heap.cc revision be0562fb14e6754ee932b8d9c97e2a6df3a91119
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <memory>
24#include <vector>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/remembered_set.h"
37#include "gc/accounting/space_bitmap-inl.h"
38#include "gc/collector/concurrent_copying.h"
39#include "gc/collector/mark_compact.h"
40#include "gc/collector/mark_sweep-inl.h"
41#include "gc/collector/partial_mark_sweep.h"
42#include "gc/collector/semi_space.h"
43#include "gc/collector/sticky_mark_sweep.h"
44#include "gc/reference_processor.h"
45#include "gc/space/bump_pointer_space.h"
46#include "gc/space/dlmalloc_space-inl.h"
47#include "gc/space/image_space.h"
48#include "gc/space/large_object_space.h"
49#include "gc/space/rosalloc_space-inl.h"
50#include "gc/space/space-inl.h"
51#include "gc/space/zygote_space.h"
52#include "entrypoints/quick/quick_alloc_entrypoints.h"
53#include "heap-inl.h"
54#include "image.h"
55#include "mirror/art_field-inl.h"
56#include "mirror/class-inl.h"
57#include "mirror/object.h"
58#include "mirror/object-inl.h"
59#include "mirror/object_array-inl.h"
60#include "mirror/reference-inl.h"
61#include "object_utils.h"
62#include "os.h"
63#include "reflection.h"
64#include "runtime.h"
65#include "ScopedLocalRef.h"
66#include "scoped_thread_state_change.h"
67#include "handle_scope-inl.h"
68#include "thread_list.h"
69#include "well_known_classes.h"
70
71namespace art {
72
73namespace gc {
74
75static constexpr size_t kCollectorTransitionStressIterations = 0;
76static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
77static constexpr bool kGCALotMode = false;
78static constexpr size_t kGcAlotInterval = KB;
79// Minimum amount of remaining bytes before a concurrent GC is triggered.
80static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
81static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
82// Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
83// relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
84// threads (lower pauses, use less memory bandwidth).
85static constexpr double kStickyGcThroughputAdjustment = 1.0;
86// Whether or not we use the free list large object space.
87static constexpr bool kUseFreeListSpaceForLOS = false;
88// Whether or not we compact the zygote in PreZygoteFork.
89static constexpr bool kCompactZygote = kMovingCollector;
90static constexpr size_t kNonMovingSpaceCapacity = 64 * MB;
91// How many reserve entries are at the end of the allocation stack, these are only needed if the
92// allocation stack overflows.
93static constexpr size_t kAllocationStackReserveSize = 1024;
94// Default mark stack size in bytes.
95static const size_t kDefaultMarkStackSize = 64 * KB;
96// Define space name.
97static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
98static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
99static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
100
101Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
102           double target_utilization, double foreground_heap_growth_multiplier, size_t capacity,
103           const std::string& image_file_name, const InstructionSet image_instruction_set,
104           CollectorType foreground_collector_type, CollectorType background_collector_type,
105           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
106           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
107           bool ignore_max_footprint, bool use_tlab,
108           bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
109           bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
110           bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
111           uint64_t min_interval_homogeneous_space_compaction_by_oom)
112    : non_moving_space_(nullptr),
113      rosalloc_space_(nullptr),
114      dlmalloc_space_(nullptr),
115      main_space_(nullptr),
116      collector_type_(kCollectorTypeNone),
117      foreground_collector_type_(foreground_collector_type),
118      background_collector_type_(background_collector_type),
119      desired_collector_type_(foreground_collector_type_),
120      heap_trim_request_lock_(nullptr),
121      last_trim_time_(0),
122      heap_transition_or_trim_target_time_(0),
123      heap_trim_request_pending_(false),
124      parallel_gc_threads_(parallel_gc_threads),
125      conc_gc_threads_(conc_gc_threads),
126      low_memory_mode_(low_memory_mode),
127      long_pause_log_threshold_(long_pause_log_threshold),
128      long_gc_log_threshold_(long_gc_log_threshold),
129      ignore_max_footprint_(ignore_max_footprint),
130      zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
131      have_zygote_space_(false),
132      large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
133      collector_type_running_(kCollectorTypeNone),
134      last_gc_type_(collector::kGcTypeNone),
135      next_gc_type_(collector::kGcTypePartial),
136      capacity_(capacity),
137      growth_limit_(growth_limit),
138      max_allowed_footprint_(initial_size),
139      native_footprint_gc_watermark_(initial_size),
140      native_footprint_limit_(2 * initial_size),
141      native_need_to_run_finalization_(false),
142      // Initially assume we perceive jank in case the process state is never updated.
143      process_state_(kProcessStateJankPerceptible),
144      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
145      total_bytes_freed_ever_(0),
146      total_objects_freed_ever_(0),
147      num_bytes_allocated_(0),
148      native_bytes_allocated_(0),
149      gc_memory_overhead_(0),
150      verify_missing_card_marks_(false),
151      verify_system_weaks_(false),
152      verify_pre_gc_heap_(verify_pre_gc_heap),
153      verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
154      verify_post_gc_heap_(verify_post_gc_heap),
155      verify_mod_union_table_(false),
156      verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
157      verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
158      verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
159      last_gc_time_ns_(NanoTime()),
160      allocation_rate_(0),
161      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
162       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
163       * verification is enabled, we limit the size of allocation stacks to speed up their
164       * searching.
165       */
166      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
167          : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
168      current_allocator_(kAllocatorTypeDlMalloc),
169      current_non_moving_allocator_(kAllocatorTypeNonMoving),
170      bump_pointer_space_(nullptr),
171      temp_space_(nullptr),
172      min_free_(min_free),
173      max_free_(max_free),
174      target_utilization_(target_utilization),
175      foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
176      total_wait_time_(0),
177      total_allocation_time_(0),
178      verify_object_mode_(kVerifyObjectModeDisabled),
179      disable_moving_gc_count_(0),
180      running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
181      use_tlab_(use_tlab),
182      main_space_backup_(nullptr),
183      min_interval_homogeneous_space_compaction_by_oom_(min_interval_homogeneous_space_compaction_by_oom),
184      last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
185      use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
186  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
187    LOG(INFO) << "Heap() entering";
188  }
189  const bool is_zygote = Runtime::Current()->IsZygote();
190  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
191  // entrypoints.
192  if (!is_zygote) {
193    large_object_threshold_ = kDefaultLargeObjectThreshold;
194    // Background compaction is currently not supported for command line runs.
195    if (background_collector_type_ != foreground_collector_type_) {
196      VLOG(heap) << "Disabling background compaction for non zygote";
197      background_collector_type_ = foreground_collector_type_;
198    }
199  }
200  ChangeCollector(desired_collector_type_);
201
202  live_bitmap_.reset(new accounting::HeapBitmap(this));
203  mark_bitmap_.reset(new accounting::HeapBitmap(this));
204  // Requested begin for the alloc space, to follow the mapped image and oat files
205  byte* requested_alloc_space_begin = nullptr;
206  if (!image_file_name.empty()) {
207    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
208                                                               image_instruction_set);
209    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
210    AddSpace(image_space);
211    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
212    // isn't going to get in the middle
213    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
214    CHECK_GT(oat_file_end_addr, image_space->End());
215    requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
216  }
217
218  /*
219  requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
220                                     +-  nonmoving space (kNonMovingSpaceCapacity) +-
221                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
222                                     +-        main alloc space (capacity_)        +-
223                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
224                                     +-       main alloc space 1 (capacity_)       +-
225                                     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
226  */
227  bool create_backup_main_space =
228      background_collector_type == gc::kCollectorTypeHomogeneousSpaceCompact ||
229      use_homogeneous_space_compaction_for_oom;
230  if (is_zygote) {
231    // Reserve the address range before we create the non moving space to make sure bitmaps don't
232    // take it.
233    std::string error_str;
234    MemMap* main_space_map = MemMap::MapAnonymous(
235        kMemMapSpaceName[0], requested_alloc_space_begin + kNonMovingSpaceCapacity, capacity_,
236        PROT_READ | PROT_WRITE, true, &error_str);
237    CHECK(main_space_map != nullptr) << error_str;
238    MemMap* main_space_1_map = nullptr;
239    // Attempt to reserve an extra mem_map for homogeneous space compaction right after the main space map.
240    if (create_backup_main_space) {
241      main_space_1_map = MemMap::MapAnonymous(kMemMapSpaceName[1], main_space_map->End(), capacity_,
242                                               PROT_READ | PROT_WRITE, true, &error_str);
243      if (main_space_1_map == nullptr) {
244        LOG(WARNING) << "Failed to create map " <<  kMemMapSpaceName[1] << " with error "
245                     << error_str;
246      }
247    }
248    // Non moving space is always dlmalloc since we currently don't have support for multiple
249    // active rosalloc spaces.
250    non_moving_space_ = space::DlMallocSpace::Create(
251        "zygote / non moving space", initial_size, kNonMovingSpaceCapacity,
252        kNonMovingSpaceCapacity, requested_alloc_space_begin, false);
253    non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
254    CreateMainMallocSpace(main_space_map, initial_size, growth_limit_, capacity_);
255    if (main_space_1_map != nullptr) {
256      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
257      main_space_backup_ = CreateMallocSpaceFromMemMap(main_space_1_map, initial_size,
258                                                       growth_limit_, capacity_, name, true);
259    }
260  } else {
261    std::string error_str;
262    byte* request_begin = requested_alloc_space_begin;
263    if (request_begin == nullptr) {
264      // Disable homogeneous space compaction since we don't have an image.
265      create_backup_main_space = false;
266    }
267    MemMap* main_space_1_map = nullptr;
268    if (create_backup_main_space) {
269      request_begin += kNonMovingSpaceCapacity;
270      // Attempt to reserve an extra mem_map for homogeneous space compaction right after the main space map.
271      main_space_1_map = MemMap::MapAnonymous(kMemMapSpaceName[1], request_begin + capacity_,
272                                               capacity_, PROT_READ | PROT_WRITE, true, &error_str);
273      if (main_space_1_map == nullptr) {
274        LOG(WARNING) << "Failed to create map " <<  kMemMapSpaceName[1] << " with error "
275                     << error_str;
276        request_begin = requested_alloc_space_begin;
277      }
278    }
279    MemMap* main_space_map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
280                                                  PROT_READ | PROT_WRITE, true, &error_str);
281    CHECK(main_space_map != nullptr) << error_str;
282    // Introduce a seperate non moving space.
283    if (main_space_1_map != nullptr) {
284      // Do this before creating the main malloc space to prevent bitmaps from being placed here.
285      non_moving_space_ = space::DlMallocSpace::Create(
286          "non moving space", kDefaultInitialSize, kNonMovingSpaceCapacity, kNonMovingSpaceCapacity,
287          requested_alloc_space_begin, false);
288      non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
289    }
290    // Create the main free list space, which doubles as the non moving space. We can do this since
291    // non zygote means that we won't have any background compaction.
292    CreateMainMallocSpace(main_space_map, initial_size, growth_limit_, capacity_);
293    if (main_space_1_map != nullptr) {
294      const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
295      main_space_backup_ = CreateMallocSpaceFromMemMap(main_space_1_map, initial_size,
296                                                       growth_limit_, capacity_, name, true);
297      CHECK(main_space_backup_ != nullptr);
298    } else {
299      non_moving_space_ = main_space_;
300    }
301  }
302  CHECK(non_moving_space_ != nullptr);
303
304  // We need to create the bump pointer if the foreground collector is a compacting GC. We only
305  // create the bump pointer space if we are not a moving foreground collector but have a moving
306  // background collector since the heap transition code will create the temp space by recycling
307  // the bitmap from the main space.
308  if (kMovingCollector &&
309      (IsMovingGc(foreground_collector_type_) || IsMovingGc(background_collector_type_))) {
310    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
311    // Divide by 2 for a temporary fix for reducing virtual memory usage.
312    const size_t bump_pointer_space_capacity = capacity_ / 2;
313    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
314                                                          bump_pointer_space_capacity, nullptr);
315    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
316    AddSpace(bump_pointer_space_);
317    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
318                                                  bump_pointer_space_capacity, nullptr);
319    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
320    AddSpace(temp_space_);
321  }
322  if (non_moving_space_ != main_space_) {
323    AddSpace(non_moving_space_);
324  }
325  if (main_space_backup_ != nullptr) {
326    AddSpace(main_space_backup_);
327  } else {
328    const char* disable_msg = "Disabling homogenous space compact due to no backup main space";
329    if (background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact) {
330      background_collector_type_ = collector_type_;
331      LOG(WARNING) << disable_msg;
332    } else if (use_homogeneous_space_compaction_for_oom_) {
333      LOG(WARNING) << disable_msg;
334    }
335    use_homogeneous_space_compaction_for_oom_ = false;
336  }
337  if (main_space_ != nullptr) {
338    AddSpace(main_space_);
339  }
340
341  // Allocate the large object space.
342  if (kUseFreeListSpaceForLOS) {
343    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
344  } else {
345    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
346  }
347  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
348  AddSpace(large_object_space_);
349
350  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
351  CHECK(!continuous_spaces_.empty());
352
353  // Relies on the spaces being sorted.
354  byte* heap_begin = continuous_spaces_.front()->Begin();
355  byte* heap_end = continuous_spaces_.back()->Limit();
356  size_t heap_capacity = heap_end - heap_begin;
357
358  // Allocate the card table.
359  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
360  CHECK(card_table_.get() != NULL) << "Failed to create card table";
361
362  // Card cache for now since it makes it easier for us to update the references to the copying
363  // spaces.
364  accounting::ModUnionTable* mod_union_table =
365      new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
366                                                      GetImageSpace());
367  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
368  AddModUnionTable(mod_union_table);
369
370  if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
371    accounting::RememberedSet* non_moving_space_rem_set =
372        new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
373    CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
374    AddRememberedSet(non_moving_space_rem_set);
375  }
376
377  // TODO: Count objects in the image space here.
378  num_bytes_allocated_.StoreRelaxed(0);
379
380  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
381                                                    kDefaultMarkStackSize));
382  const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
383  allocation_stack_.reset(accounting::ObjectStack::Create(
384      "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
385  live_stack_.reset(accounting::ObjectStack::Create(
386      "live stack", max_allocation_stack_size_, alloc_stack_capacity));
387
388  // It's still too early to take a lock because there are no threads yet, but we can create locks
389  // now. We don't create it earlier to make it clear that you can't use locks during heap
390  // initialization.
391  gc_complete_lock_ = new Mutex("GC complete lock");
392  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
393                                                *gc_complete_lock_));
394  heap_trim_request_lock_ = new Mutex("Heap trim request lock");
395  last_gc_size_ = GetBytesAllocated();
396
397  if (ignore_max_footprint_) {
398    SetIdealFootprint(std::numeric_limits<size_t>::max());
399    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
400  }
401  CHECK_NE(max_allowed_footprint_, 0U);
402
403  // Create our garbage collectors.
404  for (size_t i = 0; i < 2; ++i) {
405    const bool concurrent = i != 0;
406    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
407    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
408    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
409  }
410  if (kMovingCollector) {
411    // TODO: Clean this up.
412    const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
413    semi_space_collector_ = new collector::SemiSpace(this, generational,
414                                                     generational ? "generational" : "");
415    garbage_collectors_.push_back(semi_space_collector_);
416    concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
417    garbage_collectors_.push_back(concurrent_copying_collector_);
418    mark_compact_collector_ = new collector::MarkCompact(this);
419    garbage_collectors_.push_back(mark_compact_collector_);
420  }
421
422  if (GetImageSpace() != nullptr && main_space_ != nullptr) {
423    // Check that there's no gap between the image space and the main space so that the immune
424    // region won't break (eg. due to a large object allocated in the gap).
425    bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(), main_space_->GetMemMap());
426    if (!no_gap) {
427      MemMap::DumpMaps(LOG(ERROR));
428      LOG(FATAL) << "There's a gap between the image space and the main space";
429    }
430  }
431
432  if (running_on_valgrind_) {
433    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
434  }
435
436  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
437    LOG(INFO) << "Heap() exiting";
438  }
439}
440
441space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
442                                                      size_t growth_limit, size_t capacity,
443                                                      const char* name, bool can_move_objects) {
444  space::MallocSpace* malloc_space = nullptr;
445  if (kUseRosAlloc) {
446    // Create rosalloc space.
447    malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
448                                                          initial_size, growth_limit, capacity,
449                                                          low_memory_mode_, can_move_objects);
450  } else {
451    malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
452                                                          initial_size, growth_limit, capacity,
453                                                          can_move_objects);
454  }
455  if (collector::SemiSpace::kUseRememberedSet) {
456    accounting::RememberedSet* rem_set  =
457        new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
458    CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
459    AddRememberedSet(rem_set);
460  }
461  CHECK(malloc_space != nullptr) << "Failed to create " << name;
462  malloc_space->SetFootprintLimit(malloc_space->Capacity());
463  return malloc_space;
464}
465
466void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
467                                 size_t capacity) {
468  // Is background compaction is enabled?
469  bool can_move_objects = IsMovingGc(background_collector_type_) !=
470      IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
471  // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
472  // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
473  // from the main space to the zygote space. If background compaction is enabled, always pass in
474  // that we can move objets.
475  if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
476    // After the zygote we want this to be false if we don't have background compaction enabled so
477    // that getting primitive array elements is faster.
478    can_move_objects = !have_zygote_space_;
479  }
480  if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
481    RemoveRememberedSet(main_space_);
482  }
483  const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
484  main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
485                                            can_move_objects);
486  SetSpaceAsDefault(main_space_);
487  VLOG(heap) << "Created main space " << main_space_;
488}
489
490void Heap::ChangeAllocator(AllocatorType allocator) {
491  if (current_allocator_ != allocator) {
492    // These two allocators are only used internally and don't have any entrypoints.
493    CHECK_NE(allocator, kAllocatorTypeLOS);
494    CHECK_NE(allocator, kAllocatorTypeNonMoving);
495    current_allocator_ = allocator;
496    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
497    SetQuickAllocEntryPointsAllocator(current_allocator_);
498    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
499  }
500}
501
502void Heap::DisableCompaction() {
503  if (IsMovingGc(foreground_collector_type_)) {
504    foreground_collector_type_  = kCollectorTypeCMS;
505  }
506  if (IsMovingGc(background_collector_type_)) {
507    background_collector_type_ = foreground_collector_type_;
508  }
509  TransitionCollector(foreground_collector_type_);
510}
511
512std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
513  if (!IsValidContinuousSpaceObjectAddress(klass)) {
514    return StringPrintf("<non heap address klass %p>", klass);
515  }
516  mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
517  if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
518    std::string result("[");
519    result += SafeGetClassDescriptor(component_type);
520    return result;
521  } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
522    return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
523  } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
524    return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
525  } else {
526    mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
527    if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
528      return StringPrintf("<non heap address dex_cache %p>", dex_cache);
529    }
530    const DexFile* dex_file = dex_cache->GetDexFile();
531    uint16_t class_def_idx = klass->GetDexClassDefIndex();
532    if (class_def_idx == DexFile::kDexNoIndex16) {
533      return "<class def not found>";
534    }
535    const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
536    const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
537    return dex_file->GetTypeDescriptor(type_id);
538  }
539}
540
541std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
542  if (obj == nullptr) {
543    return "null";
544  }
545  mirror::Class* klass = obj->GetClass<kVerifyNone>();
546  if (klass == nullptr) {
547    return "(class=null)";
548  }
549  std::string result(SafeGetClassDescriptor(klass));
550  if (obj->IsClass()) {
551    result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
552  }
553  return result;
554}
555
556void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
557  if (obj == nullptr) {
558    stream << "(obj=null)";
559    return;
560  }
561  if (IsAligned<kObjectAlignment>(obj)) {
562    space::Space* space = nullptr;
563    // Don't use find space since it only finds spaces which actually contain objects instead of
564    // spaces which may contain objects (e.g. cleared bump pointer spaces).
565    for (const auto& cur_space : continuous_spaces_) {
566      if (cur_space->HasAddress(obj)) {
567        space = cur_space;
568        break;
569      }
570    }
571    // Unprotect all the spaces.
572    for (const auto& space : continuous_spaces_) {
573      mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
574    }
575    stream << "Object " << obj;
576    if (space != nullptr) {
577      stream << " in space " << *space;
578    }
579    mirror::Class* klass = obj->GetClass<kVerifyNone>();
580    stream << "\nclass=" << klass;
581    if (klass != nullptr) {
582      stream << " type= " << SafePrettyTypeOf(obj);
583    }
584    // Re-protect the address we faulted on.
585    mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
586  }
587}
588
589bool Heap::IsCompilingBoot() const {
590  for (const auto& space : continuous_spaces_) {
591    if (space->IsImageSpace() || space->IsZygoteSpace()) {
592      return false;
593    }
594  }
595  return true;
596}
597
598bool Heap::HasImageSpace() const {
599  for (const auto& space : continuous_spaces_) {
600    if (space->IsImageSpace()) {
601      return true;
602    }
603  }
604  return false;
605}
606
607void Heap::IncrementDisableMovingGC(Thread* self) {
608  // Need to do this holding the lock to prevent races where the GC is about to run / running when
609  // we attempt to disable it.
610  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
611  MutexLock mu(self, *gc_complete_lock_);
612  ++disable_moving_gc_count_;
613  if (IsMovingGc(collector_type_running_)) {
614    WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
615  }
616}
617
618void Heap::DecrementDisableMovingGC(Thread* self) {
619  MutexLock mu(self, *gc_complete_lock_);
620  CHECK_GE(disable_moving_gc_count_, 0U);
621  --disable_moving_gc_count_;
622}
623
624void Heap::UpdateProcessState(ProcessState process_state) {
625  if (process_state_ != process_state) {
626    process_state_ = process_state;
627    for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
628      // Start at index 1 to avoid "is always false" warning.
629      // Have iteration 1 always transition the collector.
630      TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
631                          ? foreground_collector_type_ : background_collector_type_);
632      usleep(kCollectorTransitionStressWait);
633    }
634    if (process_state_ == kProcessStateJankPerceptible) {
635      // Transition back to foreground right away to prevent jank.
636      RequestCollectorTransition(foreground_collector_type_, 0);
637    } else {
638      // Don't delay for debug builds since we may want to stress test the GC.
639      // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
640      // special handling which does a homogenous space compaction once but then doesn't transition
641      // the collector.
642      RequestCollectorTransition(background_collector_type_,
643                                 kIsDebugBuild ? 0 : kCollectorTransitionWait);
644    }
645  }
646}
647
648void Heap::CreateThreadPool() {
649  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
650  if (num_threads != 0) {
651    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
652  }
653}
654
655void Heap::VisitObjects(ObjectCallback callback, void* arg) {
656  Thread* self = Thread::Current();
657  // GCs can move objects, so don't allow this.
658  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
659  if (bump_pointer_space_ != nullptr) {
660    // Visit objects in bump pointer space.
661    bump_pointer_space_->Walk(callback, arg);
662  }
663  // TODO: Switch to standard begin and end to use ranged a based loop.
664  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
665      it < end; ++it) {
666    mirror::Object* obj = *it;
667    if (obj != nullptr && obj->GetClass() != nullptr) {
668      // Avoid the race condition caused by the object not yet being written into the allocation
669      // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
670      // there can be nulls on the allocation stack.
671      callback(obj, arg);
672    }
673  }
674  GetLiveBitmap()->Walk(callback, arg);
675  self->EndAssertNoThreadSuspension(old_cause);
676}
677
678void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
679  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
680  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
681  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
682  // TODO: Generalize this to n bitmaps?
683  if (space1 == nullptr) {
684    DCHECK(space2 != nullptr);
685    space1 = space2;
686  }
687  if (space2 == nullptr) {
688    DCHECK(space1 != nullptr);
689    space2 = space1;
690  }
691  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
692                 large_object_space_->GetLiveBitmap(), stack);
693}
694
695void Heap::DeleteThreadPool() {
696  thread_pool_.reset(nullptr);
697}
698
699void Heap::AddSpace(space::Space* space) {
700  CHECK(space != nullptr);
701  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
702  if (space->IsContinuousSpace()) {
703    DCHECK(!space->IsDiscontinuousSpace());
704    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
705    // Continuous spaces don't necessarily have bitmaps.
706    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
707    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
708    if (live_bitmap != nullptr) {
709      DCHECK(mark_bitmap != nullptr);
710      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
711      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
712    }
713    continuous_spaces_.push_back(continuous_space);
714    // Ensure that spaces remain sorted in increasing order of start address.
715    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
716              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
717      return a->Begin() < b->Begin();
718    });
719  } else {
720    DCHECK(space->IsDiscontinuousSpace());
721    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
722    live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
723    mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
724    discontinuous_spaces_.push_back(discontinuous_space);
725  }
726  if (space->IsAllocSpace()) {
727    alloc_spaces_.push_back(space->AsAllocSpace());
728  }
729}
730
731void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
732  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
733  if (continuous_space->IsDlMallocSpace()) {
734    dlmalloc_space_ = continuous_space->AsDlMallocSpace();
735  } else if (continuous_space->IsRosAllocSpace()) {
736    rosalloc_space_ = continuous_space->AsRosAllocSpace();
737  }
738}
739
740void Heap::RemoveSpace(space::Space* space) {
741  DCHECK(space != nullptr);
742  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
743  if (space->IsContinuousSpace()) {
744    DCHECK(!space->IsDiscontinuousSpace());
745    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
746    // Continuous spaces don't necessarily have bitmaps.
747    accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
748    accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
749    if (live_bitmap != nullptr) {
750      DCHECK(mark_bitmap != nullptr);
751      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
752      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
753    }
754    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
755    DCHECK(it != continuous_spaces_.end());
756    continuous_spaces_.erase(it);
757  } else {
758    DCHECK(space->IsDiscontinuousSpace());
759    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
760    live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
761    mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
762    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
763                        discontinuous_space);
764    DCHECK(it != discontinuous_spaces_.end());
765    discontinuous_spaces_.erase(it);
766  }
767  if (space->IsAllocSpace()) {
768    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
769    DCHECK(it != alloc_spaces_.end());
770    alloc_spaces_.erase(it);
771  }
772}
773
774void Heap::RegisterGCAllocation(size_t bytes) {
775  if (this != nullptr) {
776    gc_memory_overhead_.FetchAndAddSequentiallyConsistent(bytes);
777  }
778}
779
780void Heap::RegisterGCDeAllocation(size_t bytes) {
781  if (this != nullptr) {
782    gc_memory_overhead_.FetchAndSubSequentiallyConsistent(bytes);
783  }
784}
785
786void Heap::DumpGcPerformanceInfo(std::ostream& os) {
787  // Dump cumulative timings.
788  os << "Dumping cumulative Gc timings\n";
789  uint64_t total_duration = 0;
790  // Dump cumulative loggers for each GC type.
791  uint64_t total_paused_time = 0;
792  for (auto& collector : garbage_collectors_) {
793    const CumulativeLogger& logger = collector->GetCumulativeTimings();
794    const size_t iterations = logger.GetIterations();
795    const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
796    if (iterations != 0 && pause_histogram.SampleSize() != 0) {
797      os << ConstDumpable<CumulativeLogger>(logger);
798      const uint64_t total_ns = logger.GetTotalNs();
799      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
800      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
801      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
802      const uint64_t freed_objects = collector->GetTotalFreedObjects();
803      Histogram<uint64_t>::CumulativeData cumulative_data;
804      pause_histogram.CreateHistogram(&cumulative_data);
805      pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
806      os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
807         << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
808         << collector->GetName() << " freed: " << freed_objects
809         << " objects with total size " << PrettySize(freed_bytes) << "\n"
810         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
811         << PrettySize(freed_bytes / seconds) << "/s\n";
812      total_duration += total_ns;
813      total_paused_time += total_pause_ns;
814    }
815    collector->ResetMeasurements();
816  }
817  uint64_t allocation_time =
818      static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
819  if (total_duration != 0) {
820    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
821    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
822    os << "Mean GC size throughput: "
823       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
824    os << "Mean GC object throughput: "
825       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
826  }
827  size_t total_objects_allocated = GetObjectsAllocatedEver();
828  os << "Total number of allocations: " << total_objects_allocated << "\n";
829  size_t total_bytes_allocated = GetBytesAllocatedEver();
830  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
831  if (kMeasureAllocationTime) {
832    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
833    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
834       << "\n";
835  }
836  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
837  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
838  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_.LoadRelaxed();
839  BaseMutex::DumpAll(os);
840}
841
842Heap::~Heap() {
843  VLOG(heap) << "Starting ~Heap()";
844  STLDeleteElements(&garbage_collectors_);
845  // If we don't reset then the mark stack complains in its destructor.
846  allocation_stack_->Reset();
847  live_stack_->Reset();
848  STLDeleteValues(&mod_union_tables_);
849  STLDeleteValues(&remembered_sets_);
850  STLDeleteElements(&continuous_spaces_);
851  STLDeleteElements(&discontinuous_spaces_);
852  delete gc_complete_lock_;
853  delete heap_trim_request_lock_;
854  VLOG(heap) << "Finished ~Heap()";
855}
856
857space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
858                                                            bool fail_ok) const {
859  for (const auto& space : continuous_spaces_) {
860    if (space->Contains(obj)) {
861      return space;
862    }
863  }
864  if (!fail_ok) {
865    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
866  }
867  return NULL;
868}
869
870space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
871                                                                  bool fail_ok) const {
872  for (const auto& space : discontinuous_spaces_) {
873    if (space->Contains(obj)) {
874      return space;
875    }
876  }
877  if (!fail_ok) {
878    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
879  }
880  return NULL;
881}
882
883space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
884  space::Space* result = FindContinuousSpaceFromObject(obj, true);
885  if (result != NULL) {
886    return result;
887  }
888  return FindDiscontinuousSpaceFromObject(obj, true);
889}
890
891space::ImageSpace* Heap::GetImageSpace() const {
892  for (const auto& space : continuous_spaces_) {
893    if (space->IsImageSpace()) {
894      return space->AsImageSpace();
895    }
896  }
897  return NULL;
898}
899
900void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
901  std::ostringstream oss;
902  size_t total_bytes_free = GetFreeMemory();
903  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
904      << " free bytes";
905  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
906  if (total_bytes_free >= byte_count) {
907    space::MallocSpace* space = nullptr;
908    if (allocator_type == kAllocatorTypeNonMoving) {
909      space = non_moving_space_;
910    } else if (allocator_type == kAllocatorTypeRosAlloc ||
911               allocator_type == kAllocatorTypeDlMalloc) {
912      space = main_space_;
913    }
914    if (space != nullptr) {
915      space->LogFragmentationAllocFailure(oss, byte_count);
916    }
917  }
918  self->ThrowOutOfMemoryError(oss.str().c_str());
919}
920
921void Heap::DoPendingTransitionOrTrim() {
922  Thread* self = Thread::Current();
923  CollectorType desired_collector_type;
924  // Wait until we reach the desired transition time.
925  while (true) {
926    uint64_t wait_time;
927    {
928      MutexLock mu(self, *heap_trim_request_lock_);
929      desired_collector_type = desired_collector_type_;
930      uint64_t current_time = NanoTime();
931      if (current_time >= heap_transition_or_trim_target_time_) {
932        break;
933      }
934      wait_time = heap_transition_or_trim_target_time_ - current_time;
935    }
936    ScopedThreadStateChange tsc(self, kSleeping);
937    usleep(wait_time / 1000);  // Usleep takes microseconds.
938  }
939  // Launch homogeneous space compaction if it is desired.
940  if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
941    if (!CareAboutPauseTimes()) {
942      PerformHomogeneousSpaceCompact();
943    }
944    // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
945    desired_collector_type = collector_type_;
946    return;
947  }
948  // Transition the collector if the desired collector type is not the same as the current
949  // collector type.
950  TransitionCollector(desired_collector_type);
951  if (!CareAboutPauseTimes()) {
952    // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
953    // about pauses.
954    Runtime* runtime = Runtime::Current();
955    runtime->GetThreadList()->SuspendAll();
956    uint64_t start_time = NanoTime();
957    size_t count = runtime->GetMonitorList()->DeflateMonitors();
958    VLOG(heap) << "Deflating " << count << " monitors took "
959        << PrettyDuration(NanoTime() - start_time);
960    runtime->GetThreadList()->ResumeAll();
961  }
962  // Do a heap trim if it is needed.
963  Trim();
964}
965
966void Heap::Trim() {
967  Thread* self = Thread::Current();
968  {
969    MutexLock mu(self, *heap_trim_request_lock_);
970    if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
971      return;
972    }
973    last_trim_time_ = NanoTime();
974    heap_trim_request_pending_ = false;
975  }
976  {
977    // Need to do this before acquiring the locks since we don't want to get suspended while
978    // holding any locks.
979    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
980    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
981    // trimming.
982    MutexLock mu(self, *gc_complete_lock_);
983    // Ensure there is only one GC at a time.
984    WaitForGcToCompleteLocked(kGcCauseTrim, self);
985    collector_type_running_ = kCollectorTypeHeapTrim;
986  }
987  uint64_t start_ns = NanoTime();
988  // Trim the managed spaces.
989  uint64_t total_alloc_space_allocated = 0;
990  uint64_t total_alloc_space_size = 0;
991  uint64_t managed_reclaimed = 0;
992  for (const auto& space : continuous_spaces_) {
993    if (space->IsMallocSpace()) {
994      gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
995      if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
996        // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
997        // for a long period of time.
998        managed_reclaimed += malloc_space->Trim();
999      }
1000      total_alloc_space_size += malloc_space->Size();
1001    }
1002  }
1003  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
1004  if (bump_pointer_space_ != nullptr) {
1005    total_alloc_space_allocated -= bump_pointer_space_->Size();
1006  }
1007  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1008      static_cast<float>(total_alloc_space_size);
1009  uint64_t gc_heap_end_ns = NanoTime();
1010  // We never move things in the native heap, so we can finish the GC at this point.
1011  FinishGC(self, collector::kGcTypeNone);
1012  size_t native_reclaimed = 0;
1013  // Only trim the native heap if we don't care about pauses.
1014  if (!CareAboutPauseTimes()) {
1015#if defined(USE_DLMALLOC)
1016    // Trim the native heap.
1017    dlmalloc_trim(0);
1018    dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1019#elif defined(USE_JEMALLOC)
1020    // Jemalloc does it's own internal trimming.
1021#else
1022    UNIMPLEMENTED(WARNING) << "Add trimming support";
1023#endif
1024  }
1025  uint64_t end_ns = NanoTime();
1026  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1027      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1028      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1029      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1030      << "%.";
1031}
1032
1033bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1034  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1035  // taking the lock.
1036  if (obj == nullptr) {
1037    return true;
1038  }
1039  return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1040}
1041
1042bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1043  return FindContinuousSpaceFromObject(obj, true) != nullptr;
1044}
1045
1046bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1047  if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1048    return false;
1049  }
1050  for (const auto& space : continuous_spaces_) {
1051    if (space->HasAddress(obj)) {
1052      return true;
1053    }
1054  }
1055  return false;
1056}
1057
1058bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1059                              bool search_live_stack, bool sorted) {
1060  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1061    return false;
1062  }
1063  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1064    mirror::Class* klass = obj->GetClass<kVerifyNone>();
1065    if (obj == klass) {
1066      // This case happens for java.lang.Class.
1067      return true;
1068    }
1069    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1070  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1071    // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1072    // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1073    return temp_space_->Contains(obj);
1074  }
1075  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1076  space::DiscontinuousSpace* d_space = nullptr;
1077  if (c_space != nullptr) {
1078    if (c_space->GetLiveBitmap()->Test(obj)) {
1079      return true;
1080    }
1081  } else {
1082    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1083    if (d_space != nullptr) {
1084      if (d_space->GetLiveBitmap()->Test(obj)) {
1085        return true;
1086      }
1087    }
1088  }
1089  // This is covering the allocation/live stack swapping that is done without mutators suspended.
1090  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1091    if (i > 0) {
1092      NanoSleep(MsToNs(10));
1093    }
1094    if (search_allocation_stack) {
1095      if (sorted) {
1096        if (allocation_stack_->ContainsSorted(obj)) {
1097          return true;
1098        }
1099      } else if (allocation_stack_->Contains(obj)) {
1100        return true;
1101      }
1102    }
1103
1104    if (search_live_stack) {
1105      if (sorted) {
1106        if (live_stack_->ContainsSorted(obj)) {
1107          return true;
1108        }
1109      } else if (live_stack_->Contains(obj)) {
1110        return true;
1111      }
1112    }
1113  }
1114  // We need to check the bitmaps again since there is a race where we mark something as live and
1115  // then clear the stack containing it.
1116  if (c_space != nullptr) {
1117    if (c_space->GetLiveBitmap()->Test(obj)) {
1118      return true;
1119    }
1120  } else {
1121    d_space = FindDiscontinuousSpaceFromObject(obj, true);
1122    if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1123      return true;
1124    }
1125  }
1126  return false;
1127}
1128
1129std::string Heap::DumpSpaces() const {
1130  std::ostringstream oss;
1131  DumpSpaces(oss);
1132  return oss.str();
1133}
1134
1135void Heap::DumpSpaces(std::ostream& stream) const {
1136  for (const auto& space : continuous_spaces_) {
1137    accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1138    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1139    stream << space << " " << *space << "\n";
1140    if (live_bitmap != nullptr) {
1141      stream << live_bitmap << " " << *live_bitmap << "\n";
1142    }
1143    if (mark_bitmap != nullptr) {
1144      stream << mark_bitmap << " " << *mark_bitmap << "\n";
1145    }
1146  }
1147  for (const auto& space : discontinuous_spaces_) {
1148    stream << space << " " << *space << "\n";
1149  }
1150}
1151
1152void Heap::VerifyObjectBody(mirror::Object* obj) {
1153  if (this == nullptr && verify_object_mode_ == kVerifyObjectModeDisabled) {
1154    return;
1155  }
1156  // Ignore early dawn of the universe verifications.
1157  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1158    return;
1159  }
1160  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1161  mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1162  CHECK(c != nullptr) << "Null class in object " << obj;
1163  CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1164  CHECK(VerifyClassClass(c));
1165
1166  if (verify_object_mode_ > kVerifyObjectModeFast) {
1167    // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1168    CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1169  }
1170}
1171
1172void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1173  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1174}
1175
1176void Heap::VerifyHeap() {
1177  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1178  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1179}
1180
1181void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1182  // Use signed comparison since freed bytes can be negative when background compaction foreground
1183  // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1184  // free list backed space typically increasing memory footprint due to padding and binning.
1185  DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1186  // Note: This relies on 2s complement for handling negative freed_bytes.
1187  num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1188  if (Runtime::Current()->HasStatsEnabled()) {
1189    RuntimeStats* thread_stats = Thread::Current()->GetStats();
1190    thread_stats->freed_objects += freed_objects;
1191    thread_stats->freed_bytes += freed_bytes;
1192    // TODO: Do this concurrently.
1193    RuntimeStats* global_stats = Runtime::Current()->GetStats();
1194    global_stats->freed_objects += freed_objects;
1195    global_stats->freed_bytes += freed_bytes;
1196  }
1197}
1198
1199space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1200  for (const auto& space : continuous_spaces_) {
1201    if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1202      if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1203        return space->AsContinuousSpace()->AsRosAllocSpace();
1204      }
1205    }
1206  }
1207  return nullptr;
1208}
1209
1210mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1211                                             size_t alloc_size, size_t* bytes_allocated,
1212                                             size_t* usable_size,
1213                                             mirror::Class** klass) {
1214  bool was_default_allocator = allocator == GetCurrentAllocator();
1215  DCHECK(klass != nullptr);
1216  StackHandleScope<1> hs(self);
1217  HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1218  klass = nullptr;  // Invalidate for safety.
1219  // The allocation failed. If the GC is running, block until it completes, and then retry the
1220  // allocation.
1221  collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1222  if (last_gc != collector::kGcTypeNone) {
1223    // If we were the default allocator but the allocator changed while we were suspended,
1224    // abort the allocation.
1225    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1226      return nullptr;
1227    }
1228    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1229    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1230                                                     usable_size);
1231    if (ptr != nullptr) {
1232      return ptr;
1233    }
1234  }
1235
1236  collector::GcType tried_type = next_gc_type_;
1237  const bool gc_ran =
1238      CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1239  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1240    return nullptr;
1241  }
1242  if (gc_ran) {
1243    mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1244                                                     usable_size);
1245    if (ptr != nullptr) {
1246      return ptr;
1247    }
1248  }
1249
1250  // Loop through our different Gc types and try to Gc until we get enough free memory.
1251  for (collector::GcType gc_type : gc_plan_) {
1252    if (gc_type == tried_type) {
1253      continue;
1254    }
1255    // Attempt to run the collector, if we succeed, re-try the allocation.
1256    const bool gc_ran =
1257        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1258    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1259      return nullptr;
1260    }
1261    if (gc_ran) {
1262      // Did we free sufficient memory for the allocation to succeed?
1263      mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1264                                                       usable_size);
1265      if (ptr != nullptr) {
1266        return ptr;
1267      }
1268    }
1269  }
1270  // Allocations have failed after GCs;  this is an exceptional state.
1271  // Try harder, growing the heap if necessary.
1272  mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1273                                                  usable_size);
1274  if (ptr != nullptr) {
1275    return ptr;
1276  }
1277  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1278  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1279  // VM spec requires that all SoftReferences have been collected and cleared before throwing
1280  // OOME.
1281  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1282           << " allocation";
1283  // TODO: Run finalization, but this may cause more allocations to occur.
1284  // We don't need a WaitForGcToComplete here either.
1285  DCHECK(!gc_plan_.empty());
1286  CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1287  if (was_default_allocator && allocator != GetCurrentAllocator()) {
1288    return nullptr;
1289  }
1290  ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1291  if (ptr == nullptr && use_homogeneous_space_compaction_for_oom_) {
1292    const uint64_t current_time = NanoTime();
1293    if ((allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) &&
1294        current_time - last_time_homogeneous_space_compaction_by_oom_ >
1295        min_interval_homogeneous_space_compaction_by_oom_) {
1296      last_time_homogeneous_space_compaction_by_oom_ = current_time;
1297      HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1298      switch (result) {
1299        case HomogeneousSpaceCompactResult::kSuccess:
1300          // If the allocation succeeded, we delayed an oom.
1301          ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
1302          if (ptr != nullptr) {
1303            count_delayed_oom_++;
1304          }
1305          break;
1306        case HomogeneousSpaceCompactResult::kErrorReject:
1307          // Reject due to disabled moving GC.
1308          break;
1309        case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1310          // Throw OOM by default.
1311          break;
1312        default: {
1313          LOG(FATAL) << "Unimplemented homogeneous space compaction result " << static_cast<size_t>(result);
1314        }
1315      }
1316      // Always print that we ran homogeneous space compation since this can cause jank.
1317      VLOG(heap) << "Ran heap homogeneous space compaction, "
1318                << " requested defragmentation "
1319                << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1320                << " performed defragmentation "
1321                << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1322                << " ignored homogeneous space compaction "
1323                << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1324                << " delayed count = "
1325                << count_delayed_oom_.LoadSequentiallyConsistent();
1326    }
1327  }
1328  // If the allocation hasn't succeeded by this point, throw an OOM error.
1329  if (ptr == nullptr) {
1330    ThrowOutOfMemoryError(self, alloc_size, allocator);
1331  }
1332  return ptr;
1333}
1334
1335void Heap::SetTargetHeapUtilization(float target) {
1336  DCHECK_GT(target, 0.0f);  // asserted in Java code
1337  DCHECK_LT(target, 1.0f);
1338  target_utilization_ = target;
1339}
1340
1341size_t Heap::GetObjectsAllocated() const {
1342  size_t total = 0;
1343  for (space::AllocSpace* space : alloc_spaces_) {
1344    total += space->GetObjectsAllocated();
1345  }
1346  return total;
1347}
1348
1349size_t Heap::GetObjectsAllocatedEver() const {
1350  return GetObjectsFreedEver() + GetObjectsAllocated();
1351}
1352
1353size_t Heap::GetBytesAllocatedEver() const {
1354  return GetBytesFreedEver() + GetBytesAllocated();
1355}
1356
1357class InstanceCounter {
1358 public:
1359  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1360      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1361      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1362  }
1363  static void Callback(mirror::Object* obj, void* arg)
1364      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1365    InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1366    mirror::Class* instance_class = obj->GetClass();
1367    CHECK(instance_class != nullptr);
1368    for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1369      if (instance_counter->use_is_assignable_from_) {
1370        if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1371          ++instance_counter->counts_[i];
1372        }
1373      } else if (instance_class == instance_counter->classes_[i]) {
1374        ++instance_counter->counts_[i];
1375      }
1376    }
1377  }
1378
1379 private:
1380  const std::vector<mirror::Class*>& classes_;
1381  bool use_is_assignable_from_;
1382  uint64_t* const counts_;
1383  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1384};
1385
1386void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1387                          uint64_t* counts) {
1388  // Can't do any GC in this function since this may move classes.
1389  Thread* self = Thread::Current();
1390  auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
1391  InstanceCounter counter(classes, use_is_assignable_from, counts);
1392  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1393  VisitObjects(InstanceCounter::Callback, &counter);
1394  self->EndAssertNoThreadSuspension(old_cause);
1395}
1396
1397class InstanceCollector {
1398 public:
1399  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1400      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1401      : class_(c), max_count_(max_count), instances_(instances) {
1402  }
1403  static void Callback(mirror::Object* obj, void* arg)
1404      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1405    DCHECK(arg != nullptr);
1406    InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1407    mirror::Class* instance_class = obj->GetClass();
1408    if (instance_class == instance_collector->class_) {
1409      if (instance_collector->max_count_ == 0 ||
1410          instance_collector->instances_.size() < instance_collector->max_count_) {
1411        instance_collector->instances_.push_back(obj);
1412      }
1413    }
1414  }
1415
1416 private:
1417  mirror::Class* class_;
1418  uint32_t max_count_;
1419  std::vector<mirror::Object*>& instances_;
1420  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1421};
1422
1423void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1424                        std::vector<mirror::Object*>& instances) {
1425  // Can't do any GC in this function since this may move classes.
1426  Thread* self = Thread::Current();
1427  auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
1428  InstanceCollector collector(c, max_count, instances);
1429  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1430  VisitObjects(&InstanceCollector::Callback, &collector);
1431  self->EndAssertNoThreadSuspension(old_cause);
1432}
1433
1434class ReferringObjectsFinder {
1435 public:
1436  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1437                         std::vector<mirror::Object*>& referring_objects)
1438      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1439      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1440  }
1441
1442  static void Callback(mirror::Object* obj, void* arg)
1443      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1444    reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1445  }
1446
1447  // For bitmap Visit.
1448  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1449  // annotalysis on visitors.
1450  void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1451    o->VisitReferences<true>(*this, VoidFunctor());
1452  }
1453
1454  // For Object::VisitReferences.
1455  void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1456      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1457    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1458    if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1459      referring_objects_.push_back(obj);
1460    }
1461  }
1462
1463 private:
1464  mirror::Object* object_;
1465  uint32_t max_count_;
1466  std::vector<mirror::Object*>& referring_objects_;
1467  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1468};
1469
1470void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1471                               std::vector<mirror::Object*>& referring_objects) {
1472  // Can't do any GC in this function since this may move the object o.
1473  Thread* self = Thread::Current();
1474  auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
1475  ReferringObjectsFinder finder(o, max_count, referring_objects);
1476  WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1477  VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1478  self->EndAssertNoThreadSuspension(old_cause);
1479}
1480
1481void Heap::CollectGarbage(bool clear_soft_references) {
1482  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1483  // last GC will not have necessarily been cleared.
1484  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1485}
1486
1487HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1488  Thread* self = Thread::Current();
1489  // Inc requested homogeneous space compaction.
1490  count_requested_homogeneous_space_compaction_++;
1491  // Store performed homogeneous space compaction at a new request arrival.
1492  ThreadList* tl = Runtime::Current()->GetThreadList();
1493  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1494  Locks::mutator_lock_->AssertNotHeld(self);
1495  {
1496    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1497    MutexLock mu(self, *gc_complete_lock_);
1498    // Ensure there is only one GC at a time.
1499    WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1500    // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1501    // is non zero.
1502    // If the collecotr type changed to something which doesn't benefit from homogeneous space compaction,
1503    // exit.
1504    if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_)) {
1505      return HomogeneousSpaceCompactResult::kErrorReject;
1506    }
1507    collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1508  }
1509  if (Runtime::Current()->IsShuttingDown(self)) {
1510    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1511    // cause objects to get finalized.
1512    FinishGC(self, collector::kGcTypeNone);
1513    return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1514  }
1515  // Suspend all threads.
1516  tl->SuspendAll();
1517  uint64_t start_time = NanoTime();
1518  // Launch compaction.
1519  space::MallocSpace* to_space = main_space_backup_;
1520  space::MallocSpace* from_space = main_space_;
1521  to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1522  const uint64_t space_size_before_compaction = from_space->Size();
1523  Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1524  // Leave as prot read so that we can still run ROSAlloc verification on this space.
1525  from_space->GetMemMap()->Protect(PROT_READ);
1526  const uint64_t space_size_after_compaction = to_space->Size();
1527  std::swap(main_space_, main_space_backup_);
1528  SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1529  // Update performed homogeneous space compaction count.
1530  count_performed_homogeneous_space_compaction_++;
1531  // Print statics log and resume all threads.
1532  uint64_t duration = NanoTime() - start_time;
1533  LOG(INFO) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1534            << PrettySize(space_size_before_compaction) << " -> "
1535            << PrettySize(space_size_after_compaction) << " compact-ratio: "
1536            << std::fixed << static_cast<double>(space_size_after_compaction) /
1537            static_cast<double>(space_size_before_compaction);
1538  tl->ResumeAll();
1539  // Finish GC.
1540  reference_processor_.EnqueueClearedReferences(self);
1541  GrowForUtilization(semi_space_collector_);
1542  FinishGC(self, collector::kGcTypeFull);
1543  return HomogeneousSpaceCompactResult::kSuccess;
1544}
1545
1546
1547void Heap::TransitionCollector(CollectorType collector_type) {
1548  if (collector_type == collector_type_) {
1549    return;
1550  }
1551  VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1552             << " -> " << static_cast<int>(collector_type);
1553  uint64_t start_time = NanoTime();
1554  uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1555  Runtime* const runtime = Runtime::Current();
1556  ThreadList* const tl = runtime->GetThreadList();
1557  Thread* const self = Thread::Current();
1558  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1559  Locks::mutator_lock_->AssertNotHeld(self);
1560  const bool copying_transition =
1561      IsMovingGc(background_collector_type_) || IsMovingGc(foreground_collector_type_);
1562  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1563  // compacting_gc_disable_count_, this should rarely occurs).
1564  for (;;) {
1565    {
1566      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1567      MutexLock mu(self, *gc_complete_lock_);
1568      // Ensure there is only one GC at a time.
1569      WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1570      // If someone else beat us to it and changed the collector before we could, exit.
1571      // This is safe to do before the suspend all since we set the collector_type_running_ before
1572      // we exit the loop. If another thread attempts to do the heap transition before we exit,
1573      // then it would get blocked on WaitForGcToCompleteLocked.
1574      if (collector_type == collector_type_) {
1575        return;
1576      }
1577      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1578      if (!copying_transition || disable_moving_gc_count_ == 0) {
1579        // TODO: Not hard code in semi-space collector?
1580        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1581        break;
1582      }
1583    }
1584    usleep(1000);
1585  }
1586  if (runtime->IsShuttingDown(self)) {
1587    // Don't allow heap transitions to happen if the runtime is shutting down since these can
1588    // cause objects to get finalized.
1589    FinishGC(self, collector::kGcTypeNone);
1590    return;
1591  }
1592  tl->SuspendAll();
1593  switch (collector_type) {
1594    case kCollectorTypeSS:
1595      // Fall-through.
1596    case kCollectorTypeGSS: {
1597      if (!IsMovingGc(collector_type_)) {
1598        // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1599        // pointer space last transition it will be protected.
1600        bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1601        Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1602        // Remove the main space so that we don't try to trim it, this doens't work for debug
1603        // builds since RosAlloc attempts to read the magic number from a protected page.
1604        RemoveSpace(main_space_);
1605      }
1606      break;
1607    }
1608    case kCollectorTypeMS:
1609      // Fall through.
1610    case kCollectorTypeCMS: {
1611      if (IsMovingGc(collector_type_)) {
1612        // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1613        AddSpace(main_space_);
1614        main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1615        Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1616      }
1617      break;
1618    }
1619    default: {
1620      LOG(FATAL) << "Attempted to transition to invalid collector type "
1621                 << static_cast<size_t>(collector_type);
1622      break;
1623    }
1624  }
1625  ChangeCollector(collector_type);
1626  tl->ResumeAll();
1627  // Can't call into java code with all threads suspended.
1628  reference_processor_.EnqueueClearedReferences(self);
1629  uint64_t duration = NanoTime() - start_time;
1630  GrowForUtilization(semi_space_collector_);
1631  FinishGC(self, collector::kGcTypeFull);
1632  int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1633  int32_t delta_allocated = before_allocated - after_allocated;
1634  std::string saved_str;
1635  if (delta_allocated >= 0) {
1636    saved_str = " saved at least " + PrettySize(delta_allocated);
1637  } else {
1638    saved_str = " expanded " + PrettySize(-delta_allocated);
1639  }
1640  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1641      << PrettyDuration(duration) << saved_str;
1642}
1643
1644void Heap::ChangeCollector(CollectorType collector_type) {
1645  // TODO: Only do this with all mutators suspended to avoid races.
1646  if (collector_type != collector_type_) {
1647    if (collector_type == kCollectorTypeMC) {
1648      // Don't allow mark compact unless support is compiled in.
1649      CHECK(kMarkCompactSupport);
1650    }
1651    collector_type_ = collector_type;
1652    gc_plan_.clear();
1653    switch (collector_type_) {
1654      case kCollectorTypeCC:  // Fall-through.
1655      case kCollectorTypeMC:  // Fall-through.
1656      case kCollectorTypeSS:  // Fall-through.
1657      case kCollectorTypeGSS: {
1658        gc_plan_.push_back(collector::kGcTypeFull);
1659        if (use_tlab_) {
1660          ChangeAllocator(kAllocatorTypeTLAB);
1661        } else {
1662          ChangeAllocator(kAllocatorTypeBumpPointer);
1663        }
1664        break;
1665      }
1666      case kCollectorTypeMS: {
1667        gc_plan_.push_back(collector::kGcTypeSticky);
1668        gc_plan_.push_back(collector::kGcTypePartial);
1669        gc_plan_.push_back(collector::kGcTypeFull);
1670        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1671        break;
1672      }
1673      case kCollectorTypeCMS: {
1674        gc_plan_.push_back(collector::kGcTypeSticky);
1675        gc_plan_.push_back(collector::kGcTypePartial);
1676        gc_plan_.push_back(collector::kGcTypeFull);
1677        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1678        break;
1679      }
1680      default: {
1681        LOG(FATAL) << "Unimplemented";
1682      }
1683    }
1684    if (IsGcConcurrent()) {
1685      concurrent_start_bytes_ =
1686          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1687    } else {
1688      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1689    }
1690  }
1691}
1692
1693// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1694class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
1695 public:
1696  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
1697      bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
1698  }
1699
1700  void BuildBins(space::ContinuousSpace* space) {
1701    bin_live_bitmap_ = space->GetLiveBitmap();
1702    bin_mark_bitmap_ = space->GetMarkBitmap();
1703    BinContext context;
1704    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1705    context.collector_ = this;
1706    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1707    // Note: This requires traversing the space in increasing order of object addresses.
1708    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1709    // Add the last bin which spans after the last object to the end of the space.
1710    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1711  }
1712
1713 private:
1714  struct BinContext {
1715    uintptr_t prev_;  // The end of the previous object.
1716    ZygoteCompactingCollector* collector_;
1717  };
1718  // Maps from bin sizes to locations.
1719  std::multimap<size_t, uintptr_t> bins_;
1720  // Live bitmap of the space which contains the bins.
1721  accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
1722  // Mark bitmap of the space which contains the bins.
1723  accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
1724
1725  static void Callback(mirror::Object* obj, void* arg)
1726      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1727    DCHECK(arg != nullptr);
1728    BinContext* context = reinterpret_cast<BinContext*>(arg);
1729    ZygoteCompactingCollector* collector = context->collector_;
1730    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1731    size_t bin_size = object_addr - context->prev_;
1732    // Add the bin consisting of the end of the previous object to the start of the current object.
1733    collector->AddBin(bin_size, context->prev_);
1734    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1735  }
1736
1737  void AddBin(size_t size, uintptr_t position) {
1738    if (size != 0) {
1739      bins_.insert(std::make_pair(size, position));
1740    }
1741  }
1742
1743  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1744    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1745    // allocator.
1746    return false;
1747  }
1748
1749  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1750      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1751    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1752    mirror::Object* forward_address;
1753    // Find the smallest bin which we can move obj in.
1754    auto it = bins_.lower_bound(object_size);
1755    if (it == bins_.end()) {
1756      // No available space in the bins, place it in the target space instead (grows the zygote
1757      // space).
1758      size_t bytes_allocated;
1759      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
1760      if (to_space_live_bitmap_ != nullptr) {
1761        to_space_live_bitmap_->Set(forward_address);
1762      } else {
1763        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1764        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1765      }
1766    } else {
1767      size_t size = it->first;
1768      uintptr_t pos = it->second;
1769      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1770      forward_address = reinterpret_cast<mirror::Object*>(pos);
1771      // Set the live and mark bits so that sweeping system weaks works properly.
1772      bin_live_bitmap_->Set(forward_address);
1773      bin_mark_bitmap_->Set(forward_address);
1774      DCHECK_GE(size, object_size);
1775      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1776    }
1777    // Copy the object over to its new location.
1778    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1779    if (kUseBakerOrBrooksReadBarrier) {
1780      obj->AssertReadBarrierPointer();
1781      if (kUseBrooksReadBarrier) {
1782        DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
1783        forward_address->SetReadBarrierPointer(forward_address);
1784      }
1785      forward_address->AssertReadBarrierPointer();
1786    }
1787    return forward_address;
1788  }
1789};
1790
1791void Heap::UnBindBitmaps() {
1792  TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
1793  for (const auto& space : GetContinuousSpaces()) {
1794    if (space->IsContinuousMemMapAllocSpace()) {
1795      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1796      if (alloc_space->HasBoundBitmaps()) {
1797        alloc_space->UnBindBitmaps();
1798      }
1799    }
1800  }
1801}
1802
1803void Heap::PreZygoteFork() {
1804  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1805  Thread* self = Thread::Current();
1806  MutexLock mu(self, zygote_creation_lock_);
1807  // Try to see if we have any Zygote spaces.
1808  if (have_zygote_space_) {
1809    return;
1810  }
1811  VLOG(heap) << "Starting PreZygoteFork";
1812  // Trim the pages at the end of the non moving space.
1813  non_moving_space_->Trim();
1814  // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
1815  // there.
1816  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1817  // Change the collector to the post zygote one.
1818  if (kCompactZygote) {
1819    DCHECK(semi_space_collector_ != nullptr);
1820    // Temporarily disable rosalloc verification because the zygote
1821    // compaction will mess up the rosalloc internal metadata.
1822    ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
1823    ZygoteCompactingCollector zygote_collector(this);
1824    zygote_collector.BuildBins(non_moving_space_);
1825    // Create a new bump pointer space which we will compact into.
1826    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1827                                         non_moving_space_->Limit());
1828    // Compact the bump pointer space to a new zygote bump pointer space.
1829    bool reset_main_space = false;
1830    if (IsMovingGc(collector_type_)) {
1831      zygote_collector.SetFromSpace(bump_pointer_space_);
1832    } else {
1833      CHECK(main_space_ != nullptr);
1834      // Copy from the main space.
1835      zygote_collector.SetFromSpace(main_space_);
1836      reset_main_space = true;
1837    }
1838    zygote_collector.SetToSpace(&target_space);
1839    zygote_collector.SetSwapSemiSpaces(false);
1840    zygote_collector.Run(kGcCauseCollectorTransition, false);
1841    if (reset_main_space) {
1842      main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1843      madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
1844      MemMap* mem_map = main_space_->ReleaseMemMap();
1845      RemoveSpace(main_space_);
1846      space::Space* old_main_space = main_space_;
1847      CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
1848      delete old_main_space;
1849      AddSpace(main_space_);
1850    } else {
1851      bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1852    }
1853    if (temp_space_ != nullptr) {
1854      CHECK(temp_space_->IsEmpty());
1855    }
1856    total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
1857    total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
1858    // Update the end and write out image.
1859    non_moving_space_->SetEnd(target_space.End());
1860    non_moving_space_->SetLimit(target_space.Limit());
1861    VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
1862  }
1863  ChangeCollector(foreground_collector_type_);
1864  // Save the old space so that we can remove it after we complete creating the zygote space.
1865  space::MallocSpace* old_alloc_space = non_moving_space_;
1866  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1867  // the remaining available space.
1868  // Remove the old space before creating the zygote space since creating the zygote space sets
1869  // the old alloc space's bitmaps to nullptr.
1870  RemoveSpace(old_alloc_space);
1871  if (collector::SemiSpace::kUseRememberedSet) {
1872    // Sanity bound check.
1873    FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
1874    // Remove the remembered set for the now zygote space (the old
1875    // non-moving space). Note now that we have compacted objects into
1876    // the zygote space, the data in the remembered set is no longer
1877    // needed. The zygote space will instead have a mod-union table
1878    // from this point on.
1879    RemoveRememberedSet(old_alloc_space);
1880  }
1881  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1882                                                                        low_memory_mode_,
1883                                                                        &non_moving_space_);
1884  delete old_alloc_space;
1885  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1886  AddSpace(zygote_space);
1887  non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
1888  AddSpace(non_moving_space_);
1889  have_zygote_space_ = true;
1890  // Enable large object space allocations.
1891  large_object_threshold_ = kDefaultLargeObjectThreshold;
1892  // Create the zygote space mod union table.
1893  accounting::ModUnionTable* mod_union_table =
1894      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1895  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1896  AddModUnionTable(mod_union_table);
1897  if (collector::SemiSpace::kUseRememberedSet) {
1898    // Add a new remembered set for the post-zygote non-moving space.
1899    accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
1900        new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
1901                                      non_moving_space_);
1902    CHECK(post_zygote_non_moving_space_rem_set != nullptr)
1903        << "Failed to create post-zygote non-moving space remembered set";
1904    AddRememberedSet(post_zygote_non_moving_space_rem_set);
1905  }
1906}
1907
1908void Heap::FlushAllocStack() {
1909  MarkAllocStackAsLive(allocation_stack_.get());
1910  allocation_stack_->Reset();
1911}
1912
1913void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
1914                          accounting::ContinuousSpaceBitmap* bitmap2,
1915                          accounting::LargeObjectBitmap* large_objects,
1916                          accounting::ObjectStack* stack) {
1917  DCHECK(bitmap1 != nullptr);
1918  DCHECK(bitmap2 != nullptr);
1919  mirror::Object** limit = stack->End();
1920  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1921    const mirror::Object* obj = *it;
1922    if (!kUseThreadLocalAllocationStack || obj != nullptr) {
1923      if (bitmap1->HasAddress(obj)) {
1924        bitmap1->Set(obj);
1925      } else if (bitmap2->HasAddress(obj)) {
1926        bitmap2->Set(obj);
1927      } else {
1928        large_objects->Set(obj);
1929      }
1930    }
1931  }
1932}
1933
1934void Heap::SwapSemiSpaces() {
1935  CHECK(bump_pointer_space_ != nullptr);
1936  CHECK(temp_space_ != nullptr);
1937  std::swap(bump_pointer_space_, temp_space_);
1938}
1939
1940void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1941                   space::ContinuousMemMapAllocSpace* source_space,
1942                   GcCause gc_cause) {
1943  CHECK(kMovingCollector);
1944  if (target_space != source_space) {
1945    // Don't swap spaces since this isn't a typical semi space collection.
1946    semi_space_collector_->SetSwapSemiSpaces(false);
1947    semi_space_collector_->SetFromSpace(source_space);
1948    semi_space_collector_->SetToSpace(target_space);
1949    semi_space_collector_->Run(gc_cause, false);
1950  } else {
1951    CHECK(target_space->IsBumpPointerSpace())
1952        << "In-place compaction is only supported for bump pointer spaces";
1953    mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
1954    mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
1955  }
1956}
1957
1958collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1959                                               bool clear_soft_references) {
1960  Thread* self = Thread::Current();
1961  Runtime* runtime = Runtime::Current();
1962  // If the heap can't run the GC, silently fail and return that no GC was run.
1963  switch (gc_type) {
1964    case collector::kGcTypePartial: {
1965      if (!have_zygote_space_) {
1966        return collector::kGcTypeNone;
1967      }
1968      break;
1969    }
1970    default: {
1971      // Other GC types don't have any special cases which makes them not runnable. The main case
1972      // here is full GC.
1973    }
1974  }
1975  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1976  Locks::mutator_lock_->AssertNotHeld(self);
1977  if (self->IsHandlingStackOverflow()) {
1978    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1979  }
1980  bool compacting_gc;
1981  {
1982    gc_complete_lock_->AssertNotHeld(self);
1983    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1984    MutexLock mu(self, *gc_complete_lock_);
1985    // Ensure there is only one GC at a time.
1986    WaitForGcToCompleteLocked(gc_cause, self);
1987    compacting_gc = IsMovingGc(collector_type_);
1988    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1989    if (compacting_gc && disable_moving_gc_count_ != 0) {
1990      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1991      return collector::kGcTypeNone;
1992    }
1993    collector_type_running_ = collector_type_;
1994  }
1995
1996  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1997    ++runtime->GetStats()->gc_for_alloc_count;
1998    ++self->GetStats()->gc_for_alloc_count;
1999  }
2000  uint64_t gc_start_time_ns = NanoTime();
2001  uint64_t gc_start_size = GetBytesAllocated();
2002  // Approximate allocation rate in bytes / second.
2003  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
2004  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
2005  if (LIKELY(ms_delta != 0)) {
2006    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
2007    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
2008  }
2009
2010  DCHECK_LT(gc_type, collector::kGcTypeMax);
2011  DCHECK_NE(gc_type, collector::kGcTypeNone);
2012
2013  collector::GarbageCollector* collector = nullptr;
2014  // TODO: Clean this up.
2015  if (compacting_gc) {
2016    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2017           current_allocator_ == kAllocatorTypeTLAB);
2018    switch (collector_type_) {
2019      case kCollectorTypeSS:
2020        // Fall-through.
2021      case kCollectorTypeGSS:
2022        semi_space_collector_->SetFromSpace(bump_pointer_space_);
2023        semi_space_collector_->SetToSpace(temp_space_);
2024        semi_space_collector_->SetSwapSemiSpaces(true);
2025        collector = semi_space_collector_;
2026        break;
2027      case kCollectorTypeCC:
2028        collector = concurrent_copying_collector_;
2029        break;
2030      case kCollectorTypeMC:
2031        mark_compact_collector_->SetSpace(bump_pointer_space_);
2032        collector = mark_compact_collector_;
2033        break;
2034      default:
2035        LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2036    }
2037    if (collector != mark_compact_collector_) {
2038      temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2039      CHECK(temp_space_->IsEmpty());
2040    }
2041    gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2042  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2043      current_allocator_ == kAllocatorTypeDlMalloc) {
2044    collector = FindCollectorByGcType(gc_type);
2045  } else {
2046    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2047  }
2048  CHECK(collector != nullptr)
2049      << "Could not find garbage collector with collector_type="
2050      << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2051  collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2052  total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2053  total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2054  RequestHeapTrim();
2055  // Enqueue cleared references.
2056  reference_processor_.EnqueueClearedReferences(self);
2057  // Grow the heap so that we know when to perform the next GC.
2058  GrowForUtilization(collector);
2059  const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2060  const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2061  // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2062  // (mutator time blocked >= long_pause_log_threshold_).
2063  bool log_gc = gc_cause == kGcCauseExplicit;
2064  if (!log_gc && CareAboutPauseTimes()) {
2065    // GC for alloc pauses the allocating thread, so consider it as a pause.
2066    log_gc = duration > long_gc_log_threshold_ ||
2067        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2068    for (uint64_t pause : pause_times) {
2069      log_gc = log_gc || pause >= long_pause_log_threshold_;
2070    }
2071  }
2072  if (log_gc) {
2073    const size_t percent_free = GetPercentFree();
2074    const size_t current_heap_size = GetBytesAllocated();
2075    const size_t total_memory = GetTotalMemory();
2076    std::ostringstream pause_string;
2077    for (size_t i = 0; i < pause_times.size(); ++i) {
2078        pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2079                     << ((i != pause_times.size() - 1) ? "," : "");
2080    }
2081    LOG(INFO) << gc_cause << " " << collector->GetName()
2082              << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2083              << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2084              << current_gc_iteration_.GetFreedLargeObjects() << "("
2085              << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2086              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2087              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2088              << " total " << PrettyDuration((duration / 1000) * 1000);
2089    VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2090  }
2091  FinishGC(self, gc_type);
2092  // Inform DDMS that a GC completed.
2093  Dbg::GcDidFinish();
2094  return gc_type;
2095}
2096
2097void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2098  MutexLock mu(self, *gc_complete_lock_);
2099  collector_type_running_ = kCollectorTypeNone;
2100  if (gc_type != collector::kGcTypeNone) {
2101    last_gc_type_ = gc_type;
2102  }
2103  // Wake anyone who may have been waiting for the GC to complete.
2104  gc_complete_cond_->Broadcast(self);
2105}
2106
2107static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
2108                                     RootType /*root_type*/) {
2109  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
2110  if (*root == obj) {
2111    LOG(INFO) << "Object " << obj << " is a root";
2112  }
2113}
2114
2115class ScanVisitor {
2116 public:
2117  void operator()(const mirror::Object* obj) const {
2118    LOG(ERROR) << "Would have rescanned object " << obj;
2119  }
2120};
2121
2122// Verify a reference from an object.
2123class VerifyReferenceVisitor {
2124 public:
2125  explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2126      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2127      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2128
2129  size_t GetFailureCount() const {
2130    return fail_count_->LoadSequentiallyConsistent();
2131  }
2132
2133  void operator()(mirror::Class* klass, mirror::Reference* ref) const
2134      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2135    if (verify_referent_) {
2136      VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2137    }
2138  }
2139
2140  void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2141      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2142    VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2143  }
2144
2145  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2146    return heap_->IsLiveObjectLocked(obj, true, false, true);
2147  }
2148
2149  static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
2150                                 RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2151    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
2152    if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
2153      LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
2154          << " thread_id= " << thread_id << " root_type= " << root_type;
2155    }
2156  }
2157
2158 private:
2159  // TODO: Fix the no thread safety analysis.
2160  // Returns false on failure.
2161  bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2162      NO_THREAD_SAFETY_ANALYSIS {
2163    if (ref == nullptr || IsLive(ref)) {
2164      // Verify that the reference is live.
2165      return true;
2166    }
2167    if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2168      // Print message on only on first failure to prevent spam.
2169      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2170    }
2171    if (obj != nullptr) {
2172      // Only do this part for non roots.
2173      accounting::CardTable* card_table = heap_->GetCardTable();
2174      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2175      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2176      byte* card_addr = card_table->CardFromAddr(obj);
2177      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2178                 << offset << "\n card value = " << static_cast<int>(*card_addr);
2179      if (heap_->IsValidObjectAddress(obj->GetClass())) {
2180        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2181      } else {
2182        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2183      }
2184
2185      // Attmept to find the class inside of the recently freed objects.
2186      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2187      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2188        space::MallocSpace* space = ref_space->AsMallocSpace();
2189        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2190        if (ref_class != nullptr) {
2191          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2192                     << PrettyClass(ref_class);
2193        } else {
2194          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2195        }
2196      }
2197
2198      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2199          ref->GetClass()->IsClass()) {
2200        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2201      } else {
2202        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2203                   << ") is not a valid heap address";
2204      }
2205
2206      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
2207      void* cover_begin = card_table->AddrFromCard(card_addr);
2208      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2209          accounting::CardTable::kCardSize);
2210      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2211          << "-" << cover_end;
2212      accounting::ContinuousSpaceBitmap* bitmap =
2213          heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2214
2215      if (bitmap == nullptr) {
2216        LOG(ERROR) << "Object " << obj << " has no bitmap";
2217        if (!VerifyClassClass(obj->GetClass())) {
2218          LOG(ERROR) << "Object " << obj << " failed class verification!";
2219        }
2220      } else {
2221        // Print out how the object is live.
2222        if (bitmap->Test(obj)) {
2223          LOG(ERROR) << "Object " << obj << " found in live bitmap";
2224        }
2225        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2226          LOG(ERROR) << "Object " << obj << " found in allocation stack";
2227        }
2228        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2229          LOG(ERROR) << "Object " << obj << " found in live stack";
2230        }
2231        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2232          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2233        }
2234        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2235          LOG(ERROR) << "Ref " << ref << " found in live stack";
2236        }
2237        // Attempt to see if the card table missed the reference.
2238        ScanVisitor scan_visitor;
2239        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
2240        card_table->Scan(bitmap, byte_cover_begin,
2241                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2242      }
2243
2244      // Search to see if any of the roots reference our object.
2245      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
2246      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2247
2248      // Search to see if any of the roots reference our reference.
2249      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
2250      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
2251    }
2252    return false;
2253  }
2254
2255  Heap* const heap_;
2256  Atomic<size_t>* const fail_count_;
2257  const bool verify_referent_;
2258};
2259
2260// Verify all references within an object, for use with HeapBitmap::Visit.
2261class VerifyObjectVisitor {
2262 public:
2263  explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2264      : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2265  }
2266
2267  void operator()(mirror::Object* obj) const
2268      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2269    // Note: we are verifying the references in obj but not obj itself, this is because obj must
2270    // be live or else how did we find it in the live bitmap?
2271    VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2272    // The class doesn't count as a reference but we should verify it anyways.
2273    obj->VisitReferences<true>(visitor, visitor);
2274  }
2275
2276  static void VisitCallback(mirror::Object* obj, void* arg)
2277      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2278    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2279    visitor->operator()(obj);
2280  }
2281
2282  size_t GetFailureCount() const {
2283    return fail_count_->LoadSequentiallyConsistent();
2284  }
2285
2286 private:
2287  Heap* const heap_;
2288  Atomic<size_t>* const fail_count_;
2289  const bool verify_referent_;
2290};
2291
2292void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2293  // Slow path, the allocation stack push back must have already failed.
2294  DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2295  do {
2296    // TODO: Add handle VerifyObject.
2297    StackHandleScope<1> hs(self);
2298    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2299    // Push our object into the reserve region of the allocaiton stack. This is only required due
2300    // to heap verification requiring that roots are live (either in the live bitmap or in the
2301    // allocation stack).
2302    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2303    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2304  } while (!allocation_stack_->AtomicPushBack(*obj));
2305}
2306
2307void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2308  // Slow path, the allocation stack push back must have already failed.
2309  DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2310  mirror::Object** start_address;
2311  mirror::Object** end_address;
2312  while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2313                                            &end_address)) {
2314    // TODO: Add handle VerifyObject.
2315    StackHandleScope<1> hs(self);
2316    HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2317    // Push our object into the reserve region of the allocaiton stack. This is only required due
2318    // to heap verification requiring that roots are live (either in the live bitmap or in the
2319    // allocation stack).
2320    CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2321    // Push into the reserve allocation stack.
2322    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2323  }
2324  self->SetThreadLocalAllocationStack(start_address, end_address);
2325  // Retry on the new thread-local allocation stack.
2326  CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2327}
2328
2329// Must do this with mutators suspended since we are directly accessing the allocation stacks.
2330size_t Heap::VerifyHeapReferences(bool verify_referents) {
2331  Thread* self = Thread::Current();
2332  Locks::mutator_lock_->AssertExclusiveHeld(self);
2333  // Lets sort our allocation stacks so that we can efficiently binary search them.
2334  allocation_stack_->Sort();
2335  live_stack_->Sort();
2336  // Since we sorted the allocation stack content, need to revoke all
2337  // thread-local allocation stacks.
2338  RevokeAllThreadLocalAllocationStacks(self);
2339  Atomic<size_t> fail_count_(0);
2340  VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2341  // Verify objects in the allocation stack since these will be objects which were:
2342  // 1. Allocated prior to the GC (pre GC verification).
2343  // 2. Allocated during the GC (pre sweep GC verification).
2344  // We don't want to verify the objects in the live stack since they themselves may be
2345  // pointing to dead objects if they are not reachable.
2346  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
2347  // Verify the roots:
2348  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
2349  if (visitor.GetFailureCount() > 0) {
2350    // Dump mod-union tables.
2351    for (const auto& table_pair : mod_union_tables_) {
2352      accounting::ModUnionTable* mod_union_table = table_pair.second;
2353      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2354    }
2355    // Dump remembered sets.
2356    for (const auto& table_pair : remembered_sets_) {
2357      accounting::RememberedSet* remembered_set = table_pair.second;
2358      remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2359    }
2360    DumpSpaces(LOG(ERROR));
2361  }
2362  return visitor.GetFailureCount();
2363}
2364
2365class VerifyReferenceCardVisitor {
2366 public:
2367  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2368      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2369                            Locks::heap_bitmap_lock_)
2370      : heap_(heap), failed_(failed) {
2371  }
2372
2373  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2374  // annotalysis on visitors.
2375  void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2376      NO_THREAD_SAFETY_ANALYSIS {
2377    mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2378    // Filter out class references since changing an object's class does not mark the card as dirty.
2379    // Also handles large objects, since the only reference they hold is a class reference.
2380    if (ref != nullptr && !ref->IsClass()) {
2381      accounting::CardTable* card_table = heap_->GetCardTable();
2382      // If the object is not dirty and it is referencing something in the live stack other than
2383      // class, then it must be on a dirty card.
2384      if (!card_table->AddrIsInCardTable(obj)) {
2385        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2386        *failed_ = true;
2387      } else if (!card_table->IsDirty(obj)) {
2388        // TODO: Check mod-union tables.
2389        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2390        // kCardDirty - 1 if it didnt get touched since we aged it.
2391        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2392        if (live_stack->ContainsSorted(ref)) {
2393          if (live_stack->ContainsSorted(obj)) {
2394            LOG(ERROR) << "Object " << obj << " found in live stack";
2395          }
2396          if (heap_->GetLiveBitmap()->Test(obj)) {
2397            LOG(ERROR) << "Object " << obj << " found in live bitmap";
2398          }
2399          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2400                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2401
2402          // Print which field of the object is dead.
2403          if (!obj->IsObjectArray()) {
2404            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2405            CHECK(klass != NULL);
2406            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
2407                                                                      : klass->GetIFields();
2408            CHECK(fields != NULL);
2409            for (int32_t i = 0; i < fields->GetLength(); ++i) {
2410              mirror::ArtField* cur = fields->Get(i);
2411              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2412                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2413                          << PrettyField(cur);
2414                break;
2415              }
2416            }
2417          } else {
2418            mirror::ObjectArray<mirror::Object>* object_array =
2419                obj->AsObjectArray<mirror::Object>();
2420            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2421              if (object_array->Get(i) == ref) {
2422                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2423              }
2424            }
2425          }
2426
2427          *failed_ = true;
2428        }
2429      }
2430    }
2431  }
2432
2433 private:
2434  Heap* const heap_;
2435  bool* const failed_;
2436};
2437
2438class VerifyLiveStackReferences {
2439 public:
2440  explicit VerifyLiveStackReferences(Heap* heap)
2441      : heap_(heap),
2442        failed_(false) {}
2443
2444  void operator()(mirror::Object* obj) const
2445      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2446    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2447    obj->VisitReferences<true>(visitor, VoidFunctor());
2448  }
2449
2450  bool Failed() const {
2451    return failed_;
2452  }
2453
2454 private:
2455  Heap* const heap_;
2456  bool failed_;
2457};
2458
2459bool Heap::VerifyMissingCardMarks() {
2460  Thread* self = Thread::Current();
2461  Locks::mutator_lock_->AssertExclusiveHeld(self);
2462
2463  // We need to sort the live stack since we binary search it.
2464  live_stack_->Sort();
2465  // Since we sorted the allocation stack content, need to revoke all
2466  // thread-local allocation stacks.
2467  RevokeAllThreadLocalAllocationStacks(self);
2468  VerifyLiveStackReferences visitor(this);
2469  GetLiveBitmap()->Visit(visitor);
2470
2471  // We can verify objects in the live stack since none of these should reference dead objects.
2472  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2473    if (!kUseThreadLocalAllocationStack || *it != nullptr) {
2474      visitor(*it);
2475    }
2476  }
2477  return !visitor.Failed();
2478}
2479
2480void Heap::SwapStacks(Thread* self) {
2481  if (kUseThreadLocalAllocationStack) {
2482    live_stack_->AssertAllZero();
2483  }
2484  allocation_stack_.swap(live_stack_);
2485}
2486
2487void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2488  // This must be called only during the pause.
2489  CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2490  MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2491  MutexLock mu2(self, *Locks::thread_list_lock_);
2492  std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2493  for (Thread* t : thread_list) {
2494    t->RevokeThreadLocalAllocationStack();
2495  }
2496}
2497
2498void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2499  if (kIsDebugBuild) {
2500    if (bump_pointer_space_ != nullptr) {
2501      bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2502    }
2503  }
2504}
2505
2506accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2507  auto it = mod_union_tables_.find(space);
2508  if (it == mod_union_tables_.end()) {
2509    return nullptr;
2510  }
2511  return it->second;
2512}
2513
2514accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
2515  auto it = remembered_sets_.find(space);
2516  if (it == remembered_sets_.end()) {
2517    return nullptr;
2518  }
2519  return it->second;
2520}
2521
2522void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
2523  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2524  // Clear cards and keep track of cards cleared in the mod-union table.
2525  for (const auto& space : continuous_spaces_) {
2526    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2527    accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
2528    if (table != nullptr) {
2529      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2530          "ImageModUnionClearCards";
2531      TimingLogger::ScopedTiming t(name, timings);
2532      table->ClearCards();
2533    } else if (use_rem_sets && rem_set != nullptr) {
2534      DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
2535          << static_cast<int>(collector_type_);
2536      TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
2537      rem_set->ClearCards();
2538    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2539      TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
2540      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2541      // were dirty before the GC started.
2542      // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
2543      // -> clean(cleaning thread).
2544      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2545      // roots and then we scan / update mod union tables after. We will always scan either card.
2546      // If we end up with the non aged card, we scan it it in the pause.
2547      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
2548                                     VoidFunctor());
2549    }
2550  }
2551}
2552
2553static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
2554}
2555
2556void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
2557  Thread* const self = Thread::Current();
2558  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2559  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2560  if (verify_pre_gc_heap_) {
2561    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
2562    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2563    size_t failures = VerifyHeapReferences();
2564    if (failures > 0) {
2565      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2566          << " failures";
2567    }
2568  }
2569  // Check that all objects which reference things in the live stack are on dirty cards.
2570  if (verify_missing_card_marks_) {
2571    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
2572    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2573    SwapStacks(self);
2574    // Sort the live stack so that we can quickly binary search it later.
2575    CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
2576                                    << " missing card mark verification failed\n" << DumpSpaces();
2577    SwapStacks(self);
2578  }
2579  if (verify_mod_union_table_) {
2580    TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
2581    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2582    for (const auto& table_pair : mod_union_tables_) {
2583      accounting::ModUnionTable* mod_union_table = table_pair.second;
2584      mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
2585      mod_union_table->Verify();
2586    }
2587  }
2588}
2589
2590void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2591  if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
2592    collector::GarbageCollector::ScopedPause pause(gc);
2593    PreGcVerificationPaused(gc);
2594  }
2595}
2596
2597void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
2598  // TODO: Add a new runtime option for this?
2599  if (verify_pre_gc_rosalloc_) {
2600    RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
2601  }
2602}
2603
2604void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2605  Thread* const self = Thread::Current();
2606  TimingLogger* const timings = current_gc_iteration_.GetTimings();
2607  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2608  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2609  // reachable objects.
2610  if (verify_pre_sweeping_heap_) {
2611    TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
2612    CHECK_NE(self->GetState(), kRunnable);
2613    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2614    // Swapping bound bitmaps does nothing.
2615    gc->SwapBitmaps();
2616    // Pass in false since concurrent reference processing can mean that the reference referents
2617    // may point to dead objects at the point which PreSweepingGcVerification is called.
2618    size_t failures = VerifyHeapReferences(false);
2619    if (failures > 0) {
2620      LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
2621          << " failures";
2622    }
2623    gc->SwapBitmaps();
2624  }
2625  if (verify_pre_sweeping_rosalloc_) {
2626    RosAllocVerification(timings, "PreSweepingRosAllocVerification");
2627  }
2628}
2629
2630void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
2631  // Only pause if we have to do some verification.
2632  Thread* const self = Thread::Current();
2633  TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
2634  TimingLogger::ScopedTiming t(__FUNCTION__, timings);
2635  if (verify_system_weaks_) {
2636    ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
2637    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2638    mark_sweep->VerifySystemWeaks();
2639  }
2640  if (verify_post_gc_rosalloc_) {
2641    RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
2642  }
2643  if (verify_post_gc_heap_) {
2644    TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
2645    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2646    size_t failures = VerifyHeapReferences();
2647    if (failures > 0) {
2648      LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
2649          << " failures";
2650    }
2651  }
2652}
2653
2654void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2655  if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
2656    collector::GarbageCollector::ScopedPause pause(gc);
2657    PreGcVerificationPaused(gc);
2658  }
2659}
2660
2661void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
2662  TimingLogger::ScopedTiming t(name, timings);
2663  for (const auto& space : continuous_spaces_) {
2664    if (space->IsRosAllocSpace()) {
2665      VLOG(heap) << name << " : " << space->GetName();
2666      space->AsRosAllocSpace()->Verify();
2667    }
2668  }
2669}
2670
2671collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
2672  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2673  MutexLock mu(self, *gc_complete_lock_);
2674  return WaitForGcToCompleteLocked(cause, self);
2675}
2676
2677collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
2678  collector::GcType last_gc_type = collector::kGcTypeNone;
2679  uint64_t wait_start = NanoTime();
2680  while (collector_type_running_ != kCollectorTypeNone) {
2681    ATRACE_BEGIN("GC: Wait For Completion");
2682    // We must wait, change thread state then sleep on gc_complete_cond_;
2683    gc_complete_cond_->Wait(self);
2684    last_gc_type = last_gc_type_;
2685    ATRACE_END();
2686  }
2687  uint64_t wait_time = NanoTime() - wait_start;
2688  total_wait_time_ += wait_time;
2689  if (wait_time > long_pause_log_threshold_) {
2690    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
2691        << " for cause " << cause;
2692  }
2693  return last_gc_type;
2694}
2695
2696void Heap::DumpForSigQuit(std::ostream& os) {
2697  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2698     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2699  DumpGcPerformanceInfo(os);
2700}
2701
2702size_t Heap::GetPercentFree() {
2703  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
2704}
2705
2706void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2707  if (max_allowed_footprint > GetMaxMemory()) {
2708    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2709             << PrettySize(GetMaxMemory());
2710    max_allowed_footprint = GetMaxMemory();
2711  }
2712  max_allowed_footprint_ = max_allowed_footprint;
2713}
2714
2715bool Heap::IsMovableObject(const mirror::Object* obj) const {
2716  if (kMovingCollector) {
2717    space::Space* space = FindContinuousSpaceFromObject(obj, true);
2718    if (space != nullptr) {
2719      // TODO: Check large object?
2720      return space->CanMoveObjects();
2721    }
2722  }
2723  return false;
2724}
2725
2726void Heap::UpdateMaxNativeFootprint() {
2727  size_t native_size = native_bytes_allocated_.LoadRelaxed();
2728  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2729  size_t target_size = native_size / GetTargetHeapUtilization();
2730  if (target_size > native_size + max_free_) {
2731    target_size = native_size + max_free_;
2732  } else if (target_size < native_size + min_free_) {
2733    target_size = native_size + min_free_;
2734  }
2735  native_footprint_gc_watermark_ = target_size;
2736  native_footprint_limit_ = 2 * target_size - native_size;
2737}
2738
2739collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
2740  for (const auto& collector : garbage_collectors_) {
2741    if (collector->GetCollectorType() == collector_type_ &&
2742        collector->GetGcType() == gc_type) {
2743      return collector;
2744    }
2745  }
2746  return nullptr;
2747}
2748
2749double Heap::HeapGrowthMultiplier() const {
2750  // If we don't care about pause times we are background, so return 1.0.
2751  if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
2752    return 1.0;
2753  }
2754  return foreground_heap_growth_multiplier_;
2755}
2756
2757void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
2758  // We know what our utilization is at this moment.
2759  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2760  const uint64_t bytes_allocated = GetBytesAllocated();
2761  last_gc_size_ = bytes_allocated;
2762  last_gc_time_ns_ = NanoTime();
2763  uint64_t target_size;
2764  collector::GcType gc_type = collector_ran->GetGcType();
2765  if (gc_type != collector::kGcTypeSticky) {
2766    // Grow the heap for non sticky GC.
2767    const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
2768    // foreground.
2769    intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
2770    CHECK_GE(delta, 0);
2771    target_size = bytes_allocated + delta * multiplier;
2772    target_size = std::min(target_size,
2773                           bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
2774    target_size = std::max(target_size,
2775                           bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
2776    native_need_to_run_finalization_ = true;
2777    next_gc_type_ = collector::kGcTypeSticky;
2778  } else {
2779    collector::GcType non_sticky_gc_type =
2780        have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2781    // Find what the next non sticky collector will be.
2782    collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
2783    // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
2784    // do another sticky collection next.
2785    // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
2786    // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
2787    // if the sticky GC throughput always remained >= the full/partial throughput.
2788    if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
2789        non_sticky_collector->GetEstimatedMeanThroughput() &&
2790        non_sticky_collector->NumberOfIterations() > 0 &&
2791        bytes_allocated <= max_allowed_footprint_) {
2792      next_gc_type_ = collector::kGcTypeSticky;
2793    } else {
2794      next_gc_type_ = non_sticky_gc_type;
2795    }
2796    // If we have freed enough memory, shrink the heap back down.
2797    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2798      target_size = bytes_allocated + max_free_;
2799    } else {
2800      target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
2801    }
2802  }
2803  if (!ignore_max_footprint_) {
2804    SetIdealFootprint(target_size);
2805    if (IsGcConcurrent()) {
2806      // Calculate when to perform the next ConcurrentGC.
2807      // Calculate the estimated GC duration.
2808      const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
2809      // Estimate how many remaining bytes we will have when we need to start the next GC.
2810      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2811      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2812      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2813      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2814        // A never going to happen situation that from the estimated allocation rate we will exceed
2815        // the applications entire footprint with the given estimated allocation rate. Schedule
2816        // another GC nearly straight away.
2817        remaining_bytes = kMinConcurrentRemainingBytes;
2818      }
2819      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2820      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2821      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2822      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2823      // right away.
2824      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2825                                         static_cast<size_t>(bytes_allocated));
2826    }
2827  }
2828}
2829
2830void Heap::ClearGrowthLimit() {
2831  growth_limit_ = capacity_;
2832  non_moving_space_->ClearGrowthLimit();
2833}
2834
2835void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
2836  ScopedObjectAccess soa(self);
2837  ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
2838  jvalue args[1];
2839  args[0].l = arg.get();
2840  InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
2841  // Restore object in case it gets moved.
2842  *object = soa.Decode<mirror::Object*>(arg.get());
2843}
2844
2845void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
2846  StackHandleScope<1> hs(self);
2847  HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2848  RequestConcurrentGC(self);
2849}
2850
2851void Heap::RequestConcurrentGC(Thread* self) {
2852  // Make sure that we can do a concurrent GC.
2853  Runtime* runtime = Runtime::Current();
2854  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2855      self->IsHandlingStackOverflow()) {
2856    return;
2857  }
2858  // We already have a request pending, no reason to start more until we update
2859  // concurrent_start_bytes_.
2860  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2861  JNIEnv* env = self->GetJniEnv();
2862  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2863  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2864  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2865                            WellKnownClasses::java_lang_Daemons_requestGC);
2866  CHECK(!env->ExceptionCheck());
2867}
2868
2869void Heap::ConcurrentGC(Thread* self) {
2870  if (Runtime::Current()->IsShuttingDown(self)) {
2871    return;
2872  }
2873  // Wait for any GCs currently running to finish.
2874  if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
2875    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2876    // instead. E.g. can't do partial, so do full instead.
2877    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2878        collector::kGcTypeNone) {
2879      for (collector::GcType gc_type : gc_plan_) {
2880        // Attempt to run the collector, if we succeed, we are done.
2881        if (gc_type > next_gc_type_ &&
2882            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2883          break;
2884        }
2885      }
2886    }
2887  }
2888}
2889
2890void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
2891  Thread* self = Thread::Current();
2892  {
2893    MutexLock mu(self, *heap_trim_request_lock_);
2894    if (desired_collector_type_ == desired_collector_type) {
2895      return;
2896    }
2897    heap_transition_or_trim_target_time_ =
2898        std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
2899    desired_collector_type_ = desired_collector_type;
2900  }
2901  SignalHeapTrimDaemon(self);
2902}
2903
2904void Heap::RequestHeapTrim() {
2905  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2906  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2907  // a space it will hold its lock and can become a cause of jank.
2908  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2909  // forking.
2910
2911  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2912  // because that only marks object heads, so a large array looks like lots of empty space. We
2913  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2914  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2915  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2916  // not how much use we're making of those pages.
2917
2918  Thread* self = Thread::Current();
2919  Runtime* runtime = Runtime::Current();
2920  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2921    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2922    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2923    // as we don't hold the lock while requesting the trim).
2924    return;
2925  }
2926  {
2927    MutexLock mu(self, *heap_trim_request_lock_);
2928    if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
2929      // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
2930      // just yet.
2931      return;
2932    }
2933    heap_trim_request_pending_ = true;
2934    uint64_t current_time = NanoTime();
2935    if (heap_transition_or_trim_target_time_ < current_time) {
2936      heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
2937    }
2938  }
2939  // Notify the daemon thread which will actually do the heap trim.
2940  SignalHeapTrimDaemon(self);
2941}
2942
2943void Heap::SignalHeapTrimDaemon(Thread* self) {
2944  JNIEnv* env = self->GetJniEnv();
2945  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2946  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
2947  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2948                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2949  CHECK(!env->ExceptionCheck());
2950}
2951
2952void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2953  if (rosalloc_space_ != nullptr) {
2954    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2955  }
2956  if (bump_pointer_space_ != nullptr) {
2957    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2958  }
2959}
2960
2961void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
2962  if (rosalloc_space_ != nullptr) {
2963    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2964  }
2965}
2966
2967void Heap::RevokeAllThreadLocalBuffers() {
2968  if (rosalloc_space_ != nullptr) {
2969    rosalloc_space_->RevokeAllThreadLocalBuffers();
2970  }
2971  if (bump_pointer_space_ != nullptr) {
2972    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2973  }
2974}
2975
2976bool Heap::IsGCRequestPending() const {
2977  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2978}
2979
2980void Heap::RunFinalization(JNIEnv* env) {
2981  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2982  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2983    CHECK(WellKnownClasses::java_lang_System != nullptr);
2984    WellKnownClasses::java_lang_System_runFinalization =
2985        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2986    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2987  }
2988  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2989                            WellKnownClasses::java_lang_System_runFinalization);
2990}
2991
2992void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2993  Thread* self = ThreadForEnv(env);
2994  if (native_need_to_run_finalization_) {
2995    RunFinalization(env);
2996    UpdateMaxNativeFootprint();
2997    native_need_to_run_finalization_ = false;
2998  }
2999  // Total number of native bytes allocated.
3000  size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3001  new_native_bytes_allocated += bytes;
3002  if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3003    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
3004        collector::kGcTypeFull;
3005
3006    // The second watermark is higher than the gc watermark. If you hit this it means you are
3007    // allocating native objects faster than the GC can keep up with.
3008    if (new_native_bytes_allocated > native_footprint_limit_) {
3009      if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3010        // Just finished a GC, attempt to run finalizers.
3011        RunFinalization(env);
3012        CHECK(!env->ExceptionCheck());
3013      }
3014      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3015      if (new_native_bytes_allocated > native_footprint_limit_) {
3016        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3017        RunFinalization(env);
3018        native_need_to_run_finalization_ = false;
3019        CHECK(!env->ExceptionCheck());
3020      }
3021      // We have just run finalizers, update the native watermark since it is very likely that
3022      // finalizers released native managed allocations.
3023      UpdateMaxNativeFootprint();
3024    } else if (!IsGCRequestPending()) {
3025      if (IsGcConcurrent()) {
3026        RequestConcurrentGC(self);
3027      } else {
3028        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3029      }
3030    }
3031  }
3032}
3033
3034void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
3035  int expected_size, new_size;
3036  do {
3037    expected_size = native_bytes_allocated_.LoadRelaxed();
3038    new_size = expected_size - bytes;
3039    if (UNLIKELY(new_size < 0)) {
3040      ScopedObjectAccess soa(env);
3041      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3042                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
3043                                 "registered as allocated", bytes, expected_size).c_str());
3044      break;
3045    }
3046  } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size, new_size));
3047}
3048
3049size_t Heap::GetTotalMemory() const {
3050  size_t ret = 0;
3051  for (const auto& space : continuous_spaces_) {
3052    // Currently don't include the image space.
3053    if (!space->IsImageSpace()) {
3054      ret += space->Size();
3055    }
3056  }
3057  for (const auto& space : discontinuous_spaces_) {
3058    if (space->IsLargeObjectSpace()) {
3059      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
3060    }
3061  }
3062  return ret;
3063}
3064
3065void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3066  DCHECK(mod_union_table != nullptr);
3067  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3068}
3069
3070void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3071  CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3072        (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
3073        c->GetDescriptor().empty());
3074  CHECK_GE(byte_count, sizeof(mirror::Object));
3075}
3076
3077void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3078  CHECK(remembered_set != nullptr);
3079  space::Space* space = remembered_set->GetSpace();
3080  CHECK(space != nullptr);
3081  CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3082  remembered_sets_.Put(space, remembered_set);
3083  CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3084}
3085
3086void Heap::RemoveRememberedSet(space::Space* space) {
3087  CHECK(space != nullptr);
3088  auto it = remembered_sets_.find(space);
3089  CHECK(it != remembered_sets_.end());
3090  remembered_sets_.erase(it);
3091  CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3092}
3093
3094void Heap::ClearMarkedObjects() {
3095  // Clear all of the spaces' mark bitmaps.
3096  for (const auto& space : GetContinuousSpaces()) {
3097    accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3098    if (space->GetLiveBitmap() != mark_bitmap) {
3099      mark_bitmap->Clear();
3100    }
3101  }
3102  // Clear the marked objects in the discontinous space object sets.
3103  for (const auto& space : GetDiscontinuousSpaces()) {
3104    space->GetMarkBitmap()->Clear();
3105  }
3106}
3107
3108}  // namespace gc
3109}  // namespace art
3110