thread.cc revision 59cde534aa295bad7de29472b3cce9576d7996a8
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker.h"
36#include "class_linker-inl.h"
37#include "cutils/atomic.h"
38#include "cutils/atomic-inline.h"
39#include "debugger.h"
40#include "dex_file-inl.h"
41#include "entrypoints/entrypoint_utils.h"
42#include "gc_map.h"
43#include "gc/accounting/card_table-inl.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "invoke_arg_array_builder.h"
47#include "jni_internal.h"
48#include "mirror/art_field-inl.h"
49#include "mirror/art_method-inl.h"
50#include "mirror/class-inl.h"
51#include "mirror/class_loader.h"
52#include "mirror/object_array-inl.h"
53#include "mirror/stack_trace_element.h"
54#include "monitor.h"
55#include "object_utils.h"
56#include "reflection.h"
57#include "runtime.h"
58#include "scoped_thread_state_change.h"
59#include "ScopedLocalRef.h"
60#include "ScopedUtfChars.h"
61#include "sirt_ref.h"
62#include "stack.h"
63#include "stack_indirect_reference_table.h"
64#include "thread-inl.h"
65#include "thread_list.h"
66#include "utils.h"
67#include "verifier/dex_gc_map.h"
68#include "verifier/method_verifier.h"
69#include "vmap_table.h"
70#include "well_known_classes.h"
71
72namespace art {
73
74bool Thread::is_started_ = false;
75pthread_key_t Thread::pthread_key_self_;
76ConditionVariable* Thread::resume_cond_ = NULL;
77
78static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
79
80void Thread::InitCardTable() {
81  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
82}
83
84#if !defined(__APPLE__)
85static void UnimplementedEntryPoint() {
86  UNIMPLEMENTED(FATAL);
87}
88#endif
89
90void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
91                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
92
93void Thread::InitTlsEntryPoints() {
94#if !defined(__APPLE__)  // The Mac GCC is too old to accept this code.
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_));
98  for (uintptr_t* it = begin; it != end; ++it) {
99    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
100  }
101  begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
102  end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_));
103  for (uintptr_t* it = begin; it != end; ++it) {
104    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
105  }
106#endif
107  InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_,
108                  &quick_entrypoints_);
109}
110
111void ResetQuickAllocEntryPoints(QuickEntryPoints* qpoints);
112
113void Thread::ResetQuickAllocEntryPointsForThread() {
114  ResetQuickAllocEntryPoints(&quick_entrypoints_);
115}
116
117void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
118  deoptimization_shadow_frame_ = sf;
119}
120
121void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
122  deoptimization_return_value_.SetJ(ret_val.GetJ());
123}
124
125ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
126  ShadowFrame* sf = deoptimization_shadow_frame_;
127  deoptimization_shadow_frame_ = NULL;
128  ret_val->SetJ(deoptimization_return_value_.GetJ());
129  return sf;
130}
131
132void Thread::InitTid() {
133  tid_ = ::art::GetTid();
134}
135
136void Thread::InitAfterFork() {
137  // One thread (us) survived the fork, but we have a new tid so we need to
138  // update the value stashed in this Thread*.
139  InitTid();
140}
141
142void* Thread::CreateCallback(void* arg) {
143  Thread* self = reinterpret_cast<Thread*>(arg);
144  Runtime* runtime = Runtime::Current();
145  if (runtime == NULL) {
146    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
147    return NULL;
148  }
149  {
150    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
151    //       after self->Init().
152    MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
153    // Check that if we got here we cannot be shutting down (as shutdown should never have started
154    // while threads are being born).
155    CHECK(!runtime->IsShuttingDownLocked());
156    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
157    Runtime::Current()->EndThreadBirth();
158  }
159  {
160    ScopedObjectAccess soa(self);
161
162    // Copy peer into self, deleting global reference when done.
163    CHECK(self->jpeer_ != NULL);
164    self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
165    self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
166    self->jpeer_ = NULL;
167
168    {
169      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
170      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
171    }
172    Dbg::PostThreadStart(self);
173
174    // Invoke the 'run' method of our java.lang.Thread.
175    mirror::Object* receiver = self->opeer_;
176    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
177    mirror::ArtMethod* m =
178        receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
179    JValue result;
180    ArgArray arg_array(NULL, 0);
181    arg_array.Append(reinterpret_cast<uint32_t>(receiver));
182    m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
183  }
184  // Detach and delete self.
185  Runtime::Current()->GetThreadList()->Unregister(self);
186
187  return NULL;
188}
189
190Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
191                                  mirror::Object* thread_peer) {
192  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
193  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer)));
194  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
195  // to stop it from going away.
196  if (kIsDebugBuild) {
197    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
198    if (result != NULL && !result->IsSuspended()) {
199      Locks::thread_list_lock_->AssertHeld(soa.Self());
200    }
201  }
202  return result;
203}
204
205Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
206  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
207}
208
209static size_t FixStackSize(size_t stack_size) {
210  // A stack size of zero means "use the default".
211  if (stack_size == 0) {
212    stack_size = Runtime::Current()->GetDefaultStackSize();
213  }
214
215  // Dalvik used the bionic pthread default stack size for native threads,
216  // so include that here to support apps that expect large native stacks.
217  stack_size += 1 * MB;
218
219  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
220  if (stack_size < PTHREAD_STACK_MIN) {
221    stack_size = PTHREAD_STACK_MIN;
222  }
223
224  // It's likely that callers are trying to ensure they have at least a certain amount of
225  // stack space, so we should add our reserved space on top of what they requested, rather
226  // than implicitly take it away from them.
227  stack_size += Thread::kStackOverflowReservedBytes;
228
229  // Some systems require the stack size to be a multiple of the system page size, so round up.
230  stack_size = RoundUp(stack_size, kPageSize);
231
232  return stack_size;
233}
234
235void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
236  CHECK(java_peer != NULL);
237  Thread* self = static_cast<JNIEnvExt*>(env)->self;
238  Runtime* runtime = Runtime::Current();
239
240  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
241  bool thread_start_during_shutdown = false;
242  {
243    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
244    if (runtime->IsShuttingDownLocked()) {
245      thread_start_during_shutdown = true;
246    } else {
247      runtime->StartThreadBirth();
248    }
249  }
250  if (thread_start_during_shutdown) {
251    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
252    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
253    return;
254  }
255
256  Thread* child_thread = new Thread(is_daemon);
257  // Use global JNI ref to hold peer live while child thread starts.
258  child_thread->jpeer_ = env->NewGlobalRef(java_peer);
259  stack_size = FixStackSize(stack_size);
260
261  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
262  // assign it.
263  env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
264                   reinterpret_cast<jint>(child_thread));
265
266  pthread_t new_pthread;
267  pthread_attr_t attr;
268  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
269  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
270  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
271  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
272  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
273
274  if (pthread_create_result != 0) {
275    // pthread_create(3) failed, so clean up.
276    {
277      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
278      runtime->EndThreadBirth();
279    }
280    // Manually delete the global reference since Thread::Init will not have been run.
281    env->DeleteGlobalRef(child_thread->jpeer_);
282    child_thread->jpeer_ = NULL;
283    delete child_thread;
284    child_thread = NULL;
285    // TODO: remove from thread group?
286    env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
287    {
288      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
289                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
290      ScopedObjectAccess soa(env);
291      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
292    }
293  }
294}
295
296void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
297  // This function does all the initialization that must be run by the native thread it applies to.
298  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
299  // we can handshake with the corresponding native thread when it's ready.) Check this native
300  // thread hasn't been through here already...
301  CHECK(Thread::Current() == NULL);
302  SetUpAlternateSignalStack();
303  InitCpu();
304  InitTlsEntryPoints();
305  InitCardTable();
306  InitTid();
307  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
308  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
309  pthread_self_ = pthread_self();
310  CHECK(is_started_);
311  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
312  DCHECK_EQ(Thread::Current(), this);
313
314  thin_lock_thread_id_ = thread_list->AllocThreadId(this);
315  InitStackHwm();
316
317  jni_env_ = new JNIEnvExt(this, java_vm);
318  thread_list->Register(this);
319}
320
321Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
322                       bool create_peer) {
323  Thread* self;
324  Runtime* runtime = Runtime::Current();
325  if (runtime == NULL) {
326    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
327    return NULL;
328  }
329  {
330    MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
331    if (runtime->IsShuttingDownLocked()) {
332      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
333      return NULL;
334    } else {
335      Runtime::Current()->StartThreadBirth();
336      self = new Thread(as_daemon);
337      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
338      Runtime::Current()->EndThreadBirth();
339    }
340  }
341
342  CHECK_NE(self->GetState(), kRunnable);
343  self->SetState(kNative);
344
345  // If we're the main thread, ClassLinker won't be created until after we're attached,
346  // so that thread needs a two-stage attach. Regular threads don't need this hack.
347  // In the compiler, all threads need this hack, because no-one's going to be getting
348  // a native peer!
349  if (create_peer) {
350    self->CreatePeer(thread_name, as_daemon, thread_group);
351  } else {
352    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
353    if (thread_name != NULL) {
354      self->name_->assign(thread_name);
355      ::art::SetThreadName(thread_name);
356    }
357  }
358
359  return self;
360}
361
362void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
363  Runtime* runtime = Runtime::Current();
364  CHECK(runtime->IsStarted());
365  JNIEnv* env = jni_env_;
366
367  if (thread_group == NULL) {
368    thread_group = runtime->GetMainThreadGroup();
369  }
370  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
371  jint thread_priority = GetNativePriority();
372  jboolean thread_is_daemon = as_daemon;
373
374  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
375  if (peer.get() == NULL) {
376    CHECK(IsExceptionPending());
377    return;
378  }
379  {
380    ScopedObjectAccess soa(this);
381    opeer_ = soa.Decode<mirror::Object*>(peer.get());
382  }
383  env->CallNonvirtualVoidMethod(peer.get(),
384                                WellKnownClasses::java_lang_Thread,
385                                WellKnownClasses::java_lang_Thread_init,
386                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
387  AssertNoPendingException();
388
389  Thread* self = this;
390  DCHECK_EQ(self, Thread::Current());
391  jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
392                        reinterpret_cast<jint>(self));
393
394  ScopedObjectAccess soa(self);
395  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
396  if (peer_thread_name.get() == NULL) {
397    // The Thread constructor should have set the Thread.name to a
398    // non-null value. However, because we can run without code
399    // available (in the compiler, in tests), we manually assign the
400    // fields the constructor should have set.
401    soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
402        SetBoolean(opeer_, thread_is_daemon);
403    soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
404        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group));
405    soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
406        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get()));
407    soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
408        SetInt(opeer_, thread_priority);
409    peer_thread_name.reset(GetThreadName(soa));
410  }
411  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
412  if (peer_thread_name.get() != NULL) {
413    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
414  }
415}
416
417void Thread::SetThreadName(const char* name) {
418  name_->assign(name);
419  ::art::SetThreadName(name);
420  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
421}
422
423void Thread::InitStackHwm() {
424  void* stack_base;
425  size_t stack_size;
426  GetThreadStack(pthread_self_, &stack_base, &stack_size);
427
428  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
429  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
430
431  stack_begin_ = reinterpret_cast<byte*>(stack_base);
432  stack_size_ = stack_size;
433
434  if (stack_size_ <= kStackOverflowReservedBytes) {
435    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
436  }
437
438  // TODO: move this into the Linux GetThreadStack implementation.
439#if !defined(__APPLE__)
440  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
441  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
442  // will be broken because we'll die long before we get close to 2GB.
443  bool is_main_thread = (::art::GetTid() == getpid());
444  if (is_main_thread) {
445    rlimit stack_limit;
446    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
447      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
448    }
449    if (stack_limit.rlim_cur == RLIM_INFINITY) {
450      // Find the default stack size for new threads...
451      pthread_attr_t default_attributes;
452      size_t default_stack_size;
453      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
454      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
455                         "default stack size query");
456      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
457
458      // ...and use that as our limit.
459      size_t old_stack_size = stack_size_;
460      stack_size_ = default_stack_size;
461      stack_begin_ += (old_stack_size - stack_size_);
462      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
463                    << " to " << PrettySize(stack_size_)
464                    << " with base " << reinterpret_cast<void*>(stack_begin_);
465    }
466  }
467#endif
468
469  // Set stack_end_ to the bottom of the stack saving space of stack overflows
470  ResetDefaultStackEnd();
471
472  // Sanity check.
473  int stack_variable;
474  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
475}
476
477void Thread::ShortDump(std::ostream& os) const {
478  os << "Thread[";
479  if (GetThreadId() != 0) {
480    // If we're in kStarting, we won't have a thin lock id or tid yet.
481    os << GetThreadId()
482             << ",tid=" << GetTid() << ',';
483  }
484  os << GetState()
485           << ",Thread*=" << this
486           << ",peer=" << opeer_
487           << ",\"" << *name_ << "\""
488           << "]";
489}
490
491void Thread::Dump(std::ostream& os) const {
492  DumpState(os);
493  DumpStack(os);
494}
495
496mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
497  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
498  return (opeer_ != NULL) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : NULL;
499}
500
501void Thread::GetThreadName(std::string& name) const {
502  name.assign(*name_);
503}
504
505uint64_t Thread::GetCpuMicroTime() const {
506#if defined(HAVE_POSIX_CLOCKS)
507  clockid_t cpu_clock_id;
508  pthread_getcpuclockid(pthread_self_, &cpu_clock_id);
509  timespec now;
510  clock_gettime(cpu_clock_id, &now);
511  return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
512#else
513  UNIMPLEMENTED(WARNING);
514  return -1;
515#endif
516}
517
518void Thread::AtomicSetFlag(ThreadFlag flag) {
519  android_atomic_or(flag, &state_and_flags_.as_int);
520}
521
522void Thread::AtomicClearFlag(ThreadFlag flag) {
523  android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
524}
525
526// Attempt to rectify locks so that we dump thread list with required locks before exiting.
527static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
528  LOG(ERROR) << *thread << " suspend count already zero.";
529  Locks::thread_suspend_count_lock_->Unlock(self);
530  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
531    Locks::mutator_lock_->SharedTryLock(self);
532    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
533      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
534    }
535  }
536  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
537    Locks::thread_list_lock_->TryLock(self);
538    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
539      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
540    }
541  }
542  std::ostringstream ss;
543  Runtime::Current()->GetThreadList()->DumpLocked(ss);
544  LOG(FATAL) << ss.str();
545}
546
547void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
548  DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
549      << delta << " " << debug_suspend_count_ << " " << this;
550  DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
551  Locks::thread_suspend_count_lock_->AssertHeld(self);
552  if (this != self && !IsSuspended()) {
553    Locks::thread_list_lock_->AssertHeld(self);
554  }
555  if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
556    UnsafeLogFatalForSuspendCount(self, this);
557    return;
558  }
559
560  suspend_count_ += delta;
561  if (for_debugger) {
562    debug_suspend_count_ += delta;
563  }
564
565  if (suspend_count_ == 0) {
566    AtomicClearFlag(kSuspendRequest);
567  } else {
568    AtomicSetFlag(kSuspendRequest);
569  }
570}
571
572void Thread::RunCheckpointFunction() {
573  CHECK(checkpoint_function_ != NULL);
574  ATRACE_BEGIN("Checkpoint function");
575  checkpoint_function_->Run(this);
576  ATRACE_END();
577  checkpoint_function_ = NULL;
578  AtomicClearFlag(kCheckpointRequest);
579}
580
581bool Thread::RequestCheckpoint(Closure* function) {
582  union StateAndFlags old_state_and_flags;
583  old_state_and_flags.as_int = state_and_flags_.as_int;
584  if (old_state_and_flags.as_struct.state != kRunnable) {
585    return false;  // Fail, thread is suspended and so can't run a checkpoint.
586  }
587  if ((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0) {
588    return false;  // Fail, already a checkpoint pending.
589  }
590  CHECK(checkpoint_function_ == nullptr);
591  checkpoint_function_ = function;
592  // Checkpoint function installed now install flag bit.
593  // We must be runnable to request a checkpoint.
594  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
595  union StateAndFlags new_state_and_flags;
596  new_state_and_flags.as_int = old_state_and_flags.as_int;
597  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
598  int succeeded = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int,
599                                         &state_and_flags_.as_int);
600  if (UNLIKELY(succeeded != 0)) {
601    // The thread changed state before the checkpoint was installed.
602    CHECK(checkpoint_function_ == function);
603    checkpoint_function_ = NULL;
604  }
605  return succeeded == 0;
606}
607
608void Thread::FullSuspendCheck() {
609  VLOG(threads) << this << " self-suspending";
610  ATRACE_BEGIN("Full suspend check");
611  // Make thread appear suspended to other threads, release mutator_lock_.
612  TransitionFromRunnableToSuspended(kSuspended);
613  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
614  TransitionFromSuspendedToRunnable();
615  ATRACE_END();
616  VLOG(threads) << this << " self-reviving";
617}
618
619void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
620  std::string group_name;
621  int priority;
622  bool is_daemon = false;
623  Thread* self = Thread::Current();
624
625  if (self != NULL && thread != NULL && thread->opeer_ != NULL) {
626    ScopedObjectAccessUnchecked soa(self);
627    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
628    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
629
630    mirror::Object* thread_group =
631        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
632
633    if (thread_group != NULL) {
634      mirror::ArtField* group_name_field =
635          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
636      mirror::String* group_name_string =
637          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
638      group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
639    }
640  } else {
641    priority = GetNativePriority();
642  }
643
644  std::string scheduler_group_name(GetSchedulerGroupName(tid));
645  if (scheduler_group_name.empty()) {
646    scheduler_group_name = "default";
647  }
648
649  if (thread != NULL) {
650    os << '"' << *thread->name_ << '"';
651    if (is_daemon) {
652      os << " daemon";
653    }
654    os << " prio=" << priority
655       << " tid=" << thread->GetThreadId()
656       << " " << thread->GetState();
657    if (thread->IsStillStarting()) {
658      os << " (still starting up)";
659    }
660    os << "\n";
661  } else {
662    os << '"' << ::art::GetThreadName(tid) << '"'
663       << " prio=" << priority
664       << " (not attached)\n";
665  }
666
667  if (thread != NULL) {
668    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
669    os << "  | group=\"" << group_name << "\""
670       << " sCount=" << thread->suspend_count_
671       << " dsCount=" << thread->debug_suspend_count_
672       << " obj=" << reinterpret_cast<void*>(thread->opeer_)
673       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
674  }
675
676  os << "  | sysTid=" << tid
677     << " nice=" << getpriority(PRIO_PROCESS, tid)
678     << " cgrp=" << scheduler_group_name;
679  if (thread != NULL) {
680    int policy;
681    sched_param sp;
682    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
683    os << " sched=" << policy << "/" << sp.sched_priority
684       << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
685  }
686  os << "\n";
687
688  // Grab the scheduler stats for this thread.
689  std::string scheduler_stats;
690  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
691    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
692  } else {
693    scheduler_stats = "0 0 0";
694  }
695
696  char native_thread_state = '?';
697  int utime = 0;
698  int stime = 0;
699  int task_cpu = 0;
700  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
701
702  os << "  | state=" << native_thread_state
703     << " schedstat=( " << scheduler_stats << " )"
704     << " utm=" << utime
705     << " stm=" << stime
706     << " core=" << task_cpu
707     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
708  if (thread != NULL) {
709    os << "  | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
710       << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
711  }
712}
713
714void Thread::DumpState(std::ostream& os) const {
715  Thread::DumpState(os, this, GetTid());
716}
717
718struct StackDumpVisitor : public StackVisitor {
719  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
720      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
721      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
722        last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) {
723  }
724
725  virtual ~StackDumpVisitor() {
726    if (frame_count == 0) {
727      os << "  (no managed stack frames)\n";
728    }
729  }
730
731  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
732    mirror::ArtMethod* m = GetMethod();
733    if (m->IsRuntimeMethod()) {
734      return true;
735    }
736    const int kMaxRepetition = 3;
737    mirror::Class* c = m->GetDeclaringClass();
738    const mirror::DexCache* dex_cache = c->GetDexCache();
739    int line_number = -1;
740    if (dex_cache != NULL) {  // be tolerant of bad input
741      const DexFile& dex_file = *dex_cache->GetDexFile();
742      line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
743    }
744    if (line_number == last_line_number && last_method == m) {
745      repetition_count++;
746    } else {
747      if (repetition_count >= kMaxRepetition) {
748        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
749      }
750      repetition_count = 0;
751      last_line_number = line_number;
752      last_method = m;
753    }
754    if (repetition_count < kMaxRepetition) {
755      os << "  at " << PrettyMethod(m, false);
756      if (m->IsNative()) {
757        os << "(Native method)";
758      } else {
759        mh.ChangeMethod(m);
760        const char* source_file(mh.GetDeclaringClassSourceFile());
761        os << "(" << (source_file != NULL ? source_file : "unavailable")
762           << ":" << line_number << ")";
763      }
764      os << "\n";
765      if (frame_count == 0) {
766        Monitor::DescribeWait(os, thread);
767      }
768      if (can_allocate) {
769        Monitor::VisitLocks(this, DumpLockedObject, &os);
770      }
771    }
772
773    ++frame_count;
774    return true;
775  }
776
777  static void DumpLockedObject(mirror::Object* o, void* context)
778      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
779    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
780    os << "  - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
781  }
782
783  std::ostream& os;
784  const Thread* thread;
785  const bool can_allocate;
786  MethodHelper mh;
787  mirror::ArtMethod* last_method;
788  int last_line_number;
789  int repetition_count;
790  int frame_count;
791};
792
793static bool ShouldShowNativeStack(const Thread* thread)
794    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
795  ThreadState state = thread->GetState();
796
797  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
798  if (state > kWaiting && state < kStarting) {
799    return true;
800  }
801
802  // In an Object.wait variant or Thread.sleep? That's not interesting.
803  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
804    return false;
805  }
806
807  // In some other native method? That's interesting.
808  // We don't just check kNative because native methods will be in state kSuspended if they're
809  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
810  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
811  mirror::ArtMethod* current_method = thread->GetCurrentMethod(NULL);
812  return current_method != NULL && current_method->IsNative();
813}
814
815void Thread::DumpStack(std::ostream& os) const {
816  // TODO: we call this code when dying but may not have suspended the thread ourself. The
817  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
818  //       the race with the thread_suspend_count_lock_).
819  // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
820  bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
821  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
822    // If we're currently in native code, dump that stack before dumping the managed stack.
823    if (dump_for_abort || ShouldShowNativeStack(this)) {
824      DumpKernelStack(os, GetTid(), "  kernel: ", false);
825      DumpNativeStack(os, GetTid(), "  native: ", false);
826    }
827    UniquePtr<Context> context(Context::Create());
828    StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
829    dumper.WalkStack();
830  } else {
831    os << "Not able to dump stack of thread that isn't suspended";
832  }
833}
834
835void Thread::ThreadExitCallback(void* arg) {
836  Thread* self = reinterpret_cast<Thread*>(arg);
837  if (self->thread_exit_check_count_ == 0) {
838    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
839    CHECK(is_started_);
840    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
841    self->thread_exit_check_count_ = 1;
842  } else {
843    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
844  }
845}
846
847void Thread::Startup() {
848  CHECK(!is_started_);
849  is_started_ = true;
850  {
851    // MutexLock to keep annotalysis happy.
852    //
853    // Note we use NULL for the thread because Thread::Current can
854    // return garbage since (is_started_ == true) and
855    // Thread::pthread_key_self_ is not yet initialized.
856    // This was seen on glibc.
857    MutexLock mu(NULL, *Locks::thread_suspend_count_lock_);
858    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
859                                         *Locks::thread_suspend_count_lock_);
860  }
861
862  // Allocate a TLS slot.
863  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
864
865  // Double-check the TLS slot allocation.
866  if (pthread_getspecific(pthread_key_self_) != NULL) {
867    LOG(FATAL) << "Newly-created pthread TLS slot is not NULL";
868  }
869}
870
871void Thread::FinishStartup() {
872  Runtime* runtime = Runtime::Current();
873  CHECK(runtime->IsStarted());
874
875  // Finish attaching the main thread.
876  ScopedObjectAccess soa(Thread::Current());
877  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
878
879  Runtime::Current()->GetClassLinker()->RunRootClinits();
880}
881
882void Thread::Shutdown() {
883  CHECK(is_started_);
884  is_started_ = false;
885  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
886  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
887  if (resume_cond_ != NULL) {
888    delete resume_cond_;
889    resume_cond_ = NULL;
890  }
891}
892
893Thread::Thread(bool daemon)
894    : suspend_count_(0),
895      card_table_(NULL),
896      exception_(NULL),
897      stack_end_(NULL),
898      managed_stack_(),
899      jni_env_(NULL),
900      self_(NULL),
901      opeer_(NULL),
902      jpeer_(NULL),
903      stack_begin_(NULL),
904      stack_size_(0),
905      thin_lock_thread_id_(0),
906      stack_trace_sample_(NULL),
907      trace_clock_base_(0),
908      tid_(0),
909      wait_mutex_(new Mutex("a thread wait mutex")),
910      wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
911      wait_monitor_(NULL),
912      interrupted_(false),
913      wait_next_(NULL),
914      monitor_enter_object_(NULL),
915      top_sirt_(NULL),
916      runtime_(NULL),
917      class_loader_override_(NULL),
918      long_jump_context_(NULL),
919      throwing_OutOfMemoryError_(false),
920      debug_suspend_count_(0),
921      debug_invoke_req_(new DebugInvokeReq),
922      single_step_control_(new SingleStepControl),
923      deoptimization_shadow_frame_(NULL),
924      instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
925      name_(new std::string(kThreadNameDuringStartup)),
926      daemon_(daemon),
927      pthread_self_(0),
928      no_thread_suspension_(0),
929      last_no_thread_suspension_cause_(NULL),
930      checkpoint_function_(0),
931      thread_exit_check_count_(0) {
932  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
933  state_and_flags_.as_struct.flags = 0;
934  state_and_flags_.as_struct.state = kNative;
935  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
936  memset(rosalloc_runs_, 0, sizeof(rosalloc_runs_));
937}
938
939bool Thread::IsStillStarting() const {
940  // You might think you can check whether the state is kStarting, but for much of thread startup,
941  // the thread is in kNative; it might also be in kVmWait.
942  // You might think you can check whether the peer is NULL, but the peer is actually created and
943  // assigned fairly early on, and needs to be.
944  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
945  // this thread _ever_ entered kRunnable".
946  return (jpeer_ == NULL && opeer_ == NULL) || (*name_ == kThreadNameDuringStartup);
947}
948
949void Thread::AssertNoPendingException() const {
950  if (UNLIKELY(IsExceptionPending())) {
951    ScopedObjectAccess soa(Thread::Current());
952    mirror::Throwable* exception = GetException(NULL);
953    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
954  }
955}
956
957static mirror::Object* MonitorExitVisitor(mirror::Object* object, void* arg)
958    NO_THREAD_SAFETY_ANALYSIS {
959  Thread* self = reinterpret_cast<Thread*>(arg);
960  mirror::Object* entered_monitor = object;
961  if (self->HoldsLock(entered_monitor)) {
962    LOG(WARNING) << "Calling MonitorExit on object "
963                 << object << " (" << PrettyTypeOf(object) << ")"
964                 << " left locked by native thread "
965                 << *Thread::Current() << " which is detaching";
966    entered_monitor->MonitorExit(self);
967  }
968  return object;
969}
970
971void Thread::Destroy() {
972  Thread* self = this;
973  DCHECK_EQ(self, Thread::Current());
974
975  if (opeer_ != NULL) {
976    ScopedObjectAccess soa(self);
977    // We may need to call user-supplied managed code, do this before final clean-up.
978    HandleUncaughtExceptions(soa);
979    RemoveFromThreadGroup(soa);
980
981    // this.nativePeer = 0;
982    soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0);
983    Dbg::PostThreadDeath(self);
984
985    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
986    // who is waiting.
987    mirror::Object* lock =
988        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
989    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
990    if (lock != NULL) {
991      ObjectLock locker(self, lock);
992      locker.Notify();
993    }
994  }
995
996  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
997  if (jni_env_ != NULL) {
998    jni_env_->monitors.VisitRoots(MonitorExitVisitor, self);
999  }
1000}
1001
1002Thread::~Thread() {
1003  if (jni_env_ != NULL && jpeer_ != NULL) {
1004    // If pthread_create fails we don't have a jni env here.
1005    jni_env_->DeleteGlobalRef(jpeer_);
1006    jpeer_ = NULL;
1007  }
1008  opeer_ = NULL;
1009
1010  delete jni_env_;
1011  jni_env_ = NULL;
1012
1013  CHECK_NE(GetState(), kRunnable);
1014  // We may be deleting a still born thread.
1015  SetStateUnsafe(kTerminated);
1016
1017  delete wait_cond_;
1018  delete wait_mutex_;
1019
1020  if (long_jump_context_ != NULL) {
1021    delete long_jump_context_;
1022  }
1023
1024  delete debug_invoke_req_;
1025  delete single_step_control_;
1026  delete instrumentation_stack_;
1027  delete name_;
1028  delete stack_trace_sample_;
1029
1030  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1031
1032  TearDownAlternateSignalStack();
1033}
1034
1035void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1036  if (!IsExceptionPending()) {
1037    return;
1038  }
1039  ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1040  ScopedThreadStateChange tsc(this, kNative);
1041
1042  // Get and clear the exception.
1043  ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1044  jni_env_->ExceptionClear();
1045
1046  // If the thread has its own handler, use that.
1047  ScopedLocalRef<jobject> handler(jni_env_,
1048                                  jni_env_->GetObjectField(peer.get(),
1049                                                           WellKnownClasses::java_lang_Thread_uncaughtHandler));
1050  if (handler.get() == NULL) {
1051    // Otherwise use the thread group's default handler.
1052    handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1053  }
1054
1055  // Call the handler.
1056  jni_env_->CallVoidMethod(handler.get(),
1057                           WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1058                           peer.get(), exception.get());
1059
1060  // If the handler threw, clear that exception too.
1061  jni_env_->ExceptionClear();
1062}
1063
1064void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1065  // this.group.removeThread(this);
1066  // group can be null if we're in the compiler or a test.
1067  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1068  if (ogroup != NULL) {
1069    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1070    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1071    ScopedThreadStateChange tsc(soa.Self(), kNative);
1072    jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1073                             peer.get());
1074  }
1075}
1076
1077size_t Thread::NumSirtReferences() {
1078  size_t count = 0;
1079  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1080    count += cur->NumberOfReferences();
1081  }
1082  return count;
1083}
1084
1085bool Thread::SirtContains(jobject obj) const {
1086  mirror::Object** sirt_entry = reinterpret_cast<mirror::Object**>(obj);
1087  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1088    if (cur->Contains(sirt_entry)) {
1089      return true;
1090    }
1091  }
1092  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1093  return managed_stack_.ShadowFramesContain(sirt_entry);
1094}
1095
1096void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) {
1097  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1098    size_t num_refs = cur->NumberOfReferences();
1099    for (size_t j = 0; j < num_refs; j++) {
1100      mirror::Object* object = cur->GetReference(j);
1101      if (object != nullptr) {
1102        const mirror::Object* new_obj = visitor(object, arg);
1103        DCHECK(new_obj != nullptr);
1104        if (new_obj != object) {
1105          cur->SetReference(j, const_cast<mirror::Object*>(new_obj));
1106        }
1107      }
1108    }
1109  }
1110}
1111
1112mirror::Object* Thread::DecodeJObject(jobject obj) const {
1113  Locks::mutator_lock_->AssertSharedHeld(this);
1114  if (obj == NULL) {
1115    return NULL;
1116  }
1117  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1118  IndirectRefKind kind = GetIndirectRefKind(ref);
1119  mirror::Object* result;
1120  // The "kinds" below are sorted by the frequency we expect to encounter them.
1121  if (kind == kLocal) {
1122    IndirectReferenceTable& locals = jni_env_->locals;
1123    result = const_cast<mirror::Object*>(locals.Get(ref));
1124  } else if (kind == kSirtOrInvalid) {
1125    // TODO: make stack indirect reference table lookup more efficient
1126    // Check if this is a local reference in the SIRT
1127    if (LIKELY(SirtContains(obj))) {
1128      result = *reinterpret_cast<mirror::Object**>(obj);  // Read from SIRT
1129    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1130      // Assume an invalid local reference is actually a direct pointer.
1131      result = reinterpret_cast<mirror::Object*>(obj);
1132    } else {
1133      result = kInvalidIndirectRefObject;
1134    }
1135  } else if (kind == kGlobal) {
1136    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1137    IndirectReferenceTable& globals = vm->globals;
1138    ReaderMutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1139    result = const_cast<mirror::Object*>(globals.Get(ref));
1140  } else {
1141    DCHECK_EQ(kind, kWeakGlobal);
1142    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1143    if (result == kClearedJniWeakGlobal) {
1144      // This is a special case where it's okay to return NULL.
1145      return NULL;
1146    }
1147  }
1148
1149  if (UNLIKELY(result == NULL)) {
1150    JniAbortF(NULL, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1151  } else {
1152    if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
1153      Runtime::Current()->GetHeap()->VerifyObject(result);
1154    }
1155  }
1156  return result;
1157}
1158
1159// Implements java.lang.Thread.interrupted.
1160bool Thread::Interrupted() {
1161  MutexLock mu(Thread::Current(), *wait_mutex_);
1162  bool interrupted = interrupted_;
1163  interrupted_ = false;
1164  return interrupted;
1165}
1166
1167// Implements java.lang.Thread.isInterrupted.
1168bool Thread::IsInterrupted() {
1169  MutexLock mu(Thread::Current(), *wait_mutex_);
1170  return interrupted_;
1171}
1172
1173void Thread::Interrupt() {
1174  Thread* self = Thread::Current();
1175  MutexLock mu(self, *wait_mutex_);
1176  if (interrupted_) {
1177    return;
1178  }
1179  interrupted_ = true;
1180  NotifyLocked(self);
1181}
1182
1183void Thread::Notify() {
1184  Thread* self = Thread::Current();
1185  MutexLock mu(self, *wait_mutex_);
1186  NotifyLocked(self);
1187}
1188
1189void Thread::NotifyLocked(Thread* self) {
1190  if (wait_monitor_ != NULL) {
1191    wait_cond_->Signal(self);
1192  }
1193}
1194
1195class CountStackDepthVisitor : public StackVisitor {
1196 public:
1197  explicit CountStackDepthVisitor(Thread* thread)
1198      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1199      : StackVisitor(thread, NULL),
1200        depth_(0), skip_depth_(0), skipping_(true) {}
1201
1202  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1203    // We want to skip frames up to and including the exception's constructor.
1204    // Note we also skip the frame if it doesn't have a method (namely the callee
1205    // save frame)
1206    mirror::ArtMethod* m = GetMethod();
1207    if (skipping_ && !m->IsRuntimeMethod() &&
1208        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1209      skipping_ = false;
1210    }
1211    if (!skipping_) {
1212      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1213        ++depth_;
1214      }
1215    } else {
1216      ++skip_depth_;
1217    }
1218    return true;
1219  }
1220
1221  int GetDepth() const {
1222    return depth_;
1223  }
1224
1225  int GetSkipDepth() const {
1226    return skip_depth_;
1227  }
1228
1229 private:
1230  uint32_t depth_;
1231  uint32_t skip_depth_;
1232  bool skipping_;
1233};
1234
1235class BuildInternalStackTraceVisitor : public StackVisitor {
1236 public:
1237  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1238      : StackVisitor(thread, NULL), self_(self),
1239        skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {}
1240
1241  bool Init(int depth)
1242      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1243    // Allocate method trace with an extra slot that will hold the PC trace
1244    SirtRef<mirror::ObjectArray<mirror::Object> >
1245        method_trace(self_,
1246                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1247                                                                                            depth + 1));
1248    if (method_trace.get() == NULL) {
1249      return false;
1250    }
1251    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1252    if (dex_pc_trace == NULL) {
1253      return false;
1254    }
1255    // Save PC trace in last element of method trace, also places it into the
1256    // object graph.
1257    method_trace->Set(depth, dex_pc_trace);
1258    // Set the Object*s and assert that no thread suspension is now possible.
1259    const char* last_no_suspend_cause =
1260        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1261    CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause;
1262    method_trace_ = method_trace.get();
1263    dex_pc_trace_ = dex_pc_trace;
1264    return true;
1265  }
1266
1267  virtual ~BuildInternalStackTraceVisitor() {
1268    if (method_trace_ != NULL) {
1269      self_->EndAssertNoThreadSuspension(NULL);
1270    }
1271  }
1272
1273  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1274    if (method_trace_ == NULL || dex_pc_trace_ == NULL) {
1275      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1276    }
1277    if (skip_depth_ > 0) {
1278      skip_depth_--;
1279      return true;
1280    }
1281    mirror::ArtMethod* m = GetMethod();
1282    if (m->IsRuntimeMethod()) {
1283      return true;  // Ignore runtime frames (in particular callee save).
1284    }
1285    method_trace_->Set(count_, m);
1286    dex_pc_trace_->Set(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1287    ++count_;
1288    return true;
1289  }
1290
1291  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1292    return method_trace_;
1293  }
1294
1295 private:
1296  Thread* const self_;
1297  // How many more frames to skip.
1298  int32_t skip_depth_;
1299  // Current position down stack trace.
1300  uint32_t count_;
1301  // Array of dex PC values.
1302  mirror::IntArray* dex_pc_trace_;
1303  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1304  mirror::ObjectArray<mirror::Object>* method_trace_;
1305};
1306
1307jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1308  // Compute depth of stack
1309  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1310  count_visitor.WalkStack();
1311  int32_t depth = count_visitor.GetDepth();
1312  int32_t skip_depth = count_visitor.GetSkipDepth();
1313
1314  // Build internal stack trace.
1315  BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1316                                                     skip_depth);
1317  if (!build_trace_visitor.Init(depth)) {
1318    return NULL;  // Allocation failed.
1319  }
1320  build_trace_visitor.WalkStack();
1321  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1322  if (kIsDebugBuild) {
1323    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1324      CHECK(trace->Get(i) != NULL);
1325    }
1326  }
1327  return soa.AddLocalReference<jobjectArray>(trace);
1328}
1329
1330jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1331    jobjectArray output_array, int* stack_depth) {
1332  // Transition into runnable state to work on Object*/Array*
1333  ScopedObjectAccess soa(env);
1334  // Decode the internal stack trace into the depth, method trace and PC trace
1335  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1336
1337  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1338
1339  jobjectArray result;
1340
1341  if (output_array != NULL) {
1342    // Reuse the array we were given.
1343    result = output_array;
1344    // ...adjusting the number of frames we'll write to not exceed the array length.
1345    const int32_t traces_length =
1346        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1347    depth = std::min(depth, traces_length);
1348  } else {
1349    // Create java_trace array and place in local reference table
1350    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1351        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1352    if (java_traces == NULL) {
1353      return NULL;
1354    }
1355    result = soa.AddLocalReference<jobjectArray>(java_traces);
1356  }
1357
1358  if (stack_depth != NULL) {
1359    *stack_depth = depth;
1360  }
1361
1362  for (int32_t i = 0; i < depth; ++i) {
1363    mirror::ObjectArray<mirror::Object>* method_trace =
1364          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1365    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1366    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1367    MethodHelper mh(method);
1368    int32_t line_number;
1369    SirtRef<mirror::String> class_name_object(soa.Self(), NULL);
1370    SirtRef<mirror::String> source_name_object(soa.Self(), NULL);
1371    if (method->IsProxyMethod()) {
1372      line_number = -1;
1373      class_name_object.reset(method->GetDeclaringClass()->GetName());
1374      // source_name_object intentionally left null for proxy methods
1375    } else {
1376      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1377      uint32_t dex_pc = pc_trace->Get(i);
1378      line_number = mh.GetLineNumFromDexPC(dex_pc);
1379      // Allocate element, potentially triggering GC
1380      // TODO: reuse class_name_object via Class::name_?
1381      const char* descriptor = mh.GetDeclaringClassDescriptor();
1382      CHECK(descriptor != NULL);
1383      std::string class_name(PrettyDescriptor(descriptor));
1384      class_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1385      if (class_name_object.get() == NULL) {
1386        return NULL;
1387      }
1388      const char* source_file = mh.GetDeclaringClassSourceFile();
1389      source_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1390      if (source_name_object.get() == NULL) {
1391        return NULL;
1392      }
1393    }
1394    const char* method_name = mh.GetName();
1395    CHECK(method_name != NULL);
1396    SirtRef<mirror::String> method_name_object(soa.Self(),
1397                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1398                                                                                     method_name));
1399    if (method_name_object.get() == NULL) {
1400      return NULL;
1401    }
1402    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1403        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1404    if (obj == NULL) {
1405      return NULL;
1406    }
1407    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set(i, obj);
1408  }
1409  return result;
1410}
1411
1412void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1413                                const char* exception_class_descriptor, const char* fmt, ...) {
1414  va_list args;
1415  va_start(args, fmt);
1416  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1417                     fmt, args);
1418  va_end(args);
1419}
1420
1421void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1422                                const char* exception_class_descriptor,
1423                                const char* fmt, va_list ap) {
1424  std::string msg;
1425  StringAppendV(&msg, fmt, ap);
1426  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1427}
1428
1429void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1430                               const char* msg) {
1431  AssertNoPendingException();  // Callers should either clear or call ThrowNewWrappedException.
1432  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1433}
1434
1435void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1436                                      const char* exception_class_descriptor,
1437                                      const char* msg) {
1438  DCHECK_EQ(this, Thread::Current());
1439  // Ensure we don't forget arguments over object allocation.
1440  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1441  SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1442  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1443  SirtRef<mirror::Throwable> cause(this, GetException(NULL));
1444  ClearException();
1445  Runtime* runtime = Runtime::Current();
1446
1447  mirror::ClassLoader* cl = NULL;
1448  if (throw_location.GetMethod() != NULL) {
1449    cl = throw_location.GetMethod()->GetDeclaringClass()->GetClassLoader();
1450  }
1451  SirtRef<mirror::ClassLoader> class_loader(this, cl);
1452  SirtRef<mirror::Class>
1453      exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor,
1454                                                                 class_loader));
1455  if (UNLIKELY(exception_class.get() == NULL)) {
1456    CHECK(IsExceptionPending());
1457    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1458    return;
1459  }
1460
1461  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class.get(), true, true))) {
1462    DCHECK(IsExceptionPending());
1463    return;
1464  }
1465  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1466  SirtRef<mirror::Throwable> exception(this,
1467                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1468
1469  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1470  if (exception.get() == nullptr) {
1471    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1472    return;
1473  }
1474
1475  // Choose an appropriate constructor and set up the arguments.
1476  const char* signature;
1477  SirtRef<mirror::String> msg_string(this, NULL);
1478  if (msg != NULL) {
1479    // Ensure we remember this and the method over the String allocation.
1480    msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1481    if (UNLIKELY(msg_string.get() == NULL)) {
1482      CHECK(IsExceptionPending());  // OOME.
1483      return;
1484    }
1485    if (cause.get() == NULL) {
1486      signature = "(Ljava/lang/String;)V";
1487    } else {
1488      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1489    }
1490  } else {
1491    if (cause.get() == NULL) {
1492      signature = "()V";
1493    } else {
1494      signature = "(Ljava/lang/Throwable;)V";
1495    }
1496  }
1497  mirror::ArtMethod* exception_init_method =
1498      exception_class->FindDeclaredDirectMethod("<init>", signature);
1499
1500  CHECK(exception_init_method != NULL) << "No <init>" << signature << " in "
1501      << PrettyDescriptor(exception_class_descriptor);
1502
1503  if (UNLIKELY(!runtime->IsStarted())) {
1504    // Something is trying to throw an exception without a started runtime, which is the common
1505    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1506    // the exception fields directly.
1507    if (msg != NULL) {
1508      exception->SetDetailMessage(msg_string.get());
1509    }
1510    if (cause.get() != NULL) {
1511      exception->SetCause(cause.get());
1512    }
1513    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1514                                         throw_location.GetDexPc());
1515    SetException(gc_safe_throw_location, exception.get());
1516  } else {
1517    ArgArray args("VLL", 3);
1518    args.Append(reinterpret_cast<uint32_t>(exception.get()));
1519    if (msg != NULL) {
1520      args.Append(reinterpret_cast<uint32_t>(msg_string.get()));
1521    }
1522    if (cause.get() != NULL) {
1523      args.Append(reinterpret_cast<uint32_t>(cause.get()));
1524    }
1525    JValue result;
1526    exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V');
1527    if (LIKELY(!IsExceptionPending())) {
1528      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1529                                           throw_location.GetDexPc());
1530      SetException(gc_safe_throw_location, exception.get());
1531    }
1532  }
1533}
1534
1535void Thread::ThrowOutOfMemoryError(const char* msg) {
1536  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1537      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1538  ThrowLocation throw_location = GetCurrentLocationForThrow();
1539  if (!throwing_OutOfMemoryError_) {
1540    throwing_OutOfMemoryError_ = true;
1541    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1542    throwing_OutOfMemoryError_ = false;
1543  } else {
1544    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1545    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1546  }
1547}
1548
1549Thread* Thread::CurrentFromGdb() {
1550  return Thread::Current();
1551}
1552
1553void Thread::DumpFromGdb() const {
1554  std::ostringstream ss;
1555  Dump(ss);
1556  std::string str(ss.str());
1557  // log to stderr for debugging command line processes
1558  std::cerr << str;
1559#ifdef HAVE_ANDROID_OS
1560  // log to logcat for debugging frameworks processes
1561  LOG(INFO) << str;
1562#endif
1563}
1564
1565struct EntryPointInfo {
1566  uint32_t offset;
1567  const char* name;
1568};
1569#define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1570#define JNI_ENTRY_POINT_INFO(x)         { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1571#define PORTABLE_ENTRY_POINT_INFO(x)    { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1572#define QUICK_ENTRY_POINT_INFO(x)       { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1573static const EntryPointInfo gThreadEntryPointInfo[] = {
1574  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge),
1575  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge),
1576  JNI_ENTRY_POINT_INFO(pDlsymLookup),
1577  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline),
1578  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline),
1579  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge),
1580  QUICK_ENTRY_POINT_INFO(pAllocArray),
1581  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck),
1582  QUICK_ENTRY_POINT_INFO(pAllocObject),
1583  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck),
1584  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray),
1585  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck),
1586  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial),
1587  QUICK_ENTRY_POINT_INFO(pCheckCast),
1588  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage),
1589  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess),
1590  QUICK_ENTRY_POINT_INFO(pInitializeType),
1591  QUICK_ENTRY_POINT_INFO(pResolveString),
1592  QUICK_ENTRY_POINT_INFO(pSet32Instance),
1593  QUICK_ENTRY_POINT_INFO(pSet32Static),
1594  QUICK_ENTRY_POINT_INFO(pSet64Instance),
1595  QUICK_ENTRY_POINT_INFO(pSet64Static),
1596  QUICK_ENTRY_POINT_INFO(pSetObjInstance),
1597  QUICK_ENTRY_POINT_INFO(pSetObjStatic),
1598  QUICK_ENTRY_POINT_INFO(pGet32Instance),
1599  QUICK_ENTRY_POINT_INFO(pGet32Static),
1600  QUICK_ENTRY_POINT_INFO(pGet64Instance),
1601  QUICK_ENTRY_POINT_INFO(pGet64Static),
1602  QUICK_ENTRY_POINT_INFO(pGetObjInstance),
1603  QUICK_ENTRY_POINT_INFO(pGetObjStatic),
1604  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck),
1605  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck),
1606  QUICK_ENTRY_POINT_INFO(pAputObject),
1607  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData),
1608  QUICK_ENTRY_POINT_INFO(pJniMethodStart),
1609  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1610  QUICK_ENTRY_POINT_INFO(pJniMethodEnd),
1611  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1612  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference),
1613  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1614  QUICK_ENTRY_POINT_INFO(pLockObject),
1615  QUICK_ENTRY_POINT_INFO(pUnlockObject),
1616  QUICK_ENTRY_POINT_INFO(pCmpgDouble),
1617  QUICK_ENTRY_POINT_INFO(pCmpgFloat),
1618  QUICK_ENTRY_POINT_INFO(pCmplDouble),
1619  QUICK_ENTRY_POINT_INFO(pCmplFloat),
1620  QUICK_ENTRY_POINT_INFO(pFmod),
1621  QUICK_ENTRY_POINT_INFO(pSqrt),
1622  QUICK_ENTRY_POINT_INFO(pL2d),
1623  QUICK_ENTRY_POINT_INFO(pFmodf),
1624  QUICK_ENTRY_POINT_INFO(pL2f),
1625  QUICK_ENTRY_POINT_INFO(pD2iz),
1626  QUICK_ENTRY_POINT_INFO(pF2iz),
1627  QUICK_ENTRY_POINT_INFO(pIdivmod),
1628  QUICK_ENTRY_POINT_INFO(pD2l),
1629  QUICK_ENTRY_POINT_INFO(pF2l),
1630  QUICK_ENTRY_POINT_INFO(pLdiv),
1631  QUICK_ENTRY_POINT_INFO(pLmod),
1632  QUICK_ENTRY_POINT_INFO(pLmul),
1633  QUICK_ENTRY_POINT_INFO(pShlLong),
1634  QUICK_ENTRY_POINT_INFO(pShrLong),
1635  QUICK_ENTRY_POINT_INFO(pUshrLong),
1636  QUICK_ENTRY_POINT_INFO(pIndexOf),
1637  QUICK_ENTRY_POINT_INFO(pMemcmp16),
1638  QUICK_ENTRY_POINT_INFO(pStringCompareTo),
1639  QUICK_ENTRY_POINT_INFO(pMemcpy),
1640  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline),
1641  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline),
1642  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge),
1643  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1644  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1645  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1646  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1647  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1648  QUICK_ENTRY_POINT_INFO(pCheckSuspend),
1649  QUICK_ENTRY_POINT_INFO(pTestSuspend),
1650  QUICK_ENTRY_POINT_INFO(pDeliverException),
1651  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds),
1652  QUICK_ENTRY_POINT_INFO(pThrowDivZero),
1653  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod),
1654  QUICK_ENTRY_POINT_INFO(pThrowNullPointer),
1655  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow),
1656};
1657#undef QUICK_ENTRY_POINT_INFO
1658
1659void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1660  CHECK_EQ(size_of_pointers, 4U);  // TODO: support 64-bit targets.
1661
1662#define DO_THREAD_OFFSET(x) \
1663    if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1664      os << # x; \
1665      return; \
1666    }
1667  DO_THREAD_OFFSET(state_and_flags_);
1668  DO_THREAD_OFFSET(card_table_);
1669  DO_THREAD_OFFSET(exception_);
1670  DO_THREAD_OFFSET(opeer_);
1671  DO_THREAD_OFFSET(jni_env_);
1672  DO_THREAD_OFFSET(self_);
1673  DO_THREAD_OFFSET(stack_end_);
1674  DO_THREAD_OFFSET(suspend_count_);
1675  DO_THREAD_OFFSET(thin_lock_thread_id_);
1676  // DO_THREAD_OFFSET(top_of_managed_stack_);
1677  // DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1678  DO_THREAD_OFFSET(top_sirt_);
1679#undef DO_THREAD_OFFSET
1680
1681  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1682  CHECK_EQ(entry_point_count * size_of_pointers,
1683           sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) +
1684           sizeof(QuickEntryPoints));
1685  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_);
1686  for (size_t i = 0; i < entry_point_count; ++i) {
1687    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1688    expected_offset += size_of_pointers;
1689    if (gThreadEntryPointInfo[i].offset == offset) {
1690      os << gThreadEntryPointInfo[i].name;
1691      return;
1692    }
1693  }
1694  os << offset;
1695}
1696
1697static const bool kDebugExceptionDelivery = false;
1698class CatchBlockStackVisitor : public StackVisitor {
1699 public:
1700  CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location,
1701                         mirror::Throwable* exception, bool is_deoptimization)
1702      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1703      : StackVisitor(self, self->GetLongJumpContext()),
1704        self_(self), exception_(exception), is_deoptimization_(is_deoptimization),
1705        to_find_(is_deoptimization ? NULL : exception->GetClass()), throw_location_(throw_location),
1706        handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0),
1707        native_method_count_(0), clear_exception_(false),
1708        method_tracing_active_(is_deoptimization ||
1709                               Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()),
1710        instrumentation_frames_to_pop_(0), top_shadow_frame_(NULL), prev_shadow_frame_(NULL) {
1711    // Exception not in root sets, can't allow GC.
1712    last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block");
1713  }
1714
1715  ~CatchBlockStackVisitor() {
1716    LOG(FATAL) << "UNREACHABLE";  // Expected to take long jump.
1717  }
1718
1719  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1720    mirror::ArtMethod* method = GetMethod();
1721    if (method == NULL) {
1722      // This is the upcall, we remember the frame and last pc so that we may long jump to them.
1723      handler_quick_frame_pc_ = GetCurrentQuickFramePc();
1724      handler_quick_frame_ = GetCurrentQuickFrame();
1725      return false;  // End stack walk.
1726    } else {
1727      if (UNLIKELY(method_tracing_active_ &&
1728                   GetQuickInstrumentationExitPc() == GetReturnPc())) {
1729        // Keep count of the number of unwinds during instrumentation.
1730        instrumentation_frames_to_pop_++;
1731      }
1732      if (method->IsRuntimeMethod()) {
1733        // Ignore callee save method.
1734        DCHECK(method->IsCalleeSaveMethod());
1735        return true;
1736      } else if (is_deoptimization_) {
1737        return HandleDeoptimization(method);
1738      } else {
1739        return HandleTryItems(method);
1740      }
1741    }
1742  }
1743
1744  bool HandleTryItems(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1745    uint32_t dex_pc = DexFile::kDexNoIndex;
1746    if (method->IsNative()) {
1747      native_method_count_++;
1748    } else {
1749      dex_pc = GetDexPc();
1750    }
1751    if (dex_pc != DexFile::kDexNoIndex) {
1752      uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc, &clear_exception_);
1753      if (found_dex_pc != DexFile::kDexNoIndex) {
1754        handler_dex_pc_ = found_dex_pc;
1755        handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc);
1756        handler_quick_frame_ = GetCurrentQuickFrame();
1757        return false;  // End stack walk.
1758      }
1759    }
1760    return true;  // Continue stack walk.
1761  }
1762
1763  bool HandleDeoptimization(mirror::ArtMethod* m)
1764      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1765    MethodHelper mh(m);
1766    const DexFile::CodeItem* code_item = mh.GetCodeItem();
1767    CHECK(code_item != NULL);
1768    uint16_t num_regs = code_item->registers_size_;
1769    uint32_t dex_pc = GetDexPc();
1770    const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc);
1771    uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits();
1772    ShadowFrame* new_frame = ShadowFrame::Create(num_regs, NULL, m, new_dex_pc);
1773    SirtRef<mirror::DexCache> dex_cache(self_, mh.GetDexCache());
1774    SirtRef<mirror::ClassLoader> class_loader(self_, mh.GetClassLoader());
1775    verifier::MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader,
1776                                      &mh.GetClassDef(), code_item, m->GetDexMethodIndex(), m,
1777                                      m->GetAccessFlags(), false, true);
1778    verifier.Verify();
1779    std::vector<int32_t> kinds = verifier.DescribeVRegs(dex_pc);
1780    for (uint16_t reg = 0; reg < num_regs; reg++) {
1781      VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2));
1782      switch (kind) {
1783        case kUndefined:
1784          new_frame->SetVReg(reg, 0xEBADDE09);
1785          break;
1786        case kConstant:
1787          new_frame->SetVReg(reg, kinds.at((reg * 2) + 1));
1788          break;
1789        case kReferenceVReg:
1790          new_frame->SetVRegReference(reg,
1791                                      reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kind)));
1792          break;
1793        default:
1794          new_frame->SetVReg(reg, GetVReg(m, reg, kind));
1795          break;
1796      }
1797    }
1798    if (prev_shadow_frame_ != NULL) {
1799      prev_shadow_frame_->SetLink(new_frame);
1800    } else {
1801      top_shadow_frame_ = new_frame;
1802    }
1803    prev_shadow_frame_ = new_frame;
1804    return true;
1805  }
1806
1807  void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1808    mirror::ArtMethod* catch_method = *handler_quick_frame_;
1809    if (catch_method == NULL) {
1810      if (kDebugExceptionDelivery) {
1811        LOG(INFO) << "Handler is upcall";
1812      }
1813    } else {
1814      CHECK(!is_deoptimization_);
1815      if (kDebugExceptionDelivery) {
1816        const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1817        int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_);
1818        LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
1819      }
1820    }
1821    if (clear_exception_) {
1822      // Exception was cleared as part of delivery.
1823      DCHECK(!self_->IsExceptionPending());
1824    } else {
1825      // Put exception back in root set with clear throw location.
1826      self_->SetException(ThrowLocation(), exception_);
1827    }
1828    self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_);
1829    // Do instrumentation events after allowing thread suspension again.
1830    instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1831    for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) {
1832      // We pop the instrumentation stack here so as not to corrupt it during the stack walk.
1833      if (i != instrumentation_frames_to_pop_ - 1 || self_->GetInstrumentationStack()->front().method_ != catch_method) {
1834        // Don't pop the instrumentation frame of the catch handler.
1835        instrumentation->PopMethodForUnwind(self_, is_deoptimization_);
1836      }
1837    }
1838    if (!is_deoptimization_) {
1839      instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_,
1840                                            exception_);
1841    } else {
1842      // TODO: proper return value.
1843      self_->SetDeoptimizationShadowFrame(top_shadow_frame_);
1844    }
1845    // Place context back on thread so it will be available when we continue.
1846    self_->ReleaseLongJumpContext(context_);
1847    context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_));
1848    CHECK_NE(handler_quick_frame_pc_, 0u);
1849    context_->SetPC(handler_quick_frame_pc_);
1850    context_->SmashCallerSaves();
1851    context_->DoLongJump();
1852  }
1853
1854 private:
1855  Thread* const self_;
1856  mirror::Throwable* const exception_;
1857  const bool is_deoptimization_;
1858  // The type of the exception catch block to find.
1859  mirror::Class* const to_find_;
1860  // Location of the throw.
1861  const ThrowLocation& throw_location_;
1862  // Quick frame with found handler or last frame if no handler found.
1863  mirror::ArtMethod** handler_quick_frame_;
1864  // PC to branch to for the handler.
1865  uintptr_t handler_quick_frame_pc_;
1866  // Associated dex PC.
1867  uint32_t handler_dex_pc_;
1868  // Number of native methods passed in crawl (equates to number of SIRTs to pop)
1869  uint32_t native_method_count_;
1870  // Should the exception be cleared as the catch block has no move-exception?
1871  bool clear_exception_;
1872  // Is method tracing active?
1873  const bool method_tracing_active_;
1874  // Support for nesting no thread suspension checks.
1875  const char* last_no_assert_suspension_cause_;
1876  // Number of frames to pop in long jump.
1877  size_t instrumentation_frames_to_pop_;
1878  ShadowFrame* top_shadow_frame_;
1879  ShadowFrame* prev_shadow_frame_;
1880};
1881
1882void Thread::QuickDeliverException() {
1883  // Get exception from thread.
1884  ThrowLocation throw_location;
1885  mirror::Throwable* exception = GetException(&throw_location);
1886  CHECK(exception != NULL);
1887  // Don't leave exception visible while we try to find the handler, which may cause class
1888  // resolution.
1889  ClearException();
1890  bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1891  if (kDebugExceptionDelivery) {
1892    if (!is_deoptimization) {
1893      mirror::String* msg = exception->GetDetailMessage();
1894      std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : "");
1895      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1896                << ": " << str_msg << "\n");
1897    } else {
1898      DumpStack(LOG(INFO) << "Deoptimizing: ");
1899    }
1900  }
1901  CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization);
1902  catch_finder.WalkStack(true);
1903  catch_finder.DoLongJump();
1904  LOG(FATAL) << "UNREACHABLE";
1905}
1906
1907Context* Thread::GetLongJumpContext() {
1908  Context* result = long_jump_context_;
1909  if (result == NULL) {
1910    result = Context::Create();
1911  } else {
1912    long_jump_context_ = NULL;  // Avoid context being shared.
1913    result->Reset();
1914  }
1915  return result;
1916}
1917
1918struct CurrentMethodVisitor : public StackVisitor {
1919  CurrentMethodVisitor(Thread* thread, Context* context)
1920      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1921      : StackVisitor(thread, context), this_object_(NULL), method_(NULL), dex_pc_(0) {}
1922  virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1923    mirror::ArtMethod* m = GetMethod();
1924    if (m->IsRuntimeMethod()) {
1925      // Continue if this is a runtime method.
1926      return true;
1927    }
1928    if (context_ != NULL) {
1929      this_object_ = GetThisObject();
1930    }
1931    method_ = m;
1932    dex_pc_ = GetDexPc();
1933    return false;
1934  }
1935  mirror::Object* this_object_;
1936  mirror::ArtMethod* method_;
1937  uint32_t dex_pc_;
1938};
1939
1940mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1941  CurrentMethodVisitor visitor(const_cast<Thread*>(this), NULL);
1942  visitor.WalkStack(false);
1943  if (dex_pc != NULL) {
1944    *dex_pc = visitor.dex_pc_;
1945  }
1946  return visitor.method_;
1947}
1948
1949ThrowLocation Thread::GetCurrentLocationForThrow() {
1950  Context* context = GetLongJumpContext();
1951  CurrentMethodVisitor visitor(this, context);
1952  visitor.WalkStack(false);
1953  ReleaseLongJumpContext(context);
1954  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1955}
1956
1957bool Thread::HoldsLock(mirror::Object* object) {
1958  if (object == NULL) {
1959    return false;
1960  }
1961  return object->GetLockOwnerThreadId() == thin_lock_thread_id_;
1962}
1963
1964// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1965template <typename RootVisitor>
1966class ReferenceMapVisitor : public StackVisitor {
1967 public:
1968  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1969      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1970      : StackVisitor(thread, context), visitor_(visitor) {}
1971
1972  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1973    if (false) {
1974      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1975          << StringPrintf("@ PC:%04x", GetDexPc());
1976    }
1977    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1978    if (shadow_frame != NULL) {
1979      mirror::ArtMethod* m = shadow_frame->GetMethod();
1980      size_t num_regs = shadow_frame->NumberOfVRegs();
1981      if (m->IsNative() || shadow_frame->HasReferenceArray()) {
1982        // SIRT for JNI or References for interpreter.
1983        for (size_t reg = 0; reg < num_regs; ++reg) {
1984          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1985          if (ref != nullptr) {
1986            mirror::Object* new_ref = visitor_(ref, reg, this);
1987            if (new_ref != ref) {
1988             shadow_frame->SetVRegReference(reg, new_ref);
1989            }
1990          }
1991        }
1992      } else {
1993        // Java method.
1994        // Portable path use DexGcMap and store in Method.native_gc_map_.
1995        const uint8_t* gc_map = m->GetNativeGcMap();
1996        CHECK(gc_map != NULL) << PrettyMethod(m);
1997        uint32_t gc_map_length = static_cast<uint32_t>((gc_map[0] << 24) |
1998                                                       (gc_map[1] << 16) |
1999                                                       (gc_map[2] << 8) |
2000                                                       (gc_map[3] << 0));
2001        verifier::DexPcToReferenceMap dex_gc_map(gc_map + 4, gc_map_length);
2002        uint32_t dex_pc = GetDexPc();
2003        const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2004        DCHECK(reg_bitmap != NULL);
2005        num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2006        for (size_t reg = 0; reg < num_regs; ++reg) {
2007          if (TestBitmap(reg, reg_bitmap)) {
2008            mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2009            if (ref != nullptr) {
2010              mirror::Object* new_ref = visitor_(ref, reg, this);
2011              if (new_ref != ref) {
2012               shadow_frame->SetVRegReference(reg, new_ref);
2013              }
2014            }
2015          }
2016        }
2017      }
2018    } else {
2019      mirror::ArtMethod* m = GetMethod();
2020      // Process register map (which native and runtime methods don't have)
2021      if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2022        const uint8_t* native_gc_map = m->GetNativeGcMap();
2023        CHECK(native_gc_map != NULL) << PrettyMethod(m);
2024        mh_.ChangeMethod(m);
2025        const DexFile::CodeItem* code_item = mh_.GetCodeItem();
2026        DCHECK(code_item != NULL) << PrettyMethod(m);  // Can't be NULL or how would we compile its instructions?
2027        NativePcOffsetToReferenceMap map(native_gc_map);
2028        size_t num_regs = std::min(map.RegWidth() * 8,
2029                                   static_cast<size_t>(code_item->registers_size_));
2030        if (num_regs > 0) {
2031          const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
2032          DCHECK(reg_bitmap != NULL);
2033          const VmapTable vmap_table(m->GetVmapTable());
2034          uint32_t core_spills = m->GetCoreSpillMask();
2035          uint32_t fp_spills = m->GetFpSpillMask();
2036          size_t frame_size = m->GetFrameSizeInBytes();
2037          // For all dex registers in the bitmap
2038          mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2039          DCHECK(cur_quick_frame != NULL);
2040          for (size_t reg = 0; reg < num_regs; ++reg) {
2041            // Does this register hold a reference?
2042            if (TestBitmap(reg, reg_bitmap)) {
2043              uint32_t vmap_offset;
2044              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2045                int vmap_reg = vmap_table.ComputeRegister(core_spills, vmap_offset, kReferenceVReg);
2046                mirror::Object* ref = reinterpret_cast<mirror::Object*>(GetGPR(vmap_reg));
2047                if (ref != nullptr) {
2048                  mirror::Object* new_ref = visitor_(ref, reg, this);
2049                  if (ref != new_ref) {
2050                    SetGPR(vmap_reg, reinterpret_cast<uintptr_t>(new_ref));
2051                  }
2052                }
2053              } else {
2054                uint32_t* reg_addr =
2055                    GetVRegAddr(cur_quick_frame, code_item, core_spills, fp_spills, frame_size, reg);
2056                mirror::Object* ref = reinterpret_cast<mirror::Object*>(*reg_addr);
2057                if (ref != nullptr) {
2058                  mirror::Object* new_ref = visitor_(ref, reg, this);
2059                  if (ref != new_ref) {
2060                    *reg_addr = reinterpret_cast<uint32_t>(new_ref);
2061                  }
2062                }
2063              }
2064            }
2065          }
2066        }
2067      }
2068    }
2069    return true;
2070  }
2071
2072 private:
2073  static bool TestBitmap(int reg, const uint8_t* reg_vector) {
2074    return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
2075  }
2076
2077  // Visitor for when we visit a root.
2078  const RootVisitor& visitor_;
2079
2080  // A method helper we keep around to avoid dex file/cache re-computations.
2081  MethodHelper mh_;
2082};
2083
2084class RootCallbackVisitor {
2085 public:
2086  RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {}
2087
2088  mirror::Object* operator()(mirror::Object* obj, size_t, const StackVisitor*) const {
2089    return visitor_(obj, arg_);
2090  }
2091
2092 private:
2093  RootVisitor* visitor_;
2094  void* arg_;
2095};
2096
2097class VerifyCallbackVisitor {
2098 public:
2099  VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg)
2100      : visitor_(visitor),
2101        arg_(arg) {
2102  }
2103
2104  void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const {
2105    visitor_(obj, arg_, vreg, visitor);
2106  }
2107
2108 private:
2109  VerifyRootVisitor* const visitor_;
2110  void* const arg_;
2111};
2112
2113void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2114  if (kIsDebugBuild) {
2115    Runtime::Current()->GetHeap()->VerifyObject(class_loader_override);
2116  }
2117  class_loader_override_ = class_loader_override;
2118}
2119
2120void Thread::VisitRoots(RootVisitor* visitor, void* arg) {
2121  if (opeer_ != nullptr) {
2122    opeer_ = visitor(opeer_, arg);
2123  }
2124  if (exception_ != nullptr) {
2125    exception_ = down_cast<mirror::Throwable*>(visitor(exception_, arg));
2126  }
2127  throw_location_.VisitRoots(visitor, arg);
2128  if (class_loader_override_ != nullptr) {
2129    class_loader_override_ = down_cast<mirror::ClassLoader*>(visitor(class_loader_override_, arg));
2130  }
2131  jni_env_->locals.VisitRoots(visitor, arg);
2132  jni_env_->monitors.VisitRoots(visitor, arg);
2133
2134  SirtVisitRoots(visitor, arg);
2135
2136  // Visit roots on this thread's stack
2137  Context* context = GetLongJumpContext();
2138  RootCallbackVisitor visitorToCallback(visitor, arg);
2139  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2140  mapper.WalkStack();
2141  ReleaseLongJumpContext(context);
2142
2143  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2144    if (frame.this_object_ != nullptr) {
2145      frame.this_object_ = visitor(frame.this_object_, arg);
2146    }
2147    DCHECK(frame.method_ != nullptr);
2148    frame.method_ = down_cast<mirror::ArtMethod*>(visitor(frame.method_, arg));
2149  }
2150}
2151
2152static mirror::Object* VerifyRoot(mirror::Object* root, void* arg) {
2153  DCHECK(root != nullptr);
2154  DCHECK(arg != nullptr);
2155  reinterpret_cast<gc::Heap*>(arg)->VerifyObject(root);
2156  return root;
2157}
2158
2159void Thread::VerifyStackImpl() {
2160  UniquePtr<Context> context(Context::Create());
2161  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap());
2162  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2163  mapper.WalkStack();
2164}
2165
2166// Set the stack end to that to be used during a stack overflow
2167void Thread::SetStackEndForStackOverflow() {
2168  // During stack overflow we allow use of the full stack.
2169  if (stack_end_ == stack_begin_) {
2170    // However, we seem to have already extended to use the full stack.
2171    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2172               << kStackOverflowReservedBytes << ")?";
2173    DumpStack(LOG(ERROR));
2174    LOG(FATAL) << "Recursive stack overflow.";
2175  }
2176
2177  stack_end_ = stack_begin_;
2178}
2179
2180std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2181  thread.ShortDump(os);
2182  return os;
2183}
2184
2185}  // namespace art
2186