thread.cc revision bfd9a4378eacaf2dc2bbe05ad48c5164fc93c9fe
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker.h"
36#include "class_linker-inl.h"
37#include "cutils/atomic.h"
38#include "cutils/atomic-inline.h"
39#include "debugger.h"
40#include "dex_file-inl.h"
41#include "entrypoints/entrypoint_utils.h"
42#include "entrypoints/quick/quick_alloc_entrypoints.h"
43#include "gc_map.h"
44#include "gc/accounting/card_table-inl.h"
45#include "gc/heap.h"
46#include "gc/space/space.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class-inl.h"
53#include "mirror/class_loader.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_utils.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "handle_scope-inl.h"
66#include "stack.h"
67#include "thread-inl.h"
68#include "thread_list.h"
69#include "utils.h"
70#include "verifier/dex_gc_map.h"
71#include "verify_object-inl.h"
72#include "vmap_table.h"
73#include "well_known_classes.h"
74
75namespace art {
76
77bool Thread::is_started_ = false;
78pthread_key_t Thread::pthread_key_self_;
79ConditionVariable* Thread::resume_cond_ = nullptr;
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += Thread::kStackOverflowReservedBytes;
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize;
228  }
229
230  // Some systems require the stack size to be a multiple of the system page size, so round up.
231  stack_size = RoundUp(stack_size, kPageSize);
232
233  return stack_size;
234}
235
236// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
237// overflow is detected.  It is located right below the stack_end_.  Just below that
238// is the StackOverflow reserved region used when creating the StackOverflow
239// exception.
240void Thread::InstallImplicitProtection(bool is_main_stack) {
241  byte* pregion = tlsPtr_.stack_end;
242
243  constexpr uint32_t kMarker = 0xdadadada;
244  uintptr_t *marker = reinterpret_cast<uintptr_t*>(pregion);
245  if (*marker == kMarker) {
246    // The region has already been set up.
247    return;
248  }
249  // Add marker so that we can detect a second attempt to do this.
250  *marker = kMarker;
251
252  pregion -= kStackOverflowProtectedSize;
253
254  // Touch the pages in the region to map them in.  Otherwise mprotect fails.  Only
255  // need to do this on the main stack.  We only need to touch one byte per page.
256  if (is_main_stack) {
257    byte* start = pregion;
258    byte* end = pregion + kStackOverflowProtectedSize;
259    while (start < end) {
260      *start = static_cast<byte>(0);
261      start += kPageSize;
262    }
263  }
264
265  VLOG(threads) << "installing stack protected region at " << std::hex <<
266      static_cast<void*>(pregion) << " to " <<
267      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
268
269  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
270    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. Reason:"
271        << strerror(errno);
272  }
273
274  // Tell the kernel that we won't be needing these pages any more.
275  if (is_main_stack) {
276    madvise(pregion, kStackOverflowProtectedSize, MADV_DONTNEED);
277  }
278}
279
280void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
281  CHECK(java_peer != nullptr);
282  Thread* self = static_cast<JNIEnvExt*>(env)->self;
283  Runtime* runtime = Runtime::Current();
284
285  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
286  bool thread_start_during_shutdown = false;
287  {
288    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
289    if (runtime->IsShuttingDownLocked()) {
290      thread_start_during_shutdown = true;
291    } else {
292      runtime->StartThreadBirth();
293    }
294  }
295  if (thread_start_during_shutdown) {
296    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
297    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
298    return;
299  }
300
301  Thread* child_thread = new Thread(is_daemon);
302  // Use global JNI ref to hold peer live while child thread starts.
303  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
304  stack_size = FixStackSize(stack_size);
305
306  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
307  // assign it.
308  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
309                    reinterpret_cast<jlong>(child_thread));
310
311  pthread_t new_pthread;
312  pthread_attr_t attr;
313  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
314  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
315  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
316  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
317  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
318
319  if (pthread_create_result != 0) {
320    // pthread_create(3) failed, so clean up.
321    {
322      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
323      runtime->EndThreadBirth();
324    }
325    // Manually delete the global reference since Thread::Init will not have been run.
326    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
327    child_thread->tlsPtr_.jpeer = nullptr;
328    delete child_thread;
329    child_thread = nullptr;
330    // TODO: remove from thread group?
331    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
332    {
333      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
334                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
335      ScopedObjectAccess soa(env);
336      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
337    }
338  }
339}
340
341void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
342  // This function does all the initialization that must be run by the native thread it applies to.
343  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
344  // we can handshake with the corresponding native thread when it's ready.) Check this native
345  // thread hasn't been through here already...
346  CHECK(Thread::Current() == nullptr);
347  SetUpAlternateSignalStack();
348  InitCpu();
349  InitTlsEntryPoints();
350  RemoveSuspendTrigger();
351  InitCardTable();
352  InitTid();
353  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
354  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
355  tlsPtr_.pthread_self = pthread_self();
356  CHECK(is_started_);
357  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
358  DCHECK_EQ(Thread::Current(), this);
359
360  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
361  InitStackHwm();
362
363  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
364  thread_list->Register(this);
365}
366
367Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
368                       bool create_peer) {
369  Thread* self;
370  Runtime* runtime = Runtime::Current();
371  if (runtime == nullptr) {
372    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
373    return nullptr;
374  }
375  {
376    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
377    if (runtime->IsShuttingDownLocked()) {
378      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
379      return nullptr;
380    } else {
381      Runtime::Current()->StartThreadBirth();
382      self = new Thread(as_daemon);
383      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
384      Runtime::Current()->EndThreadBirth();
385    }
386  }
387
388  CHECK_NE(self->GetState(), kRunnable);
389  self->SetState(kNative);
390
391  // If we're the main thread, ClassLinker won't be created until after we're attached,
392  // so that thread needs a two-stage attach. Regular threads don't need this hack.
393  // In the compiler, all threads need this hack, because no-one's going to be getting
394  // a native peer!
395  if (create_peer) {
396    self->CreatePeer(thread_name, as_daemon, thread_group);
397  } else {
398    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
399    if (thread_name != nullptr) {
400      self->tlsPtr_.name->assign(thread_name);
401      ::art::SetThreadName(thread_name);
402    }
403  }
404
405  return self;
406}
407
408void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
409  Runtime* runtime = Runtime::Current();
410  CHECK(runtime->IsStarted());
411  JNIEnv* env = tlsPtr_.jni_env;
412
413  if (thread_group == nullptr) {
414    thread_group = runtime->GetMainThreadGroup();
415  }
416  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
417  jint thread_priority = GetNativePriority();
418  jboolean thread_is_daemon = as_daemon;
419
420  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
421  if (peer.get() == nullptr) {
422    CHECK(IsExceptionPending());
423    return;
424  }
425  {
426    ScopedObjectAccess soa(this);
427    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
428  }
429  env->CallNonvirtualVoidMethod(peer.get(),
430                                WellKnownClasses::java_lang_Thread,
431                                WellKnownClasses::java_lang_Thread_init,
432                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
433  AssertNoPendingException();
434
435  Thread* self = this;
436  DCHECK_EQ(self, Thread::Current());
437  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
438                    reinterpret_cast<jlong>(self));
439
440  ScopedObjectAccess soa(self);
441  StackHandleScope<1> hs(self);
442  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
443  if (peer_thread_name.Get() == nullptr) {
444    // The Thread constructor should have set the Thread.name to a
445    // non-null value. However, because we can run without code
446    // available (in the compiler, in tests), we manually assign the
447    // fields the constructor should have set.
448    if (runtime->IsActiveTransaction()) {
449      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
450    } else {
451      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
452    }
453    peer_thread_name.Assign(GetThreadName(soa));
454  }
455  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
456  if (peer_thread_name.Get() != nullptr) {
457    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
458  }
459}
460
461template<bool kTransactionActive>
462void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
463                      jobject thread_name, jint thread_priority) {
464  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
465      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
466  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
467      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
468  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
469      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
470  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
471      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
472}
473
474void Thread::SetThreadName(const char* name) {
475  tlsPtr_.name->assign(name);
476  ::art::SetThreadName(name);
477  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
478}
479
480void Thread::InitStackHwm() {
481  void* read_stack_base;
482  size_t read_stack_size;
483  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
484
485  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
486  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
487                                PrettySize(read_stack_size).c_str());
488
489  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
490  tlsPtr_.stack_size = read_stack_size;
491
492  if (read_stack_size <= kStackOverflowReservedBytes) {
493    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
494        << " bytes)";
495  }
496
497  // TODO: move this into the Linux GetThreadStack implementation.
498#if !defined(__APPLE__)
499  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
500  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
501  // will be broken because we'll die long before we get close to 2GB.
502  bool is_main_thread = (::art::GetTid() == getpid());
503  if (is_main_thread) {
504    rlimit stack_limit;
505    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
506      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
507    }
508    if (stack_limit.rlim_cur == RLIM_INFINITY) {
509      // Find the default stack size for new threads...
510      pthread_attr_t default_attributes;
511      size_t default_stack_size;
512      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
513      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
514                         "default stack size query");
515      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
516
517      // ...and use that as our limit.
518      size_t old_stack_size = read_stack_size;
519      tlsPtr_.stack_size = default_stack_size;
520      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
521      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
522                    << " to " << PrettySize(default_stack_size)
523                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
524    }
525  }
526#endif
527
528  // Set stack_end_ to the bottom of the stack saving space of stack overflows
529  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
530  ResetDefaultStackEnd(implicit_stack_check);
531
532  // Install the protected region if we are doing implicit overflow checks.
533  if (implicit_stack_check) {
534    if (is_main_thread) {
535      // The main thread has a 16K protected region at the bottom.  We need
536      // to install our own region so we need to move the limits
537      // of the stack to make room for it.
538      constexpr uint32_t kDelta = 16 * KB;
539      tlsPtr_.stack_begin += kDelta;
540      tlsPtr_.stack_end += kDelta;
541      tlsPtr_.stack_size -= kDelta;
542    }
543    InstallImplicitProtection(is_main_thread);
544  }
545
546  // Sanity check.
547  int stack_variable;
548  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
549}
550
551void Thread::ShortDump(std::ostream& os) const {
552  os << "Thread[";
553  if (GetThreadId() != 0) {
554    // If we're in kStarting, we won't have a thin lock id or tid yet.
555    os << GetThreadId()
556             << ",tid=" << GetTid() << ',';
557  }
558  os << GetState()
559           << ",Thread*=" << this
560           << ",peer=" << tlsPtr_.opeer
561           << ",\"" << *tlsPtr_.name << "\""
562           << "]";
563}
564
565void Thread::Dump(std::ostream& os) const {
566  DumpState(os);
567  DumpStack(os);
568}
569
570mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
571  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
572  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
573}
574
575void Thread::GetThreadName(std::string& name) const {
576  name.assign(*tlsPtr_.name);
577}
578
579uint64_t Thread::GetCpuMicroTime() const {
580#if defined(HAVE_POSIX_CLOCKS)
581  clockid_t cpu_clock_id;
582  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
583  timespec now;
584  clock_gettime(cpu_clock_id, &now);
585  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
586#else
587  UNIMPLEMENTED(WARNING);
588  return -1;
589#endif
590}
591
592void Thread::AtomicSetFlag(ThreadFlag flag) {
593  android_atomic_or(flag, &tls32_.state_and_flags.as_int);
594}
595
596void Thread::AtomicClearFlag(ThreadFlag flag) {
597  android_atomic_and(-1 ^ flag, &tls32_.state_and_flags.as_int);
598}
599
600// Attempt to rectify locks so that we dump thread list with required locks before exiting.
601static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
602  LOG(ERROR) << *thread << " suspend count already zero.";
603  Locks::thread_suspend_count_lock_->Unlock(self);
604  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
605    Locks::mutator_lock_->SharedTryLock(self);
606    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
607      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
608    }
609  }
610  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
611    Locks::thread_list_lock_->TryLock(self);
612    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
613      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
614    }
615  }
616  std::ostringstream ss;
617  Runtime::Current()->GetThreadList()->DumpLocked(ss);
618  LOG(FATAL) << ss.str();
619}
620
621void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
622  if (kIsDebugBuild) {
623    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
624          << delta << " " << tls32_.debug_suspend_count << " " << this;
625    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
626    Locks::thread_suspend_count_lock_->AssertHeld(self);
627    if (this != self && !IsSuspended()) {
628      Locks::thread_list_lock_->AssertHeld(self);
629    }
630  }
631  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
632    UnsafeLogFatalForSuspendCount(self, this);
633    return;
634  }
635
636  tls32_.suspend_count += delta;
637  if (for_debugger) {
638    tls32_.debug_suspend_count += delta;
639  }
640
641  if (tls32_.suspend_count == 0) {
642    AtomicClearFlag(kSuspendRequest);
643  } else {
644    AtomicSetFlag(kSuspendRequest);
645    TriggerSuspend();
646  }
647}
648
649void Thread::RunCheckpointFunction() {
650  Closure *checkpoints[kMaxCheckpoints];
651
652  // Grab the suspend_count lock and copy the current set of
653  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
654  // function will also grab this lock so we prevent a race between setting
655  // the kCheckpointRequest flag and clearing it.
656  {
657    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
658    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
659      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
660      tlsPtr_.checkpoint_functions[i] = nullptr;
661    }
662    AtomicClearFlag(kCheckpointRequest);
663  }
664
665  // Outside the lock, run all the checkpoint functions that
666  // we collected.
667  bool found_checkpoint = false;
668  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
669    if (checkpoints[i] != nullptr) {
670      ATRACE_BEGIN("Checkpoint function");
671      checkpoints[i]->Run(this);
672      ATRACE_END();
673      found_checkpoint = true;
674    }
675  }
676  CHECK(found_checkpoint);
677}
678
679bool Thread::RequestCheckpoint(Closure* function) {
680  union StateAndFlags old_state_and_flags;
681  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
682  if (old_state_and_flags.as_struct.state != kRunnable) {
683    return false;  // Fail, thread is suspended and so can't run a checkpoint.
684  }
685
686  uint32_t available_checkpoint = kMaxCheckpoints;
687  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
688    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
689      available_checkpoint = i;
690      break;
691    }
692  }
693  if (available_checkpoint == kMaxCheckpoints) {
694    // No checkpoint functions available, we can't run a checkpoint
695    return false;
696  }
697  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
698
699  // Checkpoint function installed now install flag bit.
700  // We must be runnable to request a checkpoint.
701  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
702  union StateAndFlags new_state_and_flags;
703  new_state_and_flags.as_int = old_state_and_flags.as_int;
704  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
705  int succeeded = android_atomic_acquire_cas(old_state_and_flags.as_int, new_state_and_flags.as_int,
706                                             &tls32_.state_and_flags.as_int);
707  if (UNLIKELY(succeeded != 0)) {
708    // The thread changed state before the checkpoint was installed.
709    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
710    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
711  } else {
712    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
713    TriggerSuspend();
714  }
715  return succeeded == 0;
716}
717
718void Thread::FullSuspendCheck() {
719  VLOG(threads) << this << " self-suspending";
720  ATRACE_BEGIN("Full suspend check");
721  // Make thread appear suspended to other threads, release mutator_lock_.
722  TransitionFromRunnableToSuspended(kSuspended);
723  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
724  TransitionFromSuspendedToRunnable();
725  ATRACE_END();
726  VLOG(threads) << this << " self-reviving";
727}
728
729void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
730  std::string group_name;
731  int priority;
732  bool is_daemon = false;
733  Thread* self = Thread::Current();
734
735  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
736  // cause ScopedObjectAccessUnchecked to deadlock.
737  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
738    ScopedObjectAccessUnchecked soa(self);
739    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
740        ->GetInt(thread->tlsPtr_.opeer);
741    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
742        ->GetBoolean(thread->tlsPtr_.opeer);
743
744    mirror::Object* thread_group =
745        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
746
747    if (thread_group != nullptr) {
748      mirror::ArtField* group_name_field =
749          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
750      mirror::String* group_name_string =
751          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
752      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
753    }
754  } else {
755    priority = GetNativePriority();
756  }
757
758  std::string scheduler_group_name(GetSchedulerGroupName(tid));
759  if (scheduler_group_name.empty()) {
760    scheduler_group_name = "default";
761  }
762
763  if (thread != nullptr) {
764    os << '"' << *thread->tlsPtr_.name << '"';
765    if (is_daemon) {
766      os << " daemon";
767    }
768    os << " prio=" << priority
769       << " tid=" << thread->GetThreadId()
770       << " " << thread->GetState();
771    if (thread->IsStillStarting()) {
772      os << " (still starting up)";
773    }
774    os << "\n";
775  } else {
776    os << '"' << ::art::GetThreadName(tid) << '"'
777       << " prio=" << priority
778       << " (not attached)\n";
779  }
780
781  if (thread != nullptr) {
782    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
783    os << "  | group=\"" << group_name << "\""
784       << " sCount=" << thread->tls32_.suspend_count
785       << " dsCount=" << thread->tls32_.debug_suspend_count
786       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
787       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
788  }
789
790  os << "  | sysTid=" << tid
791     << " nice=" << getpriority(PRIO_PROCESS, tid)
792     << " cgrp=" << scheduler_group_name;
793  if (thread != nullptr) {
794    int policy;
795    sched_param sp;
796    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
797                       __FUNCTION__);
798    os << " sched=" << policy << "/" << sp.sched_priority
799       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
800  }
801  os << "\n";
802
803  // Grab the scheduler stats for this thread.
804  std::string scheduler_stats;
805  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
806    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
807  } else {
808    scheduler_stats = "0 0 0";
809  }
810
811  char native_thread_state = '?';
812  int utime = 0;
813  int stime = 0;
814  int task_cpu = 0;
815  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
816
817  os << "  | state=" << native_thread_state
818     << " schedstat=( " << scheduler_stats << " )"
819     << " utm=" << utime
820     << " stm=" << stime
821     << " core=" << task_cpu
822     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
823  if (thread != nullptr) {
824    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
825        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
826        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
827    // Dump the held mutexes.
828    os << "  | held mutexes=";
829    for (size_t i = 0; i < kLockLevelCount; ++i) {
830      if (i != kMonitorLock) {
831        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
832        if (mutex != nullptr) {
833          os << " \"" << mutex->GetName() << "\"";
834          if (mutex->IsReaderWriterMutex()) {
835            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
836            if (rw_mutex->IsExclusiveHeld(thread)) {
837              os << "(exclusive held)";
838            } else {
839              CHECK(rw_mutex->IsSharedHeld(thread));
840              os << "(shared held)";
841            }
842          }
843        }
844      }
845    }
846    os << "\n";
847  }
848}
849
850void Thread::DumpState(std::ostream& os) const {
851  Thread::DumpState(os, this, GetTid());
852}
853
854struct StackDumpVisitor : public StackVisitor {
855  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
856      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
857      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
858        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
859  }
860
861  virtual ~StackDumpVisitor() {
862    if (frame_count == 0) {
863      os << "  (no managed stack frames)\n";
864    }
865  }
866
867  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
868    mirror::ArtMethod* m = GetMethod();
869    if (m->IsRuntimeMethod()) {
870      return true;
871    }
872    const int kMaxRepetition = 3;
873    mirror::Class* c = m->GetDeclaringClass();
874    mirror::DexCache* dex_cache = c->GetDexCache();
875    int line_number = -1;
876    if (dex_cache != nullptr) {  // be tolerant of bad input
877      const DexFile& dex_file = *dex_cache->GetDexFile();
878      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
879    }
880    if (line_number == last_line_number && last_method == m) {
881      ++repetition_count;
882    } else {
883      if (repetition_count >= kMaxRepetition) {
884        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
885      }
886      repetition_count = 0;
887      last_line_number = line_number;
888      last_method = m;
889    }
890    if (repetition_count < kMaxRepetition) {
891      os << "  at " << PrettyMethod(m, false);
892      if (m->IsNative()) {
893        os << "(Native method)";
894      } else {
895        const char* source_file(m->GetDeclaringClassSourceFile());
896        os << "(" << (source_file != nullptr ? source_file : "unavailable")
897           << ":" << line_number << ")";
898      }
899      os << "\n";
900      if (frame_count == 0) {
901        Monitor::DescribeWait(os, thread);
902      }
903      if (can_allocate) {
904        Monitor::VisitLocks(this, DumpLockedObject, &os);
905      }
906    }
907
908    ++frame_count;
909    return true;
910  }
911
912  static void DumpLockedObject(mirror::Object* o, void* context)
913      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
914    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
915    os << "  - locked ";
916    if (o == nullptr) {
917      os << "an unknown object";
918    } else {
919      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
920          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
921        // Getting the identity hashcode here would result in lock inflation and suspension of the
922        // current thread, which isn't safe if this is the only runnable thread.
923        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
924                           PrettyTypeOf(o).c_str());
925      } else {
926        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
927      }
928    }
929    os << "\n";
930  }
931
932  std::ostream& os;
933  const Thread* thread;
934  const bool can_allocate;
935  mirror::ArtMethod* method;
936  mirror::ArtMethod* last_method;
937  int last_line_number;
938  int repetition_count;
939  int frame_count;
940};
941
942static bool ShouldShowNativeStack(const Thread* thread)
943    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
944  ThreadState state = thread->GetState();
945
946  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
947  if (state > kWaiting && state < kStarting) {
948    return true;
949  }
950
951  // In an Object.wait variant or Thread.sleep? That's not interesting.
952  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
953    return false;
954  }
955
956  // In some other native method? That's interesting.
957  // We don't just check kNative because native methods will be in state kSuspended if they're
958  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
959  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
960  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
961  return current_method != nullptr && current_method->IsNative();
962}
963
964void Thread::DumpJavaStack(std::ostream& os) const {
965  std::unique_ptr<Context> context(Context::Create());
966  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
967                          !tls32_.throwing_OutOfMemoryError);
968  dumper.WalkStack();
969}
970
971void Thread::DumpStack(std::ostream& os) const {
972  // TODO: we call this code when dying but may not have suspended the thread ourself. The
973  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
974  //       the race with the thread_suspend_count_lock_).
975  // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
976  bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
977  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
978    // If we're currently in native code, dump that stack before dumping the managed stack.
979    if (dump_for_abort || ShouldShowNativeStack(this)) {
980      DumpKernelStack(os, GetTid(), "  kernel: ", false);
981      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
982    }
983    DumpJavaStack(os);
984  } else {
985    os << "Not able to dump stack of thread that isn't suspended";
986  }
987}
988
989void Thread::ThreadExitCallback(void* arg) {
990  Thread* self = reinterpret_cast<Thread*>(arg);
991  if (self->tls32_.thread_exit_check_count == 0) {
992    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
993        "going to use a pthread_key_create destructor?): " << *self;
994    CHECK(is_started_);
995    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
996    self->tls32_.thread_exit_check_count = 1;
997  } else {
998    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
999  }
1000}
1001
1002void Thread::Startup() {
1003  CHECK(!is_started_);
1004  is_started_ = true;
1005  {
1006    // MutexLock to keep annotalysis happy.
1007    //
1008    // Note we use nullptr for the thread because Thread::Current can
1009    // return garbage since (is_started_ == true) and
1010    // Thread::pthread_key_self_ is not yet initialized.
1011    // This was seen on glibc.
1012    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1013    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1014                                         *Locks::thread_suspend_count_lock_);
1015  }
1016
1017  // Allocate a TLS slot.
1018  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1019
1020  // Double-check the TLS slot allocation.
1021  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1022    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1023  }
1024}
1025
1026void Thread::FinishStartup() {
1027  Runtime* runtime = Runtime::Current();
1028  CHECK(runtime->IsStarted());
1029
1030  // Finish attaching the main thread.
1031  ScopedObjectAccess soa(Thread::Current());
1032  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1033
1034  Runtime::Current()->GetClassLinker()->RunRootClinits();
1035}
1036
1037void Thread::Shutdown() {
1038  CHECK(is_started_);
1039  is_started_ = false;
1040  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1041  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1042  if (resume_cond_ != nullptr) {
1043    delete resume_cond_;
1044    resume_cond_ = nullptr;
1045  }
1046}
1047
1048Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1049  wait_mutex_ = new Mutex("a thread wait mutex");
1050  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1051  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1052  tlsPtr_.single_step_control = new SingleStepControl;
1053  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1054  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1055
1056  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1057  tls32_.state_and_flags.as_struct.flags = 0;
1058  tls32_.state_and_flags.as_struct.state = kNative;
1059  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1060  std::fill(tlsPtr_.rosalloc_runs,
1061            tlsPtr_.rosalloc_runs + gc::allocator::RosAlloc::kNumThreadLocalSizeBrackets,
1062            gc::allocator::RosAlloc::GetDedicatedFullRun());
1063  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1064    tlsPtr_.checkpoint_functions[i] = nullptr;
1065  }
1066}
1067
1068bool Thread::IsStillStarting() const {
1069  // You might think you can check whether the state is kStarting, but for much of thread startup,
1070  // the thread is in kNative; it might also be in kVmWait.
1071  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1072  // assigned fairly early on, and needs to be.
1073  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1074  // this thread _ever_ entered kRunnable".
1075  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1076      (*tlsPtr_.name == kThreadNameDuringStartup);
1077}
1078
1079void Thread::AssertNoPendingException() const {
1080  if (UNLIKELY(IsExceptionPending())) {
1081    ScopedObjectAccess soa(Thread::Current());
1082    mirror::Throwable* exception = GetException(nullptr);
1083    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1084  }
1085}
1086
1087void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1088  if (UNLIKELY(IsExceptionPending())) {
1089    ScopedObjectAccess soa(Thread::Current());
1090    mirror::Throwable* exception = GetException(nullptr);
1091    LOG(FATAL) << "Throwing new exception " << msg << " with unexpected pending exception: "
1092        << exception->Dump();
1093  }
1094}
1095
1096static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1097                               RootType /*root_type*/)
1098    NO_THREAD_SAFETY_ANALYSIS {
1099  Thread* self = reinterpret_cast<Thread*>(arg);
1100  mirror::Object* entered_monitor = *object;
1101  if (self->HoldsLock(entered_monitor)) {
1102    LOG(WARNING) << "Calling MonitorExit on object "
1103                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1104                 << " left locked by native thread "
1105                 << *Thread::Current() << " which is detaching";
1106    entered_monitor->MonitorExit(self);
1107  }
1108}
1109
1110void Thread::Destroy() {
1111  Thread* self = this;
1112  DCHECK_EQ(self, Thread::Current());
1113
1114  if (tlsPtr_.opeer != nullptr) {
1115    ScopedObjectAccess soa(self);
1116    // We may need to call user-supplied managed code, do this before final clean-up.
1117    HandleUncaughtExceptions(soa);
1118    RemoveFromThreadGroup(soa);
1119
1120    // this.nativePeer = 0;
1121    if (Runtime::Current()->IsActiveTransaction()) {
1122      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1123          ->SetLong<true>(tlsPtr_.opeer, 0);
1124    } else {
1125      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1126          ->SetLong<false>(tlsPtr_.opeer, 0);
1127    }
1128    Dbg::PostThreadDeath(self);
1129
1130    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1131    // who is waiting.
1132    mirror::Object* lock =
1133        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1134    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1135    if (lock != nullptr) {
1136      StackHandleScope<1> hs(self);
1137      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1138      ObjectLock<mirror::Object> locker(self, h_obj);
1139      locker.NotifyAll();
1140    }
1141  }
1142
1143  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1144  if (tlsPtr_.jni_env != nullptr) {
1145    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1146  }
1147}
1148
1149Thread::~Thread() {
1150  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1151    // If pthread_create fails we don't have a jni env here.
1152    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1153    tlsPtr_.jpeer = nullptr;
1154  }
1155  tlsPtr_.opeer = nullptr;
1156
1157  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1158  if (initialized) {
1159    delete tlsPtr_.jni_env;
1160    tlsPtr_.jni_env = nullptr;
1161  }
1162  CHECK_NE(GetState(), kRunnable);
1163  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1164  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1165  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1166  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1167
1168  // We may be deleting a still born thread.
1169  SetStateUnsafe(kTerminated);
1170
1171  delete wait_cond_;
1172  delete wait_mutex_;
1173
1174  if (tlsPtr_.long_jump_context != nullptr) {
1175    delete tlsPtr_.long_jump_context;
1176  }
1177
1178  if (initialized) {
1179    CleanupCpu();
1180  }
1181
1182  delete tlsPtr_.debug_invoke_req;
1183  delete tlsPtr_.single_step_control;
1184  delete tlsPtr_.instrumentation_stack;
1185  delete tlsPtr_.name;
1186  delete tlsPtr_.stack_trace_sample;
1187
1188  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1189
1190  TearDownAlternateSignalStack();
1191}
1192
1193void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1194  if (!IsExceptionPending()) {
1195    return;
1196  }
1197  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1198  ScopedThreadStateChange tsc(this, kNative);
1199
1200  // Get and clear the exception.
1201  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1202  tlsPtr_.jni_env->ExceptionClear();
1203
1204  // If the thread has its own handler, use that.
1205  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1206                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1207                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1208  if (handler.get() == nullptr) {
1209    // Otherwise use the thread group's default handler.
1210    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1211                                                  WellKnownClasses::java_lang_Thread_group));
1212  }
1213
1214  // Call the handler.
1215  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1216      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1217      peer.get(), exception.get());
1218
1219  // If the handler threw, clear that exception too.
1220  tlsPtr_.jni_env->ExceptionClear();
1221}
1222
1223void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1224  // this.group.removeThread(this);
1225  // group can be null if we're in the compiler or a test.
1226  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1227      ->GetObject(tlsPtr_.opeer);
1228  if (ogroup != nullptr) {
1229    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1230    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1231    ScopedThreadStateChange tsc(soa.Self(), kNative);
1232    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1233                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1234                                    peer.get());
1235  }
1236}
1237
1238size_t Thread::NumHandleReferences() {
1239  size_t count = 0;
1240  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1241    count += cur->NumberOfReferences();
1242  }
1243  return count;
1244}
1245
1246bool Thread::HandleScopeContains(jobject obj) const {
1247  StackReference<mirror::Object>* hs_entry =
1248      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1249  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1250    if (cur->Contains(hs_entry)) {
1251      return true;
1252    }
1253  }
1254  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1255  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1256}
1257
1258void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1259  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1260    size_t num_refs = cur->NumberOfReferences();
1261    for (size_t j = 0; j < num_refs; ++j) {
1262      mirror::Object* object = cur->GetReference(j);
1263      if (object != nullptr) {
1264        mirror::Object* old_obj = object;
1265        visitor(&object, arg, thread_id, kRootNativeStack);
1266        if (old_obj != object) {
1267          cur->SetReference(j, object);
1268        }
1269      }
1270    }
1271  }
1272}
1273
1274mirror::Object* Thread::DecodeJObject(jobject obj) const {
1275  Locks::mutator_lock_->AssertSharedHeld(this);
1276  if (obj == nullptr) {
1277    return nullptr;
1278  }
1279  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1280  IndirectRefKind kind = GetIndirectRefKind(ref);
1281  mirror::Object* result;
1282  // The "kinds" below are sorted by the frequency we expect to encounter them.
1283  if (kind == kLocal) {
1284    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1285    // Local references do not need a read barrier.
1286    result = locals.Get<kWithoutReadBarrier>(ref);
1287  } else if (kind == kHandleScopeOrInvalid) {
1288    // TODO: make stack indirect reference table lookup more efficient.
1289    // Check if this is a local reference in the handle scope.
1290    if (LIKELY(HandleScopeContains(obj))) {
1291      // Read from handle scope.
1292      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1293      VerifyObject(result);
1294    } else {
1295      result = kInvalidIndirectRefObject;
1296    }
1297  } else if (kind == kGlobal) {
1298    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1299    // Strong global references do not need a read barrier.
1300    result = vm->globals.SynchronizedGet<kWithoutReadBarrier>(
1301        const_cast<Thread*>(this), &vm->globals_lock, ref);
1302  } else {
1303    DCHECK_EQ(kind, kWeakGlobal);
1304    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1305    if (result == kClearedJniWeakGlobal) {
1306      // This is a special case where it's okay to return nullptr.
1307      return nullptr;
1308    }
1309  }
1310
1311  if (UNLIKELY(result == nullptr)) {
1312    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1313  }
1314  return result;
1315}
1316
1317// Implements java.lang.Thread.interrupted.
1318bool Thread::Interrupted() {
1319  MutexLock mu(Thread::Current(), *wait_mutex_);
1320  bool interrupted = IsInterruptedLocked();
1321  SetInterruptedLocked(false);
1322  return interrupted;
1323}
1324
1325// Implements java.lang.Thread.isInterrupted.
1326bool Thread::IsInterrupted() {
1327  MutexLock mu(Thread::Current(), *wait_mutex_);
1328  return IsInterruptedLocked();
1329}
1330
1331void Thread::Interrupt(Thread* self) {
1332  MutexLock mu(self, *wait_mutex_);
1333  if (interrupted_) {
1334    return;
1335  }
1336  interrupted_ = true;
1337  NotifyLocked(self);
1338}
1339
1340void Thread::Notify() {
1341  Thread* self = Thread::Current();
1342  MutexLock mu(self, *wait_mutex_);
1343  NotifyLocked(self);
1344}
1345
1346void Thread::NotifyLocked(Thread* self) {
1347  if (wait_monitor_ != nullptr) {
1348    wait_cond_->Signal(self);
1349  }
1350}
1351
1352class CountStackDepthVisitor : public StackVisitor {
1353 public:
1354  explicit CountStackDepthVisitor(Thread* thread)
1355      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1356      : StackVisitor(thread, nullptr),
1357        depth_(0), skip_depth_(0), skipping_(true) {}
1358
1359  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1360    // We want to skip frames up to and including the exception's constructor.
1361    // Note we also skip the frame if it doesn't have a method (namely the callee
1362    // save frame)
1363    mirror::ArtMethod* m = GetMethod();
1364    if (skipping_ && !m->IsRuntimeMethod() &&
1365        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1366      skipping_ = false;
1367    }
1368    if (!skipping_) {
1369      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1370        ++depth_;
1371      }
1372    } else {
1373      ++skip_depth_;
1374    }
1375    return true;
1376  }
1377
1378  int GetDepth() const {
1379    return depth_;
1380  }
1381
1382  int GetSkipDepth() const {
1383    return skip_depth_;
1384  }
1385
1386 private:
1387  uint32_t depth_;
1388  uint32_t skip_depth_;
1389  bool skipping_;
1390};
1391
1392template<bool kTransactionActive>
1393class BuildInternalStackTraceVisitor : public StackVisitor {
1394 public:
1395  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1396      : StackVisitor(thread, nullptr), self_(self),
1397        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1398
1399  bool Init(int depth)
1400      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1401    // Allocate method trace with an extra slot that will hold the PC trace
1402    StackHandleScope<1> hs(self_);
1403    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1404    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1405        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1406    if (method_trace.Get() == nullptr) {
1407      return false;
1408    }
1409    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1410    if (dex_pc_trace == nullptr) {
1411      return false;
1412    }
1413    // Save PC trace in last element of method trace, also places it into the
1414    // object graph.
1415    // We are called from native: use non-transactional mode.
1416    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1417    // Set the Object*s and assert that no thread suspension is now possible.
1418    const char* last_no_suspend_cause =
1419        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1420    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1421    method_trace_ = method_trace.Get();
1422    dex_pc_trace_ = dex_pc_trace;
1423    return true;
1424  }
1425
1426  virtual ~BuildInternalStackTraceVisitor() {
1427    if (method_trace_ != nullptr) {
1428      self_->EndAssertNoThreadSuspension(nullptr);
1429    }
1430  }
1431
1432  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1433    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1434      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1435    }
1436    if (skip_depth_ > 0) {
1437      skip_depth_--;
1438      return true;
1439    }
1440    mirror::ArtMethod* m = GetMethod();
1441    if (m->IsRuntimeMethod()) {
1442      return true;  // Ignore runtime frames (in particular callee save).
1443    }
1444    method_trace_->Set<kTransactionActive>(count_, m);
1445    dex_pc_trace_->Set<kTransactionActive>(count_,
1446        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1447    ++count_;
1448    return true;
1449  }
1450
1451  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1452    return method_trace_;
1453  }
1454
1455 private:
1456  Thread* const self_;
1457  // How many more frames to skip.
1458  int32_t skip_depth_;
1459  // Current position down stack trace.
1460  uint32_t count_;
1461  // Array of dex PC values.
1462  mirror::IntArray* dex_pc_trace_;
1463  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1464  mirror::ObjectArray<mirror::Object>* method_trace_;
1465};
1466
1467template<bool kTransactionActive>
1468jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1469  // Compute depth of stack
1470  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1471  count_visitor.WalkStack();
1472  int32_t depth = count_visitor.GetDepth();
1473  int32_t skip_depth = count_visitor.GetSkipDepth();
1474
1475  // Build internal stack trace.
1476  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1477                                                                         const_cast<Thread*>(this),
1478                                                                         skip_depth);
1479  if (!build_trace_visitor.Init(depth)) {
1480    return nullptr;  // Allocation failed.
1481  }
1482  build_trace_visitor.WalkStack();
1483  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1484  if (kIsDebugBuild) {
1485    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1486      CHECK(trace->Get(i) != nullptr);
1487    }
1488  }
1489  return soa.AddLocalReference<jobjectArray>(trace);
1490}
1491template jobject Thread::CreateInternalStackTrace<false>(
1492    const ScopedObjectAccessAlreadyRunnable& soa) const;
1493template jobject Thread::CreateInternalStackTrace<true>(
1494    const ScopedObjectAccessAlreadyRunnable& soa) const;
1495
1496jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1497    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1498    int* stack_depth) {
1499  // Decode the internal stack trace into the depth, method trace and PC trace
1500  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1501
1502  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1503
1504  jobjectArray result;
1505
1506  if (output_array != nullptr) {
1507    // Reuse the array we were given.
1508    result = output_array;
1509    // ...adjusting the number of frames we'll write to not exceed the array length.
1510    const int32_t traces_length =
1511        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1512    depth = std::min(depth, traces_length);
1513  } else {
1514    // Create java_trace array and place in local reference table
1515    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1516        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1517    if (java_traces == nullptr) {
1518      return nullptr;
1519    }
1520    result = soa.AddLocalReference<jobjectArray>(java_traces);
1521  }
1522
1523  if (stack_depth != nullptr) {
1524    *stack_depth = depth;
1525  }
1526
1527  for (int32_t i = 0; i < depth; ++i) {
1528    mirror::ObjectArray<mirror::Object>* method_trace =
1529          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1530    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1531    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1532    int32_t line_number;
1533    StackHandleScope<3> hs(soa.Self());
1534    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1535    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1536    if (method->IsProxyMethod()) {
1537      line_number = -1;
1538      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1539      // source_name_object intentionally left null for proxy methods
1540    } else {
1541      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1542      uint32_t dex_pc = pc_trace->Get(i);
1543      line_number = method->GetLineNumFromDexPC(dex_pc);
1544      // Allocate element, potentially triggering GC
1545      // TODO: reuse class_name_object via Class::name_?
1546      const char* descriptor = method->GetDeclaringClassDescriptor();
1547      CHECK(descriptor != nullptr);
1548      std::string class_name(PrettyDescriptor(descriptor));
1549      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1550      if (class_name_object.Get() == nullptr) {
1551        return nullptr;
1552      }
1553      const char* source_file = method->GetDeclaringClassSourceFile();
1554      if (source_file != nullptr) {
1555        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1556        if (source_name_object.Get() == nullptr) {
1557          return nullptr;
1558        }
1559      }
1560    }
1561    const char* method_name = method->GetName();
1562    CHECK(method_name != nullptr);
1563    Handle<mirror::String> method_name_object(
1564        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1565    if (method_name_object.Get() == nullptr) {
1566      return nullptr;
1567    }
1568    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1569        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1570    if (obj == nullptr) {
1571      return nullptr;
1572    }
1573    // We are called from native: use non-transactional mode.
1574    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1575  }
1576  return result;
1577}
1578
1579void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1580                                const char* exception_class_descriptor, const char* fmt, ...) {
1581  va_list args;
1582  va_start(args, fmt);
1583  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1584                     fmt, args);
1585  va_end(args);
1586}
1587
1588void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1589                                const char* exception_class_descriptor,
1590                                const char* fmt, va_list ap) {
1591  std::string msg;
1592  StringAppendV(&msg, fmt, ap);
1593  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1594}
1595
1596void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1597                               const char* msg) {
1598  // Callers should either clear or call ThrowNewWrappedException.
1599  AssertNoPendingExceptionForNewException(msg);
1600  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1601}
1602
1603void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1604                                      const char* exception_class_descriptor,
1605                                      const char* msg) {
1606  DCHECK_EQ(this, Thread::Current());
1607  ScopedObjectAccessUnchecked soa(this);
1608  StackHandleScope<5> hs(soa.Self());
1609  // Ensure we don't forget arguments over object allocation.
1610  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1611  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1612  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1613  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1614  ClearException();
1615  Runtime* runtime = Runtime::Current();
1616
1617  mirror::ClassLoader* cl = nullptr;
1618  if (saved_throw_method.Get() != nullptr) {
1619    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1620  }
1621  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1622  Handle<mirror::Class> exception_class(
1623      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1624                                                        class_loader)));
1625  if (UNLIKELY(exception_class.Get() == nullptr)) {
1626    CHECK(IsExceptionPending());
1627    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1628    return;
1629  }
1630
1631  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1632    DCHECK(IsExceptionPending());
1633    return;
1634  }
1635  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1636  Handle<mirror::Throwable> exception(
1637      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1638
1639  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1640  if (exception.Get() == nullptr) {
1641    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1642                                         throw_location.GetDexPc());
1643    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1644    return;
1645  }
1646
1647  // Choose an appropriate constructor and set up the arguments.
1648  const char* signature;
1649  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1650  if (msg != nullptr) {
1651    // Ensure we remember this and the method over the String allocation.
1652    msg_string.reset(
1653        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1654    if (UNLIKELY(msg_string.get() == nullptr)) {
1655      CHECK(IsExceptionPending());  // OOME.
1656      return;
1657    }
1658    if (cause.get() == nullptr) {
1659      signature = "(Ljava/lang/String;)V";
1660    } else {
1661      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1662    }
1663  } else {
1664    if (cause.get() == nullptr) {
1665      signature = "()V";
1666    } else {
1667      signature = "(Ljava/lang/Throwable;)V";
1668    }
1669  }
1670  mirror::ArtMethod* exception_init_method =
1671      exception_class->FindDeclaredDirectMethod("<init>", signature);
1672
1673  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1674      << PrettyDescriptor(exception_class_descriptor);
1675
1676  if (UNLIKELY(!runtime->IsStarted())) {
1677    // Something is trying to throw an exception without a started runtime, which is the common
1678    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1679    // the exception fields directly.
1680    if (msg != nullptr) {
1681      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1682    }
1683    if (cause.get() != nullptr) {
1684      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1685    }
1686    ScopedLocalRef<jobject> trace(GetJniEnv(),
1687                                  Runtime::Current()->IsActiveTransaction()
1688                                      ? CreateInternalStackTrace<true>(soa)
1689                                      : CreateInternalStackTrace<false>(soa));
1690    if (trace.get() != nullptr) {
1691      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1692    }
1693    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1694                                         throw_location.GetDexPc());
1695    SetException(gc_safe_throw_location, exception.Get());
1696  } else {
1697    jvalue jv_args[2];
1698    size_t i = 0;
1699
1700    if (msg != nullptr) {
1701      jv_args[i].l = msg_string.get();
1702      ++i;
1703    }
1704    if (cause.get() != nullptr) {
1705      jv_args[i].l = cause.get();
1706      ++i;
1707    }
1708    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1709    if (LIKELY(!IsExceptionPending())) {
1710      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1711                                           throw_location.GetDexPc());
1712      SetException(gc_safe_throw_location, exception.Get());
1713    }
1714  }
1715}
1716
1717void Thread::ThrowOutOfMemoryError(const char* msg) {
1718  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1719      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1720  ThrowLocation throw_location = GetCurrentLocationForThrow();
1721  if (!tls32_.throwing_OutOfMemoryError) {
1722    tls32_.throwing_OutOfMemoryError = true;
1723    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1724    tls32_.throwing_OutOfMemoryError = false;
1725  } else {
1726    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1727    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1728  }
1729}
1730
1731Thread* Thread::CurrentFromGdb() {
1732  return Thread::Current();
1733}
1734
1735void Thread::DumpFromGdb() const {
1736  std::ostringstream ss;
1737  Dump(ss);
1738  std::string str(ss.str());
1739  // log to stderr for debugging command line processes
1740  std::cerr << str;
1741#ifdef HAVE_ANDROID_OS
1742  // log to logcat for debugging frameworks processes
1743  LOG(INFO) << str;
1744#endif
1745}
1746
1747// Explicitly instantiate 32 and 64bit thread offset dumping support.
1748template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1749template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1750
1751template<size_t ptr_size>
1752void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1753#define DO_THREAD_OFFSET(x, y) \
1754    if (offset == x.Uint32Value()) { \
1755      os << y; \
1756      return; \
1757    }
1758  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1759  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1760  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1761  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1762  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1763  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1764  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1765  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1766  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1767  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1768  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1769  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1770  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1771#undef DO_THREAD_OFFSET
1772
1773#define INTERPRETER_ENTRY_POINT_INFO(x) \
1774    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1775      os << #x; \
1776      return; \
1777    }
1778  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1779  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1780#undef INTERPRETER_ENTRY_POINT_INFO
1781
1782#define JNI_ENTRY_POINT_INFO(x) \
1783    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1784      os << #x; \
1785      return; \
1786    }
1787  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1788#undef JNI_ENTRY_POINT_INFO
1789
1790#define PORTABLE_ENTRY_POINT_INFO(x) \
1791    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1792      os << #x; \
1793      return; \
1794    }
1795  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1796  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1797  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1798#undef PORTABLE_ENTRY_POINT_INFO
1799
1800#define QUICK_ENTRY_POINT_INFO(x) \
1801    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1802      os << #x; \
1803      return; \
1804    }
1805  QUICK_ENTRY_POINT_INFO(pAllocArray)
1806  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1807  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1808  QUICK_ENTRY_POINT_INFO(pAllocObject)
1809  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1810  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1811  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1812  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1813  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1814  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1815  QUICK_ENTRY_POINT_INFO(pCheckCast)
1816  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1817  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1818  QUICK_ENTRY_POINT_INFO(pInitializeType)
1819  QUICK_ENTRY_POINT_INFO(pResolveString)
1820  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1821  QUICK_ENTRY_POINT_INFO(pSet32Static)
1822  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1823  QUICK_ENTRY_POINT_INFO(pSet64Static)
1824  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1825  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1826  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1827  QUICK_ENTRY_POINT_INFO(pGet32Static)
1828  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1829  QUICK_ENTRY_POINT_INFO(pGet64Static)
1830  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1831  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1832  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1833  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1834  QUICK_ENTRY_POINT_INFO(pAputObject)
1835  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1836  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1837  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1838  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1839  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1840  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1841  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1842  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1843  QUICK_ENTRY_POINT_INFO(pLockObject)
1844  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1845  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1846  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1847  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1848  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1849  QUICK_ENTRY_POINT_INFO(pFmod)
1850  QUICK_ENTRY_POINT_INFO(pL2d)
1851  QUICK_ENTRY_POINT_INFO(pFmodf)
1852  QUICK_ENTRY_POINT_INFO(pL2f)
1853  QUICK_ENTRY_POINT_INFO(pD2iz)
1854  QUICK_ENTRY_POINT_INFO(pF2iz)
1855  QUICK_ENTRY_POINT_INFO(pIdivmod)
1856  QUICK_ENTRY_POINT_INFO(pD2l)
1857  QUICK_ENTRY_POINT_INFO(pF2l)
1858  QUICK_ENTRY_POINT_INFO(pLdiv)
1859  QUICK_ENTRY_POINT_INFO(pLmod)
1860  QUICK_ENTRY_POINT_INFO(pLmul)
1861  QUICK_ENTRY_POINT_INFO(pShlLong)
1862  QUICK_ENTRY_POINT_INFO(pShrLong)
1863  QUICK_ENTRY_POINT_INFO(pUshrLong)
1864  QUICK_ENTRY_POINT_INFO(pIndexOf)
1865  QUICK_ENTRY_POINT_INFO(pMemcmp16)
1866  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1867  QUICK_ENTRY_POINT_INFO(pMemcpy)
1868  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1869  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1870  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1871  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1872  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1873  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1874  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1875  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1876  QUICK_ENTRY_POINT_INFO(pCheckSuspend)
1877  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1878  QUICK_ENTRY_POINT_INFO(pDeliverException)
1879  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1880  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1881  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1882  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1883  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1884#undef QUICK_ENTRY_POINT_INFO
1885
1886  os << offset;
1887}
1888
1889void Thread::QuickDeliverException() {
1890  // Get exception from thread.
1891  ThrowLocation throw_location;
1892  mirror::Throwable* exception = GetException(&throw_location);
1893  CHECK(exception != nullptr);
1894  // Don't leave exception visible while we try to find the handler, which may cause class
1895  // resolution.
1896  ClearException();
1897  bool is_deoptimization = (exception == GetDeoptimizationException());
1898  QuickExceptionHandler exception_handler(this, is_deoptimization);
1899  if (is_deoptimization) {
1900    exception_handler.DeoptimizeStack();
1901  } else {
1902    exception_handler.FindCatch(throw_location, exception);
1903  }
1904  exception_handler.UpdateInstrumentationStack();
1905  exception_handler.DoLongJump();
1906  LOG(FATAL) << "UNREACHABLE";
1907}
1908
1909Context* Thread::GetLongJumpContext() {
1910  Context* result = tlsPtr_.long_jump_context;
1911  if (result == nullptr) {
1912    result = Context::Create();
1913  } else {
1914    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1915    result->Reset();
1916  }
1917  return result;
1918}
1919
1920struct CurrentMethodVisitor FINAL : public StackVisitor {
1921  CurrentMethodVisitor(Thread* thread, Context* context)
1922      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1923      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {}
1924  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1925    mirror::ArtMethod* m = GetMethod();
1926    if (m->IsRuntimeMethod()) {
1927      // Continue if this is a runtime method.
1928      return true;
1929    }
1930    if (context_ != nullptr) {
1931      this_object_ = GetThisObject();
1932    }
1933    method_ = m;
1934    dex_pc_ = GetDexPc();
1935    return false;
1936  }
1937  mirror::Object* this_object_;
1938  mirror::ArtMethod* method_;
1939  uint32_t dex_pc_;
1940};
1941
1942mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1943  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr);
1944  visitor.WalkStack(false);
1945  if (dex_pc != nullptr) {
1946    *dex_pc = visitor.dex_pc_;
1947  }
1948  return visitor.method_;
1949}
1950
1951ThrowLocation Thread::GetCurrentLocationForThrow() {
1952  Context* context = GetLongJumpContext();
1953  CurrentMethodVisitor visitor(this, context);
1954  visitor.WalkStack(false);
1955  ReleaseLongJumpContext(context);
1956  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1957}
1958
1959bool Thread::HoldsLock(mirror::Object* object) const {
1960  if (object == nullptr) {
1961    return false;
1962  }
1963  return object->GetLockOwnerThreadId() == GetThreadId();
1964}
1965
1966// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1967template <typename RootVisitor>
1968class ReferenceMapVisitor : public StackVisitor {
1969 public:
1970  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1971      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1972      : StackVisitor(thread, context), visitor_(visitor) {}
1973
1974  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1975    if (false) {
1976      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1977                << StringPrintf("@ PC:%04x", GetDexPc());
1978    }
1979    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1980    if (shadow_frame != nullptr) {
1981      VisitShadowFrame(shadow_frame);
1982    } else {
1983      VisitQuickFrame();
1984    }
1985    return true;
1986  }
1987
1988  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1989    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
1990    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
1991    mirror::ArtMethod* m = *method_addr;
1992    DCHECK(m != nullptr);
1993    size_t num_regs = shadow_frame->NumberOfVRegs();
1994    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
1995      // handle scope for JNI or References for interpreter.
1996      for (size_t reg = 0; reg < num_regs; ++reg) {
1997        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1998        if (ref != nullptr) {
1999          mirror::Object* new_ref = ref;
2000          visitor_(&new_ref, reg, this);
2001          if (new_ref != ref) {
2002            shadow_frame->SetVRegReference(reg, new_ref);
2003          }
2004        }
2005      }
2006    } else {
2007      // Java method.
2008      // Portable path use DexGcMap and store in Method.native_gc_map_.
2009      const uint8_t* gc_map = m->GetNativeGcMap();
2010      CHECK(gc_map != nullptr) << PrettyMethod(m);
2011      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2012      uint32_t dex_pc = shadow_frame->GetDexPC();
2013      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2014      DCHECK(reg_bitmap != nullptr);
2015      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2016      for (size_t reg = 0; reg < num_regs; ++reg) {
2017        if (TestBitmap(reg, reg_bitmap)) {
2018          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2019          if (ref != nullptr) {
2020            mirror::Object* new_ref = ref;
2021            visitor_(&new_ref, reg, this);
2022            if (new_ref != ref) {
2023              shadow_frame->SetVRegReference(reg, new_ref);
2024            }
2025          }
2026        }
2027      }
2028    }
2029  }
2030
2031 private:
2032  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2033    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2034    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2035    mirror::ArtMethod* old_method = m;
2036    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2037    if (m != old_method) {
2038      cur_quick_frame->Assign(m);
2039    }
2040
2041    // Process register map (which native and runtime methods don't have)
2042    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2043      const uint8_t* native_gc_map = m->GetNativeGcMap();
2044      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2045      const DexFile::CodeItem* code_item = m->GetCodeItem();
2046      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2047      NativePcOffsetToReferenceMap map(native_gc_map);
2048      size_t num_regs = std::min(map.RegWidth() * 8,
2049                                 static_cast<size_t>(code_item->registers_size_));
2050      if (num_regs > 0) {
2051        Runtime* runtime = Runtime::Current();
2052        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2053        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2054        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2055        DCHECK(reg_bitmap != nullptr);
2056        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2057        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2058        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2059        // For all dex registers in the bitmap
2060        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2061        DCHECK(cur_quick_frame != nullptr);
2062        for (size_t reg = 0; reg < num_regs; ++reg) {
2063          // Does this register hold a reference?
2064          if (TestBitmap(reg, reg_bitmap)) {
2065            uint32_t vmap_offset;
2066            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2067              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2068                                                        kReferenceVReg);
2069              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2070              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2071              if (*ref_addr != nullptr) {
2072                visitor_(ref_addr, reg, this);
2073              }
2074            } else {
2075              StackReference<mirror::Object>* ref_addr =
2076                  reinterpret_cast<StackReference<mirror::Object>*>(
2077                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2078                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2079              mirror::Object* ref = ref_addr->AsMirrorPtr();
2080              if (ref != nullptr) {
2081                mirror::Object* new_ref = ref;
2082                visitor_(&new_ref, reg, this);
2083                if (ref != new_ref) {
2084                  ref_addr->Assign(new_ref);
2085                }
2086              }
2087            }
2088          }
2089        }
2090      }
2091    }
2092  }
2093
2094  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2095    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2096  }
2097
2098  // Visitor for when we visit a root.
2099  const RootVisitor& visitor_;
2100};
2101
2102class RootCallbackVisitor {
2103 public:
2104  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2105     : callback_(callback), arg_(arg), tid_(tid) {}
2106
2107  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2108    callback_(obj, arg_, tid_, kRootJavaFrame);
2109  }
2110
2111 private:
2112  RootCallback* const callback_;
2113  void* const arg_;
2114  const uint32_t tid_;
2115};
2116
2117void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2118  VerifyObject(class_loader_override);
2119  tlsPtr_.class_loader_override = class_loader_override;
2120}
2121
2122void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2123  uint32_t thread_id = GetThreadId();
2124  if (tlsPtr_.opeer != nullptr) {
2125    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2126  }
2127  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2128    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2129  }
2130  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2131  if (tlsPtr_.class_loader_override != nullptr) {
2132    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2133            kRootNativeStack);
2134  }
2135  if (tlsPtr_.monitor_enter_object != nullptr) {
2136    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2137  }
2138  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2139  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2140  HandleScopeVisitRoots(visitor, arg, thread_id);
2141  if (tlsPtr_.debug_invoke_req != nullptr) {
2142    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2143  }
2144  if (tlsPtr_.single_step_control != nullptr) {
2145    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2146  }
2147  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2148    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2149    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2150    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2151        shadow_frame = shadow_frame->GetLink()) {
2152      mapper.VisitShadowFrame(shadow_frame);
2153    }
2154  }
2155  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2156    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2157    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2158    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2159        shadow_frame != nullptr;
2160        shadow_frame = shadow_frame->GetLink()) {
2161      mapper.VisitShadowFrame(shadow_frame);
2162    }
2163  }
2164  // Visit roots on this thread's stack
2165  Context* context = GetLongJumpContext();
2166  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2167  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2168  mapper.WalkStack();
2169  ReleaseLongJumpContext(context);
2170  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2171    if (frame.this_object_ != nullptr) {
2172      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2173    }
2174    DCHECK(frame.method_ != nullptr);
2175    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2176  }
2177}
2178
2179static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2180                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2181  VerifyObject(*root);
2182}
2183
2184void Thread::VerifyStackImpl() {
2185  std::unique_ptr<Context> context(Context::Create());
2186  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2187  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2188  mapper.WalkStack();
2189}
2190
2191// Set the stack end to that to be used during a stack overflow
2192void Thread::SetStackEndForStackOverflow() {
2193  // During stack overflow we allow use of the full stack.
2194  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2195    // However, we seem to have already extended to use the full stack.
2196    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2197               << kStackOverflowReservedBytes << ")?";
2198    DumpStack(LOG(ERROR));
2199    LOG(FATAL) << "Recursive stack overflow.";
2200  }
2201
2202  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2203}
2204
2205void Thread::SetTlab(byte* start, byte* end) {
2206  DCHECK_LE(start, end);
2207  tlsPtr_.thread_local_start = start;
2208  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2209  tlsPtr_.thread_local_end = end;
2210  tlsPtr_.thread_local_objects = 0;
2211}
2212
2213bool Thread::HasTlab() const {
2214  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2215  if (has_tlab) {
2216    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2217  } else {
2218    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2219  }
2220  return has_tlab;
2221}
2222
2223std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2224  thread.ShortDump(os);
2225  return os;
2226}
2227
2228}  // namespace art
2229