thread.cc revision 564f58305961986591ccb2fff04b9ccdd430a6db
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize;
228  }
229
230  // Some systems require the stack size to be a multiple of the system page size, so round up.
231  stack_size = RoundUp(stack_size, kPageSize);
232
233  return stack_size;
234}
235
236// Global variable to prevent the compiler optimizing away the page reads for the stack.
237byte dont_optimize_this;
238
239// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
240// overflow is detected.  It is located right below the stack_begin_.
241//
242// There is a little complexity here that deserves a special mention.  On some
243// architectures, the stack created using a VM_GROWSDOWN flag
244// to prevent memory being allocated when it's not needed.  This flag makes the
245// kernel only allocate memory for the stack by growing down in memory.  Because we
246// want to put an mprotected region far away from that at the stack top, we need
247// to make sure the pages for the stack are mapped in before we call mprotect.  We do
248// this by reading every page from the stack bottom (highest address) to the stack top.
249// We then madvise this away.
250void Thread::InstallImplicitProtection() {
251  byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
252  byte* stack_himem = tlsPtr_.stack_end;
253  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
254      ~(kPageSize - 1));    // Page containing current top of stack.
255
256  // First remove the protection on the protected region as will want to read and
257  // write it.  This may fail (on the first attempt when the stack is not mapped)
258  // but we ignore that.
259  UnprotectStack();
260
261  // Map in the stack.  This must be done by reading from the
262  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
263  // in the kernel.  Any access more than a page below the current SP might cause
264  // a segv.
265
266  // Read every page from the high address to the low.
267  for (byte* p = stack_top; p > pregion; p -= kPageSize) {
268    dont_optimize_this = *p;
269  }
270
271  VLOG(threads) << "installing stack protected region at " << std::hex <<
272      static_cast<void*>(pregion) << " to " <<
273      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
274
275  // Protect the bottom of the stack to prevent read/write to it.
276  ProtectStack();
277
278  // Tell the kernel that we won't be needing these pages any more.
279  // NB. madvise will probably write zeroes into the memory (on linux it does).
280  uint32_t unwanted_size = stack_top - pregion - kPageSize;
281  madvise(pregion, unwanted_size, MADV_DONTNEED);
282}
283
284void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
285  CHECK(java_peer != nullptr);
286  Thread* self = static_cast<JNIEnvExt*>(env)->self;
287  Runtime* runtime = Runtime::Current();
288
289  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
290  bool thread_start_during_shutdown = false;
291  {
292    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
293    if (runtime->IsShuttingDownLocked()) {
294      thread_start_during_shutdown = true;
295    } else {
296      runtime->StartThreadBirth();
297    }
298  }
299  if (thread_start_during_shutdown) {
300    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
301    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
302    return;
303  }
304
305  Thread* child_thread = new Thread(is_daemon);
306  // Use global JNI ref to hold peer live while child thread starts.
307  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
308  stack_size = FixStackSize(stack_size);
309
310  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
311  // assign it.
312  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
313                    reinterpret_cast<jlong>(child_thread));
314
315  pthread_t new_pthread;
316  pthread_attr_t attr;
317  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
318  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
319  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
320  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
321  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
322
323  if (pthread_create_result != 0) {
324    // pthread_create(3) failed, so clean up.
325    {
326      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
327      runtime->EndThreadBirth();
328    }
329    // Manually delete the global reference since Thread::Init will not have been run.
330    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
331    child_thread->tlsPtr_.jpeer = nullptr;
332    delete child_thread;
333    child_thread = nullptr;
334    // TODO: remove from thread group?
335    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
336    {
337      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
338                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
339      ScopedObjectAccess soa(env);
340      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
341    }
342  }
343}
344
345void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
346  // This function does all the initialization that must be run by the native thread it applies to.
347  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
348  // we can handshake with the corresponding native thread when it's ready.) Check this native
349  // thread hasn't been through here already...
350  CHECK(Thread::Current() == nullptr);
351  SetUpAlternateSignalStack();
352  InitCpu();
353  InitTlsEntryPoints();
354  RemoveSuspendTrigger();
355  InitCardTable();
356  InitTid();
357  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
358  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
359  tlsPtr_.pthread_self = pthread_self();
360  CHECK(is_started_);
361  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
362  DCHECK_EQ(Thread::Current(), this);
363
364  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
365  InitStackHwm();
366
367  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
368  thread_list->Register(this);
369}
370
371Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
372                       bool create_peer) {
373  Thread* self;
374  Runtime* runtime = Runtime::Current();
375  if (runtime == nullptr) {
376    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
377    return nullptr;
378  }
379  {
380    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
381    if (runtime->IsShuttingDownLocked()) {
382      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
383      return nullptr;
384    } else {
385      Runtime::Current()->StartThreadBirth();
386      self = new Thread(as_daemon);
387      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
388      Runtime::Current()->EndThreadBirth();
389    }
390  }
391
392  CHECK_NE(self->GetState(), kRunnable);
393  self->SetState(kNative);
394
395  // If we're the main thread, ClassLinker won't be created until after we're attached,
396  // so that thread needs a two-stage attach. Regular threads don't need this hack.
397  // In the compiler, all threads need this hack, because no-one's going to be getting
398  // a native peer!
399  if (create_peer) {
400    self->CreatePeer(thread_name, as_daemon, thread_group);
401  } else {
402    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
403    if (thread_name != nullptr) {
404      self->tlsPtr_.name->assign(thread_name);
405      ::art::SetThreadName(thread_name);
406    }
407  }
408
409  return self;
410}
411
412void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
413  Runtime* runtime = Runtime::Current();
414  CHECK(runtime->IsStarted());
415  JNIEnv* env = tlsPtr_.jni_env;
416
417  if (thread_group == nullptr) {
418    thread_group = runtime->GetMainThreadGroup();
419  }
420  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
421  jint thread_priority = GetNativePriority();
422  jboolean thread_is_daemon = as_daemon;
423
424  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
425  if (peer.get() == nullptr) {
426    CHECK(IsExceptionPending());
427    return;
428  }
429  {
430    ScopedObjectAccess soa(this);
431    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
432  }
433  env->CallNonvirtualVoidMethod(peer.get(),
434                                WellKnownClasses::java_lang_Thread,
435                                WellKnownClasses::java_lang_Thread_init,
436                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
437  AssertNoPendingException();
438
439  Thread* self = this;
440  DCHECK_EQ(self, Thread::Current());
441  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
442                    reinterpret_cast<jlong>(self));
443
444  ScopedObjectAccess soa(self);
445  StackHandleScope<1> hs(self);
446  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
447  if (peer_thread_name.Get() == nullptr) {
448    // The Thread constructor should have set the Thread.name to a
449    // non-null value. However, because we can run without code
450    // available (in the compiler, in tests), we manually assign the
451    // fields the constructor should have set.
452    if (runtime->IsActiveTransaction()) {
453      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
454    } else {
455      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
456    }
457    peer_thread_name.Assign(GetThreadName(soa));
458  }
459  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
460  if (peer_thread_name.Get() != nullptr) {
461    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
462  }
463}
464
465template<bool kTransactionActive>
466void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
467                      jobject thread_name, jint thread_priority) {
468  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
469      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
470  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
471      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
472  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
473      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
474  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
475      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
476}
477
478void Thread::SetThreadName(const char* name) {
479  tlsPtr_.name->assign(name);
480  ::art::SetThreadName(name);
481  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
482}
483
484void Thread::InitStackHwm() {
485  void* read_stack_base;
486  size_t read_stack_size;
487  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
488
489  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
490  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
491                                PrettySize(read_stack_size).c_str());
492
493  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
494  tlsPtr_.stack_size = read_stack_size;
495
496  // The minimum stack size we can cope with is the overflow reserved bytes (typically
497  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
498  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
499  // between 8K and 12K.
500  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
501    + 4 * KB;
502  if (read_stack_size <= min_stack) {
503    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
504        << " bytes)";
505  }
506
507  // TODO: move this into the Linux GetThreadStack implementation.
508#if !defined(__APPLE__)
509  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
510  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
511  // will be broken because we'll die long before we get close to 2GB.
512  bool is_main_thread = (::art::GetTid() == getpid());
513  if (is_main_thread) {
514    rlimit stack_limit;
515    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
516      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
517    }
518    if (stack_limit.rlim_cur == RLIM_INFINITY) {
519      // Find the default stack size for new threads...
520      pthread_attr_t default_attributes;
521      size_t default_stack_size;
522      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
523      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
524                         "default stack size query");
525      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
526
527      // ...and use that as our limit.
528      size_t old_stack_size = read_stack_size;
529      tlsPtr_.stack_size = default_stack_size;
530      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
531      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
532                    << " to " << PrettySize(default_stack_size)
533                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
534    }
535  }
536#endif
537
538  // Set stack_end_ to the bottom of the stack saving space of stack overflows
539  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
540  ResetDefaultStackEnd(implicit_stack_check);
541
542  // Install the protected region if we are doing implicit overflow checks.
543  if (implicit_stack_check) {
544    size_t guardsize;
545    pthread_attr_t attributes;
546    CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query");
547    CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query");
548    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query");
549    // The thread might have protected region at the bottom.  We need
550    // to install our own region so we need to move the limits
551    // of the stack to make room for it.
552    tlsPtr_.stack_begin += guardsize;
553    tlsPtr_.stack_end += guardsize;
554    tlsPtr_.stack_size -= guardsize;
555
556    InstallImplicitProtection();
557  }
558
559  // Sanity check.
560  int stack_variable;
561  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
562}
563
564void Thread::ShortDump(std::ostream& os) const {
565  os << "Thread[";
566  if (GetThreadId() != 0) {
567    // If we're in kStarting, we won't have a thin lock id or tid yet.
568    os << GetThreadId()
569             << ",tid=" << GetTid() << ',';
570  }
571  os << GetState()
572           << ",Thread*=" << this
573           << ",peer=" << tlsPtr_.opeer
574           << ",\"" << *tlsPtr_.name << "\""
575           << "]";
576}
577
578void Thread::Dump(std::ostream& os) const {
579  DumpState(os);
580  DumpStack(os);
581}
582
583mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
584  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
585  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
586}
587
588void Thread::GetThreadName(std::string& name) const {
589  name.assign(*tlsPtr_.name);
590}
591
592uint64_t Thread::GetCpuMicroTime() const {
593#if defined(HAVE_POSIX_CLOCKS)
594  clockid_t cpu_clock_id;
595  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
596  timespec now;
597  clock_gettime(cpu_clock_id, &now);
598  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
599#else
600  UNIMPLEMENTED(WARNING);
601  return -1;
602#endif
603}
604
605// Attempt to rectify locks so that we dump thread list with required locks before exiting.
606static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
607  LOG(ERROR) << *thread << " suspend count already zero.";
608  Locks::thread_suspend_count_lock_->Unlock(self);
609  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
610    Locks::mutator_lock_->SharedTryLock(self);
611    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
612      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
613    }
614  }
615  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
616    Locks::thread_list_lock_->TryLock(self);
617    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
618      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
619    }
620  }
621  std::ostringstream ss;
622  Runtime::Current()->GetThreadList()->DumpLocked(ss);
623  LOG(FATAL) << ss.str();
624}
625
626void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
627  if (kIsDebugBuild) {
628    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
629          << delta << " " << tls32_.debug_suspend_count << " " << this;
630    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
631    Locks::thread_suspend_count_lock_->AssertHeld(self);
632    if (this != self && !IsSuspended()) {
633      Locks::thread_list_lock_->AssertHeld(self);
634    }
635  }
636  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
637    UnsafeLogFatalForSuspendCount(self, this);
638    return;
639  }
640
641  tls32_.suspend_count += delta;
642  if (for_debugger) {
643    tls32_.debug_suspend_count += delta;
644  }
645
646  if (tls32_.suspend_count == 0) {
647    AtomicClearFlag(kSuspendRequest);
648  } else {
649    AtomicSetFlag(kSuspendRequest);
650    TriggerSuspend();
651  }
652}
653
654void Thread::RunCheckpointFunction() {
655  Closure *checkpoints[kMaxCheckpoints];
656
657  // Grab the suspend_count lock and copy the current set of
658  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
659  // function will also grab this lock so we prevent a race between setting
660  // the kCheckpointRequest flag and clearing it.
661  {
662    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
663    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
664      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
665      tlsPtr_.checkpoint_functions[i] = nullptr;
666    }
667    AtomicClearFlag(kCheckpointRequest);
668  }
669
670  // Outside the lock, run all the checkpoint functions that
671  // we collected.
672  bool found_checkpoint = false;
673  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
674    if (checkpoints[i] != nullptr) {
675      ATRACE_BEGIN("Checkpoint function");
676      checkpoints[i]->Run(this);
677      ATRACE_END();
678      found_checkpoint = true;
679    }
680  }
681  CHECK(found_checkpoint);
682}
683
684bool Thread::RequestCheckpoint(Closure* function) {
685  union StateAndFlags old_state_and_flags;
686  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
687  if (old_state_and_flags.as_struct.state != kRunnable) {
688    return false;  // Fail, thread is suspended and so can't run a checkpoint.
689  }
690
691  uint32_t available_checkpoint = kMaxCheckpoints;
692  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
693    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
694      available_checkpoint = i;
695      break;
696    }
697  }
698  if (available_checkpoint == kMaxCheckpoints) {
699    // No checkpoint functions available, we can't run a checkpoint
700    return false;
701  }
702  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
703
704  // Checkpoint function installed now install flag bit.
705  // We must be runnable to request a checkpoint.
706  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
707  union StateAndFlags new_state_and_flags;
708  new_state_and_flags.as_int = old_state_and_flags.as_int;
709  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
710  bool success =
711      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
712                                                                                       new_state_and_flags.as_int);
713  if (UNLIKELY(!success)) {
714    // The thread changed state before the checkpoint was installed.
715    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
716    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
717  } else {
718    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
719    TriggerSuspend();
720  }
721  return success;
722}
723
724void Thread::FullSuspendCheck() {
725  VLOG(threads) << this << " self-suspending";
726  ATRACE_BEGIN("Full suspend check");
727  // Make thread appear suspended to other threads, release mutator_lock_.
728  TransitionFromRunnableToSuspended(kSuspended);
729  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
730  TransitionFromSuspendedToRunnable();
731  ATRACE_END();
732  VLOG(threads) << this << " self-reviving";
733}
734
735void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
736  std::string group_name;
737  int priority;
738  bool is_daemon = false;
739  Thread* self = Thread::Current();
740
741  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
742  // cause ScopedObjectAccessUnchecked to deadlock.
743  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
744    ScopedObjectAccessUnchecked soa(self);
745    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
746        ->GetInt(thread->tlsPtr_.opeer);
747    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
748        ->GetBoolean(thread->tlsPtr_.opeer);
749
750    mirror::Object* thread_group =
751        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
752
753    if (thread_group != nullptr) {
754      mirror::ArtField* group_name_field =
755          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
756      mirror::String* group_name_string =
757          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
758      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
759    }
760  } else {
761    priority = GetNativePriority();
762  }
763
764  std::string scheduler_group_name(GetSchedulerGroupName(tid));
765  if (scheduler_group_name.empty()) {
766    scheduler_group_name = "default";
767  }
768
769  if (thread != nullptr) {
770    os << '"' << *thread->tlsPtr_.name << '"';
771    if (is_daemon) {
772      os << " daemon";
773    }
774    os << " prio=" << priority
775       << " tid=" << thread->GetThreadId()
776       << " " << thread->GetState();
777    if (thread->IsStillStarting()) {
778      os << " (still starting up)";
779    }
780    os << "\n";
781  } else {
782    os << '"' << ::art::GetThreadName(tid) << '"'
783       << " prio=" << priority
784       << " (not attached)\n";
785  }
786
787  if (thread != nullptr) {
788    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
789    os << "  | group=\"" << group_name << "\""
790       << " sCount=" << thread->tls32_.suspend_count
791       << " dsCount=" << thread->tls32_.debug_suspend_count
792       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
793       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
794  }
795
796  os << "  | sysTid=" << tid
797     << " nice=" << getpriority(PRIO_PROCESS, tid)
798     << " cgrp=" << scheduler_group_name;
799  if (thread != nullptr) {
800    int policy;
801    sched_param sp;
802    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
803                       __FUNCTION__);
804    os << " sched=" << policy << "/" << sp.sched_priority
805       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
806  }
807  os << "\n";
808
809  // Grab the scheduler stats for this thread.
810  std::string scheduler_stats;
811  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
812    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
813  } else {
814    scheduler_stats = "0 0 0";
815  }
816
817  char native_thread_state = '?';
818  int utime = 0;
819  int stime = 0;
820  int task_cpu = 0;
821  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
822
823  os << "  | state=" << native_thread_state
824     << " schedstat=( " << scheduler_stats << " )"
825     << " utm=" << utime
826     << " stm=" << stime
827     << " core=" << task_cpu
828     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
829  if (thread != nullptr) {
830    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
831        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
832        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
833    // Dump the held mutexes.
834    os << "  | held mutexes=";
835    for (size_t i = 0; i < kLockLevelCount; ++i) {
836      if (i != kMonitorLock) {
837        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
838        if (mutex != nullptr) {
839          os << " \"" << mutex->GetName() << "\"";
840          if (mutex->IsReaderWriterMutex()) {
841            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
842            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
843              os << "(exclusive held)";
844            } else {
845              os << "(shared held)";
846            }
847          }
848        }
849      }
850    }
851    os << "\n";
852  }
853}
854
855void Thread::DumpState(std::ostream& os) const {
856  Thread::DumpState(os, this, GetTid());
857}
858
859struct StackDumpVisitor : public StackVisitor {
860  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
861      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
862      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
863        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
864  }
865
866  virtual ~StackDumpVisitor() {
867    if (frame_count == 0) {
868      os << "  (no managed stack frames)\n";
869    }
870  }
871
872  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
873    mirror::ArtMethod* m = GetMethod();
874    if (m->IsRuntimeMethod()) {
875      return true;
876    }
877    const int kMaxRepetition = 3;
878    mirror::Class* c = m->GetDeclaringClass();
879    mirror::DexCache* dex_cache = c->GetDexCache();
880    int line_number = -1;
881    if (dex_cache != nullptr) {  // be tolerant of bad input
882      const DexFile& dex_file = *dex_cache->GetDexFile();
883      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
884    }
885    if (line_number == last_line_number && last_method == m) {
886      ++repetition_count;
887    } else {
888      if (repetition_count >= kMaxRepetition) {
889        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
890      }
891      repetition_count = 0;
892      last_line_number = line_number;
893      last_method = m;
894    }
895    if (repetition_count < kMaxRepetition) {
896      os << "  at " << PrettyMethod(m, false);
897      if (m->IsNative()) {
898        os << "(Native method)";
899      } else {
900        const char* source_file(m->GetDeclaringClassSourceFile());
901        os << "(" << (source_file != nullptr ? source_file : "unavailable")
902           << ":" << line_number << ")";
903      }
904      os << "\n";
905      if (frame_count == 0) {
906        Monitor::DescribeWait(os, thread);
907      }
908      if (can_allocate) {
909        Monitor::VisitLocks(this, DumpLockedObject, &os);
910      }
911    }
912
913    ++frame_count;
914    return true;
915  }
916
917  static void DumpLockedObject(mirror::Object* o, void* context)
918      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
919    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
920    os << "  - locked ";
921    if (o == nullptr) {
922      os << "an unknown object";
923    } else {
924      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
925          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
926        // Getting the identity hashcode here would result in lock inflation and suspension of the
927        // current thread, which isn't safe if this is the only runnable thread.
928        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
929                           PrettyTypeOf(o).c_str());
930      } else {
931        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
932      }
933    }
934    os << "\n";
935  }
936
937  std::ostream& os;
938  const Thread* thread;
939  const bool can_allocate;
940  mirror::ArtMethod* method;
941  mirror::ArtMethod* last_method;
942  int last_line_number;
943  int repetition_count;
944  int frame_count;
945};
946
947static bool ShouldShowNativeStack(const Thread* thread)
948    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
949  ThreadState state = thread->GetState();
950
951  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
952  if (state > kWaiting && state < kStarting) {
953    return true;
954  }
955
956  // In an Object.wait variant or Thread.sleep? That's not interesting.
957  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
958    return false;
959  }
960
961  // In some other native method? That's interesting.
962  // We don't just check kNative because native methods will be in state kSuspended if they're
963  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
964  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
965  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
966  return current_method != nullptr && current_method->IsNative();
967}
968
969void Thread::DumpJavaStack(std::ostream& os) const {
970  std::unique_ptr<Context> context(Context::Create());
971  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
972                          !tls32_.throwing_OutOfMemoryError);
973  dumper.WalkStack();
974}
975
976void Thread::DumpStack(std::ostream& os) const {
977  // TODO: we call this code when dying but may not have suspended the thread ourself. The
978  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
979  //       the race with the thread_suspend_count_lock_).
980  bool dump_for_abort = (gAborting > 0);
981  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
982  if (!kIsDebugBuild) {
983    // We always want to dump the stack for an abort, however, there is no point dumping another
984    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
985    safe_to_dump = (safe_to_dump || dump_for_abort);
986  }
987  if (safe_to_dump) {
988    // If we're currently in native code, dump that stack before dumping the managed stack.
989    if (dump_for_abort || ShouldShowNativeStack(this)) {
990      DumpKernelStack(os, GetTid(), "  kernel: ", false);
991      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
992    }
993    DumpJavaStack(os);
994  } else {
995    os << "Not able to dump stack of thread that isn't suspended";
996  }
997}
998
999void Thread::ThreadExitCallback(void* arg) {
1000  Thread* self = reinterpret_cast<Thread*>(arg);
1001  if (self->tls32_.thread_exit_check_count == 0) {
1002    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1003        "going to use a pthread_key_create destructor?): " << *self;
1004    CHECK(is_started_);
1005    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1006    self->tls32_.thread_exit_check_count = 1;
1007  } else {
1008    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1009  }
1010}
1011
1012void Thread::Startup() {
1013  CHECK(!is_started_);
1014  is_started_ = true;
1015  {
1016    // MutexLock to keep annotalysis happy.
1017    //
1018    // Note we use nullptr for the thread because Thread::Current can
1019    // return garbage since (is_started_ == true) and
1020    // Thread::pthread_key_self_ is not yet initialized.
1021    // This was seen on glibc.
1022    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1023    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1024                                         *Locks::thread_suspend_count_lock_);
1025  }
1026
1027  // Allocate a TLS slot.
1028  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1029
1030  // Double-check the TLS slot allocation.
1031  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1032    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1033  }
1034}
1035
1036void Thread::FinishStartup() {
1037  Runtime* runtime = Runtime::Current();
1038  CHECK(runtime->IsStarted());
1039
1040  // Finish attaching the main thread.
1041  ScopedObjectAccess soa(Thread::Current());
1042  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1043
1044  Runtime::Current()->GetClassLinker()->RunRootClinits();
1045}
1046
1047void Thread::Shutdown() {
1048  CHECK(is_started_);
1049  is_started_ = false;
1050  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1051  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1052  if (resume_cond_ != nullptr) {
1053    delete resume_cond_;
1054    resume_cond_ = nullptr;
1055  }
1056}
1057
1058Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1059  wait_mutex_ = new Mutex("a thread wait mutex");
1060  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1061  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1062  tlsPtr_.single_step_control = new SingleStepControl;
1063  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1064  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1065
1066  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1067  tls32_.state_and_flags.as_struct.flags = 0;
1068  tls32_.state_and_flags.as_struct.state = kNative;
1069  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1070  std::fill(tlsPtr_.rosalloc_runs,
1071            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1072            gc::allocator::RosAlloc::GetDedicatedFullRun());
1073  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1074    tlsPtr_.checkpoint_functions[i] = nullptr;
1075  }
1076}
1077
1078bool Thread::IsStillStarting() const {
1079  // You might think you can check whether the state is kStarting, but for much of thread startup,
1080  // the thread is in kNative; it might also be in kVmWait.
1081  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1082  // assigned fairly early on, and needs to be.
1083  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1084  // this thread _ever_ entered kRunnable".
1085  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1086      (*tlsPtr_.name == kThreadNameDuringStartup);
1087}
1088
1089void Thread::AssertNoPendingException() const {
1090  if (UNLIKELY(IsExceptionPending())) {
1091    ScopedObjectAccess soa(Thread::Current());
1092    mirror::Throwable* exception = GetException(nullptr);
1093    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1094  }
1095}
1096
1097void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1098  if (UNLIKELY(IsExceptionPending())) {
1099    ScopedObjectAccess soa(Thread::Current());
1100    mirror::Throwable* exception = GetException(nullptr);
1101    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1102        << exception->Dump();
1103  }
1104}
1105
1106static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1107                               RootType /*root_type*/)
1108    NO_THREAD_SAFETY_ANALYSIS {
1109  Thread* self = reinterpret_cast<Thread*>(arg);
1110  mirror::Object* entered_monitor = *object;
1111  if (self->HoldsLock(entered_monitor)) {
1112    LOG(WARNING) << "Calling MonitorExit on object "
1113                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1114                 << " left locked by native thread "
1115                 << *Thread::Current() << " which is detaching";
1116    entered_monitor->MonitorExit(self);
1117  }
1118}
1119
1120void Thread::Destroy() {
1121  Thread* self = this;
1122  DCHECK_EQ(self, Thread::Current());
1123
1124  if (tlsPtr_.opeer != nullptr) {
1125    ScopedObjectAccess soa(self);
1126    // We may need to call user-supplied managed code, do this before final clean-up.
1127    HandleUncaughtExceptions(soa);
1128    RemoveFromThreadGroup(soa);
1129
1130    // this.nativePeer = 0;
1131    if (Runtime::Current()->IsActiveTransaction()) {
1132      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1133          ->SetLong<true>(tlsPtr_.opeer, 0);
1134    } else {
1135      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1136          ->SetLong<false>(tlsPtr_.opeer, 0);
1137    }
1138    Dbg::PostThreadDeath(self);
1139
1140    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1141    // who is waiting.
1142    mirror::Object* lock =
1143        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1144    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1145    if (lock != nullptr) {
1146      StackHandleScope<1> hs(self);
1147      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1148      ObjectLock<mirror::Object> locker(self, h_obj);
1149      locker.NotifyAll();
1150    }
1151  }
1152
1153  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1154  if (tlsPtr_.jni_env != nullptr) {
1155    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1156  }
1157}
1158
1159Thread::~Thread() {
1160  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1161    // If pthread_create fails we don't have a jni env here.
1162    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1163    tlsPtr_.jpeer = nullptr;
1164  }
1165  tlsPtr_.opeer = nullptr;
1166
1167  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1168  if (initialized) {
1169    delete tlsPtr_.jni_env;
1170    tlsPtr_.jni_env = nullptr;
1171  }
1172  CHECK_NE(GetState(), kRunnable);
1173  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1174  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1175  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1176  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1177
1178  // We may be deleting a still born thread.
1179  SetStateUnsafe(kTerminated);
1180
1181  delete wait_cond_;
1182  delete wait_mutex_;
1183
1184  if (tlsPtr_.long_jump_context != nullptr) {
1185    delete tlsPtr_.long_jump_context;
1186  }
1187
1188  if (initialized) {
1189    CleanupCpu();
1190  }
1191
1192  delete tlsPtr_.debug_invoke_req;
1193  delete tlsPtr_.single_step_control;
1194  delete tlsPtr_.instrumentation_stack;
1195  delete tlsPtr_.name;
1196  delete tlsPtr_.stack_trace_sample;
1197
1198  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1199
1200  TearDownAlternateSignalStack();
1201}
1202
1203void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1204  if (!IsExceptionPending()) {
1205    return;
1206  }
1207  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1208  ScopedThreadStateChange tsc(this, kNative);
1209
1210  // Get and clear the exception.
1211  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1212  tlsPtr_.jni_env->ExceptionClear();
1213
1214  // If the thread has its own handler, use that.
1215  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1216                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1217                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1218  if (handler.get() == nullptr) {
1219    // Otherwise use the thread group's default handler.
1220    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1221                                                  WellKnownClasses::java_lang_Thread_group));
1222  }
1223
1224  // Call the handler.
1225  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1226      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1227      peer.get(), exception.get());
1228
1229  // If the handler threw, clear that exception too.
1230  tlsPtr_.jni_env->ExceptionClear();
1231}
1232
1233void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1234  // this.group.removeThread(this);
1235  // group can be null if we're in the compiler or a test.
1236  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1237      ->GetObject(tlsPtr_.opeer);
1238  if (ogroup != nullptr) {
1239    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1240    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1241    ScopedThreadStateChange tsc(soa.Self(), kNative);
1242    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1243                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1244                                    peer.get());
1245  }
1246}
1247
1248size_t Thread::NumHandleReferences() {
1249  size_t count = 0;
1250  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1251    count += cur->NumberOfReferences();
1252  }
1253  return count;
1254}
1255
1256bool Thread::HandleScopeContains(jobject obj) const {
1257  StackReference<mirror::Object>* hs_entry =
1258      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1259  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1260    if (cur->Contains(hs_entry)) {
1261      return true;
1262    }
1263  }
1264  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1265  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1266}
1267
1268void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1269  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1270    size_t num_refs = cur->NumberOfReferences();
1271    for (size_t j = 0; j < num_refs; ++j) {
1272      mirror::Object* object = cur->GetReference(j);
1273      if (object != nullptr) {
1274        mirror::Object* old_obj = object;
1275        visitor(&object, arg, thread_id, kRootNativeStack);
1276        if (old_obj != object) {
1277          cur->SetReference(j, object);
1278        }
1279      }
1280    }
1281  }
1282}
1283
1284mirror::Object* Thread::DecodeJObject(jobject obj) const {
1285  Locks::mutator_lock_->AssertSharedHeld(this);
1286  if (obj == nullptr) {
1287    return nullptr;
1288  }
1289  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1290  IndirectRefKind kind = GetIndirectRefKind(ref);
1291  mirror::Object* result;
1292  // The "kinds" below are sorted by the frequency we expect to encounter them.
1293  if (kind == kLocal) {
1294    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1295    // Local references do not need a read barrier.
1296    result = locals.Get<kWithoutReadBarrier>(ref);
1297  } else if (kind == kHandleScopeOrInvalid) {
1298    // TODO: make stack indirect reference table lookup more efficient.
1299    // Check if this is a local reference in the handle scope.
1300    if (LIKELY(HandleScopeContains(obj))) {
1301      // Read from handle scope.
1302      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1303      VerifyObject(result);
1304    } else {
1305      result = kInvalidIndirectRefObject;
1306    }
1307  } else if (kind == kGlobal) {
1308    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1309    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1310  } else {
1311    DCHECK_EQ(kind, kWeakGlobal);
1312    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1313    if (result == kClearedJniWeakGlobal) {
1314      // This is a special case where it's okay to return nullptr.
1315      return nullptr;
1316    }
1317  }
1318
1319  if (UNLIKELY(result == nullptr)) {
1320    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1321  }
1322  return result;
1323}
1324
1325// Implements java.lang.Thread.interrupted.
1326bool Thread::Interrupted() {
1327  MutexLock mu(Thread::Current(), *wait_mutex_);
1328  bool interrupted = IsInterruptedLocked();
1329  SetInterruptedLocked(false);
1330  return interrupted;
1331}
1332
1333// Implements java.lang.Thread.isInterrupted.
1334bool Thread::IsInterrupted() {
1335  MutexLock mu(Thread::Current(), *wait_mutex_);
1336  return IsInterruptedLocked();
1337}
1338
1339void Thread::Interrupt(Thread* self) {
1340  MutexLock mu(self, *wait_mutex_);
1341  if (interrupted_) {
1342    return;
1343  }
1344  interrupted_ = true;
1345  NotifyLocked(self);
1346}
1347
1348void Thread::Notify() {
1349  Thread* self = Thread::Current();
1350  MutexLock mu(self, *wait_mutex_);
1351  NotifyLocked(self);
1352}
1353
1354void Thread::NotifyLocked(Thread* self) {
1355  if (wait_monitor_ != nullptr) {
1356    wait_cond_->Signal(self);
1357  }
1358}
1359
1360class CountStackDepthVisitor : public StackVisitor {
1361 public:
1362  explicit CountStackDepthVisitor(Thread* thread)
1363      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1364      : StackVisitor(thread, nullptr),
1365        depth_(0), skip_depth_(0), skipping_(true) {}
1366
1367  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1368    // We want to skip frames up to and including the exception's constructor.
1369    // Note we also skip the frame if it doesn't have a method (namely the callee
1370    // save frame)
1371    mirror::ArtMethod* m = GetMethod();
1372    if (skipping_ && !m->IsRuntimeMethod() &&
1373        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1374      skipping_ = false;
1375    }
1376    if (!skipping_) {
1377      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1378        ++depth_;
1379      }
1380    } else {
1381      ++skip_depth_;
1382    }
1383    return true;
1384  }
1385
1386  int GetDepth() const {
1387    return depth_;
1388  }
1389
1390  int GetSkipDepth() const {
1391    return skip_depth_;
1392  }
1393
1394 private:
1395  uint32_t depth_;
1396  uint32_t skip_depth_;
1397  bool skipping_;
1398};
1399
1400template<bool kTransactionActive>
1401class BuildInternalStackTraceVisitor : public StackVisitor {
1402 public:
1403  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1404      : StackVisitor(thread, nullptr), self_(self),
1405        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1406
1407  bool Init(int depth)
1408      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1409    // Allocate method trace with an extra slot that will hold the PC trace
1410    StackHandleScope<1> hs(self_);
1411    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1412    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1413        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1414    if (method_trace.Get() == nullptr) {
1415      return false;
1416    }
1417    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1418    if (dex_pc_trace == nullptr) {
1419      return false;
1420    }
1421    // Save PC trace in last element of method trace, also places it into the
1422    // object graph.
1423    // We are called from native: use non-transactional mode.
1424    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1425    // Set the Object*s and assert that no thread suspension is now possible.
1426    const char* last_no_suspend_cause =
1427        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1428    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1429    method_trace_ = method_trace.Get();
1430    dex_pc_trace_ = dex_pc_trace;
1431    return true;
1432  }
1433
1434  virtual ~BuildInternalStackTraceVisitor() {
1435    if (method_trace_ != nullptr) {
1436      self_->EndAssertNoThreadSuspension(nullptr);
1437    }
1438  }
1439
1440  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1441    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1442      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1443    }
1444    if (skip_depth_ > 0) {
1445      skip_depth_--;
1446      return true;
1447    }
1448    mirror::ArtMethod* m = GetMethod();
1449    if (m->IsRuntimeMethod()) {
1450      return true;  // Ignore runtime frames (in particular callee save).
1451    }
1452    method_trace_->Set<kTransactionActive>(count_, m);
1453    dex_pc_trace_->Set<kTransactionActive>(count_,
1454        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1455    ++count_;
1456    return true;
1457  }
1458
1459  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1460    return method_trace_;
1461  }
1462
1463 private:
1464  Thread* const self_;
1465  // How many more frames to skip.
1466  int32_t skip_depth_;
1467  // Current position down stack trace.
1468  uint32_t count_;
1469  // Array of dex PC values.
1470  mirror::IntArray* dex_pc_trace_;
1471  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1472  mirror::ObjectArray<mirror::Object>* method_trace_;
1473};
1474
1475template<bool kTransactionActive>
1476jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1477  // Compute depth of stack
1478  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1479  count_visitor.WalkStack();
1480  int32_t depth = count_visitor.GetDepth();
1481  int32_t skip_depth = count_visitor.GetSkipDepth();
1482
1483  // Build internal stack trace.
1484  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1485                                                                         const_cast<Thread*>(this),
1486                                                                         skip_depth);
1487  if (!build_trace_visitor.Init(depth)) {
1488    return nullptr;  // Allocation failed.
1489  }
1490  build_trace_visitor.WalkStack();
1491  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1492  if (kIsDebugBuild) {
1493    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1494      CHECK(trace->Get(i) != nullptr);
1495    }
1496  }
1497  return soa.AddLocalReference<jobjectArray>(trace);
1498}
1499template jobject Thread::CreateInternalStackTrace<false>(
1500    const ScopedObjectAccessAlreadyRunnable& soa) const;
1501template jobject Thread::CreateInternalStackTrace<true>(
1502    const ScopedObjectAccessAlreadyRunnable& soa) const;
1503
1504jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1505    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1506    int* stack_depth) {
1507  // Decode the internal stack trace into the depth, method trace and PC trace
1508  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1509
1510  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1511
1512  jobjectArray result;
1513
1514  if (output_array != nullptr) {
1515    // Reuse the array we were given.
1516    result = output_array;
1517    // ...adjusting the number of frames we'll write to not exceed the array length.
1518    const int32_t traces_length =
1519        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1520    depth = std::min(depth, traces_length);
1521  } else {
1522    // Create java_trace array and place in local reference table
1523    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1524        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1525    if (java_traces == nullptr) {
1526      return nullptr;
1527    }
1528    result = soa.AddLocalReference<jobjectArray>(java_traces);
1529  }
1530
1531  if (stack_depth != nullptr) {
1532    *stack_depth = depth;
1533  }
1534
1535  for (int32_t i = 0; i < depth; ++i) {
1536    mirror::ObjectArray<mirror::Object>* method_trace =
1537          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1538    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1539    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1540    int32_t line_number;
1541    StackHandleScope<3> hs(soa.Self());
1542    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1543    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1544    if (method->IsProxyMethod()) {
1545      line_number = -1;
1546      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1547      // source_name_object intentionally left null for proxy methods
1548    } else {
1549      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1550      uint32_t dex_pc = pc_trace->Get(i);
1551      line_number = method->GetLineNumFromDexPC(dex_pc);
1552      // Allocate element, potentially triggering GC
1553      // TODO: reuse class_name_object via Class::name_?
1554      const char* descriptor = method->GetDeclaringClassDescriptor();
1555      CHECK(descriptor != nullptr);
1556      std::string class_name(PrettyDescriptor(descriptor));
1557      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1558      if (class_name_object.Get() == nullptr) {
1559        return nullptr;
1560      }
1561      const char* source_file = method->GetDeclaringClassSourceFile();
1562      if (source_file != nullptr) {
1563        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1564        if (source_name_object.Get() == nullptr) {
1565          return nullptr;
1566        }
1567      }
1568    }
1569    const char* method_name = method->GetName();
1570    CHECK(method_name != nullptr);
1571    Handle<mirror::String> method_name_object(
1572        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1573    if (method_name_object.Get() == nullptr) {
1574      return nullptr;
1575    }
1576    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1577        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1578    if (obj == nullptr) {
1579      return nullptr;
1580    }
1581    // We are called from native: use non-transactional mode.
1582    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1583  }
1584  return result;
1585}
1586
1587void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1588                                const char* exception_class_descriptor, const char* fmt, ...) {
1589  va_list args;
1590  va_start(args, fmt);
1591  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1592                     fmt, args);
1593  va_end(args);
1594}
1595
1596void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1597                                const char* exception_class_descriptor,
1598                                const char* fmt, va_list ap) {
1599  std::string msg;
1600  StringAppendV(&msg, fmt, ap);
1601  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1602}
1603
1604void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1605                               const char* msg) {
1606  // Callers should either clear or call ThrowNewWrappedException.
1607  AssertNoPendingExceptionForNewException(msg);
1608  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1609}
1610
1611void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1612                                      const char* exception_class_descriptor,
1613                                      const char* msg) {
1614  DCHECK_EQ(this, Thread::Current());
1615  ScopedObjectAccessUnchecked soa(this);
1616  StackHandleScope<5> hs(soa.Self());
1617  // Ensure we don't forget arguments over object allocation.
1618  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1619  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1620  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1621  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1622  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1623  ClearException();
1624  Runtime* runtime = Runtime::Current();
1625
1626  mirror::ClassLoader* cl = nullptr;
1627  if (saved_throw_method.Get() != nullptr) {
1628    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1629  }
1630  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1631  Handle<mirror::Class> exception_class(
1632      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1633                                                        class_loader)));
1634  if (UNLIKELY(exception_class.Get() == nullptr)) {
1635    CHECK(IsExceptionPending());
1636    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1637    return;
1638  }
1639
1640  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1641    DCHECK(IsExceptionPending());
1642    return;
1643  }
1644  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1645  Handle<mirror::Throwable> exception(
1646      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1647
1648  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1649  if (exception.Get() == nullptr) {
1650    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1651                                         throw_location.GetDexPc());
1652    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1653    SetExceptionReportedToInstrumentation(is_exception_reported);
1654    return;
1655  }
1656
1657  // Choose an appropriate constructor and set up the arguments.
1658  const char* signature;
1659  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1660  if (msg != nullptr) {
1661    // Ensure we remember this and the method over the String allocation.
1662    msg_string.reset(
1663        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1664    if (UNLIKELY(msg_string.get() == nullptr)) {
1665      CHECK(IsExceptionPending());  // OOME.
1666      return;
1667    }
1668    if (cause.get() == nullptr) {
1669      signature = "(Ljava/lang/String;)V";
1670    } else {
1671      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1672    }
1673  } else {
1674    if (cause.get() == nullptr) {
1675      signature = "()V";
1676    } else {
1677      signature = "(Ljava/lang/Throwable;)V";
1678    }
1679  }
1680  mirror::ArtMethod* exception_init_method =
1681      exception_class->FindDeclaredDirectMethod("<init>", signature);
1682
1683  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1684      << PrettyDescriptor(exception_class_descriptor);
1685
1686  if (UNLIKELY(!runtime->IsStarted())) {
1687    // Something is trying to throw an exception without a started runtime, which is the common
1688    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1689    // the exception fields directly.
1690    if (msg != nullptr) {
1691      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1692    }
1693    if (cause.get() != nullptr) {
1694      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1695    }
1696    ScopedLocalRef<jobject> trace(GetJniEnv(),
1697                                  Runtime::Current()->IsActiveTransaction()
1698                                      ? CreateInternalStackTrace<true>(soa)
1699                                      : CreateInternalStackTrace<false>(soa));
1700    if (trace.get() != nullptr) {
1701      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1702    }
1703    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1704                                         throw_location.GetDexPc());
1705    SetException(gc_safe_throw_location, exception.Get());
1706    SetExceptionReportedToInstrumentation(is_exception_reported);
1707  } else {
1708    jvalue jv_args[2];
1709    size_t i = 0;
1710
1711    if (msg != nullptr) {
1712      jv_args[i].l = msg_string.get();
1713      ++i;
1714    }
1715    if (cause.get() != nullptr) {
1716      jv_args[i].l = cause.get();
1717      ++i;
1718    }
1719    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1720    if (LIKELY(!IsExceptionPending())) {
1721      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1722                                           throw_location.GetDexPc());
1723      SetException(gc_safe_throw_location, exception.Get());
1724      SetExceptionReportedToInstrumentation(is_exception_reported);
1725    }
1726  }
1727}
1728
1729void Thread::ThrowOutOfMemoryError(const char* msg) {
1730  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1731      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1732  ThrowLocation throw_location = GetCurrentLocationForThrow();
1733  if (!tls32_.throwing_OutOfMemoryError) {
1734    tls32_.throwing_OutOfMemoryError = true;
1735    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1736    tls32_.throwing_OutOfMemoryError = false;
1737  } else {
1738    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1739    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1740  }
1741}
1742
1743Thread* Thread::CurrentFromGdb() {
1744  return Thread::Current();
1745}
1746
1747void Thread::DumpFromGdb() const {
1748  std::ostringstream ss;
1749  Dump(ss);
1750  std::string str(ss.str());
1751  // log to stderr for debugging command line processes
1752  std::cerr << str;
1753#ifdef HAVE_ANDROID_OS
1754  // log to logcat for debugging frameworks processes
1755  LOG(INFO) << str;
1756#endif
1757}
1758
1759// Explicitly instantiate 32 and 64bit thread offset dumping support.
1760template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1761template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1762
1763template<size_t ptr_size>
1764void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1765#define DO_THREAD_OFFSET(x, y) \
1766    if (offset == x.Uint32Value()) { \
1767      os << y; \
1768      return; \
1769    }
1770  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1771  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1772  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1773  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1774  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1775  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1776  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1777  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1778  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1779  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1780  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1781  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1782  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1783#undef DO_THREAD_OFFSET
1784
1785#define INTERPRETER_ENTRY_POINT_INFO(x) \
1786    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1787      os << #x; \
1788      return; \
1789    }
1790  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1791  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1792#undef INTERPRETER_ENTRY_POINT_INFO
1793
1794#define JNI_ENTRY_POINT_INFO(x) \
1795    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1796      os << #x; \
1797      return; \
1798    }
1799  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1800#undef JNI_ENTRY_POINT_INFO
1801
1802#define PORTABLE_ENTRY_POINT_INFO(x) \
1803    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1804      os << #x; \
1805      return; \
1806    }
1807  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1808  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1809  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1810#undef PORTABLE_ENTRY_POINT_INFO
1811
1812#define QUICK_ENTRY_POINT_INFO(x) \
1813    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1814      os << #x; \
1815      return; \
1816    }
1817  QUICK_ENTRY_POINT_INFO(pAllocArray)
1818  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1819  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1820  QUICK_ENTRY_POINT_INFO(pAllocObject)
1821  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1822  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1823  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1824  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1825  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1826  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1827  QUICK_ENTRY_POINT_INFO(pCheckCast)
1828  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1829  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1830  QUICK_ENTRY_POINT_INFO(pInitializeType)
1831  QUICK_ENTRY_POINT_INFO(pResolveString)
1832  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1833  QUICK_ENTRY_POINT_INFO(pSet32Static)
1834  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1835  QUICK_ENTRY_POINT_INFO(pSet64Static)
1836  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1837  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1838  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1839  QUICK_ENTRY_POINT_INFO(pGet32Static)
1840  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1841  QUICK_ENTRY_POINT_INFO(pGet64Static)
1842  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1843  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1844  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1845  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1846  QUICK_ENTRY_POINT_INFO(pAputObject)
1847  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1848  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1849  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1850  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1851  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1852  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1853  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1854  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1855  QUICK_ENTRY_POINT_INFO(pLockObject)
1856  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1857  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1858  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1859  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1860  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1861  QUICK_ENTRY_POINT_INFO(pFmod)
1862  QUICK_ENTRY_POINT_INFO(pL2d)
1863  QUICK_ENTRY_POINT_INFO(pFmodf)
1864  QUICK_ENTRY_POINT_INFO(pL2f)
1865  QUICK_ENTRY_POINT_INFO(pD2iz)
1866  QUICK_ENTRY_POINT_INFO(pF2iz)
1867  QUICK_ENTRY_POINT_INFO(pIdivmod)
1868  QUICK_ENTRY_POINT_INFO(pD2l)
1869  QUICK_ENTRY_POINT_INFO(pF2l)
1870  QUICK_ENTRY_POINT_INFO(pLdiv)
1871  QUICK_ENTRY_POINT_INFO(pLmod)
1872  QUICK_ENTRY_POINT_INFO(pLmul)
1873  QUICK_ENTRY_POINT_INFO(pShlLong)
1874  QUICK_ENTRY_POINT_INFO(pShrLong)
1875  QUICK_ENTRY_POINT_INFO(pUshrLong)
1876  QUICK_ENTRY_POINT_INFO(pIndexOf)
1877  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1878  QUICK_ENTRY_POINT_INFO(pMemcpy)
1879  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1880  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1881  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1882  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1883  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1884  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1885  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1886  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1887  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1888  QUICK_ENTRY_POINT_INFO(pDeliverException)
1889  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1890  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1891  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1892  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1893  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1894  QUICK_ENTRY_POINT_INFO(pA64Load)
1895  QUICK_ENTRY_POINT_INFO(pA64Store)
1896#undef QUICK_ENTRY_POINT_INFO
1897
1898  os << offset;
1899}
1900
1901void Thread::QuickDeliverException() {
1902  // Get exception from thread.
1903  ThrowLocation throw_location;
1904  mirror::Throwable* exception = GetException(&throw_location);
1905  CHECK(exception != nullptr);
1906  // Don't leave exception visible while we try to find the handler, which may cause class
1907  // resolution.
1908  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1909  ClearException();
1910  bool is_deoptimization = (exception == GetDeoptimizationException());
1911  QuickExceptionHandler exception_handler(this, is_deoptimization);
1912  if (is_deoptimization) {
1913    exception_handler.DeoptimizeStack();
1914  } else {
1915    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1916  }
1917  exception_handler.UpdateInstrumentationStack();
1918  exception_handler.DoLongJump();
1919  LOG(FATAL) << "UNREACHABLE";
1920}
1921
1922Context* Thread::GetLongJumpContext() {
1923  Context* result = tlsPtr_.long_jump_context;
1924  if (result == nullptr) {
1925    result = Context::Create();
1926  } else {
1927    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1928    result->Reset();
1929  }
1930  return result;
1931}
1932
1933// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1934//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1935struct CurrentMethodVisitor FINAL : public StackVisitor {
1936  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1937      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1938      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1939        abort_on_error_(abort_on_error) {}
1940  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1941    mirror::ArtMethod* m = GetMethod();
1942    if (m->IsRuntimeMethod()) {
1943      // Continue if this is a runtime method.
1944      return true;
1945    }
1946    if (context_ != nullptr) {
1947      this_object_ = GetThisObject();
1948    }
1949    method_ = m;
1950    dex_pc_ = GetDexPc(abort_on_error_);
1951    return false;
1952  }
1953  mirror::Object* this_object_;
1954  mirror::ArtMethod* method_;
1955  uint32_t dex_pc_;
1956  const bool abort_on_error_;
1957};
1958
1959mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
1960  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
1961  visitor.WalkStack(false);
1962  if (dex_pc != nullptr) {
1963    *dex_pc = visitor.dex_pc_;
1964  }
1965  return visitor.method_;
1966}
1967
1968ThrowLocation Thread::GetCurrentLocationForThrow() {
1969  Context* context = GetLongJumpContext();
1970  CurrentMethodVisitor visitor(this, context, true);
1971  visitor.WalkStack(false);
1972  ReleaseLongJumpContext(context);
1973  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1974}
1975
1976bool Thread::HoldsLock(mirror::Object* object) const {
1977  if (object == nullptr) {
1978    return false;
1979  }
1980  return object->GetLockOwnerThreadId() == GetThreadId();
1981}
1982
1983// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1984template <typename RootVisitor>
1985class ReferenceMapVisitor : public StackVisitor {
1986 public:
1987  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1988      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1989      : StackVisitor(thread, context), visitor_(visitor) {}
1990
1991  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1992    if (false) {
1993      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1994                << StringPrintf("@ PC:%04x", GetDexPc());
1995    }
1996    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1997    if (shadow_frame != nullptr) {
1998      VisitShadowFrame(shadow_frame);
1999    } else {
2000      VisitQuickFrame();
2001    }
2002    return true;
2003  }
2004
2005  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2006    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2007    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2008    mirror::ArtMethod* m = *method_addr;
2009    DCHECK(m != nullptr);
2010    size_t num_regs = shadow_frame->NumberOfVRegs();
2011    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2012      // handle scope for JNI or References for interpreter.
2013      for (size_t reg = 0; reg < num_regs; ++reg) {
2014        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2015        if (ref != nullptr) {
2016          mirror::Object* new_ref = ref;
2017          visitor_(&new_ref, reg, this);
2018          if (new_ref != ref) {
2019            shadow_frame->SetVRegReference(reg, new_ref);
2020          }
2021        }
2022      }
2023    } else {
2024      // Java method.
2025      // Portable path use DexGcMap and store in Method.native_gc_map_.
2026      const uint8_t* gc_map = m->GetNativeGcMap();
2027      CHECK(gc_map != nullptr) << PrettyMethod(m);
2028      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2029      uint32_t dex_pc = shadow_frame->GetDexPC();
2030      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2031      DCHECK(reg_bitmap != nullptr);
2032      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2033      for (size_t reg = 0; reg < num_regs; ++reg) {
2034        if (TestBitmap(reg, reg_bitmap)) {
2035          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2036          if (ref != nullptr) {
2037            mirror::Object* new_ref = ref;
2038            visitor_(&new_ref, reg, this);
2039            if (new_ref != ref) {
2040              shadow_frame->SetVRegReference(reg, new_ref);
2041            }
2042          }
2043        }
2044      }
2045    }
2046  }
2047
2048 private:
2049  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2050    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2051    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2052    mirror::ArtMethod* old_method = m;
2053    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2054    if (m != old_method) {
2055      cur_quick_frame->Assign(m);
2056    }
2057
2058    // Process register map (which native and runtime methods don't have)
2059    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2060      const uint8_t* native_gc_map = m->GetNativeGcMap();
2061      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2062      const DexFile::CodeItem* code_item = m->GetCodeItem();
2063      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2064      NativePcOffsetToReferenceMap map(native_gc_map);
2065      size_t num_regs = std::min(map.RegWidth() * 8,
2066                                 static_cast<size_t>(code_item->registers_size_));
2067      if (num_regs > 0) {
2068        Runtime* runtime = Runtime::Current();
2069        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2070        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2071        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2072        DCHECK(reg_bitmap != nullptr);
2073        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2074        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2075        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2076        // For all dex registers in the bitmap
2077        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2078        DCHECK(cur_quick_frame != nullptr);
2079        for (size_t reg = 0; reg < num_regs; ++reg) {
2080          // Does this register hold a reference?
2081          if (TestBitmap(reg, reg_bitmap)) {
2082            uint32_t vmap_offset;
2083            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2084              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2085                                                        kReferenceVReg);
2086              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2087              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2088              if (*ref_addr != nullptr) {
2089                visitor_(ref_addr, reg, this);
2090              }
2091            } else {
2092              StackReference<mirror::Object>* ref_addr =
2093                  reinterpret_cast<StackReference<mirror::Object>*>(
2094                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2095                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2096              mirror::Object* ref = ref_addr->AsMirrorPtr();
2097              if (ref != nullptr) {
2098                mirror::Object* new_ref = ref;
2099                visitor_(&new_ref, reg, this);
2100                if (ref != new_ref) {
2101                  ref_addr->Assign(new_ref);
2102                }
2103              }
2104            }
2105          }
2106        }
2107      }
2108    }
2109  }
2110
2111  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2112    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2113  }
2114
2115  // Visitor for when we visit a root.
2116  const RootVisitor& visitor_;
2117};
2118
2119class RootCallbackVisitor {
2120 public:
2121  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2122     : callback_(callback), arg_(arg), tid_(tid) {}
2123
2124  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2125    callback_(obj, arg_, tid_, kRootJavaFrame);
2126  }
2127
2128 private:
2129  RootCallback* const callback_;
2130  void* const arg_;
2131  const uint32_t tid_;
2132};
2133
2134void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2135  VerifyObject(class_loader_override);
2136  tlsPtr_.class_loader_override = class_loader_override;
2137}
2138
2139void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2140  uint32_t thread_id = GetThreadId();
2141  if (tlsPtr_.opeer != nullptr) {
2142    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2143  }
2144  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2145    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2146  }
2147  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2148  if (tlsPtr_.class_loader_override != nullptr) {
2149    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2150            kRootNativeStack);
2151  }
2152  if (tlsPtr_.monitor_enter_object != nullptr) {
2153    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2154  }
2155  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2156  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2157  HandleScopeVisitRoots(visitor, arg, thread_id);
2158  if (tlsPtr_.debug_invoke_req != nullptr) {
2159    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2160  }
2161  if (tlsPtr_.single_step_control != nullptr) {
2162    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2163  }
2164  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2165    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2166    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2167    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2168        shadow_frame = shadow_frame->GetLink()) {
2169      mapper.VisitShadowFrame(shadow_frame);
2170    }
2171  }
2172  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2173    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2174    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2175    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2176        shadow_frame != nullptr;
2177        shadow_frame = shadow_frame->GetLink()) {
2178      mapper.VisitShadowFrame(shadow_frame);
2179    }
2180  }
2181  // Visit roots on this thread's stack
2182  Context* context = GetLongJumpContext();
2183  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2184  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2185  mapper.WalkStack();
2186  ReleaseLongJumpContext(context);
2187  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2188    if (frame.this_object_ != nullptr) {
2189      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2190    }
2191    DCHECK(frame.method_ != nullptr);
2192    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2193  }
2194}
2195
2196static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2197                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2198  VerifyObject(*root);
2199}
2200
2201void Thread::VerifyStackImpl() {
2202  std::unique_ptr<Context> context(Context::Create());
2203  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2204  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2205  mapper.WalkStack();
2206}
2207
2208// Set the stack end to that to be used during a stack overflow
2209void Thread::SetStackEndForStackOverflow() {
2210  // During stack overflow we allow use of the full stack.
2211  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2212    // However, we seem to have already extended to use the full stack.
2213    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2214               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2215    DumpStack(LOG(ERROR));
2216    LOG(FATAL) << "Recursive stack overflow.";
2217  }
2218
2219  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2220
2221  // Remove the stack overflow protection if is it set up.
2222  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2223  if (implicit_stack_check) {
2224    if (!UnprotectStack()) {
2225      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2226    }
2227  }
2228}
2229
2230void Thread::SetTlab(byte* start, byte* end) {
2231  DCHECK_LE(start, end);
2232  tlsPtr_.thread_local_start = start;
2233  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2234  tlsPtr_.thread_local_end = end;
2235  tlsPtr_.thread_local_objects = 0;
2236}
2237
2238bool Thread::HasTlab() const {
2239  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2240  if (has_tlab) {
2241    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2242  } else {
2243    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2244  }
2245  return has_tlab;
2246}
2247
2248std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2249  thread.ShortDump(os);
2250  return os;
2251}
2252
2253void Thread::ProtectStack() {
2254  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2255  VLOG(threads) << "Protecting stack at " << pregion;
2256  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2257    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2258        "Reason: "
2259        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2260  }
2261}
2262
2263bool Thread::UnprotectStack() {
2264  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2265  VLOG(threads) << "Unprotecting stack at " << pregion;
2266  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2267}
2268
2269
2270}  // namespace art
2271