heap.cc revision eb5710eba75bf338da56386ca29039df9d5134cb
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/stl_util.h"
27#include "common_throws.h"
28#include "cutils/sched_policy.h"
29#include "debugger.h"
30#include "gc/accounting/atomic_stack.h"
31#include "gc/accounting/card_table-inl.h"
32#include "gc/accounting/heap_bitmap-inl.h"
33#include "gc/accounting/mod_union_table-inl.h"
34#include "gc/accounting/space_bitmap-inl.h"
35#include "gc/collector/mark_sweep-inl.h"
36#include "gc/collector/partial_mark_sweep.h"
37#include "gc/collector/sticky_mark_sweep.h"
38#include "gc/space/dlmalloc_space-inl.h"
39#include "gc/space/image_space.h"
40#include "gc/space/large_object_space.h"
41#include "gc/space/space-inl.h"
42#include "image.h"
43#include "invoke_arg_array_builder.h"
44#include "mirror/class-inl.h"
45#include "mirror/field-inl.h"
46#include "mirror/object.h"
47#include "mirror/object-inl.h"
48#include "mirror/object_array-inl.h"
49#include "object_utils.h"
50#include "os.h"
51#include "ScopedLocalRef.h"
52#include "scoped_thread_state_change.h"
53#include "sirt_ref.h"
54#include "thread_list.h"
55#include "UniquePtr.h"
56#include "well_known_classes.h"
57
58namespace art {
59namespace gc {
60
61// When to create a log message about a slow GC, 100ms.
62static const uint64_t kSlowGcThreshold = MsToNs(100);
63// When to create a log message about a long pause, 5ms.
64static const uint64_t kLongGcPauseThreshold = MsToNs(5);
65static const bool kGCALotMode = false;
66static const size_t kGcAlotInterval = KB;
67static const bool kDumpGcPerformanceOnShutdown = false;
68// Minimum amount of remaining bytes before a concurrent GC is triggered.
69static const size_t kMinConcurrentRemainingBytes = 128 * KB;
70const double Heap::kDefaultTargetUtilization = 0.5;
71// If true, measure the total allocation time.
72static const bool kMeasureAllocationTime = false;
73
74Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
75           double target_utilization, size_t capacity,
76           const std::string& original_image_file_name, bool concurrent_gc, size_t num_gc_threads)
77    : alloc_space_(NULL),
78      card_table_(NULL),
79      concurrent_gc_(concurrent_gc),
80      num_gc_threads_(num_gc_threads),
81      have_zygote_space_(false),
82      reference_queue_lock_(NULL),
83      is_gc_running_(false),
84      last_gc_type_(collector::kGcTypeNone),
85      next_gc_type_(collector::kGcTypePartial),
86      capacity_(capacity),
87      growth_limit_(growth_limit),
88      max_allowed_footprint_(initial_size),
89      native_footprint_gc_watermark_(initial_size),
90      native_footprint_limit_(2 * initial_size),
91      concurrent_start_bytes_(concurrent_gc ? initial_size - (kMinConcurrentRemainingBytes)
92                                            :  std::numeric_limits<size_t>::max()),
93      total_bytes_freed_ever_(0),
94      total_objects_freed_ever_(0),
95      large_object_threshold_(3 * kPageSize),
96      num_bytes_allocated_(0),
97      native_bytes_allocated_(0),
98      process_state_(PROCESS_STATE_TOP),
99      gc_memory_overhead_(0),
100      verify_missing_card_marks_(false),
101      verify_system_weaks_(false),
102      verify_pre_gc_heap_(false),
103      verify_post_gc_heap_(false),
104      verify_mod_union_table_(false),
105      min_alloc_space_size_for_sticky_gc_(2 * MB),
106      min_remaining_space_for_sticky_gc_(1 * MB),
107      last_trim_time_ms_(0),
108      allocation_rate_(0),
109      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
110       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
111       * verification is enabled, we limit the size of allocation stacks to speed up their
112       * searching.
113       */
114      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
115          : (kDesiredHeapVerification > kNoHeapVerification) ? KB : MB),
116      reference_referent_offset_(0),
117      reference_queue_offset_(0),
118      reference_queueNext_offset_(0),
119      reference_pendingNext_offset_(0),
120      finalizer_reference_zombie_offset_(0),
121      min_free_(min_free),
122      max_free_(max_free),
123      target_utilization_(target_utilization),
124      total_wait_time_(0),
125      total_allocation_time_(0),
126      verify_object_mode_(kHeapVerificationNotPermitted),
127      running_on_valgrind_(RUNNING_ON_VALGRIND) {
128  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
129    LOG(INFO) << "Heap() entering";
130  }
131
132  live_bitmap_.reset(new accounting::HeapBitmap(this));
133  mark_bitmap_.reset(new accounting::HeapBitmap(this));
134
135  // Requested begin for the alloc space, to follow the mapped image and oat files
136  byte* requested_alloc_space_begin = NULL;
137  std::string image_file_name(original_image_file_name);
138  if (!image_file_name.empty()) {
139    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name);
140    CHECK(image_space != NULL) << "Failed to create space for " << image_file_name;
141    AddContinuousSpace(image_space);
142    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
143    // isn't going to get in the middle
144    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
145    CHECK_GT(oat_file_end_addr, image_space->End());
146    if (oat_file_end_addr > requested_alloc_space_begin) {
147      requested_alloc_space_begin =
148          reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_file_end_addr),
149                                          kPageSize));
150    }
151  }
152
153  alloc_space_ = space::DlMallocSpace::Create(Runtime::Current()->IsZygote() ? "zygote space" : "alloc space",
154                                              initial_size,
155                                              growth_limit, capacity,
156                                              requested_alloc_space_begin);
157  CHECK(alloc_space_ != NULL) << "Failed to create alloc space";
158  alloc_space_->SetFootprintLimit(alloc_space_->Capacity());
159  AddContinuousSpace(alloc_space_);
160
161  // Allocate the large object space.
162  const bool kUseFreeListSpaceForLOS = false;
163  if (kUseFreeListSpaceForLOS) {
164    large_object_space_ = space::FreeListSpace::Create("large object space", NULL, capacity);
165  } else {
166    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
167  }
168  CHECK(large_object_space_ != NULL) << "Failed to create large object space";
169  AddDiscontinuousSpace(large_object_space_);
170
171  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
172  byte* heap_begin = continuous_spaces_.front()->Begin();
173  size_t heap_capacity = continuous_spaces_.back()->End() - continuous_spaces_.front()->Begin();
174  if (continuous_spaces_.back()->IsDlMallocSpace()) {
175    heap_capacity += continuous_spaces_.back()->AsDlMallocSpace()->NonGrowthLimitCapacity();
176  }
177
178  // Mark image objects in the live bitmap
179  // TODO: C++0x
180  typedef std::vector<space::ContinuousSpace*>::iterator It;
181  for (It it = continuous_spaces_.begin(); it != continuous_spaces_.end(); ++it) {
182    space::ContinuousSpace* space = *it;
183    if (space->IsImageSpace()) {
184      space::ImageSpace* image_space = space->AsImageSpace();
185      image_space->RecordImageAllocations(image_space->GetLiveBitmap());
186    }
187  }
188
189  // Allocate the card table.
190  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
191  CHECK(card_table_.get() != NULL) << "Failed to create card table";
192
193  image_mod_union_table_.reset(new accounting::ModUnionTableToZygoteAllocspace(this));
194  CHECK(image_mod_union_table_.get() != NULL) << "Failed to create image mod-union table";
195
196  zygote_mod_union_table_.reset(new accounting::ModUnionTableCardCache(this));
197  CHECK(zygote_mod_union_table_.get() != NULL) << "Failed to create Zygote mod-union table";
198
199  // TODO: Count objects in the image space here.
200  num_bytes_allocated_ = 0;
201
202  // Default mark stack size in bytes.
203  static const size_t default_mark_stack_size = 64 * KB;
204  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
205  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
206                                                          max_allocation_stack_size_));
207  live_stack_.reset(accounting::ObjectStack::Create("live stack",
208                                                    max_allocation_stack_size_));
209
210  // It's still too early to take a lock because there are no threads yet, but we can create locks
211  // now. We don't create it earlier to make it clear that you can't use locks during heap
212  // initialization.
213  gc_complete_lock_ = new Mutex("GC complete lock");
214  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
215                                                *gc_complete_lock_));
216
217  // Create the reference queue lock, this is required so for parallel object scanning in the GC.
218  reference_queue_lock_ = new Mutex("reference queue lock");
219
220  last_gc_time_ns_ = NanoTime();
221  last_gc_size_ = GetBytesAllocated();
222
223  // Create our garbage collectors.
224  for (size_t i = 0; i < 2; ++i) {
225    const bool concurrent = i != 0;
226    mark_sweep_collectors_.push_back(new collector::MarkSweep(this, concurrent));
227    mark_sweep_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
228    mark_sweep_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
229  }
230
231  CHECK_NE(max_allowed_footprint_, 0U);
232  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
233    LOG(INFO) << "Heap() exiting";
234  }
235}
236
237void Heap::CreateThreadPool() {
238  thread_pool_.reset(new ThreadPool(num_gc_threads_));
239}
240
241void Heap::DeleteThreadPool() {
242  thread_pool_.reset(NULL);
243}
244
245// Sort spaces based on begin address
246struct ContinuousSpaceSorter {
247  bool operator()(const space::ContinuousSpace* a, const space::ContinuousSpace* b) const {
248    return a->Begin() < b->Begin();
249  }
250};
251
252void Heap::UpdateProcessState(ProcessState process_state) {
253  process_state_ = process_state;
254}
255
256void Heap::AddContinuousSpace(space::ContinuousSpace* space) {
257  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
258  DCHECK(space != NULL);
259  DCHECK(space->GetLiveBitmap() != NULL);
260  live_bitmap_->AddContinuousSpaceBitmap(space->GetLiveBitmap());
261  DCHECK(space->GetMarkBitmap() != NULL);
262  mark_bitmap_->AddContinuousSpaceBitmap(space->GetMarkBitmap());
263  continuous_spaces_.push_back(space);
264  if (space->IsDlMallocSpace() && !space->IsLargeObjectSpace()) {
265    alloc_space_ = space->AsDlMallocSpace();
266  }
267
268  // Ensure that spaces remain sorted in increasing order of start address (required for CMS finger)
269  std::sort(continuous_spaces_.begin(), continuous_spaces_.end(), ContinuousSpaceSorter());
270
271  // Ensure that ImageSpaces < ZygoteSpaces < AllocSpaces so that we can do address based checks to
272  // avoid redundant marking.
273  bool seen_zygote = false, seen_alloc = false;
274  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
275  for (It it = continuous_spaces_.begin(); it != continuous_spaces_.end(); ++it) {
276    space::ContinuousSpace* space = *it;
277    if (space->IsImageSpace()) {
278      DCHECK(!seen_zygote);
279      DCHECK(!seen_alloc);
280    } else if (space->IsZygoteSpace()) {
281      DCHECK(!seen_alloc);
282      seen_zygote = true;
283    } else if (space->IsDlMallocSpace()) {
284      seen_alloc = true;
285    }
286  }
287}
288
289void Heap::RegisterGCAllocation(size_t bytes) {
290  if (this != NULL) {
291    gc_memory_overhead_.fetch_add(bytes);
292  }
293}
294
295void Heap::RegisterGCDeAllocation(size_t bytes) {
296  if (this != NULL) {
297    gc_memory_overhead_.fetch_sub(bytes);
298  }
299}
300
301void Heap::AddDiscontinuousSpace(space::DiscontinuousSpace* space) {
302  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
303  DCHECK(space != NULL);
304  DCHECK(space->GetLiveObjects() != NULL);
305  live_bitmap_->AddDiscontinuousObjectSet(space->GetLiveObjects());
306  DCHECK(space->GetMarkObjects() != NULL);
307  mark_bitmap_->AddDiscontinuousObjectSet(space->GetMarkObjects());
308  discontinuous_spaces_.push_back(space);
309}
310
311void Heap::DumpGcPerformanceInfo(std::ostream& os) {
312  // Dump cumulative timings.
313  os << "Dumping cumulative Gc timings\n";
314  uint64_t total_duration = 0;
315
316  // Dump cumulative loggers for each GC type.
317  // TODO: C++0x
318  uint64_t total_paused_time = 0;
319  typedef std::vector<collector::MarkSweep*>::const_iterator It;
320  for (It it = mark_sweep_collectors_.begin();
321       it != mark_sweep_collectors_.end(); ++it) {
322    collector::MarkSweep* collector = *it;
323    CumulativeLogger& logger = collector->GetCumulativeTimings();
324    if (logger.GetTotalNs() != 0) {
325      os << Dumpable<CumulativeLogger>(logger);
326      const uint64_t total_ns = logger.GetTotalNs();
327      const uint64_t total_pause_ns = (*it)->GetTotalPausedTimeNs();
328      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
329      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
330      const uint64_t freed_objects = collector->GetTotalFreedObjects();
331      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
332         << collector->GetName() << " paused time: " << PrettyDuration(total_pause_ns) << "\n"
333         << collector->GetName() << " freed: " << freed_objects
334         << " objects with total size " << PrettySize(freed_bytes) << "\n"
335         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
336         << PrettySize(freed_bytes / seconds) << "/s\n";
337      total_duration += total_ns;
338      total_paused_time += total_pause_ns;
339    }
340  }
341  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
342  size_t total_objects_allocated = GetObjectsAllocatedEver();
343  size_t total_bytes_allocated = GetBytesAllocatedEver();
344  if (total_duration != 0) {
345    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
346    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
347    os << "Mean GC size throughput: "
348       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
349    os << "Mean GC object throughput: "
350       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
351  }
352  os << "Total number of allocations: " << total_objects_allocated << "\n";
353  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
354  if (kMeasureAllocationTime) {
355    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
356    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
357       << "\n";
358  }
359  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
360  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
361  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
362}
363
364Heap::~Heap() {
365  if (kDumpGcPerformanceOnShutdown) {
366    DumpGcPerformanceInfo(LOG(INFO));
367  }
368
369  STLDeleteElements(&mark_sweep_collectors_);
370
371  // If we don't reset then the mark stack complains in it's destructor.
372  allocation_stack_->Reset();
373  live_stack_->Reset();
374
375  VLOG(heap) << "~Heap()";
376  // We can't take the heap lock here because there might be a daemon thread suspended with the
377  // heap lock held. We know though that no non-daemon threads are executing, and we know that
378  // all daemon threads are suspended, and we also know that the threads list have been deleted, so
379  // those threads can't resume. We're the only running thread, and we can do whatever we like...
380  STLDeleteElements(&continuous_spaces_);
381  STLDeleteElements(&discontinuous_spaces_);
382  delete gc_complete_lock_;
383  delete reference_queue_lock_;
384}
385
386space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
387                                                            bool fail_ok) const {
388  // TODO: C++0x auto
389  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
390  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
391    if ((*it)->Contains(obj)) {
392      return *it;
393    }
394  }
395  if (!fail_ok) {
396    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
397  }
398  return NULL;
399}
400
401space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
402                                                                  bool fail_ok) const {
403  // TODO: C++0x auto
404  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It;
405  for (It it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
406    if ((*it)->Contains(obj)) {
407      return *it;
408    }
409  }
410  if (!fail_ok) {
411    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
412  }
413  return NULL;
414}
415
416space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
417  space::Space* result = FindContinuousSpaceFromObject(obj, true);
418  if (result != NULL) {
419    return result;
420  }
421  return FindDiscontinuousSpaceFromObject(obj, true);
422}
423
424space::ImageSpace* Heap::GetImageSpace() const {
425  // TODO: C++0x auto
426  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
427  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
428    if ((*it)->IsImageSpace()) {
429      return (*it)->AsImageSpace();
430    }
431  }
432  return NULL;
433}
434
435static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
436  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
437  if (used_bytes < chunk_size) {
438    size_t chunk_free_bytes = chunk_size - used_bytes;
439    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
440    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
441  }
442}
443
444mirror::Object* Heap::AllocObject(Thread* self, mirror::Class* c, size_t byte_count) {
445  DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
446         (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
447         strlen(ClassHelper(c).GetDescriptor()) == 0);
448  DCHECK_GE(byte_count, sizeof(mirror::Object));
449
450  mirror::Object* obj = NULL;
451  size_t bytes_allocated = 0;
452  uint64_t allocation_start = 0;
453  if (UNLIKELY(kMeasureAllocationTime)) {
454    allocation_start = NanoTime() / kTimeAdjust;
455  }
456
457  // We need to have a zygote space or else our newly allocated large object can end up in the
458  // Zygote resulting in it being prematurely freed.
459  // We can only do this for primitive objects since large objects will not be within the card table
460  // range. This also means that we rely on SetClass not dirtying the object's card.
461  bool large_object_allocation =
462      byte_count >= large_object_threshold_ && have_zygote_space_ && c->IsPrimitiveArray();
463  if (UNLIKELY(large_object_allocation)) {
464    obj = Allocate(self, large_object_space_, byte_count, &bytes_allocated);
465    // Make sure that our large object didn't get placed anywhere within the space interval or else
466    // it breaks the immune range.
467    DCHECK(obj == NULL ||
468           reinterpret_cast<byte*>(obj) < continuous_spaces_.front()->Begin() ||
469           reinterpret_cast<byte*>(obj) >= continuous_spaces_.back()->End());
470  } else {
471    obj = Allocate(self, alloc_space_, byte_count, &bytes_allocated);
472    // Ensure that we did not allocate into a zygote space.
473    DCHECK(obj == NULL || !have_zygote_space_ || !FindSpaceFromObject(obj, false)->IsZygoteSpace());
474  }
475
476  if (LIKELY(obj != NULL)) {
477    obj->SetClass(c);
478
479    // Record allocation after since we want to use the atomic add for the atomic fence to guard
480    // the SetClass since we do not want the class to appear NULL in another thread.
481    RecordAllocation(bytes_allocated, obj);
482
483    if (Dbg::IsAllocTrackingEnabled()) {
484      Dbg::RecordAllocation(c, byte_count);
485    }
486    if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_) >= concurrent_start_bytes_)) {
487      // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint.
488      SirtRef<mirror::Object> ref(self, obj);
489      RequestConcurrentGC(self);
490    }
491    if (kDesiredHeapVerification > kNoHeapVerification) {
492      VerifyObject(obj);
493    }
494
495    if (UNLIKELY(kMeasureAllocationTime)) {
496      total_allocation_time_.fetch_add(NanoTime() / kTimeAdjust - allocation_start);
497    }
498
499    return obj;
500  } else {
501    std::ostringstream oss;
502    int64_t total_bytes_free = GetFreeMemory();
503    oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
504        << " free bytes";
505    // If the allocation failed due to fragmentation, print out the largest continuous allocation.
506    if (!large_object_allocation && total_bytes_free >= byte_count) {
507      size_t max_contiguous_allocation = 0;
508      // TODO: C++0x auto
509      typedef std::vector<space::ContinuousSpace*>::const_iterator It;
510      for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
511        space::ContinuousSpace* space = *it;
512        if (space->IsDlMallocSpace()) {
513          space->AsDlMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
514        }
515      }
516      oss << "; failed due to fragmentation (largest possible contiguous allocation "
517          <<  max_contiguous_allocation << " bytes)";
518    }
519    self->ThrowOutOfMemoryError(oss.str().c_str());
520    return NULL;
521  }
522}
523
524bool Heap::IsHeapAddress(const mirror::Object* obj) {
525  // Note: we deliberately don't take the lock here, and mustn't test anything that would
526  // require taking the lock.
527  if (obj == NULL) {
528    return true;
529  }
530  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
531    return false;
532  }
533  return FindSpaceFromObject(obj, true) != NULL;
534}
535
536bool Heap::IsLiveObjectLocked(const mirror::Object* obj) {
537  // Locks::heap_bitmap_lock_->AssertReaderHeld(Thread::Current());
538  if (obj == NULL || UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
539    return false;
540  }
541  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
542  space::DiscontinuousSpace* d_space = NULL;
543  if (c_space != NULL) {
544    if (c_space->GetLiveBitmap()->Test(obj)) {
545      return true;
546    }
547  } else {
548    d_space = FindDiscontinuousSpaceFromObject(obj, true);
549    if (d_space != NULL) {
550      if (d_space->GetLiveObjects()->Test(obj)) {
551        return true;
552      }
553    }
554  }
555  // This is covering the allocation/live stack swapping that is done without mutators suspended.
556  for (size_t i = 0; i < 5; ++i) {
557    if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj)) ||
558        live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
559      return true;
560    }
561    NanoSleep(MsToNs(10));
562  }
563  // We need to check the bitmaps again since there is a race where we mark something as live and
564  // then clear the stack containing it.
565  if (c_space != NULL) {
566    if (c_space->GetLiveBitmap()->Test(obj)) {
567      return true;
568    }
569  } else {
570    d_space = FindDiscontinuousSpaceFromObject(obj, true);
571    if (d_space != NULL && d_space->GetLiveObjects()->Test(obj)) {
572      return true;
573    }
574  }
575  return false;
576}
577
578void Heap::VerifyObjectImpl(const mirror::Object* obj) {
579  if (Thread::Current() == NULL ||
580      Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
581    return;
582  }
583  VerifyObjectBody(obj);
584}
585
586void Heap::DumpSpaces() {
587  // TODO: C++0x auto
588  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
589  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
590    space::ContinuousSpace* space = *it;
591    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
592    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
593    LOG(INFO) << space << " " << *space << "\n"
594              << live_bitmap << " " << *live_bitmap << "\n"
595              << mark_bitmap << " " << *mark_bitmap;
596  }
597  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
598  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
599    space::DiscontinuousSpace* space = *it;
600    LOG(INFO) << space << " " << *space << "\n";
601  }
602}
603
604void Heap::VerifyObjectBody(const mirror::Object* obj) {
605  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
606    LOG(FATAL) << "Object isn't aligned: " << obj;
607  }
608  if (UNLIKELY(GetObjectsAllocated() <= 10)) {  // Ignore early dawn of the universe verifications.
609    return;
610  }
611  const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
612      mirror::Object::ClassOffset().Int32Value();
613  const mirror::Class* c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
614  if (UNLIKELY(c == NULL)) {
615    LOG(FATAL) << "Null class in object: " << obj;
616  } else if (UNLIKELY(!IsAligned<kObjectAlignment>(c))) {
617    LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
618  }
619  // Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
620  // Note: we don't use the accessors here as they have internal sanity checks
621  // that we don't want to run
622  raw_addr = reinterpret_cast<const byte*>(c) + mirror::Object::ClassOffset().Int32Value();
623  const mirror::Class* c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
624  raw_addr = reinterpret_cast<const byte*>(c_c) + mirror::Object::ClassOffset().Int32Value();
625  const mirror::Class* c_c_c = *reinterpret_cast<mirror::Class* const *>(raw_addr);
626  CHECK_EQ(c_c, c_c_c);
627
628  if (verify_object_mode_ != kVerifyAllFast) {
629    // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the
630    //       heap_bitmap_lock_.
631    if (!IsLiveObjectLocked(obj)) {
632      DumpSpaces();
633      LOG(FATAL) << "Object is dead: " << obj;
634    }
635    if (!IsLiveObjectLocked(c)) {
636      LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
637    }
638  }
639}
640
641void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
642  DCHECK(obj != NULL);
643  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
644}
645
646void Heap::VerifyHeap() {
647  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
648  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
649}
650
651inline void Heap::RecordAllocation(size_t size, mirror::Object* obj) {
652  DCHECK(obj != NULL);
653  DCHECK_GT(size, 0u);
654  num_bytes_allocated_.fetch_add(size);
655
656  if (Runtime::Current()->HasStatsEnabled()) {
657    RuntimeStats* thread_stats = Thread::Current()->GetStats();
658    ++thread_stats->allocated_objects;
659    thread_stats->allocated_bytes += size;
660
661    // TODO: Update these atomically.
662    RuntimeStats* global_stats = Runtime::Current()->GetStats();
663    ++global_stats->allocated_objects;
664    global_stats->allocated_bytes += size;
665  }
666
667  // This is safe to do since the GC will never free objects which are neither in the allocation
668  // stack or the live bitmap.
669  while (!allocation_stack_->AtomicPushBack(obj)) {
670    CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
671  }
672}
673
674void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) {
675  DCHECK_LE(freed_bytes, static_cast<size_t>(num_bytes_allocated_));
676  num_bytes_allocated_.fetch_sub(freed_bytes);
677
678  if (Runtime::Current()->HasStatsEnabled()) {
679    RuntimeStats* thread_stats = Thread::Current()->GetStats();
680    thread_stats->freed_objects += freed_objects;
681    thread_stats->freed_bytes += freed_bytes;
682
683    // TODO: Do this concurrently.
684    RuntimeStats* global_stats = Runtime::Current()->GetStats();
685    global_stats->freed_objects += freed_objects;
686    global_stats->freed_bytes += freed_bytes;
687  }
688}
689
690inline bool Heap::IsOutOfMemoryOnAllocation(size_t alloc_size) {
691  return num_bytes_allocated_ + alloc_size > growth_limit_;
692}
693
694inline mirror::Object* Heap::TryToAllocate(Thread* self, space::AllocSpace* space, size_t alloc_size,
695                                           bool grow, size_t* bytes_allocated) {
696  if (IsOutOfMemoryOnAllocation(alloc_size)) {
697    return NULL;
698  }
699  return space->Alloc(self, alloc_size, bytes_allocated);
700}
701
702// DlMallocSpace-specific version.
703inline mirror::Object* Heap::TryToAllocate(Thread* self, space::DlMallocSpace* space, size_t alloc_size,
704                                           bool grow, size_t* bytes_allocated) {
705  if (IsOutOfMemoryOnAllocation(alloc_size)) {
706    return NULL;
707  }
708  if (!running_on_valgrind_) {
709    return space->AllocNonvirtual(self, alloc_size, bytes_allocated);
710  } else {
711    return space->Alloc(self, alloc_size, bytes_allocated);
712  }
713}
714
715template <class T>
716inline mirror::Object* Heap::Allocate(Thread* self, T* space, size_t alloc_size, size_t* bytes_allocated) {
717  // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
718  // done in the runnable state where suspension is expected.
719  DCHECK_EQ(self->GetState(), kRunnable);
720  self->AssertThreadSuspensionIsAllowable();
721
722  mirror::Object* ptr = TryToAllocate(self, space, alloc_size, false, bytes_allocated);
723  if (ptr != NULL) {
724    return ptr;
725  }
726  return AllocateInternalWithGc(self, space, alloc_size, bytes_allocated);
727}
728
729mirror::Object* Heap::AllocateInternalWithGc(Thread* self, space::AllocSpace* space, size_t alloc_size,
730                                             size_t* bytes_allocated) {
731  mirror::Object* ptr;
732
733  // The allocation failed. If the GC is running, block until it completes, and then retry the
734  // allocation.
735  collector::GcType last_gc = WaitForConcurrentGcToComplete(self);
736  if (last_gc != collector::kGcTypeNone) {
737    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
738    ptr = TryToAllocate(self, space, alloc_size, false, bytes_allocated);
739    if (ptr != NULL) {
740      return ptr;
741    }
742  }
743
744  // Loop through our different Gc types and try to Gc until we get enough free memory.
745  for (size_t i = static_cast<size_t>(last_gc) + 1;
746      i < static_cast<size_t>(collector::kGcTypeMax); ++i) {
747    bool run_gc = false;
748    collector::GcType gc_type = static_cast<collector::GcType>(i);
749    switch (gc_type) {
750      case collector::kGcTypeSticky: {
751          const size_t alloc_space_size = alloc_space_->Size();
752          run_gc = alloc_space_size > min_alloc_space_size_for_sticky_gc_ &&
753              alloc_space_->Capacity() - alloc_space_size >= min_remaining_space_for_sticky_gc_;
754          break;
755        }
756      case collector::kGcTypePartial:
757        run_gc = have_zygote_space_;
758        break;
759      case collector::kGcTypeFull:
760        run_gc = true;
761        break;
762      default:
763        break;
764    }
765
766    if (run_gc) {
767      // If we actually ran a different type of Gc than requested, we can skip the index forwards.
768      collector::GcType gc_type_ran = CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
769      DCHECK_GE(static_cast<size_t>(gc_type_ran), i);
770      i = static_cast<size_t>(gc_type_ran);
771
772      // Did we free sufficient memory for the allocation to succeed?
773      ptr = TryToAllocate(self, space, alloc_size, false, bytes_allocated);
774      if (ptr != NULL) {
775        return ptr;
776      }
777    }
778  }
779
780  // Allocations have failed after GCs;  this is an exceptional state.
781  // Try harder, growing the heap if necessary.
782  ptr = TryToAllocate(self, space, alloc_size, true, bytes_allocated);
783  if (ptr != NULL) {
784    return ptr;
785  }
786
787  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
788  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
789  // VM spec requires that all SoftReferences have been collected and cleared before throwing OOME.
790
791  // OLD-TODO: wait for the finalizers from the previous GC to finish
792  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
793           << " allocation";
794
795  // We don't need a WaitForConcurrentGcToComplete here either.
796  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseForAlloc, true);
797  return TryToAllocate(self, space, alloc_size, true, bytes_allocated);
798}
799
800void Heap::SetTargetHeapUtilization(float target) {
801  DCHECK_GT(target, 0.0f);  // asserted in Java code
802  DCHECK_LT(target, 1.0f);
803  target_utilization_ = target;
804}
805
806size_t Heap::GetObjectsAllocated() const {
807  size_t total = 0;
808  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
809  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
810    space::ContinuousSpace* space = *it;
811    if (space->IsDlMallocSpace()) {
812      total += space->AsDlMallocSpace()->GetObjectsAllocated();
813    }
814  }
815  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
816  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
817    space::DiscontinuousSpace* space = *it;
818    total += space->AsLargeObjectSpace()->GetObjectsAllocated();
819  }
820  return total;
821}
822
823size_t Heap::GetObjectsAllocatedEver() const {
824  size_t total = 0;
825  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
826  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
827    space::ContinuousSpace* space = *it;
828    if (space->IsDlMallocSpace()) {
829      total += space->AsDlMallocSpace()->GetTotalObjectsAllocated();
830    }
831  }
832  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
833  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
834    space::DiscontinuousSpace* space = *it;
835    total += space->AsLargeObjectSpace()->GetTotalObjectsAllocated();
836  }
837  return total;
838}
839
840size_t Heap::GetBytesAllocatedEver() const {
841  size_t total = 0;
842  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
843  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
844    space::ContinuousSpace* space = *it;
845    if (space->IsDlMallocSpace()) {
846      total += space->AsDlMallocSpace()->GetTotalBytesAllocated();
847    }
848  }
849  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
850  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
851    space::DiscontinuousSpace* space = *it;
852    total += space->AsLargeObjectSpace()->GetTotalBytesAllocated();
853  }
854  return total;
855}
856
857class InstanceCounter {
858 public:
859  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
860      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
861      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
862  }
863
864  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
865    for (size_t i = 0; i < classes_.size(); ++i) {
866      const mirror::Class* instance_class = o->GetClass();
867      if (use_is_assignable_from_) {
868        if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) {
869          ++counts_[i];
870        }
871      } else {
872        if (instance_class == classes_[i]) {
873          ++counts_[i];
874        }
875      }
876    }
877  }
878
879 private:
880  const std::vector<mirror::Class*>& classes_;
881  bool use_is_assignable_from_;
882  uint64_t* const counts_;
883
884  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
885};
886
887void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
888                          uint64_t* counts) {
889  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
890  // is empty, so the live bitmap is the only place we need to look.
891  Thread* self = Thread::Current();
892  self->TransitionFromRunnableToSuspended(kNative);
893  CollectGarbage(false);
894  self->TransitionFromSuspendedToRunnable();
895
896  InstanceCounter counter(classes, use_is_assignable_from, counts);
897  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
898  GetLiveBitmap()->Visit(counter);
899}
900
901class InstanceCollector {
902 public:
903  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
904      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
905      : class_(c), max_count_(max_count), instances_(instances) {
906  }
907
908  void operator()(const mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
909    const mirror::Class* instance_class = o->GetClass();
910    if (instance_class == class_) {
911      if (max_count_ == 0 || instances_.size() < max_count_) {
912        instances_.push_back(const_cast<mirror::Object*>(o));
913      }
914    }
915  }
916
917 private:
918  mirror::Class* class_;
919  uint32_t max_count_;
920  std::vector<mirror::Object*>& instances_;
921
922  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
923};
924
925void Heap::GetInstances(mirror::Class* c, int32_t max_count,
926                        std::vector<mirror::Object*>& instances) {
927  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
928  // is empty, so the live bitmap is the only place we need to look.
929  Thread* self = Thread::Current();
930  self->TransitionFromRunnableToSuspended(kNative);
931  CollectGarbage(false);
932  self->TransitionFromSuspendedToRunnable();
933
934  InstanceCollector collector(c, max_count, instances);
935  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
936  GetLiveBitmap()->Visit(collector);
937}
938
939class ReferringObjectsFinder {
940 public:
941  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
942                         std::vector<mirror::Object*>& referring_objects)
943      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
944      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
945  }
946
947  // For bitmap Visit.
948  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
949  // annotalysis on visitors.
950  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
951    collector::MarkSweep::VisitObjectReferences(o, *this);
952  }
953
954  // For MarkSweep::VisitObjectReferences.
955  void operator()(const mirror::Object* referrer, const mirror::Object* object,
956                  const MemberOffset&, bool) const {
957    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
958      referring_objects_.push_back(const_cast<mirror::Object*>(referrer));
959    }
960  }
961
962 private:
963  mirror::Object* object_;
964  uint32_t max_count_;
965  std::vector<mirror::Object*>& referring_objects_;
966
967  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
968};
969
970void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
971                               std::vector<mirror::Object*>& referring_objects) {
972  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
973  // is empty, so the live bitmap is the only place we need to look.
974  Thread* self = Thread::Current();
975  self->TransitionFromRunnableToSuspended(kNative);
976  CollectGarbage(false);
977  self->TransitionFromSuspendedToRunnable();
978
979  ReferringObjectsFinder finder(o, max_count, referring_objects);
980  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
981  GetLiveBitmap()->Visit(finder);
982}
983
984void Heap::CollectGarbage(bool clear_soft_references) {
985  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
986  // last GC will not have necessarily been cleared.
987  Thread* self = Thread::Current();
988  WaitForConcurrentGcToComplete(self);
989  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseExplicit, clear_soft_references);
990}
991
992void Heap::PreZygoteFork() {
993  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
994  // Do this before acquiring the zygote creation lock so that we don't get lock order violations.
995  CollectGarbage(false);
996  Thread* self = Thread::Current();
997  MutexLock mu(self, zygote_creation_lock_);
998
999  // Try to see if we have any Zygote spaces.
1000  if (have_zygote_space_) {
1001    return;
1002  }
1003
1004  VLOG(heap) << "Starting PreZygoteFork with alloc space size " << PrettySize(alloc_space_->Size());
1005
1006  {
1007    // Flush the alloc stack.
1008    WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1009    FlushAllocStack();
1010  }
1011
1012  // Turns the current alloc space into a Zygote space and obtain the new alloc space composed
1013  // of the remaining available heap memory.
1014  space::DlMallocSpace* zygote_space = alloc_space_;
1015  alloc_space_ = zygote_space->CreateZygoteSpace("alloc space");
1016  alloc_space_->SetFootprintLimit(alloc_space_->Capacity());
1017
1018  // Change the GC retention policy of the zygote space to only collect when full.
1019  zygote_space->SetGcRetentionPolicy(space::kGcRetentionPolicyFullCollect);
1020  AddContinuousSpace(alloc_space_);
1021  have_zygote_space_ = true;
1022
1023  // Reset the cumulative loggers since we now have a few additional timing phases.
1024  // TODO: C++0x
1025  typedef std::vector<collector::MarkSweep*>::const_iterator It;
1026  for (It it = mark_sweep_collectors_.begin(), end = mark_sweep_collectors_.end();
1027      it != end; ++it) {
1028    (*it)->ResetCumulativeStatistics();
1029  }
1030}
1031
1032void Heap::FlushAllocStack() {
1033  MarkAllocStack(alloc_space_->GetLiveBitmap(), large_object_space_->GetLiveObjects(),
1034                 allocation_stack_.get());
1035  allocation_stack_->Reset();
1036}
1037
1038void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap, accounting::SpaceSetMap* large_objects,
1039                          accounting::ObjectStack* stack) {
1040  mirror::Object** limit = stack->End();
1041  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1042    const mirror::Object* obj = *it;
1043    DCHECK(obj != NULL);
1044    if (LIKELY(bitmap->HasAddress(obj))) {
1045      bitmap->Set(obj);
1046    } else {
1047      large_objects->Set(obj);
1048    }
1049  }
1050}
1051
1052collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1053                                               bool clear_soft_references) {
1054  Thread* self = Thread::Current();
1055
1056  switch (gc_cause) {
1057    case kGcCauseForAlloc:
1058      ATRACE_BEGIN("GC (alloc)");
1059      break;
1060    case kGcCauseBackground:
1061      ATRACE_BEGIN("GC (background)");
1062      break;
1063    case kGcCauseExplicit:
1064      ATRACE_BEGIN("GC (explicit)");
1065      break;
1066  }
1067
1068  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1069  Locks::mutator_lock_->AssertNotHeld(self);
1070
1071  if (self->IsHandlingStackOverflow()) {
1072    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1073  }
1074
1075  // Ensure there is only one GC at a time.
1076  bool start_collect = false;
1077  while (!start_collect) {
1078    {
1079      MutexLock mu(self, *gc_complete_lock_);
1080      if (!is_gc_running_) {
1081        is_gc_running_ = true;
1082        start_collect = true;
1083      }
1084    }
1085    if (!start_collect) {
1086      WaitForConcurrentGcToComplete(self);
1087      // TODO: if another thread beat this one to do the GC, perhaps we should just return here?
1088      //       Not doing at the moment to ensure soft references are cleared.
1089    }
1090  }
1091  gc_complete_lock_->AssertNotHeld(self);
1092
1093  if (gc_cause == kGcCauseForAlloc && Runtime::Current()->HasStatsEnabled()) {
1094    ++Runtime::Current()->GetStats()->gc_for_alloc_count;
1095    ++Thread::Current()->GetStats()->gc_for_alloc_count;
1096  }
1097
1098  uint64_t gc_start_time_ns = NanoTime();
1099  uint64_t gc_start_size = GetBytesAllocated();
1100  // Approximate allocation rate in bytes / second.
1101  if (UNLIKELY(gc_start_time_ns == last_gc_time_ns_)) {
1102    LOG(WARNING) << "Timers are broken (gc_start_time == last_gc_time_).";
1103  }
1104  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1105  if (ms_delta != 0) {
1106    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1107    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1108  }
1109
1110  if (gc_type == collector::kGcTypeSticky &&
1111      alloc_space_->Size() < min_alloc_space_size_for_sticky_gc_) {
1112    gc_type = collector::kGcTypePartial;
1113  }
1114
1115  DCHECK_LT(gc_type, collector::kGcTypeMax);
1116  DCHECK_NE(gc_type, collector::kGcTypeNone);
1117  collector::MarkSweep* collector = NULL;
1118  typedef std::vector<collector::MarkSweep*>::iterator It;
1119  for (It it = mark_sweep_collectors_.begin(), end = mark_sweep_collectors_.end();
1120      it != end; ++it) {
1121    collector::MarkSweep* cur_collector = *it;
1122    if (cur_collector->IsConcurrent() == concurrent_gc_ && cur_collector->GetGcType() == gc_type) {
1123      collector = cur_collector;
1124      break;
1125    }
1126  }
1127  CHECK(collector != NULL)
1128      << "Could not find garbage collector with concurrent=" << concurrent_gc_
1129      << " and type=" << gc_type;
1130  collector->clear_soft_references_ = clear_soft_references;
1131  collector->Run();
1132  total_objects_freed_ever_ += collector->GetFreedObjects();
1133  total_bytes_freed_ever_ += collector->GetFreedBytes();
1134
1135  const size_t duration = collector->GetDurationNs();
1136  std::vector<uint64_t> pauses = collector->GetPauseTimes();
1137  bool was_slow = duration > kSlowGcThreshold ||
1138      (gc_cause == kGcCauseForAlloc && duration > kLongGcPauseThreshold);
1139  for (size_t i = 0; i < pauses.size(); ++i) {
1140    if (pauses[i] > kLongGcPauseThreshold) {
1141      was_slow = true;
1142    }
1143  }
1144
1145  if (was_slow) {
1146    const size_t percent_free = GetPercentFree();
1147    const size_t current_heap_size = GetBytesAllocated();
1148    const size_t total_memory = GetTotalMemory();
1149    std::ostringstream pause_string;
1150    for (size_t i = 0; i < pauses.size(); ++i) {
1151      pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1152                   << ((i != pauses.size() - 1) ? ", " : "");
1153    }
1154    LOG(INFO) << gc_cause << " " << collector->GetName()
1155              << "GC freed " << PrettySize(collector->GetFreedBytes()) << ", "
1156              << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1157              << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1158              << " total " << PrettyDuration((duration / 1000) * 1000);
1159    if (VLOG_IS_ON(heap)) {
1160      LOG(INFO) << Dumpable<base::TimingLogger>(collector->GetTimings());
1161    }
1162  }
1163
1164  {
1165    MutexLock mu(self, *gc_complete_lock_);
1166    is_gc_running_ = false;
1167    last_gc_type_ = gc_type;
1168    // Wake anyone who may have been waiting for the GC to complete.
1169    gc_complete_cond_->Broadcast(self);
1170  }
1171
1172  // Inform DDMS that a GC completed.
1173  ATRACE_END();
1174  Dbg::GcDidFinish();
1175  return gc_type;
1176}
1177
1178void Heap::UpdateAndMarkModUnion(collector::MarkSweep* mark_sweep, base::TimingLogger& timings,
1179                                 collector::GcType gc_type) {
1180  if (gc_type == collector::kGcTypeSticky) {
1181    // Don't need to do anything for mod union table in this case since we are only scanning dirty
1182    // cards.
1183    return;
1184  }
1185
1186  // Update zygote mod union table.
1187  if (gc_type == collector::kGcTypePartial) {
1188    timings.NewSplit("UpdateZygoteModUnionTable");
1189    zygote_mod_union_table_->Update();
1190
1191    timings.NewSplit("ZygoteMarkReferences");
1192    zygote_mod_union_table_->MarkReferences(mark_sweep);
1193  }
1194
1195  // Processes the cards we cleared earlier and adds their objects into the mod-union table.
1196  timings.NewSplit("UpdateModUnionTable");
1197  image_mod_union_table_->Update();
1198
1199  // Scans all objects in the mod-union table.
1200  timings.NewSplit("MarkImageToAllocSpaceReferences");
1201  image_mod_union_table_->MarkReferences(mark_sweep);
1202}
1203
1204static void RootMatchesObjectVisitor(const mirror::Object* root, void* arg) {
1205  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1206  if (root == obj) {
1207    LOG(INFO) << "Object " << obj << " is a root";
1208  }
1209}
1210
1211class ScanVisitor {
1212 public:
1213  void operator()(const mirror::Object* obj) const {
1214    LOG(INFO) << "Would have rescanned object " << obj;
1215  }
1216};
1217
1218// Verify a reference from an object.
1219class VerifyReferenceVisitor {
1220 public:
1221  explicit VerifyReferenceVisitor(Heap* heap)
1222      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1223      : heap_(heap), failed_(false) {}
1224
1225  bool Failed() const {
1226    return failed_;
1227  }
1228
1229  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1230  // analysis on visitors.
1231  void operator()(const mirror::Object* obj, const mirror::Object* ref,
1232                  const MemberOffset& offset, bool /* is_static */) const
1233      NO_THREAD_SAFETY_ANALYSIS {
1234    // Verify that the reference is live.
1235    if (UNLIKELY(ref != NULL && !IsLive(ref))) {
1236      accounting::CardTable* card_table = heap_->GetCardTable();
1237      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1238      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1239
1240      if (obj != NULL) {
1241        byte* card_addr = card_table->CardFromAddr(obj);
1242        LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset " << offset
1243                   << "\nIsDirty = " << (*card_addr == accounting::CardTable::kCardDirty)
1244                   << "\nObj type " << PrettyTypeOf(obj)
1245                   << "\nRef type " << PrettyTypeOf(ref);
1246        card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1247        void* cover_begin = card_table->AddrFromCard(card_addr);
1248        void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1249            accounting::CardTable::kCardSize);
1250        LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1251            << "-" << cover_end;
1252        accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1253
1254        // Print out how the object is live.
1255        if (bitmap != NULL && bitmap->Test(obj)) {
1256          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1257        }
1258        if (alloc_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1259          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1260        }
1261        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1262          LOG(ERROR) << "Object " << obj << " found in live stack";
1263        }
1264        // Attempt to see if the card table missed the reference.
1265        ScanVisitor scan_visitor;
1266        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1267        card_table->Scan(bitmap, byte_cover_begin,
1268                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1269
1270        // Search to see if any of the roots reference our object.
1271        void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1272        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1273
1274        // Search to see if any of the roots reference our reference.
1275        arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
1276        Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1277      } else {
1278        LOG(ERROR) << "Root references dead object " << ref << "\nRef type " << PrettyTypeOf(ref);
1279      }
1280      if (alloc_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1281        LOG(ERROR) << "Reference " << ref << " found in allocation stack!";
1282      }
1283      if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1284        LOG(ERROR) << "Reference " << ref << " found in live stack!";
1285      }
1286      heap_->image_mod_union_table_->Dump(LOG(ERROR) << "Image mod-union table: ");
1287      heap_->zygote_mod_union_table_->Dump(LOG(ERROR) << "Zygote mod-union table: ");
1288      failed_ = true;
1289    }
1290  }
1291
1292  bool IsLive(const mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1293    return heap_->IsLiveObjectLocked(obj);
1294  }
1295
1296  static void VerifyRoots(const mirror::Object* root, void* arg) {
1297    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
1298    (*visitor)(NULL, root, MemberOffset(0), true);
1299  }
1300
1301 private:
1302  Heap* const heap_;
1303  mutable bool failed_;
1304};
1305
1306// Verify all references within an object, for use with HeapBitmap::Visit.
1307class VerifyObjectVisitor {
1308 public:
1309  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
1310
1311  void operator()(const mirror::Object* obj) const
1312      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1313    // Note: we are verifying the references in obj but not obj itself, this is because obj must
1314    // be live or else how did we find it in the live bitmap?
1315    VerifyReferenceVisitor visitor(heap_);
1316    collector::MarkSweep::VisitObjectReferences(obj, visitor);
1317    failed_ = failed_ || visitor.Failed();
1318  }
1319
1320  bool Failed() const {
1321    return failed_;
1322  }
1323
1324 private:
1325  Heap* const heap_;
1326  mutable bool failed_;
1327};
1328
1329// Must do this with mutators suspended since we are directly accessing the allocation stacks.
1330bool Heap::VerifyHeapReferences() {
1331  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1332  // Lets sort our allocation stacks so that we can efficiently binary search them.
1333  allocation_stack_->Sort();
1334  live_stack_->Sort();
1335  // Perform the verification.
1336  VerifyObjectVisitor visitor(this);
1337  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false);
1338  GetLiveBitmap()->Visit(visitor);
1339  // We don't want to verify the objects in the allocation stack since they themselves may be
1340  // pointing to dead objects if they are not reachable.
1341  if (visitor.Failed()) {
1342    DumpSpaces();
1343    return false;
1344  }
1345  return true;
1346}
1347
1348class VerifyReferenceCardVisitor {
1349 public:
1350  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
1351      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
1352                            Locks::heap_bitmap_lock_)
1353      : heap_(heap), failed_(failed) {
1354  }
1355
1356  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1357  // annotalysis on visitors.
1358  void operator()(const mirror::Object* obj, const mirror::Object* ref, const MemberOffset& offset,
1359                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1360    // Filter out class references since changing an object's class does not mark the card as dirty.
1361    // Also handles large objects, since the only reference they hold is a class reference.
1362    if (ref != NULL && !ref->IsClass()) {
1363      accounting::CardTable* card_table = heap_->GetCardTable();
1364      // If the object is not dirty and it is referencing something in the live stack other than
1365      // class, then it must be on a dirty card.
1366      if (!card_table->AddrIsInCardTable(obj)) {
1367        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
1368        *failed_ = true;
1369      } else if (!card_table->IsDirty(obj)) {
1370        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
1371        // kCardDirty - 1 if it didnt get touched since we aged it.
1372        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1373        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1374          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1375            LOG(ERROR) << "Object " << obj << " found in live stack";
1376          }
1377          if (heap_->GetLiveBitmap()->Test(obj)) {
1378            LOG(ERROR) << "Object " << obj << " found in live bitmap";
1379          }
1380          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
1381                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
1382
1383          // Print which field of the object is dead.
1384          if (!obj->IsObjectArray()) {
1385            const mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1386            CHECK(klass != NULL);
1387            const mirror::ObjectArray<mirror::Field>* fields = is_static ? klass->GetSFields()
1388                                                                         : klass->GetIFields();
1389            CHECK(fields != NULL);
1390            for (int32_t i = 0; i < fields->GetLength(); ++i) {
1391              const mirror::Field* cur = fields->Get(i);
1392              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1393                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
1394                          << PrettyField(cur);
1395                break;
1396              }
1397            }
1398          } else {
1399            const mirror::ObjectArray<mirror::Object>* object_array =
1400                obj->AsObjectArray<mirror::Object>();
1401            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
1402              if (object_array->Get(i) == ref) {
1403                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
1404              }
1405            }
1406          }
1407
1408          *failed_ = true;
1409        }
1410      }
1411    }
1412  }
1413
1414 private:
1415  Heap* const heap_;
1416  bool* const failed_;
1417};
1418
1419class VerifyLiveStackReferences {
1420 public:
1421  explicit VerifyLiveStackReferences(Heap* heap)
1422      : heap_(heap),
1423        failed_(false) {}
1424
1425  void operator()(const mirror::Object* obj) const
1426      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1427    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
1428    collector::MarkSweep::VisitObjectReferences(obj, visitor);
1429  }
1430
1431  bool Failed() const {
1432    return failed_;
1433  }
1434
1435 private:
1436  Heap* const heap_;
1437  bool failed_;
1438};
1439
1440bool Heap::VerifyMissingCardMarks() {
1441  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1442
1443  // We need to sort the live stack since we binary search it.
1444  live_stack_->Sort();
1445  VerifyLiveStackReferences visitor(this);
1446  GetLiveBitmap()->Visit(visitor);
1447
1448  // We can verify objects in the live stack since none of these should reference dead objects.
1449  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
1450    visitor(*it);
1451  }
1452
1453  if (visitor.Failed()) {
1454    DumpSpaces();
1455    return false;
1456  }
1457  return true;
1458}
1459
1460void Heap::SwapStacks() {
1461  allocation_stack_.swap(live_stack_);
1462
1463  // Sort the live stack so that we can quickly binary search it later.
1464  if (verify_object_mode_ > kNoHeapVerification) {
1465    live_stack_->Sort();
1466  }
1467}
1468
1469void Heap::ProcessCards(base::TimingLogger& timings) {
1470  // Clear cards and keep track of cards cleared in the mod-union table.
1471  typedef std::vector<space::ContinuousSpace*>::iterator It;
1472  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
1473    space::ContinuousSpace* space = *it;
1474    if (space->IsImageSpace()) {
1475      timings.NewSplit("ModUnionClearCards");
1476      image_mod_union_table_->ClearCards(space);
1477    } else if (space->IsZygoteSpace()) {
1478      timings.NewSplit("ZygoteModUnionClearCards");
1479      zygote_mod_union_table_->ClearCards(space);
1480    } else {
1481      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
1482      // were dirty before the GC started.
1483      timings.NewSplit("AllocSpaceClearCards");
1484      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
1485    }
1486  }
1487}
1488
1489void Heap::PreGcVerification(collector::GarbageCollector* gc) {
1490  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1491  Thread* self = Thread::Current();
1492
1493  if (verify_pre_gc_heap_) {
1494    thread_list->SuspendAll();
1495    {
1496      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1497      if (!VerifyHeapReferences()) {
1498        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
1499      }
1500    }
1501    thread_list->ResumeAll();
1502  }
1503
1504  // Check that all objects which reference things in the live stack are on dirty cards.
1505  if (verify_missing_card_marks_) {
1506    thread_list->SuspendAll();
1507    {
1508      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1509      SwapStacks();
1510      // Sort the live stack so that we can quickly binary search it later.
1511      if (!VerifyMissingCardMarks()) {
1512        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
1513      }
1514      SwapStacks();
1515    }
1516    thread_list->ResumeAll();
1517  }
1518
1519  if (verify_mod_union_table_) {
1520    thread_list->SuspendAll();
1521    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
1522    zygote_mod_union_table_->Update();
1523    zygote_mod_union_table_->Verify();
1524    image_mod_union_table_->Update();
1525    image_mod_union_table_->Verify();
1526    thread_list->ResumeAll();
1527  }
1528}
1529
1530void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
1531  ThreadList* thread_list = Runtime::Current()->GetThreadList();
1532
1533  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
1534  // reachable objects.
1535  if (verify_post_gc_heap_) {
1536    Thread* self = Thread::Current();
1537    CHECK_NE(self->GetState(), kRunnable);
1538    Locks::mutator_lock_->SharedUnlock(self);
1539    thread_list->SuspendAll();
1540    {
1541      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1542      // Swapping bound bitmaps does nothing.
1543      gc->SwapBitmaps();
1544      if (!VerifyHeapReferences()) {
1545        LOG(FATAL) << "Post " << gc->GetName() << "GC verification failed";
1546      }
1547      gc->SwapBitmaps();
1548    }
1549    thread_list->ResumeAll();
1550    Locks::mutator_lock_->SharedLock(self);
1551  }
1552}
1553
1554void Heap::PostGcVerification(collector::GarbageCollector* gc) {
1555  Thread* self = Thread::Current();
1556
1557  if (verify_system_weaks_) {
1558    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1559    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
1560    mark_sweep->VerifySystemWeaks();
1561  }
1562}
1563
1564collector::GcType Heap::WaitForConcurrentGcToComplete(Thread* self) {
1565  collector::GcType last_gc_type = collector::kGcTypeNone;
1566  if (concurrent_gc_) {
1567    ATRACE_BEGIN("GC: Wait For Concurrent");
1568    bool do_wait;
1569    uint64_t wait_start = NanoTime();
1570    {
1571      // Check if GC is running holding gc_complete_lock_.
1572      MutexLock mu(self, *gc_complete_lock_);
1573      do_wait = is_gc_running_;
1574    }
1575    if (do_wait) {
1576      uint64_t wait_time;
1577      // We must wait, change thread state then sleep on gc_complete_cond_;
1578      ScopedThreadStateChange tsc(Thread::Current(), kWaitingForGcToComplete);
1579      {
1580        MutexLock mu(self, *gc_complete_lock_);
1581        while (is_gc_running_) {
1582          gc_complete_cond_->Wait(self);
1583        }
1584        last_gc_type = last_gc_type_;
1585        wait_time = NanoTime() - wait_start;
1586        total_wait_time_ += wait_time;
1587      }
1588      if (wait_time > kLongGcPauseThreshold) {
1589        LOG(INFO) << "WaitForConcurrentGcToComplete blocked for " << PrettyDuration(wait_time);
1590      }
1591    }
1592    ATRACE_END();
1593  }
1594  return last_gc_type;
1595}
1596
1597void Heap::DumpForSigQuit(std::ostream& os) {
1598  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
1599     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
1600  DumpGcPerformanceInfo(os);
1601}
1602
1603size_t Heap::GetPercentFree() {
1604  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
1605}
1606
1607void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
1608  if (max_allowed_footprint > GetMaxMemory()) {
1609    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
1610             << PrettySize(GetMaxMemory());
1611    max_allowed_footprint = GetMaxMemory();
1612  }
1613  max_allowed_footprint_ = max_allowed_footprint;
1614}
1615
1616void Heap::UpdateMaxNativeFootprint() {
1617  size_t native_size = native_bytes_allocated_;
1618  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
1619  size_t target_size = native_size / GetTargetHeapUtilization();
1620  if (target_size > native_size + max_free_) {
1621    target_size = native_size + max_free_;
1622  } else if (target_size < native_size + min_free_) {
1623    target_size = native_size + min_free_;
1624  }
1625  native_footprint_gc_watermark_ = target_size;
1626  native_footprint_limit_ = 2 * target_size - native_size;
1627}
1628
1629void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
1630  // We know what our utilization is at this moment.
1631  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
1632  const size_t bytes_allocated = GetBytesAllocated();
1633  last_gc_size_ = bytes_allocated;
1634  last_gc_time_ns_ = NanoTime();
1635
1636  size_t target_size;
1637  if (gc_type != collector::kGcTypeSticky) {
1638    // Grow the heap for non sticky GC.
1639    target_size = bytes_allocated / GetTargetHeapUtilization();
1640    if (target_size > bytes_allocated + max_free_) {
1641      target_size = bytes_allocated + max_free_;
1642    } else if (target_size < bytes_allocated + min_free_) {
1643      target_size = bytes_allocated + min_free_;
1644    }
1645    next_gc_type_ = collector::kGcTypeSticky;
1646  } else {
1647    // Based on how close the current heap size is to the target size, decide
1648    // whether or not to do a partial or sticky GC next.
1649    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
1650      next_gc_type_ = collector::kGcTypeSticky;
1651    } else {
1652      next_gc_type_ = collector::kGcTypePartial;
1653    }
1654
1655    // If we have freed enough memory, shrink the heap back down.
1656    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
1657      target_size = bytes_allocated + max_free_;
1658    } else {
1659      target_size = std::max(bytes_allocated, max_allowed_footprint_);
1660    }
1661  }
1662  SetIdealFootprint(target_size);
1663
1664  // Calculate when to perform the next ConcurrentGC.
1665  if (concurrent_gc_) {
1666    // Calculate the estimated GC duration.
1667    double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
1668    // Estimate how many remaining bytes we will have when we need to start the next GC.
1669    size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
1670    remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
1671    if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
1672      // A never going to happen situation that from the estimated allocation rate we will exceed
1673      // the applications entire footprint with the given estimated allocation rate. Schedule
1674      // another GC straight away.
1675      concurrent_start_bytes_ = bytes_allocated;
1676    } else {
1677      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
1678      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
1679      // right away.
1680      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
1681    }
1682    DCHECK_LE(concurrent_start_bytes_, max_allowed_footprint_);
1683    DCHECK_LE(max_allowed_footprint_, growth_limit_);
1684  }
1685
1686  UpdateMaxNativeFootprint();
1687}
1688
1689void Heap::ClearGrowthLimit() {
1690  growth_limit_ = capacity_;
1691  alloc_space_->ClearGrowthLimit();
1692}
1693
1694void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
1695                                MemberOffset reference_queue_offset,
1696                                MemberOffset reference_queueNext_offset,
1697                                MemberOffset reference_pendingNext_offset,
1698                                MemberOffset finalizer_reference_zombie_offset) {
1699  reference_referent_offset_ = reference_referent_offset;
1700  reference_queue_offset_ = reference_queue_offset;
1701  reference_queueNext_offset_ = reference_queueNext_offset;
1702  reference_pendingNext_offset_ = reference_pendingNext_offset;
1703  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
1704  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
1705  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
1706  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
1707  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
1708  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
1709}
1710
1711mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) {
1712  DCHECK(reference != NULL);
1713  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
1714  return reference->GetFieldObject<mirror::Object*>(reference_referent_offset_, true);
1715}
1716
1717void Heap::ClearReferenceReferent(mirror::Object* reference) {
1718  DCHECK(reference != NULL);
1719  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
1720  reference->SetFieldObject(reference_referent_offset_, NULL, true);
1721}
1722
1723// Returns true if the reference object has not yet been enqueued.
1724bool Heap::IsEnqueuable(const mirror::Object* ref) {
1725  DCHECK(ref != NULL);
1726  const mirror::Object* queue =
1727      ref->GetFieldObject<mirror::Object*>(reference_queue_offset_, false);
1728  const mirror::Object* queue_next =
1729      ref->GetFieldObject<mirror::Object*>(reference_queueNext_offset_, false);
1730  return (queue != NULL) && (queue_next == NULL);
1731}
1732
1733void Heap::EnqueueReference(mirror::Object* ref, mirror::Object** cleared_reference_list) {
1734  DCHECK(ref != NULL);
1735  CHECK(ref->GetFieldObject<mirror::Object*>(reference_queue_offset_, false) != NULL);
1736  CHECK(ref->GetFieldObject<mirror::Object*>(reference_queueNext_offset_, false) == NULL);
1737  EnqueuePendingReference(ref, cleared_reference_list);
1738}
1739
1740void Heap::EnqueuePendingReference(mirror::Object* ref, mirror::Object** list) {
1741  DCHECK(ref != NULL);
1742  DCHECK(list != NULL);
1743
1744  // TODO: Remove this lock, use atomic stacks for storing references.
1745  MutexLock mu(Thread::Current(), *reference_queue_lock_);
1746  if (*list == NULL) {
1747    ref->SetFieldObject(reference_pendingNext_offset_, ref, false);
1748    *list = ref;
1749  } else {
1750    mirror::Object* head =
1751        (*list)->GetFieldObject<mirror::Object*>(reference_pendingNext_offset_, false);
1752    ref->SetFieldObject(reference_pendingNext_offset_, head, false);
1753    (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false);
1754  }
1755}
1756
1757mirror::Object* Heap::DequeuePendingReference(mirror::Object** list) {
1758  DCHECK(list != NULL);
1759  DCHECK(*list != NULL);
1760  mirror::Object* head = (*list)->GetFieldObject<mirror::Object*>(reference_pendingNext_offset_,
1761                                                                  false);
1762  mirror::Object* ref;
1763
1764  // Note: the following code is thread-safe because it is only called from ProcessReferences which
1765  // is single threaded.
1766  if (*list == head) {
1767    ref = *list;
1768    *list = NULL;
1769  } else {
1770    mirror::Object* next = head->GetFieldObject<mirror::Object*>(reference_pendingNext_offset_,
1771                                                                 false);
1772    (*list)->SetFieldObject(reference_pendingNext_offset_, next, false);
1773    ref = head;
1774  }
1775  ref->SetFieldObject(reference_pendingNext_offset_, NULL, false);
1776  return ref;
1777}
1778
1779void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
1780  ScopedObjectAccess soa(self);
1781  JValue result;
1782  ArgArray arg_array(NULL, 0);
1783  arg_array.Append(reinterpret_cast<uint32_t>(object));
1784  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
1785      arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
1786}
1787
1788void Heap::EnqueueClearedReferences(mirror::Object** cleared) {
1789  DCHECK(cleared != NULL);
1790  if (*cleared != NULL) {
1791    // When a runtime isn't started there are no reference queues to care about so ignore.
1792    if (LIKELY(Runtime::Current()->IsStarted())) {
1793      ScopedObjectAccess soa(Thread::Current());
1794      JValue result;
1795      ArgArray arg_array(NULL, 0);
1796      arg_array.Append(reinterpret_cast<uint32_t>(*cleared));
1797      soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
1798          arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
1799    }
1800    *cleared = NULL;
1801  }
1802}
1803
1804void Heap::RequestConcurrentGC(Thread* self) {
1805  // Make sure that we can do a concurrent GC.
1806  Runtime* runtime = Runtime::Current();
1807  DCHECK(concurrent_gc_);
1808  if (runtime == NULL || !runtime->IsFinishedStarting() ||
1809      !runtime->IsConcurrentGcEnabled()) {
1810    return;
1811  }
1812  {
1813    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1814    if (runtime->IsShuttingDown()) {
1815      return;
1816    }
1817  }
1818  if (self->IsHandlingStackOverflow()) {
1819    return;
1820  }
1821
1822  // We already have a request pending, no reason to start more until we update
1823  // concurrent_start_bytes_.
1824  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1825
1826  JNIEnv* env = self->GetJniEnv();
1827  DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
1828  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != NULL);
1829  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
1830                            WellKnownClasses::java_lang_Daemons_requestGC);
1831  CHECK(!env->ExceptionCheck());
1832}
1833
1834void Heap::ConcurrentGC(Thread* self) {
1835  {
1836    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1837    if (Runtime::Current()->IsShuttingDown()) {
1838      return;
1839    }
1840  }
1841
1842  // Wait for any GCs currently running to finish.
1843  if (WaitForConcurrentGcToComplete(self) == collector::kGcTypeNone) {
1844    CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false);
1845  }
1846}
1847
1848void Heap::RequestHeapTrim() {
1849  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
1850  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
1851  // a space it will hold its lock and can become a cause of jank.
1852  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
1853  // forking.
1854
1855  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
1856  // because that only marks object heads, so a large array looks like lots of empty space. We
1857  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
1858  // to utilization (which is probably inversely proportional to how much benefit we can expect).
1859  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
1860  // not how much use we're making of those pages.
1861  uint64_t ms_time = MilliTime();
1862  float utilization =
1863      static_cast<float>(alloc_space_->GetBytesAllocated()) / alloc_space_->Size();
1864  if ((utilization > 0.75f) || ((ms_time - last_trim_time_ms_) < 2 * 1000)) {
1865    // Don't bother trimming the alloc space if it's more than 75% utilized, or if a
1866    // heap trim occurred in the last two seconds.
1867    return;
1868  }
1869
1870  Thread* self = Thread::Current();
1871  {
1872    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1873    Runtime* runtime = Runtime::Current();
1874    if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown()) {
1875      // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
1876      // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
1877      // as we don't hold the lock while requesting the trim).
1878      return;
1879    }
1880  }
1881
1882  SchedPolicy policy;
1883  get_sched_policy(self->GetTid(), &policy);
1884  if (policy == SP_FOREGROUND || policy == SP_AUDIO_APP) {
1885    // Don't trim the heap if we are a foreground or audio app.
1886    return;
1887  }
1888
1889  last_trim_time_ms_ = ms_time;
1890  JNIEnv* env = self->GetJniEnv();
1891  DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
1892  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
1893  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
1894                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
1895  CHECK(!env->ExceptionCheck());
1896}
1897
1898size_t Heap::Trim() {
1899  // Handle a requested heap trim on a thread outside of the main GC thread.
1900  return alloc_space_->Trim();
1901}
1902
1903bool Heap::IsGCRequestPending() const {
1904  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
1905}
1906
1907void Heap::RegisterNativeAllocation(int bytes) {
1908  // Total number of native bytes allocated.
1909  native_bytes_allocated_.fetch_add(bytes);
1910  Thread* self = Thread::Current();
1911  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
1912    // The second watermark is higher than the gc watermark. If you hit this it means you are
1913    // allocating native objects faster than the GC can keep up with.
1914    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
1915        JNIEnv* env = self->GetJniEnv();
1916        // Can't do this in WellKnownClasses::Init since System is not properly set up at that
1917        // point.
1918        if (WellKnownClasses::java_lang_System_runFinalization == NULL) {
1919          DCHECK(WellKnownClasses::java_lang_System != NULL);
1920          WellKnownClasses::java_lang_System_runFinalization =
1921              CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
1922          assert(WellKnownClasses::java_lang_System_runFinalization != NULL);
1923        }
1924        if (WaitForConcurrentGcToComplete(self) != collector::kGcTypeNone) {
1925          // Just finished a GC, attempt to run finalizers.
1926          env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
1927                                    WellKnownClasses::java_lang_System_runFinalization);
1928          CHECK(!env->ExceptionCheck());
1929        }
1930
1931        // If we still are over the watermark, attempt a GC for alloc and run finalizers.
1932        if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
1933          CollectGarbageInternal(collector::kGcTypePartial, kGcCauseForAlloc, false);
1934          env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
1935                                    WellKnownClasses::java_lang_System_runFinalization);
1936          CHECK(!env->ExceptionCheck());
1937        }
1938        // We have just run finalizers, update the native watermark since it is very likely that
1939        // finalizers released native managed allocations.
1940        UpdateMaxNativeFootprint();
1941    } else {
1942      if (!IsGCRequestPending()) {
1943        RequestConcurrentGC(self);
1944      }
1945    }
1946  }
1947}
1948
1949void Heap::RegisterNativeFree(int bytes) {
1950  int expected_size, new_size;
1951  do {
1952      expected_size = native_bytes_allocated_.load();
1953      new_size = expected_size - bytes;
1954      if (new_size < 0) {
1955        ThrowRuntimeException("attempted to free %d native bytes with only %d native bytes registered as allocated",
1956                              bytes, expected_size);
1957        break;
1958      }
1959  } while (!native_bytes_allocated_.compare_and_swap(expected_size, new_size));
1960}
1961
1962int64_t Heap::GetTotalMemory() const {
1963  int64_t ret = 0;
1964  typedef std::vector<space::ContinuousSpace*>::const_iterator It;
1965  for (It it = continuous_spaces_.begin(), end = continuous_spaces_.end(); it != end; ++it) {
1966    space::ContinuousSpace* space = *it;
1967    if (space->IsImageSpace()) {
1968      // Currently don't include the image space.
1969    } else if (space->IsDlMallocSpace()) {
1970      // Zygote or alloc space
1971      ret += space->AsDlMallocSpace()->GetFootprint();
1972    }
1973  }
1974  typedef std::vector<space::DiscontinuousSpace*>::const_iterator It2;
1975  for (It2 it = discontinuous_spaces_.begin(), end = discontinuous_spaces_.end(); it != end; ++it) {
1976    space::DiscontinuousSpace* space = *it;
1977    if (space->IsLargeObjectSpace()) {
1978      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
1979    }
1980  }
1981  return ret;
1982}
1983
1984}  // namespace gc
1985}  // namespace art
1986