heap.cc revision a1602f28c0e3127ad511712d4b08db89737ae901
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/space_bitmap-inl.h"
37#include "gc/collector/mark_sweep-inl.h"
38#include "gc/collector/partial_mark_sweep.h"
39#include "gc/collector/semi_space.h"
40#include "gc/collector/sticky_mark_sweep.h"
41#include "gc/space/bump_pointer_space.h"
42#include "gc/space/dlmalloc_space-inl.h"
43#include "gc/space/image_space.h"
44#include "gc/space/large_object_space.h"
45#include "gc/space/rosalloc_space-inl.h"
46#include "gc/space/space-inl.h"
47#include "gc/space/zygote_space.h"
48#include "heap-inl.h"
49#include "image.h"
50#include "invoke_arg_array_builder.h"
51#include "mirror/art_field-inl.h"
52#include "mirror/class-inl.h"
53#include "mirror/object.h"
54#include "mirror/object-inl.h"
55#include "mirror/object_array-inl.h"
56#include "object_utils.h"
57#include "os.h"
58#include "runtime.h"
59#include "ScopedLocalRef.h"
60#include "scoped_thread_state_change.h"
61#include "sirt_ref.h"
62#include "thread_list.h"
63#include "UniquePtr.h"
64#include "well_known_classes.h"
65
66namespace art {
67
68extern void SetQuickAllocEntryPointsAllocator(gc::AllocatorType allocator);
69
70namespace gc {
71
72static constexpr bool kGCALotMode = false;
73static constexpr size_t kGcAlotInterval = KB;
74// Minimum amount of remaining bytes before a concurrent GC is triggered.
75static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
76static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
77
78Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
79           double target_utilization, size_t capacity, const std::string& image_file_name,
80           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
81           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
82           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
83           bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap,
84           bool verify_post_gc_heap)
85    : non_moving_space_(nullptr),
86      rosalloc_space_(nullptr),
87      dlmalloc_space_(nullptr),
88      main_space_(nullptr),
89      concurrent_gc_(false),
90      collector_type_(kCollectorTypeNone),
91      post_zygote_collector_type_(post_zygote_collector_type),
92      background_collector_type_(background_collector_type),
93      parallel_gc_threads_(parallel_gc_threads),
94      conc_gc_threads_(conc_gc_threads),
95      low_memory_mode_(low_memory_mode),
96      long_pause_log_threshold_(long_pause_log_threshold),
97      long_gc_log_threshold_(long_gc_log_threshold),
98      ignore_max_footprint_(ignore_max_footprint),
99      have_zygote_space_(false),
100      soft_reference_queue_(this),
101      weak_reference_queue_(this),
102      finalizer_reference_queue_(this),
103      phantom_reference_queue_(this),
104      cleared_references_(this),
105      is_gc_running_(false),
106      last_gc_type_(collector::kGcTypeNone),
107      next_gc_type_(collector::kGcTypePartial),
108      capacity_(capacity),
109      growth_limit_(growth_limit),
110      max_allowed_footprint_(initial_size),
111      native_footprint_gc_watermark_(initial_size),
112      native_footprint_limit_(2 * initial_size),
113      native_need_to_run_finalization_(false),
114      // Initially assume we perceive jank in case the process state is never updated.
115      process_state_(kProcessStateJankPerceptible),
116      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
117      total_bytes_freed_ever_(0),
118      total_objects_freed_ever_(0),
119      num_bytes_allocated_(0),
120      native_bytes_allocated_(0),
121      gc_memory_overhead_(0),
122      verify_missing_card_marks_(false),
123      verify_system_weaks_(false),
124      verify_pre_gc_heap_(verify_pre_gc_heap),
125      verify_post_gc_heap_(verify_post_gc_heap),
126      verify_mod_union_table_(false),
127      last_trim_time_ms_(0),
128      allocation_rate_(0),
129      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
130       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
131       * verification is enabled, we limit the size of allocation stacks to speed up their
132       * searching.
133       */
134      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
135          : (kDesiredHeapVerification > kVerifyAllFast) ? KB : MB),
136      current_allocator_(kAllocatorTypeDlMalloc),
137      current_non_moving_allocator_(kAllocatorTypeNonMoving),
138      bump_pointer_space_(nullptr),
139      temp_space_(nullptr),
140      reference_referent_offset_(0),
141      reference_queue_offset_(0),
142      reference_queueNext_offset_(0),
143      reference_pendingNext_offset_(0),
144      finalizer_reference_zombie_offset_(0),
145      min_free_(min_free),
146      max_free_(max_free),
147      target_utilization_(target_utilization),
148      total_wait_time_(0),
149      total_allocation_time_(0),
150      verify_object_mode_(kHeapVerificationNotPermitted),
151      disable_moving_gc_count_(0),
152      running_on_valgrind_(RUNNING_ON_VALGRIND),
153      use_tlab_(use_tlab) {
154  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
155    LOG(INFO) << "Heap() entering";
156  }
157  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
158  // entrypoints.
159  if (!Runtime::Current()->IsZygote() || !kMovingCollector) {
160    ChangeCollector(post_zygote_collector_type_);
161  } else {
162    // We are the zygote, use bump pointer allocation + semi space collector.
163    ChangeCollector(kCollectorTypeSS);
164  }
165
166  live_bitmap_.reset(new accounting::HeapBitmap(this));
167  mark_bitmap_.reset(new accounting::HeapBitmap(this));
168  // Requested begin for the alloc space, to follow the mapped image and oat files
169  byte* requested_alloc_space_begin = nullptr;
170  if (!image_file_name.empty()) {
171    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
172    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
173    AddSpace(image_space);
174    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
175    // isn't going to get in the middle
176    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
177    CHECK_GT(oat_file_end_addr, image_space->End());
178    if (oat_file_end_addr > requested_alloc_space_begin) {
179      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
180    }
181  }
182  const char* name = Runtime::Current()->IsZygote() ? "zygote space" : "alloc space";
183  space::MallocSpace* malloc_space;
184  if (kUseRosAlloc) {
185    malloc_space = space::RosAllocSpace::Create(name, initial_size, growth_limit, capacity,
186                                                requested_alloc_space_begin, low_memory_mode_);
187    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
188  } else {
189    malloc_space = space::DlMallocSpace::Create(name, initial_size, growth_limit, capacity,
190                                                requested_alloc_space_begin);
191    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
192  }
193  VLOG(heap) << "malloc_space : " << malloc_space;
194  if (kMovingCollector) {
195    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
196    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
197    // issues.
198    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
199    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
200                                                          bump_pointer_space_size, nullptr);
201    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
202    AddSpace(bump_pointer_space_);
203    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
204                                                  nullptr);
205    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
206    AddSpace(temp_space_);
207    VLOG(heap) << "bump_pointer_space : " << bump_pointer_space_;
208    VLOG(heap) << "temp_space : " << temp_space_;
209  }
210  non_moving_space_ = malloc_space;
211  malloc_space->SetFootprintLimit(malloc_space->Capacity());
212  AddSpace(malloc_space);
213
214  // Allocate the large object space.
215  constexpr bool kUseFreeListSpaceForLOS = false;
216  if (kUseFreeListSpaceForLOS) {
217    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
218  } else {
219    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
220  }
221  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
222  AddSpace(large_object_space_);
223
224  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
225  CHECK(!continuous_spaces_.empty());
226
227  // Relies on the spaces being sorted.
228  byte* heap_begin = continuous_spaces_.front()->Begin();
229  byte* heap_end = continuous_spaces_.back()->Limit();
230  if (Runtime::Current()->IsZygote()) {
231    std::string error_str;
232    post_zygote_non_moving_space_mem_map_.reset(
233        MemMap::MapAnonymous("post zygote non-moving space", nullptr, 64 * MB,
234                             PROT_READ | PROT_WRITE, &error_str));
235    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr) << error_str;
236    heap_begin = std::min(post_zygote_non_moving_space_mem_map_->Begin(), heap_begin);
237    heap_end = std::max(post_zygote_non_moving_space_mem_map_->End(), heap_end);
238  }
239  size_t heap_capacity = heap_end - heap_begin;
240
241  // Allocate the card table.
242  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
243  CHECK(card_table_.get() != NULL) << "Failed to create card table";
244
245  // Card cache for now since it makes it easier for us to update the references to the copying
246  // spaces.
247  accounting::ModUnionTable* mod_union_table =
248      new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace());
249  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
250  AddModUnionTable(mod_union_table);
251
252  // TODO: Count objects in the image space here.
253  num_bytes_allocated_ = 0;
254
255  // Default mark stack size in bytes.
256  static const size_t default_mark_stack_size = 64 * KB;
257  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
258  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
259                                                          max_allocation_stack_size_));
260  live_stack_.reset(accounting::ObjectStack::Create("live stack",
261                                                    max_allocation_stack_size_));
262
263  // It's still too early to take a lock because there are no threads yet, but we can create locks
264  // now. We don't create it earlier to make it clear that you can't use locks during heap
265  // initialization.
266  gc_complete_lock_ = new Mutex("GC complete lock");
267  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
268                                                *gc_complete_lock_));
269  last_gc_time_ns_ = NanoTime();
270  last_gc_size_ = GetBytesAllocated();
271
272  if (ignore_max_footprint_) {
273    SetIdealFootprint(std::numeric_limits<size_t>::max());
274    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
275  }
276  CHECK_NE(max_allowed_footprint_, 0U);
277
278  // Create our garbage collectors.
279  for (size_t i = 0; i < 2; ++i) {
280    const bool concurrent = i != 0;
281    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
282    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
283    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
284  }
285  if (kMovingCollector) {
286    // TODO: Clean this up.
287    bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
288    semi_space_collector_ = new collector::SemiSpace(this, generational);
289    garbage_collectors_.push_back(semi_space_collector_);
290  }
291
292  if (running_on_valgrind_) {
293    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
294  }
295
296  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
297    LOG(INFO) << "Heap() exiting";
298  }
299}
300
301void Heap::ChangeAllocator(AllocatorType allocator) {
302  // These two allocators are only used internally and don't have any entrypoints.
303  DCHECK_NE(allocator, kAllocatorTypeLOS);
304  DCHECK_NE(allocator, kAllocatorTypeNonMoving);
305  if (current_allocator_ != allocator) {
306    current_allocator_ = allocator;
307    SetQuickAllocEntryPointsAllocator(current_allocator_);
308    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
309  }
310}
311
312bool Heap::IsCompilingBoot() const {
313  for (const auto& space : continuous_spaces_) {
314    if (space->IsImageSpace()) {
315      return false;
316    } else if (space->IsZygoteSpace()) {
317      return false;
318    }
319  }
320  return true;
321}
322
323bool Heap::HasImageSpace() const {
324  for (const auto& space : continuous_spaces_) {
325    if (space->IsImageSpace()) {
326      return true;
327    }
328  }
329  return false;
330}
331
332void Heap::IncrementDisableMovingGC(Thread* self) {
333  // Need to do this holding the lock to prevent races where the GC is about to run / running when
334  // we attempt to disable it.
335  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
336  MutexLock mu(self, *gc_complete_lock_);
337  ++disable_moving_gc_count_;
338  // TODO: Wait for compacting GC to complete if we ever have a concurrent compacting GC.
339}
340
341void Heap::DecrementDisableMovingGC(Thread* self) {
342  MutexLock mu(self, *gc_complete_lock_);
343  CHECK_GE(disable_moving_gc_count_, 0U);
344  --disable_moving_gc_count_;
345}
346
347void Heap::UpdateProcessState(ProcessState process_state) {
348  if (process_state_ != process_state) {
349    process_state_ = process_state;
350    if (process_state_ == kProcessStateJankPerceptible) {
351      TransitionCollector(post_zygote_collector_type_);
352    } else {
353      TransitionCollector(background_collector_type_);
354    }
355  } else {
356    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
357  }
358}
359
360void Heap::CreateThreadPool() {
361  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
362  if (num_threads != 0) {
363    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
364  }
365}
366
367void Heap::VisitObjects(ObjectVisitorCallback callback, void* arg) {
368  Thread* self = Thread::Current();
369  // GCs can move objects, so don't allow this.
370  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
371  if (bump_pointer_space_ != nullptr) {
372    // Visit objects in bump pointer space.
373    bump_pointer_space_->Walk(callback, arg);
374  }
375  // TODO: Switch to standard begin and end to use ranged a based loop.
376  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
377      it < end; ++it) {
378    mirror::Object* obj = *it;
379    callback(obj, arg);
380  }
381  GetLiveBitmap()->Walk(callback, arg);
382  self->EndAssertNoThreadSuspension(old_cause);
383}
384
385void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
386  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
387  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
388  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
389  // TODO: Generalize this to n bitmaps?
390  if (space1 == nullptr) {
391    DCHECK(space2 != nullptr);
392    space1 = space2;
393  }
394  if (space2 == nullptr) {
395    DCHECK(space1 != nullptr);
396    space2 = space1;
397  }
398  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
399                 large_object_space_->GetLiveObjects(), stack);
400}
401
402void Heap::DeleteThreadPool() {
403  thread_pool_.reset(nullptr);
404}
405
406void Heap::AddSpace(space::Space* space, bool set_as_default) {
407  DCHECK(space != nullptr);
408  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
409  if (space->IsContinuousSpace()) {
410    DCHECK(!space->IsDiscontinuousSpace());
411    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
412    // Continuous spaces don't necessarily have bitmaps.
413    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
414    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
415    if (live_bitmap != nullptr) {
416      DCHECK(mark_bitmap != nullptr);
417      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
418      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
419    }
420    continuous_spaces_.push_back(continuous_space);
421    if (set_as_default) {
422      if (continuous_space->IsDlMallocSpace()) {
423        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
424      } else if (continuous_space->IsRosAllocSpace()) {
425        rosalloc_space_ = continuous_space->AsRosAllocSpace();
426      }
427    }
428    // Ensure that spaces remain sorted in increasing order of start address.
429    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
430              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
431      return a->Begin() < b->Begin();
432    });
433  } else {
434    DCHECK(space->IsDiscontinuousSpace());
435    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
436    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
437    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
438    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
439    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
440    discontinuous_spaces_.push_back(discontinuous_space);
441  }
442  if (space->IsAllocSpace()) {
443    alloc_spaces_.push_back(space->AsAllocSpace());
444  }
445}
446
447void Heap::RemoveSpace(space::Space* space) {
448  DCHECK(space != nullptr);
449  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
450  if (space->IsContinuousSpace()) {
451    DCHECK(!space->IsDiscontinuousSpace());
452    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
453    // Continuous spaces don't necessarily have bitmaps.
454    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
455    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
456    if (live_bitmap != nullptr) {
457      DCHECK(mark_bitmap != nullptr);
458      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
459      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
460    }
461    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
462    DCHECK(it != continuous_spaces_.end());
463    continuous_spaces_.erase(it);
464    if (continuous_space == dlmalloc_space_) {
465      dlmalloc_space_ = nullptr;
466    } else if (continuous_space == rosalloc_space_) {
467      rosalloc_space_ = nullptr;
468    }
469    if (continuous_space == main_space_) {
470      main_space_ = nullptr;
471    }
472  } else {
473    DCHECK(space->IsDiscontinuousSpace());
474    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
475    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
476    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
477    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
478    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
479    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
480                        discontinuous_space);
481    DCHECK(it != discontinuous_spaces_.end());
482    discontinuous_spaces_.erase(it);
483  }
484  if (space->IsAllocSpace()) {
485    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
486    DCHECK(it != alloc_spaces_.end());
487    alloc_spaces_.erase(it);
488  }
489}
490
491void Heap::RegisterGCAllocation(size_t bytes) {
492  if (this != nullptr) {
493    gc_memory_overhead_.FetchAndAdd(bytes);
494  }
495}
496
497void Heap::RegisterGCDeAllocation(size_t bytes) {
498  if (this != nullptr) {
499    gc_memory_overhead_.FetchAndSub(bytes);
500  }
501}
502
503void Heap::DumpGcPerformanceInfo(std::ostream& os) {
504  // Dump cumulative timings.
505  os << "Dumping cumulative Gc timings\n";
506  uint64_t total_duration = 0;
507
508  // Dump cumulative loggers for each GC type.
509  uint64_t total_paused_time = 0;
510  for (const auto& collector : garbage_collectors_) {
511    CumulativeLogger& logger = collector->GetCumulativeTimings();
512    if (logger.GetTotalNs() != 0) {
513      os << Dumpable<CumulativeLogger>(logger);
514      const uint64_t total_ns = logger.GetTotalNs();
515      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
516      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
517      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
518      const uint64_t freed_objects = collector->GetTotalFreedObjects();
519      Histogram<uint64_t>::CumulativeData cumulative_data;
520      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
521      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
522      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
523         << collector->GetName() << " freed: " << freed_objects
524         << " objects with total size " << PrettySize(freed_bytes) << "\n"
525         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
526         << PrettySize(freed_bytes / seconds) << "/s\n";
527      total_duration += total_ns;
528      total_paused_time += total_pause_ns;
529    }
530  }
531  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
532  if (total_duration != 0) {
533    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
534    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
535    os << "Mean GC size throughput: "
536       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
537    os << "Mean GC object throughput: "
538       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
539  }
540  size_t total_objects_allocated = GetObjectsAllocatedEver();
541  os << "Total number of allocations: " << total_objects_allocated << "\n";
542  size_t total_bytes_allocated = GetBytesAllocatedEver();
543  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
544  if (kMeasureAllocationTime) {
545    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
546    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
547       << "\n";
548  }
549  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
550  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
551  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
552}
553
554Heap::~Heap() {
555  VLOG(heap) << "Starting ~Heap()";
556  STLDeleteElements(&garbage_collectors_);
557  // If we don't reset then the mark stack complains in its destructor.
558  allocation_stack_->Reset();
559  live_stack_->Reset();
560  STLDeleteValues(&mod_union_tables_);
561  STLDeleteElements(&continuous_spaces_);
562  STLDeleteElements(&discontinuous_spaces_);
563  delete gc_complete_lock_;
564  VLOG(heap) << "Finished ~Heap()";
565}
566
567space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
568                                                            bool fail_ok) const {
569  for (const auto& space : continuous_spaces_) {
570    if (space->Contains(obj)) {
571      return space;
572    }
573  }
574  if (!fail_ok) {
575    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
576  }
577  return NULL;
578}
579
580space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
581                                                                  bool fail_ok) const {
582  for (const auto& space : discontinuous_spaces_) {
583    if (space->Contains(obj)) {
584      return space;
585    }
586  }
587  if (!fail_ok) {
588    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
589  }
590  return NULL;
591}
592
593space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
594  space::Space* result = FindContinuousSpaceFromObject(obj, true);
595  if (result != NULL) {
596    return result;
597  }
598  return FindDiscontinuousSpaceFromObject(obj, true);
599}
600
601struct SoftReferenceArgs {
602  RootVisitor* is_marked_callback_;
603  RootVisitor* recursive_mark_callback_;
604  void* arg_;
605};
606
607mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
608  SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg);
609  // TODO: Not preserve all soft references.
610  return args->recursive_mark_callback_(obj, args->arg_);
611}
612
613// Process reference class instances and schedule finalizations.
614void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
615                             RootVisitor* is_marked_callback,
616                             RootVisitor* recursive_mark_object_callback, void* arg) {
617  // Unless we are in the zygote or required to clear soft references with white references,
618  // preserve some white referents.
619  if (!clear_soft && !Runtime::Current()->IsZygote()) {
620    SoftReferenceArgs soft_reference_args;
621    soft_reference_args.is_marked_callback_ = is_marked_callback;
622    soft_reference_args.recursive_mark_callback_ = recursive_mark_object_callback;
623    soft_reference_args.arg_ = arg;
624    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
625                                                     &soft_reference_args);
626  }
627  timings.StartSplit("ProcessReferences");
628  // Clear all remaining soft and weak references with white referents.
629  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
630  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
631  timings.EndSplit();
632  // Preserve all white objects with finalize methods and schedule them for finalization.
633  timings.StartSplit("EnqueueFinalizerReferences");
634  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
635                                                        recursive_mark_object_callback, arg);
636  timings.EndSplit();
637  timings.StartSplit("ProcessReferences");
638  // Clear all f-reachable soft and weak references with white referents.
639  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
640  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
641  // Clear all phantom references with white referents.
642  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
643  // At this point all reference queues other than the cleared references should be empty.
644  DCHECK(soft_reference_queue_.IsEmpty());
645  DCHECK(weak_reference_queue_.IsEmpty());
646  DCHECK(finalizer_reference_queue_.IsEmpty());
647  DCHECK(phantom_reference_queue_.IsEmpty());
648  timings.EndSplit();
649}
650
651bool Heap::IsEnqueued(mirror::Object* ref) const {
652  // Since the references are stored as cyclic lists it means that once enqueued, the pending next
653  // will always be non-null.
654  return ref->GetFieldObject<mirror::Object*>(GetReferencePendingNextOffset(), false) != nullptr;
655}
656
657bool Heap::IsEnqueuable(const mirror::Object* ref) const {
658  DCHECK(ref != nullptr);
659  const mirror::Object* queue =
660      ref->GetFieldObject<mirror::Object*>(GetReferenceQueueOffset(), false);
661  const mirror::Object* queue_next =
662      ref->GetFieldObject<mirror::Object*>(GetReferenceQueueNextOffset(), false);
663  return queue != nullptr && queue_next == nullptr;
664}
665
666// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
667// marked, put it on the appropriate list in the heap for later processing.
668void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj,
669                                  RootVisitor mark_visitor, void* arg) {
670  DCHECK(klass != nullptr);
671  DCHECK(klass->IsReferenceClass());
672  DCHECK(obj != nullptr);
673  mirror::Object* referent = GetReferenceReferent(obj);
674  if (referent != nullptr) {
675    mirror::Object* forward_address = mark_visitor(referent, arg);
676    // Null means that the object is not currently marked.
677    if (forward_address == nullptr) {
678      Thread* self = Thread::Current();
679      // TODO: Remove these locks, and use atomic stacks for storing references?
680      // We need to check that the references haven't already been enqueued since we can end up
681      // scanning the same reference multiple times due to dirty cards.
682      if (klass->IsSoftReferenceClass()) {
683        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
684      } else if (klass->IsWeakReferenceClass()) {
685        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
686      } else if (klass->IsFinalizerReferenceClass()) {
687        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
688      } else if (klass->IsPhantomReferenceClass()) {
689        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
690      } else {
691        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
692                   << klass->GetAccessFlags();
693      }
694    } else if (referent != forward_address) {
695      // Referent is already marked and we need to update it.
696      SetReferenceReferent(obj, forward_address);
697    }
698  }
699}
700
701space::ImageSpace* Heap::GetImageSpace() const {
702  for (const auto& space : continuous_spaces_) {
703    if (space->IsImageSpace()) {
704      return space->AsImageSpace();
705    }
706  }
707  return NULL;
708}
709
710static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
711  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
712  if (used_bytes < chunk_size) {
713    size_t chunk_free_bytes = chunk_size - used_bytes;
714    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
715    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
716  }
717}
718
719void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
720  std::ostringstream oss;
721  int64_t total_bytes_free = GetFreeMemory();
722  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
723      << " free bytes";
724  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
725  if (!large_object_allocation && total_bytes_free >= byte_count) {
726    size_t max_contiguous_allocation = 0;
727    for (const auto& space : continuous_spaces_) {
728      if (space->IsMallocSpace()) {
729        // To allow the Walk/InspectAll() to exclusively-lock the mutator
730        // lock, temporarily release the shared access to the mutator
731        // lock here by transitioning to the suspended state.
732        Locks::mutator_lock_->AssertSharedHeld(self);
733        self->TransitionFromRunnableToSuspended(kSuspended);
734        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
735        self->TransitionFromSuspendedToRunnable();
736        Locks::mutator_lock_->AssertSharedHeld(self);
737      }
738    }
739    oss << "; failed due to fragmentation (largest possible contiguous allocation "
740        <<  max_contiguous_allocation << " bytes)";
741  }
742  self->ThrowOutOfMemoryError(oss.str().c_str());
743}
744
745void Heap::Trim() {
746  uint64_t start_ns = NanoTime();
747  // Trim the managed spaces.
748  uint64_t total_alloc_space_allocated = 0;
749  uint64_t total_alloc_space_size = 0;
750  uint64_t managed_reclaimed = 0;
751  for (const auto& space : continuous_spaces_) {
752    if (space->IsMallocSpace()) {
753      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
754      total_alloc_space_size += alloc_space->Size();
755      managed_reclaimed += alloc_space->Trim();
756    }
757  }
758  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
759      bump_pointer_space_->Size();
760  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
761      static_cast<float>(total_alloc_space_size);
762  uint64_t gc_heap_end_ns = NanoTime();
763  // Trim the native heap.
764  dlmalloc_trim(0);
765  size_t native_reclaimed = 0;
766  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
767  uint64_t end_ns = NanoTime();
768  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
769      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
770      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
771      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
772      << "%.";
773}
774
775bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
776  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
777  // taking the lock.
778  if (obj == nullptr) {
779    return true;
780  }
781  return IsAligned<kObjectAlignment>(obj) && IsHeapAddress(obj);
782}
783
784bool Heap::IsHeapAddress(const mirror::Object* obj) const {
785  if (kMovingCollector && bump_pointer_space_ && bump_pointer_space_->HasAddress(obj)) {
786    return true;
787  }
788  // TODO: This probably doesn't work for large objects.
789  return FindSpaceFromObject(obj, true) != nullptr;
790}
791
792bool Heap::IsLiveObjectLocked(const mirror::Object* obj, bool search_allocation_stack,
793                              bool search_live_stack, bool sorted) {
794  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
795    return false;
796  }
797  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
798    mirror::Class* klass = obj->GetClass();
799    if (obj == klass) {
800      // This case happens for java.lang.Class.
801      return true;
802    }
803    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
804  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
805    return false;
806  }
807  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
808  space::DiscontinuousSpace* d_space = NULL;
809  if (c_space != nullptr) {
810    if (c_space->GetLiveBitmap()->Test(obj)) {
811      return true;
812    }
813  } else {
814    d_space = FindDiscontinuousSpaceFromObject(obj, true);
815    if (d_space != nullptr) {
816      if (d_space->GetLiveObjects()->Test(obj)) {
817        return true;
818      }
819    }
820  }
821  // This is covering the allocation/live stack swapping that is done without mutators suspended.
822  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
823    if (i > 0) {
824      NanoSleep(MsToNs(10));
825    }
826    if (search_allocation_stack) {
827      if (sorted) {
828        if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
829          return true;
830        }
831      } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) {
832        return true;
833      }
834    }
835
836    if (search_live_stack) {
837      if (sorted) {
838        if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
839          return true;
840        }
841      } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
842        return true;
843      }
844    }
845  }
846  // We need to check the bitmaps again since there is a race where we mark something as live and
847  // then clear the stack containing it.
848  if (c_space != nullptr) {
849    if (c_space->GetLiveBitmap()->Test(obj)) {
850      return true;
851    }
852  } else {
853    d_space = FindDiscontinuousSpaceFromObject(obj, true);
854    if (d_space != nullptr && d_space->GetLiveObjects()->Test(obj)) {
855      return true;
856    }
857  }
858  return false;
859}
860
861void Heap::VerifyObjectImpl(const mirror::Object* obj) {
862  if (Thread::Current() == NULL ||
863      Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
864    return;
865  }
866  VerifyObjectBody(obj);
867}
868
869bool Heap::VerifyClassClass(const mirror::Class* c) const {
870  // Note: we don't use the accessors here as they have internal sanity checks that we don't want
871  // to run
872  const byte* raw_addr =
873      reinterpret_cast<const byte*>(c) + mirror::Object::ClassOffset().Int32Value();
874  const mirror::Class* c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
875  raw_addr = reinterpret_cast<const byte*>(c_c) + mirror::Object::ClassOffset().Int32Value();
876  const mirror::Class* c_c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
877  return c_c == c_c_c;
878}
879
880void Heap::DumpSpaces(std::ostream& stream) {
881  for (const auto& space : continuous_spaces_) {
882    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
883    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
884    stream << space << " " << *space << "\n";
885    if (live_bitmap != nullptr) {
886      stream << live_bitmap << " " << *live_bitmap << "\n";
887    }
888    if (mark_bitmap != nullptr) {
889      stream << mark_bitmap << " " << *mark_bitmap << "\n";
890    }
891  }
892  for (const auto& space : discontinuous_spaces_) {
893    stream << space << " " << *space << "\n";
894  }
895}
896
897void Heap::VerifyObjectBody(const mirror::Object* obj) {
898  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
899  // Ignore early dawn of the universe verifications.
900  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
901    return;
902  }
903  const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
904      mirror::Object::ClassOffset().Int32Value();
905  const mirror::Class* c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
906  if (UNLIKELY(c == NULL)) {
907    LOG(FATAL) << "Null class in object: " << obj;
908  } else if (UNLIKELY(!IsAligned<kObjectAlignment>(c))) {
909    LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
910  }
911  CHECK(VerifyClassClass(c));
912
913  if (verify_object_mode_ > kVerifyAllFast) {
914    // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the
915    //       heap_bitmap_lock_.
916    if (!IsLiveObjectLocked(obj)) {
917      DumpSpaces();
918      LOG(FATAL) << "Object is dead: " << obj;
919    }
920    if (!IsLiveObjectLocked(c)) {
921      LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
922    }
923  }
924}
925
926void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
927  DCHECK(obj != NULL);
928  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
929}
930
931void Heap::VerifyHeap() {
932  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
933  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
934}
935
936void Heap::RecordFree(int64_t freed_objects, int64_t freed_bytes) {
937  DCHECK_LE(freed_bytes, num_bytes_allocated_.Load());
938  num_bytes_allocated_.FetchAndSub(freed_bytes);
939  if (Runtime::Current()->HasStatsEnabled()) {
940    RuntimeStats* thread_stats = Thread::Current()->GetStats();
941    thread_stats->freed_objects += freed_objects;
942    thread_stats->freed_bytes += freed_bytes;
943    // TODO: Do this concurrently.
944    RuntimeStats* global_stats = Runtime::Current()->GetStats();
945    global_stats->freed_objects += freed_objects;
946    global_stats->freed_bytes += freed_bytes;
947  }
948}
949
950mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
951                                             size_t alloc_size, size_t* bytes_allocated,
952                                             mirror::Class** klass) {
953  mirror::Object* ptr = nullptr;
954  bool was_default_allocator = allocator == GetCurrentAllocator();
955  DCHECK(klass != nullptr);
956  SirtRef<mirror::Class> sirt_klass(self, *klass);
957  // The allocation failed. If the GC is running, block until it completes, and then retry the
958  // allocation.
959  collector::GcType last_gc = WaitForGcToComplete(self);
960  if (last_gc != collector::kGcTypeNone) {
961    // If we were the default allocator but the allocator changed while we were suspended,
962    // abort the allocation.
963    if (was_default_allocator && allocator != GetCurrentAllocator()) {
964      *klass = sirt_klass.get();
965      return nullptr;
966    }
967    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
968    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
969  }
970
971  // Loop through our different Gc types and try to Gc until we get enough free memory.
972  for (collector::GcType gc_type : gc_plan_) {
973    if (ptr != nullptr) {
974      break;
975    }
976    // Attempt to run the collector, if we succeed, re-try the allocation.
977    bool gc_ran =
978        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
979    if (was_default_allocator && allocator != GetCurrentAllocator()) {
980      *klass = sirt_klass.get();
981      return nullptr;
982    }
983    if (gc_ran) {
984      // Did we free sufficient memory for the allocation to succeed?
985      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
986    }
987  }
988  // Allocations have failed after GCs;  this is an exceptional state.
989  if (ptr == nullptr) {
990    // Try harder, growing the heap if necessary.
991    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
992  }
993  if (ptr == nullptr) {
994    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
995    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
996    // VM spec requires that all SoftReferences have been collected and cleared before throwing
997    // OOME.
998    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
999             << " allocation";
1000    // TODO: Run finalization, but this may cause more allocations to occur.
1001    // We don't need a WaitForGcToComplete here either.
1002    DCHECK(!gc_plan_.empty());
1003    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1004    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1005      *klass = sirt_klass.get();
1006      return nullptr;
1007    }
1008    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
1009    if (ptr == nullptr) {
1010      ThrowOutOfMemoryError(self, alloc_size, false);
1011    }
1012  }
1013  *klass = sirt_klass.get();
1014  return ptr;
1015}
1016
1017void Heap::SetTargetHeapUtilization(float target) {
1018  DCHECK_GT(target, 0.0f);  // asserted in Java code
1019  DCHECK_LT(target, 1.0f);
1020  target_utilization_ = target;
1021}
1022
1023size_t Heap::GetObjectsAllocated() const {
1024  size_t total = 0;
1025  for (space::AllocSpace* space : alloc_spaces_) {
1026    total += space->GetObjectsAllocated();
1027  }
1028  return total;
1029}
1030
1031size_t Heap::GetObjectsAllocatedEver() const {
1032  return GetObjectsFreedEver() + GetObjectsAllocated();
1033}
1034
1035size_t Heap::GetBytesAllocatedEver() const {
1036  return GetBytesFreedEver() + GetBytesAllocated();
1037}
1038
1039class InstanceCounter {
1040 public:
1041  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1042      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1043      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1044  }
1045
1046  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1047    for (size_t i = 0; i < classes_.size(); ++i) {
1048      const mirror::Class* instance_class = o->GetClass();
1049      if (use_is_assignable_from_) {
1050        if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) {
1051          ++counts_[i];
1052        }
1053      } else {
1054        if (instance_class == classes_[i]) {
1055          ++counts_[i];
1056        }
1057      }
1058    }
1059  }
1060
1061 private:
1062  const std::vector<mirror::Class*>& classes_;
1063  bool use_is_assignable_from_;
1064  uint64_t* const counts_;
1065
1066  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1067};
1068
1069void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1070                          uint64_t* counts) {
1071  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1072  // is empty, so the live bitmap is the only place we need to look.
1073  Thread* self = Thread::Current();
1074  self->TransitionFromRunnableToSuspended(kNative);
1075  CollectGarbage(false);
1076  self->TransitionFromSuspendedToRunnable();
1077
1078  InstanceCounter counter(classes, use_is_assignable_from, counts);
1079  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1080  GetLiveBitmap()->Visit(counter);
1081}
1082
1083class InstanceCollector {
1084 public:
1085  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1086      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1087      : class_(c), max_count_(max_count), instances_(instances) {
1088  }
1089
1090  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1091    const mirror::Class* instance_class = o->GetClass();
1092    if (instance_class == class_) {
1093      if (max_count_ == 0 || instances_.size() < max_count_) {
1094        instances_.push_back(const_cast<mirror::Object*>(o));
1095      }
1096    }
1097  }
1098
1099 private:
1100  mirror::Class* class_;
1101  uint32_t max_count_;
1102  std::vector<mirror::Object*>& instances_;
1103
1104  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1105};
1106
1107void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1108                        std::vector<mirror::Object*>& instances) {
1109  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1110  // is empty, so the live bitmap is the only place we need to look.
1111  Thread* self = Thread::Current();
1112  self->TransitionFromRunnableToSuspended(kNative);
1113  CollectGarbage(false);
1114  self->TransitionFromSuspendedToRunnable();
1115
1116  InstanceCollector collector(c, max_count, instances);
1117  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1118  GetLiveBitmap()->Visit(collector);
1119}
1120
1121class ReferringObjectsFinder {
1122 public:
1123  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1124                         std::vector<mirror::Object*>& referring_objects)
1125      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1126      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1127  }
1128
1129  // For bitmap Visit.
1130  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1131  // annotalysis on visitors.
1132  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1133    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true);
1134  }
1135
1136  // For MarkSweep::VisitObjectReferences.
1137  void operator()(mirror::Object* referrer, mirror::Object* object,
1138                  const MemberOffset&, bool) const {
1139    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1140      referring_objects_.push_back(referrer);
1141    }
1142  }
1143
1144 private:
1145  mirror::Object* object_;
1146  uint32_t max_count_;
1147  std::vector<mirror::Object*>& referring_objects_;
1148
1149  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1150};
1151
1152void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1153                               std::vector<mirror::Object*>& referring_objects) {
1154  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1155  // is empty, so the live bitmap is the only place we need to look.
1156  Thread* self = Thread::Current();
1157  self->TransitionFromRunnableToSuspended(kNative);
1158  CollectGarbage(false);
1159  self->TransitionFromSuspendedToRunnable();
1160
1161  ReferringObjectsFinder finder(o, max_count, referring_objects);
1162  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1163  GetLiveBitmap()->Visit(finder);
1164}
1165
1166void Heap::CollectGarbage(bool clear_soft_references) {
1167  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1168  // last GC will not have necessarily been cleared.
1169  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1170}
1171
1172void Heap::TransitionCollector(CollectorType collector_type) {
1173  if (collector_type == collector_type_) {
1174    return;
1175  }
1176  uint64_t start_time = NanoTime();
1177  int32_t before_size  = GetTotalMemory();
1178  int32_t before_allocated = num_bytes_allocated_.Load();
1179  ThreadList* tl = Runtime::Current()->GetThreadList();
1180  Thread* self = Thread::Current();
1181  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1182  Locks::mutator_lock_->AssertNotHeld(self);
1183  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1184  // compacting_gc_disable_count_, this should rarely occurs).
1185  bool copying_transition =
1186      IsCompactingGC(background_collector_type_) || IsCompactingGC(post_zygote_collector_type_);
1187  while (!StartGC(self, copying_transition)) {
1188    usleep(100);
1189  }
1190  tl->SuspendAll();
1191  switch (collector_type) {
1192    case kCollectorTypeSS:
1193      // Fall-through.
1194    case kCollectorTypeGSS: {
1195      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1196      CHECK(main_space_ != nullptr);
1197      Compact(temp_space_, main_space_);
1198      DCHECK(allocator_mem_map_.get() == nullptr);
1199      allocator_mem_map_.reset(main_space_->ReleaseMemMap());
1200      madvise(main_space_->Begin(), main_space_->Size(), MADV_DONTNEED);
1201      // RemoveSpace does not delete the removed space.
1202      space::Space* old_space = main_space_;
1203      RemoveSpace(old_space);
1204      delete old_space;
1205      break;
1206    }
1207    case kCollectorTypeMS:
1208      // Fall through.
1209    case kCollectorTypeCMS: {
1210      if (IsCompactingGC(collector_type_)) {
1211        // TODO: Use mem-map from temp space?
1212        MemMap* mem_map = allocator_mem_map_.release();
1213        CHECK(mem_map != nullptr);
1214        size_t initial_size = kDefaultInitialSize;
1215        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1216        CHECK(main_space_ == nullptr);
1217        if (kUseRosAlloc) {
1218          main_space_ =
1219              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1220                                                     initial_size, mem_map->Size(),
1221                                                     mem_map->Size(), low_memory_mode_);
1222        } else {
1223          main_space_ =
1224              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1225                                                     initial_size, mem_map->Size(),
1226                                                     mem_map->Size());
1227        }
1228        main_space_->SetFootprintLimit(main_space_->Capacity());
1229        AddSpace(main_space_);
1230        Compact(main_space_, bump_pointer_space_);
1231      }
1232      break;
1233    }
1234    default: {
1235      LOG(FATAL) << "Attempted to transition to invalid collector type";
1236      break;
1237    }
1238  }
1239  ChangeCollector(collector_type);
1240  tl->ResumeAll();
1241  // Can't call into java code with all threads suspended.
1242  EnqueueClearedReferences();
1243  uint64_t duration = NanoTime() - start_time;
1244  GrowForUtilization(collector::kGcTypeFull, duration);
1245  FinishGC(self, collector::kGcTypeFull);
1246  int32_t after_size = GetTotalMemory();
1247  int32_t delta_size = before_size - after_size;
1248  int32_t after_allocated = num_bytes_allocated_.Load();
1249  int32_t delta_allocated = before_allocated - after_allocated;
1250  const std::string saved_bytes_str =
1251      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1252  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1253      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1254      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1255      << PrettySize(delta_size) << " saved";
1256}
1257
1258void Heap::ChangeCollector(CollectorType collector_type) {
1259  // TODO: Only do this with all mutators suspended to avoid races.
1260  if (collector_type != collector_type_) {
1261    collector_type_ = collector_type;
1262    gc_plan_.clear();
1263    switch (collector_type_) {
1264      case kCollectorTypeSS:
1265        // Fall-through.
1266      case kCollectorTypeGSS: {
1267        concurrent_gc_ = false;
1268        gc_plan_.push_back(collector::kGcTypeFull);
1269        if (use_tlab_) {
1270          ChangeAllocator(kAllocatorTypeTLAB);
1271        } else {
1272          ChangeAllocator(kAllocatorTypeBumpPointer);
1273        }
1274        break;
1275      }
1276      case kCollectorTypeMS: {
1277        concurrent_gc_ = false;
1278        gc_plan_.push_back(collector::kGcTypeSticky);
1279        gc_plan_.push_back(collector::kGcTypePartial);
1280        gc_plan_.push_back(collector::kGcTypeFull);
1281        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1282        break;
1283      }
1284      case kCollectorTypeCMS: {
1285        concurrent_gc_ = true;
1286        gc_plan_.push_back(collector::kGcTypeSticky);
1287        gc_plan_.push_back(collector::kGcTypePartial);
1288        gc_plan_.push_back(collector::kGcTypeFull);
1289        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1290        break;
1291      }
1292      default: {
1293        LOG(FATAL) << "Unimplemented";
1294      }
1295    }
1296    if (concurrent_gc_) {
1297      concurrent_start_bytes_ =
1298          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1299    } else {
1300      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1301    }
1302  }
1303}
1304
1305// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1306class ZygoteCompactingCollector : public collector::SemiSpace {
1307 public:
1308  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, "zygote collector") {
1309  }
1310
1311  void BuildBins(space::ContinuousSpace* space) {
1312    bin_live_bitmap_ = space->GetLiveBitmap();
1313    bin_mark_bitmap_ = space->GetMarkBitmap();
1314    BinContext context;
1315    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1316    context.collector_ = this;
1317    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1318    // Note: This requires traversing the space in increasing order of object addresses.
1319    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1320    // Add the last bin which spans after the last object to the end of the space.
1321    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1322  }
1323
1324 private:
1325  struct BinContext {
1326    uintptr_t prev_;  // The end of the previous object.
1327    ZygoteCompactingCollector* collector_;
1328  };
1329  // Maps from bin sizes to locations.
1330  std::multimap<size_t, uintptr_t> bins_;
1331  // Live bitmap of the space which contains the bins.
1332  accounting::SpaceBitmap* bin_live_bitmap_;
1333  // Mark bitmap of the space which contains the bins.
1334  accounting::SpaceBitmap* bin_mark_bitmap_;
1335
1336  static void Callback(mirror::Object* obj, void* arg)
1337      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1338    DCHECK(arg != nullptr);
1339    BinContext* context = reinterpret_cast<BinContext*>(arg);
1340    ZygoteCompactingCollector* collector = context->collector_;
1341    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1342    size_t bin_size = object_addr - context->prev_;
1343    // Add the bin consisting of the end of the previous object to the start of the current object.
1344    collector->AddBin(bin_size, context->prev_);
1345    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1346  }
1347
1348  void AddBin(size_t size, uintptr_t position) {
1349    if (size != 0) {
1350      bins_.insert(std::make_pair(size, position));
1351    }
1352  }
1353
1354  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1355    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1356    // allocator.
1357    return false;
1358  }
1359
1360  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1361      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1362    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1363    mirror::Object* forward_address;
1364    // Find the smallest bin which we can move obj in.
1365    auto it = bins_.lower_bound(object_size);
1366    if (it == bins_.end()) {
1367      // No available space in the bins, place it in the target space instead (grows the zygote
1368      // space).
1369      size_t bytes_allocated;
1370      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated);
1371      if (to_space_live_bitmap_ != nullptr) {
1372        to_space_live_bitmap_->Set(forward_address);
1373      } else {
1374        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1375        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1376      }
1377    } else {
1378      size_t size = it->first;
1379      uintptr_t pos = it->second;
1380      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1381      forward_address = reinterpret_cast<mirror::Object*>(pos);
1382      // Set the live and mark bits so that sweeping system weaks works properly.
1383      bin_live_bitmap_->Set(forward_address);
1384      bin_mark_bitmap_->Set(forward_address);
1385      DCHECK_GE(size, object_size);
1386      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1387    }
1388    // Copy the object over to its new location.
1389    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1390    return forward_address;
1391  }
1392};
1393
1394void Heap::UnBindBitmaps() {
1395  for (const auto& space : GetContinuousSpaces()) {
1396    if (space->IsContinuousMemMapAllocSpace()) {
1397      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1398      if (alloc_space->HasBoundBitmaps()) {
1399        alloc_space->UnBindBitmaps();
1400      }
1401    }
1402  }
1403}
1404
1405void Heap::PreZygoteFork() {
1406  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1407  Thread* self = Thread::Current();
1408  MutexLock mu(self, zygote_creation_lock_);
1409  // Try to see if we have any Zygote spaces.
1410  if (have_zygote_space_) {
1411    return;
1412  }
1413  VLOG(heap) << "Starting PreZygoteFork";
1414  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1415  // Trim the pages at the end of the non moving space.
1416  non_moving_space_->Trim();
1417  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1418  // Change the collector to the post zygote one.
1419  ChangeCollector(post_zygote_collector_type_);
1420  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1421  if (semi_space_collector_ != nullptr) {
1422    ZygoteCompactingCollector zygote_collector(this);
1423    zygote_collector.BuildBins(non_moving_space_);
1424    // Create a new bump pointer space which we will compact into.
1425    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1426                                         non_moving_space_->Limit());
1427    // Compact the bump pointer space to a new zygote bump pointer space.
1428    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1429    zygote_collector.SetFromSpace(bump_pointer_space_);
1430    zygote_collector.SetToSpace(&target_space);
1431    zygote_collector.Run(kGcCauseCollectorTransition, false);
1432    CHECK(temp_space_->IsEmpty());
1433    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1434    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1435    // Update the end and write out image.
1436    non_moving_space_->SetEnd(target_space.End());
1437    non_moving_space_->SetLimit(target_space.Limit());
1438    VLOG(heap) << "Zygote size " << non_moving_space_->Size() << " bytes";
1439  }
1440  // Save the old space so that we can remove it after we complete creating the zygote space.
1441  space::MallocSpace* old_alloc_space = non_moving_space_;
1442  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1443  // the remaining available space.
1444  // Remove the old space before creating the zygote space since creating the zygote space sets
1445  // the old alloc space's bitmaps to nullptr.
1446  RemoveSpace(old_alloc_space);
1447  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1448                                                                        low_memory_mode_,
1449                                                                        &main_space_);
1450  delete old_alloc_space;
1451  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1452  AddSpace(zygote_space, false);
1453  CHECK(main_space_ != nullptr);
1454  if (main_space_->IsRosAllocSpace()) {
1455    rosalloc_space_ = main_space_->AsRosAllocSpace();
1456  } else if (main_space_->IsDlMallocSpace()) {
1457    dlmalloc_space_ = main_space_->AsDlMallocSpace();
1458  }
1459  main_space_->SetFootprintLimit(main_space_->Capacity());
1460  AddSpace(main_space_);
1461  have_zygote_space_ = true;
1462  // Create the zygote space mod union table.
1463  accounting::ModUnionTable* mod_union_table =
1464      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1465  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1466  AddModUnionTable(mod_union_table);
1467  // Reset the cumulative loggers since we now have a few additional timing phases.
1468  for (const auto& collector : garbage_collectors_) {
1469    collector->ResetCumulativeStatistics();
1470  }
1471  // Can't use RosAlloc for non moving space due to thread local buffers.
1472  // TODO: Non limited space for non-movable objects?
1473  MemMap* mem_map = post_zygote_non_moving_space_mem_map_.release();
1474  space::MallocSpace* new_non_moving_space =
1475      space::DlMallocSpace::CreateFromMemMap(mem_map, "Non moving dlmalloc space", kPageSize,
1476                                             2 * MB, mem_map->Size(), mem_map->Size());
1477  AddSpace(new_non_moving_space, false);
1478  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1479  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1480  non_moving_space_ = new_non_moving_space;
1481}
1482
1483void Heap::FlushAllocStack() {
1484  MarkAllocStackAsLive(allocation_stack_.get());
1485  allocation_stack_->Reset();
1486}
1487
1488void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1489                          accounting::SpaceBitmap* bitmap2,
1490                          accounting::ObjectSet* large_objects,
1491                          accounting::ObjectStack* stack) {
1492  DCHECK(bitmap1 != nullptr);
1493  DCHECK(bitmap2 != nullptr);
1494  mirror::Object** limit = stack->End();
1495  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1496    const mirror::Object* obj = *it;
1497    DCHECK(obj != nullptr);
1498    if (bitmap1->HasAddress(obj)) {
1499      bitmap1->Set(obj);
1500    } else if (bitmap2->HasAddress(obj)) {
1501      bitmap2->Set(obj);
1502    } else {
1503      large_objects->Set(obj);
1504    }
1505  }
1506}
1507
1508void Heap::SwapSemiSpaces() {
1509  // Swap the spaces so we allocate into the space which we just evacuated.
1510  std::swap(bump_pointer_space_, temp_space_);
1511}
1512
1513void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1514                   space::ContinuousMemMapAllocSpace* source_space) {
1515  CHECK(kMovingCollector);
1516  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1517  if (target_space != source_space) {
1518    semi_space_collector_->SetFromSpace(source_space);
1519    semi_space_collector_->SetToSpace(target_space);
1520    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1521  }
1522}
1523
1524collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1525                                               bool clear_soft_references) {
1526  Thread* self = Thread::Current();
1527  Runtime* runtime = Runtime::Current();
1528  // If the heap can't run the GC, silently fail and return that no GC was run.
1529  switch (gc_type) {
1530    case collector::kGcTypePartial: {
1531      if (!have_zygote_space_) {
1532        return collector::kGcTypeNone;
1533      }
1534      break;
1535    }
1536    default: {
1537      // Other GC types don't have any special cases which makes them not runnable. The main case
1538      // here is full GC.
1539    }
1540  }
1541  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1542  Locks::mutator_lock_->AssertNotHeld(self);
1543  if (self->IsHandlingStackOverflow()) {
1544    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1545  }
1546  gc_complete_lock_->AssertNotHeld(self);
1547  const bool compacting_gc = IsCompactingGC(collector_type_);
1548  if (!StartGC(self, compacting_gc)) {
1549    return collector::kGcTypeNone;
1550  }
1551  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1552    ++runtime->GetStats()->gc_for_alloc_count;
1553    ++self->GetStats()->gc_for_alloc_count;
1554  }
1555  uint64_t gc_start_time_ns = NanoTime();
1556  uint64_t gc_start_size = GetBytesAllocated();
1557  // Approximate allocation rate in bytes / second.
1558  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1559  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1560  if (LIKELY(ms_delta != 0)) {
1561    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1562    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1563  }
1564
1565  DCHECK_LT(gc_type, collector::kGcTypeMax);
1566  DCHECK_NE(gc_type, collector::kGcTypeNone);
1567
1568  collector::GarbageCollector* collector = nullptr;
1569  // TODO: Clean this up.
1570  if (compacting_gc) {
1571    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1572           current_allocator_ == kAllocatorTypeTLAB);
1573    gc_type = semi_space_collector_->GetGcType();
1574    CHECK(temp_space_->IsEmpty());
1575    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1576    semi_space_collector_->SetToSpace(temp_space_);
1577    mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1578    collector = semi_space_collector_;
1579    gc_type = collector::kGcTypeFull;
1580  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1581      current_allocator_ == kAllocatorTypeDlMalloc) {
1582    for (const auto& cur_collector : garbage_collectors_) {
1583      if (cur_collector->IsConcurrent() == concurrent_gc_ &&
1584          cur_collector->GetGcType() == gc_type) {
1585        collector = cur_collector;
1586        break;
1587      }
1588    }
1589  } else {
1590    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1591  }
1592  CHECK(collector != nullptr)
1593      << "Could not find garbage collector with concurrent=" << concurrent_gc_
1594      << " and type=" << gc_type;
1595
1596  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1597
1598  collector->Run(gc_cause, clear_soft_references);
1599  total_objects_freed_ever_ += collector->GetFreedObjects();
1600  total_bytes_freed_ever_ += collector->GetFreedBytes();
1601
1602  // Enqueue cleared references.
1603  Locks::mutator_lock_->AssertNotHeld(self);
1604  EnqueueClearedReferences();
1605
1606  // Grow the heap so that we know when to perform the next GC.
1607  GrowForUtilization(gc_type, collector->GetDurationNs());
1608
1609  if (CareAboutPauseTimes()) {
1610    const size_t duration = collector->GetDurationNs();
1611    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1612    // GC for alloc pauses the allocating thread, so consider it as a pause.
1613    bool was_slow = duration > long_gc_log_threshold_ ||
1614        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1615    if (!was_slow) {
1616      for (uint64_t pause : pauses) {
1617        was_slow = was_slow || pause > long_pause_log_threshold_;
1618      }
1619    }
1620    if (was_slow) {
1621        const size_t percent_free = GetPercentFree();
1622        const size_t current_heap_size = GetBytesAllocated();
1623        const size_t total_memory = GetTotalMemory();
1624        std::ostringstream pause_string;
1625        for (size_t i = 0; i < pauses.size(); ++i) {
1626            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1627                         << ((i != pauses.size() - 1) ? ", " : "");
1628        }
1629        LOG(INFO) << gc_cause << " " << collector->GetName()
1630                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1631                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1632                  << collector->GetFreedLargeObjects() << "("
1633                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1634                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1635                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1636                  << " total " << PrettyDuration((duration / 1000) * 1000);
1637        if (VLOG_IS_ON(heap)) {
1638            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1639        }
1640    }
1641  }
1642  FinishGC(self, gc_type);
1643  ATRACE_END();
1644
1645  // Inform DDMS that a GC completed.
1646  Dbg::GcDidFinish();
1647  return gc_type;
1648}
1649
1650bool Heap::StartGC(Thread* self, bool is_compacting) {
1651  MutexLock mu(self, *gc_complete_lock_);
1652  // Ensure there is only one GC at a time.
1653  WaitForGcToCompleteLocked(self);
1654  // TODO: if another thread beat this one to do the GC, perhaps we should just return here?
1655  //       Not doing at the moment to ensure soft references are cleared.
1656  // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1657  if (is_compacting && disable_moving_gc_count_ != 0) {
1658    LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1659    return false;
1660  }
1661  is_gc_running_ = true;
1662  return true;
1663}
1664
1665void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1666  MutexLock mu(self, *gc_complete_lock_);
1667  is_gc_running_ = false;
1668  last_gc_type_ = gc_type;
1669  // Wake anyone who may have been waiting for the GC to complete.
1670  gc_complete_cond_->Broadcast(self);
1671}
1672
1673static mirror::Object* RootMatchesObjectVisitor(mirror::Object* root, void* arg) {
1674  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1675  if (root == obj) {
1676    LOG(INFO) << "Object " << obj << " is a root";
1677  }
1678  return root;
1679}
1680
1681class ScanVisitor {
1682 public:
1683  void operator()(const mirror::Object* obj) const {
1684    LOG(ERROR) << "Would have rescanned object " << obj;
1685  }
1686};
1687
1688// Verify a reference from an object.
1689class VerifyReferenceVisitor {
1690 public:
1691  explicit VerifyReferenceVisitor(Heap* heap)
1692      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1693      : heap_(heap), failed_(false) {}
1694
1695  bool Failed() const {
1696    return failed_;
1697  }
1698
1699  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1700  // analysis on visitors.
1701  void operator()(const mirror::Object* obj, const mirror::Object* ref,
1702                  const MemberOffset& offset, bool /* is_static */) const
1703      NO_THREAD_SAFETY_ANALYSIS {
1704    if (ref == nullptr || IsLive(ref)) {
1705      // Verify that the reference is live.
1706      return;
1707    }
1708    if (!failed_) {
1709      // Print message on only on first failure to prevent spam.
1710      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1711      failed_ = true;
1712    }
1713    if (obj != nullptr) {
1714      accounting::CardTable* card_table = heap_->GetCardTable();
1715      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1716      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1717      byte* card_addr = card_table->CardFromAddr(obj);
1718      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1719                 << offset << "\n card value = " << static_cast<int>(*card_addr);
1720      if (heap_->IsValidObjectAddress(obj->GetClass())) {
1721        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1722      } else {
1723        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1724      }
1725
1726      // Attmept to find the class inside of the recently freed objects.
1727      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1728      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1729        space::MallocSpace* space = ref_space->AsMallocSpace();
1730        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1731        if (ref_class != nullptr) {
1732          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1733                     << PrettyClass(ref_class);
1734        } else {
1735          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1736        }
1737      }
1738
1739      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1740          ref->GetClass()->IsClass()) {
1741        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1742      } else {
1743        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1744                   << ") is not a valid heap address";
1745      }
1746
1747      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1748      void* cover_begin = card_table->AddrFromCard(card_addr);
1749      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1750          accounting::CardTable::kCardSize);
1751      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1752          << "-" << cover_end;
1753      accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1754
1755      if (bitmap == nullptr) {
1756        LOG(ERROR) << "Object " << obj << " has no bitmap";
1757        if (!heap_->VerifyClassClass(obj->GetClass())) {
1758          LOG(ERROR) << "Object " << obj << " failed class verification!";
1759        }
1760      } else {
1761        // Print out how the object is live.
1762        if (bitmap->Test(obj)) {
1763          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1764        }
1765        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1766          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1767        }
1768        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1769          LOG(ERROR) << "Object " << obj << " found in live stack";
1770        }
1771        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1772          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1773        }
1774        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1775          LOG(ERROR) << "Ref " << ref << " found in live stack";
1776        }
1777        // Attempt to see if the card table missed the reference.
1778        ScanVisitor scan_visitor;
1779        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1780        card_table->Scan(bitmap, byte_cover_begin,
1781                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1782      }
1783
1784      // Search to see if any of the roots reference our object.
1785      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1786      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1787
1788      // Search to see if any of the roots reference our reference.
1789      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
1790      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1791    } else {
1792      LOG(ERROR) << "Root " << ref << " is dead with type " << PrettyTypeOf(ref);
1793    }
1794  }
1795
1796  bool IsLive(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1797    return heap_->IsLiveObjectLocked(obj, true, false, true);
1798  }
1799
1800  static mirror::Object* VerifyRoots(mirror::Object* root, void* arg) {
1801    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
1802    (*visitor)(nullptr, root, MemberOffset(0), true);
1803    return root;
1804  }
1805
1806 private:
1807  Heap* const heap_;
1808  mutable bool failed_;
1809};
1810
1811// Verify all references within an object, for use with HeapBitmap::Visit.
1812class VerifyObjectVisitor {
1813 public:
1814  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
1815
1816  void operator()(mirror::Object* obj) const
1817      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1818    // Note: we are verifying the references in obj but not obj itself, this is because obj must
1819    // be live or else how did we find it in the live bitmap?
1820    VerifyReferenceVisitor visitor(heap_);
1821    // The class doesn't count as a reference but we should verify it anyways.
1822    collector::MarkSweep::VisitObjectReferences(obj, visitor, true);
1823    if (obj->GetClass()->IsReferenceClass()) {
1824      visitor(obj, heap_->GetReferenceReferent(obj), MemberOffset(0), false);
1825    }
1826    failed_ = failed_ || visitor.Failed();
1827  }
1828
1829  static void VisitCallback(mirror::Object* obj, void* arg)
1830      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1831    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
1832    visitor->operator()(obj);
1833  }
1834
1835  bool Failed() const {
1836    return failed_;
1837  }
1838
1839 private:
1840  Heap* const heap_;
1841  mutable bool failed_;
1842};
1843
1844// Must do this with mutators suspended since we are directly accessing the allocation stacks.
1845bool Heap::VerifyHeapReferences() {
1846  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1847  // Lets sort our allocation stacks so that we can efficiently binary search them.
1848  allocation_stack_->Sort();
1849  live_stack_->Sort();
1850  VerifyObjectVisitor visitor(this);
1851  // Verify objects in the allocation stack since these will be objects which were:
1852  // 1. Allocated prior to the GC (pre GC verification).
1853  // 2. Allocated during the GC (pre sweep GC verification).
1854  // We don't want to verify the objects in the live stack since they themselves may be
1855  // pointing to dead objects if they are not reachable.
1856  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
1857  // Verify the roots:
1858  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false);
1859  if (visitor.Failed()) {
1860    // Dump mod-union tables.
1861    for (const auto& table_pair : mod_union_tables_) {
1862      accounting::ModUnionTable* mod_union_table = table_pair.second;
1863      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
1864    }
1865    DumpSpaces();
1866    return false;
1867  }
1868  return true;
1869}
1870
1871class VerifyReferenceCardVisitor {
1872 public:
1873  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
1874      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
1875                            Locks::heap_bitmap_lock_)
1876      : heap_(heap), failed_(failed) {
1877  }
1878
1879  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1880  // annotalysis on visitors.
1881  void operator()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset,
1882                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1883    // Filter out class references since changing an object's class does not mark the card as dirty.
1884    // Also handles large objects, since the only reference they hold is a class reference.
1885    if (ref != NULL && !ref->IsClass()) {
1886      accounting::CardTable* card_table = heap_->GetCardTable();
1887      // If the object is not dirty and it is referencing something in the live stack other than
1888      // class, then it must be on a dirty card.
1889      if (!card_table->AddrIsInCardTable(obj)) {
1890        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
1891        *failed_ = true;
1892      } else if (!card_table->IsDirty(obj)) {
1893        // TODO: Check mod-union tables.
1894        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
1895        // kCardDirty - 1 if it didnt get touched since we aged it.
1896        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1897        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1898          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1899            LOG(ERROR) << "Object " << obj << " found in live stack";
1900          }
1901          if (heap_->GetLiveBitmap()->Test(obj)) {
1902            LOG(ERROR) << "Object " << obj << " found in live bitmap";
1903          }
1904          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
1905                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
1906
1907          // Print which field of the object is dead.
1908          if (!obj->IsObjectArray()) {
1909            const mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1910            CHECK(klass != NULL);
1911            const mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
1912                                                                            : klass->GetIFields();
1913            CHECK(fields != NULL);
1914            for (int32_t i = 0; i < fields->GetLength(); ++i) {
1915              const mirror::ArtField* cur = fields->Get(i);
1916              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1917                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
1918                          << PrettyField(cur);
1919                break;
1920              }
1921            }
1922          } else {
1923            const mirror::ObjectArray<mirror::Object>* object_array =
1924                obj->AsObjectArray<mirror::Object>();
1925            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
1926              if (object_array->Get(i) == ref) {
1927                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
1928              }
1929            }
1930          }
1931
1932          *failed_ = true;
1933        }
1934      }
1935    }
1936  }
1937
1938 private:
1939  Heap* const heap_;
1940  bool* const failed_;
1941};
1942
1943class VerifyLiveStackReferences {
1944 public:
1945  explicit VerifyLiveStackReferences(Heap* heap)
1946      : heap_(heap),
1947        failed_(false) {}
1948
1949  void operator()(mirror::Object* obj) const
1950      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1951    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
1952    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true);
1953  }
1954
1955  bool Failed() const {
1956    return failed_;
1957  }
1958
1959 private:
1960  Heap* const heap_;
1961  bool failed_;
1962};
1963
1964bool Heap::VerifyMissingCardMarks() {
1965  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1966
1967  // We need to sort the live stack since we binary search it.
1968  live_stack_->Sort();
1969  VerifyLiveStackReferences visitor(this);
1970  GetLiveBitmap()->Visit(visitor);
1971
1972  // We can verify objects in the live stack since none of these should reference dead objects.
1973  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
1974    visitor(*it);
1975  }
1976
1977  if (visitor.Failed()) {
1978    DumpSpaces();
1979    return false;
1980  }
1981  return true;
1982}
1983
1984void Heap::SwapStacks() {
1985  allocation_stack_.swap(live_stack_);
1986}
1987
1988accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
1989  auto it = mod_union_tables_.find(space);
1990  if (it == mod_union_tables_.end()) {
1991    return nullptr;
1992  }
1993  return it->second;
1994}
1995
1996void Heap::ProcessCards(TimingLogger& timings) {
1997  // Clear cards and keep track of cards cleared in the mod-union table.
1998  for (const auto& space : continuous_spaces_) {
1999    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2000    if (table != nullptr) {
2001      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2002          "ImageModUnionClearCards";
2003      TimingLogger::ScopedSplit split(name, &timings);
2004      table->ClearCards();
2005    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2006      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
2007      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2008      // were dirty before the GC started.
2009      // TODO: Don't need to use atomic.
2010      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2011      // roots and then we scan / update mod union tables after. We will always scan either card.
2012      // If we end up with the non aged card, we scan it it in the pause.
2013      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
2014    }
2015  }
2016}
2017
2018static mirror::Object* IdentityCallback(mirror::Object* obj, void*) {
2019  return obj;
2020}
2021
2022void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2023  ThreadList* thread_list = Runtime::Current()->GetThreadList();
2024  Thread* self = Thread::Current();
2025
2026  if (verify_pre_gc_heap_) {
2027    thread_list->SuspendAll();
2028    {
2029      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2030      if (!VerifyHeapReferences()) {
2031        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2032      }
2033    }
2034    thread_list->ResumeAll();
2035  }
2036
2037  // Check that all objects which reference things in the live stack are on dirty cards.
2038  if (verify_missing_card_marks_) {
2039    thread_list->SuspendAll();
2040    {
2041      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2042      SwapStacks();
2043      // Sort the live stack so that we can quickly binary search it later.
2044      if (!VerifyMissingCardMarks()) {
2045        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2046      }
2047      SwapStacks();
2048    }
2049    thread_list->ResumeAll();
2050  }
2051
2052  if (verify_mod_union_table_) {
2053    thread_list->SuspendAll();
2054    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2055    for (const auto& table_pair : mod_union_tables_) {
2056      accounting::ModUnionTable* mod_union_table = table_pair.second;
2057      mod_union_table->UpdateAndMarkReferences(IdentityCallback, nullptr);
2058      mod_union_table->Verify();
2059    }
2060    thread_list->ResumeAll();
2061  }
2062}
2063
2064void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2065  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2066  // reachable objects.
2067  if (verify_post_gc_heap_) {
2068    Thread* self = Thread::Current();
2069    CHECK_NE(self->GetState(), kRunnable);
2070    {
2071      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2072      // Swapping bound bitmaps does nothing.
2073      gc->SwapBitmaps();
2074      if (!VerifyHeapReferences()) {
2075        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2076      }
2077      gc->SwapBitmaps();
2078    }
2079  }
2080}
2081
2082void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2083  if (verify_system_weaks_) {
2084    Thread* self = Thread::Current();
2085    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2086    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2087    mark_sweep->VerifySystemWeaks();
2088  }
2089}
2090
2091collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2092  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2093  MutexLock mu(self, *gc_complete_lock_);
2094  return WaitForGcToCompleteLocked(self);
2095}
2096
2097collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2098  collector::GcType last_gc_type = collector::kGcTypeNone;
2099  uint64_t wait_start = NanoTime();
2100  while (is_gc_running_) {
2101    ATRACE_BEGIN("GC: Wait For Completion");
2102    // We must wait, change thread state then sleep on gc_complete_cond_;
2103    gc_complete_cond_->Wait(self);
2104    last_gc_type = last_gc_type_;
2105    ATRACE_END();
2106  }
2107  uint64_t wait_time = NanoTime() - wait_start;
2108  total_wait_time_ += wait_time;
2109  if (wait_time > long_pause_log_threshold_) {
2110    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2111  }
2112  return last_gc_type;
2113}
2114
2115void Heap::DumpForSigQuit(std::ostream& os) {
2116  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2117     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2118  DumpGcPerformanceInfo(os);
2119}
2120
2121size_t Heap::GetPercentFree() {
2122  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2123}
2124
2125void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2126  if (max_allowed_footprint > GetMaxMemory()) {
2127    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2128             << PrettySize(GetMaxMemory());
2129    max_allowed_footprint = GetMaxMemory();
2130  }
2131  max_allowed_footprint_ = max_allowed_footprint;
2132}
2133
2134bool Heap::IsMovableObject(const mirror::Object* obj) const {
2135  if (kMovingCollector) {
2136    DCHECK(!IsInTempSpace(obj));
2137    if (bump_pointer_space_->HasAddress(obj)) {
2138      return true;
2139    }
2140    // TODO: Refactor this logic into the space itself?
2141    // Objects in the main space are only copied during background -> foreground transitions or
2142    // visa versa.
2143    if (main_space_ != nullptr && main_space_->HasAddress(obj) &&
2144        (IsCompactingGC(background_collector_type_) ||
2145            IsCompactingGC(post_zygote_collector_type_))) {
2146      return true;
2147    }
2148  }
2149  return false;
2150}
2151
2152bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2153  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2154    return true;
2155  }
2156  return false;
2157}
2158
2159void Heap::UpdateMaxNativeFootprint() {
2160  size_t native_size = native_bytes_allocated_;
2161  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2162  size_t target_size = native_size / GetTargetHeapUtilization();
2163  if (target_size > native_size + max_free_) {
2164    target_size = native_size + max_free_;
2165  } else if (target_size < native_size + min_free_) {
2166    target_size = native_size + min_free_;
2167  }
2168  native_footprint_gc_watermark_ = target_size;
2169  native_footprint_limit_ = 2 * target_size - native_size;
2170}
2171
2172void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2173  // We know what our utilization is at this moment.
2174  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2175  const size_t bytes_allocated = GetBytesAllocated();
2176  last_gc_size_ = bytes_allocated;
2177  last_gc_time_ns_ = NanoTime();
2178  size_t target_size;
2179  if (gc_type != collector::kGcTypeSticky) {
2180    // Grow the heap for non sticky GC.
2181    target_size = bytes_allocated / GetTargetHeapUtilization();
2182    if (target_size > bytes_allocated + max_free_) {
2183      target_size = bytes_allocated + max_free_;
2184    } else if (target_size < bytes_allocated + min_free_) {
2185      target_size = bytes_allocated + min_free_;
2186    }
2187    native_need_to_run_finalization_ = true;
2188    next_gc_type_ = collector::kGcTypeSticky;
2189  } else {
2190    // Based on how close the current heap size is to the target size, decide
2191    // whether or not to do a partial or sticky GC next.
2192    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2193      next_gc_type_ = collector::kGcTypeSticky;
2194    } else {
2195      next_gc_type_ = have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2196    }
2197    // If we have freed enough memory, shrink the heap back down.
2198    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2199      target_size = bytes_allocated + max_free_;
2200    } else {
2201      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2202    }
2203  }
2204  if (!ignore_max_footprint_) {
2205    SetIdealFootprint(target_size);
2206    if (concurrent_gc_) {
2207      // Calculate when to perform the next ConcurrentGC.
2208      // Calculate the estimated GC duration.
2209      const double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2210      // Estimate how many remaining bytes we will have when we need to start the next GC.
2211      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2212      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2213      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2214      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2215        // A never going to happen situation that from the estimated allocation rate we will exceed
2216        // the applications entire footprint with the given estimated allocation rate. Schedule
2217        // another GC nearly straight away.
2218        remaining_bytes = kMinConcurrentRemainingBytes;
2219      }
2220      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2221      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2222      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2223      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2224      // right away.
2225      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
2226    }
2227  }
2228}
2229
2230void Heap::ClearGrowthLimit() {
2231  growth_limit_ = capacity_;
2232  non_moving_space_->ClearGrowthLimit();
2233}
2234
2235void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
2236                               MemberOffset reference_queue_offset,
2237                               MemberOffset reference_queueNext_offset,
2238                               MemberOffset reference_pendingNext_offset,
2239                               MemberOffset finalizer_reference_zombie_offset) {
2240  reference_referent_offset_ = reference_referent_offset;
2241  reference_queue_offset_ = reference_queue_offset;
2242  reference_queueNext_offset_ = reference_queueNext_offset;
2243  reference_pendingNext_offset_ = reference_pendingNext_offset;
2244  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
2245  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2246  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
2247  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
2248  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
2249  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
2250}
2251
2252void Heap::SetReferenceReferent(mirror::Object* reference, mirror::Object* referent) {
2253  DCHECK(reference != NULL);
2254  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2255  reference->SetFieldObject(reference_referent_offset_, referent, true);
2256}
2257
2258mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) {
2259  DCHECK(reference != NULL);
2260  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2261  return reference->GetFieldObject<mirror::Object*>(reference_referent_offset_, true);
2262}
2263
2264void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2265  ScopedObjectAccess soa(self);
2266  JValue result;
2267  ArgArray arg_array(NULL, 0);
2268  arg_array.Append(reinterpret_cast<uint32_t>(object));
2269  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
2270      arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2271}
2272
2273void Heap::EnqueueClearedReferences() {
2274  if (!cleared_references_.IsEmpty()) {
2275    // When a runtime isn't started there are no reference queues to care about so ignore.
2276    if (LIKELY(Runtime::Current()->IsStarted())) {
2277      ScopedObjectAccess soa(Thread::Current());
2278      JValue result;
2279      ArgArray arg_array(NULL, 0);
2280      arg_array.Append(reinterpret_cast<uint32_t>(cleared_references_.GetList()));
2281      soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
2282          arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2283    }
2284    cleared_references_.Clear();
2285  }
2286}
2287
2288void Heap::RequestConcurrentGC(Thread* self) {
2289  // Make sure that we can do a concurrent GC.
2290  Runtime* runtime = Runtime::Current();
2291  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2292      self->IsHandlingStackOverflow()) {
2293    return;
2294  }
2295  // We already have a request pending, no reason to start more until we update
2296  // concurrent_start_bytes_.
2297  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2298  JNIEnv* env = self->GetJniEnv();
2299  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2300  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2301  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2302                            WellKnownClasses::java_lang_Daemons_requestGC);
2303  CHECK(!env->ExceptionCheck());
2304}
2305
2306void Heap::ConcurrentGC(Thread* self) {
2307  if (Runtime::Current()->IsShuttingDown(self)) {
2308    return;
2309  }
2310  // Wait for any GCs currently running to finish.
2311  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2312    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2313    // instead. E.g. can't do partial, so do full instead.
2314    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2315        collector::kGcTypeNone) {
2316      for (collector::GcType gc_type : gc_plan_) {
2317        // Attempt to run the collector, if we succeed, we are done.
2318        if (gc_type > next_gc_type_ &&
2319            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2320          break;
2321        }
2322      }
2323    }
2324  }
2325}
2326
2327void Heap::RequestHeapTrim() {
2328  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2329  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2330  // a space it will hold its lock and can become a cause of jank.
2331  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2332  // forking.
2333
2334  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2335  // because that only marks object heads, so a large array looks like lots of empty space. We
2336  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2337  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2338  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2339  // not how much use we're making of those pages.
2340  uint64_t ms_time = MilliTime();
2341  // Don't bother trimming the alloc space if a heap trim occurred in the last two seconds.
2342  if (ms_time - last_trim_time_ms_ < 2 * 1000) {
2343    return;
2344  }
2345
2346  Thread* self = Thread::Current();
2347  Runtime* runtime = Runtime::Current();
2348  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2349    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2350    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2351    // as we don't hold the lock while requesting the trim).
2352    return;
2353  }
2354
2355  last_trim_time_ms_ = ms_time;
2356
2357  // Trim only if we do not currently care about pause times.
2358  if (!CareAboutPauseTimes()) {
2359    JNIEnv* env = self->GetJniEnv();
2360    DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
2361    DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
2362    env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2363                              WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2364    CHECK(!env->ExceptionCheck());
2365  }
2366}
2367
2368void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2369  if (rosalloc_space_ != nullptr) {
2370    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2371  }
2372  if (bump_pointer_space_ != nullptr) {
2373    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2374  }
2375}
2376
2377void Heap::RevokeAllThreadLocalBuffers() {
2378  if (rosalloc_space_ != nullptr) {
2379    rosalloc_space_->RevokeAllThreadLocalBuffers();
2380  }
2381  if (bump_pointer_space_ != nullptr) {
2382    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2383  }
2384}
2385
2386bool Heap::IsGCRequestPending() const {
2387  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2388}
2389
2390void Heap::RunFinalization(JNIEnv* env) {
2391  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2392  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2393    CHECK(WellKnownClasses::java_lang_System != nullptr);
2394    WellKnownClasses::java_lang_System_runFinalization =
2395        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2396    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2397  }
2398  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2399                            WellKnownClasses::java_lang_System_runFinalization);
2400}
2401
2402void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2403  Thread* self = ThreadForEnv(env);
2404  if (native_need_to_run_finalization_) {
2405    RunFinalization(env);
2406    UpdateMaxNativeFootprint();
2407    native_need_to_run_finalization_ = false;
2408  }
2409  // Total number of native bytes allocated.
2410  native_bytes_allocated_.FetchAndAdd(bytes);
2411  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2412    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2413        collector::kGcTypeFull;
2414
2415    // The second watermark is higher than the gc watermark. If you hit this it means you are
2416    // allocating native objects faster than the GC can keep up with.
2417    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2418      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2419        // Just finished a GC, attempt to run finalizers.
2420        RunFinalization(env);
2421        CHECK(!env->ExceptionCheck());
2422      }
2423      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2424      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2425        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2426        RunFinalization(env);
2427        native_need_to_run_finalization_ = false;
2428        CHECK(!env->ExceptionCheck());
2429      }
2430      // We have just run finalizers, update the native watermark since it is very likely that
2431      // finalizers released native managed allocations.
2432      UpdateMaxNativeFootprint();
2433    } else if (!IsGCRequestPending()) {
2434      if (concurrent_gc_) {
2435        RequestConcurrentGC(self);
2436      } else {
2437        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2438      }
2439    }
2440  }
2441}
2442
2443void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2444  int expected_size, new_size;
2445  do {
2446    expected_size = native_bytes_allocated_.Load();
2447    new_size = expected_size - bytes;
2448    if (UNLIKELY(new_size < 0)) {
2449      ScopedObjectAccess soa(env);
2450      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2451                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2452                                 "registered as allocated", bytes, expected_size).c_str());
2453      break;
2454    }
2455  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2456}
2457
2458int64_t Heap::GetTotalMemory() const {
2459  int64_t ret = 0;
2460  for (const auto& space : continuous_spaces_) {
2461    // Currently don't include the image space.
2462    if (!space->IsImageSpace()) {
2463      ret += space->Size();
2464    }
2465  }
2466  for (const auto& space : discontinuous_spaces_) {
2467    if (space->IsLargeObjectSpace()) {
2468      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2469    }
2470  }
2471  return ret;
2472}
2473
2474void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2475  DCHECK(mod_union_table != nullptr);
2476  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2477}
2478
2479}  // namespace gc
2480}  // namespace art
2481