heap.cc revision 6f365cc033654a5a3b45eaa1379d4b5f156b0cee
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24
25#include "base/histogram-inl.h"
26#include "base/stl_util.h"
27#include "common_throws.h"
28#include "cutils/sched_policy.h"
29#include "debugger.h"
30#include "gc/accounting/atomic_stack.h"
31#include "gc/accounting/card_table-inl.h"
32#include "gc/accounting/heap_bitmap-inl.h"
33#include "gc/accounting/mod_union_table.h"
34#include "gc/accounting/mod_union_table-inl.h"
35#include "gc/accounting/remembered_set.h"
36#include "gc/accounting/space_bitmap-inl.h"
37#include "gc/collector/concurrent_copying.h"
38#include "gc/collector/mark_sweep-inl.h"
39#include "gc/collector/partial_mark_sweep.h"
40#include "gc/collector/semi_space.h"
41#include "gc/collector/sticky_mark_sweep.h"
42#include "gc/space/bump_pointer_space.h"
43#include "gc/space/dlmalloc_space-inl.h"
44#include "gc/space/image_space.h"
45#include "gc/space/large_object_space.h"
46#include "gc/space/rosalloc_space-inl.h"
47#include "gc/space/space-inl.h"
48#include "gc/space/zygote_space.h"
49#include "entrypoints/quick/quick_alloc_entrypoints.h"
50#include "heap-inl.h"
51#include "image.h"
52#include "mirror/art_field-inl.h"
53#include "mirror/class-inl.h"
54#include "mirror/object.h"
55#include "mirror/object-inl.h"
56#include "mirror/object_array-inl.h"
57#include "mirror/reference-inl.h"
58#include "object_utils.h"
59#include "os.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "ScopedLocalRef.h"
63#include "scoped_thread_state_change.h"
64#include "sirt_ref.h"
65#include "thread_list.h"
66#include "UniquePtr.h"
67#include "well_known_classes.h"
68
69namespace art {
70
71namespace gc {
72
73static constexpr size_t kCollectorTransitionStressIterations = 0;
74static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
75static constexpr bool kGCALotMode = false;
76static constexpr size_t kGcAlotInterval = KB;
77// Minimum amount of remaining bytes before a concurrent GC is triggered.
78static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
79static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
80// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
81// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
82// threads (lower pauses, use less memory bandwidth).
83static constexpr double kStickyGcThroughputAdjustment = 1.0;
84// Whether or not we use the free list large object space.
85static constexpr bool kUseFreeListSpaceForLOS = false;
86// Whtehr or not we compact the zygote in PreZygoteFork.
87static constexpr bool kCompactZygote = kMovingCollector;
88static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
89
90Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
91           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
92           const std::string& image_file_name,
93           CollectorType foreground_collector_type, CollectorType background_collector_type,
94           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
95           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
96           bool ignore_max_footprint, bool use_tlab,
97           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
98           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
99           bool verify_post_gc_rosalloc)
100    : non_moving_space_(nullptr),
101      rosalloc_space_(nullptr),
102      dlmalloc_space_(nullptr),
103      main_space_(nullptr),
104      collector_type_(kCollectorTypeNone),
105      foreground_collector_type_(foreground_collector_type),
106      background_collector_type_(background_collector_type),
107      desired_collector_type_(foreground_collector_type_),
108      heap_trim_request_lock_(nullptr),
109      last_trim_time_(0),
110      heap_transition_target_time_(0),
111      heap_trim_request_pending_(false),
112      parallel_gc_threads_(parallel_gc_threads),
113      conc_gc_threads_(conc_gc_threads),
114      low_memory_mode_(low_memory_mode),
115      long_pause_log_threshold_(long_pause_log_threshold),
116      long_gc_log_threshold_(long_gc_log_threshold),
117      ignore_max_footprint_(ignore_max_footprint),
118      have_zygote_space_(false),
119      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
120      collector_type_running_(kCollectorTypeNone),
121      last_gc_type_(collector::kGcTypeNone),
122      next_gc_type_(collector::kGcTypePartial),
123      capacity_(capacity),
124      growth_limit_(growth_limit),
125      max_allowed_footprint_(initial_size),
126      native_footprint_gc_watermark_(initial_size),
127      native_footprint_limit_(2 * initial_size),
128      native_need_to_run_finalization_(false),
129      // Initially assume we perceive jank in case the process state is never updated.
130      process_state_(kProcessStateJankPerceptible),
131      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
132      total_bytes_freed_ever_(0),
133      total_objects_freed_ever_(0),
134      num_bytes_allocated_(0),
135      native_bytes_allocated_(0),
136      gc_memory_overhead_(0),
137      verify_missing_card_marks_(false),
138      verify_system_weaks_(false),
139      verify_pre_gc_heap_(verify_pre_gc_heap),
140      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
141      verify_post_gc_heap_(verify_post_gc_heap),
142      verify_mod_union_table_(false),
143      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
144      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
145      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
146      allocation_rate_(0),
147      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
148       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
149       * verification is enabled, we limit the size of allocation stacks to speed up their
150       * searching.
151       */
152      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
153          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
154      current_allocator_(kAllocatorTypeDlMalloc),
155      current_non_moving_allocator_(kAllocatorTypeNonMoving),
156      bump_pointer_space_(nullptr),
157      temp_space_(nullptr),
158      min_free_(min_free),
159      max_free_(max_free),
160      target_utilization_(target_utilization),
161      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
162      total_wait_time_(0),
163      total_allocation_time_(0),
164      verify_object_mode_(kVerifyObjectModeDisabled),
165      disable_moving_gc_count_(0),
166      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
167      use_tlab_(use_tlab) {
168  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
169    LOG(INFO) << "Heap() entering";
170  }
171  const bool is_zygote = Runtime::Current()->IsZygote();
172  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
173  // entrypoints.
174  if (!is_zygote) {
175    large_object_threshold_ = kDefaultLargeObjectThreshold;
176    // Background compaction is currently not supported for command line runs.
177    if (background_collector_type_ != foreground_collector_type_) {
178      LOG(WARNING) << "Disabling background compaction for non zygote";
179      background_collector_type_ = foreground_collector_type_;
180    }
181  }
182  ChangeCollector(desired_collector_type_);
183
184  live_bitmap_.reset(new accounting::HeapBitmap(this));
185  mark_bitmap_.reset(new accounting::HeapBitmap(this));
186  // Requested begin for the alloc space, to follow the mapped image and oat files
187  byte* requested_alloc_space_begin = nullptr;
188  if (!image_file_name.empty()) {
189    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
190    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
191    AddSpace(image_space);
192    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
193    // isn't going to get in the middle
194    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
195    CHECK_GT(oat_file_end_addr, image_space->End());
196    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
197  }
198  if (is_zygote) {
199    // Reserve the address range before we create the non moving space to make sure bitmaps don't
200    // take it.
201    std::string error_str;
202    MemMap* mem_map = MemMap::MapAnonymous(
203        "main space", requested_alloc_space_begin + kNonMovingSpaceCapacity, capacity,
204        PROT_READ | PROT_WRITE, true, &error_str);
205    CHECK(mem_map != nullptr) << error_str;
206    // Non moving space is always dlmalloc since we currently don't have support for multiple
207    // rosalloc spaces.
208    non_moving_space_ = space::DlMallocSpace::Create(
209        "zygote / non moving space", initial_size, kNonMovingSpaceCapacity, kNonMovingSpaceCapacity,
210        requested_alloc_space_begin, false);
211    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
212    CreateMainMallocSpace(mem_map, initial_size, growth_limit, capacity);
213  } else {
214    std::string error_str;
215    MemMap* mem_map = MemMap::MapAnonymous("main/non-moving space", requested_alloc_space_begin,
216                                           capacity, PROT_READ | PROT_WRITE, true, &error_str);
217    CHECK(mem_map != nullptr) << error_str;
218    // Create the main free list space, which doubles as the non moving space. We can do this since
219    // non zygote means that we won't have any background compaction.
220    CreateMainMallocSpace(mem_map, initial_size, growth_limit, capacity);
221    non_moving_space_ = main_space_;
222  }
223  CHECK(non_moving_space_ != nullptr);
224
225  // We need to create the bump pointer if the foreground collector is a compacting GC. We only
226  // create the bump pointer space if we are not a moving foreground collector but have a moving
227  // background collector since the heap transition code will create the temp space by recycling
228  // the bitmap from the main space.
229  if (kMovingCollector) {
230    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
231    // TODO: Not create all the bump pointer spaces if not necessary (currently only GSS needs all
232    // 2 of bump pointer spaces + main space) b/14059466. Divide by 2 for a temporary fix.
233    const size_t bump_pointer_space_capacity = capacity / 2;
234    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
235                                                          bump_pointer_space_capacity, nullptr);
236    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
237    AddSpace(bump_pointer_space_);
238    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
239                                                  bump_pointer_space_capacity, nullptr);
240    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
241    AddSpace(temp_space_);
242  }
243  if (non_moving_space_ != main_space_) {
244    AddSpace(non_moving_space_);
245  }
246  if (main_space_ != nullptr) {
247    AddSpace(main_space_);
248  }
249
250  // Allocate the large object space.
251  if (kUseFreeListSpaceForLOS) {
252    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
253  } else {
254    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
255  }
256  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
257  AddSpace(large_object_space_);
258
259  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
260  CHECK(!continuous_spaces_.empty());
261
262  // Relies on the spaces being sorted.
263  byte* heap_begin = continuous_spaces_.front()->Begin();
264  byte* heap_end = continuous_spaces_.back()->Limit();
265  size_t heap_capacity = heap_end - heap_begin;
266
267  // Allocate the card table.
268  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
269  CHECK(card_table_.get() != NULL) << "Failed to create card table";
270
271  // Card cache for now since it makes it easier for us to update the references to the copying
272  // spaces.
273  accounting::ModUnionTable* mod_union_table =
274      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
275                                                      GetImageSpace());
276  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
277  AddModUnionTable(mod_union_table);
278
279  if (collector::SemiSpace::kUseRememberedSet) {
280    accounting::RememberedSet* non_moving_space_rem_set =
281        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
282    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
283    AddRememberedSet(non_moving_space_rem_set);
284    if (main_space_ != nullptr && main_space_ != non_moving_space_) {
285      accounting::RememberedSet* main_space_rem_set =
286          new accounting::RememberedSet("Main space remembered set", this, main_space_);
287      CHECK(main_space_rem_set != nullptr) << "Failed to create main space remembered set";
288      AddRememberedSet(main_space_rem_set);
289    }
290  }
291
292  // TODO: Count objects in the image space here.
293  num_bytes_allocated_ = 0;
294
295  // Default mark stack size in bytes.
296  static const size_t default_mark_stack_size = 64 * KB;
297  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
298  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
299                                                          max_allocation_stack_size_));
300  live_stack_.reset(accounting::ObjectStack::Create("live stack",
301                                                    max_allocation_stack_size_));
302
303  // It's still too early to take a lock because there are no threads yet, but we can create locks
304  // now. We don't create it earlier to make it clear that you can't use locks during heap
305  // initialization.
306  gc_complete_lock_ = new Mutex("GC complete lock");
307  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
308                                                *gc_complete_lock_));
309  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
310  last_gc_size_ = GetBytesAllocated();
311
312  if (ignore_max_footprint_) {
313    SetIdealFootprint(std::numeric_limits<size_t>::max());
314    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
315  }
316  CHECK_NE(max_allowed_footprint_, 0U);
317
318  // Create our garbage collectors.
319  for (size_t i = 0; i < 2; ++i) {
320    const bool concurrent = i != 0;
321    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
322    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
323    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
324  }
325  if (kMovingCollector) {
326    // TODO: Clean this up.
327    bool generational = foreground_collector_type_ == kCollectorTypeGSS;
328    semi_space_collector_ = new collector::SemiSpace(this, generational,
329                                                     generational ? "generational" : "");
330    garbage_collectors_.push_back(semi_space_collector_);
331
332    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
333    garbage_collectors_.push_back(concurrent_copying_collector_);
334  }
335
336  if (running_on_valgrind_) {
337    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
338  }
339
340  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
341    LOG(INFO) << "Heap() exiting";
342  }
343}
344
345void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
346                                 size_t capacity) {
347  // Is background compaction is enabled?
348  bool can_move_objects = IsMovingGc(background_collector_type_) !=
349      IsMovingGc(foreground_collector_type_);
350  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
351  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
352  // from the main space to the zygote space. If background compaction is enabled, always pass in
353  // that we can move objets.
354  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
355    // After the zygote we want this to be false if we don't have background compaction enabled so
356    // that getting primitive array elements is faster.
357    can_move_objects = !have_zygote_space_;
358  }
359  if (kUseRosAlloc) {
360    main_space_ = space::RosAllocSpace::CreateFromMemMap(mem_map, "main rosalloc space",
361                                                         kDefaultStartingSize, initial_size,
362                                                         growth_limit, capacity, low_memory_mode_,
363                                                         can_move_objects);
364    CHECK(main_space_ != nullptr) << "Failed to create rosalloc space";
365  } else {
366    main_space_ = space::DlMallocSpace::CreateFromMemMap(mem_map, "main dlmalloc space",
367                                                         kDefaultStartingSize, initial_size,
368                                                         growth_limit, capacity,
369                                                         can_move_objects);
370    CHECK(main_space_ != nullptr) << "Failed to create dlmalloc space";
371  }
372  main_space_->SetFootprintLimit(main_space_->Capacity());
373  VLOG(heap) << "Created main space " << main_space_;
374}
375
376void Heap::ChangeAllocator(AllocatorType allocator) {
377  if (current_allocator_ != allocator) {
378    // These two allocators are only used internally and don't have any entrypoints.
379    CHECK_NE(allocator, kAllocatorTypeLOS);
380    CHECK_NE(allocator, kAllocatorTypeNonMoving);
381    current_allocator_ = allocator;
382    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
383    SetQuickAllocEntryPointsAllocator(current_allocator_);
384    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
385  }
386}
387
388void Heap::DisableCompaction() {
389  if (IsMovingGc(foreground_collector_type_)) {
390    foreground_collector_type_  = kCollectorTypeCMS;
391  }
392  if (IsMovingGc(background_collector_type_)) {
393    background_collector_type_ = foreground_collector_type_;
394  }
395  TransitionCollector(foreground_collector_type_);
396}
397
398std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
399  if (!IsValidContinuousSpaceObjectAddress(klass)) {
400    return StringPrintf("<non heap address klass %p>", klass);
401  }
402  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
403  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
404    std::string result("[");
405    result += SafeGetClassDescriptor(component_type);
406    return result;
407  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
408    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
409  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
410    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
411  } else {
412    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
413    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
414      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
415    }
416    const DexFile* dex_file = dex_cache->GetDexFile();
417    uint16_t class_def_idx = klass->GetDexClassDefIndex();
418    if (class_def_idx == DexFile::kDexNoIndex16) {
419      return "<class def not found>";
420    }
421    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
422    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
423    return dex_file->GetTypeDescriptor(type_id);
424  }
425}
426
427std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
428  if (obj == nullptr) {
429    return "null";
430  }
431  mirror::Class* klass = obj->GetClass<kVerifyNone>();
432  if (klass == nullptr) {
433    return "(class=null)";
434  }
435  std::string result(SafeGetClassDescriptor(klass));
436  if (obj->IsClass()) {
437    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
438  }
439  return result;
440}
441
442void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
443  if (obj == nullptr) {
444    stream << "(obj=null)";
445    return;
446  }
447  if (IsAligned<kObjectAlignment>(obj)) {
448    space::Space* space = nullptr;
449    // Don't use find space since it only finds spaces which actually contain objects instead of
450    // spaces which may contain objects (e.g. cleared bump pointer spaces).
451    for (const auto& cur_space : continuous_spaces_) {
452      if (cur_space->HasAddress(obj)) {
453        space = cur_space;
454        break;
455      }
456    }
457    // Unprotect all the spaces.
458    for (const auto& space : continuous_spaces_) {
459      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
460    }
461    stream << "Object " << obj;
462    if (space != nullptr) {
463      stream << " in space " << *space;
464    }
465    mirror::Class* klass = obj->GetClass<kVerifyNone>();
466    stream << "\nclass=" << klass;
467    if (klass != nullptr) {
468      stream << " type= " << SafePrettyTypeOf(obj);
469    }
470    // Re-protect the address we faulted on.
471    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
472  }
473}
474
475bool Heap::IsCompilingBoot() const {
476  for (const auto& space : continuous_spaces_) {
477    if (space->IsImageSpace() || space->IsZygoteSpace()) {
478      return false;
479    }
480  }
481  return true;
482}
483
484bool Heap::HasImageSpace() const {
485  for (const auto& space : continuous_spaces_) {
486    if (space->IsImageSpace()) {
487      return true;
488    }
489  }
490  return false;
491}
492
493void Heap::IncrementDisableMovingGC(Thread* self) {
494  // Need to do this holding the lock to prevent races where the GC is about to run / running when
495  // we attempt to disable it.
496  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
497  MutexLock mu(self, *gc_complete_lock_);
498  ++disable_moving_gc_count_;
499  if (IsMovingGc(collector_type_running_)) {
500    WaitForGcToCompleteLocked(self);
501  }
502}
503
504void Heap::DecrementDisableMovingGC(Thread* self) {
505  MutexLock mu(self, *gc_complete_lock_);
506  CHECK_GE(disable_moving_gc_count_, 0U);
507  --disable_moving_gc_count_;
508}
509
510void Heap::UpdateProcessState(ProcessState process_state) {
511  if (process_state_ != process_state) {
512    process_state_ = process_state;
513    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
514      // Start at index 1 to avoid "is always false" warning.
515      // Have iteration 1 always transition the collector.
516      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
517                          ? foreground_collector_type_ : background_collector_type_);
518      usleep(kCollectorTransitionStressWait);
519    }
520    if (process_state_ == kProcessStateJankPerceptible) {
521      // Transition back to foreground right away to prevent jank.
522      RequestCollectorTransition(foreground_collector_type_, 0);
523    } else {
524      // Don't delay for debug builds since we may want to stress test the GC.
525      RequestCollectorTransition(background_collector_type_, kIsDebugBuild ? 0 :
526          kCollectorTransitionWait);
527    }
528  }
529}
530
531void Heap::CreateThreadPool() {
532  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
533  if (num_threads != 0) {
534    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
535  }
536}
537
538void Heap::VisitObjects(ObjectCallback callback, void* arg) {
539  Thread* self = Thread::Current();
540  // GCs can move objects, so don't allow this.
541  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
542  if (bump_pointer_space_ != nullptr) {
543    // Visit objects in bump pointer space.
544    bump_pointer_space_->Walk(callback, arg);
545  }
546  // TODO: Switch to standard begin and end to use ranged a based loop.
547  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
548      it < end; ++it) {
549    mirror::Object* obj = *it;
550    if (obj != nullptr && obj->GetClass() != nullptr) {
551      // Avoid the race condition caused by the object not yet being written into the allocation
552      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
553      // there can be nulls on the allocation stack.
554      callback(obj, arg);
555    }
556  }
557  GetLiveBitmap()->Walk(callback, arg);
558  self->EndAssertNoThreadSuspension(old_cause);
559}
560
561void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
562  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
563  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
564  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
565  // TODO: Generalize this to n bitmaps?
566  if (space1 == nullptr) {
567    DCHECK(space2 != nullptr);
568    space1 = space2;
569  }
570  if (space2 == nullptr) {
571    DCHECK(space1 != nullptr);
572    space2 = space1;
573  }
574  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
575                 large_object_space_->GetLiveBitmap(), stack);
576}
577
578void Heap::DeleteThreadPool() {
579  thread_pool_.reset(nullptr);
580}
581
582void Heap::AddSpace(space::Space* space, bool set_as_default) {
583  DCHECK(space != nullptr);
584  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
585  if (space->IsContinuousSpace()) {
586    DCHECK(!space->IsDiscontinuousSpace());
587    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
588    // Continuous spaces don't necessarily have bitmaps.
589    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
590    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
591    if (live_bitmap != nullptr) {
592      DCHECK(mark_bitmap != nullptr);
593      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
594      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
595    }
596    continuous_spaces_.push_back(continuous_space);
597    if (set_as_default) {
598      if (continuous_space->IsDlMallocSpace()) {
599        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
600      } else if (continuous_space->IsRosAllocSpace()) {
601        // Revoke before if we already have a rosalloc_space_ so that we don't end up with non full
602        // runs from the previous one during the revoke after.
603        if (rosalloc_space_ != nullptr) {
604          rosalloc_space_->RevokeAllThreadLocalBuffers();
605        }
606        rosalloc_space_ = continuous_space->AsRosAllocSpace();
607      }
608    }
609    // Ensure that spaces remain sorted in increasing order of start address.
610    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
611              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
612      return a->Begin() < b->Begin();
613    });
614  } else {
615    DCHECK(space->IsDiscontinuousSpace());
616    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
617    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
618    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
619    discontinuous_spaces_.push_back(discontinuous_space);
620  }
621  if (space->IsAllocSpace()) {
622    alloc_spaces_.push_back(space->AsAllocSpace());
623  }
624}
625
626void Heap::RemoveSpace(space::Space* space, bool unset_as_default) {
627  DCHECK(space != nullptr);
628  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
629  if (space->IsContinuousSpace()) {
630    DCHECK(!space->IsDiscontinuousSpace());
631    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
632    // Continuous spaces don't necessarily have bitmaps.
633    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
634    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
635    if (live_bitmap != nullptr) {
636      DCHECK(mark_bitmap != nullptr);
637      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
638      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
639    }
640    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
641    DCHECK(it != continuous_spaces_.end());
642    continuous_spaces_.erase(it);
643    if (unset_as_default) {
644      if (continuous_space == dlmalloc_space_) {
645        dlmalloc_space_ = nullptr;
646      } else if (continuous_space == rosalloc_space_) {
647        rosalloc_space_ = nullptr;
648      }
649      if (continuous_space == main_space_) {
650        main_space_ = nullptr;
651      } else if (continuous_space == bump_pointer_space_) {
652        bump_pointer_space_ = nullptr;
653      } else if (continuous_space == temp_space_) {
654        temp_space_ = nullptr;
655      }
656    }
657  } else {
658    DCHECK(space->IsDiscontinuousSpace());
659    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
660    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
661    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
662    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
663                        discontinuous_space);
664    DCHECK(it != discontinuous_spaces_.end());
665    discontinuous_spaces_.erase(it);
666  }
667  if (space->IsAllocSpace()) {
668    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
669    DCHECK(it != alloc_spaces_.end());
670    alloc_spaces_.erase(it);
671  }
672}
673
674void Heap::RegisterGCAllocation(size_t bytes) {
675  if (this != nullptr) {
676    gc_memory_overhead_.FetchAndAdd(bytes);
677  }
678}
679
680void Heap::RegisterGCDeAllocation(size_t bytes) {
681  if (this != nullptr) {
682    gc_memory_overhead_.FetchAndSub(bytes);
683  }
684}
685
686void Heap::DumpGcPerformanceInfo(std::ostream& os) {
687  // Dump cumulative timings.
688  os << "Dumping cumulative Gc timings\n";
689  uint64_t total_duration = 0;
690  // Dump cumulative loggers for each GC type.
691  uint64_t total_paused_time = 0;
692  for (auto& collector : garbage_collectors_) {
693    const CumulativeLogger& logger = collector->GetCumulativeTimings();
694    const size_t iterations = logger.GetIterations();
695    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
696    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
697      os << ConstDumpable<CumulativeLogger>(logger);
698      const uint64_t total_ns = logger.GetTotalNs();
699      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
700      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
701      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
702      const uint64_t freed_objects = collector->GetTotalFreedObjects();
703      Histogram<uint64_t>::CumulativeData cumulative_data;
704      pause_histogram.CreateHistogram(&cumulative_data);
705      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
706      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
707         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
708         << collector->GetName() << " freed: " << freed_objects
709         << " objects with total size " << PrettySize(freed_bytes) << "\n"
710         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
711         << PrettySize(freed_bytes / seconds) << "/s\n";
712      total_duration += total_ns;
713      total_paused_time += total_pause_ns;
714    }
715    collector->ResetMeasurements();
716  }
717  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
718  if (total_duration != 0) {
719    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
720    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
721    os << "Mean GC size throughput: "
722       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
723    os << "Mean GC object throughput: "
724       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
725  }
726  size_t total_objects_allocated = GetObjectsAllocatedEver();
727  os << "Total number of allocations: " << total_objects_allocated << "\n";
728  size_t total_bytes_allocated = GetBytesAllocatedEver();
729  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
730  if (kMeasureAllocationTime) {
731    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
732    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
733       << "\n";
734  }
735  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
736  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
737  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
738  BaseMutex::DumpAll(os);
739}
740
741Heap::~Heap() {
742  VLOG(heap) << "Starting ~Heap()";
743  STLDeleteElements(&garbage_collectors_);
744  // If we don't reset then the mark stack complains in its destructor.
745  allocation_stack_->Reset();
746  live_stack_->Reset();
747  STLDeleteValues(&mod_union_tables_);
748  STLDeleteValues(&remembered_sets_);
749  STLDeleteElements(&continuous_spaces_);
750  STLDeleteElements(&discontinuous_spaces_);
751  delete gc_complete_lock_;
752  delete heap_trim_request_lock_;
753  VLOG(heap) << "Finished ~Heap()";
754}
755
756space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
757                                                            bool fail_ok) const {
758  for (const auto& space : continuous_spaces_) {
759    if (space->Contains(obj)) {
760      return space;
761    }
762  }
763  if (!fail_ok) {
764    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
765  }
766  return NULL;
767}
768
769space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
770                                                                  bool fail_ok) const {
771  for (const auto& space : discontinuous_spaces_) {
772    if (space->Contains(obj)) {
773      return space;
774    }
775  }
776  if (!fail_ok) {
777    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
778  }
779  return NULL;
780}
781
782space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
783  space::Space* result = FindContinuousSpaceFromObject(obj, true);
784  if (result != NULL) {
785    return result;
786  }
787  return FindDiscontinuousSpaceFromObject(obj, true);
788}
789
790struct SoftReferenceArgs {
791  IsMarkedCallback* is_marked_callback_;
792  MarkObjectCallback* mark_callback_;
793  void* arg_;
794};
795
796mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
797  SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg);
798  // TODO: Not preserve all soft references.
799  return args->mark_callback_(obj, args->arg_);
800}
801
802void Heap::ProcessSoftReferences(TimingLogger& timings, bool clear_soft,
803                                 IsMarkedCallback* is_marked_callback,
804                                 MarkObjectCallback* mark_object_callback,
805                                 ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
806  // Unless required to clear soft references with white references, preserve some white referents.
807  if (!clear_soft) {
808    // Don't clear for sticky GC.
809    SoftReferenceArgs soft_reference_args;
810    soft_reference_args.is_marked_callback_ = is_marked_callback;
811    soft_reference_args.mark_callback_ = mark_object_callback;
812    soft_reference_args.arg_ = arg;
813    // References with a marked referent are removed from the list.
814    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
815                                                     &soft_reference_args);
816    process_mark_stack_callback(arg);
817  }
818}
819
820// Process reference class instances and schedule finalizations.
821void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
822                             IsMarkedCallback* is_marked_callback,
823                             MarkObjectCallback* mark_object_callback,
824                             ProcessMarkStackCallback* process_mark_stack_callback, void* arg) {
825  timings.StartSplit("(Paused)ProcessReferences");
826  ProcessSoftReferences(timings, clear_soft, is_marked_callback, mark_object_callback,
827                        process_mark_stack_callback, arg);
828  // Clear all remaining soft and weak references with white referents.
829  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
830  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
831  timings.EndSplit();
832  // Preserve all white objects with finalize methods and schedule them for finalization.
833  timings.StartSplit("(Paused)EnqueueFinalizerReferences");
834  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
835                                                        mark_object_callback, arg);
836  process_mark_stack_callback(arg);
837  timings.EndSplit();
838  timings.StartSplit("(Paused)ProcessReferences");
839  // Clear all f-reachable soft and weak references with white referents.
840  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
841  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
842  // Clear all phantom references with white referents.
843  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
844  // At this point all reference queues other than the cleared references should be empty.
845  DCHECK(soft_reference_queue_.IsEmpty());
846  DCHECK(weak_reference_queue_.IsEmpty());
847  DCHECK(finalizer_reference_queue_.IsEmpty());
848  DCHECK(phantom_reference_queue_.IsEmpty());
849  timings.EndSplit();
850}
851
852// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
853// marked, put it on the appropriate list in the heap for later processing.
854void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
855                                  IsMarkedCallback is_marked_callback, void* arg) {
856  // klass can be the class of the old object if the visitor already updated the class of ref.
857  DCHECK(klass->IsReferenceClass());
858  mirror::Object* referent = ref->GetReferent();
859  if (referent != nullptr) {
860    mirror::Object* forward_address = is_marked_callback(referent, arg);
861    // Null means that the object is not currently marked.
862    if (forward_address == nullptr) {
863      Thread* self = Thread::Current();
864      // TODO: Remove these locks, and use atomic stacks for storing references?
865      // We need to check that the references haven't already been enqueued since we can end up
866      // scanning the same reference multiple times due to dirty cards.
867      if (klass->IsSoftReferenceClass()) {
868        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
869      } else if (klass->IsWeakReferenceClass()) {
870        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
871      } else if (klass->IsFinalizerReferenceClass()) {
872        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
873      } else if (klass->IsPhantomReferenceClass()) {
874        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
875      } else {
876        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
877                   << klass->GetAccessFlags();
878      }
879    } else if (referent != forward_address) {
880      // Referent is already marked and we need to update it.
881      ref->SetReferent<false>(forward_address);
882    }
883  }
884}
885
886space::ImageSpace* Heap::GetImageSpace() const {
887  for (const auto& space : continuous_spaces_) {
888    if (space->IsImageSpace()) {
889      return space->AsImageSpace();
890    }
891  }
892  return NULL;
893}
894
895static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
896  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
897  if (used_bytes < chunk_size) {
898    size_t chunk_free_bytes = chunk_size - used_bytes;
899    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
900    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
901  }
902}
903
904void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
905  std::ostringstream oss;
906  size_t total_bytes_free = GetFreeMemory();
907  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
908      << " free bytes";
909  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
910  if (!large_object_allocation && total_bytes_free >= byte_count) {
911    size_t max_contiguous_allocation = 0;
912    for (const auto& space : continuous_spaces_) {
913      if (space->IsMallocSpace()) {
914        // To allow the Walk/InspectAll() to exclusively-lock the mutator
915        // lock, temporarily release the shared access to the mutator
916        // lock here by transitioning to the suspended state.
917        Locks::mutator_lock_->AssertSharedHeld(self);
918        self->TransitionFromRunnableToSuspended(kSuspended);
919        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
920        self->TransitionFromSuspendedToRunnable();
921        Locks::mutator_lock_->AssertSharedHeld(self);
922      }
923    }
924    oss << "; failed due to fragmentation (largest possible contiguous allocation "
925        <<  max_contiguous_allocation << " bytes)";
926  }
927  self->ThrowOutOfMemoryError(oss.str().c_str());
928}
929
930void Heap::DoPendingTransitionOrTrim() {
931  Thread* self = Thread::Current();
932  CollectorType desired_collector_type;
933  // Wait until we reach the desired transition time.
934  while (true) {
935    uint64_t wait_time;
936    {
937      MutexLock mu(self, *heap_trim_request_lock_);
938      desired_collector_type = desired_collector_type_;
939      uint64_t current_time = NanoTime();
940      if (current_time >= heap_transition_target_time_) {
941        break;
942      }
943      wait_time = heap_transition_target_time_ - current_time;
944    }
945    ScopedThreadStateChange tsc(self, kSleeping);
946    usleep(wait_time / 1000);  // Usleep takes microseconds.
947  }
948  // Transition the collector if the desired collector type is not the same as the current
949  // collector type.
950  TransitionCollector(desired_collector_type);
951  if (!CareAboutPauseTimes()) {
952    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
953    // about pauses.
954    Runtime* runtime = Runtime::Current();
955    runtime->GetThreadList()->SuspendAll();
956    runtime->GetMonitorList()->DeflateMonitors();
957    runtime->GetThreadList()->ResumeAll();
958    // Do a heap trim if it is needed.
959    Trim();
960  }
961}
962
963void Heap::Trim() {
964  Thread* self = Thread::Current();
965  {
966    MutexLock mu(self, *heap_trim_request_lock_);
967    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
968      return;
969    }
970    last_trim_time_ = NanoTime();
971    heap_trim_request_pending_ = false;
972  }
973  {
974    // Need to do this before acquiring the locks since we don't want to get suspended while
975    // holding any locks.
976    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
977    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
978    // trimming.
979    MutexLock mu(self, *gc_complete_lock_);
980    // Ensure there is only one GC at a time.
981    WaitForGcToCompleteLocked(self);
982    collector_type_running_ = kCollectorTypeHeapTrim;
983  }
984  uint64_t start_ns = NanoTime();
985  // Trim the managed spaces.
986  uint64_t total_alloc_space_allocated = 0;
987  uint64_t total_alloc_space_size = 0;
988  uint64_t managed_reclaimed = 0;
989  for (const auto& space : continuous_spaces_) {
990    if (space->IsMallocSpace()) {
991      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
992      total_alloc_space_size += alloc_space->Size();
993      managed_reclaimed += alloc_space->Trim();
994    }
995  }
996  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
997  if (bump_pointer_space_ != nullptr) {
998    total_alloc_space_allocated -= bump_pointer_space_->Size();
999  }
1000  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1001      static_cast<float>(total_alloc_space_size);
1002  uint64_t gc_heap_end_ns = NanoTime();
1003  // We never move things in the native heap, so we can finish the GC at this point.
1004  FinishGC(self, collector::kGcTypeNone);
1005  // Trim the native heap.
1006  dlmalloc_trim(0);
1007  size_t native_reclaimed = 0;
1008  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1009  uint64_t end_ns = NanoTime();
1010  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1011      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1012      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1013      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1014      << "%.";
1015}
1016
1017bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1018  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1019  // taking the lock.
1020  if (obj == nullptr) {
1021    return true;
1022  }
1023  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1024}
1025
1026bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1027  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1028}
1029
1030bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1031  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1032    return false;
1033  }
1034  for (const auto& space : continuous_spaces_) {
1035    if (space->HasAddress(obj)) {
1036      return true;
1037    }
1038  }
1039  return false;
1040}
1041
1042bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1043                              bool search_live_stack, bool sorted) {
1044  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1045    return false;
1046  }
1047  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1048    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1049    if (obj == klass) {
1050      // This case happens for java.lang.Class.
1051      return true;
1052    }
1053    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1054  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1055    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1056    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1057    return temp_space_->Contains(obj);
1058  }
1059  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1060  space::DiscontinuousSpace* d_space = nullptr;
1061  if (c_space != nullptr) {
1062    if (c_space->GetLiveBitmap()->Test(obj)) {
1063      return true;
1064    }
1065  } else {
1066    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1067    if (d_space != nullptr) {
1068      if (d_space->GetLiveBitmap()->Test(obj)) {
1069        return true;
1070      }
1071    }
1072  }
1073  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1074  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1075    if (i > 0) {
1076      NanoSleep(MsToNs(10));
1077    }
1078    if (search_allocation_stack) {
1079      if (sorted) {
1080        if (allocation_stack_->ContainsSorted(obj)) {
1081          return true;
1082        }
1083      } else if (allocation_stack_->Contains(obj)) {
1084        return true;
1085      }
1086    }
1087
1088    if (search_live_stack) {
1089      if (sorted) {
1090        if (live_stack_->ContainsSorted(obj)) {
1091          return true;
1092        }
1093      } else if (live_stack_->Contains(obj)) {
1094        return true;
1095      }
1096    }
1097  }
1098  // We need to check the bitmaps again since there is a race where we mark something as live and
1099  // then clear the stack containing it.
1100  if (c_space != nullptr) {
1101    if (c_space->GetLiveBitmap()->Test(obj)) {
1102      return true;
1103    }
1104  } else {
1105    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1106    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1107      return true;
1108    }
1109  }
1110  return false;
1111}
1112
1113void Heap::DumpSpaces(std::ostream& stream) {
1114  for (const auto& space : continuous_spaces_) {
1115    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1116    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1117    stream << space << " " << *space << "\n";
1118    if (live_bitmap != nullptr) {
1119      stream << live_bitmap << " " << *live_bitmap << "\n";
1120    }
1121    if (mark_bitmap != nullptr) {
1122      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1123    }
1124  }
1125  for (const auto& space : discontinuous_spaces_) {
1126    stream << space << " " << *space << "\n";
1127  }
1128}
1129
1130void Heap::VerifyObjectBody(mirror::Object* obj) {
1131  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
1132    return;
1133  }
1134  // Ignore early dawn of the universe verifications.
1135  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
1136    return;
1137  }
1138  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1139  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(
1140      mirror::Object::ClassOffset(), false);
1141  CHECK(c != nullptr) << "Null class in object " << obj;
1142  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1143  CHECK(VerifyClassClass(c));
1144
1145  if (verify_object_mode_ > kVerifyObjectModeFast) {
1146    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1147    if (!IsLiveObjectLocked(obj)) {
1148      DumpSpaces();
1149      LOG(FATAL) << "Object is dead: " << obj;
1150    }
1151  }
1152}
1153
1154void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1155  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1156}
1157
1158void Heap::VerifyHeap() {
1159  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1160  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1161}
1162
1163void Heap::RecordFree(ssize_t freed_objects, ssize_t freed_bytes) {
1164  // Use signed comparison since freed bytes can be negative when background compaction foreground
1165  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1166  // free list backed space typically increasing memory footprint due to padding and binning.
1167  DCHECK_LE(freed_bytes, static_cast<ssize_t>(num_bytes_allocated_.Load()));
1168  DCHECK_GE(freed_objects, 0);
1169  num_bytes_allocated_.FetchAndSub(freed_bytes);
1170  if (Runtime::Current()->HasStatsEnabled()) {
1171    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1172    thread_stats->freed_objects += freed_objects;
1173    thread_stats->freed_bytes += freed_bytes;
1174    // TODO: Do this concurrently.
1175    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1176    global_stats->freed_objects += freed_objects;
1177    global_stats->freed_bytes += freed_bytes;
1178  }
1179}
1180
1181mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1182                                             size_t alloc_size, size_t* bytes_allocated,
1183                                             size_t* usable_size,
1184                                             mirror::Class** klass) {
1185  mirror::Object* ptr = nullptr;
1186  bool was_default_allocator = allocator == GetCurrentAllocator();
1187  DCHECK(klass != nullptr);
1188  SirtRef<mirror::Class> sirt_klass(self, *klass);
1189  // The allocation failed. If the GC is running, block until it completes, and then retry the
1190  // allocation.
1191  collector::GcType last_gc = WaitForGcToComplete(self);
1192  if (last_gc != collector::kGcTypeNone) {
1193    // If we were the default allocator but the allocator changed while we were suspended,
1194    // abort the allocation.
1195    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1196      *klass = sirt_klass.get();
1197      return nullptr;
1198    }
1199    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1200    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1201  }
1202
1203  collector::GcType tried_type = next_gc_type_;
1204  if (ptr == nullptr) {
1205    const bool gc_ran =
1206        CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1207    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1208      *klass = sirt_klass.get();
1209      return nullptr;
1210    }
1211    if (gc_ran) {
1212      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1213    }
1214  }
1215
1216  // Loop through our different Gc types and try to Gc until we get enough free memory.
1217  for (collector::GcType gc_type : gc_plan_) {
1218    if (ptr != nullptr) {
1219      break;
1220    }
1221    if (gc_type == tried_type) {
1222      continue;
1223    }
1224    // Attempt to run the collector, if we succeed, re-try the allocation.
1225    const bool gc_ran =
1226        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1227    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1228      *klass = sirt_klass.get();
1229      return nullptr;
1230    }
1231    if (gc_ran) {
1232      // Did we free sufficient memory for the allocation to succeed?
1233      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated, usable_size);
1234    }
1235  }
1236  // Allocations have failed after GCs;  this is an exceptional state.
1237  if (ptr == nullptr) {
1238    // Try harder, growing the heap if necessary.
1239    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1240  }
1241  if (ptr == nullptr) {
1242    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1243    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1244    // VM spec requires that all SoftReferences have been collected and cleared before throwing
1245    // OOME.
1246    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1247             << " allocation";
1248    // TODO: Run finalization, but this may cause more allocations to occur.
1249    // We don't need a WaitForGcToComplete here either.
1250    DCHECK(!gc_plan_.empty());
1251    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1252    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1253      *klass = sirt_klass.get();
1254      return nullptr;
1255    }
1256    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1257    if (ptr == nullptr) {
1258      ThrowOutOfMemoryError(self, alloc_size, false);
1259    }
1260  }
1261  *klass = sirt_klass.get();
1262  return ptr;
1263}
1264
1265void Heap::SetTargetHeapUtilization(float target) {
1266  DCHECK_GT(target, 0.0f);  // asserted in Java code
1267  DCHECK_LT(target, 1.0f);
1268  target_utilization_ = target;
1269}
1270
1271size_t Heap::GetObjectsAllocated() const {
1272  size_t total = 0;
1273  for (space::AllocSpace* space : alloc_spaces_) {
1274    total += space->GetObjectsAllocated();
1275  }
1276  return total;
1277}
1278
1279size_t Heap::GetObjectsAllocatedEver() const {
1280  return GetObjectsFreedEver() + GetObjectsAllocated();
1281}
1282
1283size_t Heap::GetBytesAllocatedEver() const {
1284  return GetBytesFreedEver() + GetBytesAllocated();
1285}
1286
1287class InstanceCounter {
1288 public:
1289  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1290      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1291      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1292  }
1293  static void Callback(mirror::Object* obj, void* arg)
1294      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1295    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1296    mirror::Class* instance_class = obj->GetClass();
1297    CHECK(instance_class != nullptr);
1298    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1299      if (instance_counter->use_is_assignable_from_) {
1300        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1301          ++instance_counter->counts_[i];
1302        }
1303      } else if (instance_class == instance_counter->classes_[i]) {
1304        ++instance_counter->counts_[i];
1305      }
1306    }
1307  }
1308
1309 private:
1310  const std::vector<mirror::Class*>& classes_;
1311  bool use_is_assignable_from_;
1312  uint64_t* const counts_;
1313  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1314};
1315
1316void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1317                          uint64_t* counts) {
1318  // Can't do any GC in this function since this may move classes.
1319  Thread* self = Thread::Current();
1320  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1321  InstanceCounter counter(classes, use_is_assignable_from, counts);
1322  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1323  VisitObjects(InstanceCounter::Callback, &counter);
1324  self->EndAssertNoThreadSuspension(old_cause);
1325}
1326
1327class InstanceCollector {
1328 public:
1329  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1330      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1331      : class_(c), max_count_(max_count), instances_(instances) {
1332  }
1333  static void Callback(mirror::Object* obj, void* arg)
1334      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1335    DCHECK(arg != nullptr);
1336    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1337    mirror::Class* instance_class = obj->GetClass();
1338    if (instance_class == instance_collector->class_) {
1339      if (instance_collector->max_count_ == 0 ||
1340          instance_collector->instances_.size() < instance_collector->max_count_) {
1341        instance_collector->instances_.push_back(obj);
1342      }
1343    }
1344  }
1345
1346 private:
1347  mirror::Class* class_;
1348  uint32_t max_count_;
1349  std::vector<mirror::Object*>& instances_;
1350  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1351};
1352
1353void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1354                        std::vector<mirror::Object*>& instances) {
1355  // Can't do any GC in this function since this may move classes.
1356  Thread* self = Thread::Current();
1357  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1358  InstanceCollector collector(c, max_count, instances);
1359  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1360  VisitObjects(&InstanceCollector::Callback, &collector);
1361  self->EndAssertNoThreadSuspension(old_cause);
1362}
1363
1364class ReferringObjectsFinder {
1365 public:
1366  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1367                         std::vector<mirror::Object*>& referring_objects)
1368      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1369      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1370  }
1371
1372  static void Callback(mirror::Object* obj, void* arg)
1373      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1374    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1375  }
1376
1377  // For bitmap Visit.
1378  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1379  // annotalysis on visitors.
1380  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1381    o->VisitReferences<true>(*this);
1382  }
1383
1384  // For Object::VisitReferences.
1385  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1386      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1387    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
1388    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1389      referring_objects_.push_back(obj);
1390    }
1391  }
1392
1393 private:
1394  mirror::Object* object_;
1395  uint32_t max_count_;
1396  std::vector<mirror::Object*>& referring_objects_;
1397  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1398};
1399
1400void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1401                               std::vector<mirror::Object*>& referring_objects) {
1402  // Can't do any GC in this function since this may move the object o.
1403  Thread* self = Thread::Current();
1404  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1405  ReferringObjectsFinder finder(o, max_count, referring_objects);
1406  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1407  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1408  self->EndAssertNoThreadSuspension(old_cause);
1409}
1410
1411void Heap::CollectGarbage(bool clear_soft_references) {
1412  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1413  // last GC will not have necessarily been cleared.
1414  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1415}
1416
1417void Heap::TransitionCollector(CollectorType collector_type) {
1418  if (collector_type == collector_type_) {
1419    return;
1420  }
1421  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1422             << " -> " << static_cast<int>(collector_type);
1423  uint64_t start_time = NanoTime();
1424  uint32_t before_allocated = num_bytes_allocated_.Load();
1425  ThreadList* tl = Runtime::Current()->GetThreadList();
1426  Thread* self = Thread::Current();
1427  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1428  Locks::mutator_lock_->AssertNotHeld(self);
1429  const bool copying_transition =
1430      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1431  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1432  // compacting_gc_disable_count_, this should rarely occurs).
1433  for (;;) {
1434    {
1435      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1436      MutexLock mu(self, *gc_complete_lock_);
1437      // Ensure there is only one GC at a time.
1438      WaitForGcToCompleteLocked(self);
1439      // If someone else beat us to it and changed the collector before we could, exit.
1440      // This is safe to do before the suspend all since we set the collector_type_running_ before
1441      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1442      // then it would get blocked on WaitForGcToCompleteLocked.
1443      if (collector_type == collector_type_) {
1444        return;
1445      }
1446      if (Runtime::Current()->IsShuttingDown(self)) {
1447        // Don't allow heap transitions to happen if the runtime is shutting down since these can
1448        // cause objects to get finalized.
1449        return;
1450      }
1451      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1452      if (!copying_transition || disable_moving_gc_count_ == 0) {
1453        // TODO: Not hard code in semi-space collector?
1454        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1455        break;
1456      }
1457    }
1458    usleep(1000);
1459  }
1460  tl->SuspendAll();
1461  switch (collector_type) {
1462    case kCollectorTypeSS:
1463      // Fall-through.
1464    case kCollectorTypeGSS: {
1465      if (!IsMovingGc(collector_type_)) {
1466        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1467        // pointer space last transition it will be protected.
1468        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1469        Compact(bump_pointer_space_, main_space_);
1470        // Remove the main space so that we don't try to trim it, this doens't work for debug
1471        // builds since RosAlloc attempts to read the magic number from a protected page.
1472        // TODO: Clean this up by getting rid of the remove_as_default parameter.
1473        RemoveSpace(main_space_, false);
1474      }
1475      break;
1476    }
1477    case kCollectorTypeMS:
1478      // Fall through.
1479    case kCollectorTypeCMS: {
1480      if (IsMovingGc(collector_type_)) {
1481        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1482        AddSpace(main_space_, false);
1483        main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1484        Compact(main_space_, bump_pointer_space_);
1485      }
1486      break;
1487    }
1488    default: {
1489      LOG(FATAL) << "Attempted to transition to invalid collector type "
1490                 << static_cast<size_t>(collector_type);
1491      break;
1492    }
1493  }
1494  ChangeCollector(collector_type);
1495  tl->ResumeAll();
1496  // Can't call into java code with all threads suspended.
1497  EnqueueClearedReferences();
1498  uint64_t duration = NanoTime() - start_time;
1499  GrowForUtilization(semi_space_collector_);
1500  FinishGC(self, collector::kGcTypeFull);
1501  int32_t after_allocated = num_bytes_allocated_.Load();
1502  int32_t delta_allocated = before_allocated - after_allocated;
1503  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1504      << PrettyDuration(duration) << " saved at least " << PrettySize(delta_allocated);
1505}
1506
1507void Heap::ChangeCollector(CollectorType collector_type) {
1508  // TODO: Only do this with all mutators suspended to avoid races.
1509  if (collector_type != collector_type_) {
1510    collector_type_ = collector_type;
1511    gc_plan_.clear();
1512    switch (collector_type_) {
1513      case kCollectorTypeCC:  // Fall-through.
1514      case kCollectorTypeSS:  // Fall-through.
1515      case kCollectorTypeGSS: {
1516        gc_plan_.push_back(collector::kGcTypeFull);
1517        if (use_tlab_) {
1518          ChangeAllocator(kAllocatorTypeTLAB);
1519        } else {
1520          ChangeAllocator(kAllocatorTypeBumpPointer);
1521        }
1522        break;
1523      }
1524      case kCollectorTypeMS: {
1525        gc_plan_.push_back(collector::kGcTypeSticky);
1526        gc_plan_.push_back(collector::kGcTypePartial);
1527        gc_plan_.push_back(collector::kGcTypeFull);
1528        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1529        break;
1530      }
1531      case kCollectorTypeCMS: {
1532        gc_plan_.push_back(collector::kGcTypeSticky);
1533        gc_plan_.push_back(collector::kGcTypePartial);
1534        gc_plan_.push_back(collector::kGcTypeFull);
1535        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1536        break;
1537      }
1538      default: {
1539        LOG(FATAL) << "Unimplemented";
1540      }
1541    }
1542    if (IsGcConcurrent()) {
1543      concurrent_start_bytes_ =
1544          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1545    } else {
1546      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1547    }
1548  }
1549}
1550
1551// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1552class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1553 public:
1554  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1555      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1556  }
1557
1558  void BuildBins(space::ContinuousSpace* space) {
1559    bin_live_bitmap_ = space->GetLiveBitmap();
1560    bin_mark_bitmap_ = space->GetMarkBitmap();
1561    BinContext context;
1562    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1563    context.collector_ = this;
1564    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1565    // Note: This requires traversing the space in increasing order of object addresses.
1566    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1567    // Add the last bin which spans after the last object to the end of the space.
1568    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1569  }
1570
1571 private:
1572  struct BinContext {
1573    uintptr_t prev_;  // The end of the previous object.
1574    ZygoteCompactingCollector* collector_;
1575  };
1576  // Maps from bin sizes to locations.
1577  std::multimap<size_t, uintptr_t> bins_;
1578  // Live bitmap of the space which contains the bins.
1579  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1580  // Mark bitmap of the space which contains the bins.
1581  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1582
1583  static void Callback(mirror::Object* obj, void* arg)
1584      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1585    DCHECK(arg != nullptr);
1586    BinContext* context = reinterpret_cast<BinContext*>(arg);
1587    ZygoteCompactingCollector* collector = context->collector_;
1588    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1589    size_t bin_size = object_addr - context->prev_;
1590    // Add the bin consisting of the end of the previous object to the start of the current object.
1591    collector->AddBin(bin_size, context->prev_);
1592    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1593  }
1594
1595  void AddBin(size_t size, uintptr_t position) {
1596    if (size != 0) {
1597      bins_.insert(std::make_pair(size, position));
1598    }
1599  }
1600
1601  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1602    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1603    // allocator.
1604    return false;
1605  }
1606
1607  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1608      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1609    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1610    mirror::Object* forward_address;
1611    // Find the smallest bin which we can move obj in.
1612    auto it = bins_.lower_bound(object_size);
1613    if (it == bins_.end()) {
1614      // No available space in the bins, place it in the target space instead (grows the zygote
1615      // space).
1616      size_t bytes_allocated;
1617      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1618      if (to_space_live_bitmap_ != nullptr) {
1619        to_space_live_bitmap_->Set(forward_address);
1620      } else {
1621        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1622        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1623      }
1624    } else {
1625      size_t size = it->first;
1626      uintptr_t pos = it->second;
1627      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1628      forward_address = reinterpret_cast<mirror::Object*>(pos);
1629      // Set the live and mark bits so that sweeping system weaks works properly.
1630      bin_live_bitmap_->Set(forward_address);
1631      bin_mark_bitmap_->Set(forward_address);
1632      DCHECK_GE(size, object_size);
1633      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1634    }
1635    // Copy the object over to its new location.
1636    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1637    if (kUseBakerOrBrooksReadBarrier) {
1638      obj->AssertReadBarrierPointer();
1639      if (kUseBrooksReadBarrier) {
1640        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1641        forward_address->SetReadBarrierPointer(forward_address);
1642      }
1643      forward_address->AssertReadBarrierPointer();
1644    }
1645    return forward_address;
1646  }
1647};
1648
1649void Heap::UnBindBitmaps() {
1650  for (const auto& space : GetContinuousSpaces()) {
1651    if (space->IsContinuousMemMapAllocSpace()) {
1652      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1653      if (alloc_space->HasBoundBitmaps()) {
1654        alloc_space->UnBindBitmaps();
1655      }
1656    }
1657  }
1658}
1659
1660void Heap::PreZygoteFork() {
1661  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1662  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1663  Thread* self = Thread::Current();
1664  MutexLock mu(self, zygote_creation_lock_);
1665  // Try to see if we have any Zygote spaces.
1666  if (have_zygote_space_) {
1667    return;
1668  }
1669  VLOG(heap) << "Starting PreZygoteFork";
1670  // Trim the pages at the end of the non moving space.
1671  non_moving_space_->Trim();
1672  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1673  // there.
1674  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1675  // Change the collector to the post zygote one.
1676  if (kCompactZygote) {
1677    DCHECK(semi_space_collector_ != nullptr);
1678    // Temporarily disable rosalloc verification because the zygote
1679    // compaction will mess up the rosalloc internal metadata.
1680    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1681    ZygoteCompactingCollector zygote_collector(this);
1682    zygote_collector.BuildBins(non_moving_space_);
1683    // Create a new bump pointer space which we will compact into.
1684    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1685                                         non_moving_space_->Limit());
1686    // Compact the bump pointer space to a new zygote bump pointer space.
1687    bool reset_main_space = false;
1688    if (IsMovingGc(collector_type_)) {
1689      zygote_collector.SetFromSpace(bump_pointer_space_);
1690    } else {
1691      CHECK(main_space_ != nullptr);
1692      // Copy from the main space.
1693      zygote_collector.SetFromSpace(main_space_);
1694      reset_main_space = true;
1695    }
1696    zygote_collector.SetToSpace(&target_space);
1697
1698    Runtime::Current()->GetThreadList()->SuspendAll();
1699    zygote_collector.Run(kGcCauseCollectorTransition, false);
1700    if (IsMovingGc(collector_type_)) {
1701      SwapSemiSpaces();
1702    }
1703    Runtime::Current()->GetThreadList()->ResumeAll();
1704
1705    if (reset_main_space) {
1706      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1707      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1708      MemMap* mem_map = main_space_->ReleaseMemMap();
1709      RemoveSpace(main_space_);
1710      delete main_space_;
1711      main_space_ = nullptr;
1712      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1713      AddSpace(main_space_);
1714    } else {
1715      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1716    }
1717    if (temp_space_ != nullptr) {
1718      CHECK(temp_space_->IsEmpty());
1719    }
1720    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1721    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1722    // Update the end and write out image.
1723    non_moving_space_->SetEnd(target_space.End());
1724    non_moving_space_->SetLimit(target_space.Limit());
1725    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1726  }
1727  ChangeCollector(foreground_collector_type_);
1728  // Save the old space so that we can remove it after we complete creating the zygote space.
1729  space::MallocSpace* old_alloc_space = non_moving_space_;
1730  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1731  // the remaining available space.
1732  // Remove the old space before creating the zygote space since creating the zygote space sets
1733  // the old alloc space's bitmaps to nullptr.
1734  RemoveSpace(old_alloc_space);
1735  if (collector::SemiSpace::kUseRememberedSet) {
1736    // Sanity bound check.
1737    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1738    // Remove the remembered set for the now zygote space (the old
1739    // non-moving space). Note now that we have compacted objects into
1740    // the zygote space, the data in the remembered set is no longer
1741    // needed. The zygote space will instead have a mod-union table
1742    // from this point on.
1743    RemoveRememberedSet(old_alloc_space);
1744  }
1745  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1746                                                                        low_memory_mode_,
1747                                                                        &non_moving_space_);
1748  delete old_alloc_space;
1749  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1750  AddSpace(zygote_space, false);
1751  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1752  AddSpace(non_moving_space_);
1753  have_zygote_space_ = true;
1754  // Enable large object space allocations.
1755  large_object_threshold_ = kDefaultLargeObjectThreshold;
1756  // Create the zygote space mod union table.
1757  accounting::ModUnionTable* mod_union_table =
1758      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1759  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1760  AddModUnionTable(mod_union_table);
1761  if (collector::SemiSpace::kUseRememberedSet) {
1762    // Add a new remembered set for the post-zygote non-moving space.
1763    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1764        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1765                                      non_moving_space_);
1766    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1767        << "Failed to create post-zygote non-moving space remembered set";
1768    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1769  }
1770}
1771
1772void Heap::FlushAllocStack() {
1773  MarkAllocStackAsLive(allocation_stack_.get());
1774  allocation_stack_->Reset();
1775}
1776
1777void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1778                          accounting::ContinuousSpaceBitmap* bitmap2,
1779                          accounting::LargeObjectBitmap* large_objects,
1780                          accounting::ObjectStack* stack) {
1781  DCHECK(bitmap1 != nullptr);
1782  DCHECK(bitmap2 != nullptr);
1783  mirror::Object** limit = stack->End();
1784  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1785    const mirror::Object* obj = *it;
1786    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1787      if (bitmap1->HasAddress(obj)) {
1788        bitmap1->Set(obj);
1789      } else if (bitmap2->HasAddress(obj)) {
1790        bitmap2->Set(obj);
1791      } else {
1792        large_objects->Set(obj);
1793      }
1794    }
1795  }
1796}
1797
1798void Heap::SwapSemiSpaces() {
1799  CHECK(bump_pointer_space_ != nullptr);
1800  CHECK(temp_space_ != nullptr);
1801  std::swap(bump_pointer_space_, temp_space_);
1802}
1803
1804void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1805                   space::ContinuousMemMapAllocSpace* source_space) {
1806  CHECK(kMovingCollector);
1807  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1808  if (target_space != source_space) {
1809    // Don't swap spaces since this isn't a typical semi space collection.
1810    semi_space_collector_->SetSwapSemiSpaces(false);
1811    semi_space_collector_->SetFromSpace(source_space);
1812    semi_space_collector_->SetToSpace(target_space);
1813    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1814  }
1815}
1816
1817collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1818                                               bool clear_soft_references) {
1819  Thread* self = Thread::Current();
1820  Runtime* runtime = Runtime::Current();
1821  // If the heap can't run the GC, silently fail and return that no GC was run.
1822  switch (gc_type) {
1823    case collector::kGcTypePartial: {
1824      if (!have_zygote_space_) {
1825        return collector::kGcTypeNone;
1826      }
1827      break;
1828    }
1829    default: {
1830      // Other GC types don't have any special cases which makes them not runnable. The main case
1831      // here is full GC.
1832    }
1833  }
1834  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1835  Locks::mutator_lock_->AssertNotHeld(self);
1836  if (self->IsHandlingStackOverflow()) {
1837    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1838  }
1839  bool compacting_gc;
1840  {
1841    gc_complete_lock_->AssertNotHeld(self);
1842    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1843    MutexLock mu(self, *gc_complete_lock_);
1844    // Ensure there is only one GC at a time.
1845    WaitForGcToCompleteLocked(self);
1846    compacting_gc = IsMovingGc(collector_type_);
1847    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1848    if (compacting_gc && disable_moving_gc_count_ != 0) {
1849      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1850      return collector::kGcTypeNone;
1851    }
1852    collector_type_running_ = collector_type_;
1853  }
1854
1855  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1856    ++runtime->GetStats()->gc_for_alloc_count;
1857    ++self->GetStats()->gc_for_alloc_count;
1858  }
1859  uint64_t gc_start_time_ns = NanoTime();
1860  uint64_t gc_start_size = GetBytesAllocated();
1861  // Approximate allocation rate in bytes / second.
1862  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1863  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1864  if (LIKELY(ms_delta != 0)) {
1865    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1866    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1867  }
1868
1869  DCHECK_LT(gc_type, collector::kGcTypeMax);
1870  DCHECK_NE(gc_type, collector::kGcTypeNone);
1871
1872  collector::GarbageCollector* collector = nullptr;
1873  // TODO: Clean this up.
1874  if (compacting_gc) {
1875    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1876           current_allocator_ == kAllocatorTypeTLAB);
1877    if (collector_type_ == kCollectorTypeSS || collector_type_ == kCollectorTypeGSS) {
1878      gc_type = semi_space_collector_->GetGcType();
1879      semi_space_collector_->SetFromSpace(bump_pointer_space_);
1880      semi_space_collector_->SetToSpace(temp_space_);
1881      collector = semi_space_collector_;
1882      semi_space_collector_->SetSwapSemiSpaces(true);
1883    } else if (collector_type_ == kCollectorTypeCC) {
1884      gc_type = concurrent_copying_collector_->GetGcType();
1885      collector = concurrent_copying_collector_;
1886    } else {
1887      LOG(FATAL) << "Unreachable - invalid collector type " << static_cast<size_t>(collector_type_);
1888    }
1889    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1890    CHECK(temp_space_->IsEmpty());
1891    gc_type = collector::kGcTypeFull;
1892  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1893      current_allocator_ == kAllocatorTypeDlMalloc) {
1894    collector = FindCollectorByGcType(gc_type);
1895  } else {
1896    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1897  }
1898  CHECK(collector != nullptr)
1899      << "Could not find garbage collector with collector_type="
1900      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
1901  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1902  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
1903  total_objects_freed_ever_ += collector->GetFreedObjects();
1904  total_bytes_freed_ever_ += collector->GetFreedBytes();
1905  RequestHeapTrim();
1906  // Enqueue cleared references.
1907  EnqueueClearedReferences();
1908  // Grow the heap so that we know when to perform the next GC.
1909  GrowForUtilization(collector);
1910  const size_t duration = collector->GetDurationNs();
1911  const std::vector<uint64_t>& pause_times = collector->GetPauseTimes();
1912  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
1913  // (mutator time blocked >=  long_pause_log_threshold_).
1914  bool log_gc = gc_cause == kGcCauseExplicit;
1915  if (!log_gc && CareAboutPauseTimes()) {
1916    // GC for alloc pauses the allocating thread, so consider it as a pause.
1917    log_gc = duration > long_gc_log_threshold_ ||
1918        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1919    for (uint64_t pause : pause_times) {
1920      log_gc = log_gc || pause >= long_pause_log_threshold_;
1921    }
1922  }
1923  if (log_gc) {
1924    const size_t percent_free = GetPercentFree();
1925    const size_t current_heap_size = GetBytesAllocated();
1926    const size_t total_memory = GetTotalMemory();
1927    std::ostringstream pause_string;
1928    for (size_t i = 0; i < pause_times.size(); ++i) {
1929        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
1930                     << ((i != pause_times.size() - 1) ? "," : "");
1931    }
1932    LOG(INFO) << gc_cause << " " << collector->GetName()
1933              << " GC freed "  <<  collector->GetFreedObjects() << "("
1934              << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1935              << collector->GetFreedLargeObjects() << "("
1936              << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1937              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1938              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1939              << " total " << PrettyDuration((duration / 1000) * 1000);
1940    VLOG(heap) << ConstDumpable<TimingLogger>(collector->GetTimings());
1941  }
1942  FinishGC(self, gc_type);
1943  ATRACE_END();
1944
1945  // Inform DDMS that a GC completed.
1946  Dbg::GcDidFinish();
1947  return gc_type;
1948}
1949
1950void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1951  MutexLock mu(self, *gc_complete_lock_);
1952  collector_type_running_ = kCollectorTypeNone;
1953  if (gc_type != collector::kGcTypeNone) {
1954    last_gc_type_ = gc_type;
1955  }
1956  // Wake anyone who may have been waiting for the GC to complete.
1957  gc_complete_cond_->Broadcast(self);
1958}
1959
1960static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
1961                                     RootType /*root_type*/) {
1962  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1963  if (*root == obj) {
1964    LOG(INFO) << "Object " << obj << " is a root";
1965  }
1966}
1967
1968class ScanVisitor {
1969 public:
1970  void operator()(const mirror::Object* obj) const {
1971    LOG(ERROR) << "Would have rescanned object " << obj;
1972  }
1973};
1974
1975// Verify a reference from an object.
1976class VerifyReferenceVisitor {
1977 public:
1978  explicit VerifyReferenceVisitor(Heap* heap)
1979      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1980      : heap_(heap), failed_(false) {}
1981
1982  bool Failed() const {
1983    return failed_;
1984  }
1985
1986  void operator()(mirror::Class* klass, mirror::Reference* ref) const
1987      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1988    this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1989  }
1990
1991  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
1992      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1993    this->operator()(obj, obj->GetFieldObject<mirror::Object>(offset, false), offset);
1994  }
1995
1996  // TODO: Fix the no thread safety analysis.
1997  void operator()(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
1998      NO_THREAD_SAFETY_ANALYSIS {
1999    if (ref == nullptr || IsLive(ref)) {
2000      // Verify that the reference is live.
2001      return;
2002    }
2003    if (!failed_) {
2004      // Print message on only on first failure to prevent spam.
2005      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2006      failed_ = true;
2007    }
2008    if (obj != nullptr) {
2009      accounting::CardTable* card_table = heap_->GetCardTable();
2010      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2011      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2012      byte* card_addr = card_table->CardFromAddr(obj);
2013      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2014                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2015      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2016        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2017      } else {
2018        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2019      }
2020
2021      // Attmept to find the class inside of the recently freed objects.
2022      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2023      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2024        space::MallocSpace* space = ref_space->AsMallocSpace();
2025        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2026        if (ref_class != nullptr) {
2027          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2028                     << PrettyClass(ref_class);
2029        } else {
2030          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2031        }
2032      }
2033
2034      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2035          ref->GetClass()->IsClass()) {
2036        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2037      } else {
2038        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2039                   << ") is not a valid heap address";
2040      }
2041
2042      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2043      void* cover_begin = card_table->AddrFromCard(card_addr);
2044      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2045          accounting::CardTable::kCardSize);
2046      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2047          << "-" << cover_end;
2048      accounting::ContinuousSpaceBitmap* bitmap =
2049          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2050
2051      if (bitmap == nullptr) {
2052        LOG(ERROR) << "Object " << obj << " has no bitmap";
2053        if (!VerifyClassClass(obj->GetClass())) {
2054          LOG(ERROR) << "Object " << obj << " failed class verification!";
2055        }
2056      } else {
2057        // Print out how the object is live.
2058        if (bitmap->Test(obj)) {
2059          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2060        }
2061        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2062          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2063        }
2064        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2065          LOG(ERROR) << "Object " << obj << " found in live stack";
2066        }
2067        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2068          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2069        }
2070        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2071          LOG(ERROR) << "Ref " << ref << " found in live stack";
2072        }
2073        // Attempt to see if the card table missed the reference.
2074        ScanVisitor scan_visitor;
2075        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2076        card_table->Scan(bitmap, byte_cover_begin,
2077                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2078      }
2079
2080      // Search to see if any of the roots reference our object.
2081      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2082      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2083
2084      // Search to see if any of the roots reference our reference.
2085      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2086      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2087    } else {
2088      LOG(ERROR) << "Root " << ref << " is dead with type " << PrettyTypeOf(ref);
2089    }
2090  }
2091
2092  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2093    return heap_->IsLiveObjectLocked(obj, true, false, true);
2094  }
2095
2096  static void VerifyRoots(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2097                          RootType /*root_type*/) {
2098    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2099    (*visitor)(nullptr, *root, MemberOffset(0));
2100  }
2101
2102 private:
2103  Heap* const heap_;
2104  mutable bool failed_;
2105};
2106
2107// Verify all references within an object, for use with HeapBitmap::Visit.
2108class VerifyObjectVisitor {
2109 public:
2110  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
2111
2112  void operator()(mirror::Object* obj) const
2113      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2114    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2115    // be live or else how did we find it in the live bitmap?
2116    VerifyReferenceVisitor visitor(heap_);
2117    // The class doesn't count as a reference but we should verify it anyways.
2118    obj->VisitReferences<true>(visitor, visitor);
2119    failed_ = failed_ || visitor.Failed();
2120  }
2121
2122  static void VisitCallback(mirror::Object* obj, void* arg)
2123      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2124    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2125    visitor->operator()(obj);
2126  }
2127
2128  bool Failed() const {
2129    return failed_;
2130  }
2131
2132 private:
2133  Heap* const heap_;
2134  mutable bool failed_;
2135};
2136
2137// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2138bool Heap::VerifyHeapReferences() {
2139  Thread* self = Thread::Current();
2140  Locks::mutator_lock_->AssertExclusiveHeld(self);
2141  // Lets sort our allocation stacks so that we can efficiently binary search them.
2142  allocation_stack_->Sort();
2143  live_stack_->Sort();
2144  // Since we sorted the allocation stack content, need to revoke all
2145  // thread-local allocation stacks.
2146  RevokeAllThreadLocalAllocationStacks(self);
2147  VerifyObjectVisitor visitor(this);
2148  // Verify objects in the allocation stack since these will be objects which were:
2149  // 1. Allocated prior to the GC (pre GC verification).
2150  // 2. Allocated during the GC (pre sweep GC verification).
2151  // We don't want to verify the objects in the live stack since they themselves may be
2152  // pointing to dead objects if they are not reachable.
2153  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2154  // Verify the roots:
2155  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor);
2156  if (visitor.Failed()) {
2157    // Dump mod-union tables.
2158    for (const auto& table_pair : mod_union_tables_) {
2159      accounting::ModUnionTable* mod_union_table = table_pair.second;
2160      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2161    }
2162    // Dump remembered sets.
2163    for (const auto& table_pair : remembered_sets_) {
2164      accounting::RememberedSet* remembered_set = table_pair.second;
2165      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2166    }
2167    DumpSpaces();
2168    return false;
2169  }
2170  return true;
2171}
2172
2173class VerifyReferenceCardVisitor {
2174 public:
2175  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2176      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2177                            Locks::heap_bitmap_lock_)
2178      : heap_(heap), failed_(failed) {
2179  }
2180
2181  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2182  // annotalysis on visitors.
2183  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2184      NO_THREAD_SAFETY_ANALYSIS {
2185    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset, false);
2186    // Filter out class references since changing an object's class does not mark the card as dirty.
2187    // Also handles large objects, since the only reference they hold is a class reference.
2188    if (ref != nullptr && !ref->IsClass()) {
2189      accounting::CardTable* card_table = heap_->GetCardTable();
2190      // If the object is not dirty and it is referencing something in the live stack other than
2191      // class, then it must be on a dirty card.
2192      if (!card_table->AddrIsInCardTable(obj)) {
2193        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2194        *failed_ = true;
2195      } else if (!card_table->IsDirty(obj)) {
2196        // TODO: Check mod-union tables.
2197        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2198        // kCardDirty - 1 if it didnt get touched since we aged it.
2199        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2200        if (live_stack->ContainsSorted(ref)) {
2201          if (live_stack->ContainsSorted(obj)) {
2202            LOG(ERROR) << "Object " << obj << " found in live stack";
2203          }
2204          if (heap_->GetLiveBitmap()->Test(obj)) {
2205            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2206          }
2207          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2208                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2209
2210          // Print which field of the object is dead.
2211          if (!obj->IsObjectArray()) {
2212            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2213            CHECK(klass != NULL);
2214            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2215                                                                      : klass->GetIFields();
2216            CHECK(fields != NULL);
2217            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2218              mirror::ArtField* cur = fields->Get(i);
2219              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2220                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2221                          << PrettyField(cur);
2222                break;
2223              }
2224            }
2225          } else {
2226            mirror::ObjectArray<mirror::Object>* object_array =
2227                obj->AsObjectArray<mirror::Object>();
2228            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2229              if (object_array->Get(i) == ref) {
2230                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2231              }
2232            }
2233          }
2234
2235          *failed_ = true;
2236        }
2237      }
2238    }
2239  }
2240
2241 private:
2242  Heap* const heap_;
2243  bool* const failed_;
2244};
2245
2246class VerifyLiveStackReferences {
2247 public:
2248  explicit VerifyLiveStackReferences(Heap* heap)
2249      : heap_(heap),
2250        failed_(false) {}
2251
2252  void operator()(mirror::Object* obj) const
2253      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2254    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2255    obj->VisitReferences<true>(visitor);
2256  }
2257
2258  bool Failed() const {
2259    return failed_;
2260  }
2261
2262 private:
2263  Heap* const heap_;
2264  bool failed_;
2265};
2266
2267bool Heap::VerifyMissingCardMarks() {
2268  Thread* self = Thread::Current();
2269  Locks::mutator_lock_->AssertExclusiveHeld(self);
2270
2271  // We need to sort the live stack since we binary search it.
2272  live_stack_->Sort();
2273  // Since we sorted the allocation stack content, need to revoke all
2274  // thread-local allocation stacks.
2275  RevokeAllThreadLocalAllocationStacks(self);
2276  VerifyLiveStackReferences visitor(this);
2277  GetLiveBitmap()->Visit(visitor);
2278
2279  // We can verify objects in the live stack since none of these should reference dead objects.
2280  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2281    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2282      visitor(*it);
2283    }
2284  }
2285
2286  if (visitor.Failed()) {
2287    DumpSpaces();
2288    return false;
2289  }
2290  return true;
2291}
2292
2293void Heap::SwapStacks(Thread* self) {
2294  if (kUseThreadLocalAllocationStack) {
2295    live_stack_->AssertAllZero();
2296  }
2297  allocation_stack_.swap(live_stack_);
2298}
2299
2300void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2301  // This must be called only during the pause.
2302  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2303  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2304  MutexLock mu2(self, *Locks::thread_list_lock_);
2305  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2306  for (Thread* t : thread_list) {
2307    t->RevokeThreadLocalAllocationStack();
2308  }
2309}
2310
2311void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2312  if (kIsDebugBuild) {
2313    if (bump_pointer_space_ != nullptr) {
2314      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2315    }
2316  }
2317}
2318
2319accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2320  auto it = mod_union_tables_.find(space);
2321  if (it == mod_union_tables_.end()) {
2322    return nullptr;
2323  }
2324  return it->second;
2325}
2326
2327accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2328  auto it = remembered_sets_.find(space);
2329  if (it == remembered_sets_.end()) {
2330    return nullptr;
2331  }
2332  return it->second;
2333}
2334
2335void Heap::ProcessCards(TimingLogger& timings, bool use_rem_sets) {
2336  // Clear cards and keep track of cards cleared in the mod-union table.
2337  for (const auto& space : continuous_spaces_) {
2338    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2339    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2340    if (table != nullptr) {
2341      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2342          "ImageModUnionClearCards";
2343      TimingLogger::ScopedSplit split(name, &timings);
2344      table->ClearCards();
2345    } else if (use_rem_sets && rem_set != nullptr) {
2346      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2347          << static_cast<int>(collector_type_);
2348      TimingLogger::ScopedSplit split("AllocSpaceRemSetClearCards", &timings);
2349      rem_set->ClearCards();
2350    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2351      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
2352      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2353      // were dirty before the GC started.
2354      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2355      // -> clean(cleaning thread).
2356      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2357      // roots and then we scan / update mod union tables after. We will always scan either card.
2358      // If we end up with the non aged card, we scan it it in the pause.
2359      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
2360    }
2361  }
2362}
2363
2364static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2365}
2366
2367void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2368  Thread* const self = Thread::Current();
2369  TimingLogger* const timings = &gc->GetTimings();
2370  if (verify_pre_gc_heap_) {
2371    TimingLogger::ScopedSplit split("PreGcVerifyHeapReferences", timings);
2372    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2373    if (!VerifyHeapReferences()) {
2374      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2375    }
2376  }
2377  // Check that all objects which reference things in the live stack are on dirty cards.
2378  if (verify_missing_card_marks_) {
2379    TimingLogger::ScopedSplit split("PreGcVerifyMissingCardMarks", timings);
2380    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2381    SwapStacks(self);
2382    // Sort the live stack so that we can quickly binary search it later.
2383    if (!VerifyMissingCardMarks()) {
2384      LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2385    }
2386    SwapStacks(self);
2387  }
2388  if (verify_mod_union_table_) {
2389    TimingLogger::ScopedSplit split("PreGcVerifyModUnionTables", timings);
2390    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2391    for (const auto& table_pair : mod_union_tables_) {
2392      accounting::ModUnionTable* mod_union_table = table_pair.second;
2393      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2394      mod_union_table->Verify();
2395    }
2396  }
2397}
2398
2399void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2400  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_ ||
2401      verify_pre_gc_rosalloc_) {
2402    collector::GarbageCollector::ScopedPause pause(gc);
2403    PreGcVerificationPaused(gc);
2404  }
2405}
2406
2407void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2408  // TODO: Add a new runtime option for this?
2409  if (verify_pre_gc_rosalloc_) {
2410    RosAllocVerification(&gc->GetTimings(), "PreGcRosAllocVerification");
2411  }
2412}
2413
2414void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2415  Thread* const self = Thread::Current();
2416  TimingLogger* const timings = &gc->GetTimings();
2417  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2418  // reachable objects.
2419  if (verify_pre_sweeping_heap_) {
2420    TimingLogger::ScopedSplit split("PostSweepingVerifyHeapReferences", timings);
2421    CHECK_NE(self->GetState(), kRunnable);
2422    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2423    // Swapping bound bitmaps does nothing.
2424    gc->SwapBitmaps();
2425    SwapSemiSpaces();
2426    if (!VerifyHeapReferences()) {
2427      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2428    }
2429    SwapSemiSpaces();
2430    gc->SwapBitmaps();
2431  }
2432  if (verify_pre_sweeping_rosalloc_) {
2433    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2434  }
2435}
2436
2437void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2438  // Only pause if we have to do some verification.
2439  Thread* const self = Thread::Current();
2440  TimingLogger* const timings = &gc->GetTimings();
2441  if (verify_system_weaks_) {
2442    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2443    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2444    mark_sweep->VerifySystemWeaks();
2445  }
2446  if (verify_post_gc_rosalloc_) {
2447    RosAllocVerification(timings, "PostGcRosAllocVerification");
2448  }
2449  if (verify_post_gc_heap_) {
2450    TimingLogger::ScopedSplit split("PostGcVerifyHeapReferences", timings);
2451    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2452    if (!VerifyHeapReferences()) {
2453      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2454    }
2455  }
2456}
2457
2458void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2459  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2460    collector::GarbageCollector::ScopedPause pause(gc);
2461    PreGcVerificationPaused(gc);
2462  }
2463}
2464
2465void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2466  TimingLogger::ScopedSplit split(name, timings);
2467  for (const auto& space : continuous_spaces_) {
2468    if (space->IsRosAllocSpace()) {
2469      VLOG(heap) << name << " : " << space->GetName();
2470      space->AsRosAllocSpace()->Verify();
2471    }
2472  }
2473}
2474
2475collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2476  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2477  MutexLock mu(self, *gc_complete_lock_);
2478  return WaitForGcToCompleteLocked(self);
2479}
2480
2481collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2482  collector::GcType last_gc_type = collector::kGcTypeNone;
2483  uint64_t wait_start = NanoTime();
2484  while (collector_type_running_ != kCollectorTypeNone) {
2485    ATRACE_BEGIN("GC: Wait For Completion");
2486    // We must wait, change thread state then sleep on gc_complete_cond_;
2487    gc_complete_cond_->Wait(self);
2488    last_gc_type = last_gc_type_;
2489    ATRACE_END();
2490  }
2491  uint64_t wait_time = NanoTime() - wait_start;
2492  total_wait_time_ += wait_time;
2493  if (wait_time > long_pause_log_threshold_) {
2494    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2495  }
2496  return last_gc_type;
2497}
2498
2499void Heap::DumpForSigQuit(std::ostream& os) {
2500  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2501     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2502  DumpGcPerformanceInfo(os);
2503}
2504
2505size_t Heap::GetPercentFree() {
2506  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2507}
2508
2509void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2510  if (max_allowed_footprint > GetMaxMemory()) {
2511    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2512             << PrettySize(GetMaxMemory());
2513    max_allowed_footprint = GetMaxMemory();
2514  }
2515  max_allowed_footprint_ = max_allowed_footprint;
2516}
2517
2518bool Heap::IsMovableObject(const mirror::Object* obj) const {
2519  if (kMovingCollector) {
2520    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2521    if (space != nullptr) {
2522      // TODO: Check large object?
2523      return space->CanMoveObjects();
2524    }
2525  }
2526  return false;
2527}
2528
2529void Heap::UpdateMaxNativeFootprint() {
2530  size_t native_size = native_bytes_allocated_;
2531  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2532  size_t target_size = native_size / GetTargetHeapUtilization();
2533  if (target_size > native_size + max_free_) {
2534    target_size = native_size + max_free_;
2535  } else if (target_size < native_size + min_free_) {
2536    target_size = native_size + min_free_;
2537  }
2538  native_footprint_gc_watermark_ = target_size;
2539  native_footprint_limit_ = 2 * target_size - native_size;
2540}
2541
2542collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2543  for (const auto& collector : garbage_collectors_) {
2544    if (collector->GetCollectorType() == collector_type_ &&
2545        collector->GetGcType() == gc_type) {
2546      return collector;
2547    }
2548  }
2549  return nullptr;
2550}
2551
2552double Heap::HeapGrowthMultiplier() const {
2553  // If we don't care about pause times we are background, so return 1.0.
2554  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2555    return 1.0;
2556  }
2557  return foreground_heap_growth_multiplier_;
2558}
2559
2560void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2561  // We know what our utilization is at this moment.
2562  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2563  const uint64_t bytes_allocated = GetBytesAllocated();
2564  last_gc_size_ = bytes_allocated;
2565  last_gc_time_ns_ = NanoTime();
2566  uint64_t target_size;
2567  collector::GcType gc_type = collector_ran->GetGcType();
2568  if (gc_type != collector::kGcTypeSticky) {
2569    // Grow the heap for non sticky GC.
2570    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2571    // foreground.
2572    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2573    CHECK_GE(delta, 0);
2574    target_size = bytes_allocated + delta * multiplier;
2575    target_size = std::min(target_size,
2576                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2577    target_size = std::max(target_size,
2578                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2579    native_need_to_run_finalization_ = true;
2580    next_gc_type_ = collector::kGcTypeSticky;
2581  } else {
2582    collector::GcType non_sticky_gc_type =
2583        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2584    // Find what the next non sticky collector will be.
2585    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2586    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2587    // do another sticky collection next.
2588    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2589    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2590    // if the sticky GC throughput always remained >= the full/partial throughput.
2591    if (collector_ran->GetEstimatedLastIterationThroughput() * kStickyGcThroughputAdjustment >=
2592        non_sticky_collector->GetEstimatedMeanThroughput() &&
2593        non_sticky_collector->GetIterations() > 0 &&
2594        bytes_allocated <= max_allowed_footprint_) {
2595      next_gc_type_ = collector::kGcTypeSticky;
2596    } else {
2597      next_gc_type_ = non_sticky_gc_type;
2598    }
2599    // If we have freed enough memory, shrink the heap back down.
2600    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2601      target_size = bytes_allocated + max_free_;
2602    } else {
2603      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2604    }
2605  }
2606  if (!ignore_max_footprint_) {
2607    SetIdealFootprint(target_size);
2608    if (IsGcConcurrent()) {
2609      // Calculate when to perform the next ConcurrentGC.
2610      // Calculate the estimated GC duration.
2611      const double gc_duration_seconds = NsToMs(collector_ran->GetDurationNs()) / 1000.0;
2612      // Estimate how many remaining bytes we will have when we need to start the next GC.
2613      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2614      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2615      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2616      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2617        // A never going to happen situation that from the estimated allocation rate we will exceed
2618        // the applications entire footprint with the given estimated allocation rate. Schedule
2619        // another GC nearly straight away.
2620        remaining_bytes = kMinConcurrentRemainingBytes;
2621      }
2622      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2623      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2624      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2625      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2626      // right away.
2627      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2628                                         static_cast<size_t>(bytes_allocated));
2629    }
2630  }
2631}
2632
2633void Heap::ClearGrowthLimit() {
2634  growth_limit_ = capacity_;
2635  non_moving_space_->ClearGrowthLimit();
2636}
2637
2638void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2639  ScopedObjectAccess soa(self);
2640  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(object));
2641  jvalue args[1];
2642  args[0].l = arg.get();
2643  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2644}
2645
2646void Heap::EnqueueClearedReferences() {
2647  Thread* self = Thread::Current();
2648  Locks::mutator_lock_->AssertNotHeld(self);
2649  if (!cleared_references_.IsEmpty()) {
2650    // When a runtime isn't started there are no reference queues to care about so ignore.
2651    if (LIKELY(Runtime::Current()->IsStarted())) {
2652      ScopedObjectAccess soa(self);
2653      ScopedLocalRef<jobject> arg(self->GetJniEnv(),
2654                                  soa.AddLocalReference<jobject>(cleared_references_.GetList()));
2655      jvalue args[1];
2656      args[0].l = arg.get();
2657      InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
2658    }
2659    cleared_references_.Clear();
2660  }
2661}
2662
2663void Heap::RequestConcurrentGC(Thread* self) {
2664  // Make sure that we can do a concurrent GC.
2665  Runtime* runtime = Runtime::Current();
2666  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2667      self->IsHandlingStackOverflow()) {
2668    return;
2669  }
2670  // We already have a request pending, no reason to start more until we update
2671  // concurrent_start_bytes_.
2672  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2673  JNIEnv* env = self->GetJniEnv();
2674  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2675  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2676  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2677                            WellKnownClasses::java_lang_Daemons_requestGC);
2678  CHECK(!env->ExceptionCheck());
2679}
2680
2681void Heap::ConcurrentGC(Thread* self) {
2682  if (Runtime::Current()->IsShuttingDown(self)) {
2683    return;
2684  }
2685  // Wait for any GCs currently running to finish.
2686  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2687    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2688    // instead. E.g. can't do partial, so do full instead.
2689    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2690        collector::kGcTypeNone) {
2691      for (collector::GcType gc_type : gc_plan_) {
2692        // Attempt to run the collector, if we succeed, we are done.
2693        if (gc_type > next_gc_type_ &&
2694            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2695          break;
2696        }
2697      }
2698    }
2699  }
2700}
2701
2702void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2703  Thread* self = Thread::Current();
2704  {
2705    MutexLock mu(self, *heap_trim_request_lock_);
2706    if (desired_collector_type_ == desired_collector_type) {
2707      return;
2708    }
2709    heap_transition_target_time_ = std::max(heap_transition_target_time_, NanoTime() + delta_time);
2710    desired_collector_type_ = desired_collector_type;
2711  }
2712  SignalHeapTrimDaemon(self);
2713}
2714
2715void Heap::RequestHeapTrim() {
2716  // Request a heap trim only if we do not currently care about pause times.
2717  if (CareAboutPauseTimes()) {
2718    return;
2719  }
2720  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2721  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2722  // a space it will hold its lock and can become a cause of jank.
2723  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2724  // forking.
2725
2726  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2727  // because that only marks object heads, so a large array looks like lots of empty space. We
2728  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2729  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2730  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2731  // not how much use we're making of those pages.
2732
2733  Thread* self = Thread::Current();
2734  Runtime* runtime = Runtime::Current();
2735  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2736    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2737    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2738    // as we don't hold the lock while requesting the trim).
2739    return;
2740  }
2741  {
2742    MutexLock mu(self, *heap_trim_request_lock_);
2743    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2744      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2745      // just yet.
2746      return;
2747    }
2748    heap_trim_request_pending_ = true;
2749  }
2750  // Notify the daemon thread which will actually do the heap trim.
2751  SignalHeapTrimDaemon(self);
2752}
2753
2754void Heap::SignalHeapTrimDaemon(Thread* self) {
2755  JNIEnv* env = self->GetJniEnv();
2756  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2757  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2758  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2759                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2760  CHECK(!env->ExceptionCheck());
2761}
2762
2763void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2764  if (rosalloc_space_ != nullptr) {
2765    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2766  }
2767  if (bump_pointer_space_ != nullptr) {
2768    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2769  }
2770}
2771
2772void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2773  if (rosalloc_space_ != nullptr) {
2774    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2775  }
2776}
2777
2778void Heap::RevokeAllThreadLocalBuffers() {
2779  if (rosalloc_space_ != nullptr) {
2780    rosalloc_space_->RevokeAllThreadLocalBuffers();
2781  }
2782  if (bump_pointer_space_ != nullptr) {
2783    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2784  }
2785}
2786
2787bool Heap::IsGCRequestPending() const {
2788  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2789}
2790
2791void Heap::RunFinalization(JNIEnv* env) {
2792  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2793  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2794    CHECK(WellKnownClasses::java_lang_System != nullptr);
2795    WellKnownClasses::java_lang_System_runFinalization =
2796        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2797    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2798  }
2799  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2800                            WellKnownClasses::java_lang_System_runFinalization);
2801}
2802
2803void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2804  Thread* self = ThreadForEnv(env);
2805  if (native_need_to_run_finalization_) {
2806    RunFinalization(env);
2807    UpdateMaxNativeFootprint();
2808    native_need_to_run_finalization_ = false;
2809  }
2810  // Total number of native bytes allocated.
2811  native_bytes_allocated_.FetchAndAdd(bytes);
2812  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2813    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2814        collector::kGcTypeFull;
2815
2816    // The second watermark is higher than the gc watermark. If you hit this it means you are
2817    // allocating native objects faster than the GC can keep up with.
2818    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2819      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2820        // Just finished a GC, attempt to run finalizers.
2821        RunFinalization(env);
2822        CHECK(!env->ExceptionCheck());
2823      }
2824      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2825      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2826        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2827        RunFinalization(env);
2828        native_need_to_run_finalization_ = false;
2829        CHECK(!env->ExceptionCheck());
2830      }
2831      // We have just run finalizers, update the native watermark since it is very likely that
2832      // finalizers released native managed allocations.
2833      UpdateMaxNativeFootprint();
2834    } else if (!IsGCRequestPending()) {
2835      if (IsGcConcurrent()) {
2836        RequestConcurrentGC(self);
2837      } else {
2838        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2839      }
2840    }
2841  }
2842}
2843
2844void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2845  int expected_size, new_size;
2846  do {
2847    expected_size = native_bytes_allocated_.Load();
2848    new_size = expected_size - bytes;
2849    if (UNLIKELY(new_size < 0)) {
2850      ScopedObjectAccess soa(env);
2851      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2852                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2853                                 "registered as allocated", bytes, expected_size).c_str());
2854      break;
2855    }
2856  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2857}
2858
2859size_t Heap::GetTotalMemory() const {
2860  size_t ret = 0;
2861  for (const auto& space : continuous_spaces_) {
2862    // Currently don't include the image space.
2863    if (!space->IsImageSpace()) {
2864      ret += space->Size();
2865    }
2866  }
2867  for (const auto& space : discontinuous_spaces_) {
2868    if (space->IsLargeObjectSpace()) {
2869      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2870    }
2871  }
2872  return ret;
2873}
2874
2875void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2876  DCHECK(mod_union_table != nullptr);
2877  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2878}
2879
2880void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
2881  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
2882        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
2883        strlen(ClassHelper(c).GetDescriptor()) == 0);
2884  CHECK_GE(byte_count, sizeof(mirror::Object));
2885}
2886
2887void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
2888  CHECK(remembered_set != nullptr);
2889  space::Space* space = remembered_set->GetSpace();
2890  CHECK(space != nullptr);
2891  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2892  remembered_sets_.Put(space, remembered_set);
2893  CHECK(remembered_sets_.find(space) != remembered_sets_.end());
2894}
2895
2896void Heap::RemoveRememberedSet(space::Space* space) {
2897  CHECK(space != nullptr);
2898  auto it = remembered_sets_.find(space);
2899  CHECK(it != remembered_sets_.end());
2900  remembered_sets_.erase(it);
2901  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
2902}
2903
2904void Heap::ClearMarkedObjects() {
2905  // Clear all of the spaces' mark bitmaps.
2906  for (const auto& space : GetContinuousSpaces()) {
2907    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2908    if (space->GetLiveBitmap() != mark_bitmap) {
2909      mark_bitmap->Clear();
2910    }
2911  }
2912  // Clear the marked objects in the discontinous space object sets.
2913  for (const auto& space : GetDiscontinuousSpaces()) {
2914    space->GetMarkBitmap()->Clear();
2915  }
2916}
2917
2918}  // namespace gc
2919}  // namespace art
2920