heap.cc revision db7f37d57b6ac83abe6815d0cd5c50701b6be821
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/space_bitmap-inl.h"
37#include "gc/collector/mark_sweep-inl.h"
38#include "gc/collector/partial_mark_sweep.h"
39#include "gc/collector/semi_space.h"
40#include "gc/collector/sticky_mark_sweep.h"
41#include "gc/space/bump_pointer_space.h"
42#include "gc/space/dlmalloc_space-inl.h"
43#include "gc/space/image_space.h"
44#include "gc/space/large_object_space.h"
45#include "gc/space/rosalloc_space-inl.h"
46#include "gc/space/space-inl.h"
47#include "heap-inl.h"
48#include "image.h"
49#include "invoke_arg_array_builder.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/class-inl.h"
52#include "mirror/object.h"
53#include "mirror/object-inl.h"
54#include "mirror/object_array-inl.h"
55#include "object_utils.h"
56#include "os.h"
57#include "runtime.h"
58#include "ScopedLocalRef.h"
59#include "scoped_thread_state_change.h"
60#include "sirt_ref.h"
61#include "thread_list.h"
62#include "UniquePtr.h"
63#include "well_known_classes.h"
64
65namespace art {
66
67extern void SetQuickAllocEntryPointsAllocator(gc::AllocatorType allocator);
68
69namespace gc {
70
71static constexpr bool kGCALotMode = false;
72static constexpr size_t kGcAlotInterval = KB;
73// Minimum amount of remaining bytes before a concurrent GC is triggered.
74static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
75
76Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
77           double target_utilization, size_t capacity, const std::string& image_file_name,
78           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
79           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
80           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
81           bool ignore_max_footprint, bool use_tlab)
82    : non_moving_space_(nullptr),
83      rosalloc_space_(nullptr),
84      dlmalloc_space_(nullptr),
85      main_space_(nullptr),
86      concurrent_gc_(false),
87      collector_type_(kCollectorTypeNone),
88      post_zygote_collector_type_(post_zygote_collector_type),
89      background_collector_type_(background_collector_type),
90      parallel_gc_threads_(parallel_gc_threads),
91      conc_gc_threads_(conc_gc_threads),
92      low_memory_mode_(low_memory_mode),
93      long_pause_log_threshold_(long_pause_log_threshold),
94      long_gc_log_threshold_(long_gc_log_threshold),
95      ignore_max_footprint_(ignore_max_footprint),
96      have_zygote_space_(false),
97      soft_reference_queue_(this),
98      weak_reference_queue_(this),
99      finalizer_reference_queue_(this),
100      phantom_reference_queue_(this),
101      cleared_references_(this),
102      is_gc_running_(false),
103      last_gc_type_(collector::kGcTypeNone),
104      next_gc_type_(collector::kGcTypePartial),
105      capacity_(capacity),
106      growth_limit_(growth_limit),
107      max_allowed_footprint_(initial_size),
108      native_footprint_gc_watermark_(initial_size),
109      native_footprint_limit_(2 * initial_size),
110      native_need_to_run_finalization_(false),
111      // Initially assume we perceive jank in case the process state is never updated.
112      process_state_(kProcessStateJankPerceptible),
113      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
114      total_bytes_freed_ever_(0),
115      total_objects_freed_ever_(0),
116      num_bytes_allocated_(0),
117      native_bytes_allocated_(0),
118      gc_memory_overhead_(0),
119      verify_missing_card_marks_(false),
120      verify_system_weaks_(false),
121      verify_pre_gc_heap_(false),
122      verify_post_gc_heap_(false),
123      verify_mod_union_table_(false),
124      min_alloc_space_size_for_sticky_gc_(1112 * MB),
125      min_remaining_space_for_sticky_gc_(1 * MB),
126      last_trim_time_ms_(0),
127      allocation_rate_(0),
128      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
129       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
130       * verification is enabled, we limit the size of allocation stacks to speed up their
131       * searching.
132       */
133      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
134          : (kDesiredHeapVerification > kVerifyAllFast) ? KB : MB),
135      current_allocator_(kAllocatorTypeDlMalloc),
136      current_non_moving_allocator_(kAllocatorTypeNonMoving),
137      bump_pointer_space_(nullptr),
138      temp_space_(nullptr),
139      reference_referent_offset_(0),
140      reference_queue_offset_(0),
141      reference_queueNext_offset_(0),
142      reference_pendingNext_offset_(0),
143      finalizer_reference_zombie_offset_(0),
144      min_free_(min_free),
145      max_free_(max_free),
146      target_utilization_(target_utilization),
147      total_wait_time_(0),
148      total_allocation_time_(0),
149      verify_object_mode_(kHeapVerificationNotPermitted),
150      gc_disable_count_(0),
151      running_on_valgrind_(RUNNING_ON_VALGRIND),
152      use_tlab_(use_tlab) {
153  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
154    LOG(INFO) << "Heap() entering";
155  }
156  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
157  // entrypoints.
158  if (!Runtime::Current()->IsZygote() || !kMovingCollector) {
159    ChangeCollector(post_zygote_collector_type_);
160  } else {
161    // We are the zygote, use bump pointer allocation + semi space collector.
162    ChangeCollector(kCollectorTypeSS);
163  }
164
165  live_bitmap_.reset(new accounting::HeapBitmap(this));
166  mark_bitmap_.reset(new accounting::HeapBitmap(this));
167  // Requested begin for the alloc space, to follow the mapped image and oat files
168  byte* requested_alloc_space_begin = nullptr;
169  if (!image_file_name.empty()) {
170    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
171    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
172    AddSpace(image_space);
173    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
174    // isn't going to get in the middle
175    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
176    CHECK_GT(oat_file_end_addr, image_space->End());
177    if (oat_file_end_addr > requested_alloc_space_begin) {
178      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
179    }
180  }
181  const char* name = Runtime::Current()->IsZygote() ? "zygote space" : "alloc space";
182  space::MallocSpace* malloc_space;
183  if (kUseRosAlloc) {
184    malloc_space = space::RosAllocSpace::Create(name, initial_size, growth_limit, capacity,
185                                                requested_alloc_space_begin, low_memory_mode_);
186    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
187  } else {
188    malloc_space = space::DlMallocSpace::Create(name, initial_size, growth_limit, capacity,
189                                                requested_alloc_space_begin);
190    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
191  }
192
193  if (kMovingCollector) {
194    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
195    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
196    // issues.
197    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
198    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
199                                                          bump_pointer_space_size, nullptr);
200    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
201    AddSpace(bump_pointer_space_);
202    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
203                                                  nullptr);
204    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
205    AddSpace(temp_space_);
206  }
207  non_moving_space_ = malloc_space;
208  malloc_space->SetFootprintLimit(malloc_space->Capacity());
209  AddSpace(malloc_space);
210
211  // Allocate the large object space.
212  constexpr bool kUseFreeListSpaceForLOS = false;
213  if (kUseFreeListSpaceForLOS) {
214    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
215  } else {
216    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
217  }
218  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
219  AddSpace(large_object_space_);
220
221  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
222  CHECK(!continuous_spaces_.empty());
223  // Relies on the spaces being sorted.
224  byte* heap_begin = continuous_spaces_.front()->Begin();
225  byte* heap_end = continuous_spaces_.back()->Limit();
226  size_t heap_capacity = heap_end - heap_begin;
227
228  // Allocate the card table.
229  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
230  CHECK(card_table_.get() != NULL) << "Failed to create card table";
231
232  // Card cache for now since it makes it easier for us to update the references to the copying
233  // spaces.
234  accounting::ModUnionTable* mod_union_table =
235      new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace());
236  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
237  AddModUnionTable(mod_union_table);
238
239  // TODO: Count objects in the image space here.
240  num_bytes_allocated_ = 0;
241
242  // Default mark stack size in bytes.
243  static const size_t default_mark_stack_size = 64 * KB;
244  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
245  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
246                                                          max_allocation_stack_size_));
247  live_stack_.reset(accounting::ObjectStack::Create("live stack",
248                                                    max_allocation_stack_size_));
249
250  // It's still too early to take a lock because there are no threads yet, but we can create locks
251  // now. We don't create it earlier to make it clear that you can't use locks during heap
252  // initialization.
253  gc_complete_lock_ = new Mutex("GC complete lock");
254  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
255                                                *gc_complete_lock_));
256  last_gc_time_ns_ = NanoTime();
257  last_gc_size_ = GetBytesAllocated();
258
259  if (ignore_max_footprint_) {
260    SetIdealFootprint(std::numeric_limits<size_t>::max());
261    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
262  }
263  CHECK_NE(max_allowed_footprint_, 0U);
264
265  // Create our garbage collectors.
266  for (size_t i = 0; i < 2; ++i) {
267    const bool concurrent = i != 0;
268    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
269    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
270    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
271  }
272  if (kMovingCollector) {
273    // TODO: Clean this up.
274    semi_space_collector_ = new collector::SemiSpace(this);
275    garbage_collectors_.push_back(semi_space_collector_);
276  }
277
278  if (running_on_valgrind_) {
279    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
280  }
281
282  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
283    LOG(INFO) << "Heap() exiting";
284  }
285}
286
287void Heap::ChangeAllocator(AllocatorType allocator) {
288  // These two allocators are only used internally and don't have any entrypoints.
289  DCHECK_NE(allocator, kAllocatorTypeLOS);
290  DCHECK_NE(allocator, kAllocatorTypeNonMoving);
291  if (current_allocator_ != allocator) {
292    current_allocator_ = allocator;
293    SetQuickAllocEntryPointsAllocator(current_allocator_);
294    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
295  }
296}
297
298bool Heap::IsCompilingBoot() const {
299  for (const auto& space : continuous_spaces_) {
300    if (space->IsImageSpace()) {
301      return false;
302    } else if (space->IsZygoteSpace()) {
303      return false;
304    }
305  }
306  return true;
307}
308
309bool Heap::HasImageSpace() const {
310  for (const auto& space : continuous_spaces_) {
311    if (space->IsImageSpace()) {
312      return true;
313    }
314  }
315  return false;
316}
317
318void Heap::IncrementDisableGC(Thread* self) {
319  // Need to do this holding the lock to prevent races where the GC is about to run / running when
320  // we attempt to disable it.
321  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
322  MutexLock mu(self, *gc_complete_lock_);
323  WaitForGcToCompleteLocked(self);
324  ++gc_disable_count_;
325}
326
327void Heap::DecrementDisableGC(Thread* self) {
328  MutexLock mu(self, *gc_complete_lock_);
329  CHECK_GE(gc_disable_count_, 0U);
330  --gc_disable_count_;
331}
332
333void Heap::UpdateProcessState(ProcessState process_state) {
334  if (process_state_ != process_state) {
335    process_state_ = process_state;
336    if (process_state_ == kProcessStateJankPerceptible) {
337      TransitionCollector(post_zygote_collector_type_);
338    } else {
339      TransitionCollector(background_collector_type_);
340    }
341  } else {
342    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
343  }
344}
345
346void Heap::CreateThreadPool() {
347  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
348  if (num_threads != 0) {
349    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
350  }
351}
352
353void Heap::VisitObjects(ObjectVisitorCallback callback, void* arg) {
354  Thread* self = Thread::Current();
355  // GCs can move objects, so don't allow this.
356  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
357  if (bump_pointer_space_ != nullptr) {
358    // Visit objects in bump pointer space.
359    bump_pointer_space_->Walk(callback, arg);
360  }
361  // TODO: Switch to standard begin and end to use ranged a based loop.
362  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
363      it < end; ++it) {
364    mirror::Object* obj = *it;
365    callback(obj, arg);
366  }
367  GetLiveBitmap()->Walk(callback, arg);
368  self->EndAssertNoThreadSuspension(old_cause);
369}
370
371void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
372  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
373  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
374  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
375  // TODO: Generalize this to n bitmaps?
376  if (space1 == nullptr) {
377    DCHECK(space2 != nullptr);
378    space1 = space2;
379  }
380  if (space2 == nullptr) {
381    DCHECK(space1 != nullptr);
382    space2 = space1;
383  }
384  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
385                 large_object_space_->GetLiveObjects(), stack);
386}
387
388void Heap::DeleteThreadPool() {
389  thread_pool_.reset(nullptr);
390}
391
392void Heap::AddSpace(space::Space* space, bool set_as_default) {
393  DCHECK(space != nullptr);
394  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
395  if (space->IsContinuousSpace()) {
396    DCHECK(!space->IsDiscontinuousSpace());
397    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
398    // Continuous spaces don't necessarily have bitmaps.
399    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
400    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
401    if (live_bitmap != nullptr) {
402      DCHECK(mark_bitmap != nullptr);
403      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
404      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
405    }
406    continuous_spaces_.push_back(continuous_space);
407    if (set_as_default) {
408      if (continuous_space->IsDlMallocSpace()) {
409        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
410      } else if (continuous_space->IsRosAllocSpace()) {
411        rosalloc_space_ = continuous_space->AsRosAllocSpace();
412      }
413    }
414    // Ensure that spaces remain sorted in increasing order of start address.
415    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
416              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
417      return a->Begin() < b->Begin();
418    });
419  } else {
420    DCHECK(space->IsDiscontinuousSpace());
421    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
422    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
423    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
424    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
425    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
426    discontinuous_spaces_.push_back(discontinuous_space);
427  }
428  if (space->IsAllocSpace()) {
429    alloc_spaces_.push_back(space->AsAllocSpace());
430  }
431}
432
433void Heap::RemoveSpace(space::Space* space) {
434  DCHECK(space != nullptr);
435  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
436  if (space->IsContinuousSpace()) {
437    DCHECK(!space->IsDiscontinuousSpace());
438    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
439    // Continuous spaces don't necessarily have bitmaps.
440    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
441    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
442    if (live_bitmap != nullptr) {
443      DCHECK(mark_bitmap != nullptr);
444      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
445      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
446    }
447    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
448    DCHECK(it != continuous_spaces_.end());
449    continuous_spaces_.erase(it);
450    if (continuous_space == dlmalloc_space_) {
451      dlmalloc_space_ = nullptr;
452    } else if (continuous_space == rosalloc_space_) {
453      rosalloc_space_ = nullptr;
454    }
455    if (continuous_space == main_space_) {
456      main_space_ = nullptr;
457    }
458  } else {
459    DCHECK(space->IsDiscontinuousSpace());
460    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
461    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
462    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
463    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
464    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
465    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
466                        discontinuous_space);
467    DCHECK(it != discontinuous_spaces_.end());
468    discontinuous_spaces_.erase(it);
469  }
470  if (space->IsAllocSpace()) {
471    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
472    DCHECK(it != alloc_spaces_.end());
473    alloc_spaces_.erase(it);
474  }
475  delete space;
476}
477
478void Heap::RegisterGCAllocation(size_t bytes) {
479  if (this != nullptr) {
480    gc_memory_overhead_.FetchAndAdd(bytes);
481  }
482}
483
484void Heap::RegisterGCDeAllocation(size_t bytes) {
485  if (this != nullptr) {
486    gc_memory_overhead_.FetchAndSub(bytes);
487  }
488}
489
490void Heap::DumpGcPerformanceInfo(std::ostream& os) {
491  // Dump cumulative timings.
492  os << "Dumping cumulative Gc timings\n";
493  uint64_t total_duration = 0;
494
495  // Dump cumulative loggers for each GC type.
496  uint64_t total_paused_time = 0;
497  for (const auto& collector : garbage_collectors_) {
498    CumulativeLogger& logger = collector->GetCumulativeTimings();
499    if (logger.GetTotalNs() != 0) {
500      os << Dumpable<CumulativeLogger>(logger);
501      const uint64_t total_ns = logger.GetTotalNs();
502      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
503      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
504      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
505      const uint64_t freed_objects = collector->GetTotalFreedObjects();
506      Histogram<uint64_t>::CumulativeData cumulative_data;
507      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
508      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
509      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
510         << collector->GetName() << " freed: " << freed_objects
511         << " objects with total size " << PrettySize(freed_bytes) << "\n"
512         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
513         << PrettySize(freed_bytes / seconds) << "/s\n";
514      total_duration += total_ns;
515      total_paused_time += total_pause_ns;
516    }
517  }
518  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
519  if (total_duration != 0) {
520    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
521    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
522    os << "Mean GC size throughput: "
523       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
524    os << "Mean GC object throughput: "
525       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
526  }
527  size_t total_objects_allocated = GetObjectsAllocatedEver();
528  os << "Total number of allocations: " << total_objects_allocated << "\n";
529  size_t total_bytes_allocated = GetBytesAllocatedEver();
530  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
531  if (kMeasureAllocationTime) {
532    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
533    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
534       << "\n";
535  }
536  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
537  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
538  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
539}
540
541Heap::~Heap() {
542  VLOG(heap) << "Starting ~Heap()";
543  STLDeleteElements(&garbage_collectors_);
544  // If we don't reset then the mark stack complains in its destructor.
545  allocation_stack_->Reset();
546  live_stack_->Reset();
547  STLDeleteValues(&mod_union_tables_);
548  STLDeleteElements(&continuous_spaces_);
549  STLDeleteElements(&discontinuous_spaces_);
550  delete gc_complete_lock_;
551  VLOG(heap) << "Finished ~Heap()";
552}
553
554space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
555                                                            bool fail_ok) const {
556  for (const auto& space : continuous_spaces_) {
557    if (space->Contains(obj)) {
558      return space;
559    }
560  }
561  if (!fail_ok) {
562    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
563  }
564  return NULL;
565}
566
567space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
568                                                                  bool fail_ok) const {
569  for (const auto& space : discontinuous_spaces_) {
570    if (space->Contains(obj)) {
571      return space;
572    }
573  }
574  if (!fail_ok) {
575    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
576  }
577  return NULL;
578}
579
580space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
581  space::Space* result = FindContinuousSpaceFromObject(obj, true);
582  if (result != NULL) {
583    return result;
584  }
585  return FindDiscontinuousSpaceFromObject(obj, true);
586}
587
588struct SoftReferenceArgs {
589  RootVisitor* is_marked_callback_;
590  RootVisitor* recursive_mark_callback_;
591  void* arg_;
592};
593
594mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
595  SoftReferenceArgs* args  = reinterpret_cast<SoftReferenceArgs*>(arg);
596  // TODO: Not preserve all soft references.
597  return args->recursive_mark_callback_(obj, args->arg_);
598}
599
600// Process reference class instances and schedule finalizations.
601void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
602                             RootVisitor* is_marked_callback,
603                             RootVisitor* recursive_mark_object_callback, void* arg) {
604  // Unless we are in the zygote or required to clear soft references with white references,
605  // preserve some white referents.
606  if (!clear_soft && !Runtime::Current()->IsZygote()) {
607    SoftReferenceArgs soft_reference_args;
608    soft_reference_args.is_marked_callback_ = is_marked_callback;
609    soft_reference_args.recursive_mark_callback_ = recursive_mark_object_callback;
610    soft_reference_args.arg_ = arg;
611    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
612                                                     &soft_reference_args);
613  }
614  timings.StartSplit("ProcessReferences");
615  // Clear all remaining soft and weak references with white referents.
616  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
617  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
618  timings.EndSplit();
619  // Preserve all white objects with finalize methods and schedule them for finalization.
620  timings.StartSplit("EnqueueFinalizerReferences");
621  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
622                                                        recursive_mark_object_callback, arg);
623  timings.EndSplit();
624  timings.StartSplit("ProcessReferences");
625  // Clear all f-reachable soft and weak references with white referents.
626  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
627  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
628  // Clear all phantom references with white referents.
629  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
630  // At this point all reference queues other than the cleared references should be empty.
631  DCHECK(soft_reference_queue_.IsEmpty());
632  DCHECK(weak_reference_queue_.IsEmpty());
633  DCHECK(finalizer_reference_queue_.IsEmpty());
634  DCHECK(phantom_reference_queue_.IsEmpty());
635  timings.EndSplit();
636}
637
638bool Heap::IsEnqueued(mirror::Object* ref) const {
639  // Since the references are stored as cyclic lists it means that once enqueued, the pending next
640  // will always be non-null.
641  return ref->GetFieldObject<mirror::Object*>(GetReferencePendingNextOffset(), false) != nullptr;
642}
643
644bool Heap::IsEnqueuable(const mirror::Object* ref) const {
645  DCHECK(ref != nullptr);
646  const mirror::Object* queue =
647      ref->GetFieldObject<mirror::Object*>(GetReferenceQueueOffset(), false);
648  const mirror::Object* queue_next =
649      ref->GetFieldObject<mirror::Object*>(GetReferenceQueueNextOffset(), false);
650  return queue != nullptr && queue_next == nullptr;
651}
652
653// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
654// marked, put it on the appropriate list in the heap for later processing.
655void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj,
656                                  RootVisitor mark_visitor, void* arg) {
657  DCHECK(klass != nullptr);
658  DCHECK(klass->IsReferenceClass());
659  DCHECK(obj != nullptr);
660  mirror::Object* referent = GetReferenceReferent(obj);
661  if (referent != nullptr) {
662    mirror::Object* forward_address = mark_visitor(referent, arg);
663    // Null means that the object is not currently marked.
664    if (forward_address == nullptr) {
665      Thread* self = Thread::Current();
666      // TODO: Remove these locks, and use atomic stacks for storing references?
667      // We need to check that the references haven't already been enqueued since we can end up
668      // scanning the same reference multiple times due to dirty cards.
669      if (klass->IsSoftReferenceClass()) {
670        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
671      } else if (klass->IsWeakReferenceClass()) {
672        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
673      } else if (klass->IsFinalizerReferenceClass()) {
674        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
675      } else if (klass->IsPhantomReferenceClass()) {
676        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
677      } else {
678        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
679                   << klass->GetAccessFlags();
680      }
681    } else if (referent != forward_address) {
682      // Referent is already marked and we need to update it.
683      SetReferenceReferent(obj, forward_address);
684    }
685  }
686}
687
688space::ImageSpace* Heap::GetImageSpace() const {
689  for (const auto& space : continuous_spaces_) {
690    if (space->IsImageSpace()) {
691      return space->AsImageSpace();
692    }
693  }
694  return NULL;
695}
696
697static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
698  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
699  if (used_bytes < chunk_size) {
700    size_t chunk_free_bytes = chunk_size - used_bytes;
701    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
702    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
703  }
704}
705
706void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
707  std::ostringstream oss;
708  int64_t total_bytes_free = GetFreeMemory();
709  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
710      << " free bytes";
711  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
712  if (!large_object_allocation && total_bytes_free >= byte_count) {
713    size_t max_contiguous_allocation = 0;
714    for (const auto& space : continuous_spaces_) {
715      if (space->IsMallocSpace()) {
716        // To allow the Walk/InspectAll() to exclusively-lock the mutator
717        // lock, temporarily release the shared access to the mutator
718        // lock here by transitioning to the suspended state.
719        Locks::mutator_lock_->AssertSharedHeld(self);
720        self->TransitionFromRunnableToSuspended(kSuspended);
721        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
722        self->TransitionFromSuspendedToRunnable();
723        Locks::mutator_lock_->AssertSharedHeld(self);
724      }
725    }
726    oss << "; failed due to fragmentation (largest possible contiguous allocation "
727        <<  max_contiguous_allocation << " bytes)";
728  }
729  self->ThrowOutOfMemoryError(oss.str().c_str());
730}
731
732void Heap::Trim() {
733  uint64_t start_ns = NanoTime();
734  // Trim the managed spaces.
735  uint64_t total_alloc_space_allocated = 0;
736  uint64_t total_alloc_space_size = 0;
737  uint64_t managed_reclaimed = 0;
738  for (const auto& space : continuous_spaces_) {
739    if (space->IsMallocSpace() && !space->IsZygoteSpace()) {
740      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
741      total_alloc_space_size += alloc_space->Size();
742      managed_reclaimed += alloc_space->Trim();
743    }
744  }
745  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
746      bump_pointer_space_->Size();
747  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
748      static_cast<float>(total_alloc_space_size);
749  uint64_t gc_heap_end_ns = NanoTime();
750  // Trim the native heap.
751  dlmalloc_trim(0);
752  size_t native_reclaimed = 0;
753  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
754  uint64_t end_ns = NanoTime();
755  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
756      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
757      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
758      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
759      << "%.";
760}
761
762bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
763  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
764  // taking the lock.
765  if (obj == nullptr) {
766    return true;
767  }
768  return IsAligned<kObjectAlignment>(obj) && IsHeapAddress(obj);
769}
770
771bool Heap::IsHeapAddress(const mirror::Object* obj) const {
772  if (kMovingCollector && bump_pointer_space_->HasAddress(obj)) {
773    return true;
774  }
775  // TODO: This probably doesn't work for large objects.
776  return FindSpaceFromObject(obj, true) != nullptr;
777}
778
779bool Heap::IsLiveObjectLocked(const mirror::Object* obj, bool search_allocation_stack,
780                              bool search_live_stack, bool sorted) {
781  // Locks::heap_bitmap_lock_->AssertReaderHeld(Thread::Current());
782  if (obj == nullptr || UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
783    return false;
784  }
785  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
786  space::DiscontinuousSpace* d_space = NULL;
787  if (c_space != NULL) {
788    if (c_space->GetLiveBitmap()->Test(obj)) {
789      return true;
790    }
791  } else if (bump_pointer_space_->Contains(obj) || temp_space_->Contains(obj)) {
792      return true;
793  } else {
794    d_space = FindDiscontinuousSpaceFromObject(obj, true);
795    if (d_space != NULL) {
796      if (d_space->GetLiveObjects()->Test(obj)) {
797        return true;
798      }
799    }
800  }
801  // This is covering the allocation/live stack swapping that is done without mutators suspended.
802  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
803    if (i > 0) {
804      NanoSleep(MsToNs(10));
805    }
806    if (search_allocation_stack) {
807      if (sorted) {
808        if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
809          return true;
810        }
811      } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) {
812        return true;
813      }
814    }
815
816    if (search_live_stack) {
817      if (sorted) {
818        if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
819          return true;
820        }
821      } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
822        return true;
823      }
824    }
825  }
826  // We need to check the bitmaps again since there is a race where we mark something as live and
827  // then clear the stack containing it.
828  if (c_space != NULL) {
829    if (c_space->GetLiveBitmap()->Test(obj)) {
830      return true;
831    }
832  } else {
833    d_space = FindDiscontinuousSpaceFromObject(obj, true);
834    if (d_space != NULL && d_space->GetLiveObjects()->Test(obj)) {
835      return true;
836    }
837  }
838  return false;
839}
840
841void Heap::VerifyObjectImpl(const mirror::Object* obj) {
842  if (Thread::Current() == NULL ||
843      Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
844    return;
845  }
846  VerifyObjectBody(obj);
847}
848
849void Heap::DumpSpaces(std::ostream& stream) {
850  for (const auto& space : continuous_spaces_) {
851    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
852    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
853    stream << space << " " << *space << "\n";
854    if (live_bitmap != nullptr) {
855      stream << live_bitmap << " " << *live_bitmap << "\n";
856    }
857    if (mark_bitmap != nullptr) {
858      stream << mark_bitmap << " " << *mark_bitmap << "\n";
859    }
860  }
861  for (const auto& space : discontinuous_spaces_) {
862    stream << space << " " << *space << "\n";
863  }
864}
865
866void Heap::VerifyObjectBody(const mirror::Object* obj) {
867  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
868  // Ignore early dawn of the universe verifications.
869  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
870    return;
871  }
872  const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
873      mirror::Object::ClassOffset().Int32Value();
874  const mirror::Class* c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
875  if (UNLIKELY(c == NULL)) {
876    LOG(FATAL) << "Null class in object: " << obj;
877  } else if (UNLIKELY(!IsAligned<kObjectAlignment>(c))) {
878    LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
879  }
880  // Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
881  // Note: we don't use the accessors here as they have internal sanity checks
882  // that we don't want to run
883  raw_addr = reinterpret_cast<const byte*>(c) + mirror::Object::ClassOffset().Int32Value();
884  const mirror::Class* c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
885  raw_addr = reinterpret_cast<const byte*>(c_c) + mirror::Object::ClassOffset().Int32Value();
886  const mirror::Class* c_c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
887  CHECK_EQ(c_c, c_c_c);
888
889  if (verify_object_mode_ > kVerifyAllFast) {
890    // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the
891    //       heap_bitmap_lock_.
892    if (!IsLiveObjectLocked(obj)) {
893      DumpSpaces();
894      LOG(FATAL) << "Object is dead: " << obj;
895    }
896    if (!IsLiveObjectLocked(c)) {
897      LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
898    }
899  }
900}
901
902void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
903  DCHECK(obj != NULL);
904  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
905}
906
907void Heap::VerifyHeap() {
908  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
909  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
910}
911
912void Heap::RecordFree(int64_t freed_objects, int64_t freed_bytes) {
913  DCHECK_LE(freed_bytes, num_bytes_allocated_.Load());
914  num_bytes_allocated_.FetchAndSub(freed_bytes);
915  if (Runtime::Current()->HasStatsEnabled()) {
916    RuntimeStats* thread_stats = Thread::Current()->GetStats();
917    thread_stats->freed_objects += freed_objects;
918    thread_stats->freed_bytes += freed_bytes;
919    // TODO: Do this concurrently.
920    RuntimeStats* global_stats = Runtime::Current()->GetStats();
921    global_stats->freed_objects += freed_objects;
922    global_stats->freed_bytes += freed_bytes;
923  }
924}
925
926mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
927                                             size_t alloc_size, size_t* bytes_allocated,
928                                             mirror::Class** klass) {
929  mirror::Object* ptr = nullptr;
930  bool was_default_allocator = allocator == GetCurrentAllocator();
931  DCHECK(klass != nullptr);
932  SirtRef<mirror::Class> sirt_klass(self, *klass);
933  // The allocation failed. If the GC is running, block until it completes, and then retry the
934  // allocation.
935  collector::GcType last_gc = WaitForGcToComplete(self);
936  if (last_gc != collector::kGcTypeNone) {
937    // If we were the default allocator but the allocator changed while we were suspended,
938    // abort the allocation.
939    if (was_default_allocator && allocator != GetCurrentAllocator()) {
940      *klass = sirt_klass.get();
941      return nullptr;
942    }
943    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
944    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
945  }
946
947  // Loop through our different Gc types and try to Gc until we get enough free memory.
948  for (collector::GcType gc_type : gc_plan_) {
949    if (ptr != nullptr) {
950      break;
951    }
952    // Attempt to run the collector, if we succeed, re-try the allocation.
953    bool gc_ran =
954        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
955    if (was_default_allocator && allocator != GetCurrentAllocator()) {
956      *klass = sirt_klass.get();
957      return nullptr;
958    }
959    if (gc_ran) {
960      // Did we free sufficient memory for the allocation to succeed?
961      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
962    }
963  }
964  // Allocations have failed after GCs;  this is an exceptional state.
965  if (ptr == nullptr) {
966    // Try harder, growing the heap if necessary.
967    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
968  }
969  if (ptr == nullptr) {
970    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
971    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
972    // VM spec requires that all SoftReferences have been collected and cleared before throwing
973    // OOME.
974    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
975             << " allocation";
976    // TODO: Run finalization, but this may cause more allocations to occur.
977    // We don't need a WaitForGcToComplete here either.
978    DCHECK(!gc_plan_.empty());
979    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
980    if (was_default_allocator && allocator != GetCurrentAllocator()) {
981      *klass = sirt_klass.get();
982      return nullptr;
983    }
984    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
985    if (ptr == nullptr) {
986      ThrowOutOfMemoryError(self, alloc_size, false);
987    }
988  }
989  *klass = sirt_klass.get();
990  return ptr;
991}
992
993void Heap::SetTargetHeapUtilization(float target) {
994  DCHECK_GT(target, 0.0f);  // asserted in Java code
995  DCHECK_LT(target, 1.0f);
996  target_utilization_ = target;
997}
998
999size_t Heap::GetObjectsAllocated() const {
1000  size_t total = 0;
1001  for (space::AllocSpace* space : alloc_spaces_) {
1002    total += space->GetObjectsAllocated();
1003  }
1004  return total;
1005}
1006
1007size_t Heap::GetObjectsAllocatedEver() const {
1008  return GetObjectsFreedEver() + GetObjectsAllocated();
1009}
1010
1011size_t Heap::GetBytesAllocatedEver() const {
1012  return GetBytesFreedEver() + GetBytesAllocated();
1013}
1014
1015class InstanceCounter {
1016 public:
1017  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1018      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1019      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1020  }
1021
1022  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1023    for (size_t i = 0; i < classes_.size(); ++i) {
1024      const mirror::Class* instance_class = o->GetClass();
1025      if (use_is_assignable_from_) {
1026        if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) {
1027          ++counts_[i];
1028        }
1029      } else {
1030        if (instance_class == classes_[i]) {
1031          ++counts_[i];
1032        }
1033      }
1034    }
1035  }
1036
1037 private:
1038  const std::vector<mirror::Class*>& classes_;
1039  bool use_is_assignable_from_;
1040  uint64_t* const counts_;
1041
1042  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1043};
1044
1045void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1046                          uint64_t* counts) {
1047  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1048  // is empty, so the live bitmap is the only place we need to look.
1049  Thread* self = Thread::Current();
1050  self->TransitionFromRunnableToSuspended(kNative);
1051  CollectGarbage(false);
1052  self->TransitionFromSuspendedToRunnable();
1053
1054  InstanceCounter counter(classes, use_is_assignable_from, counts);
1055  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1056  GetLiveBitmap()->Visit(counter);
1057}
1058
1059class InstanceCollector {
1060 public:
1061  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1062      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1063      : class_(c), max_count_(max_count), instances_(instances) {
1064  }
1065
1066  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1067    const mirror::Class* instance_class = o->GetClass();
1068    if (instance_class == class_) {
1069      if (max_count_ == 0 || instances_.size() < max_count_) {
1070        instances_.push_back(const_cast<mirror::Object*>(o));
1071      }
1072    }
1073  }
1074
1075 private:
1076  mirror::Class* class_;
1077  uint32_t max_count_;
1078  std::vector<mirror::Object*>& instances_;
1079
1080  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1081};
1082
1083void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1084                        std::vector<mirror::Object*>& instances) {
1085  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1086  // is empty, so the live bitmap is the only place we need to look.
1087  Thread* self = Thread::Current();
1088  self->TransitionFromRunnableToSuspended(kNative);
1089  CollectGarbage(false);
1090  self->TransitionFromSuspendedToRunnable();
1091
1092  InstanceCollector collector(c, max_count, instances);
1093  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1094  GetLiveBitmap()->Visit(collector);
1095}
1096
1097class ReferringObjectsFinder {
1098 public:
1099  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1100                         std::vector<mirror::Object*>& referring_objects)
1101      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1102      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1103  }
1104
1105  // For bitmap Visit.
1106  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1107  // annotalysis on visitors.
1108  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1109    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true);
1110  }
1111
1112  // For MarkSweep::VisitObjectReferences.
1113  void operator()(mirror::Object* referrer, mirror::Object* object,
1114                  const MemberOffset&, bool) const {
1115    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1116      referring_objects_.push_back(referrer);
1117    }
1118  }
1119
1120 private:
1121  mirror::Object* object_;
1122  uint32_t max_count_;
1123  std::vector<mirror::Object*>& referring_objects_;
1124
1125  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1126};
1127
1128void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1129                               std::vector<mirror::Object*>& referring_objects) {
1130  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1131  // is empty, so the live bitmap is the only place we need to look.
1132  Thread* self = Thread::Current();
1133  self->TransitionFromRunnableToSuspended(kNative);
1134  CollectGarbage(false);
1135  self->TransitionFromSuspendedToRunnable();
1136
1137  ReferringObjectsFinder finder(o, max_count, referring_objects);
1138  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1139  GetLiveBitmap()->Visit(finder);
1140}
1141
1142void Heap::CollectGarbage(bool clear_soft_references) {
1143  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1144  // last GC will not have necessarily been cleared.
1145  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1146}
1147
1148void Heap::TransitionCollector(CollectorType collector_type) {
1149  if (collector_type == collector_type_) {
1150    return;
1151  }
1152  uint64_t start_time = NanoTime();
1153  int32_t before_size  = GetTotalMemory();
1154  int32_t before_allocated = num_bytes_allocated_.Load();
1155  ThreadList* tl = Runtime::Current()->GetThreadList();
1156  Thread* self = Thread::Current();
1157  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1158  Locks::mutator_lock_->AssertNotHeld(self);
1159  // Busy wait until we can GC (StartGC can fail if we have a non-zero gc_disable_count_, this
1160  // rarely occurs however).
1161  while (!StartGC(self)) {
1162    usleep(100);
1163  }
1164  tl->SuspendAll();
1165  switch (collector_type) {
1166    case kCollectorTypeSS: {
1167      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1168      CHECK(main_space_ != nullptr);
1169      Compact(temp_space_, main_space_);
1170      DCHECK(allocator_mem_map_.get() == nullptr);
1171      allocator_mem_map_.reset(main_space_->ReleaseMemMap());
1172      madvise(main_space_->Begin(), main_space_->Size(), MADV_DONTNEED);
1173      // RemoveSpace deletes the removed space.
1174      RemoveSpace(main_space_);
1175      break;
1176    }
1177    case kCollectorTypeMS:
1178      // Fall through.
1179    case kCollectorTypeCMS: {
1180      if (collector_type_ == kCollectorTypeSS) {
1181        // TODO: Use mem-map from temp space?
1182        MemMap* mem_map = allocator_mem_map_.release();
1183        CHECK(mem_map != nullptr);
1184        size_t initial_size = kDefaultInitialSize;
1185        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1186        CHECK(main_space_ == nullptr);
1187        if (kUseRosAlloc) {
1188          main_space_ =
1189              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1190                                                     initial_size, mem_map->Size(),
1191                                                     mem_map->Size(), low_memory_mode_);
1192        } else {
1193          main_space_ =
1194              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1195                                                     initial_size, mem_map->Size(),
1196                                                     mem_map->Size());
1197        }
1198        main_space_->SetFootprintLimit(main_space_->Capacity());
1199        AddSpace(main_space_);
1200        Compact(main_space_, bump_pointer_space_);
1201      }
1202      break;
1203    }
1204    default: {
1205      LOG(FATAL) << "Attempted to transition to invalid collector type";
1206      break;
1207    }
1208  }
1209  ChangeCollector(collector_type);
1210  tl->ResumeAll();
1211  // Can't call into java code with all threads suspended.
1212  EnqueueClearedReferences();
1213  uint64_t duration = NanoTime() - start_time;
1214  GrowForUtilization(collector::kGcTypeFull, duration);
1215  FinishGC(self, collector::kGcTypeFull);
1216  int32_t after_size = GetTotalMemory();
1217  int32_t delta_size = before_size - after_size;
1218  int32_t after_allocated = num_bytes_allocated_.Load();
1219  int32_t delta_allocated = before_allocated - after_allocated;
1220  const std::string saved_bytes_str =
1221      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1222  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1223      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1224      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1225      << PrettySize(delta_size) << " saved";
1226}
1227
1228void Heap::ChangeCollector(CollectorType collector_type) {
1229  // TODO: Only do this with all mutators suspended to avoid races.
1230  if (collector_type != collector_type_) {
1231    collector_type_ = collector_type;
1232    gc_plan_.clear();
1233    switch (collector_type_) {
1234      case kCollectorTypeSS: {
1235        concurrent_gc_ = false;
1236        gc_plan_.push_back(collector::kGcTypeFull);
1237        if (use_tlab_) {
1238          ChangeAllocator(kAllocatorTypeTLAB);
1239        } else {
1240          ChangeAllocator(kAllocatorTypeBumpPointer);
1241        }
1242        break;
1243      }
1244      case kCollectorTypeMS: {
1245        concurrent_gc_ = false;
1246        gc_plan_.push_back(collector::kGcTypeSticky);
1247        gc_plan_.push_back(collector::kGcTypePartial);
1248        gc_plan_.push_back(collector::kGcTypeFull);
1249        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1250        break;
1251      }
1252      case kCollectorTypeCMS: {
1253        concurrent_gc_ = true;
1254        gc_plan_.push_back(collector::kGcTypeSticky);
1255        gc_plan_.push_back(collector::kGcTypePartial);
1256        gc_plan_.push_back(collector::kGcTypeFull);
1257        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1258        break;
1259      }
1260      default: {
1261        LOG(FATAL) << "Unimplemented";
1262      }
1263    }
1264    if (concurrent_gc_) {
1265      concurrent_start_bytes_ =
1266          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1267    } else {
1268      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1269    }
1270  }
1271}
1272
1273static void MarkInBitmapCallback(mirror::Object* obj, void* arg) {
1274  reinterpret_cast<accounting::SpaceBitmap*>(arg)->Set(obj);
1275}
1276
1277// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1278class ZygoteCompactingCollector : public collector::SemiSpace {
1279 public:
1280  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, "zygote collector") {
1281  }
1282
1283  void BuildBins(space::ContinuousSpace* space) {
1284    bin_live_bitmap_ = space->GetLiveBitmap();
1285    bin_mark_bitmap_ = space->GetMarkBitmap();
1286    BinContext context;
1287    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1288    context.collector_ = this;
1289    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1290    // Note: This requires traversing the space in increasing order of object addresses.
1291    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1292    // Add the last bin which spans after the last object to the end of the space.
1293    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1294  }
1295
1296 private:
1297  struct BinContext {
1298    uintptr_t prev_;  // The end of the previous object.
1299    ZygoteCompactingCollector* collector_;
1300  };
1301  // Maps from bin sizes to locations.
1302  std::multimap<size_t, uintptr_t> bins_;
1303  // Live bitmap of the space which contains the bins.
1304  accounting::SpaceBitmap* bin_live_bitmap_;
1305  // Mark bitmap of the space which contains the bins.
1306  accounting::SpaceBitmap* bin_mark_bitmap_;
1307
1308  static void Callback(mirror::Object* obj, void* arg)
1309      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1310    DCHECK(arg != nullptr);
1311    BinContext* context = reinterpret_cast<BinContext*>(arg);
1312    ZygoteCompactingCollector* collector = context->collector_;
1313    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1314    size_t bin_size = object_addr - context->prev_;
1315    // Add the bin consisting of the end of the previous object to the start of the current object.
1316    collector->AddBin(bin_size, context->prev_);
1317    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1318  }
1319
1320  void AddBin(size_t size, uintptr_t position) {
1321    if (size != 0) {
1322      bins_.insert(std::make_pair(size, position));
1323    }
1324  }
1325
1326  virtual bool ShouldSweepSpace(space::MallocSpace* space) const {
1327    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1328    // allocator.
1329    return false;
1330  }
1331
1332  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1333      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1334    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1335    mirror::Object* forward_address;
1336    // Find the smallest bin which we can move obj in.
1337    auto it = bins_.lower_bound(object_size);
1338    if (it == bins_.end()) {
1339      // No available space in the bins, place it in the target space instead (grows the zygote
1340      // space).
1341      size_t bytes_allocated;
1342      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated);
1343      if (to_space_live_bitmap_ != nullptr) {
1344        to_space_live_bitmap_->Set(forward_address);
1345      }
1346    } else {
1347      size_t size = it->first;
1348      uintptr_t pos = it->second;
1349      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1350      forward_address = reinterpret_cast<mirror::Object*>(pos);
1351      // Set the live and mark bits so that sweeping system weaks works properly.
1352      bin_live_bitmap_->Set(forward_address);
1353      bin_mark_bitmap_->Set(forward_address);
1354      DCHECK_GE(size, object_size);
1355      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1356    }
1357    // Copy the object over to its new location.
1358    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1359    return forward_address;
1360  }
1361};
1362
1363void Heap::PreZygoteFork() {
1364  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1365  Thread* self = Thread::Current();
1366  MutexLock mu(self, zygote_creation_lock_);
1367  // Try to see if we have any Zygote spaces.
1368  if (have_zygote_space_) {
1369    return;
1370  }
1371  VLOG(heap) << "Starting PreZygoteFork";
1372  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1373  // Trim the pages at the end of the non moving space.
1374  non_moving_space_->Trim();
1375  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1376  // Change the collector to the post zygote one.
1377  ChangeCollector(post_zygote_collector_type_);
1378  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1379  if (semi_space_collector_ != nullptr) {
1380    ZygoteCompactingCollector zygote_collector(this);
1381    zygote_collector.BuildBins(non_moving_space_);
1382    // Create a new bump pointer space which we will compact into.
1383    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1384                                         non_moving_space_->Limit());
1385    // Compact the bump pointer space to a new zygote bump pointer space.
1386    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1387    zygote_collector.SetFromSpace(bump_pointer_space_);
1388    zygote_collector.SetToSpace(&target_space);
1389    zygote_collector.Run(false);
1390    CHECK(temp_space_->IsEmpty());
1391    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1392    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1393    // Update the end and write out image.
1394    non_moving_space_->SetEnd(target_space.End());
1395    non_moving_space_->SetLimit(target_space.Limit());
1396    accounting::SpaceBitmap* bitmap = non_moving_space_->GetLiveBitmap();
1397    // Record the allocations in the bitmap.
1398    VLOG(heap) << "Zygote size " << non_moving_space_->Size() << " bytes";
1399    target_space.Walk(MarkInBitmapCallback, bitmap);
1400  }
1401  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1402  // the remaining available heap memory.
1403  space::MallocSpace* zygote_space = non_moving_space_;
1404  main_space_ = non_moving_space_->CreateZygoteSpace("alloc space", low_memory_mode_);
1405  if (main_space_->IsRosAllocSpace()) {
1406    rosalloc_space_ = main_space_->AsRosAllocSpace();
1407  } else if (main_space_->IsDlMallocSpace()) {
1408    dlmalloc_space_ = main_space_->AsDlMallocSpace();
1409  }
1410  main_space_->SetFootprintLimit(main_space_->Capacity());
1411  // Change the GC retention policy of the zygote space to only collect when full.
1412  zygote_space->SetGcRetentionPolicy(space::kGcRetentionPolicyFullCollect);
1413  AddSpace(main_space_);
1414  have_zygote_space_ = true;
1415  zygote_space->InvalidateAllocator();
1416  // Create the zygote space mod union table.
1417  accounting::ModUnionTable* mod_union_table =
1418      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1419  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1420  AddModUnionTable(mod_union_table);
1421  // Reset the cumulative loggers since we now have a few additional timing phases.
1422  for (const auto& collector : garbage_collectors_) {
1423    collector->ResetCumulativeStatistics();
1424  }
1425  // Can't use RosAlloc for non moving space due to thread local buffers.
1426  // TODO: Non limited space for non-movable objects?
1427  space::MallocSpace* new_non_moving_space
1428      = space::DlMallocSpace::Create("Non moving dlmalloc space", 2 * MB, 64 * MB, 64 * MB,
1429                                     nullptr);
1430  AddSpace(new_non_moving_space, false);
1431  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1432  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1433  non_moving_space_ = new_non_moving_space;
1434}
1435
1436void Heap::FlushAllocStack() {
1437  MarkAllocStackAsLive(allocation_stack_.get());
1438  allocation_stack_->Reset();
1439}
1440
1441void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1442                          accounting::SpaceBitmap* bitmap2,
1443                          accounting::ObjectSet* large_objects,
1444                          accounting::ObjectStack* stack) {
1445  DCHECK(bitmap1 != nullptr);
1446  DCHECK(bitmap2 != nullptr);
1447  mirror::Object** limit = stack->End();
1448  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1449    const mirror::Object* obj = *it;
1450    DCHECK(obj != nullptr);
1451    if (bitmap1->HasAddress(obj)) {
1452      bitmap1->Set(obj);
1453    } else if (bitmap2->HasAddress(obj)) {
1454      bitmap2->Set(obj);
1455    } else {
1456      large_objects->Set(obj);
1457    }
1458  }
1459}
1460
1461const char* PrettyCause(GcCause cause) {
1462  switch (cause) {
1463    case kGcCauseForAlloc: return "Alloc";
1464    case kGcCauseBackground: return "Background";
1465    case kGcCauseExplicit: return "Explicit";
1466    default:
1467      LOG(FATAL) << "Unreachable";
1468  }
1469  return "";
1470}
1471
1472void Heap::SwapSemiSpaces() {
1473  // Swap the spaces so we allocate into the space which we just evacuated.
1474  std::swap(bump_pointer_space_, temp_space_);
1475}
1476
1477void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1478                   space::ContinuousMemMapAllocSpace* source_space) {
1479  CHECK(kMovingCollector);
1480  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1481  if (target_space != source_space) {
1482    semi_space_collector_->SetFromSpace(source_space);
1483    semi_space_collector_->SetToSpace(target_space);
1484    semi_space_collector_->Run(false);
1485  }
1486}
1487
1488collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1489                                               bool clear_soft_references) {
1490  Thread* self = Thread::Current();
1491  Runtime* runtime = Runtime::Current();
1492  // If the heap can't run the GC, silently fail and return that no GC was run.
1493  switch (gc_type) {
1494    case collector::kGcTypePartial: {
1495      if (!have_zygote_space_) {
1496        return collector::kGcTypeNone;
1497      }
1498      break;
1499    }
1500    default: {
1501      // Other GC types don't have any special cases which makes them not runnable. The main case
1502      // here is full GC.
1503    }
1504  }
1505  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1506  Locks::mutator_lock_->AssertNotHeld(self);
1507  if (self->IsHandlingStackOverflow()) {
1508    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1509  }
1510  gc_complete_lock_->AssertNotHeld(self);
1511  if (!StartGC(self)) {
1512    return collector::kGcTypeNone;
1513  }
1514  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1515    ++runtime->GetStats()->gc_for_alloc_count;
1516    ++self->GetStats()->gc_for_alloc_count;
1517  }
1518  uint64_t gc_start_time_ns = NanoTime();
1519  uint64_t gc_start_size = GetBytesAllocated();
1520  // Approximate allocation rate in bytes / second.
1521  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1522  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1523  if (LIKELY(ms_delta != 0)) {
1524    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1525    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1526  }
1527
1528  DCHECK_LT(gc_type, collector::kGcTypeMax);
1529  DCHECK_NE(gc_type, collector::kGcTypeNone);
1530
1531  collector::GarbageCollector* collector = nullptr;
1532  // TODO: Clean this up.
1533  if (collector_type_ == kCollectorTypeSS) {
1534    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1535           current_allocator_ == kAllocatorTypeTLAB);
1536    gc_type = semi_space_collector_->GetGcType();
1537    CHECK(temp_space_->IsEmpty());
1538    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1539    semi_space_collector_->SetToSpace(temp_space_);
1540    mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1541    collector = semi_space_collector_;
1542    gc_type = collector::kGcTypeFull;
1543  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1544      current_allocator_ == kAllocatorTypeDlMalloc) {
1545    for (const auto& cur_collector : garbage_collectors_) {
1546      if (cur_collector->IsConcurrent() == concurrent_gc_ &&
1547          cur_collector->GetGcType() == gc_type) {
1548        collector = cur_collector;
1549        break;
1550      }
1551    }
1552  } else {
1553    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1554  }
1555  CHECK(collector != nullptr)
1556      << "Could not find garbage collector with concurrent=" << concurrent_gc_
1557      << " and type=" << gc_type;
1558
1559  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1560
1561  collector->Run(clear_soft_references);
1562  total_objects_freed_ever_ += collector->GetFreedObjects();
1563  total_bytes_freed_ever_ += collector->GetFreedBytes();
1564
1565  // Enqueue cleared references.
1566  Locks::mutator_lock_->AssertNotHeld(self);
1567  EnqueueClearedReferences();
1568
1569  // Grow the heap so that we know when to perform the next GC.
1570  GrowForUtilization(gc_type, collector->GetDurationNs());
1571
1572  if (CareAboutPauseTimes()) {
1573    const size_t duration = collector->GetDurationNs();
1574    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1575    // GC for alloc pauses the allocating thread, so consider it as a pause.
1576    bool was_slow = duration > long_gc_log_threshold_ ||
1577        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1578    if (!was_slow) {
1579      for (uint64_t pause : pauses) {
1580        was_slow = was_slow || pause > long_pause_log_threshold_;
1581      }
1582    }
1583    if (was_slow) {
1584        const size_t percent_free = GetPercentFree();
1585        const size_t current_heap_size = GetBytesAllocated();
1586        const size_t total_memory = GetTotalMemory();
1587        std::ostringstream pause_string;
1588        for (size_t i = 0; i < pauses.size(); ++i) {
1589            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1590                         << ((i != pauses.size() - 1) ? ", " : "");
1591        }
1592        LOG(INFO) << gc_cause << " " << collector->GetName()
1593                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1594                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1595                  << collector->GetFreedLargeObjects() << "("
1596                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1597                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1598                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1599                  << " total " << PrettyDuration((duration / 1000) * 1000);
1600        if (VLOG_IS_ON(heap)) {
1601            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1602        }
1603    }
1604  }
1605  FinishGC(self, gc_type);
1606  ATRACE_END();
1607
1608  // Inform DDMS that a GC completed.
1609  Dbg::GcDidFinish();
1610  return gc_type;
1611}
1612
1613bool Heap::StartGC(Thread* self) {
1614  MutexLock mu(self, *gc_complete_lock_);
1615  // Ensure there is only one GC at a time.
1616  WaitForGcToCompleteLocked(self);
1617  // TODO: if another thread beat this one to do the GC, perhaps we should just return here?
1618  //       Not doing at the moment to ensure soft references are cleared.
1619  // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1620  if (gc_disable_count_ != 0) {
1621    LOG(WARNING) << "Skipping GC due to disable count " << gc_disable_count_;
1622    return false;
1623  }
1624  is_gc_running_ = true;
1625  return true;
1626}
1627
1628void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1629  MutexLock mu(self, *gc_complete_lock_);
1630  is_gc_running_ = false;
1631  last_gc_type_ = gc_type;
1632  // Wake anyone who may have been waiting for the GC to complete.
1633  gc_complete_cond_->Broadcast(self);
1634}
1635
1636static mirror::Object* RootMatchesObjectVisitor(mirror::Object* root, void* arg) {
1637  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1638  if (root == obj) {
1639    LOG(INFO) << "Object " << obj << " is a root";
1640  }
1641  return root;
1642}
1643
1644class ScanVisitor {
1645 public:
1646  void operator()(const mirror::Object* obj) const {
1647    LOG(ERROR) << "Would have rescanned object " << obj;
1648  }
1649};
1650
1651// Verify a reference from an object.
1652class VerifyReferenceVisitor {
1653 public:
1654  explicit VerifyReferenceVisitor(Heap* heap)
1655      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1656      : heap_(heap), failed_(false) {}
1657
1658  bool Failed() const {
1659    return failed_;
1660  }
1661
1662  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1663  // analysis on visitors.
1664  void operator()(const mirror::Object* obj, const mirror::Object* ref,
1665                  const MemberOffset& offset, bool /* is_static */) const
1666      NO_THREAD_SAFETY_ANALYSIS {
1667    // Verify that the reference is live.
1668    if (UNLIKELY(ref != NULL && !IsLive(ref))) {
1669      accounting::CardTable* card_table = heap_->GetCardTable();
1670      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1671      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1672      if (!failed_) {
1673        // Print message on only on first failure to prevent spam.
1674        LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1675        failed_ = true;
1676      }
1677      if (obj != nullptr) {
1678        byte* card_addr = card_table->CardFromAddr(obj);
1679        LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1680                   << offset << "\n card value = " << static_cast<int>(*card_addr);
1681        if (heap_->IsValidObjectAddress(obj->GetClass())) {
1682          LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1683        } else {
1684          LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1685        }
1686
1687        // Attmept to find the class inside of the recently freed objects.
1688        space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1689        if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1690          space::MallocSpace* space = ref_space->AsMallocSpace();
1691          mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1692          if (ref_class != nullptr) {
1693            LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1694                       << PrettyClass(ref_class);
1695          } else {
1696            LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1697          }
1698        }
1699
1700        if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1701            ref->GetClass()->IsClass()) {
1702          LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1703        } else {
1704          LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1705                     << ") is not a valid heap address";
1706        }
1707
1708        card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1709        void* cover_begin = card_table->AddrFromCard(card_addr);
1710        void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1711            accounting::CardTable::kCardSize);
1712        LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1713            << "-" << cover_end;
1714        accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1715
1716        // Print out how the object is live.
1717        if (bitmap != NULL && bitmap->Test(obj)) {
1718          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1719        }
1720        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1721          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1722        }
1723        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1724          LOG(ERROR) << "Object " << obj << " found in live stack";
1725        }
1726        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1727          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1728        }
1729        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1730          LOG(ERROR) << "Ref " << ref << " found in live stack";
1731        }
1732        // Attempt to see if the card table missed the reference.
1733        ScanVisitor scan_visitor;
1734        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1735        card_table->Scan(bitmap, byte_cover_begin,
1736                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1737
1738        // Search to see if any of the roots reference our object.
1739        void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1740        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1741
1742        // Search to see if any of the roots reference our reference.
1743        arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
1744        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1745      } else {
1746        LOG(ERROR) << "Root references dead object " << ref << "\nRef type " << PrettyTypeOf(ref);
1747      }
1748    }
1749  }
1750
1751  bool IsLive(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1752    return heap_->IsLiveObjectLocked(obj, true, false, true);
1753  }
1754
1755  static mirror::Object* VerifyRoots(mirror::Object* root, void* arg) {
1756    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
1757    (*visitor)(nullptr, root, MemberOffset(0), true);
1758    return root;
1759  }
1760
1761 private:
1762  Heap* const heap_;
1763  mutable bool failed_;
1764};
1765
1766// Verify all references within an object, for use with HeapBitmap::Visit.
1767class VerifyObjectVisitor {
1768 public:
1769  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
1770
1771  void operator()(mirror::Object* obj) const
1772      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1773    // Note: we are verifying the references in obj but not obj itself, this is because obj must
1774    // be live or else how did we find it in the live bitmap?
1775    VerifyReferenceVisitor visitor(heap_);
1776    // The class doesn't count as a reference but we should verify it anyways.
1777    collector::MarkSweep::VisitObjectReferences(obj, visitor, true);
1778    if (obj->GetClass()->IsReferenceClass()) {
1779      visitor(obj, heap_->GetReferenceReferent(obj), MemberOffset(0), false);
1780    }
1781    failed_ = failed_ || visitor.Failed();
1782  }
1783
1784  static void VisitCallback(mirror::Object* obj, void* arg)
1785      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1786    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
1787    visitor->operator()(obj);
1788  }
1789
1790  bool Failed() const {
1791    return failed_;
1792  }
1793
1794 private:
1795  Heap* const heap_;
1796  mutable bool failed_;
1797};
1798
1799// Must do this with mutators suspended since we are directly accessing the allocation stacks.
1800bool Heap::VerifyHeapReferences() {
1801  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1802  // Lets sort our allocation stacks so that we can efficiently binary search them.
1803  allocation_stack_->Sort();
1804  live_stack_->Sort();
1805  VerifyObjectVisitor visitor(this);
1806  // Verify objects in the allocation stack since these will be objects which were:
1807  // 1. Allocated prior to the GC (pre GC verification).
1808  // 2. Allocated during the GC (pre sweep GC verification).
1809  // We don't want to verify the objects in the live stack since they themselves may be
1810  // pointing to dead objects if they are not reachable.
1811  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
1812  // Verify the roots:
1813  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false);
1814  if (visitor.Failed()) {
1815    // Dump mod-union tables.
1816    for (const auto& table_pair : mod_union_tables_) {
1817      accounting::ModUnionTable* mod_union_table = table_pair.second;
1818      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
1819    }
1820    DumpSpaces();
1821    return false;
1822  }
1823  return true;
1824}
1825
1826class VerifyReferenceCardVisitor {
1827 public:
1828  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
1829      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
1830                            Locks::heap_bitmap_lock_)
1831      : heap_(heap), failed_(failed) {
1832  }
1833
1834  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1835  // annotalysis on visitors.
1836  void operator()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset,
1837                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1838    // Filter out class references since changing an object's class does not mark the card as dirty.
1839    // Also handles large objects, since the only reference they hold is a class reference.
1840    if (ref != NULL && !ref->IsClass()) {
1841      accounting::CardTable* card_table = heap_->GetCardTable();
1842      // If the object is not dirty and it is referencing something in the live stack other than
1843      // class, then it must be on a dirty card.
1844      if (!card_table->AddrIsInCardTable(obj)) {
1845        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
1846        *failed_ = true;
1847      } else if (!card_table->IsDirty(obj)) {
1848        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
1849        // kCardDirty - 1 if it didnt get touched since we aged it.
1850        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1851        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1852          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1853            LOG(ERROR) << "Object " << obj << " found in live stack";
1854          }
1855          if (heap_->GetLiveBitmap()->Test(obj)) {
1856            LOG(ERROR) << "Object " << obj << " found in live bitmap";
1857          }
1858          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
1859                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
1860
1861          // Print which field of the object is dead.
1862          if (!obj->IsObjectArray()) {
1863            const mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1864            CHECK(klass != NULL);
1865            const mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
1866                                                                            : klass->GetIFields();
1867            CHECK(fields != NULL);
1868            for (int32_t i = 0; i < fields->GetLength(); ++i) {
1869              const mirror::ArtField* cur = fields->Get(i);
1870              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1871                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
1872                          << PrettyField(cur);
1873                break;
1874              }
1875            }
1876          } else {
1877            const mirror::ObjectArray<mirror::Object>* object_array =
1878                obj->AsObjectArray<mirror::Object>();
1879            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
1880              if (object_array->Get(i) == ref) {
1881                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
1882              }
1883            }
1884          }
1885
1886          *failed_ = true;
1887        }
1888      }
1889    }
1890  }
1891
1892 private:
1893  Heap* const heap_;
1894  bool* const failed_;
1895};
1896
1897class VerifyLiveStackReferences {
1898 public:
1899  explicit VerifyLiveStackReferences(Heap* heap)
1900      : heap_(heap),
1901        failed_(false) {}
1902
1903  void operator()(mirror::Object* obj) const
1904      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1905    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
1906    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true);
1907  }
1908
1909  bool Failed() const {
1910    return failed_;
1911  }
1912
1913 private:
1914  Heap* const heap_;
1915  bool failed_;
1916};
1917
1918bool Heap::VerifyMissingCardMarks() {
1919  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1920
1921  // We need to sort the live stack since we binary search it.
1922  live_stack_->Sort();
1923  VerifyLiveStackReferences visitor(this);
1924  GetLiveBitmap()->Visit(visitor);
1925
1926  // We can verify objects in the live stack since none of these should reference dead objects.
1927  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
1928    visitor(*it);
1929  }
1930
1931  if (visitor.Failed()) {
1932    DumpSpaces();
1933    return false;
1934  }
1935  return true;
1936}
1937
1938void Heap::SwapStacks() {
1939  allocation_stack_.swap(live_stack_);
1940}
1941
1942accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
1943  auto it = mod_union_tables_.find(space);
1944  if (it == mod_union_tables_.end()) {
1945    return nullptr;
1946  }
1947  return it->second;
1948}
1949
1950void Heap::ProcessCards(TimingLogger& timings) {
1951  // Clear cards and keep track of cards cleared in the mod-union table.
1952  for (const auto& space : continuous_spaces_) {
1953    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
1954    if (table != nullptr) {
1955      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
1956          "ImageModUnionClearCards";
1957      TimingLogger::ScopedSplit split(name, &timings);
1958      table->ClearCards();
1959    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
1960      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
1961      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
1962      // were dirty before the GC started.
1963      // TODO: Don't need to use atomic.
1964      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
1965      // roots and then we scan / update mod union tables after. We will always scan either card.//
1966      // If we end up with the non aged card, we scan it it in the pause.
1967      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
1968    }
1969  }
1970}
1971
1972static mirror::Object* IdentityCallback(mirror::Object* obj, void*) {
1973  return obj;
1974}
1975
1976void Heap::PreGcVerification(collector::GarbageCollector* gc) {
1977  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1978  Thread* self = Thread::Current();
1979
1980  if (verify_pre_gc_heap_) {
1981    thread_list->SuspendAll();
1982    {
1983      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1984      if (!VerifyHeapReferences()) {
1985        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
1986      }
1987    }
1988    thread_list->ResumeAll();
1989  }
1990
1991  // Check that all objects which reference things in the live stack are on dirty cards.
1992  if (verify_missing_card_marks_) {
1993    thread_list->SuspendAll();
1994    {
1995      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1996      SwapStacks();
1997      // Sort the live stack so that we can quickly binary search it later.
1998      if (!VerifyMissingCardMarks()) {
1999        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2000      }
2001      SwapStacks();
2002    }
2003    thread_list->ResumeAll();
2004  }
2005
2006  if (verify_mod_union_table_) {
2007    thread_list->SuspendAll();
2008    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2009    for (const auto& table_pair : mod_union_tables_) {
2010      accounting::ModUnionTable* mod_union_table = table_pair.second;
2011      mod_union_table->UpdateAndMarkReferences(IdentityCallback, nullptr);
2012      mod_union_table->Verify();
2013    }
2014    thread_list->ResumeAll();
2015  }
2016}
2017
2018void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2019  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2020  // reachable objects.
2021  if (verify_post_gc_heap_) {
2022    Thread* self = Thread::Current();
2023    CHECK_NE(self->GetState(), kRunnable);
2024    {
2025      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2026      // Swapping bound bitmaps does nothing.
2027      gc->SwapBitmaps();
2028      if (!VerifyHeapReferences()) {
2029        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2030      }
2031      gc->SwapBitmaps();
2032    }
2033  }
2034}
2035
2036void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2037  if (verify_system_weaks_) {
2038    Thread* self = Thread::Current();
2039    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2040    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2041    mark_sweep->VerifySystemWeaks();
2042  }
2043}
2044
2045collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2046  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2047  MutexLock mu(self, *gc_complete_lock_);
2048  return WaitForGcToCompleteLocked(self);
2049}
2050
2051collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2052  collector::GcType last_gc_type = collector::kGcTypeNone;
2053  uint64_t wait_start = NanoTime();
2054  while (is_gc_running_) {
2055    ATRACE_BEGIN("GC: Wait For Completion");
2056    // We must wait, change thread state then sleep on gc_complete_cond_;
2057    gc_complete_cond_->Wait(self);
2058    last_gc_type = last_gc_type_;
2059    ATRACE_END();
2060  }
2061  uint64_t wait_time = NanoTime() - wait_start;
2062  total_wait_time_ += wait_time;
2063  if (wait_time > long_pause_log_threshold_) {
2064    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2065  }
2066  return last_gc_type;
2067}
2068
2069void Heap::DumpForSigQuit(std::ostream& os) {
2070  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2071     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2072  DumpGcPerformanceInfo(os);
2073}
2074
2075size_t Heap::GetPercentFree() {
2076  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2077}
2078
2079void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2080  if (max_allowed_footprint > GetMaxMemory()) {
2081    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2082             << PrettySize(GetMaxMemory());
2083    max_allowed_footprint = GetMaxMemory();
2084  }
2085  max_allowed_footprint_ = max_allowed_footprint;
2086}
2087
2088bool Heap::IsMovableObject(const mirror::Object* obj) const {
2089  if (kMovingCollector) {
2090    DCHECK(!IsInTempSpace(obj));
2091    if (bump_pointer_space_->HasAddress(obj)) {
2092      return true;
2093    }
2094    if (main_space_ != nullptr && main_space_->HasAddress(obj)) {
2095      return true;
2096    }
2097  }
2098  return false;
2099}
2100
2101bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2102  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2103    return true;
2104  }
2105  return false;
2106}
2107
2108void Heap::UpdateMaxNativeFootprint() {
2109  size_t native_size = native_bytes_allocated_;
2110  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2111  size_t target_size = native_size / GetTargetHeapUtilization();
2112  if (target_size > native_size + max_free_) {
2113    target_size = native_size + max_free_;
2114  } else if (target_size < native_size + min_free_) {
2115    target_size = native_size + min_free_;
2116  }
2117  native_footprint_gc_watermark_ = target_size;
2118  native_footprint_limit_ = 2 * target_size - native_size;
2119}
2120
2121void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2122  // We know what our utilization is at this moment.
2123  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2124  const size_t bytes_allocated = GetBytesAllocated();
2125  last_gc_size_ = bytes_allocated;
2126  last_gc_time_ns_ = NanoTime();
2127  size_t target_size;
2128  if (gc_type != collector::kGcTypeSticky) {
2129    // Grow the heap for non sticky GC.
2130    target_size = bytes_allocated / GetTargetHeapUtilization();
2131    if (target_size > bytes_allocated + max_free_) {
2132      target_size = bytes_allocated + max_free_;
2133    } else if (target_size < bytes_allocated + min_free_) {
2134      target_size = bytes_allocated + min_free_;
2135    }
2136    native_need_to_run_finalization_ = true;
2137    next_gc_type_ = collector::kGcTypeSticky;
2138  } else {
2139    // Based on how close the current heap size is to the target size, decide
2140    // whether or not to do a partial or sticky GC next.
2141    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2142      next_gc_type_ = collector::kGcTypeSticky;
2143    } else {
2144      next_gc_type_ = collector::kGcTypePartial;
2145    }
2146    // If we have freed enough memory, shrink the heap back down.
2147    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2148      target_size = bytes_allocated + max_free_;
2149    } else {
2150      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2151    }
2152  }
2153  if (!ignore_max_footprint_) {
2154    SetIdealFootprint(target_size);
2155    if (concurrent_gc_) {
2156      // Calculate when to perform the next ConcurrentGC.
2157      // Calculate the estimated GC duration.
2158      double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2159      // Estimate how many remaining bytes we will have when we need to start the next GC.
2160      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2161      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2162      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2163        // A never going to happen situation that from the estimated allocation rate we will exceed
2164        // the applications entire footprint with the given estimated allocation rate. Schedule
2165        // another GC straight away.
2166        concurrent_start_bytes_ = bytes_allocated;
2167      } else {
2168        // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2169        // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2170        // right away.
2171        concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
2172                                           bytes_allocated);
2173      }
2174      DCHECK_LE(concurrent_start_bytes_, max_allowed_footprint_);
2175      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2176    }
2177  }
2178}
2179
2180void Heap::ClearGrowthLimit() {
2181  growth_limit_ = capacity_;
2182  non_moving_space_->ClearGrowthLimit();
2183}
2184
2185void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
2186                               MemberOffset reference_queue_offset,
2187                               MemberOffset reference_queueNext_offset,
2188                               MemberOffset reference_pendingNext_offset,
2189                               MemberOffset finalizer_reference_zombie_offset) {
2190  reference_referent_offset_ = reference_referent_offset;
2191  reference_queue_offset_ = reference_queue_offset;
2192  reference_queueNext_offset_ = reference_queueNext_offset;
2193  reference_pendingNext_offset_ = reference_pendingNext_offset;
2194  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
2195  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2196  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
2197  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
2198  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
2199  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
2200}
2201
2202void Heap::SetReferenceReferent(mirror::Object* reference, mirror::Object* referent) {
2203  DCHECK(reference != NULL);
2204  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2205  reference->SetFieldObject(reference_referent_offset_, referent, true);
2206}
2207
2208mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) {
2209  DCHECK(reference != NULL);
2210  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2211  return reference->GetFieldObject<mirror::Object*>(reference_referent_offset_, true);
2212}
2213
2214void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2215  ScopedObjectAccess soa(self);
2216  JValue result;
2217  ArgArray arg_array(NULL, 0);
2218  arg_array.Append(reinterpret_cast<uint32_t>(object));
2219  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
2220      arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2221}
2222
2223void Heap::EnqueueClearedReferences() {
2224  if (!cleared_references_.IsEmpty()) {
2225    // When a runtime isn't started there are no reference queues to care about so ignore.
2226    if (LIKELY(Runtime::Current()->IsStarted())) {
2227      ScopedObjectAccess soa(Thread::Current());
2228      JValue result;
2229      ArgArray arg_array(NULL, 0);
2230      arg_array.Append(reinterpret_cast<uint32_t>(cleared_references_.GetList()));
2231      soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
2232          arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2233    }
2234    cleared_references_.Clear();
2235  }
2236}
2237
2238void Heap::RequestConcurrentGC(Thread* self) {
2239  // Make sure that we can do a concurrent GC.
2240  Runtime* runtime = Runtime::Current();
2241  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2242      self->IsHandlingStackOverflow()) {
2243    return;
2244  }
2245  // We already have a request pending, no reason to start more until we update
2246  // concurrent_start_bytes_.
2247  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2248  JNIEnv* env = self->GetJniEnv();
2249  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2250  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2251  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2252                            WellKnownClasses::java_lang_Daemons_requestGC);
2253  CHECK(!env->ExceptionCheck());
2254}
2255
2256void Heap::ConcurrentGC(Thread* self) {
2257  if (Runtime::Current()->IsShuttingDown(self)) {
2258    return;
2259  }
2260  // Wait for any GCs currently running to finish.
2261  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2262    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2263    // instead. E.g. can't do partial, so do full instead.
2264    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2265        collector::kGcTypeNone) {
2266      for (collector::GcType gc_type : gc_plan_) {
2267        // Attempt to run the collector, if we succeed, we are done.
2268        if (gc_type > next_gc_type_ &&
2269            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2270          break;
2271        }
2272      }
2273    }
2274  }
2275}
2276
2277void Heap::RequestHeapTrim() {
2278  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2279  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2280  // a space it will hold its lock and can become a cause of jank.
2281  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2282  // forking.
2283
2284  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2285  // because that only marks object heads, so a large array looks like lots of empty space. We
2286  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2287  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2288  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2289  // not how much use we're making of those pages.
2290  uint64_t ms_time = MilliTime();
2291  // Don't bother trimming the alloc space if a heap trim occurred in the last two seconds.
2292  if (ms_time - last_trim_time_ms_ < 2 * 1000) {
2293    return;
2294  }
2295
2296  Thread* self = Thread::Current();
2297  Runtime* runtime = Runtime::Current();
2298  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2299    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2300    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2301    // as we don't hold the lock while requesting the trim).
2302    return;
2303  }
2304
2305  last_trim_time_ms_ = ms_time;
2306
2307  // Trim only if we do not currently care about pause times.
2308  if (!CareAboutPauseTimes()) {
2309    JNIEnv* env = self->GetJniEnv();
2310    DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
2311    DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
2312    env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2313                              WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2314    CHECK(!env->ExceptionCheck());
2315  }
2316}
2317
2318void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2319  if (rosalloc_space_ != nullptr) {
2320    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2321  }
2322  if (bump_pointer_space_ != nullptr) {
2323    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2324  }
2325}
2326
2327void Heap::RevokeAllThreadLocalBuffers() {
2328  if (rosalloc_space_ != nullptr) {
2329    rosalloc_space_->RevokeAllThreadLocalBuffers();
2330  }
2331  if (bump_pointer_space_ != nullptr) {
2332    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2333  }
2334}
2335
2336bool Heap::IsGCRequestPending() const {
2337  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2338}
2339
2340void Heap::RunFinalization(JNIEnv* env) {
2341  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2342  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2343    CHECK(WellKnownClasses::java_lang_System != nullptr);
2344    WellKnownClasses::java_lang_System_runFinalization =
2345        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2346    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2347  }
2348  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2349                            WellKnownClasses::java_lang_System_runFinalization);
2350}
2351
2352void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2353  Thread* self = ThreadForEnv(env);
2354  if (native_need_to_run_finalization_) {
2355    RunFinalization(env);
2356    UpdateMaxNativeFootprint();
2357    native_need_to_run_finalization_ = false;
2358  }
2359  // Total number of native bytes allocated.
2360  native_bytes_allocated_.FetchAndAdd(bytes);
2361  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2362    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2363        collector::kGcTypeFull;
2364
2365    // The second watermark is higher than the gc watermark. If you hit this it means you are
2366    // allocating native objects faster than the GC can keep up with.
2367    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2368      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2369        // Just finished a GC, attempt to run finalizers.
2370        RunFinalization(env);
2371        CHECK(!env->ExceptionCheck());
2372      }
2373      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2374      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2375        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2376        RunFinalization(env);
2377        native_need_to_run_finalization_ = false;
2378        CHECK(!env->ExceptionCheck());
2379      }
2380      // We have just run finalizers, update the native watermark since it is very likely that
2381      // finalizers released native managed allocations.
2382      UpdateMaxNativeFootprint();
2383    } else if (!IsGCRequestPending()) {
2384      if (concurrent_gc_) {
2385        RequestConcurrentGC(self);
2386      } else {
2387        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2388      }
2389    }
2390  }
2391}
2392
2393void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2394  int expected_size, new_size;
2395  do {
2396    expected_size = native_bytes_allocated_.Load();
2397    new_size = expected_size - bytes;
2398    if (UNLIKELY(new_size < 0)) {
2399      ScopedObjectAccess soa(env);
2400      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2401                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2402                                 "registered as allocated", bytes, expected_size).c_str());
2403      break;
2404    }
2405  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2406}
2407
2408int64_t Heap::GetTotalMemory() const {
2409  int64_t ret = 0;
2410  for (const auto& space : continuous_spaces_) {
2411    // Currently don't include the image space.
2412    if (!space->IsImageSpace()) {
2413      ret += space->Size();
2414    }
2415  }
2416  for (const auto& space : discontinuous_spaces_) {
2417    if (space->IsLargeObjectSpace()) {
2418      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2419    }
2420  }
2421  return ret;
2422}
2423
2424void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2425  DCHECK(mod_union_table != nullptr);
2426  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2427}
2428
2429}  // namespace gc
2430}  // namespace art
2431