heap.cc revision b27285583ca40253b76010948420a91b45f79257
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/allocator.h"
27#include "base/histogram-inl.h"
28#include "base/stl_util.h"
29#include "common_throws.h"
30#include "cutils/sched_policy.h"
31#include "debugger.h"
32#include "gc/accounting/atomic_stack.h"
33#include "gc/accounting/card_table-inl.h"
34#include "gc/accounting/heap_bitmap-inl.h"
35#include "gc/accounting/mod_union_table.h"
36#include "gc/accounting/mod_union_table-inl.h"
37#include "gc/accounting/remembered_set.h"
38#include "gc/accounting/space_bitmap-inl.h"
39#include "gc/collector/concurrent_copying.h"
40#include "gc/collector/mark_compact.h"
41#include "gc/collector/mark_sweep-inl.h"
42#include "gc/collector/partial_mark_sweep.h"
43#include "gc/collector/semi_space.h"
44#include "gc/collector/sticky_mark_sweep.h"
45#include "gc/reference_processor.h"
46#include "gc/space/bump_pointer_space.h"
47#include "gc/space/dlmalloc_space-inl.h"
48#include "gc/space/image_space.h"
49#include "gc/space/large_object_space.h"
50#include "gc/space/rosalloc_space-inl.h"
51#include "gc/space/space-inl.h"
52#include "gc/space/zygote_space.h"
53#include "entrypoints/quick/quick_alloc_entrypoints.h"
54#include "heap-inl.h"
55#include "image.h"
56#include "mirror/art_field-inl.h"
57#include "mirror/class-inl.h"
58#include "mirror/object.h"
59#include "mirror/object-inl.h"
60#include "mirror/object_array-inl.h"
61#include "mirror/reference-inl.h"
62#include "os.h"
63#include "reflection.h"
64#include "runtime.h"
65#include "ScopedLocalRef.h"
66#include "scoped_thread_state_change.h"
67#include "handle_scope-inl.h"
68#include "thread_list.h"
69#include "well_known_classes.h"
70
71namespace art {
72
73namespace gc {
74
75static constexpr size_t kCollectorTransitionStressIterations = 0;
76static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
77static constexpr bool kGCALotMode = false;
78static constexpr size_t kGcAlotInterval = KB;
79// Minimum amount of remaining bytes before a concurrent GC is triggered.
80static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
81static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
82// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
83// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
84// threads (lower pauses, use less memory bandwidth).
85static constexpr double kStickyGcThroughputAdjustment = 1.0;
86// Whether or not we use the free list large object space.
87static constexpr bool kUseFreeListSpaceForLOS = false;
88// Whether or not we compact the zygote in PreZygoteFork.
89static constexpr bool kCompactZygote = kMovingCollector;
90// How many reserve entries are at the end of the allocation stack, these are only needed if the
91// allocation stack overflows.
92static constexpr size_t kAllocationStackReserveSize = 1024;
93// Default mark stack size in bytes.
94static const size_t kDefaultMarkStackSize = 64 * KB;
95// Define space name.
96static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
97static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
98static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
99static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
100
101Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
102           double target_utilization, double foreground_heap_growth_multiplier,
103           size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
104           const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
105           CollectorType background_collector_type, size_t parallel_gc_threads,
106           size_t conc_gc_threads, bool low_memory_mode,
107           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
108           bool ignore_max_footprint, bool use_tlab,
109           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
110           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
111           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
112           uint64_t min_interval_homogeneous_space_compaction_by_oom)
113    : non_moving_space_(nullptr),
114      rosalloc_space_(nullptr),
115      dlmalloc_space_(nullptr),
116      main_space_(nullptr),
117      collector_type_(kCollectorTypeNone),
118      foreground_collector_type_(foreground_collector_type),
119      background_collector_type_(background_collector_type),
120      desired_collector_type_(foreground_collector_type_),
121      heap_trim_request_lock_(nullptr),
122      last_trim_time_(0),
123      heap_transition_or_trim_target_time_(0),
124      heap_trim_request_pending_(false),
125      parallel_gc_threads_(parallel_gc_threads),
126      conc_gc_threads_(conc_gc_threads),
127      low_memory_mode_(low_memory_mode),
128      long_pause_log_threshold_(long_pause_log_threshold),
129      long_gc_log_threshold_(long_gc_log_threshold),
130      ignore_max_footprint_(ignore_max_footprint),
131      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
132      zygote_space_(nullptr),
133      large_object_threshold_(kDefaultLargeObjectThreshold),  // Starts out disabled.
134      collector_type_running_(kCollectorTypeNone),
135      last_gc_type_(collector::kGcTypeNone),
136      next_gc_type_(collector::kGcTypePartial),
137      capacity_(capacity),
138      growth_limit_(growth_limit),
139      max_allowed_footprint_(initial_size),
140      native_footprint_gc_watermark_(initial_size),
141      native_need_to_run_finalization_(false),
142      // Initially assume we perceive jank in case the process state is never updated.
143      process_state_(kProcessStateJankPerceptible),
144      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
145      total_bytes_freed_ever_(0),
146      total_objects_freed_ever_(0),
147      num_bytes_allocated_(0),
148      native_bytes_allocated_(0),
149      verify_missing_card_marks_(false),
150      verify_system_weaks_(false),
151      verify_pre_gc_heap_(verify_pre_gc_heap),
152      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
153      verify_post_gc_heap_(verify_post_gc_heap),
154      verify_mod_union_table_(false),
155      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
156      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
157      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
158      last_gc_time_ns_(NanoTime()),
159      allocation_rate_(0),
160      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
161       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
162       * verification is enabled, we limit the size of allocation stacks to speed up their
163       * searching.
164       */
165      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
166          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
167      current_allocator_(kAllocatorTypeDlMalloc),
168      current_non_moving_allocator_(kAllocatorTypeNonMoving),
169      bump_pointer_space_(nullptr),
170      temp_space_(nullptr),
171      min_free_(min_free),
172      max_free_(max_free),
173      target_utilization_(target_utilization),
174      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
175      total_wait_time_(0),
176      total_allocation_time_(0),
177      verify_object_mode_(kVerifyObjectModeDisabled),
178      disable_moving_gc_count_(0),
179      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
180      use_tlab_(use_tlab),
181      main_space_backup_(nullptr),
182      min_interval_homogeneous_space_compaction_by_oom_(
183          min_interval_homogeneous_space_compaction_by_oom),
184      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
185      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
186  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
187    LOG(INFO) << "Heap() entering";
188  }
189  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
190  // entrypoints.
191  const bool is_zygote = Runtime::Current()->IsZygote();
192  if (!is_zygote) {
193    // Background compaction is currently not supported for command line runs.
194    if (background_collector_type_ != foreground_collector_type_) {
195      VLOG(heap) << "Disabling background compaction for non zygote";
196      background_collector_type_ = foreground_collector_type_;
197    }
198  }
199  ChangeCollector(desired_collector_type_);
200  live_bitmap_.reset(new accounting::HeapBitmap(this));
201  mark_bitmap_.reset(new accounting::HeapBitmap(this));
202  // Requested begin for the alloc space, to follow the mapped image and oat files
203  byte* requested_alloc_space_begin = nullptr;
204  if (!image_file_name.empty()) {
205    std::string error_msg;
206    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
207                                                               image_instruction_set,
208                                                               &error_msg);
209    if (image_space != nullptr) {
210      AddSpace(image_space);
211      // Oat files referenced by image files immediately follow them in memory, ensure alloc space
212      // isn't going to get in the middle
213      byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
214      CHECK_GT(oat_file_end_addr, image_space->End());
215      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
216    } else {
217      LOG(WARNING) << "Could not create image space with image file '" << image_file_name << "'. "
218                   << "Attempting to fall back to imageless running. Error was: " << error_msg;
219    }
220  }
221  /*
222  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
223                                     +-  nonmoving space (non_moving_space_capacity)+-
224                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
225                                     +-????????????????????????????????????????????+-
226                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
227                                     +-main alloc space / bump space 1 (capacity_) +-
228                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
229                                     +-????????????????????????????????????????????+-
230                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
231                                     +-main alloc space2 / bump space 2 (capacity_)+-
232                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
233  */
234  bool support_homogeneous_space_compaction =
235      background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
236      use_homogeneous_space_compaction_for_oom;
237  // We may use the same space the main space for the non moving space if we don't need to compact
238  // from the main space.
239  // This is not the case if we support homogeneous compaction or have a moving background
240  // collector type.
241  bool separate_non_moving_space = is_zygote ||
242      support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
243      IsMovingGc(background_collector_type_);
244  if (foreground_collector_type == kCollectorTypeGSS) {
245    separate_non_moving_space = false;
246  }
247  std::unique_ptr<MemMap> main_mem_map_1;
248  std::unique_ptr<MemMap> main_mem_map_2;
249  byte* request_begin = requested_alloc_space_begin;
250  if (request_begin != nullptr && separate_non_moving_space) {
251    request_begin += non_moving_space_capacity;
252  }
253  std::string error_str;
254  std::unique_ptr<MemMap> non_moving_space_mem_map;
255  if (separate_non_moving_space) {
256    // Reserve the non moving mem map before the other two since it needs to be at a specific
257    // address.
258    non_moving_space_mem_map.reset(
259        MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
260                             non_moving_space_capacity, PROT_READ | PROT_WRITE, true, &error_str));
261    CHECK(non_moving_space_mem_map != nullptr) << error_str;
262    // Try to reserve virtual memory at a lower address if we have a separate non moving space.
263    request_begin = reinterpret_cast<byte*>(0x1000000);
264  }
265  // Attempt to create 2 mem maps at or after the requested begin.
266  main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
267                                                    PROT_READ | PROT_WRITE, &error_str));
268  CHECK(main_mem_map_1.get() != nullptr) << error_str;
269  if (support_homogeneous_space_compaction ||
270      background_collector_type_ == kCollectorTypeSS ||
271      foreground_collector_type_ == kCollectorTypeSS) {
272    main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
273                                                      capacity_, PROT_READ | PROT_WRITE,
274                                                      &error_str));
275    CHECK(main_mem_map_2.get() != nullptr) << error_str;
276  }
277  // Create the non moving space first so that bitmaps don't take up the address range.
278  if (separate_non_moving_space) {
279    // Non moving space is always dlmalloc since we currently don't have support for multiple
280    // active rosalloc spaces.
281    const size_t size = non_moving_space_mem_map->Size();
282    non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
283        non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
284        initial_size, size, size, false);
285    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
286    CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
287        << requested_alloc_space_begin;
288    AddSpace(non_moving_space_);
289  }
290  // Create other spaces based on whether or not we have a moving GC.
291  if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
292    // Create bump pointer spaces.
293    // We only to create the bump pointer if the foreground collector is a compacting GC.
294    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
295    bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
296                                                                    main_mem_map_1.release());
297    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
298    AddSpace(bump_pointer_space_);
299    temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
300                                                            main_mem_map_2.release());
301    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
302    AddSpace(temp_space_);
303    CHECK(separate_non_moving_space);
304  } else {
305    CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
306    CHECK(main_space_ != nullptr);
307    AddSpace(main_space_);
308    if (!separate_non_moving_space) {
309      non_moving_space_ = main_space_;
310      CHECK(!non_moving_space_->CanMoveObjects());
311    }
312    if (foreground_collector_type_ == kCollectorTypeGSS) {
313      CHECK_EQ(foreground_collector_type_, background_collector_type_);
314      // Create bump pointer spaces instead of a backup space.
315      main_mem_map_2.release();
316      bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
317                                                            kGSSBumpPointerSpaceCapacity, nullptr);
318      CHECK(bump_pointer_space_ != nullptr);
319      AddSpace(bump_pointer_space_);
320      temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
321                                                    kGSSBumpPointerSpaceCapacity, nullptr);
322      CHECK(temp_space_ != nullptr);
323      AddSpace(temp_space_);
324    } else if (main_mem_map_2.get() != nullptr) {
325      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
326      main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
327                                                           growth_limit_, capacity_, name, true));
328      CHECK(main_space_backup_.get() != nullptr);
329      // Add the space so its accounted for in the heap_begin and heap_end.
330      AddSpace(main_space_backup_.get());
331    }
332  }
333  CHECK(non_moving_space_ != nullptr);
334  CHECK(!non_moving_space_->CanMoveObjects());
335  // Allocate the large object space.
336  if (kUseFreeListSpaceForLOS) {
337    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
338  } else {
339    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
340  }
341  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
342  AddSpace(large_object_space_);
343  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
344  CHECK(!continuous_spaces_.empty());
345  // Relies on the spaces being sorted.
346  byte* heap_begin = continuous_spaces_.front()->Begin();
347  byte* heap_end = continuous_spaces_.back()->Limit();
348  size_t heap_capacity = heap_end - heap_begin;
349  // Remove the main backup space since it slows down the GC to have unused extra spaces.
350  if (main_space_backup_.get() != nullptr) {
351    RemoveSpace(main_space_backup_.get());
352  }
353  // Allocate the card table.
354  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
355  CHECK(card_table_.get() != NULL) << "Failed to create card table";
356  // Card cache for now since it makes it easier for us to update the references to the copying
357  // spaces.
358  accounting::ModUnionTable* mod_union_table =
359      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
360                                                      GetImageSpace());
361  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
362  AddModUnionTable(mod_union_table);
363  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
364    accounting::RememberedSet* non_moving_space_rem_set =
365        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
366    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
367    AddRememberedSet(non_moving_space_rem_set);
368  }
369  // TODO: Count objects in the image space here?
370  num_bytes_allocated_.StoreRelaxed(0);
371  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
372                                                    kDefaultMarkStackSize));
373  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
374  allocation_stack_.reset(accounting::ObjectStack::Create(
375      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
376  live_stack_.reset(accounting::ObjectStack::Create(
377      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
378  // It's still too early to take a lock because there are no threads yet, but we can create locks
379  // now. We don't create it earlier to make it clear that you can't use locks during heap
380  // initialization.
381  gc_complete_lock_ = new Mutex("GC complete lock");
382  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
383                                                *gc_complete_lock_));
384  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
385  last_gc_size_ = GetBytesAllocated();
386  if (ignore_max_footprint_) {
387    SetIdealFootprint(std::numeric_limits<size_t>::max());
388    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
389  }
390  CHECK_NE(max_allowed_footprint_, 0U);
391  // Create our garbage collectors.
392  for (size_t i = 0; i < 2; ++i) {
393    const bool concurrent = i != 0;
394    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
395    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
396    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
397  }
398  if (kMovingCollector) {
399    // TODO: Clean this up.
400    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
401    semi_space_collector_ = new collector::SemiSpace(this, generational,
402                                                     generational ? "generational" : "");
403    garbage_collectors_.push_back(semi_space_collector_);
404    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
405    garbage_collectors_.push_back(concurrent_copying_collector_);
406    mark_compact_collector_ = new collector::MarkCompact(this);
407    garbage_collectors_.push_back(mark_compact_collector_);
408  }
409  if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
410      (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
411    // Check that there's no gap between the image space and the non moving space so that the
412    // immune region won't break (eg. due to a large object allocated in the gap). This is only
413    // required when we're the zygote or using GSS.
414    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
415                                      non_moving_space_->GetMemMap());
416    if (!no_gap) {
417      MemMap::DumpMaps(LOG(ERROR));
418      LOG(FATAL) << "There's a gap between the image space and the main space";
419    }
420  }
421  if (running_on_valgrind_) {
422    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
423  }
424  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
425    LOG(INFO) << "Heap() exiting";
426  }
427}
428
429MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
430                                           int prot_flags, std::string* out_error_str) {
431  while (true) {
432    MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
433                                       PROT_READ | PROT_WRITE, true, out_error_str);
434    if (map != nullptr || request_begin == nullptr) {
435      return map;
436    }
437    // Retry a  second time with no specified request begin.
438    request_begin = nullptr;
439  }
440  return nullptr;
441}
442
443space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
444                                                      size_t growth_limit, size_t capacity,
445                                                      const char* name, bool can_move_objects) {
446  space::MallocSpace* malloc_space = nullptr;
447  if (kUseRosAlloc) {
448    // Create rosalloc space.
449    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
450                                                          initial_size, growth_limit, capacity,
451                                                          low_memory_mode_, can_move_objects);
452  } else {
453    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
454                                                          initial_size, growth_limit, capacity,
455                                                          can_move_objects);
456  }
457  if (collector::SemiSpace::kUseRememberedSet) {
458    accounting::RememberedSet* rem_set  =
459        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
460    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
461    AddRememberedSet(rem_set);
462  }
463  CHECK(malloc_space != nullptr) << "Failed to create " << name;
464  malloc_space->SetFootprintLimit(malloc_space->Capacity());
465  return malloc_space;
466}
467
468void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
469                                 size_t capacity) {
470  // Is background compaction is enabled?
471  bool can_move_objects = IsMovingGc(background_collector_type_) !=
472      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
473  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
474  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
475  // from the main space to the zygote space. If background compaction is enabled, always pass in
476  // that we can move objets.
477  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
478    // After the zygote we want this to be false if we don't have background compaction enabled so
479    // that getting primitive array elements is faster.
480    // We never have homogeneous compaction with GSS and don't need a space with movable objects.
481    can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
482  }
483  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
484    RemoveRememberedSet(main_space_);
485  }
486  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
487  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
488                                            can_move_objects);
489  SetSpaceAsDefault(main_space_);
490  VLOG(heap) << "Created main space " << main_space_;
491}
492
493void Heap::ChangeAllocator(AllocatorType allocator) {
494  if (current_allocator_ != allocator) {
495    // These two allocators are only used internally and don't have any entrypoints.
496    CHECK_NE(allocator, kAllocatorTypeLOS);
497    CHECK_NE(allocator, kAllocatorTypeNonMoving);
498    current_allocator_ = allocator;
499    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
500    SetQuickAllocEntryPointsAllocator(current_allocator_);
501    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
502  }
503}
504
505void Heap::DisableMovingGc() {
506  if (IsMovingGc(foreground_collector_type_)) {
507    foreground_collector_type_ = kCollectorTypeCMS;
508  }
509  if (IsMovingGc(background_collector_type_)) {
510    background_collector_type_ = foreground_collector_type_;
511  }
512  TransitionCollector(foreground_collector_type_);
513  ThreadList* tl = Runtime::Current()->GetThreadList();
514  Thread* self = Thread::Current();
515  ScopedThreadStateChange tsc(self, kSuspended);
516  tl->SuspendAll();
517  // Something may have caused the transition to fail.
518  if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
519    CHECK(main_space_ != nullptr);
520    // The allocation stack may have non movable objects in it. We need to flush it since the GC
521    // can't only handle marking allocation stack objects of one non moving space and one main
522    // space.
523    {
524      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
525      FlushAllocStack();
526    }
527    main_space_->DisableMovingObjects();
528    non_moving_space_ = main_space_;
529    CHECK(!non_moving_space_->CanMoveObjects());
530  }
531  tl->ResumeAll();
532}
533
534std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
535  if (!IsValidContinuousSpaceObjectAddress(klass)) {
536    return StringPrintf("<non heap address klass %p>", klass);
537  }
538  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
539  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
540    std::string result("[");
541    result += SafeGetClassDescriptor(component_type);
542    return result;
543  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
544    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
545  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
546    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
547  } else {
548    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
549    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
550      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
551    }
552    const DexFile* dex_file = dex_cache->GetDexFile();
553    uint16_t class_def_idx = klass->GetDexClassDefIndex();
554    if (class_def_idx == DexFile::kDexNoIndex16) {
555      return "<class def not found>";
556    }
557    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
558    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
559    return dex_file->GetTypeDescriptor(type_id);
560  }
561}
562
563std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
564  if (obj == nullptr) {
565    return "null";
566  }
567  mirror::Class* klass = obj->GetClass<kVerifyNone>();
568  if (klass == nullptr) {
569    return "(class=null)";
570  }
571  std::string result(SafeGetClassDescriptor(klass));
572  if (obj->IsClass()) {
573    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
574  }
575  return result;
576}
577
578void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
579  if (obj == nullptr) {
580    stream << "(obj=null)";
581    return;
582  }
583  if (IsAligned<kObjectAlignment>(obj)) {
584    space::Space* space = nullptr;
585    // Don't use find space since it only finds spaces which actually contain objects instead of
586    // spaces which may contain objects (e.g. cleared bump pointer spaces).
587    for (const auto& cur_space : continuous_spaces_) {
588      if (cur_space->HasAddress(obj)) {
589        space = cur_space;
590        break;
591      }
592    }
593    // Unprotect all the spaces.
594    for (const auto& space : continuous_spaces_) {
595      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
596    }
597    stream << "Object " << obj;
598    if (space != nullptr) {
599      stream << " in space " << *space;
600    }
601    mirror::Class* klass = obj->GetClass<kVerifyNone>();
602    stream << "\nclass=" << klass;
603    if (klass != nullptr) {
604      stream << " type= " << SafePrettyTypeOf(obj);
605    }
606    // Re-protect the address we faulted on.
607    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
608  }
609}
610
611bool Heap::IsCompilingBoot() const {
612  if (!Runtime::Current()->IsCompiler()) {
613    return false;
614  }
615  for (const auto& space : continuous_spaces_) {
616    if (space->IsImageSpace() || space->IsZygoteSpace()) {
617      return false;
618    }
619  }
620  return true;
621}
622
623bool Heap::HasImageSpace() const {
624  for (const auto& space : continuous_spaces_) {
625    if (space->IsImageSpace()) {
626      return true;
627    }
628  }
629  return false;
630}
631
632void Heap::IncrementDisableMovingGC(Thread* self) {
633  // Need to do this holding the lock to prevent races where the GC is about to run / running when
634  // we attempt to disable it.
635  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
636  MutexLock mu(self, *gc_complete_lock_);
637  ++disable_moving_gc_count_;
638  if (IsMovingGc(collector_type_running_)) {
639    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
640  }
641}
642
643void Heap::DecrementDisableMovingGC(Thread* self) {
644  MutexLock mu(self, *gc_complete_lock_);
645  CHECK_GE(disable_moving_gc_count_, 0U);
646  --disable_moving_gc_count_;
647}
648
649void Heap::UpdateProcessState(ProcessState process_state) {
650  if (process_state_ != process_state) {
651    process_state_ = process_state;
652    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
653      // Start at index 1 to avoid "is always false" warning.
654      // Have iteration 1 always transition the collector.
655      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
656                          ? foreground_collector_type_ : background_collector_type_);
657      usleep(kCollectorTransitionStressWait);
658    }
659    if (process_state_ == kProcessStateJankPerceptible) {
660      // Transition back to foreground right away to prevent jank.
661      RequestCollectorTransition(foreground_collector_type_, 0);
662    } else {
663      // Don't delay for debug builds since we may want to stress test the GC.
664      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
665      // special handling which does a homogenous space compaction once but then doesn't transition
666      // the collector.
667      RequestCollectorTransition(background_collector_type_,
668                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
669    }
670  }
671}
672
673void Heap::CreateThreadPool() {
674  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
675  if (num_threads != 0) {
676    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
677  }
678}
679
680void Heap::VisitObjects(ObjectCallback callback, void* arg) {
681  Thread* self = Thread::Current();
682  // GCs can move objects, so don't allow this.
683  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
684  if (bump_pointer_space_ != nullptr) {
685    // Visit objects in bump pointer space.
686    bump_pointer_space_->Walk(callback, arg);
687  }
688  // TODO: Switch to standard begin and end to use ranged a based loop.
689  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
690      it < end; ++it) {
691    mirror::Object* obj = *it;
692    if (obj != nullptr && obj->GetClass() != nullptr) {
693      // Avoid the race condition caused by the object not yet being written into the allocation
694      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
695      // there can be nulls on the allocation stack.
696      callback(obj, arg);
697    }
698  }
699  GetLiveBitmap()->Walk(callback, arg);
700  self->EndAssertNoThreadSuspension(old_cause);
701}
702
703void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
704  space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
705  space::ContinuousSpace* space2 = non_moving_space_;
706  // TODO: Generalize this to n bitmaps?
707  CHECK(space1 != nullptr);
708  CHECK(space2 != nullptr);
709  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
710                 large_object_space_->GetLiveBitmap(), stack);
711}
712
713void Heap::DeleteThreadPool() {
714  thread_pool_.reset(nullptr);
715}
716
717void Heap::AddSpace(space::Space* space) {
718  CHECK(space != nullptr);
719  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
720  if (space->IsContinuousSpace()) {
721    DCHECK(!space->IsDiscontinuousSpace());
722    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
723    // Continuous spaces don't necessarily have bitmaps.
724    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
725    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
726    if (live_bitmap != nullptr) {
727      CHECK(mark_bitmap != nullptr);
728      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
729      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
730    }
731    continuous_spaces_.push_back(continuous_space);
732    // Ensure that spaces remain sorted in increasing order of start address.
733    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
734              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
735      return a->Begin() < b->Begin();
736    });
737  } else {
738    CHECK(space->IsDiscontinuousSpace());
739    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
740    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
741    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
742    discontinuous_spaces_.push_back(discontinuous_space);
743  }
744  if (space->IsAllocSpace()) {
745    alloc_spaces_.push_back(space->AsAllocSpace());
746  }
747}
748
749void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
750  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
751  if (continuous_space->IsDlMallocSpace()) {
752    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
753  } else if (continuous_space->IsRosAllocSpace()) {
754    rosalloc_space_ = continuous_space->AsRosAllocSpace();
755  }
756}
757
758void Heap::RemoveSpace(space::Space* space) {
759  DCHECK(space != nullptr);
760  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
761  if (space->IsContinuousSpace()) {
762    DCHECK(!space->IsDiscontinuousSpace());
763    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
764    // Continuous spaces don't necessarily have bitmaps.
765    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
766    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
767    if (live_bitmap != nullptr) {
768      DCHECK(mark_bitmap != nullptr);
769      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
770      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
771    }
772    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
773    DCHECK(it != continuous_spaces_.end());
774    continuous_spaces_.erase(it);
775  } else {
776    DCHECK(space->IsDiscontinuousSpace());
777    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
778    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
779    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
780    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
781                        discontinuous_space);
782    DCHECK(it != discontinuous_spaces_.end());
783    discontinuous_spaces_.erase(it);
784  }
785  if (space->IsAllocSpace()) {
786    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
787    DCHECK(it != alloc_spaces_.end());
788    alloc_spaces_.erase(it);
789  }
790}
791
792void Heap::DumpGcPerformanceInfo(std::ostream& os) {
793  // Dump cumulative timings.
794  os << "Dumping cumulative Gc timings\n";
795  uint64_t total_duration = 0;
796  // Dump cumulative loggers for each GC type.
797  uint64_t total_paused_time = 0;
798  for (auto& collector : garbage_collectors_) {
799    total_duration += collector->GetCumulativeTimings().GetTotalNs();
800    total_paused_time += collector->GetTotalPausedTimeNs();
801    collector->DumpPerformanceInfo(os);
802    collector->ResetMeasurements();
803  }
804  uint64_t allocation_time =
805      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
806  if (total_duration != 0) {
807    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
808    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
809    os << "Mean GC size throughput: "
810       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
811    os << "Mean GC object throughput: "
812       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
813  }
814  uint64_t total_objects_allocated = GetObjectsAllocatedEver();
815  os << "Total number of allocations " << total_objects_allocated << "\n";
816  uint64_t total_bytes_allocated = GetBytesAllocatedEver();
817  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
818  os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
819  os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
820  os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
821  os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
822  os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
823  if (kMeasureAllocationTime) {
824    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
825    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
826       << "\n";
827  }
828  if (HasZygoteSpace()) {
829    os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
830  }
831  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
832  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
833  BaseMutex::DumpAll(os);
834}
835
836Heap::~Heap() {
837  VLOG(heap) << "Starting ~Heap()";
838  STLDeleteElements(&garbage_collectors_);
839  // If we don't reset then the mark stack complains in its destructor.
840  allocation_stack_->Reset();
841  live_stack_->Reset();
842  STLDeleteValues(&mod_union_tables_);
843  STLDeleteValues(&remembered_sets_);
844  STLDeleteElements(&continuous_spaces_);
845  STLDeleteElements(&discontinuous_spaces_);
846  delete gc_complete_lock_;
847  delete heap_trim_request_lock_;
848  VLOG(heap) << "Finished ~Heap()";
849}
850
851space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
852                                                            bool fail_ok) const {
853  for (const auto& space : continuous_spaces_) {
854    if (space->Contains(obj)) {
855      return space;
856    }
857  }
858  if (!fail_ok) {
859    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
860  }
861  return NULL;
862}
863
864space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
865                                                                  bool fail_ok) const {
866  for (const auto& space : discontinuous_spaces_) {
867    if (space->Contains(obj)) {
868      return space;
869    }
870  }
871  if (!fail_ok) {
872    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
873  }
874  return NULL;
875}
876
877space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
878  space::Space* result = FindContinuousSpaceFromObject(obj, true);
879  if (result != NULL) {
880    return result;
881  }
882  return FindDiscontinuousSpaceFromObject(obj, true);
883}
884
885space::ImageSpace* Heap::GetImageSpace() const {
886  for (const auto& space : continuous_spaces_) {
887    if (space->IsImageSpace()) {
888      return space->AsImageSpace();
889    }
890  }
891  return NULL;
892}
893
894void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
895  std::ostringstream oss;
896  size_t total_bytes_free = GetFreeMemory();
897  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
898      << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
899  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
900  if (total_bytes_free >= byte_count) {
901    space::AllocSpace* space = nullptr;
902    if (allocator_type == kAllocatorTypeNonMoving) {
903      space = non_moving_space_;
904    } else if (allocator_type == kAllocatorTypeRosAlloc ||
905               allocator_type == kAllocatorTypeDlMalloc) {
906      space = main_space_;
907    } else if (allocator_type == kAllocatorTypeBumpPointer ||
908               allocator_type == kAllocatorTypeTLAB) {
909      space = bump_pointer_space_;
910    }
911    if (space != nullptr) {
912      space->LogFragmentationAllocFailure(oss, byte_count);
913    }
914  }
915  self->ThrowOutOfMemoryError(oss.str().c_str());
916}
917
918void Heap::DoPendingTransitionOrTrim() {
919  Thread* self = Thread::Current();
920  CollectorType desired_collector_type;
921  // Wait until we reach the desired transition time.
922  while (true) {
923    uint64_t wait_time;
924    {
925      MutexLock mu(self, *heap_trim_request_lock_);
926      desired_collector_type = desired_collector_type_;
927      uint64_t current_time = NanoTime();
928      if (current_time >= heap_transition_or_trim_target_time_) {
929        break;
930      }
931      wait_time = heap_transition_or_trim_target_time_ - current_time;
932    }
933    ScopedThreadStateChange tsc(self, kSleeping);
934    usleep(wait_time / 1000);  // Usleep takes microseconds.
935  }
936  // Launch homogeneous space compaction if it is desired.
937  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
938    if (!CareAboutPauseTimes()) {
939      PerformHomogeneousSpaceCompact();
940    }
941    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
942    desired_collector_type = collector_type_;
943    return;
944  }
945  // Transition the collector if the desired collector type is not the same as the current
946  // collector type.
947  TransitionCollector(desired_collector_type);
948  if (!CareAboutPauseTimes()) {
949    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
950    // about pauses.
951    Runtime* runtime = Runtime::Current();
952    runtime->GetThreadList()->SuspendAll();
953    uint64_t start_time = NanoTime();
954    size_t count = runtime->GetMonitorList()->DeflateMonitors();
955    VLOG(heap) << "Deflating " << count << " monitors took "
956        << PrettyDuration(NanoTime() - start_time);
957    runtime->GetThreadList()->ResumeAll();
958  }
959  // Do a heap trim if it is needed.
960  Trim();
961}
962
963void Heap::Trim() {
964  Thread* self = Thread::Current();
965  {
966    MutexLock mu(self, *heap_trim_request_lock_);
967    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
968      return;
969    }
970    last_trim_time_ = NanoTime();
971    heap_trim_request_pending_ = false;
972  }
973  {
974    // Need to do this before acquiring the locks since we don't want to get suspended while
975    // holding any locks.
976    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
977    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
978    // trimming.
979    MutexLock mu(self, *gc_complete_lock_);
980    // Ensure there is only one GC at a time.
981    WaitForGcToCompleteLocked(kGcCauseTrim, self);
982    collector_type_running_ = kCollectorTypeHeapTrim;
983  }
984  uint64_t start_ns = NanoTime();
985  // Trim the managed spaces.
986  uint64_t total_alloc_space_allocated = 0;
987  uint64_t total_alloc_space_size = 0;
988  uint64_t managed_reclaimed = 0;
989  for (const auto& space : continuous_spaces_) {
990    if (space->IsMallocSpace()) {
991      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
992      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
993        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
994        // for a long period of time.
995        managed_reclaimed += malloc_space->Trim();
996      }
997      total_alloc_space_size += malloc_space->Size();
998    }
999  }
1000  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
1001  if (bump_pointer_space_ != nullptr) {
1002    total_alloc_space_allocated -= bump_pointer_space_->Size();
1003  }
1004  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1005      static_cast<float>(total_alloc_space_size);
1006  uint64_t gc_heap_end_ns = NanoTime();
1007  // We never move things in the native heap, so we can finish the GC at this point.
1008  FinishGC(self, collector::kGcTypeNone);
1009  size_t native_reclaimed = 0;
1010  // Only trim the native heap if we don't care about pauses.
1011  if (!CareAboutPauseTimes()) {
1012#if defined(USE_DLMALLOC)
1013    // Trim the native heap.
1014    dlmalloc_trim(0);
1015    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1016#elif defined(USE_JEMALLOC)
1017    // Jemalloc does it's own internal trimming.
1018#else
1019    UNIMPLEMENTED(WARNING) << "Add trimming support";
1020#endif
1021  }
1022  uint64_t end_ns = NanoTime();
1023  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1024      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1025      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1026      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1027      << "%.";
1028}
1029
1030bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1031  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1032  // taking the lock.
1033  if (obj == nullptr) {
1034    return true;
1035  }
1036  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1037}
1038
1039bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1040  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1041}
1042
1043bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1044  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1045    return false;
1046  }
1047  for (const auto& space : continuous_spaces_) {
1048    if (space->HasAddress(obj)) {
1049      return true;
1050    }
1051  }
1052  return false;
1053}
1054
1055bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1056                              bool search_live_stack, bool sorted) {
1057  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1058    return false;
1059  }
1060  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1061    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1062    if (obj == klass) {
1063      // This case happens for java.lang.Class.
1064      return true;
1065    }
1066    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1067  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1068    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1069    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1070    return temp_space_->Contains(obj);
1071  }
1072  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1073  space::DiscontinuousSpace* d_space = nullptr;
1074  if (c_space != nullptr) {
1075    if (c_space->GetLiveBitmap()->Test(obj)) {
1076      return true;
1077    }
1078  } else {
1079    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1080    if (d_space != nullptr) {
1081      if (d_space->GetLiveBitmap()->Test(obj)) {
1082        return true;
1083      }
1084    }
1085  }
1086  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1087  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1088    if (i > 0) {
1089      NanoSleep(MsToNs(10));
1090    }
1091    if (search_allocation_stack) {
1092      if (sorted) {
1093        if (allocation_stack_->ContainsSorted(obj)) {
1094          return true;
1095        }
1096      } else if (allocation_stack_->Contains(obj)) {
1097        return true;
1098      }
1099    }
1100
1101    if (search_live_stack) {
1102      if (sorted) {
1103        if (live_stack_->ContainsSorted(obj)) {
1104          return true;
1105        }
1106      } else if (live_stack_->Contains(obj)) {
1107        return true;
1108      }
1109    }
1110  }
1111  // We need to check the bitmaps again since there is a race where we mark something as live and
1112  // then clear the stack containing it.
1113  if (c_space != nullptr) {
1114    if (c_space->GetLiveBitmap()->Test(obj)) {
1115      return true;
1116    }
1117  } else {
1118    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1119    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1120      return true;
1121    }
1122  }
1123  return false;
1124}
1125
1126std::string Heap::DumpSpaces() const {
1127  std::ostringstream oss;
1128  DumpSpaces(oss);
1129  return oss.str();
1130}
1131
1132void Heap::DumpSpaces(std::ostream& stream) const {
1133  for (const auto& space : continuous_spaces_) {
1134    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1135    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1136    stream << space << " " << *space << "\n";
1137    if (live_bitmap != nullptr) {
1138      stream << live_bitmap << " " << *live_bitmap << "\n";
1139    }
1140    if (mark_bitmap != nullptr) {
1141      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1142    }
1143  }
1144  for (const auto& space : discontinuous_spaces_) {
1145    stream << space << " " << *space << "\n";
1146  }
1147}
1148
1149void Heap::VerifyObjectBody(mirror::Object* obj) {
1150  if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1151    return;
1152  }
1153
1154  // Ignore early dawn of the universe verifications.
1155  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1156    return;
1157  }
1158  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1159  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1160  CHECK(c != nullptr) << "Null class in object " << obj;
1161  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1162  CHECK(VerifyClassClass(c));
1163
1164  if (verify_object_mode_ > kVerifyObjectModeFast) {
1165    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1166    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1167  }
1168}
1169
1170void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1171  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1172}
1173
1174void Heap::VerifyHeap() {
1175  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1176  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1177}
1178
1179void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1180  // Use signed comparison since freed bytes can be negative when background compaction foreground
1181  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1182  // free list backed space typically increasing memory footprint due to padding and binning.
1183  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1184  // Note: This relies on 2s complement for handling negative freed_bytes.
1185  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1186  if (Runtime::Current()->HasStatsEnabled()) {
1187    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1188    thread_stats->freed_objects += freed_objects;
1189    thread_stats->freed_bytes += freed_bytes;
1190    // TODO: Do this concurrently.
1191    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1192    global_stats->freed_objects += freed_objects;
1193    global_stats->freed_bytes += freed_bytes;
1194  }
1195}
1196
1197space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1198  for (const auto& space : continuous_spaces_) {
1199    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1200      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1201        return space->AsContinuousSpace()->AsRosAllocSpace();
1202      }
1203    }
1204  }
1205  return nullptr;
1206}
1207
1208mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1209                                             size_t alloc_size, size_t* bytes_allocated,
1210                                             size_t* usable_size,
1211                                             mirror::Class** klass) {
1212  bool was_default_allocator = allocator == GetCurrentAllocator();
1213  // Make sure there is no pending exception since we may need to throw an OOME.
1214  self->AssertNoPendingException();
1215  DCHECK(klass != nullptr);
1216  StackHandleScope<1> hs(self);
1217  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1218  klass = nullptr;  // Invalidate for safety.
1219  // The allocation failed. If the GC is running, block until it completes, and then retry the
1220  // allocation.
1221  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1222  if (last_gc != collector::kGcTypeNone) {
1223    // If we were the default allocator but the allocator changed while we were suspended,
1224    // abort the allocation.
1225    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1226      return nullptr;
1227    }
1228    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1229    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1230                                                     usable_size);
1231    if (ptr != nullptr) {
1232      return ptr;
1233    }
1234  }
1235
1236  collector::GcType tried_type = next_gc_type_;
1237  const bool gc_ran =
1238      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1239  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1240    return nullptr;
1241  }
1242  if (gc_ran) {
1243    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1244                                                     usable_size);
1245    if (ptr != nullptr) {
1246      return ptr;
1247    }
1248  }
1249
1250  // Loop through our different Gc types and try to Gc until we get enough free memory.
1251  for (collector::GcType gc_type : gc_plan_) {
1252    if (gc_type == tried_type) {
1253      continue;
1254    }
1255    // Attempt to run the collector, if we succeed, re-try the allocation.
1256    const bool gc_ran =
1257        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1258    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1259      return nullptr;
1260    }
1261    if (gc_ran) {
1262      // Did we free sufficient memory for the allocation to succeed?
1263      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1264                                                       usable_size);
1265      if (ptr != nullptr) {
1266        return ptr;
1267      }
1268    }
1269  }
1270  // Allocations have failed after GCs;  this is an exceptional state.
1271  // Try harder, growing the heap if necessary.
1272  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1273                                                  usable_size);
1274  if (ptr != nullptr) {
1275    return ptr;
1276  }
1277  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1278  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1279  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1280  // OOME.
1281  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1282           << " allocation";
1283  // TODO: Run finalization, but this may cause more allocations to occur.
1284  // We don't need a WaitForGcToComplete here either.
1285  DCHECK(!gc_plan_.empty());
1286  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1287  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1288    return nullptr;
1289  }
1290  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1291  if (ptr == nullptr) {
1292    const uint64_t current_time = NanoTime();
1293    switch (allocator) {
1294      case kAllocatorTypeRosAlloc:
1295        // Fall-through.
1296      case kAllocatorTypeDlMalloc: {
1297        if (use_homogeneous_space_compaction_for_oom_ &&
1298            current_time - last_time_homogeneous_space_compaction_by_oom_ >
1299            min_interval_homogeneous_space_compaction_by_oom_) {
1300          last_time_homogeneous_space_compaction_by_oom_ = current_time;
1301          HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1302          switch (result) {
1303            case HomogeneousSpaceCompactResult::kSuccess:
1304              // If the allocation succeeded, we delayed an oom.
1305              ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1306                                              usable_size);
1307              if (ptr != nullptr) {
1308                count_delayed_oom_++;
1309              }
1310              break;
1311            case HomogeneousSpaceCompactResult::kErrorReject:
1312              // Reject due to disabled moving GC.
1313              break;
1314            case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1315              // Throw OOM by default.
1316              break;
1317            default: {
1318              LOG(FATAL) << "Unimplemented homogeneous space compaction result "
1319                         << static_cast<size_t>(result);
1320            }
1321          }
1322          // Always print that we ran homogeneous space compation since this can cause jank.
1323          VLOG(heap) << "Ran heap homogeneous space compaction, "
1324                    << " requested defragmentation "
1325                    << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1326                    << " performed defragmentation "
1327                    << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1328                    << " ignored homogeneous space compaction "
1329                    << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1330                    << " delayed count = "
1331                    << count_delayed_oom_.LoadSequentiallyConsistent();
1332        }
1333        break;
1334      }
1335      case kAllocatorTypeNonMoving: {
1336        // Try to transition the heap if the allocation failure was due to the space being full.
1337        if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1338          // If we aren't out of memory then the OOM was probably from the non moving space being
1339          // full. Attempt to disable compaction and turn the main space into a non moving space.
1340          DisableMovingGc();
1341          // If we are still a moving GC then something must have caused the transition to fail.
1342          if (IsMovingGc(collector_type_)) {
1343            MutexLock mu(self, *gc_complete_lock_);
1344            // If we couldn't disable moving GC, just throw OOME and return null.
1345            LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1346                         << disable_moving_gc_count_;
1347          } else {
1348            LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1349            ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1350                                            usable_size);
1351          }
1352        }
1353        break;
1354      }
1355      default: {
1356        // Do nothing for others allocators.
1357      }
1358    }
1359  }
1360  // If the allocation hasn't succeeded by this point, throw an OOM error.
1361  if (ptr == nullptr) {
1362    ThrowOutOfMemoryError(self, alloc_size, allocator);
1363  }
1364  return ptr;
1365}
1366
1367void Heap::SetTargetHeapUtilization(float target) {
1368  DCHECK_GT(target, 0.0f);  // asserted in Java code
1369  DCHECK_LT(target, 1.0f);
1370  target_utilization_ = target;
1371}
1372
1373size_t Heap::GetObjectsAllocated() const {
1374  size_t total = 0;
1375  for (space::AllocSpace* space : alloc_spaces_) {
1376    total += space->GetObjectsAllocated();
1377  }
1378  return total;
1379}
1380
1381uint64_t Heap::GetObjectsAllocatedEver() const {
1382  return GetObjectsFreedEver() + GetObjectsAllocated();
1383}
1384
1385uint64_t Heap::GetBytesAllocatedEver() const {
1386  return GetBytesFreedEver() + GetBytesAllocated();
1387}
1388
1389class InstanceCounter {
1390 public:
1391  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1392      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1393      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1394  }
1395  static void Callback(mirror::Object* obj, void* arg)
1396      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1397    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1398    mirror::Class* instance_class = obj->GetClass();
1399    CHECK(instance_class != nullptr);
1400    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1401      if (instance_counter->use_is_assignable_from_) {
1402        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1403          ++instance_counter->counts_[i];
1404        }
1405      } else if (instance_class == instance_counter->classes_[i]) {
1406        ++instance_counter->counts_[i];
1407      }
1408    }
1409  }
1410
1411 private:
1412  const std::vector<mirror::Class*>& classes_;
1413  bool use_is_assignable_from_;
1414  uint64_t* const counts_;
1415  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1416};
1417
1418void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1419                          uint64_t* counts) {
1420  // Can't do any GC in this function since this may move classes.
1421  Thread* self = Thread::Current();
1422  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1423  InstanceCounter counter(classes, use_is_assignable_from, counts);
1424  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1425  VisitObjects(InstanceCounter::Callback, &counter);
1426  self->EndAssertNoThreadSuspension(old_cause);
1427}
1428
1429class InstanceCollector {
1430 public:
1431  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1432      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1433      : class_(c), max_count_(max_count), instances_(instances) {
1434  }
1435  static void Callback(mirror::Object* obj, void* arg)
1436      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1437    DCHECK(arg != nullptr);
1438    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1439    mirror::Class* instance_class = obj->GetClass();
1440    if (instance_class == instance_collector->class_) {
1441      if (instance_collector->max_count_ == 0 ||
1442          instance_collector->instances_.size() < instance_collector->max_count_) {
1443        instance_collector->instances_.push_back(obj);
1444      }
1445    }
1446  }
1447
1448 private:
1449  mirror::Class* class_;
1450  uint32_t max_count_;
1451  std::vector<mirror::Object*>& instances_;
1452  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1453};
1454
1455void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1456                        std::vector<mirror::Object*>& instances) {
1457  // Can't do any GC in this function since this may move classes.
1458  Thread* self = Thread::Current();
1459  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1460  InstanceCollector collector(c, max_count, instances);
1461  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1462  VisitObjects(&InstanceCollector::Callback, &collector);
1463  self->EndAssertNoThreadSuspension(old_cause);
1464}
1465
1466class ReferringObjectsFinder {
1467 public:
1468  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1469                         std::vector<mirror::Object*>& referring_objects)
1470      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1471      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1472  }
1473
1474  static void Callback(mirror::Object* obj, void* arg)
1475      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1476    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1477  }
1478
1479  // For bitmap Visit.
1480  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1481  // annotalysis on visitors.
1482  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1483    o->VisitReferences<true>(*this, VoidFunctor());
1484  }
1485
1486  // For Object::VisitReferences.
1487  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1488      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1489    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1490    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1491      referring_objects_.push_back(obj);
1492    }
1493  }
1494
1495 private:
1496  mirror::Object* object_;
1497  uint32_t max_count_;
1498  std::vector<mirror::Object*>& referring_objects_;
1499  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1500};
1501
1502void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1503                               std::vector<mirror::Object*>& referring_objects) {
1504  // Can't do any GC in this function since this may move the object o.
1505  Thread* self = Thread::Current();
1506  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1507  ReferringObjectsFinder finder(o, max_count, referring_objects);
1508  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1509  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1510  self->EndAssertNoThreadSuspension(old_cause);
1511}
1512
1513void Heap::CollectGarbage(bool clear_soft_references) {
1514  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1515  // last GC will not have necessarily been cleared.
1516  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1517}
1518
1519HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1520  Thread* self = Thread::Current();
1521  // Inc requested homogeneous space compaction.
1522  count_requested_homogeneous_space_compaction_++;
1523  // Store performed homogeneous space compaction at a new request arrival.
1524  ThreadList* tl = Runtime::Current()->GetThreadList();
1525  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1526  Locks::mutator_lock_->AssertNotHeld(self);
1527  {
1528    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1529    MutexLock mu(self, *gc_complete_lock_);
1530    // Ensure there is only one GC at a time.
1531    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1532    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1533    // is non zero.
1534    // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1535    // exit.
1536    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1537        !main_space_->CanMoveObjects()) {
1538      return HomogeneousSpaceCompactResult::kErrorReject;
1539    }
1540    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1541  }
1542  if (Runtime::Current()->IsShuttingDown(self)) {
1543    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1544    // cause objects to get finalized.
1545    FinishGC(self, collector::kGcTypeNone);
1546    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1547  }
1548  // Suspend all threads.
1549  tl->SuspendAll();
1550  uint64_t start_time = NanoTime();
1551  // Launch compaction.
1552  space::MallocSpace* to_space = main_space_backup_.release();
1553  space::MallocSpace* from_space = main_space_;
1554  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1555  const uint64_t space_size_before_compaction = from_space->Size();
1556  AddSpace(to_space);
1557  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1558  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1559  from_space->GetMemMap()->Protect(PROT_READ);
1560  const uint64_t space_size_after_compaction = to_space->Size();
1561  main_space_ = to_space;
1562  main_space_backup_.reset(from_space);
1563  RemoveSpace(from_space);
1564  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1565  // Update performed homogeneous space compaction count.
1566  count_performed_homogeneous_space_compaction_++;
1567  // Print statics log and resume all threads.
1568  uint64_t duration = NanoTime() - start_time;
1569  VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1570             << PrettySize(space_size_before_compaction) << " -> "
1571             << PrettySize(space_size_after_compaction) << " compact-ratio: "
1572             << std::fixed << static_cast<double>(space_size_after_compaction) /
1573             static_cast<double>(space_size_before_compaction);
1574  tl->ResumeAll();
1575  // Finish GC.
1576  reference_processor_.EnqueueClearedReferences(self);
1577  GrowForUtilization(semi_space_collector_);
1578  FinishGC(self, collector::kGcTypeFull);
1579  return HomogeneousSpaceCompactResult::kSuccess;
1580}
1581
1582
1583void Heap::TransitionCollector(CollectorType collector_type) {
1584  if (collector_type == collector_type_) {
1585    return;
1586  }
1587  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1588             << " -> " << static_cast<int>(collector_type);
1589  uint64_t start_time = NanoTime();
1590  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1591  Runtime* const runtime = Runtime::Current();
1592  ThreadList* const tl = runtime->GetThreadList();
1593  Thread* const self = Thread::Current();
1594  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1595  Locks::mutator_lock_->AssertNotHeld(self);
1596  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1597  // compacting_gc_disable_count_, this should rarely occurs).
1598  for (;;) {
1599    {
1600      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1601      MutexLock mu(self, *gc_complete_lock_);
1602      // Ensure there is only one GC at a time.
1603      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1604      // Currently we only need a heap transition if we switch from a moving collector to a
1605      // non-moving one, or visa versa.
1606      const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1607      // If someone else beat us to it and changed the collector before we could, exit.
1608      // This is safe to do before the suspend all since we set the collector_type_running_ before
1609      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1610      // then it would get blocked on WaitForGcToCompleteLocked.
1611      if (collector_type == collector_type_) {
1612        return;
1613      }
1614      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1615      if (!copying_transition || disable_moving_gc_count_ == 0) {
1616        // TODO: Not hard code in semi-space collector?
1617        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1618        break;
1619      }
1620    }
1621    usleep(1000);
1622  }
1623  if (runtime->IsShuttingDown(self)) {
1624    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1625    // cause objects to get finalized.
1626    FinishGC(self, collector::kGcTypeNone);
1627    return;
1628  }
1629  tl->SuspendAll();
1630  switch (collector_type) {
1631    case kCollectorTypeSS: {
1632      if (!IsMovingGc(collector_type_)) {
1633        // Create the bump pointer space from the backup space.
1634        CHECK(main_space_backup_ != nullptr);
1635        std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1636        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1637        // pointer space last transition it will be protected.
1638        CHECK(mem_map != nullptr);
1639        mem_map->Protect(PROT_READ | PROT_WRITE);
1640        bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1641                                                                        mem_map.release());
1642        AddSpace(bump_pointer_space_);
1643        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1644        // Use the now empty main space mem map for the bump pointer temp space.
1645        mem_map.reset(main_space_->ReleaseMemMap());
1646        // Unset the pointers just in case.
1647        if (dlmalloc_space_ == main_space_) {
1648          dlmalloc_space_ = nullptr;
1649        } else if (rosalloc_space_ == main_space_) {
1650          rosalloc_space_ = nullptr;
1651        }
1652        // Remove the main space so that we don't try to trim it, this doens't work for debug
1653        // builds since RosAlloc attempts to read the magic number from a protected page.
1654        RemoveSpace(main_space_);
1655        RemoveRememberedSet(main_space_);
1656        delete main_space_;  // Delete the space since it has been removed.
1657        main_space_ = nullptr;
1658        RemoveRememberedSet(main_space_backup_.get());
1659        main_space_backup_.reset(nullptr);  // Deletes the space.
1660        temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1661                                                                mem_map.release());
1662        AddSpace(temp_space_);
1663      }
1664      break;
1665    }
1666    case kCollectorTypeMS:
1667      // Fall through.
1668    case kCollectorTypeCMS: {
1669      if (IsMovingGc(collector_type_)) {
1670        CHECK(temp_space_ != nullptr);
1671        std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1672        RemoveSpace(temp_space_);
1673        temp_space_ = nullptr;
1674        mem_map->Protect(PROT_READ | PROT_WRITE);
1675        CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
1676                              mem_map->Size());
1677        mem_map.release();
1678        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1679        AddSpace(main_space_);
1680        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1681        mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1682        RemoveSpace(bump_pointer_space_);
1683        bump_pointer_space_ = nullptr;
1684        const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1685        // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1686        if (kIsDebugBuild && kUseRosAlloc) {
1687          mem_map->Protect(PROT_READ | PROT_WRITE);
1688        }
1689        main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
1690                                                             mem_map->Size(), mem_map->Size(),
1691                                                             name, true));
1692        if (kIsDebugBuild && kUseRosAlloc) {
1693          mem_map->Protect(PROT_NONE);
1694        }
1695        mem_map.release();
1696      }
1697      break;
1698    }
1699    default: {
1700      LOG(FATAL) << "Attempted to transition to invalid collector type "
1701                 << static_cast<size_t>(collector_type);
1702      break;
1703    }
1704  }
1705  ChangeCollector(collector_type);
1706  tl->ResumeAll();
1707  // Can't call into java code with all threads suspended.
1708  reference_processor_.EnqueueClearedReferences(self);
1709  uint64_t duration = NanoTime() - start_time;
1710  GrowForUtilization(semi_space_collector_);
1711  FinishGC(self, collector::kGcTypeFull);
1712  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1713  int32_t delta_allocated = before_allocated - after_allocated;
1714  std::string saved_str;
1715  if (delta_allocated >= 0) {
1716    saved_str = " saved at least " + PrettySize(delta_allocated);
1717  } else {
1718    saved_str = " expanded " + PrettySize(-delta_allocated);
1719  }
1720  VLOG(heap) << "Heap transition to " << process_state_ << " took "
1721      << PrettyDuration(duration) << saved_str;
1722}
1723
1724void Heap::ChangeCollector(CollectorType collector_type) {
1725  // TODO: Only do this with all mutators suspended to avoid races.
1726  if (collector_type != collector_type_) {
1727    if (collector_type == kCollectorTypeMC) {
1728      // Don't allow mark compact unless support is compiled in.
1729      CHECK(kMarkCompactSupport);
1730    }
1731    collector_type_ = collector_type;
1732    gc_plan_.clear();
1733    switch (collector_type_) {
1734      case kCollectorTypeCC:  // Fall-through.
1735      case kCollectorTypeMC:  // Fall-through.
1736      case kCollectorTypeSS:  // Fall-through.
1737      case kCollectorTypeGSS: {
1738        gc_plan_.push_back(collector::kGcTypeFull);
1739        if (use_tlab_) {
1740          ChangeAllocator(kAllocatorTypeTLAB);
1741        } else {
1742          ChangeAllocator(kAllocatorTypeBumpPointer);
1743        }
1744        break;
1745      }
1746      case kCollectorTypeMS: {
1747        gc_plan_.push_back(collector::kGcTypeSticky);
1748        gc_plan_.push_back(collector::kGcTypePartial);
1749        gc_plan_.push_back(collector::kGcTypeFull);
1750        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1751        break;
1752      }
1753      case kCollectorTypeCMS: {
1754        gc_plan_.push_back(collector::kGcTypeSticky);
1755        gc_plan_.push_back(collector::kGcTypePartial);
1756        gc_plan_.push_back(collector::kGcTypeFull);
1757        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1758        break;
1759      }
1760      default: {
1761        LOG(FATAL) << "Unimplemented";
1762      }
1763    }
1764    if (IsGcConcurrent()) {
1765      concurrent_start_bytes_ =
1766          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1767    } else {
1768      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1769    }
1770  }
1771}
1772
1773// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1774class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1775 public:
1776  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1777      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1778  }
1779
1780  void BuildBins(space::ContinuousSpace* space) {
1781    bin_live_bitmap_ = space->GetLiveBitmap();
1782    bin_mark_bitmap_ = space->GetMarkBitmap();
1783    BinContext context;
1784    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1785    context.collector_ = this;
1786    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1787    // Note: This requires traversing the space in increasing order of object addresses.
1788    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1789    // Add the last bin which spans after the last object to the end of the space.
1790    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1791  }
1792
1793 private:
1794  struct BinContext {
1795    uintptr_t prev_;  // The end of the previous object.
1796    ZygoteCompactingCollector* collector_;
1797  };
1798  // Maps from bin sizes to locations.
1799  std::multimap<size_t, uintptr_t> bins_;
1800  // Live bitmap of the space which contains the bins.
1801  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1802  // Mark bitmap of the space which contains the bins.
1803  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1804
1805  static void Callback(mirror::Object* obj, void* arg)
1806      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1807    DCHECK(arg != nullptr);
1808    BinContext* context = reinterpret_cast<BinContext*>(arg);
1809    ZygoteCompactingCollector* collector = context->collector_;
1810    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1811    size_t bin_size = object_addr - context->prev_;
1812    // Add the bin consisting of the end of the previous object to the start of the current object.
1813    collector->AddBin(bin_size, context->prev_);
1814    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1815  }
1816
1817  void AddBin(size_t size, uintptr_t position) {
1818    if (size != 0) {
1819      bins_.insert(std::make_pair(size, position));
1820    }
1821  }
1822
1823  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1824    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1825    // allocator.
1826    return false;
1827  }
1828
1829  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1830      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1831    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1832    mirror::Object* forward_address;
1833    // Find the smallest bin which we can move obj in.
1834    auto it = bins_.lower_bound(object_size);
1835    if (it == bins_.end()) {
1836      // No available space in the bins, place it in the target space instead (grows the zygote
1837      // space).
1838      size_t bytes_allocated;
1839      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1840      if (to_space_live_bitmap_ != nullptr) {
1841        to_space_live_bitmap_->Set(forward_address);
1842      } else {
1843        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1844        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1845      }
1846    } else {
1847      size_t size = it->first;
1848      uintptr_t pos = it->second;
1849      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1850      forward_address = reinterpret_cast<mirror::Object*>(pos);
1851      // Set the live and mark bits so that sweeping system weaks works properly.
1852      bin_live_bitmap_->Set(forward_address);
1853      bin_mark_bitmap_->Set(forward_address);
1854      DCHECK_GE(size, object_size);
1855      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1856    }
1857    // Copy the object over to its new location.
1858    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1859    if (kUseBakerOrBrooksReadBarrier) {
1860      obj->AssertReadBarrierPointer();
1861      if (kUseBrooksReadBarrier) {
1862        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1863        forward_address->SetReadBarrierPointer(forward_address);
1864      }
1865      forward_address->AssertReadBarrierPointer();
1866    }
1867    return forward_address;
1868  }
1869};
1870
1871void Heap::UnBindBitmaps() {
1872  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1873  for (const auto& space : GetContinuousSpaces()) {
1874    if (space->IsContinuousMemMapAllocSpace()) {
1875      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1876      if (alloc_space->HasBoundBitmaps()) {
1877        alloc_space->UnBindBitmaps();
1878      }
1879    }
1880  }
1881}
1882
1883void Heap::PreZygoteFork() {
1884  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1885  Thread* self = Thread::Current();
1886  MutexLock mu(self, zygote_creation_lock_);
1887  // Try to see if we have any Zygote spaces.
1888  if (HasZygoteSpace()) {
1889    LOG(WARNING) << __FUNCTION__ << " called when we already have a zygote space.";
1890    return;
1891  }
1892  VLOG(heap) << "Starting PreZygoteFork";
1893  // Trim the pages at the end of the non moving space.
1894  non_moving_space_->Trim();
1895  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1896  // there.
1897  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1898  const bool same_space = non_moving_space_ == main_space_;
1899  if (kCompactZygote) {
1900    // Can't compact if the non moving space is the same as the main space.
1901    DCHECK(semi_space_collector_ != nullptr);
1902    // Temporarily disable rosalloc verification because the zygote
1903    // compaction will mess up the rosalloc internal metadata.
1904    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1905    ZygoteCompactingCollector zygote_collector(this);
1906    zygote_collector.BuildBins(non_moving_space_);
1907    // Create a new bump pointer space which we will compact into.
1908    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1909                                         non_moving_space_->Limit());
1910    // Compact the bump pointer space to a new zygote bump pointer space.
1911    bool reset_main_space = false;
1912    if (IsMovingGc(collector_type_)) {
1913      zygote_collector.SetFromSpace(bump_pointer_space_);
1914    } else {
1915      CHECK(main_space_ != nullptr);
1916      // Copy from the main space.
1917      zygote_collector.SetFromSpace(main_space_);
1918      reset_main_space = true;
1919    }
1920    zygote_collector.SetToSpace(&target_space);
1921    zygote_collector.SetSwapSemiSpaces(false);
1922    zygote_collector.Run(kGcCauseCollectorTransition, false);
1923    if (reset_main_space) {
1924      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1925      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1926      MemMap* mem_map = main_space_->ReleaseMemMap();
1927      RemoveSpace(main_space_);
1928      space::Space* old_main_space = main_space_;
1929      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1930      delete old_main_space;
1931      AddSpace(main_space_);
1932    } else {
1933      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1934    }
1935    if (temp_space_ != nullptr) {
1936      CHECK(temp_space_->IsEmpty());
1937    }
1938    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1939    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1940    // Update the end and write out image.
1941    non_moving_space_->SetEnd(target_space.End());
1942    non_moving_space_->SetLimit(target_space.Limit());
1943    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1944  }
1945  // Change the collector to the post zygote one.
1946  ChangeCollector(foreground_collector_type_);
1947  // Save the old space so that we can remove it after we complete creating the zygote space.
1948  space::MallocSpace* old_alloc_space = non_moving_space_;
1949  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1950  // the remaining available space.
1951  // Remove the old space before creating the zygote space since creating the zygote space sets
1952  // the old alloc space's bitmaps to nullptr.
1953  RemoveSpace(old_alloc_space);
1954  if (collector::SemiSpace::kUseRememberedSet) {
1955    // Sanity bound check.
1956    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1957    // Remove the remembered set for the now zygote space (the old
1958    // non-moving space). Note now that we have compacted objects into
1959    // the zygote space, the data in the remembered set is no longer
1960    // needed. The zygote space will instead have a mod-union table
1961    // from this point on.
1962    RemoveRememberedSet(old_alloc_space);
1963  }
1964  zygote_space_ = old_alloc_space->CreateZygoteSpace("alloc space", low_memory_mode_,
1965                                                     &non_moving_space_);
1966  CHECK(!non_moving_space_->CanMoveObjects());
1967  if (same_space) {
1968    main_space_ = non_moving_space_;
1969    SetSpaceAsDefault(main_space_);
1970  }
1971  delete old_alloc_space;
1972  CHECK(HasZygoteSpace()) << "Failed creating zygote space";
1973  AddSpace(zygote_space_);
1974  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1975  AddSpace(non_moving_space_);
1976  // Create the zygote space mod union table.
1977  accounting::ModUnionTable* mod_union_table =
1978      new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
1979                                             zygote_space_);
1980  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1981  // Set all the cards in the mod-union table since we don't know which objects contain references
1982  // to large objects.
1983  mod_union_table->SetCards();
1984  AddModUnionTable(mod_union_table);
1985  if (collector::SemiSpace::kUseRememberedSet) {
1986    // Add a new remembered set for the post-zygote non-moving space.
1987    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1988        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1989                                      non_moving_space_);
1990    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1991        << "Failed to create post-zygote non-moving space remembered set";
1992    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1993  }
1994}
1995
1996void Heap::FlushAllocStack() {
1997  MarkAllocStackAsLive(allocation_stack_.get());
1998  allocation_stack_->Reset();
1999}
2000
2001void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2002                          accounting::ContinuousSpaceBitmap* bitmap2,
2003                          accounting::LargeObjectBitmap* large_objects,
2004                          accounting::ObjectStack* stack) {
2005  DCHECK(bitmap1 != nullptr);
2006  DCHECK(bitmap2 != nullptr);
2007  mirror::Object** limit = stack->End();
2008  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
2009    const mirror::Object* obj = *it;
2010    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2011      if (bitmap1->HasAddress(obj)) {
2012        bitmap1->Set(obj);
2013      } else if (bitmap2->HasAddress(obj)) {
2014        bitmap2->Set(obj);
2015      } else {
2016        large_objects->Set(obj);
2017      }
2018    }
2019  }
2020}
2021
2022void Heap::SwapSemiSpaces() {
2023  CHECK(bump_pointer_space_ != nullptr);
2024  CHECK(temp_space_ != nullptr);
2025  std::swap(bump_pointer_space_, temp_space_);
2026}
2027
2028void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2029                   space::ContinuousMemMapAllocSpace* source_space,
2030                   GcCause gc_cause) {
2031  CHECK(kMovingCollector);
2032  if (target_space != source_space) {
2033    // Don't swap spaces since this isn't a typical semi space collection.
2034    semi_space_collector_->SetSwapSemiSpaces(false);
2035    semi_space_collector_->SetFromSpace(source_space);
2036    semi_space_collector_->SetToSpace(target_space);
2037    semi_space_collector_->Run(gc_cause, false);
2038  } else {
2039    CHECK(target_space->IsBumpPointerSpace())
2040        << "In-place compaction is only supported for bump pointer spaces";
2041    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2042    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2043  }
2044}
2045
2046collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2047                                               bool clear_soft_references) {
2048  Thread* self = Thread::Current();
2049  Runtime* runtime = Runtime::Current();
2050  // If the heap can't run the GC, silently fail and return that no GC was run.
2051  switch (gc_type) {
2052    case collector::kGcTypePartial: {
2053      if (!HasZygoteSpace()) {
2054        return collector::kGcTypeNone;
2055      }
2056      break;
2057    }
2058    default: {
2059      // Other GC types don't have any special cases which makes them not runnable. The main case
2060      // here is full GC.
2061    }
2062  }
2063  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2064  Locks::mutator_lock_->AssertNotHeld(self);
2065  if (self->IsHandlingStackOverflow()) {
2066    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
2067  }
2068  bool compacting_gc;
2069  {
2070    gc_complete_lock_->AssertNotHeld(self);
2071    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2072    MutexLock mu(self, *gc_complete_lock_);
2073    // Ensure there is only one GC at a time.
2074    WaitForGcToCompleteLocked(gc_cause, self);
2075    compacting_gc = IsMovingGc(collector_type_);
2076    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2077    if (compacting_gc && disable_moving_gc_count_ != 0) {
2078      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2079      return collector::kGcTypeNone;
2080    }
2081    collector_type_running_ = collector_type_;
2082  }
2083
2084  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2085    ++runtime->GetStats()->gc_for_alloc_count;
2086    ++self->GetStats()->gc_for_alloc_count;
2087  }
2088  uint64_t gc_start_time_ns = NanoTime();
2089  uint64_t gc_start_size = GetBytesAllocated();
2090  // Approximate allocation rate in bytes / second.
2091  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2092  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2093  if (LIKELY(ms_delta != 0)) {
2094    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2095    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2096  }
2097
2098  DCHECK_LT(gc_type, collector::kGcTypeMax);
2099  DCHECK_NE(gc_type, collector::kGcTypeNone);
2100
2101  collector::GarbageCollector* collector = nullptr;
2102  // TODO: Clean this up.
2103  if (compacting_gc) {
2104    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2105           current_allocator_ == kAllocatorTypeTLAB);
2106    switch (collector_type_) {
2107      case kCollectorTypeSS:
2108        // Fall-through.
2109      case kCollectorTypeGSS:
2110        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2111        semi_space_collector_->SetToSpace(temp_space_);
2112        semi_space_collector_->SetSwapSemiSpaces(true);
2113        collector = semi_space_collector_;
2114        break;
2115      case kCollectorTypeCC:
2116        collector = concurrent_copying_collector_;
2117        break;
2118      case kCollectorTypeMC:
2119        mark_compact_collector_->SetSpace(bump_pointer_space_);
2120        collector = mark_compact_collector_;
2121        break;
2122      default:
2123        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2124    }
2125    if (collector != mark_compact_collector_) {
2126      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2127      CHECK(temp_space_->IsEmpty());
2128    }
2129    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2130  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2131      current_allocator_ == kAllocatorTypeDlMalloc) {
2132    collector = FindCollectorByGcType(gc_type);
2133  } else {
2134    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2135  }
2136  CHECK(collector != nullptr)
2137      << "Could not find garbage collector with collector_type="
2138      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2139  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2140  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2141  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2142  RequestHeapTrim();
2143  // Enqueue cleared references.
2144  reference_processor_.EnqueueClearedReferences(self);
2145  // Grow the heap so that we know when to perform the next GC.
2146  GrowForUtilization(collector);
2147  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2148  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2149  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2150  // (mutator time blocked >= long_pause_log_threshold_).
2151  bool log_gc = gc_cause == kGcCauseExplicit;
2152  if (!log_gc && CareAboutPauseTimes()) {
2153    // GC for alloc pauses the allocating thread, so consider it as a pause.
2154    log_gc = duration > long_gc_log_threshold_ ||
2155        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2156    for (uint64_t pause : pause_times) {
2157      log_gc = log_gc || pause >= long_pause_log_threshold_;
2158    }
2159  }
2160  if (log_gc) {
2161    const size_t percent_free = GetPercentFree();
2162    const size_t current_heap_size = GetBytesAllocated();
2163    const size_t total_memory = GetTotalMemory();
2164    std::ostringstream pause_string;
2165    for (size_t i = 0; i < pause_times.size(); ++i) {
2166        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2167                     << ((i != pause_times.size() - 1) ? "," : "");
2168    }
2169    LOG(INFO) << gc_cause << " " << collector->GetName()
2170              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2171              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2172              << current_gc_iteration_.GetFreedLargeObjects() << "("
2173              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2174              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2175              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2176              << " total " << PrettyDuration((duration / 1000) * 1000);
2177    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2178  }
2179  FinishGC(self, gc_type);
2180  // Inform DDMS that a GC completed.
2181  Dbg::GcDidFinish();
2182  return gc_type;
2183}
2184
2185void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2186  MutexLock mu(self, *gc_complete_lock_);
2187  collector_type_running_ = kCollectorTypeNone;
2188  if (gc_type != collector::kGcTypeNone) {
2189    last_gc_type_ = gc_type;
2190  }
2191  // Wake anyone who may have been waiting for the GC to complete.
2192  gc_complete_cond_->Broadcast(self);
2193}
2194
2195static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2196                                     RootType /*root_type*/) {
2197  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2198  if (*root == obj) {
2199    LOG(INFO) << "Object " << obj << " is a root";
2200  }
2201}
2202
2203class ScanVisitor {
2204 public:
2205  void operator()(const mirror::Object* obj) const {
2206    LOG(ERROR) << "Would have rescanned object " << obj;
2207  }
2208};
2209
2210// Verify a reference from an object.
2211class VerifyReferenceVisitor {
2212 public:
2213  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2214      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2215      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2216
2217  size_t GetFailureCount() const {
2218    return fail_count_->LoadSequentiallyConsistent();
2219  }
2220
2221  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2222      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2223    if (verify_referent_) {
2224      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2225    }
2226  }
2227
2228  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2229      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2230    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2231  }
2232
2233  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2234    return heap_->IsLiveObjectLocked(obj, true, false, true);
2235  }
2236
2237  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2238                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2239    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2240    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2241      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2242          << " thread_id= " << thread_id << " root_type= " << root_type;
2243    }
2244  }
2245
2246 private:
2247  // TODO: Fix the no thread safety analysis.
2248  // Returns false on failure.
2249  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2250      NO_THREAD_SAFETY_ANALYSIS {
2251    if (ref == nullptr || IsLive(ref)) {
2252      // Verify that the reference is live.
2253      return true;
2254    }
2255    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2256      // Print message on only on first failure to prevent spam.
2257      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2258    }
2259    if (obj != nullptr) {
2260      // Only do this part for non roots.
2261      accounting::CardTable* card_table = heap_->GetCardTable();
2262      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2263      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2264      byte* card_addr = card_table->CardFromAddr(obj);
2265      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2266                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2267      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2268        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2269      } else {
2270        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2271      }
2272
2273      // Attempt to find the class inside of the recently freed objects.
2274      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2275      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2276        space::MallocSpace* space = ref_space->AsMallocSpace();
2277        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2278        if (ref_class != nullptr) {
2279          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2280                     << PrettyClass(ref_class);
2281        } else {
2282          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2283        }
2284      }
2285
2286      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2287          ref->GetClass()->IsClass()) {
2288        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2289      } else {
2290        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2291                   << ") is not a valid heap address";
2292      }
2293
2294      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2295      void* cover_begin = card_table->AddrFromCard(card_addr);
2296      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2297          accounting::CardTable::kCardSize);
2298      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2299          << "-" << cover_end;
2300      accounting::ContinuousSpaceBitmap* bitmap =
2301          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2302
2303      if (bitmap == nullptr) {
2304        LOG(ERROR) << "Object " << obj << " has no bitmap";
2305        if (!VerifyClassClass(obj->GetClass())) {
2306          LOG(ERROR) << "Object " << obj << " failed class verification!";
2307        }
2308      } else {
2309        // Print out how the object is live.
2310        if (bitmap->Test(obj)) {
2311          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2312        }
2313        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2314          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2315        }
2316        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2317          LOG(ERROR) << "Object " << obj << " found in live stack";
2318        }
2319        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2320          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2321        }
2322        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2323          LOG(ERROR) << "Ref " << ref << " found in live stack";
2324        }
2325        // Attempt to see if the card table missed the reference.
2326        ScanVisitor scan_visitor;
2327        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2328        card_table->Scan(bitmap, byte_cover_begin,
2329                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2330      }
2331
2332      // Search to see if any of the roots reference our object.
2333      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2334      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2335
2336      // Search to see if any of the roots reference our reference.
2337      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2338      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2339    }
2340    return false;
2341  }
2342
2343  Heap* const heap_;
2344  Atomic<size_t>* const fail_count_;
2345  const bool verify_referent_;
2346};
2347
2348// Verify all references within an object, for use with HeapBitmap::Visit.
2349class VerifyObjectVisitor {
2350 public:
2351  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2352      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2353  }
2354
2355  void operator()(mirror::Object* obj) const
2356      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2357    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2358    // be live or else how did we find it in the live bitmap?
2359    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2360    // The class doesn't count as a reference but we should verify it anyways.
2361    obj->VisitReferences<true>(visitor, visitor);
2362  }
2363
2364  static void VisitCallback(mirror::Object* obj, void* arg)
2365      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2366    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2367    visitor->operator()(obj);
2368  }
2369
2370  size_t GetFailureCount() const {
2371    return fail_count_->LoadSequentiallyConsistent();
2372  }
2373
2374 private:
2375  Heap* const heap_;
2376  Atomic<size_t>* const fail_count_;
2377  const bool verify_referent_;
2378};
2379
2380void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2381  // Slow path, the allocation stack push back must have already failed.
2382  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2383  do {
2384    // TODO: Add handle VerifyObject.
2385    StackHandleScope<1> hs(self);
2386    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2387    // Push our object into the reserve region of the allocaiton stack. This is only required due
2388    // to heap verification requiring that roots are live (either in the live bitmap or in the
2389    // allocation stack).
2390    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2391    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2392  } while (!allocation_stack_->AtomicPushBack(*obj));
2393}
2394
2395void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2396  // Slow path, the allocation stack push back must have already failed.
2397  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2398  mirror::Object** start_address;
2399  mirror::Object** end_address;
2400  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2401                                            &end_address)) {
2402    // TODO: Add handle VerifyObject.
2403    StackHandleScope<1> hs(self);
2404    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2405    // Push our object into the reserve region of the allocaiton stack. This is only required due
2406    // to heap verification requiring that roots are live (either in the live bitmap or in the
2407    // allocation stack).
2408    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2409    // Push into the reserve allocation stack.
2410    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2411  }
2412  self->SetThreadLocalAllocationStack(start_address, end_address);
2413  // Retry on the new thread-local allocation stack.
2414  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2415}
2416
2417// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2418size_t Heap::VerifyHeapReferences(bool verify_referents) {
2419  Thread* self = Thread::Current();
2420  Locks::mutator_lock_->AssertExclusiveHeld(self);
2421  // Lets sort our allocation stacks so that we can efficiently binary search them.
2422  allocation_stack_->Sort();
2423  live_stack_->Sort();
2424  // Since we sorted the allocation stack content, need to revoke all
2425  // thread-local allocation stacks.
2426  RevokeAllThreadLocalAllocationStacks(self);
2427  Atomic<size_t> fail_count_(0);
2428  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2429  // Verify objects in the allocation stack since these will be objects which were:
2430  // 1. Allocated prior to the GC (pre GC verification).
2431  // 2. Allocated during the GC (pre sweep GC verification).
2432  // We don't want to verify the objects in the live stack since they themselves may be
2433  // pointing to dead objects if they are not reachable.
2434  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2435  // Verify the roots:
2436  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2437  if (visitor.GetFailureCount() > 0) {
2438    // Dump mod-union tables.
2439    for (const auto& table_pair : mod_union_tables_) {
2440      accounting::ModUnionTable* mod_union_table = table_pair.second;
2441      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2442    }
2443    // Dump remembered sets.
2444    for (const auto& table_pair : remembered_sets_) {
2445      accounting::RememberedSet* remembered_set = table_pair.second;
2446      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2447    }
2448    DumpSpaces(LOG(ERROR));
2449  }
2450  return visitor.GetFailureCount();
2451}
2452
2453class VerifyReferenceCardVisitor {
2454 public:
2455  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2456      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2457                            Locks::heap_bitmap_lock_)
2458      : heap_(heap), failed_(failed) {
2459  }
2460
2461  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2462  // annotalysis on visitors.
2463  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2464      NO_THREAD_SAFETY_ANALYSIS {
2465    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2466    // Filter out class references since changing an object's class does not mark the card as dirty.
2467    // Also handles large objects, since the only reference they hold is a class reference.
2468    if (ref != nullptr && !ref->IsClass()) {
2469      accounting::CardTable* card_table = heap_->GetCardTable();
2470      // If the object is not dirty and it is referencing something in the live stack other than
2471      // class, then it must be on a dirty card.
2472      if (!card_table->AddrIsInCardTable(obj)) {
2473        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2474        *failed_ = true;
2475      } else if (!card_table->IsDirty(obj)) {
2476        // TODO: Check mod-union tables.
2477        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2478        // kCardDirty - 1 if it didnt get touched since we aged it.
2479        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2480        if (live_stack->ContainsSorted(ref)) {
2481          if (live_stack->ContainsSorted(obj)) {
2482            LOG(ERROR) << "Object " << obj << " found in live stack";
2483          }
2484          if (heap_->GetLiveBitmap()->Test(obj)) {
2485            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2486          }
2487          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2488                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2489
2490          // Print which field of the object is dead.
2491          if (!obj->IsObjectArray()) {
2492            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2493            CHECK(klass != NULL);
2494            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2495                                                                      : klass->GetIFields();
2496            CHECK(fields != NULL);
2497            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2498              mirror::ArtField* cur = fields->Get(i);
2499              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2500                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2501                          << PrettyField(cur);
2502                break;
2503              }
2504            }
2505          } else {
2506            mirror::ObjectArray<mirror::Object>* object_array =
2507                obj->AsObjectArray<mirror::Object>();
2508            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2509              if (object_array->Get(i) == ref) {
2510                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2511              }
2512            }
2513          }
2514
2515          *failed_ = true;
2516        }
2517      }
2518    }
2519  }
2520
2521 private:
2522  Heap* const heap_;
2523  bool* const failed_;
2524};
2525
2526class VerifyLiveStackReferences {
2527 public:
2528  explicit VerifyLiveStackReferences(Heap* heap)
2529      : heap_(heap),
2530        failed_(false) {}
2531
2532  void operator()(mirror::Object* obj) const
2533      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2534    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2535    obj->VisitReferences<true>(visitor, VoidFunctor());
2536  }
2537
2538  bool Failed() const {
2539    return failed_;
2540  }
2541
2542 private:
2543  Heap* const heap_;
2544  bool failed_;
2545};
2546
2547bool Heap::VerifyMissingCardMarks() {
2548  Thread* self = Thread::Current();
2549  Locks::mutator_lock_->AssertExclusiveHeld(self);
2550  // We need to sort the live stack since we binary search it.
2551  live_stack_->Sort();
2552  // Since we sorted the allocation stack content, need to revoke all
2553  // thread-local allocation stacks.
2554  RevokeAllThreadLocalAllocationStacks(self);
2555  VerifyLiveStackReferences visitor(this);
2556  GetLiveBitmap()->Visit(visitor);
2557  // We can verify objects in the live stack since none of these should reference dead objects.
2558  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2559    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2560      visitor(*it);
2561    }
2562  }
2563  return !visitor.Failed();
2564}
2565
2566void Heap::SwapStacks(Thread* self) {
2567  if (kUseThreadLocalAllocationStack) {
2568    live_stack_->AssertAllZero();
2569  }
2570  allocation_stack_.swap(live_stack_);
2571}
2572
2573void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2574  // This must be called only during the pause.
2575  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2576  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2577  MutexLock mu2(self, *Locks::thread_list_lock_);
2578  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2579  for (Thread* t : thread_list) {
2580    t->RevokeThreadLocalAllocationStack();
2581  }
2582}
2583
2584void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
2585  if (kIsDebugBuild) {
2586    if (rosalloc_space_ != nullptr) {
2587      rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
2588    }
2589    if (bump_pointer_space_ != nullptr) {
2590      bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
2591    }
2592  }
2593}
2594
2595void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2596  if (kIsDebugBuild) {
2597    if (bump_pointer_space_ != nullptr) {
2598      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2599    }
2600  }
2601}
2602
2603accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2604  auto it = mod_union_tables_.find(space);
2605  if (it == mod_union_tables_.end()) {
2606    return nullptr;
2607  }
2608  return it->second;
2609}
2610
2611accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2612  auto it = remembered_sets_.find(space);
2613  if (it == remembered_sets_.end()) {
2614    return nullptr;
2615  }
2616  return it->second;
2617}
2618
2619void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2620  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2621  // Clear cards and keep track of cards cleared in the mod-union table.
2622  for (const auto& space : continuous_spaces_) {
2623    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2624    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2625    if (table != nullptr) {
2626      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2627          "ImageModUnionClearCards";
2628      TimingLogger::ScopedTiming t(name, timings);
2629      table->ClearCards();
2630    } else if (use_rem_sets && rem_set != nullptr) {
2631      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2632          << static_cast<int>(collector_type_);
2633      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2634      rem_set->ClearCards();
2635    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2636      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2637      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2638      // were dirty before the GC started.
2639      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2640      // -> clean(cleaning thread).
2641      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2642      // roots and then we scan / update mod union tables after. We will always scan either card.
2643      // If we end up with the non aged card, we scan it it in the pause.
2644      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2645                                     VoidFunctor());
2646    }
2647  }
2648}
2649
2650static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2651}
2652
2653void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2654  Thread* const self = Thread::Current();
2655  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2656  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2657  if (verify_pre_gc_heap_) {
2658    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2659    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2660    size_t failures = VerifyHeapReferences();
2661    if (failures > 0) {
2662      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2663          << " failures";
2664    }
2665  }
2666  // Check that all objects which reference things in the live stack are on dirty cards.
2667  if (verify_missing_card_marks_) {
2668    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2669    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2670    SwapStacks(self);
2671    // Sort the live stack so that we can quickly binary search it later.
2672    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2673                                    << " missing card mark verification failed\n" << DumpSpaces();
2674    SwapStacks(self);
2675  }
2676  if (verify_mod_union_table_) {
2677    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2678    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2679    for (const auto& table_pair : mod_union_tables_) {
2680      accounting::ModUnionTable* mod_union_table = table_pair.second;
2681      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2682      mod_union_table->Verify();
2683    }
2684  }
2685}
2686
2687void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2688  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2689    collector::GarbageCollector::ScopedPause pause(gc);
2690    PreGcVerificationPaused(gc);
2691  }
2692}
2693
2694void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2695  // TODO: Add a new runtime option for this?
2696  if (verify_pre_gc_rosalloc_) {
2697    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2698  }
2699}
2700
2701void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2702  Thread* const self = Thread::Current();
2703  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2704  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2705  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2706  // reachable objects.
2707  if (verify_pre_sweeping_heap_) {
2708    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2709    CHECK_NE(self->GetState(), kRunnable);
2710    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2711    // Swapping bound bitmaps does nothing.
2712    gc->SwapBitmaps();
2713    // Pass in false since concurrent reference processing can mean that the reference referents
2714    // may point to dead objects at the point which PreSweepingGcVerification is called.
2715    size_t failures = VerifyHeapReferences(false);
2716    if (failures > 0) {
2717      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2718          << " failures";
2719    }
2720    gc->SwapBitmaps();
2721  }
2722  if (verify_pre_sweeping_rosalloc_) {
2723    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2724  }
2725}
2726
2727void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2728  // Only pause if we have to do some verification.
2729  Thread* const self = Thread::Current();
2730  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2731  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2732  if (verify_system_weaks_) {
2733    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2734    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2735    mark_sweep->VerifySystemWeaks();
2736  }
2737  if (verify_post_gc_rosalloc_) {
2738    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2739  }
2740  if (verify_post_gc_heap_) {
2741    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2742    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2743    size_t failures = VerifyHeapReferences();
2744    if (failures > 0) {
2745      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2746          << " failures";
2747    }
2748  }
2749}
2750
2751void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2752  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2753    collector::GarbageCollector::ScopedPause pause(gc);
2754    PostGcVerificationPaused(gc);
2755  }
2756}
2757
2758void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2759  TimingLogger::ScopedTiming t(name, timings);
2760  for (const auto& space : continuous_spaces_) {
2761    if (space->IsRosAllocSpace()) {
2762      VLOG(heap) << name << " : " << space->GetName();
2763      space->AsRosAllocSpace()->Verify();
2764    }
2765  }
2766}
2767
2768collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2769  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2770  MutexLock mu(self, *gc_complete_lock_);
2771  return WaitForGcToCompleteLocked(cause, self);
2772}
2773
2774collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2775  collector::GcType last_gc_type = collector::kGcTypeNone;
2776  uint64_t wait_start = NanoTime();
2777  while (collector_type_running_ != kCollectorTypeNone) {
2778    ATRACE_BEGIN("GC: Wait For Completion");
2779    // We must wait, change thread state then sleep on gc_complete_cond_;
2780    gc_complete_cond_->Wait(self);
2781    last_gc_type = last_gc_type_;
2782    ATRACE_END();
2783  }
2784  uint64_t wait_time = NanoTime() - wait_start;
2785  total_wait_time_ += wait_time;
2786  if (wait_time > long_pause_log_threshold_) {
2787    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2788        << " for cause " << cause;
2789  }
2790  return last_gc_type;
2791}
2792
2793void Heap::DumpForSigQuit(std::ostream& os) {
2794  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2795     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2796  DumpGcPerformanceInfo(os);
2797}
2798
2799size_t Heap::GetPercentFree() {
2800  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2801}
2802
2803void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2804  if (max_allowed_footprint > GetMaxMemory()) {
2805    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2806             << PrettySize(GetMaxMemory());
2807    max_allowed_footprint = GetMaxMemory();
2808  }
2809  max_allowed_footprint_ = max_allowed_footprint;
2810}
2811
2812bool Heap::IsMovableObject(const mirror::Object* obj) const {
2813  if (kMovingCollector) {
2814    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2815    if (space != nullptr) {
2816      // TODO: Check large object?
2817      return space->CanMoveObjects();
2818    }
2819  }
2820  return false;
2821}
2822
2823void Heap::UpdateMaxNativeFootprint() {
2824  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2825  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2826  size_t target_size = native_size / GetTargetHeapUtilization();
2827  if (target_size > native_size + max_free_) {
2828    target_size = native_size + max_free_;
2829  } else if (target_size < native_size + min_free_) {
2830    target_size = native_size + min_free_;
2831  }
2832  native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
2833}
2834
2835collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2836  for (const auto& collector : garbage_collectors_) {
2837    if (collector->GetCollectorType() == collector_type_ &&
2838        collector->GetGcType() == gc_type) {
2839      return collector;
2840    }
2841  }
2842  return nullptr;
2843}
2844
2845double Heap::HeapGrowthMultiplier() const {
2846  // If we don't care about pause times we are background, so return 1.0.
2847  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2848    return 1.0;
2849  }
2850  return foreground_heap_growth_multiplier_;
2851}
2852
2853void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2854  // We know what our utilization is at this moment.
2855  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2856  const uint64_t bytes_allocated = GetBytesAllocated();
2857  last_gc_size_ = bytes_allocated;
2858  last_gc_time_ns_ = NanoTime();
2859  uint64_t target_size;
2860  collector::GcType gc_type = collector_ran->GetGcType();
2861  if (gc_type != collector::kGcTypeSticky) {
2862    // Grow the heap for non sticky GC.
2863    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2864    // foreground.
2865    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2866    CHECK_GE(delta, 0);
2867    target_size = bytes_allocated + delta * multiplier;
2868    target_size = std::min(target_size,
2869                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2870    target_size = std::max(target_size,
2871                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2872    native_need_to_run_finalization_ = true;
2873    next_gc_type_ = collector::kGcTypeSticky;
2874  } else {
2875    collector::GcType non_sticky_gc_type =
2876        HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
2877    // Find what the next non sticky collector will be.
2878    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2879    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2880    // do another sticky collection next.
2881    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2882    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2883    // if the sticky GC throughput always remained >= the full/partial throughput.
2884    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2885        non_sticky_collector->GetEstimatedMeanThroughput() &&
2886        non_sticky_collector->NumberOfIterations() > 0 &&
2887        bytes_allocated <= max_allowed_footprint_) {
2888      next_gc_type_ = collector::kGcTypeSticky;
2889    } else {
2890      next_gc_type_ = non_sticky_gc_type;
2891    }
2892    // If we have freed enough memory, shrink the heap back down.
2893    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2894      target_size = bytes_allocated + max_free_;
2895    } else {
2896      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2897    }
2898  }
2899  if (!ignore_max_footprint_) {
2900    SetIdealFootprint(target_size);
2901    if (IsGcConcurrent()) {
2902      // Calculate when to perform the next ConcurrentGC.
2903      // Calculate the estimated GC duration.
2904      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2905      // Estimate how many remaining bytes we will have when we need to start the next GC.
2906      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2907      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2908      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2909      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2910        // A never going to happen situation that from the estimated allocation rate we will exceed
2911        // the applications entire footprint with the given estimated allocation rate. Schedule
2912        // another GC nearly straight away.
2913        remaining_bytes = kMinConcurrentRemainingBytes;
2914      }
2915      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2916      DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
2917      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2918      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2919      // right away.
2920      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2921                                         static_cast<size_t>(bytes_allocated));
2922    }
2923  }
2924}
2925
2926void Heap::ClearGrowthLimit() {
2927  growth_limit_ = capacity_;
2928  non_moving_space_->ClearGrowthLimit();
2929}
2930
2931void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2932  ScopedObjectAccess soa(self);
2933  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2934  jvalue args[1];
2935  args[0].l = arg.get();
2936  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2937  // Restore object in case it gets moved.
2938  *object = soa.Decode<mirror::Object*>(arg.get());
2939}
2940
2941void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2942  StackHandleScope<1> hs(self);
2943  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2944  RequestConcurrentGC(self);
2945}
2946
2947void Heap::RequestConcurrentGC(Thread* self) {
2948  // Make sure that we can do a concurrent GC.
2949  Runtime* runtime = Runtime::Current();
2950  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2951      self->IsHandlingStackOverflow()) {
2952    return;
2953  }
2954  // We already have a request pending, no reason to start more until we update
2955  // concurrent_start_bytes_.
2956  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2957  JNIEnv* env = self->GetJniEnv();
2958  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2959  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2960  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2961                            WellKnownClasses::java_lang_Daemons_requestGC);
2962  CHECK(!env->ExceptionCheck());
2963}
2964
2965void Heap::ConcurrentGC(Thread* self) {
2966  if (Runtime::Current()->IsShuttingDown(self)) {
2967    return;
2968  }
2969  // Wait for any GCs currently running to finish.
2970  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2971    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2972    // instead. E.g. can't do partial, so do full instead.
2973    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2974        collector::kGcTypeNone) {
2975      for (collector::GcType gc_type : gc_plan_) {
2976        // Attempt to run the collector, if we succeed, we are done.
2977        if (gc_type > next_gc_type_ &&
2978            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2979          break;
2980        }
2981      }
2982    }
2983  }
2984}
2985
2986void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2987  Thread* self = Thread::Current();
2988  {
2989    MutexLock mu(self, *heap_trim_request_lock_);
2990    if (desired_collector_type_ == desired_collector_type) {
2991      return;
2992    }
2993    heap_transition_or_trim_target_time_ =
2994        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2995    desired_collector_type_ = desired_collector_type;
2996  }
2997  SignalHeapTrimDaemon(self);
2998}
2999
3000void Heap::RequestHeapTrim() {
3001  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3002  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3003  // a space it will hold its lock and can become a cause of jank.
3004  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3005  // forking.
3006
3007  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3008  // because that only marks object heads, so a large array looks like lots of empty space. We
3009  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3010  // to utilization (which is probably inversely proportional to how much benefit we can expect).
3011  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3012  // not how much use we're making of those pages.
3013
3014  Thread* self = Thread::Current();
3015  Runtime* runtime = Runtime::Current();
3016  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
3017    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
3018    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
3019    // as we don't hold the lock while requesting the trim).
3020    return;
3021  }
3022  {
3023    MutexLock mu(self, *heap_trim_request_lock_);
3024    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
3025      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
3026      // just yet.
3027      return;
3028    }
3029    heap_trim_request_pending_ = true;
3030    uint64_t current_time = NanoTime();
3031    if (heap_transition_or_trim_target_time_ < current_time) {
3032      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
3033    }
3034  }
3035  // Notify the daemon thread which will actually do the heap trim.
3036  SignalHeapTrimDaemon(self);
3037}
3038
3039void Heap::SignalHeapTrimDaemon(Thread* self) {
3040  JNIEnv* env = self->GetJniEnv();
3041  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
3042  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
3043  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
3044                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
3045  CHECK(!env->ExceptionCheck());
3046}
3047
3048void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3049  if (rosalloc_space_ != nullptr) {
3050    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3051  }
3052  if (bump_pointer_space_ != nullptr) {
3053    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
3054  }
3055}
3056
3057void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3058  if (rosalloc_space_ != nullptr) {
3059    rosalloc_space_->RevokeThreadLocalBuffers(thread);
3060  }
3061}
3062
3063void Heap::RevokeAllThreadLocalBuffers() {
3064  if (rosalloc_space_ != nullptr) {
3065    rosalloc_space_->RevokeAllThreadLocalBuffers();
3066  }
3067  if (bump_pointer_space_ != nullptr) {
3068    bump_pointer_space_->RevokeAllThreadLocalBuffers();
3069  }
3070}
3071
3072bool Heap::IsGCRequestPending() const {
3073  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
3074}
3075
3076void Heap::RunFinalization(JNIEnv* env) {
3077  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
3078  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
3079    CHECK(WellKnownClasses::java_lang_System != nullptr);
3080    WellKnownClasses::java_lang_System_runFinalization =
3081        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
3082    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
3083  }
3084  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
3085                            WellKnownClasses::java_lang_System_runFinalization);
3086}
3087
3088void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3089  Thread* self = ThreadForEnv(env);
3090  if (native_need_to_run_finalization_) {
3091    RunFinalization(env);
3092    UpdateMaxNativeFootprint();
3093    native_need_to_run_finalization_ = false;
3094  }
3095  // Total number of native bytes allocated.
3096  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3097  new_native_bytes_allocated += bytes;
3098  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3099    collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3100        collector::kGcTypeFull;
3101
3102    // The second watermark is higher than the gc watermark. If you hit this it means you are
3103    // allocating native objects faster than the GC can keep up with.
3104    if (new_native_bytes_allocated > growth_limit_) {
3105      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3106        // Just finished a GC, attempt to run finalizers.
3107        RunFinalization(env);
3108        CHECK(!env->ExceptionCheck());
3109      }
3110      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3111      if (new_native_bytes_allocated > growth_limit_) {
3112        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3113        RunFinalization(env);
3114        native_need_to_run_finalization_ = false;
3115        CHECK(!env->ExceptionCheck());
3116      }
3117      // We have just run finalizers, update the native watermark since it is very likely that
3118      // finalizers released native managed allocations.
3119      UpdateMaxNativeFootprint();
3120    } else if (!IsGCRequestPending()) {
3121      if (IsGcConcurrent()) {
3122        RequestConcurrentGC(self);
3123      } else {
3124        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3125      }
3126    }
3127  }
3128}
3129
3130void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3131  size_t expected_size;
3132  do {
3133    expected_size = native_bytes_allocated_.LoadRelaxed();
3134    if (UNLIKELY(bytes > expected_size)) {
3135      ScopedObjectAccess soa(env);
3136      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3137                    StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3138                                 "registered as allocated", bytes, expected_size).c_str());
3139      break;
3140    }
3141  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3142                                                               expected_size - bytes));
3143}
3144
3145size_t Heap::GetTotalMemory() const {
3146  return std::max(max_allowed_footprint_, GetBytesAllocated());
3147}
3148
3149void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3150  DCHECK(mod_union_table != nullptr);
3151  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3152}
3153
3154void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3155  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3156        (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3157  CHECK_GE(byte_count, sizeof(mirror::Object));
3158}
3159
3160void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3161  CHECK(remembered_set != nullptr);
3162  space::Space* space = remembered_set->GetSpace();
3163  CHECK(space != nullptr);
3164  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3165  remembered_sets_.Put(space, remembered_set);
3166  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3167}
3168
3169void Heap::RemoveRememberedSet(space::Space* space) {
3170  CHECK(space != nullptr);
3171  auto it = remembered_sets_.find(space);
3172  CHECK(it != remembered_sets_.end());
3173  delete it->second;
3174  remembered_sets_.erase(it);
3175  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3176}
3177
3178void Heap::ClearMarkedObjects() {
3179  // Clear all of the spaces' mark bitmaps.
3180  for (const auto& space : GetContinuousSpaces()) {
3181    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3182    if (space->GetLiveBitmap() != mark_bitmap) {
3183      mark_bitmap->Clear();
3184    }
3185  }
3186  // Clear the marked objects in the discontinous space object sets.
3187  for (const auto& space : GetDiscontinuousSpaces()) {
3188    space->GetMarkBitmap()->Clear();
3189  }
3190}
3191
3192}  // namespace gc
3193}  // namespace art
3194