimit() {
2529  growth_limit_ = capacity_;
2530  non_moving_space_->ClearGrowthLimit();
2531}
2532
2533void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2534  ScopedObjectAccess soa(self);
2535  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(object));
2536  jvalue args[1];
2537  args[0].l = arg.get();
2538  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2539}
2540
2541void Heap::EnqueueClearedReferences() {
2542  Thread* self = Thread::Current();
2543  Locks::mutator_lock_->AssertNotHeld(self);
2544  if (!cleared_references_.IsEmpty()) {
2545    // When a runtime isn't started there are no reference queues to care about so ignore.
2546    if (LIKELY(Runtime::Current()->IsStarted())) {
2547      ScopedObjectAccess soa(self);
2548      ScopedLocalRef<jobject> arg(self->GetJniEnv(),
2549                                  soa.AddLocalReference<jobject>(cleared_references_.GetList()));
2550      jvalue args[1];
2551      args[0].l = arg.get();
2552      InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
2553    }
2554    cleared_references_.Clear();
2555  }
2556}
2557
2558void Heap::RequestConcurrentGC(Thread* self) {
2559  // Make sure that we can do a concurrent GC.
2560  Runtime* runtime = Runtime::Current();
2561  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2562      self->IsHandlingStackOverflow()) {
2563    return;
2564  }
2565  // We already have a request pending, no reason to start more until we update
2566  // concurrent_start_bytes_.
2567  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2568  JNIEnv* env = self->GetJniEnv();
2569  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2570  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2571  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2572                            WellKnownClasses::java_lang_Daemons_requestGC);
2573  CHECK(!env->ExceptionCheck());
2574}
2575
2576void Heap::ConcurrentGC(Thread* self) {
2577  if (Runtime::Current()->IsShuttingDown(self)) {
2578    return;
2579  }
2580  // Wait for any GCs currently running to finish.
2581  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2582    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2583    // instead. E.g. can't do partial, so do full instead.
2584    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2585        collector::kGcTypeNone) {
2586      for (collector::GcType gc_type : gc_plan_) {
2587        // Attempt to run the collector, if we succeed, we are done.
2588        if (gc_type > next_gc_type_ &&
2589            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2590          break;
2591        }
2592      }
2593    }
2594  }
2595}
2596
2597void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2598  Thread* self = Thread::Current();
2599  {
2600    MutexLock mu(self, *heap_trim_request_lock_);
2601    if (desired_collector_type_ == desired_collector_type) {
2602      return;
2603    }
2604    heap_transition_target_time_ = std::max(heap_transition_target_time_, NanoTime() + delta_time);
2605    desired_collector_type_ = desired_collector_type;
2606  }
2607  SignalHeapTrimDaemon(self);
2608}
2609
2610void Heap::RequestHeapTrim() {
2611  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2612  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2613  // a space it will hold its lock and can become a cause of jank.
2614  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2615  // forking.
2616
2617  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2618  // because that only marks object heads, so a large array looks like lots of empty space. We
2619  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2620  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2621  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2622  // not how much use we're making of those pages.
2623
2624  Thread* self = Thread::Current();
2625  Runtime* runtime = Runtime::Current();
2626  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2627    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2628    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2629    // as we don't hold the lock while requesting the trim).
2630    return;
2631  }
2632
2633  // Request a heap trim only if we do not currently care about pause times.
2634  if (!CareAboutPauseTimes()) {
2635    {
2636      MutexLock mu(self, *heap_trim_request_lock_);
2637      if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2638        // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2639        // just yet.
2640        return;
2641      }
2642      heap_trim_request_pending_ = true;
2643    }
2644    // Notify the daemon thread which will actually do the heap trim.
2645    SignalHeapTrimDaemon(self);
2646  }
2647}
2648
2649void Heap::SignalHeapTrimDaemon(Thread* self) {
2650  JNIEnv* env = self->GetJniEnv();
2651  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2652  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2653  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2654                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2655  CHECK(!env->ExceptionCheck());
2656}
2657
2658void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2659  if (rosalloc_space_ != nullptr) {
2660    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2661  }
2662  if (bump_pointer_space_ != nullptr) {
2663    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2664  }
2665}
2666
2667void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2668  if (rosalloc_space_ != nullptr) {
2669    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2670  }
2671}
2672
2673void Heap::RevokeAllThreadLocalBuffers() {
2674  if (rosalloc_space_ != nullptr) {
2675    rosalloc_space_->RevokeAllThreadLocalBuffers();
2676  }
2677  if (bump_pointer_space_ != nullptr) {
2678    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2679  }
2680}
2681
2682bool Heap::IsGCRequestPending() const {
2683  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2684}
2685
2686void Heap::RunFinalization(JNIEnv* env) {
2687  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2688  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2689    CHECK(WellKnownClasses::java_lang_System != nullptr);
2690    WellKnownClasses::java_lang_System_runFinalization =
2691        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2692    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2693  }
2694  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2695                            WellKnownClasses::java_lang_System_runFinalization);
2696}
2697
2698void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2699  Thread* self = ThreadForEnv(env);
2700  if (native_need_to_run_finalization_) {
2701    RunFinalization(env);
2702    UpdateMaxNativeFootprint();
2703    native_need_to_run_finalization_ = false;
2704  }
2705  // Total number of native bytes allocated.
2706  native_bytes_allocated_.FetchAndAdd(bytes);
2707  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2708    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2709        collector::kGcTypeFull;
2710
2711    // The second watermark is higher than the gc watermark. If you hit this it means you are
2712    // allocating native objects faster than the GC can keep up with.
2713    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2714      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2715        // Just finished a GC, attempt to run finalizers.
2716        RunFinalization(env);
2717        CHECK(!env->ExceptionCheck());
2718      }
2719      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2720      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2721        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2722        RunFinalization(env);
2723        native_need_to_run_finalization_ = false;
2724        CHECK(!env->ExceptionCheck());
2725      }
2726      // We have just run finalizers, update the native watermark since it is very likely that
2727      // finalizers released native managed allocations.
2728      UpdateMaxNativeFootprint();
2729    } else if (!IsGCRequestPending()) {
2730      if (IsGcConcurrent()) {
2731        RequestConcurrentGC(self);
2732      } else {
2733        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2734      }
2735    }
2736  }
2737}
2738
2739void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2740  int expected_size, new_size;
2741  do {
2742    expected_size = native_bytes_allocated_.Load();
2743    new_size = expected_size - bytes;
2744    if (UNLIKELY(new_size < 0)) {
2745      ScopedObjectAccess soa(env);
2746      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2747                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2748                                 "registered as allocated", bytes, expected_size).c_str());
2749      break;
2750    }
2751  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2752}
2753
2754size_t Heap::GetTotalMemory() const {
2755  size_t ret = 0;
2756  for (const auto& space : continuous_spaces_) {
2757    // Currently don't include the image space.
2758    if (!space->IsImageSpace()) {
2759      ret += space->Size();
2760    }
2761  }
2762  for (const auto& space : discontinuous_spaces_) {
2763    if (space->IsLargeObjectSpace()) {
2764      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2765    }
2766  }
2767  return ret;
2768}
2769
2770void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2771  DCHECK(mod_union_table != nullptr);
2772  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2773}
2774
2775void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
2776  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
2777        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
2778        strlen(ClassHelper(c).GetDescriptor()) == 0);
2779  CHECK_GE(byte_count, sizeof(mirror::Object));
2780}
2781
2782void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
2783  CHECK(remembered_set != nullptr);
2784  space::Space* space = remembered_set->GetSpace();
2785  CHECK(space != nullptr);
2786  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2787  remembered_sets_.Put(space, remembered_set);
2788  CHECK(remembered_sets_.find(space) != remembered_sets_.end());
2789}
2790
2791void Heap::RemoveRememberedSet(space::Space* space) {
2792  CHECK(space != nullptr);
2793  auto it = remembered_sets_.find(space);
2794  CHECK(it != remembered_sets_.end());
2795  remembered_sets_.erase(it);
2796  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2797}
2798
2799}  // namespace gc
2800}  // namespace art
2801