thread.cc revision e6da9af8dfe0a3e3fbc2be700554f6478380e7b9
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker.h"
36#include "class_linker-inl.h"
37#include "cutils/atomic.h"
38#include "cutils/atomic-inline.h"
39#include "debugger.h"
40#include "dex_file-inl.h"
41#include "entrypoints/entrypoint_utils.h"
42#include "gc_map.h"
43#include "gc/accounting/card_table-inl.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "invoke_arg_array_builder.h"
47#include "jni_internal.h"
48#include "mirror/art_field-inl.h"
49#include "mirror/art_method-inl.h"
50#include "mirror/class-inl.h"
51#include "mirror/class_loader.h"
52#include "mirror/object_array-inl.h"
53#include "mirror/stack_trace_element.h"
54#include "monitor.h"
55#include "object_utils.h"
56#include "reflection.h"
57#include "runtime.h"
58#include "scoped_thread_state_change.h"
59#include "ScopedLocalRef.h"
60#include "ScopedUtfChars.h"
61#include "sirt_ref.h"
62#include "stack.h"
63#include "stack_indirect_reference_table.h"
64#include "thread-inl.h"
65#include "thread_list.h"
66#include "utils.h"
67#include "verifier/dex_gc_map.h"
68#include "verifier/method_verifier.h"
69#include "vmap_table.h"
70#include "well_known_classes.h"
71
72namespace art {
73
74bool Thread::is_started_ = false;
75pthread_key_t Thread::pthread_key_self_;
76ConditionVariable* Thread::resume_cond_ = nullptr;
77
78static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
79
80void Thread::InitCardTable() {
81  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
82}
83
84#if !defined(__APPLE__)
85static void UnimplementedEntryPoint() {
86  UNIMPLEMENTED(FATAL);
87}
88#endif
89
90void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
91                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
92
93void Thread::InitTlsEntryPoints() {
94#if !defined(__APPLE__)  // The Mac GCC is too old to accept this code.
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_));
98  for (uintptr_t* it = begin; it != end; ++it) {
99    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
100  }
101  begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
102  end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_));
103  for (uintptr_t* it = begin; it != end; ++it) {
104    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
105  }
106#endif
107  InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_,
108                  &quick_entrypoints_);
109}
110
111void ResetQuickAllocEntryPoints(QuickEntryPoints* qpoints);
112
113void Thread::ResetQuickAllocEntryPointsForThread() {
114  ResetQuickAllocEntryPoints(&quick_entrypoints_);
115}
116
117void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
118  deoptimization_shadow_frame_ = sf;
119}
120
121void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
122  deoptimization_return_value_.SetJ(ret_val.GetJ());
123}
124
125ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
126  ShadowFrame* sf = deoptimization_shadow_frame_;
127  deoptimization_shadow_frame_ = nullptr;
128  ret_val->SetJ(deoptimization_return_value_.GetJ());
129  return sf;
130}
131
132void Thread::InitTid() {
133  tid_ = ::art::GetTid();
134}
135
136void Thread::InitAfterFork() {
137  // One thread (us) survived the fork, but we have a new tid so we need to
138  // update the value stashed in this Thread*.
139  InitTid();
140}
141
142void* Thread::CreateCallback(void* arg) {
143  Thread* self = reinterpret_cast<Thread*>(arg);
144  Runtime* runtime = Runtime::Current();
145  if (runtime == nullptr) {
146    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
147    return nullptr;
148  }
149  {
150    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
151    //       after self->Init().
152    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
153    // Check that if we got here we cannot be shutting down (as shutdown should never have started
154    // while threads are being born).
155    CHECK(!runtime->IsShuttingDownLocked());
156    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
157    Runtime::Current()->EndThreadBirth();
158  }
159  {
160    ScopedObjectAccess soa(self);
161
162    // Copy peer into self, deleting global reference when done.
163    CHECK(self->jpeer_ != nullptr);
164    self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
165    self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
166    self->jpeer_ = nullptr;
167
168    {
169      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
170      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
171    }
172    Dbg::PostThreadStart(self);
173
174    // Invoke the 'run' method of our java.lang.Thread.
175    mirror::Object* receiver = self->opeer_;
176    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
177    mirror::ArtMethod* m =
178        receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
179    JValue result;
180    ArgArray arg_array(nullptr, 0);
181    arg_array.Append(reinterpret_cast<uint32_t>(receiver));
182    m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
183  }
184  // Detach and delete self.
185  Runtime::Current()->GetThreadList()->Unregister(self);
186
187  return nullptr;
188}
189
190Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
191                                  mirror::Object* thread_peer) {
192  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
193  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetInt(thread_peer)));
194  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
195  // to stop it from going away.
196  if (kIsDebugBuild) {
197    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
198    if (result != nullptr && !result->IsSuspended()) {
199      Locks::thread_list_lock_->AssertHeld(soa.Self());
200    }
201  }
202  return result;
203}
204
205Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
206  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
207}
208
209static size_t FixStackSize(size_t stack_size) {
210  // A stack size of zero means "use the default".
211  if (stack_size == 0) {
212    stack_size = Runtime::Current()->GetDefaultStackSize();
213  }
214
215  // Dalvik used the bionic pthread default stack size for native threads,
216  // so include that here to support apps that expect large native stacks.
217  stack_size += 1 * MB;
218
219  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
220  if (stack_size < PTHREAD_STACK_MIN) {
221    stack_size = PTHREAD_STACK_MIN;
222  }
223
224  // It's likely that callers are trying to ensure they have at least a certain amount of
225  // stack space, so we should add our reserved space on top of what they requested, rather
226  // than implicitly take it away from them.
227  stack_size += Thread::kStackOverflowReservedBytes;
228
229  // Some systems require the stack size to be a multiple of the system page size, so round up.
230  stack_size = RoundUp(stack_size, kPageSize);
231
232  return stack_size;
233}
234
235void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
236  CHECK(java_peer != nullptr);
237  Thread* self = static_cast<JNIEnvExt*>(env)->self;
238  Runtime* runtime = Runtime::Current();
239
240  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
241  bool thread_start_during_shutdown = false;
242  {
243    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
244    if (runtime->IsShuttingDownLocked()) {
245      thread_start_during_shutdown = true;
246    } else {
247      runtime->StartThreadBirth();
248    }
249  }
250  if (thread_start_during_shutdown) {
251    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
252    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
253    return;
254  }
255
256  Thread* child_thread = new Thread(is_daemon);
257  // Use global JNI ref to hold peer live while child thread starts.
258  child_thread->jpeer_ = env->NewGlobalRef(java_peer);
259  stack_size = FixStackSize(stack_size);
260
261  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
262  // assign it.
263  env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
264                   reinterpret_cast<jint>(child_thread));
265
266  pthread_t new_pthread;
267  pthread_attr_t attr;
268  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
269  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
270  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
271  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
272  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
273
274  if (pthread_create_result != 0) {
275    // pthread_create(3) failed, so clean up.
276    {
277      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
278      runtime->EndThreadBirth();
279    }
280    // Manually delete the global reference since Thread::Init will not have been run.
281    env->DeleteGlobalRef(child_thread->jpeer_);
282    child_thread->jpeer_ = nullptr;
283    delete child_thread;
284    child_thread = nullptr;
285    // TODO: remove from thread group?
286    env->SetIntField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
287    {
288      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
289                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
290      ScopedObjectAccess soa(env);
291      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
292    }
293  }
294}
295
296void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
297  // This function does all the initialization that must be run by the native thread it applies to.
298  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
299  // we can handshake with the corresponding native thread when it's ready.) Check this native
300  // thread hasn't been through here already...
301  CHECK(Thread::Current() == nullptr);
302  SetUpAlternateSignalStack();
303  InitCpu();
304  InitTlsEntryPoints();
305  InitCardTable();
306  InitTid();
307  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
308  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
309  pthread_self_ = pthread_self();
310  CHECK(is_started_);
311  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
312  DCHECK_EQ(Thread::Current(), this);
313
314  thin_lock_thread_id_ = thread_list->AllocThreadId(this);
315  InitStackHwm();
316
317  jni_env_ = new JNIEnvExt(this, java_vm);
318  thread_list->Register(this);
319}
320
321Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
322                       bool create_peer) {
323  Thread* self;
324  Runtime* runtime = Runtime::Current();
325  if (runtime == nullptr) {
326    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
327    return nullptr;
328  }
329  {
330    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
331    if (runtime->IsShuttingDownLocked()) {
332      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
333      return nullptr;
334    } else {
335      Runtime::Current()->StartThreadBirth();
336      self = new Thread(as_daemon);
337      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
338      Runtime::Current()->EndThreadBirth();
339    }
340  }
341
342  CHECK_NE(self->GetState(), kRunnable);
343  self->SetState(kNative);
344
345  // If we're the main thread, ClassLinker won't be created until after we're attached,
346  // so that thread needs a two-stage attach. Regular threads don't need this hack.
347  // In the compiler, all threads need this hack, because no-one's going to be getting
348  // a native peer!
349  if (create_peer) {
350    self->CreatePeer(thread_name, as_daemon, thread_group);
351  } else {
352    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
353    if (thread_name != nullptr) {
354      self->name_->assign(thread_name);
355      ::art::SetThreadName(thread_name);
356    }
357  }
358
359  return self;
360}
361
362void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
363  Runtime* runtime = Runtime::Current();
364  CHECK(runtime->IsStarted());
365  JNIEnv* env = jni_env_;
366
367  if (thread_group == nullptr) {
368    thread_group = runtime->GetMainThreadGroup();
369  }
370  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
371  jint thread_priority = GetNativePriority();
372  jboolean thread_is_daemon = as_daemon;
373
374  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
375  if (peer.get() == nullptr) {
376    CHECK(IsExceptionPending());
377    return;
378  }
379  {
380    ScopedObjectAccess soa(this);
381    opeer_ = soa.Decode<mirror::Object*>(peer.get());
382  }
383  env->CallNonvirtualVoidMethod(peer.get(),
384                                WellKnownClasses::java_lang_Thread,
385                                WellKnownClasses::java_lang_Thread_init,
386                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
387  AssertNoPendingException();
388
389  Thread* self = this;
390  DCHECK_EQ(self, Thread::Current());
391  jni_env_->SetIntField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
392                        reinterpret_cast<jint>(self));
393
394  ScopedObjectAccess soa(self);
395  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
396  if (peer_thread_name.get() == nullptr) {
397    // The Thread constructor should have set the Thread.name to a
398    // non-null value. However, because we can run without code
399    // available (in the compiler, in tests), we manually assign the
400    // fields the constructor should have set.
401    soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
402        SetBoolean(opeer_, thread_is_daemon);
403    soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
404        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group));
405    soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
406        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get()));
407    soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
408        SetInt(opeer_, thread_priority);
409    peer_thread_name.reset(GetThreadName(soa));
410  }
411  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
412  if (peer_thread_name.get() != nullptr) {
413    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
414  }
415}
416
417void Thread::SetThreadName(const char* name) {
418  name_->assign(name);
419  ::art::SetThreadName(name);
420  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
421}
422
423void Thread::InitStackHwm() {
424  void* stack_base;
425  size_t stack_size;
426  GetThreadStack(pthread_self_, &stack_base, &stack_size);
427
428  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
429  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
430
431  stack_begin_ = reinterpret_cast<byte*>(stack_base);
432  stack_size_ = stack_size;
433
434  if (stack_size_ <= kStackOverflowReservedBytes) {
435    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
436  }
437
438  // TODO: move this into the Linux GetThreadStack implementation.
439#if !defined(__APPLE__)
440  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
441  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
442  // will be broken because we'll die long before we get close to 2GB.
443  bool is_main_thread = (::art::GetTid() == getpid());
444  if (is_main_thread) {
445    rlimit stack_limit;
446    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
447      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
448    }
449    if (stack_limit.rlim_cur == RLIM_INFINITY) {
450      // Find the default stack size for new threads...
451      pthread_attr_t default_attributes;
452      size_t default_stack_size;
453      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
454      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
455                         "default stack size query");
456      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
457
458      // ...and use that as our limit.
459      size_t old_stack_size = stack_size_;
460      stack_size_ = default_stack_size;
461      stack_begin_ += (old_stack_size - stack_size_);
462      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
463                    << " to " << PrettySize(stack_size_)
464                    << " with base " << reinterpret_cast<void*>(stack_begin_);
465    }
466  }
467#endif
468
469  // Set stack_end_ to the bottom of the stack saving space of stack overflows
470  ResetDefaultStackEnd();
471
472  // Sanity check.
473  int stack_variable;
474  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
475}
476
477void Thread::ShortDump(std::ostream& os) const {
478  os << "Thread[";
479  if (GetThreadId() != 0) {
480    // If we're in kStarting, we won't have a thin lock id or tid yet.
481    os << GetThreadId()
482             << ",tid=" << GetTid() << ',';
483  }
484  os << GetState()
485           << ",Thread*=" << this
486           << ",peer=" << opeer_
487           << ",\"" << *name_ << "\""
488           << "]";
489}
490
491void Thread::Dump(std::ostream& os) const {
492  DumpState(os);
493  DumpStack(os);
494}
495
496mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
497  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
498  return (opeer_ != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : nullptr;
499}
500
501void Thread::GetThreadName(std::string& name) const {
502  name.assign(*name_);
503}
504
505uint64_t Thread::GetCpuMicroTime() const {
506#if defined(HAVE_POSIX_CLOCKS)
507  clockid_t cpu_clock_id;
508  pthread_getcpuclockid(pthread_self_, &cpu_clock_id);
509  timespec now;
510  clock_gettime(cpu_clock_id, &now);
511  return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
512#else
513  UNIMPLEMENTED(WARNING);
514  return -1;
515#endif
516}
517
518void Thread::AtomicSetFlag(ThreadFlag flag) {
519  android_atomic_or(flag, &state_and_flags_.as_int);
520}
521
522void Thread::AtomicClearFlag(ThreadFlag flag) {
523  android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
524}
525
526// Attempt to rectify locks so that we dump thread list with required locks before exiting.
527static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
528  LOG(ERROR) << *thread << " suspend count already zero.";
529  Locks::thread_suspend_count_lock_->Unlock(self);
530  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
531    Locks::mutator_lock_->SharedTryLock(self);
532    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
533      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
534    }
535  }
536  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
537    Locks::thread_list_lock_->TryLock(self);
538    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
539      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
540    }
541  }
542  std::ostringstream ss;
543  Runtime::Current()->GetThreadList()->DumpLocked(ss);
544  LOG(FATAL) << ss.str();
545}
546
547void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
548  DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
549      << delta << " " << debug_suspend_count_ << " " << this;
550  DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
551  Locks::thread_suspend_count_lock_->AssertHeld(self);
552  if (this != self && !IsSuspended()) {
553    Locks::thread_list_lock_->AssertHeld(self);
554  }
555  if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
556    UnsafeLogFatalForSuspendCount(self, this);
557    return;
558  }
559
560  suspend_count_ += delta;
561  if (for_debugger) {
562    debug_suspend_count_ += delta;
563  }
564
565  if (suspend_count_ == 0) {
566    AtomicClearFlag(kSuspendRequest);
567  } else {
568    AtomicSetFlag(kSuspendRequest);
569  }
570}
571
572void Thread::RunCheckpointFunction() {
573  Closure *checkpoints[kMaxCheckpoints];
574
575  // Grab the suspend_count lock and copy the current set of
576  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
577  // function will also grab this lock so we prevent a race between setting
578  // the kCheckpointRequest flag and clearing it.
579  {
580    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
581    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
582      checkpoints[i] = checkpoint_functions_[i];
583      checkpoint_functions_[i] = nullptr;
584    }
585    AtomicClearFlag(kCheckpointRequest);
586  }
587
588  // Outside the lock, run all the checkpoint functions that
589  // we collected.
590  bool found_checkpoint = false;
591  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
592    if (checkpoints[i] != nullptr) {
593      ATRACE_BEGIN("Checkpoint function");
594      checkpoints[i]->Run(this);
595      ATRACE_END();
596      found_checkpoint = true;
597    }
598  }
599  CHECK(found_checkpoint);
600}
601
602bool Thread::RequestCheckpoint(Closure* function) {
603  union StateAndFlags old_state_and_flags;
604  old_state_and_flags.as_int = state_and_flags_.as_int;
605  if (old_state_and_flags.as_struct.state != kRunnable) {
606    return false;  // Fail, thread is suspended and so can't run a checkpoint.
607  }
608
609  uint32_t available_checkpoint = kMaxCheckpoints;
610  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
611    if (checkpoint_functions_[i] == nullptr) {
612      available_checkpoint = i;
613      break;
614    }
615  }
616  if (available_checkpoint == kMaxCheckpoints) {
617    // No checkpoint functions available, we can't run a checkpoint
618    return false;
619  }
620  checkpoint_functions_[available_checkpoint] = function;
621
622  // Checkpoint function installed now install flag bit.
623  // We must be runnable to request a checkpoint.
624  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
625  union StateAndFlags new_state_and_flags;
626  new_state_and_flags.as_int = old_state_and_flags.as_int;
627  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
628  int succeeded = android_atomic_acquire_cas(old_state_and_flags.as_int, new_state_and_flags.as_int,
629                                         &state_and_flags_.as_int);
630  if (UNLIKELY(succeeded != 0)) {
631    // The thread changed state before the checkpoint was installed.
632    CHECK_EQ(checkpoint_functions_[available_checkpoint], function);
633    checkpoint_functions_[available_checkpoint] = nullptr;
634  } else {
635    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
636  }
637  return succeeded == 0;
638}
639
640void Thread::FullSuspendCheck() {
641  VLOG(threads) << this << " self-suspending";
642  ATRACE_BEGIN("Full suspend check");
643  // Make thread appear suspended to other threads, release mutator_lock_.
644  TransitionFromRunnableToSuspended(kSuspended);
645  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
646  TransitionFromSuspendedToRunnable();
647  ATRACE_END();
648  VLOG(threads) << this << " self-reviving";
649}
650
651void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
652  std::string group_name;
653  int priority;
654  bool is_daemon = false;
655  Thread* self = Thread::Current();
656
657  if (self != nullptr && thread != nullptr && thread->opeer_ != nullptr) {
658    ScopedObjectAccessUnchecked soa(self);
659    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
660    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
661
662    mirror::Object* thread_group =
663        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
664
665    if (thread_group != nullptr) {
666      mirror::ArtField* group_name_field =
667          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
668      mirror::String* group_name_string =
669          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
670      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
671    }
672  } else {
673    priority = GetNativePriority();
674  }
675
676  std::string scheduler_group_name(GetSchedulerGroupName(tid));
677  if (scheduler_group_name.empty()) {
678    scheduler_group_name = "default";
679  }
680
681  if (thread != nullptr) {
682    os << '"' << *thread->name_ << '"';
683    if (is_daemon) {
684      os << " daemon";
685    }
686    os << " prio=" << priority
687       << " tid=" << thread->GetThreadId()
688       << " " << thread->GetState();
689    if (thread->IsStillStarting()) {
690      os << " (still starting up)";
691    }
692    os << "\n";
693  } else {
694    os << '"' << ::art::GetThreadName(tid) << '"'
695       << " prio=" << priority
696       << " (not attached)\n";
697  }
698
699  if (thread != nullptr) {
700    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
701    os << "  | group=\"" << group_name << "\""
702       << " sCount=" << thread->suspend_count_
703       << " dsCount=" << thread->debug_suspend_count_
704       << " obj=" << reinterpret_cast<void*>(thread->opeer_)
705       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
706  }
707
708  os << "  | sysTid=" << tid
709     << " nice=" << getpriority(PRIO_PROCESS, tid)
710     << " cgrp=" << scheduler_group_name;
711  if (thread != nullptr) {
712    int policy;
713    sched_param sp;
714    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
715    os << " sched=" << policy << "/" << sp.sched_priority
716       << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
717  }
718  os << "\n";
719
720  // Grab the scheduler stats for this thread.
721  std::string scheduler_stats;
722  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
723    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
724  } else {
725    scheduler_stats = "0 0 0";
726  }
727
728  char native_thread_state = '?';
729  int utime = 0;
730  int stime = 0;
731  int task_cpu = 0;
732  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
733
734  os << "  | state=" << native_thread_state
735     << " schedstat=( " << scheduler_stats << " )"
736     << " utm=" << utime
737     << " stm=" << stime
738     << " core=" << task_cpu
739     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
740  if (thread != nullptr) {
741    os << "  | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
742       << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
743  }
744}
745
746void Thread::DumpState(std::ostream& os) const {
747  Thread::DumpState(os, this, GetTid());
748}
749
750struct StackDumpVisitor : public StackVisitor {
751  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
752      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
753      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
754        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
755  }
756
757  virtual ~StackDumpVisitor() {
758    if (frame_count == 0) {
759      os << "  (no managed stack frames)\n";
760    }
761  }
762
763  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
764    mirror::ArtMethod* m = GetMethod();
765    if (m->IsRuntimeMethod()) {
766      return true;
767    }
768    const int kMaxRepetition = 3;
769    mirror::Class* c = m->GetDeclaringClass();
770    const mirror::DexCache* dex_cache = c->GetDexCache();
771    int line_number = -1;
772    if (dex_cache != nullptr) {  // be tolerant of bad input
773      const DexFile& dex_file = *dex_cache->GetDexFile();
774      line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
775    }
776    if (line_number == last_line_number && last_method == m) {
777      ++repetition_count;
778    } else {
779      if (repetition_count >= kMaxRepetition) {
780        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
781      }
782      repetition_count = 0;
783      last_line_number = line_number;
784      last_method = m;
785    }
786    if (repetition_count < kMaxRepetition) {
787      os << "  at " << PrettyMethod(m, false);
788      if (m->IsNative()) {
789        os << "(Native method)";
790      } else {
791        mh.ChangeMethod(m);
792        const char* source_file(mh.GetDeclaringClassSourceFile());
793        os << "(" << (source_file != nullptr ? source_file : "unavailable")
794           << ":" << line_number << ")";
795      }
796      os << "\n";
797      if (frame_count == 0) {
798        Monitor::DescribeWait(os, thread);
799      }
800      if (can_allocate) {
801        Monitor::VisitLocks(this, DumpLockedObject, &os);
802      }
803    }
804
805    ++frame_count;
806    return true;
807  }
808
809  static void DumpLockedObject(mirror::Object* o, void* context)
810      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
811    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
812    os << "  - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
813  }
814
815  std::ostream& os;
816  const Thread* thread;
817  const bool can_allocate;
818  MethodHelper mh;
819  mirror::ArtMethod* last_method;
820  int last_line_number;
821  int repetition_count;
822  int frame_count;
823};
824
825static bool ShouldShowNativeStack(const Thread* thread)
826    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
827  ThreadState state = thread->GetState();
828
829  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
830  if (state > kWaiting && state < kStarting) {
831    return true;
832  }
833
834  // In an Object.wait variant or Thread.sleep? That's not interesting.
835  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
836    return false;
837  }
838
839  // In some other native method? That's interesting.
840  // We don't just check kNative because native methods will be in state kSuspended if they're
841  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
842  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
843  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
844  return current_method != nullptr && current_method->IsNative();
845}
846
847void Thread::DumpStack(std::ostream& os) const {
848  // TODO: we call this code when dying but may not have suspended the thread ourself. The
849  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
850  //       the race with the thread_suspend_count_lock_).
851  // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
852  bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
853  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
854    // If we're currently in native code, dump that stack before dumping the managed stack.
855    if (dump_for_abort || ShouldShowNativeStack(this)) {
856      DumpKernelStack(os, GetTid(), "  kernel: ", false);
857      DumpNativeStack(os, GetTid(), "  native: ", false);
858    }
859    UniquePtr<Context> context(Context::Create());
860    StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
861    dumper.WalkStack();
862  } else {
863    os << "Not able to dump stack of thread that isn't suspended";
864  }
865}
866
867void Thread::ThreadExitCallback(void* arg) {
868  Thread* self = reinterpret_cast<Thread*>(arg);
869  if (self->thread_exit_check_count_ == 0) {
870    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
871    CHECK(is_started_);
872    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
873    self->thread_exit_check_count_ = 1;
874  } else {
875    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
876  }
877}
878
879void Thread::Startup() {
880  CHECK(!is_started_);
881  is_started_ = true;
882  {
883    // MutexLock to keep annotalysis happy.
884    //
885    // Note we use nullptr for the thread because Thread::Current can
886    // return garbage since (is_started_ == true) and
887    // Thread::pthread_key_self_ is not yet initialized.
888    // This was seen on glibc.
889    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
890    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
891                                         *Locks::thread_suspend_count_lock_);
892  }
893
894  // Allocate a TLS slot.
895  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
896
897  // Double-check the TLS slot allocation.
898  if (pthread_getspecific(pthread_key_self_) != nullptr) {
899    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
900  }
901}
902
903void Thread::FinishStartup() {
904  Runtime* runtime = Runtime::Current();
905  CHECK(runtime->IsStarted());
906
907  // Finish attaching the main thread.
908  ScopedObjectAccess soa(Thread::Current());
909  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
910
911  Runtime::Current()->GetClassLinker()->RunRootClinits();
912}
913
914void Thread::Shutdown() {
915  CHECK(is_started_);
916  is_started_ = false;
917  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
918  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
919  if (resume_cond_ != nullptr) {
920    delete resume_cond_;
921    resume_cond_ = nullptr;
922  }
923}
924
925Thread::Thread(bool daemon)
926    : suspend_count_(0),
927      card_table_(nullptr),
928      exception_(nullptr),
929      stack_end_(nullptr),
930      managed_stack_(),
931      jni_env_(nullptr),
932      self_(nullptr),
933      opeer_(nullptr),
934      jpeer_(nullptr),
935      stack_begin_(nullptr),
936      stack_size_(0),
937      thin_lock_thread_id_(0),
938      stack_trace_sample_(nullptr),
939      trace_clock_base_(0),
940      tid_(0),
941      wait_mutex_(new Mutex("a thread wait mutex")),
942      wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
943      wait_monitor_(nullptr),
944      interrupted_(false),
945      wait_next_(nullptr),
946      monitor_enter_object_(nullptr),
947      top_sirt_(nullptr),
948      runtime_(nullptr),
949      class_loader_override_(nullptr),
950      long_jump_context_(nullptr),
951      throwing_OutOfMemoryError_(false),
952      debug_suspend_count_(0),
953      debug_invoke_req_(new DebugInvokeReq),
954      single_step_control_(new SingleStepControl),
955      deoptimization_shadow_frame_(nullptr),
956      instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
957      name_(new std::string(kThreadNameDuringStartup)),
958      daemon_(daemon),
959      pthread_self_(0),
960      no_thread_suspension_(0),
961      last_no_thread_suspension_cause_(nullptr),
962      thread_exit_check_count_(0),
963      thread_local_start_(nullptr),
964      thread_local_pos_(nullptr),
965      thread_local_end_(nullptr),
966      thread_local_objects_(0) {
967  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
968  state_and_flags_.as_struct.flags = 0;
969  state_and_flags_.as_struct.state = kNative;
970  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
971  memset(rosalloc_runs_, 0, sizeof(rosalloc_runs_));
972  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
973    checkpoint_functions_[i] = nullptr;
974  }
975}
976
977bool Thread::IsStillStarting() const {
978  // You might think you can check whether the state is kStarting, but for much of thread startup,
979  // the thread is in kNative; it might also be in kVmWait.
980  // You might think you can check whether the peer is nullptr, but the peer is actually created and
981  // assigned fairly early on, and needs to be.
982  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
983  // this thread _ever_ entered kRunnable".
984  return (jpeer_ == nullptr && opeer_ == nullptr) || (*name_ == kThreadNameDuringStartup);
985}
986
987void Thread::AssertNoPendingException() const {
988  if (UNLIKELY(IsExceptionPending())) {
989    ScopedObjectAccess soa(Thread::Current());
990    mirror::Throwable* exception = GetException(nullptr);
991    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
992  }
993}
994
995static mirror::Object* MonitorExitVisitor(mirror::Object* object, void* arg)
996    NO_THREAD_SAFETY_ANALYSIS {
997  Thread* self = reinterpret_cast<Thread*>(arg);
998  mirror::Object* entered_monitor = object;
999  if (self->HoldsLock(entered_monitor)) {
1000    LOG(WARNING) << "Calling MonitorExit on object "
1001                 << object << " (" << PrettyTypeOf(object) << ")"
1002                 << " left locked by native thread "
1003                 << *Thread::Current() << " which is detaching";
1004    entered_monitor->MonitorExit(self);
1005  }
1006  return object;
1007}
1008
1009void Thread::Destroy() {
1010  Thread* self = this;
1011  DCHECK_EQ(self, Thread::Current());
1012
1013  if (opeer_ != nullptr) {
1014    ScopedObjectAccess soa(self);
1015    // We may need to call user-supplied managed code, do this before final clean-up.
1016    HandleUncaughtExceptions(soa);
1017    RemoveFromThreadGroup(soa);
1018
1019    // this.nativePeer = 0;
1020    soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetInt(opeer_, 0);
1021    Dbg::PostThreadDeath(self);
1022
1023    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1024    // who is waiting.
1025    mirror::Object* lock =
1026        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
1027    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1028    if (lock != nullptr) {
1029      SirtRef<mirror::Object> sirt_obj(self, lock);
1030      ObjectLock<mirror::Object> locker(self, &sirt_obj);
1031      locker.Notify();
1032    }
1033  }
1034
1035  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1036  if (jni_env_ != nullptr) {
1037    jni_env_->monitors.VisitRoots(MonitorExitVisitor, self);
1038  }
1039}
1040
1041Thread::~Thread() {
1042  if (jni_env_ != nullptr && jpeer_ != nullptr) {
1043    // If pthread_create fails we don't have a jni env here.
1044    jni_env_->DeleteGlobalRef(jpeer_);
1045    jpeer_ = nullptr;
1046  }
1047  opeer_ = nullptr;
1048
1049  delete jni_env_;
1050  jni_env_ = nullptr;
1051
1052  CHECK_NE(GetState(), kRunnable);
1053  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1054  CHECK(checkpoint_functions_[0] == nullptr);
1055  CHECK(checkpoint_functions_[1] == nullptr);
1056  CHECK(checkpoint_functions_[2] == nullptr);
1057
1058  // We may be deleting a still born thread.
1059  SetStateUnsafe(kTerminated);
1060
1061  delete wait_cond_;
1062  delete wait_mutex_;
1063
1064  if (long_jump_context_ != nullptr) {
1065    delete long_jump_context_;
1066  }
1067
1068  delete debug_invoke_req_;
1069  delete single_step_control_;
1070  delete instrumentation_stack_;
1071  delete name_;
1072  delete stack_trace_sample_;
1073
1074  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1075
1076  TearDownAlternateSignalStack();
1077}
1078
1079void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1080  if (!IsExceptionPending()) {
1081    return;
1082  }
1083  ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1084  ScopedThreadStateChange tsc(this, kNative);
1085
1086  // Get and clear the exception.
1087  ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1088  jni_env_->ExceptionClear();
1089
1090  // If the thread has its own handler, use that.
1091  ScopedLocalRef<jobject> handler(jni_env_,
1092                                  jni_env_->GetObjectField(peer.get(),
1093                                                           WellKnownClasses::java_lang_Thread_uncaughtHandler));
1094  if (handler.get() == nullptr) {
1095    // Otherwise use the thread group's default handler.
1096    handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1097  }
1098
1099  // Call the handler.
1100  jni_env_->CallVoidMethod(handler.get(),
1101                           WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1102                           peer.get(), exception.get());
1103
1104  // If the handler threw, clear that exception too.
1105  jni_env_->ExceptionClear();
1106}
1107
1108void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1109  // this.group.removeThread(this);
1110  // group can be null if we're in the compiler or a test.
1111  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1112  if (ogroup != nullptr) {
1113    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1114    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1115    ScopedThreadStateChange tsc(soa.Self(), kNative);
1116    jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1117                             peer.get());
1118  }
1119}
1120
1121size_t Thread::NumSirtReferences() {
1122  size_t count = 0;
1123  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1124    count += cur->NumberOfReferences();
1125  }
1126  return count;
1127}
1128
1129bool Thread::SirtContains(jobject obj) const {
1130  mirror::Object** sirt_entry = reinterpret_cast<mirror::Object**>(obj);
1131  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1132    if (cur->Contains(sirt_entry)) {
1133      return true;
1134    }
1135  }
1136  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1137  return managed_stack_.ShadowFramesContain(sirt_entry);
1138}
1139
1140void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) {
1141  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1142    size_t num_refs = cur->NumberOfReferences();
1143    for (size_t j = 0; j < num_refs; ++j) {
1144      mirror::Object* object = cur->GetReference(j);
1145      if (object != nullptr) {
1146        const mirror::Object* new_obj = visitor(object, arg);
1147        DCHECK(new_obj != nullptr);
1148        if (new_obj != object) {
1149          cur->SetReference(j, const_cast<mirror::Object*>(new_obj));
1150        }
1151      }
1152    }
1153  }
1154}
1155
1156mirror::Object* Thread::DecodeJObject(jobject obj) const {
1157  Locks::mutator_lock_->AssertSharedHeld(this);
1158  if (obj == nullptr) {
1159    return nullptr;
1160  }
1161  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1162  IndirectRefKind kind = GetIndirectRefKind(ref);
1163  mirror::Object* result;
1164  // The "kinds" below are sorted by the frequency we expect to encounter them.
1165  if (kind == kLocal) {
1166    IndirectReferenceTable& locals = jni_env_->locals;
1167    result = const_cast<mirror::Object*>(locals.Get(ref));
1168  } else if (kind == kSirtOrInvalid) {
1169    // TODO: make stack indirect reference table lookup more efficient
1170    // Check if this is a local reference in the SIRT
1171    if (LIKELY(SirtContains(obj))) {
1172      result = *reinterpret_cast<mirror::Object**>(obj);  // Read from SIRT
1173    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1174      // Assume an invalid local reference is actually a direct pointer.
1175      result = reinterpret_cast<mirror::Object*>(obj);
1176    } else {
1177      result = kInvalidIndirectRefObject;
1178    }
1179  } else if (kind == kGlobal) {
1180    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1181    IndirectReferenceTable& globals = vm->globals;
1182    ReaderMutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1183    result = const_cast<mirror::Object*>(globals.Get(ref));
1184  } else {
1185    DCHECK_EQ(kind, kWeakGlobal);
1186    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1187    if (result == kClearedJniWeakGlobal) {
1188      // This is a special case where it's okay to return nullptr.
1189      return nullptr;
1190    }
1191  }
1192
1193  if (UNLIKELY(result == nullptr)) {
1194    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1195  } else {
1196    if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
1197      Runtime::Current()->GetHeap()->VerifyObject(result);
1198    }
1199  }
1200  return result;
1201}
1202
1203// Implements java.lang.Thread.interrupted.
1204bool Thread::Interrupted() {
1205  MutexLock mu(Thread::Current(), *wait_mutex_);
1206  bool interrupted = interrupted_;
1207  interrupted_ = false;
1208  return interrupted;
1209}
1210
1211// Implements java.lang.Thread.isInterrupted.
1212bool Thread::IsInterrupted() {
1213  MutexLock mu(Thread::Current(), *wait_mutex_);
1214  return interrupted_;
1215}
1216
1217void Thread::Interrupt() {
1218  Thread* self = Thread::Current();
1219  MutexLock mu(self, *wait_mutex_);
1220  if (interrupted_) {
1221    return;
1222  }
1223  interrupted_ = true;
1224  NotifyLocked(self);
1225}
1226
1227void Thread::Notify() {
1228  Thread* self = Thread::Current();
1229  MutexLock mu(self, *wait_mutex_);
1230  NotifyLocked(self);
1231}
1232
1233void Thread::NotifyLocked(Thread* self) {
1234  if (wait_monitor_ != nullptr) {
1235    wait_cond_->Signal(self);
1236  }
1237}
1238
1239class CountStackDepthVisitor : public StackVisitor {
1240 public:
1241  explicit CountStackDepthVisitor(Thread* thread)
1242      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1243      : StackVisitor(thread, nullptr),
1244        depth_(0), skip_depth_(0), skipping_(true) {}
1245
1246  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1247    // We want to skip frames up to and including the exception's constructor.
1248    // Note we also skip the frame if it doesn't have a method (namely the callee
1249    // save frame)
1250    mirror::ArtMethod* m = GetMethod();
1251    if (skipping_ && !m->IsRuntimeMethod() &&
1252        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1253      skipping_ = false;
1254    }
1255    if (!skipping_) {
1256      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1257        ++depth_;
1258      }
1259    } else {
1260      ++skip_depth_;
1261    }
1262    return true;
1263  }
1264
1265  int GetDepth() const {
1266    return depth_;
1267  }
1268
1269  int GetSkipDepth() const {
1270    return skip_depth_;
1271  }
1272
1273 private:
1274  uint32_t depth_;
1275  uint32_t skip_depth_;
1276  bool skipping_;
1277};
1278
1279class BuildInternalStackTraceVisitor : public StackVisitor {
1280 public:
1281  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1282      : StackVisitor(thread, nullptr), self_(self),
1283        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1284
1285  bool Init(int depth)
1286      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1287    // Allocate method trace with an extra slot that will hold the PC trace
1288    SirtRef<mirror::ObjectArray<mirror::Object> >
1289        method_trace(self_,
1290                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1291                                                                                            depth + 1));
1292    if (method_trace.get() == nullptr) {
1293      return false;
1294    }
1295    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1296    if (dex_pc_trace == nullptr) {
1297      return false;
1298    }
1299    // Save PC trace in last element of method trace, also places it into the
1300    // object graph.
1301    method_trace->Set(depth, dex_pc_trace);
1302    // Set the Object*s and assert that no thread suspension is now possible.
1303    const char* last_no_suspend_cause =
1304        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1305    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1306    method_trace_ = method_trace.get();
1307    dex_pc_trace_ = dex_pc_trace;
1308    return true;
1309  }
1310
1311  virtual ~BuildInternalStackTraceVisitor() {
1312    if (method_trace_ != nullptr) {
1313      self_->EndAssertNoThreadSuspension(nullptr);
1314    }
1315  }
1316
1317  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1318    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1319      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1320    }
1321    if (skip_depth_ > 0) {
1322      skip_depth_--;
1323      return true;
1324    }
1325    mirror::ArtMethod* m = GetMethod();
1326    if (m->IsRuntimeMethod()) {
1327      return true;  // Ignore runtime frames (in particular callee save).
1328    }
1329    method_trace_->Set(count_, m);
1330    dex_pc_trace_->Set(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1331    ++count_;
1332    return true;
1333  }
1334
1335  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1336    return method_trace_;
1337  }
1338
1339 private:
1340  Thread* const self_;
1341  // How many more frames to skip.
1342  int32_t skip_depth_;
1343  // Current position down stack trace.
1344  uint32_t count_;
1345  // Array of dex PC values.
1346  mirror::IntArray* dex_pc_trace_;
1347  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1348  mirror::ObjectArray<mirror::Object>* method_trace_;
1349};
1350
1351jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1352  // Compute depth of stack
1353  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1354  count_visitor.WalkStack();
1355  int32_t depth = count_visitor.GetDepth();
1356  int32_t skip_depth = count_visitor.GetSkipDepth();
1357
1358  // Build internal stack trace.
1359  BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1360                                                     skip_depth);
1361  if (!build_trace_visitor.Init(depth)) {
1362    return nullptr;  // Allocation failed.
1363  }
1364  build_trace_visitor.WalkStack();
1365  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1366  if (kIsDebugBuild) {
1367    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1368      CHECK(trace->Get(i) != nullptr);
1369    }
1370  }
1371  return soa.AddLocalReference<jobjectArray>(trace);
1372}
1373
1374jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1375    jobjectArray output_array, int* stack_depth) {
1376  // Transition into runnable state to work on Object*/Array*
1377  ScopedObjectAccess soa(env);
1378  // Decode the internal stack trace into the depth, method trace and PC trace
1379  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1380
1381  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1382
1383  jobjectArray result;
1384
1385  if (output_array != nullptr) {
1386    // Reuse the array we were given.
1387    result = output_array;
1388    // ...adjusting the number of frames we'll write to not exceed the array length.
1389    const int32_t traces_length =
1390        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1391    depth = std::min(depth, traces_length);
1392  } else {
1393    // Create java_trace array and place in local reference table
1394    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1395        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1396    if (java_traces == nullptr) {
1397      return nullptr;
1398    }
1399    result = soa.AddLocalReference<jobjectArray>(java_traces);
1400  }
1401
1402  if (stack_depth != nullptr) {
1403    *stack_depth = depth;
1404  }
1405
1406  for (int32_t i = 0; i < depth; ++i) {
1407    mirror::ObjectArray<mirror::Object>* method_trace =
1408          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1409    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1410    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1411    MethodHelper mh(method);
1412    int32_t line_number;
1413    SirtRef<mirror::String> class_name_object(soa.Self(), NULL);
1414    SirtRef<mirror::String> source_name_object(soa.Self(), NULL);
1415    if (method->IsProxyMethod()) {
1416      line_number = -1;
1417      class_name_object.reset(method->GetDeclaringClass()->GetName());
1418      // source_name_object intentionally left null for proxy methods
1419    } else {
1420      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1421      uint32_t dex_pc = pc_trace->Get(i);
1422      line_number = mh.GetLineNumFromDexPC(dex_pc);
1423      // Allocate element, potentially triggering GC
1424      // TODO: reuse class_name_object via Class::name_?
1425      const char* descriptor = mh.GetDeclaringClassDescriptor();
1426      CHECK(descriptor != NULL);
1427      std::string class_name(PrettyDescriptor(descriptor));
1428      class_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1429      if (class_name_object.get() == NULL) {
1430        return NULL;
1431      }
1432      const char* source_file = mh.GetDeclaringClassSourceFile();
1433      source_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1434      if (source_name_object.get() == NULL) {
1435        return NULL;
1436      }
1437    }
1438    const char* method_name = mh.GetName();
1439    CHECK(method_name != nullptr);
1440    SirtRef<mirror::String> method_name_object(soa.Self(),
1441                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1442                                                                                     method_name));
1443    if (method_name_object.get() == nullptr) {
1444      return nullptr;
1445    }
1446    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1447        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1448    if (obj == nullptr) {
1449      return nullptr;
1450    }
1451    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set(i, obj);
1452  }
1453  return result;
1454}
1455
1456void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1457                                const char* exception_class_descriptor, const char* fmt, ...) {
1458  va_list args;
1459  va_start(args, fmt);
1460  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1461                     fmt, args);
1462  va_end(args);
1463}
1464
1465void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1466                                const char* exception_class_descriptor,
1467                                const char* fmt, va_list ap) {
1468  std::string msg;
1469  StringAppendV(&msg, fmt, ap);
1470  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1471}
1472
1473void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1474                               const char* msg) {
1475  AssertNoPendingException();  // Callers should either clear or call ThrowNewWrappedException.
1476  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1477}
1478
1479void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1480                                      const char* exception_class_descriptor,
1481                                      const char* msg) {
1482  DCHECK_EQ(this, Thread::Current());
1483  // Ensure we don't forget arguments over object allocation.
1484  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1485  SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1486  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1487  SirtRef<mirror::Throwable> cause(this, GetException(nullptr));
1488  ClearException();
1489  Runtime* runtime = Runtime::Current();
1490
1491  mirror::ClassLoader* cl = nullptr;
1492  if (saved_throw_method.get() != nullptr) {
1493    cl = saved_throw_method.get()->GetDeclaringClass()->GetClassLoader();
1494  }
1495  SirtRef<mirror::ClassLoader> class_loader(this, cl);
1496  SirtRef<mirror::Class>
1497      exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor,
1498                                                                 class_loader));
1499  if (UNLIKELY(exception_class.get() == nullptr)) {
1500    CHECK(IsExceptionPending());
1501    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1502    return;
1503  }
1504
1505  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1506    DCHECK(IsExceptionPending());
1507    return;
1508  }
1509  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1510  SirtRef<mirror::Throwable> exception(this,
1511                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1512
1513  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1514  if (exception.get() == nullptr) {
1515    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1516                                         throw_location.GetDexPc());
1517    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1518    return;
1519  }
1520
1521  // Choose an appropriate constructor and set up the arguments.
1522  const char* signature;
1523  SirtRef<mirror::String> msg_string(this, nullptr);
1524  if (msg != nullptr) {
1525    // Ensure we remember this and the method over the String allocation.
1526    msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1527    if (UNLIKELY(msg_string.get() == nullptr)) {
1528      CHECK(IsExceptionPending());  // OOME.
1529      return;
1530    }
1531    if (cause.get() == nullptr) {
1532      signature = "(Ljava/lang/String;)V";
1533    } else {
1534      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1535    }
1536  } else {
1537    if (cause.get() == nullptr) {
1538      signature = "()V";
1539    } else {
1540      signature = "(Ljava/lang/Throwable;)V";
1541    }
1542  }
1543  mirror::ArtMethod* exception_init_method =
1544      exception_class->FindDeclaredDirectMethod("<init>", signature);
1545
1546  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1547      << PrettyDescriptor(exception_class_descriptor);
1548
1549  if (UNLIKELY(!runtime->IsStarted())) {
1550    // Something is trying to throw an exception without a started runtime, which is the common
1551    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1552    // the exception fields directly.
1553    if (msg != nullptr) {
1554      exception->SetDetailMessage(msg_string.get());
1555    }
1556    if (cause.get() != nullptr) {
1557      exception->SetCause(cause.get());
1558    }
1559    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1560                                         throw_location.GetDexPc());
1561    SetException(gc_safe_throw_location, exception.get());
1562  } else {
1563    ArgArray args("VLL", 3);
1564    args.Append(reinterpret_cast<uint32_t>(exception.get()));
1565    if (msg != nullptr) {
1566      args.Append(reinterpret_cast<uint32_t>(msg_string.get()));
1567    }
1568    if (cause.get() != nullptr) {
1569      args.Append(reinterpret_cast<uint32_t>(cause.get()));
1570    }
1571    JValue result;
1572    exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V');
1573    if (LIKELY(!IsExceptionPending())) {
1574      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1575                                           throw_location.GetDexPc());
1576      SetException(gc_safe_throw_location, exception.get());
1577    }
1578  }
1579}
1580
1581void Thread::ThrowOutOfMemoryError(const char* msg) {
1582  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1583      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1584  ThrowLocation throw_location = GetCurrentLocationForThrow();
1585  if (!throwing_OutOfMemoryError_) {
1586    throwing_OutOfMemoryError_ = true;
1587    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1588    throwing_OutOfMemoryError_ = false;
1589  } else {
1590    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1591    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1592  }
1593}
1594
1595Thread* Thread::CurrentFromGdb() {
1596  return Thread::Current();
1597}
1598
1599void Thread::DumpFromGdb() const {
1600  std::ostringstream ss;
1601  Dump(ss);
1602  std::string str(ss.str());
1603  // log to stderr for debugging command line processes
1604  std::cerr << str;
1605#ifdef HAVE_ANDROID_OS
1606  // log to logcat for debugging frameworks processes
1607  LOG(INFO) << str;
1608#endif
1609}
1610
1611struct EntryPointInfo {
1612  uint32_t offset;
1613  const char* name;
1614};
1615#define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1616#define JNI_ENTRY_POINT_INFO(x)         { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1617#define PORTABLE_ENTRY_POINT_INFO(x)    { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1618#define QUICK_ENTRY_POINT_INFO(x)       { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1619static const EntryPointInfo gThreadEntryPointInfo[] = {
1620  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge),
1621  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge),
1622  JNI_ENTRY_POINT_INFO(pDlsymLookup),
1623  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline),
1624  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline),
1625  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge),
1626  QUICK_ENTRY_POINT_INFO(pAllocArray),
1627  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck),
1628  QUICK_ENTRY_POINT_INFO(pAllocObject),
1629  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck),
1630  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray),
1631  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck),
1632  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial),
1633  QUICK_ENTRY_POINT_INFO(pCheckCast),
1634  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage),
1635  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess),
1636  QUICK_ENTRY_POINT_INFO(pInitializeType),
1637  QUICK_ENTRY_POINT_INFO(pResolveString),
1638  QUICK_ENTRY_POINT_INFO(pSet32Instance),
1639  QUICK_ENTRY_POINT_INFO(pSet32Static),
1640  QUICK_ENTRY_POINT_INFO(pSet64Instance),
1641  QUICK_ENTRY_POINT_INFO(pSet64Static),
1642  QUICK_ENTRY_POINT_INFO(pSetObjInstance),
1643  QUICK_ENTRY_POINT_INFO(pSetObjStatic),
1644  QUICK_ENTRY_POINT_INFO(pGet32Instance),
1645  QUICK_ENTRY_POINT_INFO(pGet32Static),
1646  QUICK_ENTRY_POINT_INFO(pGet64Instance),
1647  QUICK_ENTRY_POINT_INFO(pGet64Static),
1648  QUICK_ENTRY_POINT_INFO(pGetObjInstance),
1649  QUICK_ENTRY_POINT_INFO(pGetObjStatic),
1650  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck),
1651  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck),
1652  QUICK_ENTRY_POINT_INFO(pAputObject),
1653  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData),
1654  QUICK_ENTRY_POINT_INFO(pJniMethodStart),
1655  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1656  QUICK_ENTRY_POINT_INFO(pJniMethodEnd),
1657  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1658  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference),
1659  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1660  QUICK_ENTRY_POINT_INFO(pLockObject),
1661  QUICK_ENTRY_POINT_INFO(pUnlockObject),
1662  QUICK_ENTRY_POINT_INFO(pCmpgDouble),
1663  QUICK_ENTRY_POINT_INFO(pCmpgFloat),
1664  QUICK_ENTRY_POINT_INFO(pCmplDouble),
1665  QUICK_ENTRY_POINT_INFO(pCmplFloat),
1666  QUICK_ENTRY_POINT_INFO(pFmod),
1667  QUICK_ENTRY_POINT_INFO(pSqrt),
1668  QUICK_ENTRY_POINT_INFO(pL2d),
1669  QUICK_ENTRY_POINT_INFO(pFmodf),
1670  QUICK_ENTRY_POINT_INFO(pL2f),
1671  QUICK_ENTRY_POINT_INFO(pD2iz),
1672  QUICK_ENTRY_POINT_INFO(pF2iz),
1673  QUICK_ENTRY_POINT_INFO(pIdivmod),
1674  QUICK_ENTRY_POINT_INFO(pD2l),
1675  QUICK_ENTRY_POINT_INFO(pF2l),
1676  QUICK_ENTRY_POINT_INFO(pLdiv),
1677  QUICK_ENTRY_POINT_INFO(pLmod),
1678  QUICK_ENTRY_POINT_INFO(pLmul),
1679  QUICK_ENTRY_POINT_INFO(pShlLong),
1680  QUICK_ENTRY_POINT_INFO(pShrLong),
1681  QUICK_ENTRY_POINT_INFO(pUshrLong),
1682  QUICK_ENTRY_POINT_INFO(pIndexOf),
1683  QUICK_ENTRY_POINT_INFO(pMemcmp16),
1684  QUICK_ENTRY_POINT_INFO(pStringCompareTo),
1685  QUICK_ENTRY_POINT_INFO(pMemcpy),
1686  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline),
1687  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline),
1688  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge),
1689  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1690  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1691  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1692  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1693  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1694  QUICK_ENTRY_POINT_INFO(pCheckSuspend),
1695  QUICK_ENTRY_POINT_INFO(pTestSuspend),
1696  QUICK_ENTRY_POINT_INFO(pDeliverException),
1697  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds),
1698  QUICK_ENTRY_POINT_INFO(pThrowDivZero),
1699  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod),
1700  QUICK_ENTRY_POINT_INFO(pThrowNullPointer),
1701  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow),
1702};
1703#undef QUICK_ENTRY_POINT_INFO
1704
1705void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1706  CHECK_EQ(size_of_pointers, 4U);  // TODO: support 64-bit targets.
1707
1708#define DO_THREAD_OFFSET(x) \
1709    if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1710      os << # x; \
1711      return; \
1712    }
1713  DO_THREAD_OFFSET(state_and_flags_);
1714  DO_THREAD_OFFSET(card_table_);
1715  DO_THREAD_OFFSET(exception_);
1716  DO_THREAD_OFFSET(opeer_);
1717  DO_THREAD_OFFSET(jni_env_);
1718  DO_THREAD_OFFSET(self_);
1719  DO_THREAD_OFFSET(stack_end_);
1720  DO_THREAD_OFFSET(suspend_count_);
1721  DO_THREAD_OFFSET(thin_lock_thread_id_);
1722  // DO_THREAD_OFFSET(top_of_managed_stack_);
1723  // DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1724  DO_THREAD_OFFSET(top_sirt_);
1725#undef DO_THREAD_OFFSET
1726
1727  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1728  CHECK_EQ(entry_point_count * size_of_pointers,
1729           sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) +
1730           sizeof(QuickEntryPoints));
1731  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_);
1732  for (size_t i = 0; i < entry_point_count; ++i) {
1733    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1734    expected_offset += size_of_pointers;
1735    if (gThreadEntryPointInfo[i].offset == offset) {
1736      os << gThreadEntryPointInfo[i].name;
1737      return;
1738    }
1739  }
1740  os << offset;
1741}
1742
1743static const bool kDebugExceptionDelivery = false;
1744class CatchBlockStackVisitor : public StackVisitor {
1745 public:
1746  CatchBlockStackVisitor(Thread* self, const ThrowLocation& throw_location,
1747                         mirror::Throwable* exception, bool is_deoptimization)
1748      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1749      : StackVisitor(self, self->GetLongJumpContext()),
1750        self_(self), exception_(exception), is_deoptimization_(is_deoptimization),
1751        to_find_(is_deoptimization ? nullptr : exception->GetClass()), throw_location_(throw_location),
1752        handler_quick_frame_(nullptr), handler_quick_frame_pc_(0), handler_dex_pc_(0),
1753        native_method_count_(0), clear_exception_(false),
1754        method_tracing_active_(is_deoptimization ||
1755                               Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()),
1756        instrumentation_frames_to_pop_(0), top_shadow_frame_(nullptr), prev_shadow_frame_(nullptr) {
1757    // Exception not in root sets, can't allow GC.
1758    last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block");
1759  }
1760
1761  ~CatchBlockStackVisitor() {
1762    LOG(FATAL) << "UNREACHABLE";  // Expected to take long jump.
1763  }
1764
1765  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1766    mirror::ArtMethod* method = GetMethod();
1767    if (method == nullptr) {
1768      // This is the upcall, we remember the frame and last pc so that we may long jump to them.
1769      handler_quick_frame_pc_ = GetCurrentQuickFramePc();
1770      handler_quick_frame_ = GetCurrentQuickFrame();
1771      return false;  // End stack walk.
1772    } else {
1773      if (UNLIKELY(method_tracing_active_ &&
1774                   GetQuickInstrumentationExitPc() == GetReturnPc())) {
1775        // Keep count of the number of unwinds during instrumentation.
1776        ++instrumentation_frames_to_pop_;
1777      }
1778      if (method->IsRuntimeMethod()) {
1779        // Ignore callee save method.
1780        DCHECK(method->IsCalleeSaveMethod());
1781        return true;
1782      } else if (is_deoptimization_) {
1783        return HandleDeoptimization(method);
1784      } else {
1785        return HandleTryItems(method);
1786      }
1787    }
1788  }
1789
1790  bool HandleTryItems(mirror::ArtMethod* method) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1791    uint32_t dex_pc = DexFile::kDexNoIndex;
1792    if (method->IsNative()) {
1793      ++native_method_count_;
1794    } else {
1795      dex_pc = GetDexPc();
1796    }
1797    if (dex_pc != DexFile::kDexNoIndex) {
1798      uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc, &clear_exception_);
1799      if (found_dex_pc != DexFile::kDexNoIndex) {
1800        handler_dex_pc_ = found_dex_pc;
1801        handler_quick_frame_pc_ = method->ToNativePc(found_dex_pc);
1802        handler_quick_frame_ = GetCurrentQuickFrame();
1803        return false;  // End stack walk.
1804      }
1805    }
1806    return true;  // Continue stack walk.
1807  }
1808
1809  bool HandleDeoptimization(mirror::ArtMethod* m)
1810      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1811    MethodHelper mh(m);
1812    const DexFile::CodeItem* code_item = mh.GetCodeItem();
1813    CHECK(code_item != nullptr);
1814    uint16_t num_regs = code_item->registers_size_;
1815    uint32_t dex_pc = GetDexPc();
1816    const Instruction* inst = Instruction::At(code_item->insns_ + dex_pc);
1817    uint32_t new_dex_pc = dex_pc + inst->SizeInCodeUnits();
1818    ShadowFrame* new_frame = ShadowFrame::Create(num_regs, nullptr, m, new_dex_pc);
1819    SirtRef<mirror::DexCache> dex_cache(self_, mh.GetDexCache());
1820    SirtRef<mirror::ClassLoader> class_loader(self_, mh.GetClassLoader());
1821    verifier::MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader,
1822                                      &mh.GetClassDef(), code_item, m->GetDexMethodIndex(), m,
1823                                      m->GetAccessFlags(), false, true);
1824    verifier.Verify();
1825    std::vector<int32_t> kinds = verifier.DescribeVRegs(dex_pc);
1826    for (uint16_t reg = 0; reg < num_regs; ++reg) {
1827      VRegKind kind = static_cast<VRegKind>(kinds.at(reg * 2));
1828      switch (kind) {
1829        case kUndefined:
1830          new_frame->SetVReg(reg, 0xEBADDE09);
1831          break;
1832        case kConstant:
1833          new_frame->SetVReg(reg, kinds.at((reg * 2) + 1));
1834          break;
1835        case kReferenceVReg:
1836          new_frame->SetVRegReference(reg,
1837                                      reinterpret_cast<mirror::Object*>(GetVReg(m, reg, kind)));
1838          break;
1839        default:
1840          new_frame->SetVReg(reg, GetVReg(m, reg, kind));
1841          break;
1842      }
1843    }
1844    if (prev_shadow_frame_ != nullptr) {
1845      prev_shadow_frame_->SetLink(new_frame);
1846    } else {
1847      top_shadow_frame_ = new_frame;
1848    }
1849    prev_shadow_frame_ = new_frame;
1850    return true;
1851  }
1852
1853  void DoLongJump() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1854    mirror::ArtMethod* catch_method = *handler_quick_frame_;
1855    if (catch_method == nullptr) {
1856      if (kDebugExceptionDelivery) {
1857        LOG(INFO) << "Handler is upcall";
1858      }
1859    } else {
1860      CHECK(!is_deoptimization_);
1861      if (kDebugExceptionDelivery) {
1862        const DexFile& dex_file = *catch_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
1863        int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_);
1864        LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")";
1865      }
1866    }
1867    if (clear_exception_) {
1868      // Exception was cleared as part of delivery.
1869      DCHECK(!self_->IsExceptionPending());
1870    } else {
1871      // Put exception back in root set with clear throw location.
1872      self_->SetException(ThrowLocation(), exception_);
1873    }
1874    self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_);
1875    // Do instrumentation events after allowing thread suspension again.
1876    instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1877    if (!is_deoptimization_) {
1878      // The debugger may suspend this thread and walk its stack. Let's do this before popping
1879      // instrumentation frames.
1880      instrumentation->ExceptionCaughtEvent(self_, throw_location_, catch_method, handler_dex_pc_,
1881                                            exception_);
1882    }
1883    for (size_t i = 0; i < instrumentation_frames_to_pop_; ++i) {
1884      // We pop the instrumentation stack here so as not to corrupt it during the stack walk.
1885      if (i != instrumentation_frames_to_pop_ - 1 || self_->GetInstrumentationStack()->front().method_ != catch_method) {
1886        // Don't pop the instrumentation frame of the catch handler.
1887        instrumentation->PopMethodForUnwind(self_, is_deoptimization_);
1888      }
1889    }
1890    if (is_deoptimization_) {
1891      // TODO: proper return value.
1892      self_->SetDeoptimizationShadowFrame(top_shadow_frame_);
1893    }
1894    // Place context back on thread so it will be available when we continue.
1895    self_->ReleaseLongJumpContext(context_);
1896    context_->SetSP(reinterpret_cast<uintptr_t>(handler_quick_frame_));
1897    CHECK_NE(handler_quick_frame_pc_, 0u);
1898    context_->SetPC(handler_quick_frame_pc_);
1899    context_->SmashCallerSaves();
1900    context_->DoLongJump();
1901  }
1902
1903 private:
1904  Thread* const self_;
1905  mirror::Throwable* const exception_;
1906  const bool is_deoptimization_;
1907  // The type of the exception catch block to find.
1908  mirror::Class* const to_find_;
1909  // Location of the throw.
1910  const ThrowLocation& throw_location_;
1911  // Quick frame with found handler or last frame if no handler found.
1912  mirror::ArtMethod** handler_quick_frame_;
1913  // PC to branch to for the handler.
1914  uintptr_t handler_quick_frame_pc_;
1915  // Associated dex PC.
1916  uint32_t handler_dex_pc_;
1917  // Number of native methods passed in crawl (equates to number of SIRTs to pop)
1918  uint32_t native_method_count_;
1919  // Should the exception be cleared as the catch block has no move-exception?
1920  bool clear_exception_;
1921  // Is method tracing active?
1922  const bool method_tracing_active_;
1923  // Support for nesting no thread suspension checks.
1924  const char* last_no_assert_suspension_cause_;
1925  // Number of frames to pop in long jump.
1926  size_t instrumentation_frames_to_pop_;
1927  ShadowFrame* top_shadow_frame_;
1928  ShadowFrame* prev_shadow_frame_;
1929};
1930
1931void Thread::QuickDeliverException() {
1932  // Get exception from thread.
1933  ThrowLocation throw_location;
1934  mirror::Throwable* exception = GetException(&throw_location);
1935  CHECK(exception != nullptr);
1936  // Don't leave exception visible while we try to find the handler, which may cause class
1937  // resolution.
1938  ClearException();
1939  bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1940  if (kDebugExceptionDelivery) {
1941    if (!is_deoptimization) {
1942      mirror::String* msg = exception->GetDetailMessage();
1943      std::string str_msg(msg != nullptr ? msg->ToModifiedUtf8() : "");
1944      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1945                << ": " << str_msg << "\n");
1946    } else {
1947      DumpStack(LOG(INFO) << "Deoptimizing: ");
1948    }
1949  }
1950  CatchBlockStackVisitor catch_finder(this, throw_location, exception, is_deoptimization);
1951  catch_finder.WalkStack(true);
1952  catch_finder.DoLongJump();
1953  LOG(FATAL) << "UNREACHABLE";
1954}
1955
1956Context* Thread::GetLongJumpContext() {
1957  Context* result = long_jump_context_;
1958  if (result == nullptr) {
1959    result = Context::Create();
1960  } else {
1961    long_jump_context_ = nullptr;  // Avoid context being shared.
1962    result->Reset();
1963  }
1964  return result;
1965}
1966
1967struct CurrentMethodVisitor : public StackVisitor {
1968  CurrentMethodVisitor(Thread* thread, Context* context)
1969      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1970      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {}
1971  virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1972    mirror::ArtMethod* m = GetMethod();
1973    if (m->IsRuntimeMethod()) {
1974      // Continue if this is a runtime method.
1975      return true;
1976    }
1977    if (context_ != nullptr) {
1978      this_object_ = GetThisObject();
1979    }
1980    method_ = m;
1981    dex_pc_ = GetDexPc();
1982    return false;
1983  }
1984  mirror::Object* this_object_;
1985  mirror::ArtMethod* method_;
1986  uint32_t dex_pc_;
1987};
1988
1989mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1990  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr);
1991  visitor.WalkStack(false);
1992  if (dex_pc != nullptr) {
1993    *dex_pc = visitor.dex_pc_;
1994  }
1995  return visitor.method_;
1996}
1997
1998ThrowLocation Thread::GetCurrentLocationForThrow() {
1999  Context* context = GetLongJumpContext();
2000  CurrentMethodVisitor visitor(this, context);
2001  visitor.WalkStack(false);
2002  ReleaseLongJumpContext(context);
2003  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
2004}
2005
2006bool Thread::HoldsLock(mirror::Object* object) {
2007  if (object == nullptr) {
2008    return false;
2009  }
2010  return object->GetLockOwnerThreadId() == thin_lock_thread_id_;
2011}
2012
2013// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2014template <typename RootVisitor>
2015class ReferenceMapVisitor : public StackVisitor {
2016 public:
2017  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2018      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2019      : StackVisitor(thread, context), visitor_(visitor) {}
2020
2021  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2022    if (false) {
2023      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2024          << StringPrintf("@ PC:%04x", GetDexPc());
2025    }
2026    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2027    if (shadow_frame != nullptr) {
2028      mirror::ArtMethod* m = shadow_frame->GetMethod();
2029      size_t num_regs = shadow_frame->NumberOfVRegs();
2030      if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2031        // SIRT for JNI or References for interpreter.
2032        for (size_t reg = 0; reg < num_regs; ++reg) {
2033          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2034          if (ref != nullptr) {
2035            mirror::Object* new_ref = visitor_(ref, reg, this);
2036            if (new_ref != ref) {
2037             shadow_frame->SetVRegReference(reg, new_ref);
2038            }
2039          }
2040        }
2041      } else {
2042        // Java method.
2043        // Portable path use DexGcMap and store in Method.native_gc_map_.
2044        const uint8_t* gc_map = m->GetNativeGcMap();
2045        CHECK(gc_map != NULL) << PrettyMethod(m);
2046        verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2047        uint32_t dex_pc = GetDexPc();
2048        const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2049        DCHECK(reg_bitmap != nullptr);
2050        num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2051        for (size_t reg = 0; reg < num_regs; ++reg) {
2052          if (TestBitmap(reg, reg_bitmap)) {
2053            mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2054            if (ref != nullptr) {
2055              mirror::Object* new_ref = visitor_(ref, reg, this);
2056              if (new_ref != ref) {
2057               shadow_frame->SetVRegReference(reg, new_ref);
2058              }
2059            }
2060          }
2061        }
2062      }
2063    } else {
2064      mirror::ArtMethod* m = GetMethod();
2065      // Process register map (which native and runtime methods don't have)
2066      if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2067        const uint8_t* native_gc_map = m->GetNativeGcMap();
2068        CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2069        mh_.ChangeMethod(m);
2070        const DexFile::CodeItem* code_item = mh_.GetCodeItem();
2071        DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2072        NativePcOffsetToReferenceMap map(native_gc_map);
2073        size_t num_regs = std::min(map.RegWidth() * 8,
2074                                   static_cast<size_t>(code_item->registers_size_));
2075        if (num_regs > 0) {
2076          const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
2077          DCHECK(reg_bitmap != nullptr);
2078          const VmapTable vmap_table(m->GetVmapTable());
2079          uint32_t core_spills = m->GetCoreSpillMask();
2080          uint32_t fp_spills = m->GetFpSpillMask();
2081          size_t frame_size = m->GetFrameSizeInBytes();
2082          // For all dex registers in the bitmap
2083          mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
2084          DCHECK(cur_quick_frame != nullptr);
2085          for (size_t reg = 0; reg < num_regs; ++reg) {
2086            // Does this register hold a reference?
2087            if (TestBitmap(reg, reg_bitmap)) {
2088              uint32_t vmap_offset;
2089              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2090                int vmap_reg = vmap_table.ComputeRegister(core_spills, vmap_offset, kReferenceVReg);
2091                mirror::Object* ref = reinterpret_cast<mirror::Object*>(GetGPR(vmap_reg));
2092                if (ref != nullptr) {
2093                  mirror::Object* new_ref = visitor_(ref, reg, this);
2094                  if (ref != new_ref) {
2095                    SetGPR(vmap_reg, reinterpret_cast<uintptr_t>(new_ref));
2096                  }
2097                }
2098              } else {
2099                uint32_t* reg_addr =
2100                    GetVRegAddr(cur_quick_frame, code_item, core_spills, fp_spills, frame_size, reg);
2101                mirror::Object* ref = reinterpret_cast<mirror::Object*>(*reg_addr);
2102                if (ref != nullptr) {
2103                  mirror::Object* new_ref = visitor_(ref, reg, this);
2104                  if (ref != new_ref) {
2105                    *reg_addr = reinterpret_cast<uint32_t>(new_ref);
2106                  }
2107                }
2108              }
2109            }
2110          }
2111        }
2112      }
2113    }
2114    return true;
2115  }
2116
2117 private:
2118  static bool TestBitmap(int reg, const uint8_t* reg_vector) {
2119    return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
2120  }
2121
2122  // Visitor for when we visit a root.
2123  const RootVisitor& visitor_;
2124
2125  // A method helper we keep around to avoid dex file/cache re-computations.
2126  MethodHelper mh_;
2127};
2128
2129class RootCallbackVisitor {
2130 public:
2131  RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {}
2132
2133  mirror::Object* operator()(mirror::Object* obj, size_t, const StackVisitor*) const {
2134    return visitor_(obj, arg_);
2135  }
2136
2137 private:
2138  RootVisitor* visitor_;
2139  void* arg_;
2140};
2141
2142class VerifyCallbackVisitor {
2143 public:
2144  VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg)
2145      : visitor_(visitor),
2146        arg_(arg) {
2147  }
2148
2149  void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const {
2150    visitor_(obj, arg_, vreg, visitor);
2151  }
2152
2153 private:
2154  VerifyRootVisitor* const visitor_;
2155  void* const arg_;
2156};
2157
2158void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2159  if (kIsDebugBuild) {
2160    Runtime::Current()->GetHeap()->VerifyObject(class_loader_override);
2161  }
2162  class_loader_override_ = class_loader_override;
2163}
2164
2165void Thread::VisitRoots(RootVisitor* visitor, void* arg) {
2166  if (opeer_ != nullptr) {
2167    opeer_ = visitor(opeer_, arg);
2168  }
2169  if (exception_ != nullptr) {
2170    exception_ = down_cast<mirror::Throwable*>(visitor(exception_, arg));
2171  }
2172  throw_location_.VisitRoots(visitor, arg);
2173  if (class_loader_override_ != nullptr) {
2174    class_loader_override_ = down_cast<mirror::ClassLoader*>(visitor(class_loader_override_, arg));
2175  }
2176  jni_env_->locals.VisitRoots(visitor, arg);
2177  jni_env_->monitors.VisitRoots(visitor, arg);
2178
2179  SirtVisitRoots(visitor, arg);
2180
2181  // Visit roots on this thread's stack
2182  Context* context = GetLongJumpContext();
2183  RootCallbackVisitor visitorToCallback(visitor, arg);
2184  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2185  mapper.WalkStack();
2186  ReleaseLongJumpContext(context);
2187
2188  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2189    if (frame.this_object_ != nullptr) {
2190      frame.this_object_ = visitor(frame.this_object_, arg);
2191    }
2192    DCHECK(frame.method_ != nullptr);
2193    frame.method_ = down_cast<mirror::ArtMethod*>(visitor(frame.method_, arg));
2194  }
2195}
2196
2197static mirror::Object* VerifyRoot(mirror::Object* root, void* arg) {
2198  DCHECK(root != nullptr);
2199  DCHECK(arg != nullptr);
2200  reinterpret_cast<gc::Heap*>(arg)->VerifyObject(root);
2201  return root;
2202}
2203
2204void Thread::VerifyStackImpl() {
2205  UniquePtr<Context> context(Context::Create());
2206  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap());
2207  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2208  mapper.WalkStack();
2209}
2210
2211// Set the stack end to that to be used during a stack overflow
2212void Thread::SetStackEndForStackOverflow() {
2213  // During stack overflow we allow use of the full stack.
2214  if (stack_end_ == stack_begin_) {
2215    // However, we seem to have already extended to use the full stack.
2216    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2217               << kStackOverflowReservedBytes << ")?";
2218    DumpStack(LOG(ERROR));
2219    LOG(FATAL) << "Recursive stack overflow.";
2220  }
2221
2222  stack_end_ = stack_begin_;
2223}
2224
2225void Thread::SetTlab(byte* start, byte* end) {
2226  DCHECK_LE(start, end);
2227  thread_local_start_ = start;
2228  thread_local_pos_  = thread_local_start_;
2229  thread_local_end_ = end;
2230  thread_local_objects_ = 0;
2231}
2232
2233std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2234  thread.ShortDump(os);
2235  return os;
2236}
2237
2238}  // namespace art
2239