thread.cc revision ef7d42fca18c16fbaf103822ad16f23246e2905d
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "catch_finder.h"
36#include "class_linker.h"
37#include "class_linker-inl.h"
38#include "cutils/atomic.h"
39#include "cutils/atomic-inline.h"
40#include "debugger.h"
41#include "dex_file-inl.h"
42#include "entrypoints/entrypoint_utils.h"
43#include "gc_map.h"
44#include "gc/accounting/card_table-inl.h"
45#include "gc/heap.h"
46#include "gc/space/space.h"
47#include "invoke_arg_array_builder.h"
48#include "jni_internal.h"
49#include "mirror/art_field-inl.h"
50#include "mirror/art_method-inl.h"
51#include "mirror/class-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/object_array-inl.h"
54#include "mirror/stack_trace_element.h"
55#include "monitor.h"
56#include "object_utils.h"
57#include "reflection.h"
58#include "runtime.h"
59#include "scoped_thread_state_change.h"
60#include "ScopedLocalRef.h"
61#include "ScopedUtfChars.h"
62#include "sirt_ref.h"
63#include "stack.h"
64#include "stack_indirect_reference_table.h"
65#include "thread-inl.h"
66#include "thread_list.h"
67#include "utils.h"
68#include "verifier/dex_gc_map.h"
69#include "vmap_table.h"
70#include "well_known_classes.h"
71
72namespace art {
73
74bool Thread::is_started_ = false;
75pthread_key_t Thread::pthread_key_self_;
76ConditionVariable* Thread::resume_cond_ = nullptr;
77
78static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
79
80void Thread::InitCardTable() {
81  card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
82}
83
84#if !defined(__APPLE__)
85static void UnimplementedEntryPoint() {
86  UNIMPLEMENTED(FATAL);
87}
88#endif
89
90void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
91                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
92
93void Thread::InitTlsEntryPoints() {
94#if !defined(__APPLE__)  // The Mac GCC is too old to accept this code.
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(quick_entrypoints_));
98  for (uintptr_t* it = begin; it != end; ++it) {
99    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
100  }
101  begin = reinterpret_cast<uintptr_t*>(&interpreter_entrypoints_);
102  end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) + sizeof(portable_entrypoints_));
103  for (uintptr_t* it = begin; it != end; ++it) {
104    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
105  }
106#endif
107  InitEntryPoints(&interpreter_entrypoints_, &jni_entrypoints_, &portable_entrypoints_,
108                  &quick_entrypoints_);
109}
110
111void ResetQuickAllocEntryPoints(QuickEntryPoints* qpoints);
112
113void Thread::ResetQuickAllocEntryPointsForThread() {
114  ResetQuickAllocEntryPoints(&quick_entrypoints_);
115}
116
117void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
118  deoptimization_shadow_frame_ = sf;
119}
120
121void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
122  deoptimization_return_value_.SetJ(ret_val.GetJ());
123}
124
125ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
126  ShadowFrame* sf = deoptimization_shadow_frame_;
127  deoptimization_shadow_frame_ = nullptr;
128  ret_val->SetJ(deoptimization_return_value_.GetJ());
129  return sf;
130}
131
132void Thread::InitTid() {
133  tid_ = ::art::GetTid();
134}
135
136void Thread::InitAfterFork() {
137  // One thread (us) survived the fork, but we have a new tid so we need to
138  // update the value stashed in this Thread*.
139  InitTid();
140}
141
142void* Thread::CreateCallback(void* arg) {
143  Thread* self = reinterpret_cast<Thread*>(arg);
144  Runtime* runtime = Runtime::Current();
145  if (runtime == nullptr) {
146    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
147    return nullptr;
148  }
149  {
150    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
151    //       after self->Init().
152    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
153    // Check that if we got here we cannot be shutting down (as shutdown should never have started
154    // while threads are being born).
155    CHECK(!runtime->IsShuttingDownLocked());
156    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
157    Runtime::Current()->EndThreadBirth();
158  }
159  {
160    ScopedObjectAccess soa(self);
161
162    // Copy peer into self, deleting global reference when done.
163    CHECK(self->jpeer_ != nullptr);
164    self->opeer_ = soa.Decode<mirror::Object*>(self->jpeer_);
165    self->GetJniEnv()->DeleteGlobalRef(self->jpeer_);
166    self->jpeer_ = nullptr;
167
168    {
169      SirtRef<mirror::String> thread_name(self, self->GetThreadName(soa));
170      self->SetThreadName(thread_name->ToModifiedUtf8().c_str());
171    }
172    Dbg::PostThreadStart(self);
173
174    // Invoke the 'run' method of our java.lang.Thread.
175    mirror::Object* receiver = self->opeer_;
176    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
177    mirror::ArtMethod* m =
178        receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(soa.DecodeMethod(mid));
179    JValue result;
180    ArgArray arg_array(nullptr, 0);
181    arg_array.Append(receiver);
182    m->Invoke(self, arg_array.GetArray(), arg_array.GetNumBytes(), &result, 'V');
183  }
184  // Detach and delete self.
185  Runtime::Current()->GetThreadList()->Unregister(self);
186
187  return nullptr;
188}
189
190Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa,
191                                  mirror::Object* thread_peer) {
192  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
193  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
194  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
195  // to stop it from going away.
196  if (kIsDebugBuild) {
197    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
198    if (result != nullptr && !result->IsSuspended()) {
199      Locks::thread_list_lock_->AssertHeld(soa.Self());
200    }
201  }
202  return result;
203}
204
205Thread* Thread::FromManagedThread(const ScopedObjectAccessUnchecked& soa, jobject java_thread) {
206  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
207}
208
209static size_t FixStackSize(size_t stack_size) {
210  // A stack size of zero means "use the default".
211  if (stack_size == 0) {
212    stack_size = Runtime::Current()->GetDefaultStackSize();
213  }
214
215  // Dalvik used the bionic pthread default stack size for native threads,
216  // so include that here to support apps that expect large native stacks.
217  stack_size += 1 * MB;
218
219  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
220  if (stack_size < PTHREAD_STACK_MIN) {
221    stack_size = PTHREAD_STACK_MIN;
222  }
223
224  // It's likely that callers are trying to ensure they have at least a certain amount of
225  // stack space, so we should add our reserved space on top of what they requested, rather
226  // than implicitly take it away from them.
227  stack_size += Thread::kStackOverflowReservedBytes;
228
229  // Some systems require the stack size to be a multiple of the system page size, so round up.
230  stack_size = RoundUp(stack_size, kPageSize);
231
232  return stack_size;
233}
234
235void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
236  CHECK(java_peer != nullptr);
237  Thread* self = static_cast<JNIEnvExt*>(env)->self;
238  Runtime* runtime = Runtime::Current();
239
240  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
241  bool thread_start_during_shutdown = false;
242  {
243    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
244    if (runtime->IsShuttingDownLocked()) {
245      thread_start_during_shutdown = true;
246    } else {
247      runtime->StartThreadBirth();
248    }
249  }
250  if (thread_start_during_shutdown) {
251    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
252    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
253    return;
254  }
255
256  Thread* child_thread = new Thread(is_daemon);
257  // Use global JNI ref to hold peer live while child thread starts.
258  child_thread->jpeer_ = env->NewGlobalRef(java_peer);
259  stack_size = FixStackSize(stack_size);
260
261  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
262  // assign it.
263  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
264                    reinterpret_cast<jlong>(child_thread));
265
266  pthread_t new_pthread;
267  pthread_attr_t attr;
268  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
269  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
270  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
271  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
272  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
273
274  if (pthread_create_result != 0) {
275    // pthread_create(3) failed, so clean up.
276    {
277      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
278      runtime->EndThreadBirth();
279    }
280    // Manually delete the global reference since Thread::Init will not have been run.
281    env->DeleteGlobalRef(child_thread->jpeer_);
282    child_thread->jpeer_ = nullptr;
283    delete child_thread;
284    child_thread = nullptr;
285    // TODO: remove from thread group?
286    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
287    {
288      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
289                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
290      ScopedObjectAccess soa(env);
291      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
292    }
293  }
294}
295
296void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
297  // This function does all the initialization that must be run by the native thread it applies to.
298  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
299  // we can handshake with the corresponding native thread when it's ready.) Check this native
300  // thread hasn't been through here already...
301  CHECK(Thread::Current() == nullptr);
302  SetUpAlternateSignalStack();
303  InitCpu();
304  InitTlsEntryPoints();
305  InitCardTable();
306  InitTid();
307  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
308  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
309  pthread_self_ = pthread_self();
310  CHECK(is_started_);
311  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
312  DCHECK_EQ(Thread::Current(), this);
313
314  thin_lock_thread_id_ = thread_list->AllocThreadId(this);
315  InitStackHwm();
316
317  jni_env_ = new JNIEnvExt(this, java_vm);
318  thread_list->Register(this);
319}
320
321Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
322                       bool create_peer) {
323  Thread* self;
324  Runtime* runtime = Runtime::Current();
325  if (runtime == nullptr) {
326    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
327    return nullptr;
328  }
329  {
330    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
331    if (runtime->IsShuttingDownLocked()) {
332      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
333      return nullptr;
334    } else {
335      Runtime::Current()->StartThreadBirth();
336      self = new Thread(as_daemon);
337      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
338      Runtime::Current()->EndThreadBirth();
339    }
340  }
341
342  CHECK_NE(self->GetState(), kRunnable);
343  self->SetState(kNative);
344
345  // If we're the main thread, ClassLinker won't be created until after we're attached,
346  // so that thread needs a two-stage attach. Regular threads don't need this hack.
347  // In the compiler, all threads need this hack, because no-one's going to be getting
348  // a native peer!
349  if (create_peer) {
350    self->CreatePeer(thread_name, as_daemon, thread_group);
351  } else {
352    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
353    if (thread_name != nullptr) {
354      self->name_->assign(thread_name);
355      ::art::SetThreadName(thread_name);
356    }
357  }
358
359  return self;
360}
361
362void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
363  Runtime* runtime = Runtime::Current();
364  CHECK(runtime->IsStarted());
365  JNIEnv* env = jni_env_;
366
367  if (thread_group == nullptr) {
368    thread_group = runtime->GetMainThreadGroup();
369  }
370  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
371  jint thread_priority = GetNativePriority();
372  jboolean thread_is_daemon = as_daemon;
373
374  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
375  if (peer.get() == nullptr) {
376    CHECK(IsExceptionPending());
377    return;
378  }
379  {
380    ScopedObjectAccess soa(this);
381    opeer_ = soa.Decode<mirror::Object*>(peer.get());
382  }
383  env->CallNonvirtualVoidMethod(peer.get(),
384                                WellKnownClasses::java_lang_Thread,
385                                WellKnownClasses::java_lang_Thread_init,
386                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
387  AssertNoPendingException();
388
389  Thread* self = this;
390  DCHECK_EQ(self, Thread::Current());
391  jni_env_->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
392                         reinterpret_cast<jlong>(self));
393
394  ScopedObjectAccess soa(self);
395  SirtRef<mirror::String> peer_thread_name(soa.Self(), GetThreadName(soa));
396  if (peer_thread_name.get() == nullptr) {
397    // The Thread constructor should have set the Thread.name to a
398    // non-null value. However, because we can run without code
399    // available (in the compiler, in tests), we manually assign the
400    // fields the constructor should have set.
401    soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
402        SetBoolean(opeer_, thread_is_daemon);
403    soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
404        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_group));
405    soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
406        SetObject(opeer_, soa.Decode<mirror::Object*>(thread_name.get()));
407    soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
408        SetInt(opeer_, thread_priority);
409    peer_thread_name.reset(GetThreadName(soa));
410  }
411  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
412  if (peer_thread_name.get() != nullptr) {
413    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
414  }
415}
416
417void Thread::SetThreadName(const char* name) {
418  name_->assign(name);
419  ::art::SetThreadName(name);
420  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
421}
422
423void Thread::InitStackHwm() {
424  void* stack_base;
425  size_t stack_size;
426  GetThreadStack(pthread_self_, &stack_base, &stack_size);
427
428  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
429  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str());
430
431  stack_begin_ = reinterpret_cast<byte*>(stack_base);
432  stack_size_ = stack_size;
433
434  if (stack_size_ <= kStackOverflowReservedBytes) {
435    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)";
436  }
437
438  // TODO: move this into the Linux GetThreadStack implementation.
439#if !defined(__APPLE__)
440  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
441  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
442  // will be broken because we'll die long before we get close to 2GB.
443  bool is_main_thread = (::art::GetTid() == getpid());
444  if (is_main_thread) {
445    rlimit stack_limit;
446    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
447      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
448    }
449    if (stack_limit.rlim_cur == RLIM_INFINITY) {
450      // Find the default stack size for new threads...
451      pthread_attr_t default_attributes;
452      size_t default_stack_size;
453      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
454      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
455                         "default stack size query");
456      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
457
458      // ...and use that as our limit.
459      size_t old_stack_size = stack_size_;
460      stack_size_ = default_stack_size;
461      stack_begin_ += (old_stack_size - stack_size_);
462      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
463                    << " to " << PrettySize(stack_size_)
464                    << " with base " << reinterpret_cast<void*>(stack_begin_);
465    }
466  }
467#endif
468
469  // Set stack_end_ to the bottom of the stack saving space of stack overflows
470  ResetDefaultStackEnd();
471
472  // Sanity check.
473  int stack_variable;
474  CHECK_GT(&stack_variable, reinterpret_cast<void*>(stack_end_));
475}
476
477void Thread::ShortDump(std::ostream& os) const {
478  os << "Thread[";
479  if (GetThreadId() != 0) {
480    // If we're in kStarting, we won't have a thin lock id or tid yet.
481    os << GetThreadId()
482             << ",tid=" << GetTid() << ',';
483  }
484  os << GetState()
485           << ",Thread*=" << this
486           << ",peer=" << opeer_
487           << ",\"" << *name_ << "\""
488           << "]";
489}
490
491void Thread::Dump(std::ostream& os) const {
492  DumpState(os);
493  DumpStack(os);
494}
495
496mirror::String* Thread::GetThreadName(const ScopedObjectAccessUnchecked& soa) const {
497  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
498  return (opeer_ != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(opeer_)) : nullptr;
499}
500
501void Thread::GetThreadName(std::string& name) const {
502  name.assign(*name_);
503}
504
505uint64_t Thread::GetCpuMicroTime() const {
506#if defined(HAVE_POSIX_CLOCKS)
507  clockid_t cpu_clock_id;
508  pthread_getcpuclockid(pthread_self_, &cpu_clock_id);
509  timespec now;
510  clock_gettime(cpu_clock_id, &now);
511  return static_cast<uint64_t>(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL;
512#else
513  UNIMPLEMENTED(WARNING);
514  return -1;
515#endif
516}
517
518void Thread::AtomicSetFlag(ThreadFlag flag) {
519  android_atomic_or(flag, &state_and_flags_.as_int);
520}
521
522void Thread::AtomicClearFlag(ThreadFlag flag) {
523  android_atomic_and(-1 ^ flag, &state_and_flags_.as_int);
524}
525
526// Attempt to rectify locks so that we dump thread list with required locks before exiting.
527static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
528  LOG(ERROR) << *thread << " suspend count already zero.";
529  Locks::thread_suspend_count_lock_->Unlock(self);
530  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
531    Locks::mutator_lock_->SharedTryLock(self);
532    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
533      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
534    }
535  }
536  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
537    Locks::thread_list_lock_->TryLock(self);
538    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
539      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
540    }
541  }
542  std::ostringstream ss;
543  Runtime::Current()->GetThreadList()->DumpLocked(ss);
544  LOG(FATAL) << ss.str();
545}
546
547void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
548  DCHECK(delta == -1 || delta == +1 || delta == -debug_suspend_count_)
549      << delta << " " << debug_suspend_count_ << " " << this;
550  DCHECK_GE(suspend_count_, debug_suspend_count_) << this;
551  Locks::thread_suspend_count_lock_->AssertHeld(self);
552  if (this != self && !IsSuspended()) {
553    Locks::thread_list_lock_->AssertHeld(self);
554  }
555  if (UNLIKELY(delta < 0 && suspend_count_ <= 0)) {
556    UnsafeLogFatalForSuspendCount(self, this);
557    return;
558  }
559
560  suspend_count_ += delta;
561  if (for_debugger) {
562    debug_suspend_count_ += delta;
563  }
564
565  if (suspend_count_ == 0) {
566    AtomicClearFlag(kSuspendRequest);
567  } else {
568    AtomicSetFlag(kSuspendRequest);
569  }
570}
571
572void Thread::RunCheckpointFunction() {
573  Closure *checkpoints[kMaxCheckpoints];
574
575  // Grab the suspend_count lock and copy the current set of
576  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
577  // function will also grab this lock so we prevent a race between setting
578  // the kCheckpointRequest flag and clearing it.
579  {
580    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
581    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
582      checkpoints[i] = checkpoint_functions_[i];
583      checkpoint_functions_[i] = nullptr;
584    }
585    AtomicClearFlag(kCheckpointRequest);
586  }
587
588  // Outside the lock, run all the checkpoint functions that
589  // we collected.
590  bool found_checkpoint = false;
591  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
592    if (checkpoints[i] != nullptr) {
593      ATRACE_BEGIN("Checkpoint function");
594      checkpoints[i]->Run(this);
595      ATRACE_END();
596      found_checkpoint = true;
597    }
598  }
599  CHECK(found_checkpoint);
600}
601
602bool Thread::RequestCheckpoint(Closure* function) {
603  union StateAndFlags old_state_and_flags;
604  old_state_and_flags.as_int = state_and_flags_.as_int;
605  if (old_state_and_flags.as_struct.state != kRunnable) {
606    return false;  // Fail, thread is suspended and so can't run a checkpoint.
607  }
608
609  uint32_t available_checkpoint = kMaxCheckpoints;
610  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
611    if (checkpoint_functions_[i] == nullptr) {
612      available_checkpoint = i;
613      break;
614    }
615  }
616  if (available_checkpoint == kMaxCheckpoints) {
617    // No checkpoint functions available, we can't run a checkpoint
618    return false;
619  }
620  checkpoint_functions_[available_checkpoint] = function;
621
622  // Checkpoint function installed now install flag bit.
623  // We must be runnable to request a checkpoint.
624  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
625  union StateAndFlags new_state_and_flags;
626  new_state_and_flags.as_int = old_state_and_flags.as_int;
627  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
628  int succeeded = android_atomic_acquire_cas(old_state_and_flags.as_int, new_state_and_flags.as_int,
629                                         &state_and_flags_.as_int);
630  if (UNLIKELY(succeeded != 0)) {
631    // The thread changed state before the checkpoint was installed.
632    CHECK_EQ(checkpoint_functions_[available_checkpoint], function);
633    checkpoint_functions_[available_checkpoint] = nullptr;
634  } else {
635    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
636  }
637  return succeeded == 0;
638}
639
640void Thread::FullSuspendCheck() {
641  VLOG(threads) << this << " self-suspending";
642  ATRACE_BEGIN("Full suspend check");
643  // Make thread appear suspended to other threads, release mutator_lock_.
644  TransitionFromRunnableToSuspended(kSuspended);
645  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
646  TransitionFromSuspendedToRunnable();
647  ATRACE_END();
648  VLOG(threads) << this << " self-reviving";
649}
650
651void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
652  std::string group_name;
653  int priority;
654  bool is_daemon = false;
655  Thread* self = Thread::Current();
656
657  if (self != nullptr && thread != nullptr && thread->opeer_ != nullptr) {
658    ScopedObjectAccessUnchecked soa(self);
659    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->opeer_);
660    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->opeer_);
661
662    mirror::Object* thread_group =
663        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->opeer_);
664
665    if (thread_group != nullptr) {
666      mirror::ArtField* group_name_field =
667          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
668      mirror::String* group_name_string =
669          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
670      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
671    }
672  } else {
673    priority = GetNativePriority();
674  }
675
676  std::string scheduler_group_name(GetSchedulerGroupName(tid));
677  if (scheduler_group_name.empty()) {
678    scheduler_group_name = "default";
679  }
680
681  if (thread != nullptr) {
682    os << '"' << *thread->name_ << '"';
683    if (is_daemon) {
684      os << " daemon";
685    }
686    os << " prio=" << priority
687       << " tid=" << thread->GetThreadId()
688       << " " << thread->GetState();
689    if (thread->IsStillStarting()) {
690      os << " (still starting up)";
691    }
692    os << "\n";
693  } else {
694    os << '"' << ::art::GetThreadName(tid) << '"'
695       << " prio=" << priority
696       << " (not attached)\n";
697  }
698
699  if (thread != nullptr) {
700    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
701    os << "  | group=\"" << group_name << "\""
702       << " sCount=" << thread->suspend_count_
703       << " dsCount=" << thread->debug_suspend_count_
704       << " obj=" << reinterpret_cast<void*>(thread->opeer_)
705       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
706  }
707
708  os << "  | sysTid=" << tid
709     << " nice=" << getpriority(PRIO_PROCESS, tid)
710     << " cgrp=" << scheduler_group_name;
711  if (thread != nullptr) {
712    int policy;
713    sched_param sp;
714    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__);
715    os << " sched=" << policy << "/" << sp.sched_priority
716       << " handle=" << reinterpret_cast<void*>(thread->pthread_self_);
717  }
718  os << "\n";
719
720  // Grab the scheduler stats for this thread.
721  std::string scheduler_stats;
722  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
723    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
724  } else {
725    scheduler_stats = "0 0 0";
726  }
727
728  char native_thread_state = '?';
729  int utime = 0;
730  int stime = 0;
731  int task_cpu = 0;
732  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
733
734  os << "  | state=" << native_thread_state
735     << " schedstat=( " << scheduler_stats << " )"
736     << " utm=" << utime
737     << " stm=" << stime
738     << " core=" << task_cpu
739     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
740  if (thread != nullptr) {
741    os << "  | stack=" << reinterpret_cast<void*>(thread->stack_begin_) << "-" << reinterpret_cast<void*>(thread->stack_end_)
742       << " stackSize=" << PrettySize(thread->stack_size_) << "\n";
743  }
744}
745
746void Thread::DumpState(std::ostream& os) const {
747  Thread::DumpState(os, this, GetTid());
748}
749
750struct StackDumpVisitor : public StackVisitor {
751  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
752      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
753      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
754        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
755  }
756
757  virtual ~StackDumpVisitor() {
758    if (frame_count == 0) {
759      os << "  (no managed stack frames)\n";
760    }
761  }
762
763  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
764    mirror::ArtMethod* m = GetMethod();
765    if (m->IsRuntimeMethod()) {
766      return true;
767    }
768    const int kMaxRepetition = 3;
769    mirror::Class* c = m->GetDeclaringClass();
770    mirror::DexCache* dex_cache = c->GetDexCache();
771    int line_number = -1;
772    if (dex_cache != nullptr) {  // be tolerant of bad input
773      const DexFile& dex_file = *dex_cache->GetDexFile();
774      line_number = dex_file.GetLineNumFromPC(m, GetDexPc());
775    }
776    if (line_number == last_line_number && last_method == m) {
777      ++repetition_count;
778    } else {
779      if (repetition_count >= kMaxRepetition) {
780        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
781      }
782      repetition_count = 0;
783      last_line_number = line_number;
784      last_method = m;
785    }
786    if (repetition_count < kMaxRepetition) {
787      os << "  at " << PrettyMethod(m, false);
788      if (m->IsNative()) {
789        os << "(Native method)";
790      } else {
791        mh.ChangeMethod(m);
792        const char* source_file(mh.GetDeclaringClassSourceFile());
793        os << "(" << (source_file != nullptr ? source_file : "unavailable")
794           << ":" << line_number << ")";
795      }
796      os << "\n";
797      if (frame_count == 0) {
798        Monitor::DescribeWait(os, thread);
799      }
800      if (can_allocate) {
801        Monitor::VisitLocks(this, DumpLockedObject, &os);
802      }
803    }
804
805    ++frame_count;
806    return true;
807  }
808
809  static void DumpLockedObject(mirror::Object* o, void* context)
810      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
811    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
812    os << "  - locked <" << o << "> (a " << PrettyTypeOf(o) << ")\n";
813  }
814
815  std::ostream& os;
816  const Thread* thread;
817  const bool can_allocate;
818  MethodHelper mh;
819  mirror::ArtMethod* last_method;
820  int last_line_number;
821  int repetition_count;
822  int frame_count;
823};
824
825static bool ShouldShowNativeStack(const Thread* thread)
826    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
827  ThreadState state = thread->GetState();
828
829  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
830  if (state > kWaiting && state < kStarting) {
831    return true;
832  }
833
834  // In an Object.wait variant or Thread.sleep? That's not interesting.
835  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
836    return false;
837  }
838
839  // In some other native method? That's interesting.
840  // We don't just check kNative because native methods will be in state kSuspended if they're
841  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
842  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
843  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
844  return current_method != nullptr && current_method->IsNative();
845}
846
847void Thread::DumpStack(std::ostream& os) const {
848  // TODO: we call this code when dying but may not have suspended the thread ourself. The
849  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
850  //       the race with the thread_suspend_count_lock_).
851  // No point dumping for an abort in debug builds where we'll hit the not suspended check in stack.
852  bool dump_for_abort = (gAborting > 0) && !kIsDebugBuild;
853  if (this == Thread::Current() || IsSuspended() || dump_for_abort) {
854    // If we're currently in native code, dump that stack before dumping the managed stack.
855    if (dump_for_abort || ShouldShowNativeStack(this)) {
856      DumpKernelStack(os, GetTid(), "  kernel: ", false);
857      DumpNativeStack(os, GetTid(), "  native: ", false);
858    }
859    UniquePtr<Context> context(Context::Create());
860    StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), !throwing_OutOfMemoryError_);
861    dumper.WalkStack();
862  } else {
863    os << "Not able to dump stack of thread that isn't suspended";
864  }
865}
866
867void Thread::ThreadExitCallback(void* arg) {
868  Thread* self = reinterpret_cast<Thread*>(arg);
869  if (self->thread_exit_check_count_ == 0) {
870    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's going to use a pthread_key_create destructor?): " << *self;
871    CHECK(is_started_);
872    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
873    self->thread_exit_check_count_ = 1;
874  } else {
875    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
876  }
877}
878
879void Thread::Startup() {
880  CHECK(!is_started_);
881  is_started_ = true;
882  {
883    // MutexLock to keep annotalysis happy.
884    //
885    // Note we use nullptr for the thread because Thread::Current can
886    // return garbage since (is_started_ == true) and
887    // Thread::pthread_key_self_ is not yet initialized.
888    // This was seen on glibc.
889    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
890    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
891                                         *Locks::thread_suspend_count_lock_);
892  }
893
894  // Allocate a TLS slot.
895  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
896
897  // Double-check the TLS slot allocation.
898  if (pthread_getspecific(pthread_key_self_) != nullptr) {
899    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
900  }
901}
902
903void Thread::FinishStartup() {
904  Runtime* runtime = Runtime::Current();
905  CHECK(runtime->IsStarted());
906
907  // Finish attaching the main thread.
908  ScopedObjectAccess soa(Thread::Current());
909  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
910
911  Runtime::Current()->GetClassLinker()->RunRootClinits();
912}
913
914void Thread::Shutdown() {
915  CHECK(is_started_);
916  is_started_ = false;
917  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
918  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
919  if (resume_cond_ != nullptr) {
920    delete resume_cond_;
921    resume_cond_ = nullptr;
922  }
923}
924
925Thread::Thread(bool daemon)
926    : suspend_count_(0),
927      card_table_(nullptr),
928      exception_(nullptr),
929      stack_end_(nullptr),
930      managed_stack_(),
931      jni_env_(nullptr),
932      self_(nullptr),
933      opeer_(nullptr),
934      jpeer_(nullptr),
935      stack_begin_(nullptr),
936      stack_size_(0),
937      thin_lock_thread_id_(0),
938      stack_trace_sample_(nullptr),
939      trace_clock_base_(0),
940      tid_(0),
941      wait_mutex_(new Mutex("a thread wait mutex")),
942      wait_cond_(new ConditionVariable("a thread wait condition variable", *wait_mutex_)),
943      wait_monitor_(nullptr),
944      interrupted_(false),
945      wait_next_(nullptr),
946      monitor_enter_object_(nullptr),
947      top_sirt_(nullptr),
948      runtime_(nullptr),
949      class_loader_override_(nullptr),
950      long_jump_context_(nullptr),
951      throwing_OutOfMemoryError_(false),
952      debug_suspend_count_(0),
953      debug_invoke_req_(new DebugInvokeReq),
954      single_step_control_(new SingleStepControl),
955      deoptimization_shadow_frame_(nullptr),
956      instrumentation_stack_(new std::deque<instrumentation::InstrumentationStackFrame>),
957      name_(new std::string(kThreadNameDuringStartup)),
958      daemon_(daemon),
959      pthread_self_(0),
960      no_thread_suspension_(0),
961      last_no_thread_suspension_cause_(nullptr),
962      thread_exit_check_count_(0),
963      thread_local_start_(nullptr),
964      thread_local_pos_(nullptr),
965      thread_local_end_(nullptr),
966      thread_local_objects_(0) {
967  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
968  state_and_flags_.as_struct.flags = 0;
969  state_and_flags_.as_struct.state = kNative;
970  memset(&held_mutexes_[0], 0, sizeof(held_mutexes_));
971  memset(rosalloc_runs_, 0, sizeof(rosalloc_runs_));
972  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
973    checkpoint_functions_[i] = nullptr;
974  }
975}
976
977bool Thread::IsStillStarting() const {
978  // You might think you can check whether the state is kStarting, but for much of thread startup,
979  // the thread is in kNative; it might also be in kVmWait.
980  // You might think you can check whether the peer is nullptr, but the peer is actually created and
981  // assigned fairly early on, and needs to be.
982  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
983  // this thread _ever_ entered kRunnable".
984  return (jpeer_ == nullptr && opeer_ == nullptr) || (*name_ == kThreadNameDuringStartup);
985}
986
987void Thread::AssertNoPendingException() const {
988  if (UNLIKELY(IsExceptionPending())) {
989    ScopedObjectAccess soa(Thread::Current());
990    mirror::Throwable* exception = GetException(nullptr);
991    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
992  }
993}
994
995static mirror::Object* MonitorExitVisitor(mirror::Object* object, void* arg)
996    NO_THREAD_SAFETY_ANALYSIS {
997  Thread* self = reinterpret_cast<Thread*>(arg);
998  mirror::Object* entered_monitor = object;
999  if (self->HoldsLock(entered_monitor)) {
1000    LOG(WARNING) << "Calling MonitorExit on object "
1001                 << object << " (" << PrettyTypeOf(object) << ")"
1002                 << " left locked by native thread "
1003                 << *Thread::Current() << " which is detaching";
1004    entered_monitor->MonitorExit(self);
1005  }
1006  return object;
1007}
1008
1009void Thread::Destroy() {
1010  Thread* self = this;
1011  DCHECK_EQ(self, Thread::Current());
1012
1013  if (opeer_ != nullptr) {
1014    ScopedObjectAccess soa(self);
1015    // We may need to call user-supplied managed code, do this before final clean-up.
1016    HandleUncaughtExceptions(soa);
1017    RemoveFromThreadGroup(soa);
1018
1019    // this.nativePeer = 0;
1020    soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)->SetLong(opeer_, 0);
1021    Dbg::PostThreadDeath(self);
1022
1023    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1024    // who is waiting.
1025    mirror::Object* lock =
1026        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(opeer_);
1027    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1028    if (lock != nullptr) {
1029      SirtRef<mirror::Object> sirt_obj(self, lock);
1030      ObjectLock<mirror::Object> locker(self, &sirt_obj);
1031      locker.Notify();
1032    }
1033  }
1034
1035  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1036  if (jni_env_ != nullptr) {
1037    jni_env_->monitors.VisitRoots(MonitorExitVisitor, self);
1038  }
1039}
1040
1041Thread::~Thread() {
1042  if (jni_env_ != nullptr && jpeer_ != nullptr) {
1043    // If pthread_create fails we don't have a jni env here.
1044    jni_env_->DeleteGlobalRef(jpeer_);
1045    jpeer_ = nullptr;
1046  }
1047  opeer_ = nullptr;
1048
1049  bool initialized = (jni_env_ != nullptr);  // Did Thread::Init run?
1050  if (initialized) {
1051    delete jni_env_;
1052    jni_env_ = nullptr;
1053  }
1054  CHECK_NE(GetState(), kRunnable);
1055  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1056  CHECK(checkpoint_functions_[0] == nullptr);
1057  CHECK(checkpoint_functions_[1] == nullptr);
1058  CHECK(checkpoint_functions_[2] == nullptr);
1059
1060  // We may be deleting a still born thread.
1061  SetStateUnsafe(kTerminated);
1062
1063  delete wait_cond_;
1064  delete wait_mutex_;
1065
1066  if (long_jump_context_ != nullptr) {
1067    delete long_jump_context_;
1068  }
1069
1070  if (initialized) {
1071    CleanupCpu();
1072  }
1073
1074  delete debug_invoke_req_;
1075  delete single_step_control_;
1076  delete instrumentation_stack_;
1077  delete name_;
1078  delete stack_trace_sample_;
1079
1080  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1081
1082  TearDownAlternateSignalStack();
1083}
1084
1085void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1086  if (!IsExceptionPending()) {
1087    return;
1088  }
1089  ScopedLocalRef<jobject> peer(jni_env_, soa.AddLocalReference<jobject>(opeer_));
1090  ScopedThreadStateChange tsc(this, kNative);
1091
1092  // Get and clear the exception.
1093  ScopedLocalRef<jthrowable> exception(jni_env_, jni_env_->ExceptionOccurred());
1094  jni_env_->ExceptionClear();
1095
1096  // If the thread has its own handler, use that.
1097  ScopedLocalRef<jobject> handler(jni_env_,
1098                                  jni_env_->GetObjectField(peer.get(),
1099                                                           WellKnownClasses::java_lang_Thread_uncaughtHandler));
1100  if (handler.get() == nullptr) {
1101    // Otherwise use the thread group's default handler.
1102    handler.reset(jni_env_->GetObjectField(peer.get(), WellKnownClasses::java_lang_Thread_group));
1103  }
1104
1105  // Call the handler.
1106  jni_env_->CallVoidMethod(handler.get(),
1107                           WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1108                           peer.get(), exception.get());
1109
1110  // If the handler threw, clear that exception too.
1111  jni_env_->ExceptionClear();
1112}
1113
1114void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1115  // this.group.removeThread(this);
1116  // group can be null if we're in the compiler or a test.
1117  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(opeer_);
1118  if (ogroup != nullptr) {
1119    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1120    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(opeer_));
1121    ScopedThreadStateChange tsc(soa.Self(), kNative);
1122    jni_env_->CallVoidMethod(group.get(), WellKnownClasses::java_lang_ThreadGroup_removeThread,
1123                             peer.get());
1124  }
1125}
1126
1127size_t Thread::NumSirtReferences() {
1128  size_t count = 0;
1129  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1130    count += cur->NumberOfReferences();
1131  }
1132  return count;
1133}
1134
1135bool Thread::SirtContains(jobject obj) const {
1136  StackReference<mirror::Object>* sirt_entry =
1137      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1138  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1139    if (cur->Contains(sirt_entry)) {
1140      return true;
1141    }
1142  }
1143  // JNI code invoked from portable code uses shadow frames rather than the SIRT.
1144  return managed_stack_.ShadowFramesContain(sirt_entry);
1145}
1146
1147void Thread::SirtVisitRoots(RootVisitor* visitor, void* arg) {
1148  for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) {
1149    size_t num_refs = cur->NumberOfReferences();
1150    for (size_t j = 0; j < num_refs; ++j) {
1151      mirror::Object* object = cur->GetReference(j);
1152      if (object != nullptr) {
1153        const mirror::Object* new_obj = visitor(object, arg);
1154        DCHECK(new_obj != nullptr);
1155        if (new_obj != object) {
1156          cur->SetReference(j, const_cast<mirror::Object*>(new_obj));
1157        }
1158      }
1159    }
1160  }
1161}
1162
1163mirror::Object* Thread::DecodeJObject(jobject obj) const {
1164  Locks::mutator_lock_->AssertSharedHeld(this);
1165  if (obj == nullptr) {
1166    return nullptr;
1167  }
1168  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1169  IndirectRefKind kind = GetIndirectRefKind(ref);
1170  mirror::Object* result;
1171  // The "kinds" below are sorted by the frequency we expect to encounter them.
1172  if (kind == kLocal) {
1173    IndirectReferenceTable& locals = jni_env_->locals;
1174    result = const_cast<mirror::Object*>(locals.Get(ref));
1175  } else if (kind == kSirtOrInvalid) {
1176    // TODO: make stack indirect reference table lookup more efficient.
1177    // Check if this is a local reference in the SIRT.
1178    if (LIKELY(SirtContains(obj))) {
1179      // Read from SIRT.
1180      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1181    } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) {
1182      // Assume an invalid local reference is actually a direct pointer.
1183      result = reinterpret_cast<mirror::Object*>(obj);
1184    } else {
1185      result = kInvalidIndirectRefObject;
1186    }
1187  } else if (kind == kGlobal) {
1188    JavaVMExt* vm = Runtime::Current()->GetJavaVM();
1189    IndirectReferenceTable& globals = vm->globals;
1190    ReaderMutexLock mu(const_cast<Thread*>(this), vm->globals_lock);
1191    result = const_cast<mirror::Object*>(globals.Get(ref));
1192  } else {
1193    DCHECK_EQ(kind, kWeakGlobal);
1194    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1195    if (result == kClearedJniWeakGlobal) {
1196      // This is a special case where it's okay to return nullptr.
1197      return nullptr;
1198    }
1199  }
1200
1201  if (UNLIKELY(result == nullptr)) {
1202    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1203  } else {
1204    if (kIsDebugBuild && (result != kInvalidIndirectRefObject)) {
1205      Runtime::Current()->GetHeap()->VerifyObject(result);
1206    }
1207  }
1208  return result;
1209}
1210
1211// Implements java.lang.Thread.interrupted.
1212bool Thread::Interrupted() {
1213  MutexLock mu(Thread::Current(), *wait_mutex_);
1214  bool interrupted = interrupted_;
1215  interrupted_ = false;
1216  return interrupted;
1217}
1218
1219// Implements java.lang.Thread.isInterrupted.
1220bool Thread::IsInterrupted() {
1221  MutexLock mu(Thread::Current(), *wait_mutex_);
1222  return interrupted_;
1223}
1224
1225void Thread::Interrupt() {
1226  Thread* self = Thread::Current();
1227  MutexLock mu(self, *wait_mutex_);
1228  if (interrupted_) {
1229    return;
1230  }
1231  interrupted_ = true;
1232  NotifyLocked(self);
1233}
1234
1235void Thread::Notify() {
1236  Thread* self = Thread::Current();
1237  MutexLock mu(self, *wait_mutex_);
1238  NotifyLocked(self);
1239}
1240
1241void Thread::NotifyLocked(Thread* self) {
1242  if (wait_monitor_ != nullptr) {
1243    wait_cond_->Signal(self);
1244  }
1245}
1246
1247class CountStackDepthVisitor : public StackVisitor {
1248 public:
1249  explicit CountStackDepthVisitor(Thread* thread)
1250      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1251      : StackVisitor(thread, nullptr),
1252        depth_(0), skip_depth_(0), skipping_(true) {}
1253
1254  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1255    // We want to skip frames up to and including the exception's constructor.
1256    // Note we also skip the frame if it doesn't have a method (namely the callee
1257    // save frame)
1258    mirror::ArtMethod* m = GetMethod();
1259    if (skipping_ && !m->IsRuntimeMethod() &&
1260        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1261      skipping_ = false;
1262    }
1263    if (!skipping_) {
1264      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1265        ++depth_;
1266      }
1267    } else {
1268      ++skip_depth_;
1269    }
1270    return true;
1271  }
1272
1273  int GetDepth() const {
1274    return depth_;
1275  }
1276
1277  int GetSkipDepth() const {
1278    return skip_depth_;
1279  }
1280
1281 private:
1282  uint32_t depth_;
1283  uint32_t skip_depth_;
1284  bool skipping_;
1285};
1286
1287class BuildInternalStackTraceVisitor : public StackVisitor {
1288 public:
1289  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1290      : StackVisitor(thread, nullptr), self_(self),
1291        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1292
1293  bool Init(int depth)
1294      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1295    // Allocate method trace with an extra slot that will hold the PC trace
1296    SirtRef<mirror::ObjectArray<mirror::Object> >
1297        method_trace(self_,
1298                     Runtime::Current()->GetClassLinker()->AllocObjectArray<mirror::Object>(self_,
1299                                                                                            depth + 1));
1300    if (method_trace.get() == nullptr) {
1301      return false;
1302    }
1303    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1304    if (dex_pc_trace == nullptr) {
1305      return false;
1306    }
1307    // Save PC trace in last element of method trace, also places it into the
1308    // object graph.
1309    method_trace->Set(depth, dex_pc_trace);
1310    // Set the Object*s and assert that no thread suspension is now possible.
1311    const char* last_no_suspend_cause =
1312        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1313    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1314    method_trace_ = method_trace.get();
1315    dex_pc_trace_ = dex_pc_trace;
1316    return true;
1317  }
1318
1319  virtual ~BuildInternalStackTraceVisitor() {
1320    if (method_trace_ != nullptr) {
1321      self_->EndAssertNoThreadSuspension(nullptr);
1322    }
1323  }
1324
1325  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1326    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1327      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1328    }
1329    if (skip_depth_ > 0) {
1330      skip_depth_--;
1331      return true;
1332    }
1333    mirror::ArtMethod* m = GetMethod();
1334    if (m->IsRuntimeMethod()) {
1335      return true;  // Ignore runtime frames (in particular callee save).
1336    }
1337    method_trace_->Set(count_, m);
1338    dex_pc_trace_->Set(count_, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1339    ++count_;
1340    return true;
1341  }
1342
1343  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1344    return method_trace_;
1345  }
1346
1347 private:
1348  Thread* const self_;
1349  // How many more frames to skip.
1350  int32_t skip_depth_;
1351  // Current position down stack trace.
1352  uint32_t count_;
1353  // Array of dex PC values.
1354  mirror::IntArray* dex_pc_trace_;
1355  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1356  mirror::ObjectArray<mirror::Object>* method_trace_;
1357};
1358
1359jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessUnchecked& soa) const {
1360  // Compute depth of stack
1361  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1362  count_visitor.WalkStack();
1363  int32_t depth = count_visitor.GetDepth();
1364  int32_t skip_depth = count_visitor.GetSkipDepth();
1365
1366  // Build internal stack trace.
1367  BuildInternalStackTraceVisitor build_trace_visitor(soa.Self(), const_cast<Thread*>(this),
1368                                                     skip_depth);
1369  if (!build_trace_visitor.Init(depth)) {
1370    return nullptr;  // Allocation failed.
1371  }
1372  build_trace_visitor.WalkStack();
1373  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1374  if (kIsDebugBuild) {
1375    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1376      CHECK(trace->Get(i) != nullptr);
1377    }
1378  }
1379  return soa.AddLocalReference<jobjectArray>(trace);
1380}
1381
1382jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal,
1383    jobjectArray output_array, int* stack_depth) {
1384  // Transition into runnable state to work on Object*/Array*
1385  ScopedObjectAccess soa(env);
1386  // Decode the internal stack trace into the depth, method trace and PC trace
1387  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1388
1389  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1390
1391  jobjectArray result;
1392
1393  if (output_array != nullptr) {
1394    // Reuse the array we were given.
1395    result = output_array;
1396    // ...adjusting the number of frames we'll write to not exceed the array length.
1397    const int32_t traces_length =
1398        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1399    depth = std::min(depth, traces_length);
1400  } else {
1401    // Create java_trace array and place in local reference table
1402    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1403        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1404    if (java_traces == nullptr) {
1405      return nullptr;
1406    }
1407    result = soa.AddLocalReference<jobjectArray>(java_traces);
1408  }
1409
1410  if (stack_depth != nullptr) {
1411    *stack_depth = depth;
1412  }
1413
1414  for (int32_t i = 0; i < depth; ++i) {
1415    mirror::ObjectArray<mirror::Object>* method_trace =
1416          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1417    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1418    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1419    MethodHelper mh(method);
1420    int32_t line_number;
1421    SirtRef<mirror::String> class_name_object(soa.Self(), nullptr);
1422    SirtRef<mirror::String> source_name_object(soa.Self(), nullptr);
1423    if (method->IsProxyMethod()) {
1424      line_number = -1;
1425      class_name_object.reset(method->GetDeclaringClass()->GetName());
1426      // source_name_object intentionally left null for proxy methods
1427    } else {
1428      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1429      uint32_t dex_pc = pc_trace->Get(i);
1430      line_number = mh.GetLineNumFromDexPC(dex_pc);
1431      // Allocate element, potentially triggering GC
1432      // TODO: reuse class_name_object via Class::name_?
1433      const char* descriptor = mh.GetDeclaringClassDescriptor();
1434      CHECK(descriptor != nullptr);
1435      std::string class_name(PrettyDescriptor(descriptor));
1436      class_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1437      if (class_name_object.get() == nullptr) {
1438        return nullptr;
1439      }
1440      const char* source_file = mh.GetDeclaringClassSourceFile();
1441      if (source_file != nullptr) {
1442        source_name_object.reset(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1443        if (source_name_object.get() == nullptr) {
1444          return nullptr;
1445        }
1446      }
1447    }
1448    const char* method_name = mh.GetName();
1449    CHECK(method_name != nullptr);
1450    SirtRef<mirror::String> method_name_object(soa.Self(),
1451                                               mirror::String::AllocFromModifiedUtf8(soa.Self(),
1452                                                                                     method_name));
1453    if (method_name_object.get() == nullptr) {
1454      return nullptr;
1455    }
1456    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1457        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1458    if (obj == nullptr) {
1459      return nullptr;
1460    }
1461    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set(i, obj);
1462  }
1463  return result;
1464}
1465
1466void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1467                                const char* exception_class_descriptor, const char* fmt, ...) {
1468  va_list args;
1469  va_start(args, fmt);
1470  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1471                     fmt, args);
1472  va_end(args);
1473}
1474
1475void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1476                                const char* exception_class_descriptor,
1477                                const char* fmt, va_list ap) {
1478  std::string msg;
1479  StringAppendV(&msg, fmt, ap);
1480  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1481}
1482
1483void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1484                               const char* msg) {
1485  AssertNoPendingException();  // Callers should either clear or call ThrowNewWrappedException.
1486  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1487}
1488
1489void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1490                                      const char* exception_class_descriptor,
1491                                      const char* msg) {
1492  DCHECK_EQ(this, Thread::Current());
1493  // Ensure we don't forget arguments over object allocation.
1494  SirtRef<mirror::Object> saved_throw_this(this, throw_location.GetThis());
1495  SirtRef<mirror::ArtMethod> saved_throw_method(this, throw_location.GetMethod());
1496  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1497  SirtRef<mirror::Throwable> cause(this, GetException(nullptr));
1498  ClearException();
1499  Runtime* runtime = Runtime::Current();
1500
1501  mirror::ClassLoader* cl = nullptr;
1502  if (saved_throw_method.get() != nullptr) {
1503    cl = saved_throw_method.get()->GetDeclaringClass()->GetClassLoader();
1504  }
1505  SirtRef<mirror::ClassLoader> class_loader(this, cl);
1506  SirtRef<mirror::Class>
1507      exception_class(this, runtime->GetClassLinker()->FindClass(exception_class_descriptor,
1508                                                                 class_loader));
1509  if (UNLIKELY(exception_class.get() == nullptr)) {
1510    CHECK(IsExceptionPending());
1511    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1512    return;
1513  }
1514
1515  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1516    DCHECK(IsExceptionPending());
1517    return;
1518  }
1519  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1520  SirtRef<mirror::Throwable> exception(this,
1521                                down_cast<mirror::Throwable*>(exception_class->AllocObject(this)));
1522
1523  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1524  if (exception.get() == nullptr) {
1525    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1526                                         throw_location.GetDexPc());
1527    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1528    return;
1529  }
1530
1531  // Choose an appropriate constructor and set up the arguments.
1532  const char* signature;
1533  SirtRef<mirror::String> msg_string(this, nullptr);
1534  if (msg != nullptr) {
1535    // Ensure we remember this and the method over the String allocation.
1536    msg_string.reset(mirror::String::AllocFromModifiedUtf8(this, msg));
1537    if (UNLIKELY(msg_string.get() == nullptr)) {
1538      CHECK(IsExceptionPending());  // OOME.
1539      return;
1540    }
1541    if (cause.get() == nullptr) {
1542      signature = "(Ljava/lang/String;)V";
1543    } else {
1544      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1545    }
1546  } else {
1547    if (cause.get() == nullptr) {
1548      signature = "()V";
1549    } else {
1550      signature = "(Ljava/lang/Throwable;)V";
1551    }
1552  }
1553  mirror::ArtMethod* exception_init_method =
1554      exception_class->FindDeclaredDirectMethod("<init>", signature);
1555
1556  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1557      << PrettyDescriptor(exception_class_descriptor);
1558
1559  if (UNLIKELY(!runtime->IsStarted())) {
1560    // Something is trying to throw an exception without a started runtime, which is the common
1561    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1562    // the exception fields directly.
1563    if (msg != nullptr) {
1564      exception->SetDetailMessage(msg_string.get());
1565    }
1566    if (cause.get() != nullptr) {
1567      exception->SetCause(cause.get());
1568    }
1569    ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1570                                         throw_location.GetDexPc());
1571    SetException(gc_safe_throw_location, exception.get());
1572  } else {
1573    ArgArray args("VLL", 3);
1574    args.Append(exception.get());
1575    if (msg != nullptr) {
1576      args.Append(msg_string.get());
1577    }
1578    if (cause.get() != nullptr) {
1579      args.Append(cause.get());
1580    }
1581    JValue result;
1582    exception_init_method->Invoke(this, args.GetArray(), args.GetNumBytes(), &result, 'V');
1583    if (LIKELY(!IsExceptionPending())) {
1584      ThrowLocation gc_safe_throw_location(saved_throw_this.get(), saved_throw_method.get(),
1585                                           throw_location.GetDexPc());
1586      SetException(gc_safe_throw_location, exception.get());
1587    }
1588  }
1589}
1590
1591void Thread::ThrowOutOfMemoryError(const char* msg) {
1592  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1593      msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : ""));
1594  ThrowLocation throw_location = GetCurrentLocationForThrow();
1595  if (!throwing_OutOfMemoryError_) {
1596    throwing_OutOfMemoryError_ = true;
1597    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1598    throwing_OutOfMemoryError_ = false;
1599  } else {
1600    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1601    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1602  }
1603}
1604
1605Thread* Thread::CurrentFromGdb() {
1606  return Thread::Current();
1607}
1608
1609void Thread::DumpFromGdb() const {
1610  std::ostringstream ss;
1611  Dump(ss);
1612  std::string str(ss.str());
1613  // log to stderr for debugging command line processes
1614  std::cerr << str;
1615#ifdef HAVE_ANDROID_OS
1616  // log to logcat for debugging frameworks processes
1617  LOG(INFO) << str;
1618#endif
1619}
1620
1621struct EntryPointInfo {
1622  uint32_t offset;
1623  const char* name;
1624};
1625#define INTERPRETER_ENTRY_POINT_INFO(x) { INTERPRETER_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1626#define JNI_ENTRY_POINT_INFO(x)         { JNI_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1627#define PORTABLE_ENTRY_POINT_INFO(x)    { PORTABLE_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1628#define QUICK_ENTRY_POINT_INFO(x)       { QUICK_ENTRYPOINT_OFFSET(x).Uint32Value(), #x }
1629static const EntryPointInfo gThreadEntryPointInfo[] = {
1630  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge),
1631  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge),
1632  JNI_ENTRY_POINT_INFO(pDlsymLookup),
1633  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline),
1634  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline),
1635  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge),
1636  QUICK_ENTRY_POINT_INFO(pAllocArray),
1637  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved),
1638  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck),
1639  QUICK_ENTRY_POINT_INFO(pAllocObject),
1640  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved),
1641  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized),
1642  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck),
1643  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray),
1644  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck),
1645  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial),
1646  QUICK_ENTRY_POINT_INFO(pCheckCast),
1647  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage),
1648  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess),
1649  QUICK_ENTRY_POINT_INFO(pInitializeType),
1650  QUICK_ENTRY_POINT_INFO(pResolveString),
1651  QUICK_ENTRY_POINT_INFO(pSet32Instance),
1652  QUICK_ENTRY_POINT_INFO(pSet32Static),
1653  QUICK_ENTRY_POINT_INFO(pSet64Instance),
1654  QUICK_ENTRY_POINT_INFO(pSet64Static),
1655  QUICK_ENTRY_POINT_INFO(pSetObjInstance),
1656  QUICK_ENTRY_POINT_INFO(pSetObjStatic),
1657  QUICK_ENTRY_POINT_INFO(pGet32Instance),
1658  QUICK_ENTRY_POINT_INFO(pGet32Static),
1659  QUICK_ENTRY_POINT_INFO(pGet64Instance),
1660  QUICK_ENTRY_POINT_INFO(pGet64Static),
1661  QUICK_ENTRY_POINT_INFO(pGetObjInstance),
1662  QUICK_ENTRY_POINT_INFO(pGetObjStatic),
1663  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck),
1664  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck),
1665  QUICK_ENTRY_POINT_INFO(pAputObject),
1666  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData),
1667  QUICK_ENTRY_POINT_INFO(pJniMethodStart),
1668  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized),
1669  QUICK_ENTRY_POINT_INFO(pJniMethodEnd),
1670  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized),
1671  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference),
1672  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized),
1673  QUICK_ENTRY_POINT_INFO(pLockObject),
1674  QUICK_ENTRY_POINT_INFO(pUnlockObject),
1675  QUICK_ENTRY_POINT_INFO(pCmpgDouble),
1676  QUICK_ENTRY_POINT_INFO(pCmpgFloat),
1677  QUICK_ENTRY_POINT_INFO(pCmplDouble),
1678  QUICK_ENTRY_POINT_INFO(pCmplFloat),
1679  QUICK_ENTRY_POINT_INFO(pFmod),
1680  QUICK_ENTRY_POINT_INFO(pSqrt),
1681  QUICK_ENTRY_POINT_INFO(pL2d),
1682  QUICK_ENTRY_POINT_INFO(pFmodf),
1683  QUICK_ENTRY_POINT_INFO(pL2f),
1684  QUICK_ENTRY_POINT_INFO(pD2iz),
1685  QUICK_ENTRY_POINT_INFO(pF2iz),
1686  QUICK_ENTRY_POINT_INFO(pIdivmod),
1687  QUICK_ENTRY_POINT_INFO(pD2l),
1688  QUICK_ENTRY_POINT_INFO(pF2l),
1689  QUICK_ENTRY_POINT_INFO(pLdiv),
1690  QUICK_ENTRY_POINT_INFO(pLmod),
1691  QUICK_ENTRY_POINT_INFO(pLmul),
1692  QUICK_ENTRY_POINT_INFO(pShlLong),
1693  QUICK_ENTRY_POINT_INFO(pShrLong),
1694  QUICK_ENTRY_POINT_INFO(pUshrLong),
1695  QUICK_ENTRY_POINT_INFO(pIndexOf),
1696  QUICK_ENTRY_POINT_INFO(pMemcmp16),
1697  QUICK_ENTRY_POINT_INFO(pStringCompareTo),
1698  QUICK_ENTRY_POINT_INFO(pMemcpy),
1699  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline),
1700  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline),
1701  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge),
1702  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck),
1703  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck),
1704  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck),
1705  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck),
1706  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck),
1707  QUICK_ENTRY_POINT_INFO(pCheckSuspend),
1708  QUICK_ENTRY_POINT_INFO(pTestSuspend),
1709  QUICK_ENTRY_POINT_INFO(pDeliverException),
1710  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds),
1711  QUICK_ENTRY_POINT_INFO(pThrowDivZero),
1712  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod),
1713  QUICK_ENTRY_POINT_INFO(pThrowNullPointer),
1714  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow),
1715};
1716#undef QUICK_ENTRY_POINT_INFO
1717
1718void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) {
1719  CHECK_EQ(size_of_pointers, 4U);  // TODO: support 64-bit targets.
1720
1721#define DO_THREAD_OFFSET(x) \
1722    if (offset == static_cast<uint32_t>(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { \
1723      os << # x; \
1724      return; \
1725    }
1726  DO_THREAD_OFFSET(state_and_flags_);
1727  DO_THREAD_OFFSET(card_table_);
1728  DO_THREAD_OFFSET(exception_);
1729  DO_THREAD_OFFSET(opeer_);
1730  DO_THREAD_OFFSET(jni_env_);
1731  DO_THREAD_OFFSET(self_);
1732  DO_THREAD_OFFSET(stack_end_);
1733  DO_THREAD_OFFSET(suspend_count_);
1734  DO_THREAD_OFFSET(thin_lock_thread_id_);
1735  // DO_THREAD_OFFSET(top_of_managed_stack_);
1736  // DO_THREAD_OFFSET(top_of_managed_stack_pc_);
1737  DO_THREAD_OFFSET(top_sirt_);
1738#undef DO_THREAD_OFFSET
1739
1740  size_t entry_point_count = arraysize(gThreadEntryPointInfo);
1741  CHECK_EQ(entry_point_count * size_of_pointers,
1742           sizeof(InterpreterEntryPoints) + sizeof(JniEntryPoints) + sizeof(PortableEntryPoints) +
1743           sizeof(QuickEntryPoints));
1744  uint32_t expected_offset = OFFSETOF_MEMBER(Thread, interpreter_entrypoints_);
1745  for (size_t i = 0; i < entry_point_count; ++i) {
1746    CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset) << gThreadEntryPointInfo[i].name;
1747    expected_offset += size_of_pointers;
1748    if (gThreadEntryPointInfo[i].offset == offset) {
1749      os << gThreadEntryPointInfo[i].name;
1750      return;
1751    }
1752  }
1753  os << offset;
1754}
1755
1756void Thread::QuickDeliverException() {
1757  // Get exception from thread.
1758  ThrowLocation throw_location;
1759  mirror::Throwable* exception = GetException(&throw_location);
1760  CHECK(exception != nullptr);
1761  // Don't leave exception visible while we try to find the handler, which may cause class
1762  // resolution.
1763  ClearException();
1764  bool is_deoptimization = (exception == reinterpret_cast<mirror::Throwable*>(-1));
1765  if (kDebugExceptionDelivery) {
1766    if (!is_deoptimization) {
1767      mirror::String* msg = exception->GetDetailMessage();
1768      std::string str_msg(msg != nullptr ? msg->ToModifiedUtf8() : "");
1769      DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception)
1770                << ": " << str_msg << "\n");
1771    } else {
1772      DumpStack(LOG(INFO) << "Deoptimizing: ");
1773    }
1774  }
1775  CatchFinder catch_finder(this, throw_location, exception, is_deoptimization);
1776  catch_finder.FindCatch();
1777  catch_finder.UpdateInstrumentationStack();
1778  catch_finder.DoLongJump();
1779  LOG(FATAL) << "UNREACHABLE";
1780}
1781
1782Context* Thread::GetLongJumpContext() {
1783  Context* result = long_jump_context_;
1784  if (result == nullptr) {
1785    result = Context::Create();
1786  } else {
1787    long_jump_context_ = nullptr;  // Avoid context being shared.
1788    result->Reset();
1789  }
1790  return result;
1791}
1792
1793struct CurrentMethodVisitor : public StackVisitor {
1794  CurrentMethodVisitor(Thread* thread, Context* context)
1795      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1796      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {}
1797  virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1798    mirror::ArtMethod* m = GetMethod();
1799    if (m->IsRuntimeMethod()) {
1800      // Continue if this is a runtime method.
1801      return true;
1802    }
1803    if (context_ != nullptr) {
1804      this_object_ = GetThisObject();
1805    }
1806    method_ = m;
1807    dex_pc_ = GetDexPc();
1808    return false;
1809  }
1810  mirror::Object* this_object_;
1811  mirror::ArtMethod* method_;
1812  uint32_t dex_pc_;
1813};
1814
1815mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1816  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr);
1817  visitor.WalkStack(false);
1818  if (dex_pc != nullptr) {
1819    *dex_pc = visitor.dex_pc_;
1820  }
1821  return visitor.method_;
1822}
1823
1824ThrowLocation Thread::GetCurrentLocationForThrow() {
1825  Context* context = GetLongJumpContext();
1826  CurrentMethodVisitor visitor(this, context);
1827  visitor.WalkStack(false);
1828  ReleaseLongJumpContext(context);
1829  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1830}
1831
1832bool Thread::HoldsLock(mirror::Object* object) {
1833  if (object == nullptr) {
1834    return false;
1835  }
1836  return object->GetLockOwnerThreadId() == thin_lock_thread_id_;
1837}
1838
1839// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1840template <typename RootVisitor>
1841class ReferenceMapVisitor : public StackVisitor {
1842 public:
1843  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1844      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1845      : StackVisitor(thread, context), visitor_(visitor) {}
1846
1847  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1848    if (false) {
1849      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1850          << StringPrintf("@ PC:%04x", GetDexPc());
1851    }
1852    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1853    if (shadow_frame != nullptr) {
1854      mirror::ArtMethod* m = shadow_frame->GetMethod();
1855      size_t num_regs = shadow_frame->NumberOfVRegs();
1856      if (m->IsNative() || shadow_frame->HasReferenceArray()) {
1857        // SIRT for JNI or References for interpreter.
1858        for (size_t reg = 0; reg < num_regs; ++reg) {
1859          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1860          if (ref != nullptr) {
1861            mirror::Object* new_ref = visitor_(ref, reg, this);
1862            if (new_ref != ref) {
1863             shadow_frame->SetVRegReference(reg, new_ref);
1864            }
1865          }
1866        }
1867      } else {
1868        // Java method.
1869        // Portable path use DexGcMap and store in Method.native_gc_map_.
1870        const uint8_t* gc_map = m->GetNativeGcMap();
1871        CHECK(gc_map != nullptr) << PrettyMethod(m);
1872        verifier::DexPcToReferenceMap dex_gc_map(gc_map);
1873        uint32_t dex_pc = GetDexPc();
1874        const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
1875        DCHECK(reg_bitmap != nullptr);
1876        num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
1877        for (size_t reg = 0; reg < num_regs; ++reg) {
1878          if (TestBitmap(reg, reg_bitmap)) {
1879            mirror::Object* ref = shadow_frame->GetVRegReference(reg);
1880            if (ref != nullptr) {
1881              mirror::Object* new_ref = visitor_(ref, reg, this);
1882              if (new_ref != ref) {
1883               shadow_frame->SetVRegReference(reg, new_ref);
1884              }
1885            }
1886          }
1887        }
1888      }
1889    } else {
1890      mirror::ArtMethod* m = GetMethod();
1891      // Process register map (which native and runtime methods don't have)
1892      if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
1893        const uint8_t* native_gc_map = m->GetNativeGcMap();
1894        CHECK(native_gc_map != nullptr) << PrettyMethod(m);
1895        mh_.ChangeMethod(m);
1896        const DexFile::CodeItem* code_item = mh_.GetCodeItem();
1897        DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
1898        NativePcOffsetToReferenceMap map(native_gc_map);
1899        size_t num_regs = std::min(map.RegWidth() * 8,
1900                                   static_cast<size_t>(code_item->registers_size_));
1901        if (num_regs > 0) {
1902          const uint8_t* reg_bitmap = map.FindBitMap(GetNativePcOffset());
1903          DCHECK(reg_bitmap != nullptr);
1904          const VmapTable vmap_table(m->GetVmapTable());
1905          uint32_t core_spills = m->GetCoreSpillMask();
1906          uint32_t fp_spills = m->GetFpSpillMask();
1907          size_t frame_size = m->GetFrameSizeInBytes();
1908          // For all dex registers in the bitmap
1909          mirror::ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
1910          DCHECK(cur_quick_frame != nullptr);
1911          for (size_t reg = 0; reg < num_regs; ++reg) {
1912            // Does this register hold a reference?
1913            if (TestBitmap(reg, reg_bitmap)) {
1914              uint32_t vmap_offset;
1915              if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
1916                int vmap_reg = vmap_table.ComputeRegister(core_spills, vmap_offset, kReferenceVReg);
1917                mirror::Object* ref = reinterpret_cast<mirror::Object*>(GetGPR(vmap_reg));
1918                if (ref != nullptr) {
1919                  mirror::Object* new_ref = visitor_(ref, reg, this);
1920                  if (ref != new_ref) {
1921                    SetGPR(vmap_reg, reinterpret_cast<uintptr_t>(new_ref));
1922                  }
1923                }
1924              } else {
1925                uintptr_t* reg_addr = reinterpret_cast<uintptr_t*>(
1926                    GetVRegAddr(cur_quick_frame, code_item, core_spills, fp_spills, frame_size, reg));
1927                mirror::Object* ref = reinterpret_cast<mirror::Object*>(*reg_addr);
1928                if (ref != nullptr) {
1929                  mirror::Object* new_ref = visitor_(ref, reg, this);
1930                  if (ref != new_ref) {
1931                    *reg_addr = reinterpret_cast<uintptr_t>(new_ref);
1932                  }
1933                }
1934              }
1935            }
1936          }
1937        }
1938      }
1939    }
1940    return true;
1941  }
1942
1943 private:
1944  static bool TestBitmap(int reg, const uint8_t* reg_vector) {
1945    return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0;
1946  }
1947
1948  // Visitor for when we visit a root.
1949  const RootVisitor& visitor_;
1950
1951  // A method helper we keep around to avoid dex file/cache re-computations.
1952  MethodHelper mh_;
1953};
1954
1955class RootCallbackVisitor {
1956 public:
1957  RootCallbackVisitor(RootVisitor* visitor, void* arg) : visitor_(visitor), arg_(arg) {}
1958
1959  mirror::Object* operator()(mirror::Object* obj, size_t, const StackVisitor*) const {
1960    return visitor_(obj, arg_);
1961  }
1962
1963 private:
1964  RootVisitor* visitor_;
1965  void* arg_;
1966};
1967
1968class VerifyCallbackVisitor {
1969 public:
1970  VerifyCallbackVisitor(VerifyRootVisitor* visitor, void* arg)
1971      : visitor_(visitor),
1972        arg_(arg) {
1973  }
1974
1975  void operator()(const mirror::Object* obj, size_t vreg, const StackVisitor* visitor) const {
1976    visitor_(obj, arg_, vreg, visitor);
1977  }
1978
1979 private:
1980  VerifyRootVisitor* const visitor_;
1981  void* const arg_;
1982};
1983
1984void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
1985  if (kIsDebugBuild) {
1986    Runtime::Current()->GetHeap()->VerifyObject(class_loader_override);
1987  }
1988  class_loader_override_ = class_loader_override;
1989}
1990
1991void Thread::VisitRoots(RootVisitor* visitor, void* arg) {
1992  if (opeer_ != nullptr) {
1993    opeer_ = visitor(opeer_, arg);
1994  }
1995  if (exception_ != nullptr) {
1996    exception_ = down_cast<mirror::Throwable*>(visitor(exception_, arg));
1997  }
1998  throw_location_.VisitRoots(visitor, arg);
1999  if (class_loader_override_ != nullptr) {
2000    class_loader_override_ = down_cast<mirror::ClassLoader*>(visitor(class_loader_override_, arg));
2001  }
2002  jni_env_->locals.VisitRoots(visitor, arg);
2003  jni_env_->monitors.VisitRoots(visitor, arg);
2004
2005  SirtVisitRoots(visitor, arg);
2006
2007  // Visit roots on this thread's stack
2008  Context* context = GetLongJumpContext();
2009  RootCallbackVisitor visitorToCallback(visitor, arg);
2010  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2011  mapper.WalkStack();
2012  ReleaseLongJumpContext(context);
2013
2014  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2015    if (frame.this_object_ != nullptr) {
2016      frame.this_object_ = visitor(frame.this_object_, arg);
2017    }
2018    DCHECK(frame.method_ != nullptr);
2019    frame.method_ = down_cast<mirror::ArtMethod*>(visitor(frame.method_, arg));
2020  }
2021}
2022
2023static mirror::Object* VerifyRoot(mirror::Object* root, void* arg) {
2024  DCHECK(root != nullptr);
2025  DCHECK(arg != nullptr);
2026  reinterpret_cast<gc::Heap*>(arg)->VerifyObject(root);
2027  return root;
2028}
2029
2030void Thread::VerifyStackImpl() {
2031  UniquePtr<Context> context(Context::Create());
2032  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap());
2033  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2034  mapper.WalkStack();
2035}
2036
2037// Set the stack end to that to be used during a stack overflow
2038void Thread::SetStackEndForStackOverflow() {
2039  // During stack overflow we allow use of the full stack.
2040  if (stack_end_ == stack_begin_) {
2041    // However, we seem to have already extended to use the full stack.
2042    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2043               << kStackOverflowReservedBytes << ")?";
2044    DumpStack(LOG(ERROR));
2045    LOG(FATAL) << "Recursive stack overflow.";
2046  }
2047
2048  stack_end_ = stack_begin_;
2049}
2050
2051void Thread::SetTlab(byte* start, byte* end) {
2052  DCHECK_LE(start, end);
2053  thread_local_start_ = start;
2054  thread_local_pos_  = thread_local_start_;
2055  thread_local_end_ = end;
2056  thread_local_objects_ = 0;
2057}
2058
2059std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2060  thread.ShortDump(os);
2061  return os;
2062}
2063
2064}  // namespace art
2065