thread.cc revision 7571e8b761ebc2c923525e12ea9fcf07e62cb33e
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker.h"
36#include "class_linker-inl.h"
37#include "cutils/atomic.h"
38#include "cutils/atomic-inline.h"
39#include "debugger.h"
40#include "dex_file-inl.h"
41#include "entrypoints/entrypoint_utils.h"
42#include "gc_map.h"
43#include "gc/accounting/card_table-inl.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "invoke_arg_array_builder.h"
47#include "jni_internal.h"
48#include "mirror/art_field-inl.h"
49#include "mirror/art_method-inl.h"
50#include "mirror/class-inl.h"
51#include "mirror/class_loader.h"
52#include "mirror/object_array-inl.h"
53#include "mirror/stack_trace_element.h"
54#include "monitor.h"
55#include "object_utils.h"
56#include "reflection.h"
57#include "runtime.h"
58#include "scoped_thread_state_change.h"
59#include "ScopedLocalRef.h"
60#include "ScopedUtfChars.h"
61#include "sirt_ref.h"
62#include "stack.h"
63#include "stack_indirect_reference_table.h"
64#include "thread-inl.h"
65#include "thread_list.h"
66#include "utils.h"
67#include "verifier/dex_gc_map.h"
68#include "verifier/method_verifier.h"
69#include "vmap_table.h"
70#include "well_known_classes.h"
71
72namespace art {
73
74bool Thread::is_started_ = false;
75pthread_key_t Thread::pthread_key_self_;
76ConditionVariable* Thread::resume_cond_ = NULL;
77
78static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
79
80void Thread::InitCardTable() {
81  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
82}
83
84#if !defined(__APPLE__)
85static void UnimplementedEntryPoint() {
86  UNIMPLEMENTED(FATAL);
87}
88#endif
89
90void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
91                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
92
93void Thread::InitTlsEntryPoints() {
94#if !defined(__APPLE__)  // The Mac GCC is too old to accept this code.
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_));
98  for (uintptr_t* it = begin; it != end; ++it) {
99    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
100  }
101  begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
102  end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_));
103  for (uintptr_t* it = begin; it != end; ++it) {
104    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
105  }
106#endif
107  InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_,
108                  &quick_entrypoints_);
109}
110
111void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
112  deoptimization_shadow_frame_ = sf;
113}
114
115void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
116  deoptimization_return_value_.SetJ(ret_val.GetJ());
117}
118
119ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
120  ShadowFrame* sf = deoptimization_shadow_frame_;
121  deoptimization_shadow_frame_ = NULL;
122  ret_val->SetJ(deoptimization_return_value_.GetJ());
123  return sf;
124}
125
126void Thread::InitTid() {
127  tid_ = ::art::GetTid();
128}
129
130void Thread::InitAfterFork() {
131  // One thread (us) survived the fork, but we have a new tid so we need to
132  // update the value stashed in this Thread*.
133  InitTid();
134}
135
136void* Thread::CreateCallback(void* arg) {
137  Thread* self = reinterpret_cast<Thread*>(arg);
138  Runtime* runtime = Runtime::Current();
139  if (runtime == NULL) {
140    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
141    return NULL;
142  }
143  {
144    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
145    //       after self->Init().
146    MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
147    // Check that if we got here we cannot be shutting down (as shutdown should never have started
148    // while threads are being born).
149    CHECK(!runtime->IsShuttingDown());
150    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
151    Runtime::Current()->EndThreadBirth();
152  }
153  {
154    ScopedObjectAccess soa(self);
155
156    // Copy peer into self, deleting global reference when done.
157    CHECK(self->jpeer_ != NULL);
158    self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
159    self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
160    self->jpeer_ = NULL;
161
162    {
163      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
164      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
165    }
166    Dbg::PostThreadStart(self);
167
168    // Invoke the 'run' method of our java.lang.Thread.
169    mirror::Object* receiver = self->opeer_;
170    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
171    mirror::ArtMethod* m =
172        receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
173    JValue result;
174    ArgArray arg_array(NULL, 0);
175    arg_array.Append(reinterpret_cast<uint32_t>(receiver));
176    m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return NULL;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != NULL && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
200  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
201}
202
203static size_t FixStackSize(size_t stack_size) {
204  // A stack size of zero means "use the default".
205  if (stack_size == 0) {
206    stack_size = Runtime::Current()->GetDefaultStackSize();
207  }
208
209  // Dalvik used the bionic pthread default stack size for native threads,
210  // so include that here to support apps that expect large native stacks.
211  stack_size += 1 * MB;
212
213  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
214  if (stack_size < PTHREAD_STACK_MIN) {
215    stack_size = PTHREAD_STACK_MIN;
216  }
217
218  // It's likely that callers are trying to ensure they have at least a certain amount of
219  // stack space, so we should add our reserved space on top of what they requested, rather
220  // than implicitly take it away from them.
221  stack_size += Thread::kStackOverflowReservedBytes;
222
223  // Some systems require the stack size to be a multiple of the system page size, so round up.
224  stack_size = RoundUp(stack_size, kPageSize);
225
226  return stack_size;
227}
228
229void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
230  CHECK(java_peer != NULL);
231  Thread* self = static_cast<JNIEnvExt*>(env)->self;
232  Runtime* runtime = Runtime::Current();
233
234  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
235  bool thread_start_during_shutdown = false;
236  {
237    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
238    if (runtime->IsShuttingDown()) {
239      thread_start_during_shutdown = true;
240    } else {
241      runtime->StartThreadBirth();
242    }
243  }
244  if (thread_start_during_shutdown) {
245    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
246    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
247    return;
248  }
249
250  Thread* child_thread = new Thread(is_daemon);
251  // Use global JNI ref to hold peer live while child thread starts.
252  child_thread->jpeer_ = env->NewGlobalRef(java_peer);
253  stack_size = FixStackSize(stack_size);
254
255  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
256  // assign it.
257  env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
258                   reinterpret_cast<jint>(child_thread));
259
260  pthread_t new_pthread;
261  pthread_attr_t attr;
262  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
263  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
264  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
265  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
266  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
267
268  if (pthread_create_result != 0) {
269    // pthread_create(3) failed, so clean up.
270    {
271      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
272      runtime->EndThreadBirth();
273    }
274    // Manually delete the global reference since Thread::Init will not have been run.
275    env->DeleteGlobalRef(child_thread->jpeer_);
276    child_thread->jpeer_ = NULL;
277    delete child_thread;
278    child_thread = NULL;
279    // TODO: remove from thread group?
280    env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
281    {
282      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
283                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
284      ScopedObjectAccess soa(env);
285      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
286    }
287  }
288}
289
290void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
291  // This function does all the initialization that must be run by the native thread it applies to.
292  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
293  // we can handshake with the corresponding native thread when it's ready.) Check this native
294  // thread hasn't been through here already...
295  CHECK(Thread::Current() == NULL);
296  SetUpAlternateSignalStack();
297  InitCpu();
298  InitTlsEntryPoints();
299  InitCardTable();
300  InitTid();
301  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
302  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
303  pthread_self_ = pthread_self();
304  CHECK(is_started_);
305  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
306  DCHECK_EQ(Thread::Current(), this);
307
308  thin_lock_id_ = thread_list->AllocThreadId(this);
309  InitStackHwm();
310
311  jni_env_ = new JNIEnvExt(this, java_vm);
312  thread_list->Register(this);
313}
314
315Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
316                       bool create_peer) {
317  Thread* self;
318  Runtime* runtime = Runtime::Current();
319  if (runtime == NULL) {
320    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
321    return NULL;
322  }
323  {
324    MutexLock mu(NULL, *Locks::runtime_shutdown_lock_);
325    if (runtime->IsShuttingDown()) {
326      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
327      return NULL;
328    } else {
329      Runtime::Current()->StartThreadBirth();
330      self = new Thread(as_daemon);
331      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
332      Runtime::Current()->EndThreadBirth();
333    }
334  }
335
336  CHECK_NE(self->GetState(), kRunnable);
337  self->SetState(kNative);
338
339  // If we're the main thread, ClassLinker won't be created until after we're attached,
340  // so that thread needs a two-stage attach. Regular threads don't need this hack.
341  // In the compiler, all threads need this hack, because no-one's going to be getting
342  // a native peer!
343  if (create_peer) {
344    self->CreatePeer(thread_name, as_daemon, thread_group);
345  } else {
346    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
347    if (thread_name != NULL) {
348      self->name_->assign(thread_name);
349      ::art::SetThreadName(thread_name);
350    }
351  }
352
353  return self;
354}
355
356void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
357  Runtime* runtime = Runtime::Current();
358  CHECK(runtime->IsStarted());
359  JNIEnv* env = jni_env_;
360
361  if (thread_group == NULL) {
362    thread_group = runtime->GetMainThreadGroup();
363  }
364  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
365  jint thread_priority = GetNativePriority();
366  jboolean thread_is_daemon = as_daemon;
367
368  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
369  if (peer.get() == NULL) {
370    CHECK(IsExceptionPending());
371    return;
372  }
373  {
374    ScopedObjectAccess soa(this);
375    opeer_ = soa.Decode<mirror::Object*>(peer.get());
376  }
377  env->CallNonvirtualVoidMethod(peer.get(),
378                                WellKnownClasses::java_lang_Thread,
379                                WellKnownClasses::java_lang_Thread_init,
380                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
381  AssertNoPendingException();
382
383  Thread* self = this;
384  DCHECK_EQ(self, Thread::Current());
385  jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
386                        reinterpret_cast<jint>(self));
387
388  ScopedObjectAccess soa(self);
389  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
390  if (peer_thread_name.get() == NULL) {
391    // The Thread constructor should have set the Thread.name to a
392    // non-null value. However, because we can run without code
393    // available (in the compiler, in tests), we manually assign the
394    // fields the constructor should have set.
395    soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
396        SetBoolean(opeer_, thread_is_daemon);
397    soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
398        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group));
399    soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
400        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get()));
401    soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
402        SetInt(opeer_, thread_priority);
403    peer_thread_name.reset(GetThreadName(soa));
404  }
405  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
406  if (peer_thread_name.get() != NULL) {
407    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
408  }
409}
410
411void Thread::SetThreadName(const char* name) {
412  name_->assign(name);
413  ::art::SetThreadName(name);
414  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
415}
416
417void Thread::InitStackHwm() {
418  void* stack_base;
419  size_t stack_size;
420  GetThreadStack(pthread_self_, stack_base, stack_size);
421
422  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
423  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
424
425  stack_begin_ = reinterpret_cast<byte*>(stack_base);
426  stack_size_ = stack_size;
427
428  if (stack_size_ <= kStackOverflowReservedBytes) {
429    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
430  }
431
432  // TODO: move this into the Linux GetThreadStack implementation.
433#if !defined(__APPLE__)
434  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
435  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
436  // will be broken because we'll die long before we get close to 2GB.
437  bool is_main_thread = (::art::GetTid() == getpid());
438  if (is_main_thread) {
439    rlimit stack_limit;
440    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
441      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
442    }
443    if (stack_limit.rlim_cur == RLIM_INFINITY) {
444      // Find the default stack size for new threads...
445      pthread_attr_t default_attributes;
446      size_t default_stack_size;
447      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
448      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
449                         "default stack size query");
450      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
451
452      // ...and use that as our limit.
453      size_t old_stack_size = stack_size_;
454      stack_size_ = default_stack_size;
455      stack_begin_ += (old_stack_size - stack_size_);
456      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
457                    << " to " << PrettySize(stack_size_)
458                    << " with base " << reinterpret_cast<void*>(stack_begin_);
459    }
460  }
461#endif
462
463  // Set stack_end_ to the bottom of the stack saving space of stack overflows
464  ResetDefaultStackEnd();
465
466  // Sanity check.
467  int stack_variable;
468  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
469}
470
471void Thread::ShortDump(std::ostream& os) const {
472  os << "Thread[";
473  if (GetThinLockId() != 0) {
474    // If we're in kStarting, we won't have a thin lock id or tid yet.
475    os << GetThinLockId()
476             << ",tid=" << GetTid() << ',';
477  }
478  os << GetState()
479           << ",Thread*=" << this
480           << ",peer=" << opeer_
481           << ",\"" << *name_ << "\""
482           << "]";
483}
484
485void Thread::Dump(std::ostream& os) const {
486  DumpState(os);
487  DumpStack(os);
488}
489
490mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
491  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
492  return (opeer_ != NULL) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : NULL;
493}
494
495void Thread::GetThreadName(std::string& name) const {
496  name.assign(*name_);
497}
498
499void Thread::AtomicSetFlag(ThreadFlag flag) {
500  android_atomic_or(flag, &state_and_flags_.as_int);
501}
502
503void Thread::AtomicClearFlag(ThreadFlag flag) {
504  android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
505}
506
507// Attempt to rectify locks so that we dump thread list with required locks before exiting.
508static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
509  LOG(ERROR) << *thread << " suspend count already zero.";
510  Locks::thread_suspend_count_lock_->Unlock(self);
511  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
512    Locks::mutator_lock_->SharedTryLock(self);
513    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
514      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
515    }
516  }
517  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
518    Locks::thread_list_lock_->TryLock(self);
519    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
520      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
521    }
522  }
523  std::ostringstream ss;
524  Runtime::Current()->GetThreadList()->DumpLocked(ss);
525  LOG(FATAL) << ss.str();
526}
527
528void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
529  DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
530      << delta << " " << debug_suspend_count_ << " " << this;
531  DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
532  Locks::thread_suspend_count_lock_->AssertHeld(self);
533  if (this != self && !IsSuspended()) {
534    Locks::thread_list_lock_->AssertHeld(self);
535  }
536  if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
537    UnsafeLogFatalForSuspendCount(self, this);
538    return;
539  }
540
541  suspend_count_ += delta;
542  if (for_debugger) {
543    debug_suspend_count_ += delta;
544  }
545
546  if (suspend_count_ == 0) {
547    AtomicClearFlag(kSuspendRequest);
548  } else {
549    AtomicSetFlag(kSuspendRequest);
550  }
551}
552
553void Thread::RunCheckpointFunction() {
554  CHECK(checkpoint_function_ != NULL);
555  ATRACE_BEGIN("Checkpoint function");
556  checkpoint_function_->Run(this);
557  ATRACE_END();
558}
559
560bool Thread::RequestCheckpoint(Closure* function) {
561  CHECK(!ReadFlag(kCheckpointRequest)) << "Already have a pending checkpoint request";
562  checkpoint_function_ = function;
563  union StateAndFlags old_state_and_flags = state_and_flags_;
564  // We must be runnable to request a checkpoint.
565  old_state_and_flags.as_struct.state = kRunnable;
566  union StateAndFlags new_state_and_flags = old_state_and_flags;
567  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
568  int succeeded = android_atomic_cmpxchg(old_state_and_flags.as_int, new_state_and_flags.as_int,
569                                         &state_and_flags_.as_int);
570  return succeeded == 0;
571}
572
573void Thread::FullSuspendCheck() {
574  VLOG(threads) << this << " self-suspending";
575  ATRACE_BEGIN("Full suspend check");
576  // Make thread appear suspended to other threads, release mutator_lock_.
577  TransitionFromRunnableToSuspended(kSuspended);
578  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
579  TransitionFromSuspendedToRunnable();
580  ATRACE_END();
581  VLOG(threads) << this << " self-reviving";
582}
583
584Thread* Thread::SuspendForDebugger(jobject peer, bool request_suspension, bool* timed_out) {
585  static const useconds_t kTimeoutUs = 30 * 1000000;  // 30s.
586  useconds_t total_delay_us = 0;
587  useconds_t delay_us = 0;
588  bool did_suspend_request = false;
589  *timed_out = false;
590  while (true) {
591    Thread* thread;
592    {
593      ScopedObjectAccess soa(Thread::Current());
594      Thread* self = soa.Self();
595      MutexLock mu(self, *Locks::thread_list_lock_);
596      thread = Thread::FromManagedThread(soa, peer);
597      if (thread == NULL) {
598        JNIEnv* env = self->GetJniEnv();
599        ScopedLocalRef<jstring> scoped_name_string(env,
600                                                   (jstring)env->GetObjectField(peer,
601                                                              WellKnownClasses::java_lang_Thread_name));
602        ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
603        if (scoped_name_chars.c_str() == NULL) {
604            LOG(WARNING) << "No such thread for suspend: " << peer;
605            env->ExceptionClear();
606        } else {
607            LOG(WARNING) << "No such thread for suspend: " << peer << ":" << scoped_name_chars.c_str();
608        }
609
610        return NULL;
611      }
612      {
613        MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
614        if (request_suspension) {
615          thread->ModifySuspendCount(soa.Self(), +1, true /* for_debugger */);
616          request_suspension = false;
617          did_suspend_request = true;
618        }
619        // IsSuspended on the current thread will fail as the current thread is changed into
620        // Runnable above. As the suspend count is now raised if this is the current thread
621        // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
622        // to just explicitly handle the current thread in the callers to this code.
623        CHECK_NE(thread, soa.Self()) << "Attempt to suspend the current thread for the debugger";
624        // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
625        // count, or else we've waited and it has self suspended) or is the current thread, we're
626        // done.
627        if (thread->IsSuspended()) {
628          return thread;
629        }
630        if (total_delay_us >= kTimeoutUs) {
631          LOG(ERROR) << "Thread suspension timed out: " << peer;
632          if (did_suspend_request) {
633            thread->ModifySuspendCount(soa.Self(), -1, true /* for_debugger */);
634          }
635          *timed_out = true;
636          return NULL;
637        }
638      }
639      // Release locks and come out of runnable state.
640    }
641    for (int i = kLockLevelCount - 1; i >= 0; --i) {
642      BaseMutex* held_mutex = Thread::Current()->GetHeldMutex(static_cast<LockLevel>(i));
643      if (held_mutex != NULL) {
644        LOG(FATAL) << "Holding " << held_mutex->GetName()
645            << " while sleeping for thread suspension";
646      }
647    }
648    {
649      useconds_t new_delay_us = delay_us * 2;
650      CHECK_GE(new_delay_us, delay_us);
651      if (new_delay_us < 500000) {  // Don't allow sleeping to be more than 0.5s.
652        delay_us = new_delay_us;
653      }
654    }
655    if (delay_us == 0) {
656      sched_yield();
657      // Default to 1 milliseconds (note that this gets multiplied by 2 before the first sleep).
658      delay_us = 500;
659    } else {
660      usleep(delay_us);
661      total_delay_us += delay_us;
662    }
663  }
664}
665
666void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
667  std::string group_name;
668  int priority;
669  bool is_daemon = false;
670  Thread* self = Thread::Current();
671
672  if (self != NULL && thread != NULL && thread->opeer_ != NULL) {
673    ScopedObjectAccessUnchecked soa(self);
674    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
675    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
676
677    mirror::Object* thread_group =
678        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
679
680    if (thread_group != NULL) {
681      mirror::ArtField* group_name_field =
682          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
683      mirror::String* group_name_string =
684          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
685      group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : "<null>";
686    }
687  } else {
688    priority = GetNativePriority();
689  }
690
691  std::string scheduler_group_name(GetSchedulerGroupName(tid));
692  if (scheduler_group_name.empty()) {
693    scheduler_group_name = "default";
694  }
695
696  if (thread != NULL) {
697    os << '"' << *thread->name_ << '"';
698    if (is_daemon) {
699      os << " daemon";
700    }
701    os << " prio=" << priority
702       << " tid=" << thread->GetThinLockId()
703       << " " << thread->GetState();
704    if (thread->IsStillStarting()) {
705      os << " (still starting up)";
706    }
707    os << "\n";
708  } else {
709    os << '"' << ::art::GetThreadName(tid) << '"'
710       << " prio=" << priority
711       << " (not attached)\n";
712  }
713
714  if (thread != NULL) {
715    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
716    os << "  | group=\"" << group_name << "\""
717       << " sCount=" << thread->suspend_count_
718       << " dsCount=" << thread->debug_suspend_count_
719       << " obj=" << reinterpret_cast<void*>(thread->opeer_)
720       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
721  }
722
723  os << "  | sysTid=" << tid
724     << " nice=" << getpriority(PRIO_PROCESS, tid)
725     << " cgrp=" << scheduler_group_name;
726  if (thread != NULL) {
727    int policy;
728    sched_param sp;
729    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
730    os << " sched=" << policy << "/" << sp.sched_priority
731       << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
732  }
733  os << "\n";
734
735  // Grab the scheduler stats for this thread.
736  std::string scheduler_stats;
737  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
738    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
739  } else {
740    scheduler_stats = "0 0 0";
741  }
742
743  char native_thread_state = '?';
744  int utime = 0;
745  int stime = 0;
746  int task_cpu = 0;
747  GetTaskStats(tid, native_thread_state, utime, stime, task_cpu);
748
749  os << "  | state=" << native_thread_state
750     << " schedstat=( " << scheduler_stats << " )"
751     << " utm=" << utime
752     << " stm=" << stime
753     << " core=" << task_cpu
754     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
755  if (thread != NULL) {
756    os << "  | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
757       << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
758  }
759}
760
761void Thread::DumpState(std::ostream& os) const {
762  Thread::DumpState(os, this, GetTid());
763}
764
765struct StackDumpVisitor : public StackVisitor {
766  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
767      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
768      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
769        last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) {
770  }
771
772  virtual ~StackDumpVisitor() {
773    if (frame_count == 0) {
774      os << "  (no managed stack frames)\n";
775    }
776  }
777
778  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
779    mirror::ArtMethod* m = GetMethod();
780    if (m->IsRuntimeMethod()) {
781      return true;
782    }
783    const int kMaxRepetition = 3;
784    mirror::Class* c = m->GetDeclaringClass();
785    const mirror::DexCache* dex_cache = c->GetDexCache();
786    int line_number = -1;
787    if (dex_cache != NULL) {  // be tolerant of bad input
788      const DexFile& dex_file = *dex_cache->GetDexFile();
789      line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
790    }
791    if (line_number == last_line_number && last_method == m) {
792      repetition_count++;
793    } else {
794      if (repetition_count >= kMaxRepetition) {
795        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
796      }
797      repetition_count = 0;
798      last_line_number = line_number;
799      last_method = m;
800    }
801    if (repetition_count < kMaxRepetition) {
802      os << "  at " << PrettyMethod(m, false);
803      if (m->IsNative()) {
804        os << "(Native method)";
805      } else {
806        mh.ChangeMethod(m);
807        const char* source_file(mh.GetDeclaringClassSourceFile());
808        os << "(" << (source_file != NULL ? source_file : "unavailable")
809           << ":" << line_number << ")";
810      }
811      os << "\n";
812      if (frame_count == 0) {
813        Monitor::DescribeWait(os, thread);
814      }
815      if (can_allocate) {
816        Monitor::VisitLocks(this, DumpLockedObject, &os);
817      }
818    }
819
820    ++frame_count;
821    return true;
822  }
823
824  static void DumpLockedObject(mirror::Object* o, void* context)
825      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
826    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
827    os << "  - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
828  }
829
830  std::ostream& os;
831  const Thread* thread;
832  const bool can_allocate;
833  MethodHelper mh;
834  mirror::ArtMethod* last_method;
835  int last_line_number;
836  int repetition_count;
837  int frame_count;
838};
839
840static bool ShouldShowNativeStack(const Thread* thread)
841    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
842  ThreadState state = thread->GetState();
843
844  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
845  if (state > kWaiting && state < kStarting) {
846    return true;
847  }
848
849  // In an Object.wait variant or Thread.sleep? That's not interesting.
850  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
851    return false;
852  }
853
854  // In some other native method? That's interesting.
855  // We don't just check kNative because native methods will be in state kSuspended if they're
856  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
857  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
858  mirror::ArtMethod* current_method = thread->GetCurrentMethod(NULL);
859  return current_method != NULL && current_method->IsNative();
860}
861
862void Thread::DumpStack(std::ostream& os) const {
863  // TODO: we call this code when dying but may not have suspended the thread ourself. The
864  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
865  //       the race with the thread_suspend_count_lock_).
866  bool dump_for_abort = (gAborting > 0);
867  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
868    // If we're currently in native code, dump that stack before dumping the managed stack.
869    if (dump_for_abort || ShouldShowNativeStack(this)) {
870      DumpKernelStack(os, GetTid(), "  kernel: ", false);
871      DumpNativeStack(os, GetTid(), "  native: ", false);
872    }
873    UniquePtr<Context> context(Context::Create());
874    StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
875    dumper.WalkStack();
876  } else {
877    os << "Not able to dump stack of thread that isn't suspended";
878  }
879}
880
881void Thread::ThreadExitCallback(void* arg) {
882  Thread* self = reinterpret_cast<Thread*>(arg);
883  if (self->thread_exit_check_count_ == 0) {
884    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
885    CHECK(is_started_);
886    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
887    self->thread_exit_check_count_ = 1;
888  } else {
889    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
890  }
891}
892
893void Thread::Startup() {
894  CHECK(!is_started_);
895  is_started_ = true;
896  {
897    // MutexLock to keep annotalysis happy.
898    //
899    // Note we use NULL for the thread because Thread::Current can
900    // return garbage since (is_started_ == true) and
901    // Thread::pthread_key_self_ is not yet initialized.
902    // This was seen on glibc.
903    MutexLock mu(NULL, *Locks::thread_suspend_count_lock_);
904    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
905                                         *Locks::thread_suspend_count_lock_);
906  }
907
908  // Allocate a TLS slot.
909  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
910
911  // Double-check the TLS slot allocation.
912  if (pthread_getspecific(pthread_key_self_) != NULL) {
913    LOG(FATAL) << "Newly-created pthread TLS slot is not NULL";
914  }
915}
916
917void Thread::FinishStartup() {
918  Runtime* runtime = Runtime::Current();
919  CHECK(runtime->IsStarted());
920
921  // Finish attaching the main thread.
922  ScopedObjectAccess soa(Thread::Current());
923  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
924
925  Runtime::Current()->GetClassLinker()->RunRootClinits();
926}
927
928void Thread::Shutdown() {
929  CHECK(is_started_);
930  is_started_ = false;
931  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
932  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
933  if (resume_cond_ != NULL) {
934    delete resume_cond_;
935    resume_cond_ = NULL;
936  }
937}
938
939Thread::Thread(bool daemon)
940    : suspend_count_(0),
941      card_table_(NULL),
942      exception_(NULL),
943      stack_end_(NULL),
944      managed_stack_(),
945      jni_env_(NULL),
946      self_(NULL),
947      opeer_(NULL),
948      jpeer_(NULL),
949      stack_begin_(NULL),
950      stack_size_(0),
951      thin_lock_id_(0),
952      tid_(0),
953      wait_mutex_(new Mutex("a thread wait mutex")),
954      wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
955      wait_monitor_(NULL),
956      interrupted_(false),
957      wait_next_(NULL),
958      monitor_enter_object_(NULL),
959      top_sirt_(NULL),
960      runtime_(NULL),
961      class_loader_override_(NULL),
962      long_jump_context_(NULL),
963      throwing_OutOfMemoryError_(false),
964      debug_suspend_count_(0),
965      debug_invoke_req_(new DebugInvokeReq),
966      deoptimization_shadow_frame_(NULL),
967      instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
968      name_(new std::string(kThreadNameDuringStartup)),
969      daemon_(daemon),
970      pthread_self_(0),
971      no_thread_suspension_(0),
972      last_no_thread_suspension_cause_(NULL),
973      checkpoint_function_(0),
974      thread_exit_check_count_(0) {
975  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
976  state_and_flags_.as_struct.flags = 0;
977  state_and_flags_.as_struct.state = kNative;
978  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
979}
980
981bool Thread::IsStillStarting() const {
982  // You might think you can check whether the state is kStarting, but for much of thread startup,
983  // the thread is in kNative; it might also be in kVmWait.
984  // You might think you can check whether the peer is NULL, but the peer is actually created and
985  // assigned fairly early on, and needs to be.
986  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
987  // this thread _ever_ entered kRunnable".
988  return (jpeer_ == NULL && opeer_ == NULL) || (*name_ == kThreadNameDuringStartup);
989}
990
991void Thread::AssertNoPendingException() const {
992  if (UNLIKELY(IsExceptionPending())) {
993    ScopedObjectAccess soa(Thread::Current());
994    mirror::Throwable* exception = GetException(NULL);
995    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
996  }
997}
998
999static void MonitorExitVisitor(const mirror::Object* object, void* arg) NO_THREAD_SAFETY_ANALYSIS {
1000  Thread* self = reinterpret_cast<Thread*>(arg);
1001  mirror::Object* entered_monitor = const_cast<mirror::Object*>(object);
1002  if (self->HoldsLock(entered_monitor)) {
1003    LOG(WARNING) << "Calling MonitorExit on object "
1004                 << object << " (" << PrettyTypeOf(object) << ")"
1005                 << " left locked by native thread "
1006                 << *Thread::Current() << " which is detaching";
1007    entered_monitor->MonitorExit(self);
1008  }
1009}
1010
1011void Thread::Destroy() {
1012  Thread* self = this;
1013  DCHECK_EQ(self, Thread::Current());
1014
1015  if (opeer_ != NULL) {
1016    ScopedObjectAccess soa(self);
1017    // We may need to call user-supplied managed code, do this before final clean-up.
1018    HandleUncaughtExceptions(soa);
1019    RemoveFromThreadGroup(soa);
1020
1021    // this.nativePeer = 0;
1022    soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0);
1023    Dbg::PostThreadDeath(self);
1024
1025    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1026    // who is waiting.
1027    mirror::Object* lock =
1028        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
1029    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1030    if (lock != NULL) {
1031      ObjectLock locker(self, lock);
1032      locker.Notify();
1033    }
1034  }
1035
1036  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1037  if (jni_env_ != NULL) {
1038    jni_env_->monitors.VisitRoots(MonitorExitVisitor, self);
1039  }
1040}
1041
1042Thread::~Thread() {
1043  if (jni_env_ != NULL && jpeer_ != NULL) {
1044    // If pthread_create fails we don't have a jni env here.
1045    jni_env_->DeleteGlobalRef(jpeer_);
1046    jpeer_ = NULL;
1047  }
1048  opeer_ = NULL;
1049
1050  delete jni_env_;
1051  jni_env_ = NULL;
1052
1053  CHECK_NE(GetState(), kRunnable);
1054  // We may be deleting a still born thread.
1055  SetStateUnsafe(kTerminated);
1056
1057  delete wait_cond_;
1058  delete wait_mutex_;
1059
1060  if (long_jump_context_ != NULL) {
1061    delete long_jump_context_;
1062  }
1063
1064  delete debug_invoke_req_;
1065  delete instrumentation_stack_;
1066  delete name_;
1067
1068  TearDownAlternateSignalStack();
1069}
1070
1071void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1072  if (!IsExceptionPending()) {
1073    return;
1074  }
1075  ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1076  ScopedThreadStateChange tsc(this, kNative);
1077
1078  // Get and clear the exception.
1079  ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1080  jni_env_->ExceptionClear();
1081
1082  // If the thread has its own handler, use that.
1083  ScopedLocalRef<jobject> handler(jni_env_,
1084                                  jni_env_->GetObjectField(peer.get(),
1085                                                           WellKnownClasses::java_lang_Thread_uncaughtHandler));
1086  if (handler.get() == NULL) {
1087    // Otherwise use the thread group's default handler.
1088    handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1089  }
1090
1091  // Call the handler.
1092  jni_env_->CallVoidMethod(handler.get(),
1093                           WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1094                           peer.get(), exception.get());
1095
1096  // If the handler threw, clear that exception too.
1097  jni_env_->ExceptionClear();
1098}
1099
1100void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1101  // this.group.removeThread(this);
1102  // group can be null if we're in the compiler or a test.
1103  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1104  if (ogroup != NULL) {
1105    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1106    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1107    ScopedThreadStateChange tsc(soa.Self(), kNative);
1108    jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1109                             peer.get());
1110  }
1111}
1112
1113size_t Thread::NumSirtReferences() {
1114  size_t count = 0;
1115  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1116    count += cur->NumberOfReferences();
1117  }
1118  return count;
1119}
1120
1121bool Thread::SirtContains(jobject obj) const {
1122  mirror::Object** sirt_entry = reinterpret_cast<mirror::Object**>(obj);
1123  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1124    if (cur->Contains(sirt_entry)) {
1125      return true;
1126    }
1127  }
1128  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1129  return managed_stack_.ShadowFramesContain(sirt_entry);
1130}
1131
1132void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) {
1133  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1134    size_t num_refs = cur->NumberOfReferences();
1135    for (size_t j = 0; j < num_refs; j++) {
1136      mirror::Object* object = cur->GetReference(j);
1137      if (object != NULL) {
1138        visitor(object, arg);
1139      }
1140    }
1141  }
1142}
1143
1144mirror::Object* Thread::DecodeJObject(jobject obj) const {
1145  Locks::mutator_lock_->AssertSharedHeld(this);
1146  if (obj == NULL) {
1147    return NULL;
1148  }
1149  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1150  IndirectRefKind kind = GetIndirectRefKind(ref);
1151  mirror::Object* result;
1152  // The "kinds" below are sorted by the frequency we expect to encounter them.
1153  if (kind == kLocal) {
1154    IndirectReferenceTable& locals = jni_env_->locals;
1155    result = const_cast<mirror::Object*>(locals.Get(ref));
1156  } else if (kind == kSirtOrInvalid) {
1157    // TODO: make stack indirect reference table lookup more efficient
1158    // Check if this is a local reference in the SIRT
1159    if (LIKELY(SirtContains(obj))) {
1160      result = *reinterpret_cast<mirror::Object**>(obj);  // Read from SIRT
1161    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1162      // Assume an invalid local reference is actually a direct pointer.
1163      result = reinterpret_cast<mirror::Object*>(obj);
1164    } else {
1165      result = kInvalidIndirectRefObject;
1166    }
1167  } else if (kind == kGlobal) {
1168    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1169    IndirectReferenceTable& globals = vm->globals;
1170    MutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1171    result = const_cast<mirror::Object*>(globals.Get(ref));
1172  } else {
1173    DCHECK_EQ(kind, kWeakGlobal);
1174    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1175    IndirectReferenceTable& weak_globals = vm->weak_globals;
1176    MutexLock mu(const_cast<Thread*>(this), vm->weak_globals_lock);
1177    result = const_cast<mirror::Object*>(weak_globals.Get(ref));
1178    if (result == kClearedJniWeakGlobal) {
1179      // This is a special case where it's okay to return NULL.
1180      return NULL;
1181    }
1182  }
1183
1184  if (UNLIKELY(result == NULL)) {
1185    JniAbortF(NULL, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1186  } else {
1187    if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
1188      Runtime::Current()->GetHeap()->VerifyObject(result);
1189    }
1190  }
1191  return result;
1192}
1193
1194// Implements java.lang.Thread.interrupted.
1195bool Thread::Interrupted() {
1196  MutexLock mu(Thread::Current(), *wait_mutex_);
1197  bool interrupted = interrupted_;
1198  interrupted_ = false;
1199  return interrupted;
1200}
1201
1202// Implements java.lang.Thread.isInterrupted.
1203bool Thread::IsInterrupted() {
1204  MutexLock mu(Thread::Current(), *wait_mutex_);
1205  return interrupted_;
1206}
1207
1208void Thread::Interrupt() {
1209  Thread* self = Thread::Current();
1210  MutexLock mu(self, *wait_mutex_);
1211  if (interrupted_) {
1212    return;
1213  }
1214  interrupted_ = true;
1215  NotifyLocked(self);
1216}
1217
1218void Thread::Notify() {
1219  Thread* self = Thread::Current();
1220  MutexLock mu(self, *wait_mutex_);
1221  NotifyLocked(self);
1222}
1223
1224void Thread::NotifyLocked(Thread* self) {
1225  if (wait_monitor_ != NULL) {
1226    wait_cond_->Signal(self);
1227  }
1228}
1229
1230class CountStackDepthVisitor : public StackVisitor {
1231 public:
1232  explicit CountStackDepthVisitor(Thread* thread)
1233      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1234      : StackVisitor(thread, NULL),
1235        depth_(0), skip_depth_(0), skipping_(true) {}
1236
1237  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1238    // We want to skip frames up to and including the exception's constructor.
1239    // Note we also skip the frame if it doesn't have a method (namely the callee
1240    // save frame)
1241    mirror::ArtMethod* m = GetMethod();
1242    if (skipping_ && !m->IsRuntimeMethod() &&
1243        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1244      skipping_ = false;
1245    }
1246    if (!skipping_) {
1247      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1248        ++depth_;
1249      }
1250    } else {
1251      ++skip_depth_;
1252    }
1253    return true;
1254  }
1255
1256  int GetDepth() const {
1257    return depth_;
1258  }
1259
1260  int GetSkipDepth() const {
1261    return skip_depth_;
1262  }
1263
1264 private:
1265  uint32_t depth_;
1266  uint32_t skip_depth_;
1267  bool skipping_;
1268};
1269
1270class BuildInternalStackTraceVisitor : public StackVisitor {
1271 public:
1272  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1273      : StackVisitor(thread, NULL), self_(self),
1274        skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {}
1275
1276  bool Init(int depth)
1277      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1278    // Allocate method trace with an extra slot that will hold the PC trace
1279    SirtRef<mirror::ObjectArray<mirror::Object> >
1280        method_trace(self_,
1281                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1282                                                                                            depth + 1));
1283    if (method_trace.get() == NULL) {
1284      return false;
1285    }
1286    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1287    if (dex_pc_trace == NULL) {
1288      return false;
1289    }
1290    // Save PC trace in last element of method trace, also places it into the
1291    // object graph.
1292    method_trace->Set(depth, dex_pc_trace);
1293    // Set the Object*s and assert that no thread suspension is now possible.
1294    const char* last_no_suspend_cause =
1295        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1296    CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause;
1297    method_trace_ = method_trace.get();
1298    dex_pc_trace_ = dex_pc_trace;
1299    return true;
1300  }
1301
1302  virtual ~BuildInternalStackTraceVisitor() {
1303    if (method_trace_ != NULL) {
1304      self_->EndAssertNoThreadSuspension(NULL);
1305    }
1306  }
1307
1308  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1309    if (method_trace_ == NULL || dex_pc_trace_ == NULL) {
1310      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1311    }
1312    if (skip_depth_ > 0) {
1313      skip_depth_--;
1314      return true;
1315    }
1316    mirror::ArtMethod* m = GetMethod();
1317    if (m->IsRuntimeMethod()) {
1318      return true;  // Ignore runtime frames (in particular callee save).
1319    }
1320    method_trace_->Set(count_, m);
1321    dex_pc_trace_->Set(count_, GetDexPc());
1322    ++count_;
1323    return true;
1324  }
1325
1326  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1327    return method_trace_;
1328  }
1329
1330 private:
1331  Thread* const self_;
1332  // How many more frames to skip.
1333  int32_t skip_depth_;
1334  // Current position down stack trace.
1335  uint32_t count_;
1336  // Array of dex PC values.
1337  mirror::IntArray* dex_pc_trace_;
1338  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1339  mirror::ObjectArray<mirror::Object>* method_trace_;
1340};
1341
1342jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1343  // Compute depth of stack
1344  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1345  count_visitor.WalkStack();
1346  int32_t depth = count_visitor.GetDepth();
1347  int32_t skip_depth = count_visitor.GetSkipDepth();
1348
1349  // Build internal stack trace.
1350  BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1351                                                     skip_depth);
1352  if (!build_trace_visitor.Init(depth)) {
1353    return NULL;  // Allocation failed.
1354  }
1355  build_trace_visitor.WalkStack();
1356  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1357  if (kIsDebugBuild) {
1358    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1359      CHECK(trace->Get(i) != NULL);
1360    }
1361  }
1362  return soa.AddLocalReference<jobjectArray>(trace);
1363}
1364
1365jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1366    jobjectArray output_array, int* stack_depth) {
1367  // Transition into runnable state to work on Object*/Array*
1368  ScopedObjectAccess soa(env);
1369  // Decode the internal stack trace into the depth, method trace and PC trace
1370  mirror::ObjectArray<mirror::Object>* method_trace =
1371      soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1372  int32_t depth = method_trace->GetLength() - 1;
1373  mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1374
1375  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1376
1377  jobjectArray result;
1378  mirror::ObjectArray<mirror::StackTraceElement>* java_traces;
1379  if (output_array != NULL) {
1380    // Reuse the array we were given.
1381    result = output_array;
1382    java_traces = soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(output_array);
1383    // ...adjusting the number of frames we'll write to not exceed the array length.
1384    depth = std::min(depth, java_traces->GetLength());
1385  } else {
1386    // Create java_trace array and place in local reference table
1387    java_traces = class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1388    if (java_traces == NULL) {
1389      return NULL;
1390    }
1391    result = soa.AddLocalReference<jobjectArray>(java_traces);
1392  }
1393
1394  if (stack_depth != NULL) {
1395    *stack_depth = depth;
1396  }
1397
1398  MethodHelper mh;
1399  for (int32_t i = 0; i < depth; ++i) {
1400    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1401    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1402    mh.ChangeMethod(method);
1403    uint32_t dex_pc = pc_trace->Get(i);
1404    int32_t line_number = mh.GetLineNumFromDexPC(dex_pc);
1405    // Allocate element, potentially triggering GC
1406    // TODO: reuse class_name_object via Class::name_?
1407    const char* descriptor = mh.GetDeclaringClassDescriptor();
1408    CHECK(descriptor != NULL);
1409    std::string class_name(PrettyDescriptor(descriptor));
1410    SirtRef<mirror::String> class_name_object(soa.Self(),
1411                                              mirror::String::AllocFromModifiedUtf8(soa.Self(),
1412                                                                                    class_name.c_str()));
1413    if (class_name_object.get() == NULL) {
1414      return NULL;
1415    }
1416    const char* method_name = mh.GetName();
1417    CHECK(method_name != NULL);
1418    SirtRef<mirror::String> method_name_object(soa.Self(),
1419                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1420                                                                                     method_name));
1421    if (method_name_object.get() == NULL) {
1422      return NULL;
1423    }
1424    const char* source_file = mh.GetDeclaringClassSourceFile();
1425    SirtRef<mirror::String> source_name_object(soa.Self(), mirror::String::AllocFromModifiedUtf8(soa.Self(),
1426                                                                                                 source_file));
1427    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(soa.Self(),
1428                                                                      class_name_object.get(),
1429                                                                      method_name_object.get(),
1430                                                                      source_name_object.get(),
1431                                                                      line_number);
1432    if (obj == NULL) {
1433      return NULL;
1434    }
1435#ifdef MOVING_GARBAGE_COLLECTOR
1436    // Re-read after potential GC
1437    java_traces = Decode<ObjectArray<Object>*>(soa.Env(), result);
1438    method_trace = down_cast<ObjectArray<Object>*>(Decode<Object*>(soa.Env(), internal));
1439    pc_trace = down_cast<IntArray*>(method_trace->Get(depth));
1440#endif
1441    java_traces->Set(i, obj);
1442  }
1443  return result;
1444}
1445
1446void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1447                                const char* exception_class_descriptor, const char* fmt, ...) {
1448  va_list args;
1449  va_start(args, fmt);
1450  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1451                     fmt, args);
1452  va_end(args);
1453}
1454
1455void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1456                                const char* exception_class_descriptor,
1457                                const char* fmt, va_list ap) {
1458  std::string msg;
1459  StringAppendV(&msg, fmt, ap);
1460  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1461}
1462
1463void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1464                               const char* msg) {
1465  AssertNoPendingException();  // Callers should either clear or call ThrowNewWrappedException.
1466  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1467}
1468
1469void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1470                                      const char* exception_class_descriptor,
1471                                      const char* msg) {
1472  DCHECK_EQ(this, Thread::Current());
1473  // Ensure we don't forget arguments over object allocation.
1474  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1475  SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1476  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1477  SirtRef<mirror::Throwable> cause(this, GetException(NULL));
1478  ClearException();
1479  Runtime* runtime = Runtime::Current();
1480
1481  mirror::ClassLoader* cl = NULL;
1482  if (throw_location.GetMethod() != NULL) {
1483    cl = throw_location.GetMethod()->GetDeclaringClass()->GetClassLoader();
1484  }
1485  SirtRef<mirror::Class>
1486      exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor, cl));
1487  if (UNLIKELY(exception_class.get() == NULL)) {
1488    CHECK(IsExceptionPending());
1489    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1490    return;
1491  }
1492
1493  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class.get(), true, true))) {
1494    DCHECK(IsExceptionPending());
1495    return;
1496  }
1497  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1498  SirtRef<mirror::Throwable> exception(this,
1499                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1500
1501  // Choose an appropriate constructor and set up the arguments.
1502  const char* signature;
1503  SirtRef<mirror::String> msg_string(this, NULL);
1504  if (msg != NULL) {
1505    // Ensure we remember this and the method over the String allocation.
1506    msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1507    if (UNLIKELY(msg_string.get() == NULL)) {
1508      CHECK(IsExceptionPending());  // OOME.
1509      return;
1510    }
1511    if (cause.get() == NULL) {
1512      signature = "(Ljava/lang/String;)V";
1513    } else {
1514      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1515    }
1516  } else {
1517    if (cause.get() == NULL) {
1518      signature = "()V";
1519    } else {
1520      signature = "(Ljava/lang/Throwable;)V";
1521    }
1522  }
1523  mirror::ArtMethod* exception_init_method =
1524      exception_class->FindDeclaredDirectMethod("<init>", signature);
1525
1526  CHECK(exception_init_method != NULL) << "No <init>" << signature << " in "
1527      << PrettyDescriptor(exception_class_descriptor);
1528
1529  if (UNLIKELY(!runtime->IsStarted())) {
1530    // Something is trying to throw an exception without a started runtime, which is the common
1531    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1532    // the exception fields directly.
1533    if (msg != NULL) {
1534      exception->SetDetailMessage(msg_string.get());
1535    }
1536    if (cause.get() != NULL) {
1537      exception->SetCause(cause.get());
1538    }
1539    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1540                                         throw_location.GetDexPc());
1541    SetException(gc_safe_throw_location, exception.get());
1542  } else {
1543    ArgArray args("VLL", 3);
1544    args.Append(reinterpret_cast<uint32_t>(exception.get()));
1545    if (msg != NULL) {
1546      args.Append(reinterpret_cast<uint32_t>(msg_string.get()));
1547    }
1548    if (cause.get() != NULL) {
1549      args.Append(reinterpret_cast<uint32_t>(cause.get()));
1550    }
1551    JValue result;
1552    exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V');
1553    if (LIKELY(!IsExceptionPending())) {
1554      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1555                                           throw_location.GetDexPc());
1556      SetException(gc_safe_throw_location, exception.get());
1557    }
1558  }
1559}
1560
1561void Thread::ThrowOutOfMemoryError(const char* msg) {
1562  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1563      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1564  ThrowLocation throw_location = GetCurrentLocationForThrow();
1565  if (!throwing_OutOfMemoryError_) {
1566    throwing_OutOfMemoryError_ = true;
1567    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1568    throwing_OutOfMemoryError_ = false;
1569  } else {
1570    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1571    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1572  }
1573}
1574
1575Thread* Thread::CurrentFromGdb() {
1576  return Thread::Current();
1577}
1578
1579void Thread::DumpFromGdb() const {
1580  std::ostringstream ss;
1581  Dump(ss);
1582  std::string str(ss.str());
1583  // log to stderr for debugging command line processes
1584  std::cerr << str;
1585#ifdef HAVE_ANDROID_OS
1586  // log to logcat for debugging frameworks processes
1587  LOG(INFO) << str;
1588#endif
1589}
1590
1591struct EntryPointInfo {
1592  uint32_t offset;
1593  const char* name;
1594};
1595#define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1596#define JNI_ENTRY_POINT_INFO(x)         { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1597#define PORTABLE_ENTRY_POINT_INFO(x)    { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1598#define QUICK_ENTRY_POINT_INFO(x)       { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1599static const EntryPointInfo gThreadEntryPointInfo[] = {
1600  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge),
1601  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge),
1602  JNI_ENTRY_POINT_INFO(pDlsymLookup),
1603  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline),
1604  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge),
1605  QUICK_ENTRY_POINT_INFO(pAllocArray),
1606  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck),
1607  QUICK_ENTRY_POINT_INFO(pAllocObject),
1608  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck),
1609  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray),
1610  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck),
1611  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial),
1612  QUICK_ENTRY_POINT_INFO(pCanPutArrayElement),
1613  QUICK_ENTRY_POINT_INFO(pCheckCast),
1614  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage),
1615  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess),
1616  QUICK_ENTRY_POINT_INFO(pInitializeType),
1617  QUICK_ENTRY_POINT_INFO(pResolveString),
1618  QUICK_ENTRY_POINT_INFO(pSet32Instance),
1619  QUICK_ENTRY_POINT_INFO(pSet32Static),
1620  QUICK_ENTRY_POINT_INFO(pSet64Instance),
1621  QUICK_ENTRY_POINT_INFO(pSet64Static),
1622  QUICK_ENTRY_POINT_INFO(pSetObjInstance),
1623  QUICK_ENTRY_POINT_INFO(pSetObjStatic),
1624  QUICK_ENTRY_POINT_INFO(pGet32Instance),
1625  QUICK_ENTRY_POINT_INFO(pGet32Static),
1626  QUICK_ENTRY_POINT_INFO(pGet64Instance),
1627  QUICK_ENTRY_POINT_INFO(pGet64Static),
1628  QUICK_ENTRY_POINT_INFO(pGetObjInstance),
1629  QUICK_ENTRY_POINT_INFO(pGetObjStatic),
1630  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData),
1631  QUICK_ENTRY_POINT_INFO(pJniMethodStart),
1632  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1633  QUICK_ENTRY_POINT_INFO(pJniMethodEnd),
1634  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1635  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference),
1636  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1637  QUICK_ENTRY_POINT_INFO(pLockObject),
1638  QUICK_ENTRY_POINT_INFO(pUnlockObject),
1639  QUICK_ENTRY_POINT_INFO(pCmpgDouble),
1640  QUICK_ENTRY_POINT_INFO(pCmpgFloat),
1641  QUICK_ENTRY_POINT_INFO(pCmplDouble),
1642  QUICK_ENTRY_POINT_INFO(pCmplFloat),
1643  QUICK_ENTRY_POINT_INFO(pFmod),
1644  QUICK_ENTRY_POINT_INFO(pSqrt),
1645  QUICK_ENTRY_POINT_INFO(pL2d),
1646  QUICK_ENTRY_POINT_INFO(pFmodf),
1647  QUICK_ENTRY_POINT_INFO(pL2f),
1648  QUICK_ENTRY_POINT_INFO(pD2iz),
1649  QUICK_ENTRY_POINT_INFO(pF2iz),
1650  QUICK_ENTRY_POINT_INFO(pIdivmod),
1651  QUICK_ENTRY_POINT_INFO(pD2l),
1652  QUICK_ENTRY_POINT_INFO(pF2l),
1653  QUICK_ENTRY_POINT_INFO(pLdiv),
1654  QUICK_ENTRY_POINT_INFO(pLdivmod),
1655  QUICK_ENTRY_POINT_INFO(pLmul),
1656  QUICK_ENTRY_POINT_INFO(pShlLong),
1657  QUICK_ENTRY_POINT_INFO(pShrLong),
1658  QUICK_ENTRY_POINT_INFO(pUshrLong),
1659  QUICK_ENTRY_POINT_INFO(pIndexOf),
1660  QUICK_ENTRY_POINT_INFO(pMemcmp16),
1661  QUICK_ENTRY_POINT_INFO(pStringCompareTo),
1662  QUICK_ENTRY_POINT_INFO(pMemcpy),
1663  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline),
1664  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge),
1665  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1666  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampoline),
1667  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1668  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1669  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1670  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1671  QUICK_ENTRY_POINT_INFO(pCheckSuspend),
1672  QUICK_ENTRY_POINT_INFO(pTestSuspend),
1673  QUICK_ENTRY_POINT_INFO(pDeliverException),
1674  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds),
1675  QUICK_ENTRY_POINT_INFO(pThrowDivZero),
1676  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod),
1677  QUICK_ENTRY_POINT_INFO(pThrowNullPointer),
1678  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow),
1679};
1680#undef QUICK_ENTRY_POINT_INFO
1681
1682void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1683  CHECK_EQ(size_of_pointers, 4U);  // TODO: support 64-bit targets.
1684
1685#define DO_THREAD_OFFSET(x) \
1686    if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1687      os << # x; \
1688      return; \
1689    }
1690  DO_THREAD_OFFSET(state_and_flags_);
1691  DO_THREAD_OFFSET(card_table_);
1692  DO_THREAD_OFFSET(exception_);
1693  DO_THREAD_OFFSET(opeer_);
1694  DO_THREAD_OFFSET(jni_env_);
1695  DO_THREAD_OFFSET(self_);
1696  DO_THREAD_OFFSET(stack_end_);
1697  DO_THREAD_OFFSET(suspend_count_);
1698  DO_THREAD_OFFSET(thin_lock_id_);
1699  // DO_THREAD_OFFSET(top_of_managed_stack_);
1700  // DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1701  DO_THREAD_OFFSET(top_sirt_);
1702#undef DO_THREAD_OFFSET
1703
1704  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1705  CHECK_EQ(entry_point_count * size_of_pointers,
1706           sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) +
1707           sizeof(QuickEntryPoints));
1708  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_);
1709  for (size_t i = 0; i < entry_point_count; ++i) {
1710    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1711    expected_offset += size_of_pointers;
1712    if (gThreadEntryPointInfo[i].offset == offset) {
1713      os << gThreadEntryPointInfo[i].name;
1714      return;
1715    }
1716  }
1717  os << offset;
1718}
1719
1720static const bool kDebugExceptionDelivery = false;
1721class CatchBlockStackVisitor : public StackVisitor {
1722 public:
1723  CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location,
1724                         mirror::Throwable* exception, bool is_deoptimization)
1725      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1726      : StackVisitor(self, self->GetLongJumpContext()),
1727        self_(self), exception_(exception), is_deoptimization_(is_deoptimization),
1728        to_find_(is_deoptimization ? NULL : exception->GetClass()), throw_location_(throw_location),
1729        handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0),
1730        native_method_count_(0), clear_exception_(false),
1731        method_tracing_active_(is_deoptimization ||
1732                               Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()),
1733        instrumentation_frames_to_pop_(0), top_shadow_frame_(NULL), prev_shadow_frame_(NULL) {
1734    // Exception not in root sets, can't allow GC.
1735    last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block");
1736  }
1737
1738  ~CatchBlockStackVisitor() {
1739    LOG(FATAL) << "UNREACHABLE";  // Expected to take long jump.
1740  }
1741
1742  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1743    mirror::ArtMethod* method = GetMethod();
1744    if (method == NULL) {
1745      // This is the upcall, we remember the frame and last pc so that we may long jump to them.
1746      handler_quick_frame_pc_ = GetCurrentQuickFramePc();
1747      handler_quick_frame_ = GetCurrentQuickFrame();
1748      return false;  // End stack walk.
1749    } else {
1750      if (UNLIKELY(method_tracing_active_ &&
1751                   GetQuickInstrumentationExitPc() == GetReturnPc())) {
1752        // Keep count of the number of unwinds during instrumentation.
1753        instrumentation_frames_to_pop_++;
1754      }
1755      if (method->IsRuntimeMethod()) {
1756        // Ignore callee save method.
1757        DCHECK(method->IsCalleeSaveMethod());
1758        return true;
1759      } else if (is_deoptimization_) {
1760        return HandleDeoptimization(method);
1761      } else {
1762        return HandleTryItems(method);
1763      }
1764    }
1765  }
1766
1767  bool HandleTryItems(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1768    uint32_t dex_pc = DexFile::kDexNoIndex;
1769    if (method->IsNative()) {
1770      native_method_count_++;
1771    } else {
1772      dex_pc = GetDexPc();
1773    }
1774    if (dex_pc != DexFile::kDexNoIndex) {
1775      uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc, &clear_exception_);
1776      if (found_dex_pc != DexFile::kDexNoIndex) {
1777        handler_dex_pc_ = found_dex_pc;
1778        handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc);
1779        handler_quick_frame_ = GetCurrentQuickFrame();
1780        return false;  // End stack walk.
1781      }
1782    }
1783    return true;  // Continue stack walk.
1784  }
1785
1786  bool HandleDeoptimization(mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1787    MethodHelper mh(m);
1788    const DexFile::CodeItem* code_item = mh.GetCodeItem();
1789    CHECK(code_item != NULL);
1790    uint16_t num_regs =  code_item->registers_size_;
1791    uint32_t dex_pc = GetDexPc();
1792    const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc);
1793    uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits();
1794    ShadowFrame* new_frame = ShadowFrame::Create(num_regs, NULL, m, new_dex_pc);
1795    verifier::MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
1796                                      mh.GetClassDefIndex(), code_item,
1797                                      m->GetDexMethodIndex(), m, m->GetAccessFlags(), false, true);
1798    verifier.Verify();
1799    std::vector<int32_t> kinds = verifier.DescribeVRegs(dex_pc);
1800    for (uint16_t reg = 0; reg < num_regs; reg++) {
1801      VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2));
1802      switch (kind) {
1803        case kUndefined:
1804          new_frame->SetVReg(reg, 0xEBADDE09);
1805          break;
1806        case kConstant:
1807          new_frame->SetVReg(reg, kinds.at((reg * 2) + 1));
1808          break;
1809        case kReferenceVReg:
1810          new_frame->SetVRegReference(reg,
1811                                      reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kind)));
1812          break;
1813        default:
1814          new_frame->SetVReg(reg, GetVReg(m, reg, kind));
1815          break;
1816      }
1817    }
1818    if (prev_shadow_frame_ != NULL) {
1819      prev_shadow_frame_->SetLink(new_frame);
1820    } else {
1821      top_shadow_frame_ = new_frame;
1822    }
1823    prev_shadow_frame_ = new_frame;
1824    return true;
1825  }
1826
1827  void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1828    mirror::ArtMethod* catch_method = *handler_quick_frame_;
1829    if (catch_method == NULL) {
1830      if (kDebugExceptionDelivery) {
1831        LOG(INFO) << "Handler is upcall";
1832      }
1833    } else {
1834      CHECK(!is_deoptimization_);
1835      if (kDebugExceptionDelivery) {
1836        const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1837        int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_);
1838        LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
1839      }
1840    }
1841    if (clear_exception_) {
1842      // Exception was cleared as part of delivery.
1843      DCHECK(!self_->IsExceptionPending());
1844    } else {
1845      // Put exception back in root set with clear throw location.
1846      self_->SetException(ThrowLocation(), exception_);
1847    }
1848    self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_);
1849    // Do instrumentation events after allowing thread suspension again.
1850    instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1851    for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) {
1852      // We pop the instrumentation stack here so as not to corrupt it during the stack walk.
1853      if (i != instrumentation_frames_to_pop_ - 1 || self_->GetInstrumentationStack()->front().method_ != catch_method) {
1854        // Don't pop the instrumentation frame of the catch handler.
1855        instrumentation->PopMethodForUnwind(self_, is_deoptimization_);
1856      }
1857    }
1858    if (!is_deoptimization_) {
1859      instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_,
1860                                            exception_);
1861    } else {
1862      // TODO: proper return value.
1863      self_->SetDeoptimizationShadowFrame(top_shadow_frame_);
1864    }
1865    // Place context back on thread so it will be available when we continue.
1866    self_->ReleaseLongJumpContext(context_);
1867    context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_));
1868    CHECK_NE(handler_quick_frame_pc_, 0u);
1869    context_->SetPC(handler_quick_frame_pc_);
1870    context_->SmashCallerSaves();
1871    context_->DoLongJump();
1872  }
1873
1874 private:
1875  Thread* const self_;
1876  mirror::Throwable* const exception_;
1877  const bool is_deoptimization_;
1878  // The type of the exception catch block to find.
1879  mirror::Class* const to_find_;
1880  // Location of the throw.
1881  const ThrowLocation& throw_location_;
1882  // Quick frame with found handler or last frame if no handler found.
1883  mirror::ArtMethod** handler_quick_frame_;
1884  // PC to branch to for the handler.
1885  uintptr_t handler_quick_frame_pc_;
1886  // Associated dex PC.
1887  uint32_t handler_dex_pc_;
1888  // Number of native methods passed in crawl (equates to number of SIRTs to pop)
1889  uint32_t native_method_count_;
1890  // Should the exception be cleared as the catch block has no move-exception?
1891  bool clear_exception_;
1892  // Is method tracing active?
1893  const bool method_tracing_active_;
1894  // Support for nesting no thread suspension checks.
1895  const char* last_no_assert_suspension_cause_;
1896  // Number of frames to pop in long jump.
1897  size_t instrumentation_frames_to_pop_;
1898  ShadowFrame* top_shadow_frame_;
1899  ShadowFrame* prev_shadow_frame_;
1900};
1901
1902void Thread::QuickDeliverException() {
1903  // Get exception from thread.
1904  ThrowLocation throw_location;
1905  mirror::Throwable* exception = GetException(&throw_location);
1906  CHECK(exception != NULL);
1907  // Don't leave exception visible while we try to find the handler, which may cause class
1908  // resolution.
1909  ClearException();
1910  bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1911  if (kDebugExceptionDelivery) {
1912    if (!is_deoptimization) {
1913      mirror::String* msg = exception->GetDetailMessage();
1914      std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : "");
1915      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1916                << ": " << str_msg << "\n");
1917    } else {
1918      DumpStack(LOG(INFO) << "Deoptimizing: ");
1919    }
1920  }
1921  CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization);
1922  catch_finder.WalkStack(true);
1923  catch_finder.DoLongJump();
1924  LOG(FATAL) << "UNREACHABLE";
1925}
1926
1927Context* Thread::GetLongJumpContext() {
1928  Context* result = long_jump_context_;
1929  if (result == NULL) {
1930    result = Context::Create();
1931  } else {
1932    long_jump_context_ = NULL;  // Avoid context being shared.
1933    result->Reset();
1934  }
1935  return result;
1936}
1937
1938struct CurrentMethodVisitor : public StackVisitor {
1939  CurrentMethodVisitor(Thread* thread, Context* context)
1940      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1941      : StackVisitor(thread, context), this_object_(NULL), method_(NULL), dex_pc_(0) {}
1942  virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1943    mirror::ArtMethod* m = GetMethod();
1944    if (m->IsRuntimeMethod()) {
1945      // Continue if this is a runtime method.
1946      return true;
1947    }
1948    if (context_ != NULL) {
1949      this_object_ = GetThisObject();
1950    }
1951    method_ = m;
1952    dex_pc_ = GetDexPc();
1953    return false;
1954  }
1955  mirror::Object* this_object_;
1956  mirror::ArtMethod* method_;
1957  uint32_t dex_pc_;
1958};
1959
1960mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1961  CurrentMethodVisitor visitor(const_cast<Thread*>(this), NULL);
1962  visitor.WalkStack(false);
1963  if (dex_pc != NULL) {
1964    *dex_pc = visitor.dex_pc_;
1965  }
1966  return visitor.method_;
1967}
1968
1969ThrowLocation Thread::GetCurrentLocationForThrow() {
1970  Context* context = GetLongJumpContext();
1971  CurrentMethodVisitor visitor(this, context);
1972  visitor.WalkStack(false);
1973  ReleaseLongJumpContext(context);
1974  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1975}
1976
1977bool Thread::HoldsLock(mirror::Object* object) {
1978  if (object == NULL) {
1979    return false;
1980  }
1981  return object->GetThinLockId() == thin_lock_id_;
1982}
1983
1984// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1985template <typename RootVisitor>
1986class ReferenceMapVisitor : public StackVisitor {
1987 public:
1988  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1989      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1990      : StackVisitor(thread, context), visitor_(visitor) {}
1991
1992  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1993    if (false) {
1994      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1995          << StringPrintf("@ PC:%04x", GetDexPc());
1996    }
1997    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1998    if (shadow_frame != NULL) {
1999      mirror::ArtMethod* m = shadow_frame->GetMethod();
2000      size_t num_regs = shadow_frame->NumberOfVRegs();
2001      if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2002        // SIRT for JNI or References for interpreter.
2003        for (size_t reg = 0; reg < num_regs; ++reg) {
2004          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2005          if (ref != NULL) {
2006            visitor_(ref, reg, this);
2007          }
2008        }
2009      } else {
2010        // Java method.
2011        // Portable path use DexGcMap and store in Method.native_gc_map_.
2012        const uint8_t* gc_map = m->GetNativeGcMap();
2013        CHECK(gc_map != NULL) << PrettyMethod(m);
2014        uint32_t gc_map_length = static_cast<uint32_t>((gc_map[0] << 24) |
2015                                                       (gc_map[1] << 16) |
2016                                                       (gc_map[2] << 8) |
2017                                                       (gc_map[3] << 0));
2018        verifier::DexPcToReferenceMap dex_gc_map(gc_map + 4, gc_map_length);
2019        uint32_t dex_pc = GetDexPc();
2020        const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2021        DCHECK(reg_bitmap != NULL);
2022        num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2023        for (size_t reg = 0; reg < num_regs; ++reg) {
2024          if (TestBitmap(reg, reg_bitmap)) {
2025            mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2026            if (ref != NULL) {
2027              visitor_(ref, reg, this);
2028            }
2029          }
2030        }
2031      }
2032    } else {
2033      mirror::ArtMethod* m = GetMethod();
2034      // Process register map (which native and runtime methods don't have)
2035      if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2036        const uint8_t* native_gc_map = m->GetNativeGcMap();
2037        CHECK(native_gc_map != NULL) << PrettyMethod(m);
2038        mh_.ChangeMethod(m);
2039        const DexFile::CodeItem* code_item = mh_.GetCodeItem();
2040        DCHECK(code_item != NULL) << PrettyMethod(m);  // Can't be NULL or how would we compile its instructions?
2041        NativePcOffsetToReferenceMap map(native_gc_map);
2042        size_t num_regs = std::min(map.RegWidth() * 8,
2043                                   static_cast<size_t>(code_item->registers_size_));
2044        if (num_regs > 0) {
2045          const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
2046          DCHECK(reg_bitmap != NULL);
2047          const VmapTable vmap_table(m->GetVmapTable());
2048          uint32_t core_spills = m->GetCoreSpillMask();
2049          uint32_t fp_spills = m->GetFpSpillMask();
2050          size_t frame_size = m->GetFrameSizeInBytes();
2051          // For all dex registers in the bitmap
2052          mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2053          DCHECK(cur_quick_frame != NULL);
2054          for (size_t reg = 0; reg < num_regs; ++reg) {
2055            // Does this register hold a reference?
2056            if (TestBitmap(reg, reg_bitmap)) {
2057              uint32_t vmap_offset;
2058              mirror::Object* ref;
2059              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2060                uintptr_t val = GetGPR(vmap_table.ComputeRegister(core_spills, vmap_offset,
2061                                                                  kReferenceVReg));
2062                ref = reinterpret_cast<mirror::Object*>(val);
2063              } else {
2064                ref = reinterpret_cast<mirror::Object*>(GetVReg(cur_quick_frame, code_item,
2065                                                                core_spills, fp_spills, frame_size,
2066                                                                reg));
2067              }
2068
2069              if (ref != NULL) {
2070                visitor_(ref, reg, this);
2071              }
2072            }
2073          }
2074        }
2075      }
2076    }
2077    return true;
2078  }
2079
2080 private:
2081  static bool TestBitmap(int reg, const uint8_t* reg_vector) {
2082    return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
2083  }
2084
2085  // Visitor for when we visit a root.
2086  const RootVisitor& visitor_;
2087
2088  // A method helper we keep around to avoid dex file/cache re-computations.
2089  MethodHelper mh_;
2090};
2091
2092class RootCallbackVisitor {
2093 public:
2094  RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {}
2095
2096  void operator()(const mirror::Object* obj, size_t, const StackVisitor*) const {
2097    visitor_(obj, arg_);
2098  }
2099
2100 private:
2101  RootVisitor* visitor_;
2102  void* arg_;
2103};
2104
2105class VerifyCallbackVisitor {
2106 public:
2107  VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg)
2108      : visitor_(visitor),
2109        arg_(arg) {
2110  }
2111
2112  void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const {
2113    visitor_(obj, arg_, vreg, visitor);
2114  }
2115
2116 private:
2117  VerifyRootVisitor* const visitor_;
2118  void* const arg_;
2119};
2120
2121struct VerifyRootWrapperArg {
2122  VerifyRootVisitor* visitor;
2123  void* arg;
2124};
2125
2126static void VerifyRootWrapperCallback(const mirror::Object* root, void* arg) {
2127  VerifyRootWrapperArg* wrapperArg = reinterpret_cast<VerifyRootWrapperArg*>(arg);
2128  wrapperArg->visitor(root, wrapperArg->arg, 0, NULL);
2129}
2130
2131void Thread::VerifyRoots(VerifyRootVisitor* visitor, void* arg) {
2132  // We need to map from a RootVisitor to VerifyRootVisitor, so pass in nulls for arguments we
2133  // don't have.
2134  VerifyRootWrapperArg wrapperArg;
2135  wrapperArg.arg = arg;
2136  wrapperArg.visitor = visitor;
2137
2138  if (opeer_ != NULL) {
2139    VerifyRootWrapperCallback(opeer_, &wrapperArg);
2140  }
2141  if (exception_ != NULL) {
2142    VerifyRootWrapperCallback(exception_, &wrapperArg);
2143  }
2144  throw_location_.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2145  if (class_loader_override_ != NULL) {
2146    VerifyRootWrapperCallback(class_loader_override_, &wrapperArg);
2147  }
2148  jni_env_->locals.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2149  jni_env_->monitors.VisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2150
2151  SirtVisitRoots(VerifyRootWrapperCallback, &wrapperArg);
2152
2153  // Visit roots on this thread's stack
2154  Context* context = GetLongJumpContext();
2155  VerifyCallbackVisitor visitorToCallback(visitor, arg);
2156  ReferenceMapVisitor<VerifyCallbackVisitor> mapper(this, context, visitorToCallback);
2157  mapper.WalkStack();
2158  ReleaseLongJumpContext(context);
2159
2160  std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack();
2161  typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It;
2162  for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) {
2163    mirror::Object* this_object = (*it).this_object_;
2164    if (this_object != NULL) {
2165      VerifyRootWrapperCallback(this_object, &wrapperArg);
2166    }
2167    mirror::ArtMethod* method = (*it).method_;
2168    VerifyRootWrapperCallback(method, &wrapperArg);
2169  }
2170}
2171
2172void Thread::VisitRoots(RootVisitor* visitor, void* arg) {
2173  if (opeer_ != NULL) {
2174    visitor(opeer_, arg);
2175  }
2176  if (exception_ != NULL) {
2177    visitor(exception_, arg);
2178  }
2179  throw_location_.VisitRoots(visitor, arg);
2180  if (class_loader_override_ != NULL) {
2181    visitor(class_loader_override_, arg);
2182  }
2183  jni_env_->locals.VisitRoots(visitor, arg);
2184  jni_env_->monitors.VisitRoots(visitor, arg);
2185
2186  SirtVisitRoots(visitor, arg);
2187
2188  // Visit roots on this thread's stack
2189  Context* context = GetLongJumpContext();
2190  RootCallbackVisitor visitorToCallback(visitor, arg);
2191  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2192  mapper.WalkStack();
2193  ReleaseLongJumpContext(context);
2194
2195  std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack = GetInstrumentationStack();
2196  typedef std::deque<instrumentation::InstrumentationStackFrame>::const_iterator It;
2197  for (It it = instrumentation_stack->begin(), end = instrumentation_stack->end(); it != end; ++it) {
2198    mirror::Object* this_object = (*it).this_object_;
2199    if (this_object != NULL) {
2200      visitor(this_object, arg);
2201    }
2202    mirror::ArtMethod* method = (*it).method_;
2203    visitor(method, arg);
2204  }
2205}
2206
2207static void VerifyObject(const mirror::Object* root, void* arg) {
2208  gc::Heap* heap = reinterpret_cast<gc::Heap*>(arg);
2209  heap->VerifyObject(root);
2210}
2211
2212void Thread::VerifyStackImpl() {
2213  UniquePtr<Context> context(Context::Create());
2214  RootCallbackVisitor visitorToCallback(VerifyObject, Runtime::Current()->GetHeap());
2215  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2216  mapper.WalkStack();
2217}
2218
2219// Set the stack end to that to be used during a stack overflow
2220void Thread::SetStackEndForStackOverflow() {
2221  // During stack overflow we allow use of the full stack.
2222  if (stack_end_ == stack_begin_) {
2223    // However, we seem to have already extended to use the full stack.
2224    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2225               << kStackOverflowReservedBytes << ")?";
2226    DumpStack(LOG(ERROR));
2227    LOG(FATAL) << "Recursive stack overflow.";
2228  }
2229
2230  stack_end_ = stack_begin_;
2231}
2232
2233std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2234  thread.ShortDump(os);
2235  return os;
2236}
2237
2238}  // namespace art
2239