heap.cc revision ef7d42fca18c16fbaf103822ad16f23246e2905d
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "heap.h"
18
19#define ATRACE_TAG ATRACE_TAG_DALVIK
20#include <cutils/trace.h>
21
22#include <limits>
23#include <vector>
24#include <valgrind.h>
25
26#include "base/histogram-inl.h"
27#include "base/stl_util.h"
28#include "common_throws.h"
29#include "cutils/sched_policy.h"
30#include "debugger.h"
31#include "gc/accounting/atomic_stack.h"
32#include "gc/accounting/card_table-inl.h"
33#include "gc/accounting/heap_bitmap-inl.h"
34#include "gc/accounting/mod_union_table.h"
35#include "gc/accounting/mod_union_table-inl.h"
36#include "gc/accounting/space_bitmap-inl.h"
37#include "gc/collector/mark_sweep-inl.h"
38#include "gc/collector/partial_mark_sweep.h"
39#include "gc/collector/semi_space.h"
40#include "gc/collector/sticky_mark_sweep.h"
41#include "gc/space/bump_pointer_space.h"
42#include "gc/space/dlmalloc_space-inl.h"
43#include "gc/space/image_space.h"
44#include "gc/space/large_object_space.h"
45#include "gc/space/rosalloc_space-inl.h"
46#include "gc/space/space-inl.h"
47#include "gc/space/zygote_space.h"
48#include "heap-inl.h"
49#include "image.h"
50#include "invoke_arg_array_builder.h"
51#include "mirror/art_field-inl.h"
52#include "mirror/class-inl.h"
53#include "mirror/object.h"
54#include "mirror/object-inl.h"
55#include "mirror/object_array-inl.h"
56#include "object_utils.h"
57#include "os.h"
58#include "runtime.h"
59#include "ScopedLocalRef.h"
60#include "scoped_thread_state_change.h"
61#include "sirt_ref.h"
62#include "thread_list.h"
63#include "UniquePtr.h"
64#include "well_known_classes.h"
65
66namespace art {
67
68extern void SetQuickAllocEntryPointsAllocator(gc::AllocatorType allocator);
69
70namespace gc {
71
72static constexpr bool kGCALotMode = false;
73static constexpr size_t kGcAlotInterval = KB;
74// Minimum amount of remaining bytes before a concurrent GC is triggered.
75static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
76static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
77
78Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
79           double target_utilization, size_t capacity, const std::string& image_file_name,
80           CollectorType post_zygote_collector_type, CollectorType background_collector_type,
81           size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
82           size_t long_pause_log_threshold, size_t long_gc_log_threshold,
83           bool ignore_max_footprint, bool use_tlab, bool verify_pre_gc_heap,
84           bool verify_post_gc_heap)
85    : non_moving_space_(nullptr),
86      rosalloc_space_(nullptr),
87      dlmalloc_space_(nullptr),
88      main_space_(nullptr),
89      concurrent_gc_(false),
90      collector_type_(kCollectorTypeNone),
91      post_zygote_collector_type_(post_zygote_collector_type),
92      background_collector_type_(background_collector_type),
93      parallel_gc_threads_(parallel_gc_threads),
94      conc_gc_threads_(conc_gc_threads),
95      low_memory_mode_(low_memory_mode),
96      long_pause_log_threshold_(long_pause_log_threshold),
97      long_gc_log_threshold_(long_gc_log_threshold),
98      ignore_max_footprint_(ignore_max_footprint),
99      have_zygote_space_(false),
100      soft_reference_queue_(this),
101      weak_reference_queue_(this),
102      finalizer_reference_queue_(this),
103      phantom_reference_queue_(this),
104      cleared_references_(this),
105      collector_type_running_(kCollectorTypeNone),
106      last_gc_type_(collector::kGcTypeNone),
107      next_gc_type_(collector::kGcTypePartial),
108      capacity_(capacity),
109      growth_limit_(growth_limit),
110      max_allowed_footprint_(initial_size),
111      native_footprint_gc_watermark_(initial_size),
112      native_footprint_limit_(2 * initial_size),
113      native_need_to_run_finalization_(false),
114      // Initially assume we perceive jank in case the process state is never updated.
115      process_state_(kProcessStateJankPerceptible),
116      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
117      total_bytes_freed_ever_(0),
118      total_objects_freed_ever_(0),
119      num_bytes_allocated_(0),
120      native_bytes_allocated_(0),
121      gc_memory_overhead_(0),
122      verify_missing_card_marks_(false),
123      verify_system_weaks_(false),
124      verify_pre_gc_heap_(verify_pre_gc_heap),
125      verify_post_gc_heap_(verify_post_gc_heap),
126      verify_mod_union_table_(false),
127      last_trim_time_ms_(0),
128      allocation_rate_(0),
129      /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
130       * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
131       * verification is enabled, we limit the size of allocation stacks to speed up their
132       * searching.
133       */
134      max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
135          : (kDesiredHeapVerification > kVerifyAllFast) ? KB : MB),
136      current_allocator_(kAllocatorTypeDlMalloc),
137      current_non_moving_allocator_(kAllocatorTypeNonMoving),
138      bump_pointer_space_(nullptr),
139      temp_space_(nullptr),
140      reference_referent_offset_(0),
141      reference_queue_offset_(0),
142      reference_queueNext_offset_(0),
143      reference_pendingNext_offset_(0),
144      finalizer_reference_zombie_offset_(0),
145      min_free_(min_free),
146      max_free_(max_free),
147      target_utilization_(target_utilization),
148      total_wait_time_(0),
149      total_allocation_time_(0),
150      verify_object_mode_(kHeapVerificationNotPermitted),
151      disable_moving_gc_count_(0),
152      running_on_valgrind_(RUNNING_ON_VALGRIND),
153      use_tlab_(use_tlab) {
154  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
155    LOG(INFO) << "Heap() entering";
156  }
157  // If we aren't the zygote, switch to the default non zygote allocator. This may update the
158  // entrypoints.
159  if (!Runtime::Current()->IsZygote() || !kMovingCollector) {
160    ChangeCollector(post_zygote_collector_type_);
161  } else {
162    // We are the zygote, use bump pointer allocation + semi space collector.
163    ChangeCollector(kCollectorTypeSS);
164  }
165
166  live_bitmap_.reset(new accounting::HeapBitmap(this));
167  mark_bitmap_.reset(new accounting::HeapBitmap(this));
168  // Requested begin for the alloc space, to follow the mapped image and oat files
169  byte* requested_alloc_space_begin = nullptr;
170  if (!image_file_name.empty()) {
171    space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str());
172    CHECK(image_space != nullptr) << "Failed to create space for " << image_file_name;
173    AddSpace(image_space);
174    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
175    // isn't going to get in the middle
176    byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
177    CHECK_GT(oat_file_end_addr, image_space->End());
178    if (oat_file_end_addr > requested_alloc_space_begin) {
179      requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
180    }
181  }
182  const char* name = Runtime::Current()->IsZygote() ? "zygote space" : "alloc space";
183  space::MallocSpace* malloc_space;
184  if (kUseRosAlloc) {
185    malloc_space = space::RosAllocSpace::Create(name, initial_size, growth_limit, capacity,
186                                                requested_alloc_space_begin, low_memory_mode_);
187    CHECK(malloc_space != nullptr) << "Failed to create rosalloc space";
188  } else {
189    malloc_space = space::DlMallocSpace::Create(name, initial_size, growth_limit, capacity,
190                                                requested_alloc_space_begin);
191    CHECK(malloc_space != nullptr) << "Failed to create dlmalloc space";
192  }
193  VLOG(heap) << "malloc_space : " << malloc_space;
194  if (kMovingCollector) {
195    // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
196    // TODO: Having 3+ spaces as big as the large heap size can cause virtual memory fragmentation
197    // issues.
198    const size_t bump_pointer_space_size = std::min(malloc_space->Capacity(), 128 * MB);
199    bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space",
200                                                          bump_pointer_space_size, nullptr);
201    CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
202    AddSpace(bump_pointer_space_);
203    temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2", bump_pointer_space_size,
204                                                  nullptr);
205    CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
206    AddSpace(temp_space_);
207    VLOG(heap) << "bump_pointer_space : " << bump_pointer_space_;
208    VLOG(heap) << "temp_space : " << temp_space_;
209  }
210  non_moving_space_ = malloc_space;
211  malloc_space->SetFootprintLimit(malloc_space->Capacity());
212  AddSpace(malloc_space);
213
214  // Allocate the large object space.
215  constexpr bool kUseFreeListSpaceForLOS = false;
216  if (kUseFreeListSpaceForLOS) {
217    large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity);
218  } else {
219    large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
220  }
221  CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
222  AddSpace(large_object_space_);
223
224  // Compute heap capacity. Continuous spaces are sorted in order of Begin().
225  CHECK(!continuous_spaces_.empty());
226
227  // Relies on the spaces being sorted.
228  byte* heap_begin = continuous_spaces_.front()->Begin();
229  byte* heap_end = continuous_spaces_.back()->Limit();
230  if (Runtime::Current()->IsZygote()) {
231    std::string error_str;
232    post_zygote_non_moving_space_mem_map_.reset(
233        MemMap::MapAnonymous("post zygote non-moving space", nullptr, 64 * MB,
234                             PROT_READ | PROT_WRITE, true, &error_str));
235    CHECK(post_zygote_non_moving_space_mem_map_.get() != nullptr) << error_str;
236    heap_begin = std::min(post_zygote_non_moving_space_mem_map_->Begin(), heap_begin);
237    heap_end = std::max(post_zygote_non_moving_space_mem_map_->End(), heap_end);
238  }
239  size_t heap_capacity = heap_end - heap_begin;
240
241  // Allocate the card table.
242  card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
243  CHECK(card_table_.get() != NULL) << "Failed to create card table";
244
245  // Card cache for now since it makes it easier for us to update the references to the copying
246  // spaces.
247  accounting::ModUnionTable* mod_union_table =
248      new accounting::ModUnionTableCardCache("Image mod-union table", this, GetImageSpace());
249  CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
250  AddModUnionTable(mod_union_table);
251
252  // TODO: Count objects in the image space here.
253  num_bytes_allocated_ = 0;
254
255  // Default mark stack size in bytes.
256  static const size_t default_mark_stack_size = 64 * KB;
257  mark_stack_.reset(accounting::ObjectStack::Create("mark stack", default_mark_stack_size));
258  allocation_stack_.reset(accounting::ObjectStack::Create("allocation stack",
259                                                          max_allocation_stack_size_));
260  live_stack_.reset(accounting::ObjectStack::Create("live stack",
261                                                    max_allocation_stack_size_));
262
263  // It's still too early to take a lock because there are no threads yet, but we can create locks
264  // now. We don't create it earlier to make it clear that you can't use locks during heap
265  // initialization.
266  gc_complete_lock_ = new Mutex("GC complete lock");
267  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
268                                                *gc_complete_lock_));
269  last_gc_time_ns_ = NanoTime();
270  last_gc_size_ = GetBytesAllocated();
271
272  if (ignore_max_footprint_) {
273    SetIdealFootprint(std::numeric_limits<size_t>::max());
274    concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
275  }
276  CHECK_NE(max_allowed_footprint_, 0U);
277
278  // Create our garbage collectors.
279  for (size_t i = 0; i < 2; ++i) {
280    const bool concurrent = i != 0;
281    garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
282    garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
283    garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
284  }
285  if (kMovingCollector) {
286    // TODO: Clean this up.
287    bool generational = post_zygote_collector_type_ == kCollectorTypeGSS;
288    semi_space_collector_ = new collector::SemiSpace(this, generational);
289    garbage_collectors_.push_back(semi_space_collector_);
290  }
291
292  if (running_on_valgrind_) {
293    Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
294  }
295
296  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
297    LOG(INFO) << "Heap() exiting";
298  }
299}
300
301void Heap::ChangeAllocator(AllocatorType allocator) {
302  // These two allocators are only used internally and don't have any entrypoints.
303  DCHECK_NE(allocator, kAllocatorTypeLOS);
304  DCHECK_NE(allocator, kAllocatorTypeNonMoving);
305  if (current_allocator_ != allocator) {
306    current_allocator_ = allocator;
307    SetQuickAllocEntryPointsAllocator(current_allocator_);
308    Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
309  }
310}
311
312bool Heap::IsCompilingBoot() const {
313  for (const auto& space : continuous_spaces_) {
314    if (space->IsImageSpace()) {
315      return false;
316    } else if (space->IsZygoteSpace()) {
317      return false;
318    }
319  }
320  return true;
321}
322
323bool Heap::HasImageSpace() const {
324  for (const auto& space : continuous_spaces_) {
325    if (space->IsImageSpace()) {
326      return true;
327    }
328  }
329  return false;
330}
331
332void Heap::IncrementDisableMovingGC(Thread* self) {
333  // Need to do this holding the lock to prevent races where the GC is about to run / running when
334  // we attempt to disable it.
335  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
336  MutexLock mu(self, *gc_complete_lock_);
337  ++disable_moving_gc_count_;
338  if (IsCompactingGC(collector_type_running_)) {
339    WaitForGcToCompleteLocked(self);
340  }
341}
342
343void Heap::DecrementDisableMovingGC(Thread* self) {
344  MutexLock mu(self, *gc_complete_lock_);
345  CHECK_GE(disable_moving_gc_count_, 0U);
346  --disable_moving_gc_count_;
347}
348
349void Heap::UpdateProcessState(ProcessState process_state) {
350  if (process_state_ != process_state) {
351    process_state_ = process_state;
352    if (process_state_ == kProcessStateJankPerceptible) {
353      TransitionCollector(post_zygote_collector_type_);
354    } else {
355      TransitionCollector(background_collector_type_);
356    }
357  } else {
358    CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
359  }
360}
361
362void Heap::CreateThreadPool() {
363  const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
364  if (num_threads != 0) {
365    thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
366  }
367}
368
369void Heap::VisitObjects(ObjectVisitorCallback callback, void* arg) {
370  Thread* self = Thread::Current();
371  // GCs can move objects, so don't allow this.
372  const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
373  if (bump_pointer_space_ != nullptr) {
374    // Visit objects in bump pointer space.
375    bump_pointer_space_->Walk(callback, arg);
376  }
377  // TODO: Switch to standard begin and end to use ranged a based loop.
378  for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
379      it < end; ++it) {
380    mirror::Object* obj = *it;
381    callback(obj, arg);
382  }
383  GetLiveBitmap()->Walk(callback, arg);
384  self->EndAssertNoThreadSuspension(old_cause);
385}
386
387void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
388  space::ContinuousSpace* space1 = rosalloc_space_ != nullptr ? rosalloc_space_ : non_moving_space_;
389  space::ContinuousSpace* space2 = dlmalloc_space_ != nullptr ? dlmalloc_space_ : non_moving_space_;
390  // This is just logic to handle a case of either not having a rosalloc or dlmalloc space.
391  // TODO: Generalize this to n bitmaps?
392  if (space1 == nullptr) {
393    DCHECK(space2 != nullptr);
394    space1 = space2;
395  }
396  if (space2 == nullptr) {
397    DCHECK(space1 != nullptr);
398    space2 = space1;
399  }
400  MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
401                 large_object_space_->GetLiveObjects(), stack);
402}
403
404void Heap::DeleteThreadPool() {
405  thread_pool_.reset(nullptr);
406}
407
408void Heap::AddSpace(space::Space* space, bool set_as_default) {
409  DCHECK(space != nullptr);
410  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
411  if (space->IsContinuousSpace()) {
412    DCHECK(!space->IsDiscontinuousSpace());
413    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
414    // Continuous spaces don't necessarily have bitmaps.
415    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
416    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
417    if (live_bitmap != nullptr) {
418      DCHECK(mark_bitmap != nullptr);
419      live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
420      mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
421    }
422    continuous_spaces_.push_back(continuous_space);
423    if (set_as_default) {
424      if (continuous_space->IsDlMallocSpace()) {
425        dlmalloc_space_ = continuous_space->AsDlMallocSpace();
426      } else if (continuous_space->IsRosAllocSpace()) {
427        rosalloc_space_ = continuous_space->AsRosAllocSpace();
428      }
429    }
430    // Ensure that spaces remain sorted in increasing order of start address.
431    std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
432              [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
433      return a->Begin() < b->Begin();
434    });
435  } else {
436    DCHECK(space->IsDiscontinuousSpace());
437    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
438    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
439    live_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
440    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
441    mark_bitmap_->AddDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
442    discontinuous_spaces_.push_back(discontinuous_space);
443  }
444  if (space->IsAllocSpace()) {
445    alloc_spaces_.push_back(space->AsAllocSpace());
446  }
447}
448
449void Heap::RemoveSpace(space::Space* space) {
450  DCHECK(space != nullptr);
451  WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
452  if (space->IsContinuousSpace()) {
453    DCHECK(!space->IsDiscontinuousSpace());
454    space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
455    // Continuous spaces don't necessarily have bitmaps.
456    accounting::SpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
457    accounting::SpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
458    if (live_bitmap != nullptr) {
459      DCHECK(mark_bitmap != nullptr);
460      live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
461      mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
462    }
463    auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
464    DCHECK(it != continuous_spaces_.end());
465    continuous_spaces_.erase(it);
466    if (continuous_space == dlmalloc_space_) {
467      dlmalloc_space_ = nullptr;
468    } else if (continuous_space == rosalloc_space_) {
469      rosalloc_space_ = nullptr;
470    }
471    if (continuous_space == main_space_) {
472      main_space_ = nullptr;
473    }
474  } else {
475    DCHECK(space->IsDiscontinuousSpace());
476    space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
477    DCHECK(discontinuous_space->GetLiveObjects() != nullptr);
478    live_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetLiveObjects());
479    DCHECK(discontinuous_space->GetMarkObjects() != nullptr);
480    mark_bitmap_->RemoveDiscontinuousObjectSet(discontinuous_space->GetMarkObjects());
481    auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
482                        discontinuous_space);
483    DCHECK(it != discontinuous_spaces_.end());
484    discontinuous_spaces_.erase(it);
485  }
486  if (space->IsAllocSpace()) {
487    auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
488    DCHECK(it != alloc_spaces_.end());
489    alloc_spaces_.erase(it);
490  }
491}
492
493void Heap::RegisterGCAllocation(size_t bytes) {
494  if (this != nullptr) {
495    gc_memory_overhead_.FetchAndAdd(bytes);
496  }
497}
498
499void Heap::RegisterGCDeAllocation(size_t bytes) {
500  if (this != nullptr) {
501    gc_memory_overhead_.FetchAndSub(bytes);
502  }
503}
504
505void Heap::DumpGcPerformanceInfo(std::ostream& os) {
506  // Dump cumulative timings.
507  os << "Dumping cumulative Gc timings\n";
508  uint64_t total_duration = 0;
509
510  // Dump cumulative loggers for each GC type.
511  uint64_t total_paused_time = 0;
512  for (const auto& collector : garbage_collectors_) {
513    CumulativeLogger& logger = collector->GetCumulativeTimings();
514    if (logger.GetTotalNs() != 0) {
515      os << Dumpable<CumulativeLogger>(logger);
516      const uint64_t total_ns = logger.GetTotalNs();
517      const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
518      double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
519      const uint64_t freed_bytes = collector->GetTotalFreedBytes();
520      const uint64_t freed_objects = collector->GetTotalFreedObjects();
521      Histogram<uint64_t>::CumulativeData cumulative_data;
522      collector->GetPauseHistogram().CreateHistogram(&cumulative_data);
523      collector->GetPauseHistogram().PrintConfidenceIntervals(os, 0.99, cumulative_data);
524      os << collector->GetName() << " total time: " << PrettyDuration(total_ns) << "\n"
525         << collector->GetName() << " freed: " << freed_objects
526         << " objects with total size " << PrettySize(freed_bytes) << "\n"
527         << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
528         << PrettySize(freed_bytes / seconds) << "/s\n";
529      total_duration += total_ns;
530      total_paused_time += total_pause_ns;
531    }
532  }
533  uint64_t allocation_time = static_cast<uint64_t>(total_allocation_time_) * kTimeAdjust;
534  if (total_duration != 0) {
535    const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
536    os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
537    os << "Mean GC size throughput: "
538       << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
539    os << "Mean GC object throughput: "
540       << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
541  }
542  size_t total_objects_allocated = GetObjectsAllocatedEver();
543  os << "Total number of allocations: " << total_objects_allocated << "\n";
544  size_t total_bytes_allocated = GetBytesAllocatedEver();
545  os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
546  if (kMeasureAllocationTime) {
547    os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
548    os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
549       << "\n";
550  }
551  os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
552  os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
553  os << "Approximate GC data structures memory overhead: " << gc_memory_overhead_;
554}
555
556Heap::~Heap() {
557  VLOG(heap) << "Starting ~Heap()";
558  STLDeleteElements(&garbage_collectors_);
559  // If we don't reset then the mark stack complains in its destructor.
560  allocation_stack_->Reset();
561  live_stack_->Reset();
562  STLDeleteValues(&mod_union_tables_);
563  STLDeleteElements(&continuous_spaces_);
564  STLDeleteElements(&discontinuous_spaces_);
565  delete gc_complete_lock_;
566  VLOG(heap) << "Finished ~Heap()";
567}
568
569space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
570                                                            bool fail_ok) const {
571  for (const auto& space : continuous_spaces_) {
572    if (space->Contains(obj)) {
573      return space;
574    }
575  }
576  if (!fail_ok) {
577    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
578  }
579  return NULL;
580}
581
582space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
583                                                                  bool fail_ok) const {
584  for (const auto& space : discontinuous_spaces_) {
585    if (space->Contains(obj)) {
586      return space;
587    }
588  }
589  if (!fail_ok) {
590    LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
591  }
592  return NULL;
593}
594
595space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
596  space::Space* result = FindContinuousSpaceFromObject(obj, true);
597  if (result != NULL) {
598    return result;
599  }
600  return FindDiscontinuousSpaceFromObject(obj, true);
601}
602
603struct SoftReferenceArgs {
604  RootVisitor* is_marked_callback_;
605  RootVisitor* recursive_mark_callback_;
606  void* arg_;
607};
608
609mirror::Object* Heap::PreserveSoftReferenceCallback(mirror::Object* obj, void* arg) {
610  SoftReferenceArgs* args = reinterpret_cast<SoftReferenceArgs*>(arg);
611  // TODO: Not preserve all soft references.
612  return args->recursive_mark_callback_(obj, args->arg_);
613}
614
615// Process reference class instances and schedule finalizations.
616void Heap::ProcessReferences(TimingLogger& timings, bool clear_soft,
617                             RootVisitor* is_marked_callback,
618                             RootVisitor* recursive_mark_object_callback, void* arg) {
619  // Unless we are in the zygote or required to clear soft references with white references,
620  // preserve some white referents.
621  if (!clear_soft && !Runtime::Current()->IsZygote()) {
622    SoftReferenceArgs soft_reference_args;
623    soft_reference_args.is_marked_callback_ = is_marked_callback;
624    soft_reference_args.recursive_mark_callback_ = recursive_mark_object_callback;
625    soft_reference_args.arg_ = arg;
626    soft_reference_queue_.PreserveSomeSoftReferences(&PreserveSoftReferenceCallback,
627                                                     &soft_reference_args);
628  }
629  timings.StartSplit("ProcessReferences");
630  // Clear all remaining soft and weak references with white referents.
631  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
632  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
633  timings.EndSplit();
634  // Preserve all white objects with finalize methods and schedule them for finalization.
635  timings.StartSplit("EnqueueFinalizerReferences");
636  finalizer_reference_queue_.EnqueueFinalizerReferences(cleared_references_, is_marked_callback,
637                                                        recursive_mark_object_callback, arg);
638  timings.EndSplit();
639  timings.StartSplit("ProcessReferences");
640  // Clear all f-reachable soft and weak references with white referents.
641  soft_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
642  weak_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
643  // Clear all phantom references with white referents.
644  phantom_reference_queue_.ClearWhiteReferences(cleared_references_, is_marked_callback, arg);
645  // At this point all reference queues other than the cleared references should be empty.
646  DCHECK(soft_reference_queue_.IsEmpty());
647  DCHECK(weak_reference_queue_.IsEmpty());
648  DCHECK(finalizer_reference_queue_.IsEmpty());
649  DCHECK(phantom_reference_queue_.IsEmpty());
650  timings.EndSplit();
651}
652
653bool Heap::IsEnqueued(mirror::Object* ref) const {
654  // Since the references are stored as cyclic lists it means that once enqueued, the pending next
655  // will always be non-null.
656  return ref->GetFieldObject<mirror::Object>(GetReferencePendingNextOffset(), false) != nullptr;
657}
658
659bool Heap::IsEnqueuable(mirror::Object* ref) const {
660  DCHECK(ref != nullptr);
661  const mirror::Object* queue =
662      ref->GetFieldObject<mirror::Object>(GetReferenceQueueOffset(), false);
663  const mirror::Object* queue_next =
664      ref->GetFieldObject<mirror::Object>(GetReferenceQueueNextOffset(), false);
665  return queue != nullptr && queue_next == nullptr;
666}
667
668// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
669// marked, put it on the appropriate list in the heap for later processing.
670void Heap::DelayReferenceReferent(mirror::Class* klass, mirror::Object* obj,
671                                  RootVisitor mark_visitor, void* arg) {
672  DCHECK(klass != nullptr);
673  DCHECK(klass->IsReferenceClass());
674  DCHECK(obj != nullptr);
675  mirror::Object* referent = GetReferenceReferent(obj);
676  if (referent != nullptr) {
677    mirror::Object* forward_address = mark_visitor(referent, arg);
678    // Null means that the object is not currently marked.
679    if (forward_address == nullptr) {
680      Thread* self = Thread::Current();
681      // TODO: Remove these locks, and use atomic stacks for storing references?
682      // We need to check that the references haven't already been enqueued since we can end up
683      // scanning the same reference multiple times due to dirty cards.
684      if (klass->IsSoftReferenceClass()) {
685        soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
686      } else if (klass->IsWeakReferenceClass()) {
687        weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
688      } else if (klass->IsFinalizerReferenceClass()) {
689        finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
690      } else if (klass->IsPhantomReferenceClass()) {
691        phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, obj);
692      } else {
693        LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
694                   << klass->GetAccessFlags();
695      }
696    } else if (referent != forward_address) {
697      // Referent is already marked and we need to update it.
698      SetReferenceReferent(obj, forward_address);
699    }
700  }
701}
702
703space::ImageSpace* Heap::GetImageSpace() const {
704  for (const auto& space : continuous_spaces_) {
705    if (space->IsImageSpace()) {
706      return space->AsImageSpace();
707    }
708  }
709  return NULL;
710}
711
712static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
713  size_t chunk_size = reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start);
714  if (used_bytes < chunk_size) {
715    size_t chunk_free_bytes = chunk_size - used_bytes;
716    size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);
717    max_contiguous_allocation = std::max(max_contiguous_allocation, chunk_free_bytes);
718  }
719}
720
721void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, bool large_object_allocation) {
722  std::ostringstream oss;
723  size_t total_bytes_free = GetFreeMemory();
724  oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
725      << " free bytes";
726  // If the allocation failed due to fragmentation, print out the largest continuous allocation.
727  if (!large_object_allocation && total_bytes_free >= byte_count) {
728    size_t max_contiguous_allocation = 0;
729    for (const auto& space : continuous_spaces_) {
730      if (space->IsMallocSpace()) {
731        // To allow the Walk/InspectAll() to exclusively-lock the mutator
732        // lock, temporarily release the shared access to the mutator
733        // lock here by transitioning to the suspended state.
734        Locks::mutator_lock_->AssertSharedHeld(self);
735        self->TransitionFromRunnableToSuspended(kSuspended);
736        space->AsMallocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
737        self->TransitionFromSuspendedToRunnable();
738        Locks::mutator_lock_->AssertSharedHeld(self);
739      }
740    }
741    oss << "; failed due to fragmentation (largest possible contiguous allocation "
742        <<  max_contiguous_allocation << " bytes)";
743  }
744  self->ThrowOutOfMemoryError(oss.str().c_str());
745}
746
747void Heap::Trim() {
748  Thread* self = Thread::Current();
749  {
750    // Need to do this before acquiring the locks since we don't want to get suspended while
751    // holding any locks.
752    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
753    // Pretend we are doing a GC to prevent background compaction from deleting the space we are
754    // trimming.
755    MutexLock mu(self, *gc_complete_lock_);
756    // Ensure there is only one GC at a time.
757    WaitForGcToCompleteLocked(self);
758    collector_type_running_ = kCollectorTypeHeapTrim;
759  }
760  uint64_t start_ns = NanoTime();
761  // Trim the managed spaces.
762  uint64_t total_alloc_space_allocated = 0;
763  uint64_t total_alloc_space_size = 0;
764  uint64_t managed_reclaimed = 0;
765  for (const auto& space : continuous_spaces_) {
766    if (space->IsMallocSpace()) {
767      gc::space::MallocSpace* alloc_space = space->AsMallocSpace();
768      total_alloc_space_size += alloc_space->Size();
769      managed_reclaimed += alloc_space->Trim();
770    }
771  }
772  total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated() -
773      bump_pointer_space_->Size();
774  const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
775      static_cast<float>(total_alloc_space_size);
776  uint64_t gc_heap_end_ns = NanoTime();
777  // We never move things in the native heap, so we can finish the GC at this point.
778  FinishGC(self, collector::kGcTypeNone);
779  // Trim the native heap.
780  dlmalloc_trim(0);
781  size_t native_reclaimed = 0;
782  dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
783  uint64_t end_ns = NanoTime();
784  VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
785      << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
786      << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
787      << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
788      << "%.";
789}
790
791bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
792  // Note: we deliberately don't take the lock here, and mustn't test anything that would require
793  // taking the lock.
794  if (obj == nullptr) {
795    return true;
796  }
797  return IsAligned<kObjectAlignment>(obj) && IsHeapAddress(obj);
798}
799
800bool Heap::IsHeapAddress(const mirror::Object* obj) const {
801  if (kMovingCollector && bump_pointer_space_ && bump_pointer_space_->HasAddress(obj)) {
802    return true;
803  }
804  // TODO: This probably doesn't work for large objects.
805  return FindSpaceFromObject(obj, true) != nullptr;
806}
807
808bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
809                              bool search_live_stack, bool sorted) {
810  if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
811    return false;
812  }
813  if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
814    mirror::Class* klass = obj->GetClass();
815    if (obj == klass) {
816      // This case happens for java.lang.Class.
817      return true;
818    }
819    return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
820  } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
821    return false;
822  }
823  space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
824  space::DiscontinuousSpace* d_space = NULL;
825  if (c_space != nullptr) {
826    if (c_space->GetLiveBitmap()->Test(obj)) {
827      return true;
828    }
829  } else {
830    d_space = FindDiscontinuousSpaceFromObject(obj, true);
831    if (d_space != nullptr) {
832      if (d_space->GetLiveObjects()->Test(obj)) {
833        return true;
834      }
835    }
836  }
837  // This is covering the allocation/live stack swapping that is done without mutators suspended.
838  for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
839    if (i > 0) {
840      NanoSleep(MsToNs(10));
841    }
842    if (search_allocation_stack) {
843      if (sorted) {
844        if (allocation_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
845          return true;
846        }
847      } else if (allocation_stack_->Contains(const_cast<mirror::Object*>(obj))) {
848        return true;
849      }
850    }
851
852    if (search_live_stack) {
853      if (sorted) {
854        if (live_stack_->ContainsSorted(const_cast<mirror::Object*>(obj))) {
855          return true;
856        }
857      } else if (live_stack_->Contains(const_cast<mirror::Object*>(obj))) {
858        return true;
859      }
860    }
861  }
862  // We need to check the bitmaps again since there is a race where we mark something as live and
863  // then clear the stack containing it.
864  if (c_space != nullptr) {
865    if (c_space->GetLiveBitmap()->Test(obj)) {
866      return true;
867    }
868  } else {
869    d_space = FindDiscontinuousSpaceFromObject(obj, true);
870    if (d_space != nullptr && d_space->GetLiveObjects()->Test(obj)) {
871      return true;
872    }
873  }
874  return false;
875}
876
877void Heap::VerifyObjectImpl(mirror::Object* obj) {
878  if (Thread::Current() == NULL ||
879      Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
880    return;
881  }
882  VerifyObjectBody(obj);
883}
884
885bool Heap::VerifyClassClass(const mirror::Class* c) const {
886  // Note: we don't use the accessors here as they have internal sanity checks that we don't want
887  // to run
888  const byte* raw_addr =
889      reinterpret_cast<const byte*>(c) + mirror::Object::ClassOffset().Int32Value();
890  mirror::Class* c_c = reinterpret_cast<mirror::HeapReference<mirror::Class> const *>(raw_addr)->AsMirrorPtr();
891  raw_addr = reinterpret_cast<const byte*>(c_c) + mirror::Object::ClassOffset().Int32Value();
892  mirror::Class* c_c_c = reinterpret_cast<mirror::HeapReference<mirror::Class> const *>(raw_addr)->AsMirrorPtr();
893  return c_c == c_c_c;
894}
895
896void Heap::DumpSpaces(std::ostream& stream) {
897  for (const auto& space : continuous_spaces_) {
898    accounting::SpaceBitmap* live_bitmap = space->GetLiveBitmap();
899    accounting::SpaceBitmap* mark_bitmap = space->GetMarkBitmap();
900    stream << space << " " << *space << "\n";
901    if (live_bitmap != nullptr) {
902      stream << live_bitmap << " " << *live_bitmap << "\n";
903    }
904    if (mark_bitmap != nullptr) {
905      stream << mark_bitmap << " " << *mark_bitmap << "\n";
906    }
907  }
908  for (const auto& space : discontinuous_spaces_) {
909    stream << space << " " << *space << "\n";
910  }
911}
912
913void Heap::VerifyObjectBody(mirror::Object* obj) {
914  CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
915  // Ignore early dawn of the universe verifications.
916  if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.Load()) < 10 * KB)) {
917    return;
918  }
919  const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
920      mirror::Object::ClassOffset().Int32Value();
921  mirror::Class* c = reinterpret_cast<mirror::HeapReference<mirror::Class> const *>(raw_addr)->AsMirrorPtr();
922  if (UNLIKELY(c == NULL)) {
923    LOG(FATAL) << "Null class in object: " << obj;
924  } else if (UNLIKELY(!IsAligned<kObjectAlignment>(c))) {
925    LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
926  }
927  CHECK(VerifyClassClass(c));
928
929  if (verify_object_mode_ > kVerifyAllFast) {
930    // TODO: the bitmap tests below are racy if VerifyObjectBody is called without the
931    //       heap_bitmap_lock_.
932    if (!IsLiveObjectLocked(obj)) {
933      DumpSpaces();
934      LOG(FATAL) << "Object is dead: " << obj;
935    }
936    if (!IsLiveObjectLocked(c)) {
937      LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
938    }
939  }
940}
941
942void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
943  DCHECK(obj != NULL);
944  reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
945}
946
947void Heap::VerifyHeap() {
948  ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
949  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
950}
951
952void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) {
953  DCHECK_LE(freed_bytes, num_bytes_allocated_.Load());
954  num_bytes_allocated_.FetchAndSub(freed_bytes);
955  if (Runtime::Current()->HasStatsEnabled()) {
956    RuntimeStats* thread_stats = Thread::Current()->GetStats();
957    thread_stats->freed_objects += freed_objects;
958    thread_stats->freed_bytes += freed_bytes;
959    // TODO: Do this concurrently.
960    RuntimeStats* global_stats = Runtime::Current()->GetStats();
961    global_stats->freed_objects += freed_objects;
962    global_stats->freed_bytes += freed_bytes;
963  }
964}
965
966mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
967                                             size_t alloc_size, size_t* bytes_allocated,
968                                             mirror::Class** klass) {
969  mirror::Object* ptr = nullptr;
970  bool was_default_allocator = allocator == GetCurrentAllocator();
971  DCHECK(klass != nullptr);
972  SirtRef<mirror::Class> sirt_klass(self, *klass);
973  // The allocation failed. If the GC is running, block until it completes, and then retry the
974  // allocation.
975  collector::GcType last_gc = WaitForGcToComplete(self);
976  if (last_gc != collector::kGcTypeNone) {
977    // If we were the default allocator but the allocator changed while we were suspended,
978    // abort the allocation.
979    if (was_default_allocator && allocator != GetCurrentAllocator()) {
980      *klass = sirt_klass.get();
981      return nullptr;
982    }
983    // A GC was in progress and we blocked, retry allocation now that memory has been freed.
984    ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
985  }
986
987  // Loop through our different Gc types and try to Gc until we get enough free memory.
988  for (collector::GcType gc_type : gc_plan_) {
989    if (ptr != nullptr) {
990      break;
991    }
992    // Attempt to run the collector, if we succeed, re-try the allocation.
993    bool gc_ran =
994        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
995    if (was_default_allocator && allocator != GetCurrentAllocator()) {
996      *klass = sirt_klass.get();
997      return nullptr;
998    }
999    if (gc_ran) {
1000      // Did we free sufficient memory for the allocation to succeed?
1001      ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated);
1002    }
1003  }
1004  // Allocations have failed after GCs;  this is an exceptional state.
1005  if (ptr == nullptr) {
1006    // Try harder, growing the heap if necessary.
1007    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
1008  }
1009  if (ptr == nullptr) {
1010    // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1011    // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1012    // VM spec requires that all SoftReferences have been collected and cleared before throwing
1013    // OOME.
1014    VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1015             << " allocation";
1016    // TODO: Run finalization, but this may cause more allocations to occur.
1017    // We don't need a WaitForGcToComplete here either.
1018    DCHECK(!gc_plan_.empty());
1019    CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1020    if (was_default_allocator && allocator != GetCurrentAllocator()) {
1021      *klass = sirt_klass.get();
1022      return nullptr;
1023    }
1024    ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated);
1025    if (ptr == nullptr) {
1026      ThrowOutOfMemoryError(self, alloc_size, false);
1027    }
1028  }
1029  *klass = sirt_klass.get();
1030  return ptr;
1031}
1032
1033void Heap::SetTargetHeapUtilization(float target) {
1034  DCHECK_GT(target, 0.0f);  // asserted in Java code
1035  DCHECK_LT(target, 1.0f);
1036  target_utilization_ = target;
1037}
1038
1039size_t Heap::GetObjectsAllocated() const {
1040  size_t total = 0;
1041  for (space::AllocSpace* space : alloc_spaces_) {
1042    total += space->GetObjectsAllocated();
1043  }
1044  return total;
1045}
1046
1047size_t Heap::GetObjectsAllocatedEver() const {
1048  return GetObjectsFreedEver() + GetObjectsAllocated();
1049}
1050
1051size_t Heap::GetBytesAllocatedEver() const {
1052  return GetBytesFreedEver() + GetBytesAllocated();
1053}
1054
1055class InstanceCounter {
1056 public:
1057  InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1058      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1059      : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1060  }
1061
1062  void operator()(mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1063    for (size_t i = 0; i < classes_.size(); ++i) {
1064      mirror::Class* instance_class = o->GetClass();
1065      if (use_is_assignable_from_) {
1066        if (instance_class != NULL && classes_[i]->IsAssignableFrom(instance_class)) {
1067          ++counts_[i];
1068        }
1069      } else {
1070        if (instance_class == classes_[i]) {
1071          ++counts_[i];
1072        }
1073      }
1074    }
1075  }
1076
1077 private:
1078  const std::vector<mirror::Class*>& classes_;
1079  bool use_is_assignable_from_;
1080  uint64_t* const counts_;
1081
1082  DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1083};
1084
1085void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1086                          uint64_t* counts) {
1087  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1088  // is empty, so the live bitmap is the only place we need to look.
1089  Thread* self = Thread::Current();
1090  self->TransitionFromRunnableToSuspended(kNative);
1091  CollectGarbage(false);
1092  self->TransitionFromSuspendedToRunnable();
1093
1094  InstanceCounter counter(classes, use_is_assignable_from, counts);
1095  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1096  GetLiveBitmap()->Visit(counter);
1097}
1098
1099class InstanceCollector {
1100 public:
1101  InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1102      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1103      : class_(c), max_count_(max_count), instances_(instances) {
1104  }
1105
1106  void operator()(mirror::Object* o) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1107    mirror::Class* instance_class = o->GetClass();
1108    if (instance_class == class_) {
1109      if (max_count_ == 0 || instances_.size() < max_count_) {
1110        instances_.push_back(o);
1111      }
1112    }
1113  }
1114
1115 private:
1116  mirror::Class* class_;
1117  uint32_t max_count_;
1118  std::vector<mirror::Object*>& instances_;
1119
1120  DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1121};
1122
1123void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1124                        std::vector<mirror::Object*>& instances) {
1125  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1126  // is empty, so the live bitmap is the only place we need to look.
1127  Thread* self = Thread::Current();
1128  self->TransitionFromRunnableToSuspended(kNative);
1129  CollectGarbage(false);
1130  self->TransitionFromSuspendedToRunnable();
1131
1132  InstanceCollector collector(c, max_count, instances);
1133  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1134  GetLiveBitmap()->Visit(collector);
1135}
1136
1137class ReferringObjectsFinder {
1138 public:
1139  ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1140                         std::vector<mirror::Object*>& referring_objects)
1141      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1142      : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1143  }
1144
1145  // For bitmap Visit.
1146  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1147  // annotalysis on visitors.
1148  void operator()(const mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1149    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(o), *this, true);
1150  }
1151
1152  // For MarkSweep::VisitObjectReferences.
1153  void operator()(mirror::Object* referrer, mirror::Object* object,
1154                  const MemberOffset&, bool) const {
1155    if (object == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1156      referring_objects_.push_back(referrer);
1157    }
1158  }
1159
1160 private:
1161  mirror::Object* object_;
1162  uint32_t max_count_;
1163  std::vector<mirror::Object*>& referring_objects_;
1164
1165  DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1166};
1167
1168void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1169                               std::vector<mirror::Object*>& referring_objects) {
1170  // We only want reachable instances, so do a GC. This also ensures that the alloc stack
1171  // is empty, so the live bitmap is the only place we need to look.
1172  Thread* self = Thread::Current();
1173  self->TransitionFromRunnableToSuspended(kNative);
1174  CollectGarbage(false);
1175  self->TransitionFromSuspendedToRunnable();
1176
1177  ReferringObjectsFinder finder(o, max_count, referring_objects);
1178  ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1179  GetLiveBitmap()->Visit(finder);
1180}
1181
1182void Heap::CollectGarbage(bool clear_soft_references) {
1183  // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1184  // last GC will not have necessarily been cleared.
1185  CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1186}
1187
1188void Heap::TransitionCollector(CollectorType collector_type) {
1189  if (collector_type == collector_type_) {
1190    return;
1191  }
1192  uint64_t start_time = NanoTime();
1193  uint32_t before_size  = GetTotalMemory();
1194  uint32_t before_allocated = num_bytes_allocated_.Load();
1195  ThreadList* tl = Runtime::Current()->GetThreadList();
1196  Thread* self = Thread::Current();
1197  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1198  Locks::mutator_lock_->AssertNotHeld(self);
1199  const bool copying_transition =
1200      IsCompactingGC(background_collector_type_) || IsCompactingGC(post_zygote_collector_type_);
1201  // Busy wait until we can GC (StartGC can fail if we have a non-zero
1202  // compacting_gc_disable_count_, this should rarely occurs).
1203  for (;;) {
1204    {
1205      ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1206      MutexLock mu(self, *gc_complete_lock_);
1207      // Ensure there is only one GC at a time.
1208      WaitForGcToCompleteLocked(self);
1209      // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1210      if (!copying_transition || disable_moving_gc_count_ == 0) {
1211        // TODO: Not hard code in semi-space collector?
1212        collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1213        break;
1214      }
1215    }
1216    usleep(1000);
1217  }
1218  tl->SuspendAll();
1219  switch (collector_type) {
1220    case kCollectorTypeSS:
1221      // Fall-through.
1222    case kCollectorTypeGSS: {
1223      mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1224      CHECK(main_space_ != nullptr);
1225      Compact(temp_space_, main_space_);
1226      DCHECK(allocator_mem_map_.get() == nullptr);
1227      allocator_mem_map_.reset(main_space_->ReleaseMemMap());
1228      madvise(main_space_->Begin(), main_space_->Size(), MADV_DONTNEED);
1229      // RemoveSpace does not delete the removed space.
1230      space::Space* old_space = main_space_;
1231      RemoveSpace(old_space);
1232      delete old_space;
1233      break;
1234    }
1235    case kCollectorTypeMS:
1236      // Fall through.
1237    case kCollectorTypeCMS: {
1238      if (IsCompactingGC(collector_type_)) {
1239        // TODO: Use mem-map from temp space?
1240        MemMap* mem_map = allocator_mem_map_.release();
1241        CHECK(mem_map != nullptr);
1242        size_t initial_size = kDefaultInitialSize;
1243        mprotect(mem_map->Begin(), initial_size, PROT_READ | PROT_WRITE);
1244        CHECK(main_space_ == nullptr);
1245        if (kUseRosAlloc) {
1246          main_space_ =
1247              space::RosAllocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1248                                                     initial_size, mem_map->Size(),
1249                                                     mem_map->Size(), low_memory_mode_);
1250        } else {
1251          main_space_ =
1252              space::DlMallocSpace::CreateFromMemMap(mem_map, "alloc space", kPageSize,
1253                                                     initial_size, mem_map->Size(),
1254                                                     mem_map->Size());
1255        }
1256        main_space_->SetFootprintLimit(main_space_->Capacity());
1257        AddSpace(main_space_);
1258        Compact(main_space_, bump_pointer_space_);
1259      }
1260      break;
1261    }
1262    default: {
1263      LOG(FATAL) << "Attempted to transition to invalid collector type";
1264      break;
1265    }
1266  }
1267  ChangeCollector(collector_type);
1268  tl->ResumeAll();
1269  // Can't call into java code with all threads suspended.
1270  EnqueueClearedReferences();
1271  uint64_t duration = NanoTime() - start_time;
1272  GrowForUtilization(collector::kGcTypeFull, duration);
1273  FinishGC(self, collector::kGcTypeFull);
1274  int32_t after_size = GetTotalMemory();
1275  int32_t delta_size = before_size - after_size;
1276  int32_t after_allocated = num_bytes_allocated_.Load();
1277  int32_t delta_allocated = before_allocated - after_allocated;
1278  const std::string saved_bytes_str =
1279      delta_size < 0 ? "-" + PrettySize(-delta_size) : PrettySize(delta_size);
1280  LOG(INFO) << "Heap transition to " << process_state_ << " took "
1281      << PrettyDuration(duration) << " " << PrettySize(before_size) << "->"
1282      << PrettySize(after_size) << " from " << PrettySize(delta_allocated) << " to "
1283      << PrettySize(delta_size) << " saved";
1284}
1285
1286void Heap::ChangeCollector(CollectorType collector_type) {
1287  // TODO: Only do this with all mutators suspended to avoid races.
1288  if (collector_type != collector_type_) {
1289    collector_type_ = collector_type;
1290    gc_plan_.clear();
1291    switch (collector_type_) {
1292      case kCollectorTypeSS:
1293        // Fall-through.
1294      case kCollectorTypeGSS: {
1295        concurrent_gc_ = false;
1296        gc_plan_.push_back(collector::kGcTypeFull);
1297        if (use_tlab_) {
1298          ChangeAllocator(kAllocatorTypeTLAB);
1299        } else {
1300          ChangeAllocator(kAllocatorTypeBumpPointer);
1301        }
1302        break;
1303      }
1304      case kCollectorTypeMS: {
1305        concurrent_gc_ = false;
1306        gc_plan_.push_back(collector::kGcTypeSticky);
1307        gc_plan_.push_back(collector::kGcTypePartial);
1308        gc_plan_.push_back(collector::kGcTypeFull);
1309        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1310        break;
1311      }
1312      case kCollectorTypeCMS: {
1313        concurrent_gc_ = true;
1314        gc_plan_.push_back(collector::kGcTypeSticky);
1315        gc_plan_.push_back(collector::kGcTypePartial);
1316        gc_plan_.push_back(collector::kGcTypeFull);
1317        ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
1318        break;
1319      }
1320      default: {
1321        LOG(FATAL) << "Unimplemented";
1322      }
1323    }
1324    if (concurrent_gc_) {
1325      concurrent_start_bytes_ =
1326          std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
1327    } else {
1328      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
1329    }
1330  }
1331}
1332
1333// Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
1334class ZygoteCompactingCollector : public collector::SemiSpace {
1335 public:
1336  explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, "zygote collector") {
1337  }
1338
1339  void BuildBins(space::ContinuousSpace* space) {
1340    bin_live_bitmap_ = space->GetLiveBitmap();
1341    bin_mark_bitmap_ = space->GetMarkBitmap();
1342    BinContext context;
1343    context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
1344    context.collector_ = this;
1345    WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1346    // Note: This requires traversing the space in increasing order of object addresses.
1347    bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
1348    // Add the last bin which spans after the last object to the end of the space.
1349    AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
1350  }
1351
1352 private:
1353  struct BinContext {
1354    uintptr_t prev_;  // The end of the previous object.
1355    ZygoteCompactingCollector* collector_;
1356  };
1357  // Maps from bin sizes to locations.
1358  std::multimap<size_t, uintptr_t> bins_;
1359  // Live bitmap of the space which contains the bins.
1360  accounting::SpaceBitmap* bin_live_bitmap_;
1361  // Mark bitmap of the space which contains the bins.
1362  accounting::SpaceBitmap* bin_mark_bitmap_;
1363
1364  static void Callback(mirror::Object* obj, void* arg)
1365      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1366    DCHECK(arg != nullptr);
1367    BinContext* context = reinterpret_cast<BinContext*>(arg);
1368    ZygoteCompactingCollector* collector = context->collector_;
1369    uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
1370    size_t bin_size = object_addr - context->prev_;
1371    // Add the bin consisting of the end of the previous object to the start of the current object.
1372    collector->AddBin(bin_size, context->prev_);
1373    context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
1374  }
1375
1376  void AddBin(size_t size, uintptr_t position) {
1377    if (size != 0) {
1378      bins_.insert(std::make_pair(size, position));
1379    }
1380  }
1381
1382  virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
1383    // Don't sweep any spaces since we probably blasted the internal accounting of the free list
1384    // allocator.
1385    return false;
1386  }
1387
1388  virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
1389      EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
1390    size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
1391    mirror::Object* forward_address;
1392    // Find the smallest bin which we can move obj in.
1393    auto it = bins_.lower_bound(object_size);
1394    if (it == bins_.end()) {
1395      // No available space in the bins, place it in the target space instead (grows the zygote
1396      // space).
1397      size_t bytes_allocated;
1398      forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated);
1399      if (to_space_live_bitmap_ != nullptr) {
1400        to_space_live_bitmap_->Set(forward_address);
1401      } else {
1402        GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
1403        GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
1404      }
1405    } else {
1406      size_t size = it->first;
1407      uintptr_t pos = it->second;
1408      bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
1409      forward_address = reinterpret_cast<mirror::Object*>(pos);
1410      // Set the live and mark bits so that sweeping system weaks works properly.
1411      bin_live_bitmap_->Set(forward_address);
1412      bin_mark_bitmap_->Set(forward_address);
1413      DCHECK_GE(size, object_size);
1414      AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
1415    }
1416    // Copy the object over to its new location.
1417    memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
1418    return forward_address;
1419  }
1420};
1421
1422void Heap::UnBindBitmaps() {
1423  for (const auto& space : GetContinuousSpaces()) {
1424    if (space->IsContinuousMemMapAllocSpace()) {
1425      space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
1426      if (alloc_space->HasBoundBitmaps()) {
1427        alloc_space->UnBindBitmaps();
1428      }
1429    }
1430  }
1431}
1432
1433void Heap::PreZygoteFork() {
1434  CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
1435  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
1436  Thread* self = Thread::Current();
1437  MutexLock mu(self, zygote_creation_lock_);
1438  // Try to see if we have any Zygote spaces.
1439  if (have_zygote_space_) {
1440    return;
1441  }
1442  VLOG(heap) << "Starting PreZygoteFork";
1443  // Trim the pages at the end of the non moving space.
1444  non_moving_space_->Trim();
1445  non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1446  // Change the collector to the post zygote one.
1447  ChangeCollector(post_zygote_collector_type_);
1448  // TODO: Delete bump_pointer_space_ and temp_pointer_space_?
1449  if (semi_space_collector_ != nullptr) {
1450    ZygoteCompactingCollector zygote_collector(this);
1451    zygote_collector.BuildBins(non_moving_space_);
1452    // Create a new bump pointer space which we will compact into.
1453    space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
1454                                         non_moving_space_->Limit());
1455    // Compact the bump pointer space to a new zygote bump pointer space.
1456    temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1457    zygote_collector.SetFromSpace(bump_pointer_space_);
1458    zygote_collector.SetToSpace(&target_space);
1459    zygote_collector.Run(kGcCauseCollectorTransition, false);
1460    CHECK(temp_space_->IsEmpty());
1461    total_objects_freed_ever_ += semi_space_collector_->GetFreedObjects();
1462    total_bytes_freed_ever_ += semi_space_collector_->GetFreedBytes();
1463    // Update the end and write out image.
1464    non_moving_space_->SetEnd(target_space.End());
1465    non_moving_space_->SetLimit(target_space.Limit());
1466    VLOG(heap) << "Zygote size " << non_moving_space_->Size() << " bytes";
1467  }
1468  // Save the old space so that we can remove it after we complete creating the zygote space.
1469  space::MallocSpace* old_alloc_space = non_moving_space_;
1470  // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
1471  // the remaining available space.
1472  // Remove the old space before creating the zygote space since creating the zygote space sets
1473  // the old alloc space's bitmaps to nullptr.
1474  RemoveSpace(old_alloc_space);
1475  space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
1476                                                                        low_memory_mode_,
1477                                                                        &main_space_);
1478  delete old_alloc_space;
1479  CHECK(zygote_space != nullptr) << "Failed creating zygote space";
1480  AddSpace(zygote_space, false);
1481  CHECK(main_space_ != nullptr);
1482  if (main_space_->IsRosAllocSpace()) {
1483    rosalloc_space_ = main_space_->AsRosAllocSpace();
1484  } else if (main_space_->IsDlMallocSpace()) {
1485    dlmalloc_space_ = main_space_->AsDlMallocSpace();
1486  }
1487  main_space_->SetFootprintLimit(main_space_->Capacity());
1488  AddSpace(main_space_);
1489  have_zygote_space_ = true;
1490  // Create the zygote space mod union table.
1491  accounting::ModUnionTable* mod_union_table =
1492      new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
1493  CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
1494  AddModUnionTable(mod_union_table);
1495  // Reset the cumulative loggers since we now have a few additional timing phases.
1496  for (const auto& collector : garbage_collectors_) {
1497    collector->ResetCumulativeStatistics();
1498  }
1499  // Can't use RosAlloc for non moving space due to thread local buffers.
1500  // TODO: Non limited space for non-movable objects?
1501  MemMap* mem_map = post_zygote_non_moving_space_mem_map_.release();
1502  space::MallocSpace* new_non_moving_space =
1503      space::DlMallocSpace::CreateFromMemMap(mem_map, "Non moving dlmalloc space", kPageSize,
1504                                             2 * MB, mem_map->Size(), mem_map->Size());
1505  AddSpace(new_non_moving_space, false);
1506  CHECK(new_non_moving_space != nullptr) << "Failed to create new non-moving space";
1507  new_non_moving_space->SetFootprintLimit(new_non_moving_space->Capacity());
1508  non_moving_space_ = new_non_moving_space;
1509}
1510
1511void Heap::FlushAllocStack() {
1512  MarkAllocStackAsLive(allocation_stack_.get());
1513  allocation_stack_->Reset();
1514}
1515
1516void Heap::MarkAllocStack(accounting::SpaceBitmap* bitmap1,
1517                          accounting::SpaceBitmap* bitmap2,
1518                          accounting::ObjectSet* large_objects,
1519                          accounting::ObjectStack* stack) {
1520  DCHECK(bitmap1 != nullptr);
1521  DCHECK(bitmap2 != nullptr);
1522  mirror::Object** limit = stack->End();
1523  for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
1524    const mirror::Object* obj = *it;
1525    DCHECK(obj != nullptr);
1526    if (bitmap1->HasAddress(obj)) {
1527      bitmap1->Set(obj);
1528    } else if (bitmap2->HasAddress(obj)) {
1529      bitmap2->Set(obj);
1530    } else {
1531      large_objects->Set(obj);
1532    }
1533  }
1534}
1535
1536void Heap::SwapSemiSpaces() {
1537  // Swap the spaces so we allocate into the space which we just evacuated.
1538  std::swap(bump_pointer_space_, temp_space_);
1539}
1540
1541void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
1542                   space::ContinuousMemMapAllocSpace* source_space) {
1543  CHECK(kMovingCollector);
1544  CHECK_NE(target_space, source_space) << "In-place compaction currently unsupported";
1545  if (target_space != source_space) {
1546    semi_space_collector_->SetFromSpace(source_space);
1547    semi_space_collector_->SetToSpace(target_space);
1548    semi_space_collector_->Run(kGcCauseCollectorTransition, false);
1549  }
1550}
1551
1552collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
1553                                               bool clear_soft_references) {
1554  Thread* self = Thread::Current();
1555  Runtime* runtime = Runtime::Current();
1556  // If the heap can't run the GC, silently fail and return that no GC was run.
1557  switch (gc_type) {
1558    case collector::kGcTypePartial: {
1559      if (!have_zygote_space_) {
1560        return collector::kGcTypeNone;
1561      }
1562      break;
1563    }
1564    default: {
1565      // Other GC types don't have any special cases which makes them not runnable. The main case
1566      // here is full GC.
1567    }
1568  }
1569  ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1570  Locks::mutator_lock_->AssertNotHeld(self);
1571  if (self->IsHandlingStackOverflow()) {
1572    LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
1573  }
1574  bool compacting_gc;
1575  {
1576    gc_complete_lock_->AssertNotHeld(self);
1577    ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1578    MutexLock mu(self, *gc_complete_lock_);
1579    // Ensure there is only one GC at a time.
1580    WaitForGcToCompleteLocked(self);
1581    compacting_gc = IsCompactingGC(collector_type_);
1582    // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
1583    if (compacting_gc && disable_moving_gc_count_ != 0) {
1584      LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
1585      return collector::kGcTypeNone;
1586    }
1587    collector_type_running_ = collector_type_;
1588  }
1589
1590  if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
1591    ++runtime->GetStats()->gc_for_alloc_count;
1592    ++self->GetStats()->gc_for_alloc_count;
1593  }
1594  uint64_t gc_start_time_ns = NanoTime();
1595  uint64_t gc_start_size = GetBytesAllocated();
1596  // Approximate allocation rate in bytes / second.
1597  uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
1598  // Back to back GCs can cause 0 ms of wait time in between GC invocations.
1599  if (LIKELY(ms_delta != 0)) {
1600    allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
1601    VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
1602  }
1603
1604  DCHECK_LT(gc_type, collector::kGcTypeMax);
1605  DCHECK_NE(gc_type, collector::kGcTypeNone);
1606
1607  collector::GarbageCollector* collector = nullptr;
1608  // TODO: Clean this up.
1609  if (compacting_gc) {
1610    DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
1611           current_allocator_ == kAllocatorTypeTLAB);
1612    gc_type = semi_space_collector_->GetGcType();
1613    CHECK(temp_space_->IsEmpty());
1614    semi_space_collector_->SetFromSpace(bump_pointer_space_);
1615    semi_space_collector_->SetToSpace(temp_space_);
1616    mprotect(temp_space_->Begin(), temp_space_->Capacity(), PROT_READ | PROT_WRITE);
1617    collector = semi_space_collector_;
1618    gc_type = collector::kGcTypeFull;
1619  } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
1620      current_allocator_ == kAllocatorTypeDlMalloc) {
1621    for (const auto& cur_collector : garbage_collectors_) {
1622      if (cur_collector->IsConcurrent() == concurrent_gc_ &&
1623          cur_collector->GetGcType() == gc_type) {
1624        collector = cur_collector;
1625        break;
1626      }
1627    }
1628  } else {
1629    LOG(FATAL) << "Invalid current allocator " << current_allocator_;
1630  }
1631  CHECK(collector != nullptr)
1632      << "Could not find garbage collector with concurrent=" << concurrent_gc_
1633      << " and type=" << gc_type;
1634  ATRACE_BEGIN(StringPrintf("%s %s GC", PrettyCause(gc_cause), collector->GetName()).c_str());
1635  collector->Run(gc_cause, clear_soft_references);
1636  total_objects_freed_ever_ += collector->GetFreedObjects();
1637  total_bytes_freed_ever_ += collector->GetFreedBytes();
1638  // Enqueue cleared references.
1639  EnqueueClearedReferences();
1640  // Grow the heap so that we know when to perform the next GC.
1641  GrowForUtilization(gc_type, collector->GetDurationNs());
1642  if (CareAboutPauseTimes()) {
1643    const size_t duration = collector->GetDurationNs();
1644    std::vector<uint64_t> pauses = collector->GetPauseTimes();
1645    // GC for alloc pauses the allocating thread, so consider it as a pause.
1646    bool was_slow = duration > long_gc_log_threshold_ ||
1647        (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
1648    if (!was_slow) {
1649      for (uint64_t pause : pauses) {
1650        was_slow = was_slow || pause > long_pause_log_threshold_;
1651      }
1652    }
1653    if (was_slow) {
1654        const size_t percent_free = GetPercentFree();
1655        const size_t current_heap_size = GetBytesAllocated();
1656        const size_t total_memory = GetTotalMemory();
1657        std::ostringstream pause_string;
1658        for (size_t i = 0; i < pauses.size(); ++i) {
1659            pause_string << PrettyDuration((pauses[i] / 1000) * 1000)
1660                         << ((i != pauses.size() - 1) ? ", " : "");
1661        }
1662        LOG(INFO) << gc_cause << " " << collector->GetName()
1663                  << " GC freed "  <<  collector->GetFreedObjects() << "("
1664                  << PrettySize(collector->GetFreedBytes()) << ") AllocSpace objects, "
1665                  << collector->GetFreedLargeObjects() << "("
1666                  << PrettySize(collector->GetFreedLargeObjectBytes()) << ") LOS objects, "
1667                  << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
1668                  << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
1669                  << " total " << PrettyDuration((duration / 1000) * 1000);
1670        if (VLOG_IS_ON(heap)) {
1671            LOG(INFO) << Dumpable<TimingLogger>(collector->GetTimings());
1672        }
1673    }
1674  }
1675  FinishGC(self, gc_type);
1676  ATRACE_END();
1677
1678  // Inform DDMS that a GC completed.
1679  Dbg::GcDidFinish();
1680  return gc_type;
1681}
1682
1683void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
1684  MutexLock mu(self, *gc_complete_lock_);
1685  collector_type_running_ = kCollectorTypeNone;
1686  if (gc_type != collector::kGcTypeNone) {
1687    last_gc_type_ = gc_type;
1688  }
1689  // Wake anyone who may have been waiting for the GC to complete.
1690  gc_complete_cond_->Broadcast(self);
1691}
1692
1693static mirror::Object* RootMatchesObjectVisitor(mirror::Object* root, void* arg) {
1694  mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
1695  if (root == obj) {
1696    LOG(INFO) << "Object " << obj << " is a root";
1697  }
1698  return root;
1699}
1700
1701class ScanVisitor {
1702 public:
1703  void operator()(const mirror::Object* obj) const {
1704    LOG(ERROR) << "Would have rescanned object " << obj;
1705  }
1706};
1707
1708// Verify a reference from an object.
1709class VerifyReferenceVisitor {
1710 public:
1711  explicit VerifyReferenceVisitor(Heap* heap)
1712      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
1713      : heap_(heap), failed_(false) {}
1714
1715  bool Failed() const {
1716    return failed_;
1717  }
1718
1719  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for smarter
1720  // analysis on visitors.
1721  void operator()(mirror::Object* obj, mirror::Object* ref,
1722                  const MemberOffset& offset, bool /* is_static */) const
1723      NO_THREAD_SAFETY_ANALYSIS {
1724    if (ref == nullptr || IsLive(ref)) {
1725      // Verify that the reference is live.
1726      return;
1727    }
1728    if (!failed_) {
1729      // Print message on only on first failure to prevent spam.
1730      LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
1731      failed_ = true;
1732    }
1733    if (obj != nullptr) {
1734      accounting::CardTable* card_table = heap_->GetCardTable();
1735      accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
1736      accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1737      byte* card_addr = card_table->CardFromAddr(obj);
1738      LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
1739                 << offset << "\n card value = " << static_cast<int>(*card_addr);
1740      if (heap_->IsValidObjectAddress(obj->GetClass())) {
1741        LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
1742      } else {
1743        LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
1744      }
1745
1746      // Attmept to find the class inside of the recently freed objects.
1747      space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
1748      if (ref_space != nullptr && ref_space->IsMallocSpace()) {
1749        space::MallocSpace* space = ref_space->AsMallocSpace();
1750        mirror::Class* ref_class = space->FindRecentFreedObject(ref);
1751        if (ref_class != nullptr) {
1752          LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
1753                     << PrettyClass(ref_class);
1754        } else {
1755          LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
1756        }
1757      }
1758
1759      if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
1760          ref->GetClass()->IsClass()) {
1761        LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
1762      } else {
1763        LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
1764                   << ") is not a valid heap address";
1765      }
1766
1767      card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
1768      void* cover_begin = card_table->AddrFromCard(card_addr);
1769      void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
1770          accounting::CardTable::kCardSize);
1771      LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
1772          << "-" << cover_end;
1773      accounting::SpaceBitmap* bitmap = heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
1774
1775      if (bitmap == nullptr) {
1776        LOG(ERROR) << "Object " << obj << " has no bitmap";
1777        if (!heap_->VerifyClassClass(obj->GetClass())) {
1778          LOG(ERROR) << "Object " << obj << " failed class verification!";
1779        }
1780      } else {
1781        // Print out how the object is live.
1782        if (bitmap->Test(obj)) {
1783          LOG(ERROR) << "Object " << obj << " found in live bitmap";
1784        }
1785        if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
1786          LOG(ERROR) << "Object " << obj << " found in allocation stack";
1787        }
1788        if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
1789          LOG(ERROR) << "Object " << obj << " found in live stack";
1790        }
1791        if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
1792          LOG(ERROR) << "Ref " << ref << " found in allocation stack";
1793        }
1794        if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
1795          LOG(ERROR) << "Ref " << ref << " found in live stack";
1796        }
1797        // Attempt to see if the card table missed the reference.
1798        ScanVisitor scan_visitor;
1799        byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
1800        card_table->Scan(bitmap, byte_cover_begin,
1801                         byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
1802      }
1803
1804      // Search to see if any of the roots reference our object.
1805      void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
1806      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1807
1808      // Search to see if any of the roots reference our reference.
1809      arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
1810      Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg, false, false);
1811    } else {
1812      LOG(ERROR) << "Root " << ref << " is dead with type " << PrettyTypeOf(ref);
1813    }
1814  }
1815
1816  bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
1817    return heap_->IsLiveObjectLocked(obj, true, false, true);
1818  }
1819
1820  static mirror::Object* VerifyRoots(mirror::Object* root, void* arg) {
1821    VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
1822    (*visitor)(nullptr, root, MemberOffset(0), true);
1823    return root;
1824  }
1825
1826 private:
1827  Heap* const heap_;
1828  mutable bool failed_;
1829};
1830
1831// Verify all references within an object, for use with HeapBitmap::Visit.
1832class VerifyObjectVisitor {
1833 public:
1834  explicit VerifyObjectVisitor(Heap* heap) : heap_(heap), failed_(false) {}
1835
1836  void operator()(mirror::Object* obj) const
1837      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1838    // Note: we are verifying the references in obj but not obj itself, this is because obj must
1839    // be live or else how did we find it in the live bitmap?
1840    VerifyReferenceVisitor visitor(heap_);
1841    // The class doesn't count as a reference but we should verify it anyways.
1842    collector::MarkSweep::VisitObjectReferences(obj, visitor, true);
1843    if (obj->GetClass()->IsReferenceClass()) {
1844      visitor(obj, heap_->GetReferenceReferent(obj), MemberOffset(0), false);
1845    }
1846    failed_ = failed_ || visitor.Failed();
1847  }
1848
1849  static void VisitCallback(mirror::Object* obj, void* arg)
1850      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1851    VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
1852    visitor->operator()(obj);
1853  }
1854
1855  bool Failed() const {
1856    return failed_;
1857  }
1858
1859 private:
1860  Heap* const heap_;
1861  mutable bool failed_;
1862};
1863
1864// Must do this with mutators suspended since we are directly accessing the allocation stacks.
1865bool Heap::VerifyHeapReferences() {
1866  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1867  // Lets sort our allocation stacks so that we can efficiently binary search them.
1868  allocation_stack_->Sort();
1869  live_stack_->Sort();
1870  VerifyObjectVisitor visitor(this);
1871  // Verify objects in the allocation stack since these will be objects which were:
1872  // 1. Allocated prior to the GC (pre GC verification).
1873  // 2. Allocated during the GC (pre sweep GC verification).
1874  // We don't want to verify the objects in the live stack since they themselves may be
1875  // pointing to dead objects if they are not reachable.
1876  VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
1877  // Verify the roots:
1878  Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRoots, &visitor, false, false);
1879  if (visitor.Failed()) {
1880    // Dump mod-union tables.
1881    for (const auto& table_pair : mod_union_tables_) {
1882      accounting::ModUnionTable* mod_union_table = table_pair.second;
1883      mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
1884    }
1885    DumpSpaces();
1886    return false;
1887  }
1888  return true;
1889}
1890
1891class VerifyReferenceCardVisitor {
1892 public:
1893  VerifyReferenceCardVisitor(Heap* heap, bool* failed)
1894      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
1895                            Locks::heap_bitmap_lock_)
1896      : heap_(heap), failed_(failed) {
1897  }
1898
1899  // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1900  // annotalysis on visitors.
1901  void operator()(mirror::Object* obj, mirror::Object* ref, const MemberOffset& offset,
1902                  bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1903    // Filter out class references since changing an object's class does not mark the card as dirty.
1904    // Also handles large objects, since the only reference they hold is a class reference.
1905    if (ref != NULL && !ref->IsClass()) {
1906      accounting::CardTable* card_table = heap_->GetCardTable();
1907      // If the object is not dirty and it is referencing something in the live stack other than
1908      // class, then it must be on a dirty card.
1909      if (!card_table->AddrIsInCardTable(obj)) {
1910        LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
1911        *failed_ = true;
1912      } else if (!card_table->IsDirty(obj)) {
1913        // TODO: Check mod-union tables.
1914        // Card should be either kCardDirty if it got re-dirtied after we aged it, or
1915        // kCardDirty - 1 if it didnt get touched since we aged it.
1916        accounting::ObjectStack* live_stack = heap_->live_stack_.get();
1917        if (live_stack->ContainsSorted(const_cast<mirror::Object*>(ref))) {
1918          if (live_stack->ContainsSorted(const_cast<mirror::Object*>(obj))) {
1919            LOG(ERROR) << "Object " << obj << " found in live stack";
1920          }
1921          if (heap_->GetLiveBitmap()->Test(obj)) {
1922            LOG(ERROR) << "Object " << obj << " found in live bitmap";
1923          }
1924          LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
1925                    << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
1926
1927          // Print which field of the object is dead.
1928          if (!obj->IsObjectArray()) {
1929            mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
1930            CHECK(klass != NULL);
1931            mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
1932                                                                      : klass->GetIFields();
1933            CHECK(fields != NULL);
1934            for (int32_t i = 0; i < fields->GetLength(); ++i) {
1935              mirror::ArtField* cur = fields->Get(i);
1936              if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
1937                LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
1938                          << PrettyField(cur);
1939                break;
1940              }
1941            }
1942          } else {
1943            mirror::ObjectArray<mirror::Object>* object_array =
1944                obj->AsObjectArray<mirror::Object>();
1945            for (int32_t i = 0; i < object_array->GetLength(); ++i) {
1946              if (object_array->Get(i) == ref) {
1947                LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
1948              }
1949            }
1950          }
1951
1952          *failed_ = true;
1953        }
1954      }
1955    }
1956  }
1957
1958 private:
1959  Heap* const heap_;
1960  bool* const failed_;
1961};
1962
1963class VerifyLiveStackReferences {
1964 public:
1965  explicit VerifyLiveStackReferences(Heap* heap)
1966      : heap_(heap),
1967        failed_(false) {}
1968
1969  void operator()(mirror::Object* obj) const
1970      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1971    VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
1972    collector::MarkSweep::VisitObjectReferences(const_cast<mirror::Object*>(obj), visitor, true);
1973  }
1974
1975  bool Failed() const {
1976    return failed_;
1977  }
1978
1979 private:
1980  Heap* const heap_;
1981  bool failed_;
1982};
1983
1984bool Heap::VerifyMissingCardMarks() {
1985  Locks::mutator_lock_->AssertExclusiveHeld(Thread::Current());
1986
1987  // We need to sort the live stack since we binary search it.
1988  live_stack_->Sort();
1989  VerifyLiveStackReferences visitor(this);
1990  GetLiveBitmap()->Visit(visitor);
1991
1992  // We can verify objects in the live stack since none of these should reference dead objects.
1993  for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
1994    visitor(*it);
1995  }
1996
1997  if (visitor.Failed()) {
1998    DumpSpaces();
1999    return false;
2000  }
2001  return true;
2002}
2003
2004void Heap::SwapStacks() {
2005  allocation_stack_.swap(live_stack_);
2006}
2007
2008accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2009  auto it = mod_union_tables_.find(space);
2010  if (it == mod_union_tables_.end()) {
2011    return nullptr;
2012  }
2013  return it->second;
2014}
2015
2016void Heap::ProcessCards(TimingLogger& timings) {
2017  // Clear cards and keep track of cards cleared in the mod-union table.
2018  for (const auto& space : continuous_spaces_) {
2019    accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
2020    if (table != nullptr) {
2021      const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
2022          "ImageModUnionClearCards";
2023      TimingLogger::ScopedSplit split(name, &timings);
2024      table->ClearCards();
2025    } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
2026      TimingLogger::ScopedSplit split("AllocSpaceClearCards", &timings);
2027      // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
2028      // were dirty before the GC started.
2029      // TODO: Don't need to use atomic.
2030      // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
2031      // roots and then we scan / update mod union tables after. We will always scan either card.
2032      // If we end up with the non aged card, we scan it it in the pause.
2033      card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(), VoidFunctor());
2034    }
2035  }
2036}
2037
2038static mirror::Object* IdentityCallback(mirror::Object* obj, void*) {
2039  return obj;
2040}
2041
2042void Heap::PreGcVerification(collector::GarbageCollector* gc) {
2043  ThreadList* thread_list = Runtime::Current()->GetThreadList();
2044  Thread* self = Thread::Current();
2045
2046  if (verify_pre_gc_heap_) {
2047    thread_list->SuspendAll();
2048    {
2049      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2050      if (!VerifyHeapReferences()) {
2051        LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed";
2052      }
2053    }
2054    thread_list->ResumeAll();
2055  }
2056
2057  // Check that all objects which reference things in the live stack are on dirty cards.
2058  if (verify_missing_card_marks_) {
2059    thread_list->SuspendAll();
2060    {
2061      ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2062      SwapStacks();
2063      // Sort the live stack so that we can quickly binary search it later.
2064      if (!VerifyMissingCardMarks()) {
2065        LOG(FATAL) << "Pre " << gc->GetName() << " missing card mark verification failed";
2066      }
2067      SwapStacks();
2068    }
2069    thread_list->ResumeAll();
2070  }
2071
2072  if (verify_mod_union_table_) {
2073    thread_list->SuspendAll();
2074    ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
2075    for (const auto& table_pair : mod_union_tables_) {
2076      accounting::ModUnionTable* mod_union_table = table_pair.second;
2077      mod_union_table->UpdateAndMarkReferences(IdentityCallback, nullptr);
2078      mod_union_table->Verify();
2079    }
2080    thread_list->ResumeAll();
2081  }
2082}
2083
2084void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
2085  // Called before sweeping occurs since we want to make sure we are not going so reclaim any
2086  // reachable objects.
2087  if (verify_post_gc_heap_) {
2088    Thread* self = Thread::Current();
2089    CHECK_NE(self->GetState(), kRunnable);
2090    {
2091      WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2092      // Swapping bound bitmaps does nothing.
2093      gc->SwapBitmaps();
2094      if (!VerifyHeapReferences()) {
2095        LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed";
2096      }
2097      gc->SwapBitmaps();
2098    }
2099  }
2100}
2101
2102void Heap::PostGcVerification(collector::GarbageCollector* gc) {
2103  if (verify_system_weaks_) {
2104    Thread* self = Thread::Current();
2105    ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2106    collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
2107    mark_sweep->VerifySystemWeaks();
2108  }
2109}
2110
2111collector::GcType Heap::WaitForGcToComplete(Thread* self) {
2112  ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
2113  MutexLock mu(self, *gc_complete_lock_);
2114  return WaitForGcToCompleteLocked(self);
2115}
2116
2117collector::GcType Heap::WaitForGcToCompleteLocked(Thread* self) {
2118  collector::GcType last_gc_type = collector::kGcTypeNone;
2119  uint64_t wait_start = NanoTime();
2120  while (collector_type_running_ != kCollectorTypeNone) {
2121    ATRACE_BEGIN("GC: Wait For Completion");
2122    // We must wait, change thread state then sleep on gc_complete_cond_;
2123    gc_complete_cond_->Wait(self);
2124    last_gc_type = last_gc_type_;
2125    ATRACE_END();
2126  }
2127  uint64_t wait_time = NanoTime() - wait_start;
2128  total_wait_time_ += wait_time;
2129  if (wait_time > long_pause_log_threshold_) {
2130    LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time);
2131  }
2132  return last_gc_type;
2133}
2134
2135void Heap::DumpForSigQuit(std::ostream& os) {
2136  os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
2137     << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
2138  DumpGcPerformanceInfo(os);
2139}
2140
2141size_t Heap::GetPercentFree() {
2142  return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / GetTotalMemory());
2143}
2144
2145void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
2146  if (max_allowed_footprint > GetMaxMemory()) {
2147    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
2148             << PrettySize(GetMaxMemory());
2149    max_allowed_footprint = GetMaxMemory();
2150  }
2151  max_allowed_footprint_ = max_allowed_footprint;
2152}
2153
2154bool Heap::IsMovableObject(const mirror::Object* obj) const {
2155  if (kMovingCollector) {
2156    DCHECK(!IsInTempSpace(obj));
2157    if (bump_pointer_space_->HasAddress(obj)) {
2158      return true;
2159    }
2160    // TODO: Refactor this logic into the space itself?
2161    // Objects in the main space are only copied during background -> foreground transitions or
2162    // visa versa.
2163    if (main_space_ != nullptr && main_space_->HasAddress(obj) &&
2164        (IsCompactingGC(background_collector_type_) ||
2165            IsCompactingGC(post_zygote_collector_type_))) {
2166      return true;
2167    }
2168  }
2169  return false;
2170}
2171
2172bool Heap::IsInTempSpace(const mirror::Object* obj) const {
2173  if (temp_space_->HasAddress(obj) && !temp_space_->Contains(obj)) {
2174    return true;
2175  }
2176  return false;
2177}
2178
2179void Heap::UpdateMaxNativeFootprint() {
2180  size_t native_size = native_bytes_allocated_;
2181  // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
2182  size_t target_size = native_size / GetTargetHeapUtilization();
2183  if (target_size > native_size + max_free_) {
2184    target_size = native_size + max_free_;
2185  } else if (target_size < native_size + min_free_) {
2186    target_size = native_size + min_free_;
2187  }
2188  native_footprint_gc_watermark_ = target_size;
2189  native_footprint_limit_ = 2 * target_size - native_size;
2190}
2191
2192void Heap::GrowForUtilization(collector::GcType gc_type, uint64_t gc_duration) {
2193  // We know what our utilization is at this moment.
2194  // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
2195  const size_t bytes_allocated = GetBytesAllocated();
2196  last_gc_size_ = bytes_allocated;
2197  last_gc_time_ns_ = NanoTime();
2198  size_t target_size;
2199  if (gc_type != collector::kGcTypeSticky) {
2200    // Grow the heap for non sticky GC.
2201    target_size = bytes_allocated / GetTargetHeapUtilization();
2202    if (target_size > bytes_allocated + max_free_) {
2203      target_size = bytes_allocated + max_free_;
2204    } else if (target_size < bytes_allocated + min_free_) {
2205      target_size = bytes_allocated + min_free_;
2206    }
2207    native_need_to_run_finalization_ = true;
2208    next_gc_type_ = collector::kGcTypeSticky;
2209  } else {
2210    // Based on how close the current heap size is to the target size, decide
2211    // whether or not to do a partial or sticky GC next.
2212    if (bytes_allocated + min_free_ <= max_allowed_footprint_) {
2213      next_gc_type_ = collector::kGcTypeSticky;
2214    } else {
2215      next_gc_type_ = have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
2216    }
2217    // If we have freed enough memory, shrink the heap back down.
2218    if (bytes_allocated + max_free_ < max_allowed_footprint_) {
2219      target_size = bytes_allocated + max_free_;
2220    } else {
2221      target_size = std::max(bytes_allocated, max_allowed_footprint_);
2222    }
2223  }
2224  if (!ignore_max_footprint_) {
2225    SetIdealFootprint(target_size);
2226    if (concurrent_gc_) {
2227      // Calculate when to perform the next ConcurrentGC.
2228      // Calculate the estimated GC duration.
2229      const double gc_duration_seconds = NsToMs(gc_duration) / 1000.0;
2230      // Estimate how many remaining bytes we will have when we need to start the next GC.
2231      size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
2232      remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
2233      remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
2234      if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
2235        // A never going to happen situation that from the estimated allocation rate we will exceed
2236        // the applications entire footprint with the given estimated allocation rate. Schedule
2237        // another GC nearly straight away.
2238        remaining_bytes = kMinConcurrentRemainingBytes;
2239      }
2240      DCHECK_LE(remaining_bytes, max_allowed_footprint_);
2241      DCHECK_LE(max_allowed_footprint_, growth_limit_);
2242      // Start a concurrent GC when we get close to the estimated remaining bytes. When the
2243      // allocation rate is very high, remaining_bytes could tell us that we should start a GC
2244      // right away.
2245      concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes, bytes_allocated);
2246    }
2247  }
2248}
2249
2250void Heap::ClearGrowthLimit() {
2251  growth_limit_ = capacity_;
2252  non_moving_space_->ClearGrowthLimit();
2253}
2254
2255void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
2256                               MemberOffset reference_queue_offset,
2257                               MemberOffset reference_queueNext_offset,
2258                               MemberOffset reference_pendingNext_offset,
2259                               MemberOffset finalizer_reference_zombie_offset) {
2260  reference_referent_offset_ = reference_referent_offset;
2261  reference_queue_offset_ = reference_queue_offset;
2262  reference_queueNext_offset_ = reference_queueNext_offset;
2263  reference_pendingNext_offset_ = reference_pendingNext_offset;
2264  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
2265  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2266  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
2267  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
2268  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
2269  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
2270}
2271
2272void Heap::SetReferenceReferent(mirror::Object* reference, mirror::Object* referent) {
2273  DCHECK(reference != NULL);
2274  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2275  reference->SetFieldObject(reference_referent_offset_, referent, true);
2276}
2277
2278mirror::Object* Heap::GetReferenceReferent(mirror::Object* reference) {
2279  DCHECK(reference != NULL);
2280  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
2281  return reference->GetFieldObject<mirror::Object>(reference_referent_offset_, true);
2282}
2283
2284void Heap::AddFinalizerReference(Thread* self, mirror::Object* object) {
2285  ScopedObjectAccess soa(self);
2286  JValue result;
2287  ArgArray arg_array(NULL, 0);
2288  arg_array.Append(object);
2289  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
2290      arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2291}
2292
2293void Heap::EnqueueClearedReferences() {
2294  Thread* self = Thread::Current();
2295  Locks::mutator_lock_->AssertNotHeld(self);
2296  if (!cleared_references_.IsEmpty()) {
2297    // When a runtime isn't started there are no reference queues to care about so ignore.
2298    if (LIKELY(Runtime::Current()->IsStarted())) {
2299      ScopedObjectAccess soa(self);
2300      JValue result;
2301      ArgArray arg_array(NULL, 0);
2302      arg_array.Append(cleared_references_.GetList());
2303      soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
2304          arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
2305    }
2306    cleared_references_.Clear();
2307  }
2308}
2309
2310void Heap::RequestConcurrentGC(Thread* self) {
2311  // Make sure that we can do a concurrent GC.
2312  Runtime* runtime = Runtime::Current();
2313  if (runtime == NULL || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
2314      self->IsHandlingStackOverflow()) {
2315    return;
2316  }
2317  // We already have a request pending, no reason to start more until we update
2318  // concurrent_start_bytes_.
2319  concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2320  JNIEnv* env = self->GetJniEnv();
2321  DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
2322  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
2323  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2324                            WellKnownClasses::java_lang_Daemons_requestGC);
2325  CHECK(!env->ExceptionCheck());
2326}
2327
2328void Heap::ConcurrentGC(Thread* self) {
2329  if (Runtime::Current()->IsShuttingDown(self)) {
2330    return;
2331  }
2332  // Wait for any GCs currently running to finish.
2333  if (WaitForGcToComplete(self) == collector::kGcTypeNone) {
2334    // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
2335    // instead. E.g. can't do partial, so do full instead.
2336    if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
2337        collector::kGcTypeNone) {
2338      for (collector::GcType gc_type : gc_plan_) {
2339        // Attempt to run the collector, if we succeed, we are done.
2340        if (gc_type > next_gc_type_ &&
2341            CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
2342          break;
2343        }
2344      }
2345    }
2346  }
2347}
2348
2349void Heap::RequestHeapTrim() {
2350  // GC completed and now we must decide whether to request a heap trim (advising pages back to the
2351  // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
2352  // a space it will hold its lock and can become a cause of jank.
2353  // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
2354  // forking.
2355
2356  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
2357  // because that only marks object heads, so a large array looks like lots of empty space. We
2358  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
2359  // to utilization (which is probably inversely proportional to how much benefit we can expect).
2360  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
2361  // not how much use we're making of those pages.
2362  uint64_t ms_time = MilliTime();
2363  // Don't bother trimming the alloc space if a heap trim occurred in the last two seconds.
2364  if (ms_time - last_trim_time_ms_ < 2 * 1000) {
2365    return;
2366  }
2367
2368  Thread* self = Thread::Current();
2369  Runtime* runtime = Runtime::Current();
2370  if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self)) {
2371    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
2372    // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
2373    // as we don't hold the lock while requesting the trim).
2374    return;
2375  }
2376
2377  last_trim_time_ms_ = ms_time;
2378
2379  // Trim only if we do not currently care about pause times.
2380  if (!CareAboutPauseTimes()) {
2381    JNIEnv* env = self->GetJniEnv();
2382    DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
2383    DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
2384    env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
2385                              WellKnownClasses::java_lang_Daemons_requestHeapTrim);
2386    CHECK(!env->ExceptionCheck());
2387  }
2388}
2389
2390void Heap::RevokeThreadLocalBuffers(Thread* thread) {
2391  if (rosalloc_space_ != nullptr) {
2392    rosalloc_space_->RevokeThreadLocalBuffers(thread);
2393  }
2394  if (bump_pointer_space_ != nullptr) {
2395    bump_pointer_space_->RevokeThreadLocalBuffers(thread);
2396  }
2397}
2398
2399void Heap::RevokeAllThreadLocalBuffers() {
2400  if (rosalloc_space_ != nullptr) {
2401    rosalloc_space_->RevokeAllThreadLocalBuffers();
2402  }
2403  if (bump_pointer_space_ != nullptr) {
2404    bump_pointer_space_->RevokeAllThreadLocalBuffers();
2405  }
2406}
2407
2408bool Heap::IsGCRequestPending() const {
2409  return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
2410}
2411
2412void Heap::RunFinalization(JNIEnv* env) {
2413  // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
2414  if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
2415    CHECK(WellKnownClasses::java_lang_System != nullptr);
2416    WellKnownClasses::java_lang_System_runFinalization =
2417        CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
2418    CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
2419  }
2420  env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
2421                            WellKnownClasses::java_lang_System_runFinalization);
2422}
2423
2424void Heap::RegisterNativeAllocation(JNIEnv* env, int bytes) {
2425  Thread* self = ThreadForEnv(env);
2426  if (native_need_to_run_finalization_) {
2427    RunFinalization(env);
2428    UpdateMaxNativeFootprint();
2429    native_need_to_run_finalization_ = false;
2430  }
2431  // Total number of native bytes allocated.
2432  native_bytes_allocated_.FetchAndAdd(bytes);
2433  if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_gc_watermark_) {
2434    collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
2435        collector::kGcTypeFull;
2436
2437    // The second watermark is higher than the gc watermark. If you hit this it means you are
2438    // allocating native objects faster than the GC can keep up with.
2439    if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2440      if (WaitForGcToComplete(self) != collector::kGcTypeNone) {
2441        // Just finished a GC, attempt to run finalizers.
2442        RunFinalization(env);
2443        CHECK(!env->ExceptionCheck());
2444      }
2445      // If we still are over the watermark, attempt a GC for alloc and run finalizers.
2446      if (static_cast<size_t>(native_bytes_allocated_) > native_footprint_limit_) {
2447        CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
2448        RunFinalization(env);
2449        native_need_to_run_finalization_ = false;
2450        CHECK(!env->ExceptionCheck());
2451      }
2452      // We have just run finalizers, update the native watermark since it is very likely that
2453      // finalizers released native managed allocations.
2454      UpdateMaxNativeFootprint();
2455    } else if (!IsGCRequestPending()) {
2456      if (concurrent_gc_) {
2457        RequestConcurrentGC(self);
2458      } else {
2459        CollectGarbageInternal(gc_type, kGcCauseForAlloc, false);
2460      }
2461    }
2462  }
2463}
2464
2465void Heap::RegisterNativeFree(JNIEnv* env, int bytes) {
2466  int expected_size, new_size;
2467  do {
2468    expected_size = native_bytes_allocated_.Load();
2469    new_size = expected_size - bytes;
2470    if (UNLIKELY(new_size < 0)) {
2471      ScopedObjectAccess soa(env);
2472      env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
2473                    StringPrintf("Attempted to free %d native bytes with only %d native bytes "
2474                                 "registered as allocated", bytes, expected_size).c_str());
2475      break;
2476    }
2477  } while (!native_bytes_allocated_.CompareAndSwap(expected_size, new_size));
2478}
2479
2480size_t Heap::GetTotalMemory() const {
2481  size_t ret = 0;
2482  for (const auto& space : continuous_spaces_) {
2483    // Currently don't include the image space.
2484    if (!space->IsImageSpace()) {
2485      ret += space->Size();
2486    }
2487  }
2488  for (const auto& space : discontinuous_spaces_) {
2489    if (space->IsLargeObjectSpace()) {
2490      ret += space->AsLargeObjectSpace()->GetBytesAllocated();
2491    }
2492  }
2493  return ret;
2494}
2495
2496void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
2497  DCHECK(mod_union_table != nullptr);
2498  mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
2499}
2500
2501}  // namespace gc
2502}  // namespace art
2503