method_verifier.cc revision 1895ea386ca78573302483f589ebabd8ce1480e7
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "base/stringpiece.h"
24#include "class_linker.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/abstract_method-inl.h"
33#include "mirror/class.h"
34#include "mirror/class-inl.h"
35#include "mirror/dex_cache-inl.h"
36#include "mirror/field-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "verifier/dex_gc_map.h"
43
44namespace art {
45namespace verifier {
46
47static const bool gDebugVerify = false;
48
49void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
50                                 uint32_t insns_size, uint16_t registers_size,
51                                 MethodVerifier* verifier) {
52  DCHECK_GT(insns_size, 0U);
53
54  for (uint32_t i = 0; i < insns_size; i++) {
55    bool interesting = false;
56    switch (mode) {
57      case kTrackRegsAll:
58        interesting = flags[i].IsOpcode();
59        break;
60      case kTrackCompilerInterestPoints:
61        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget() ;
62        break;
63      case kTrackRegsBranches:
64        interesting = flags[i].IsBranchTarget();
65        break;
66      default:
67        break;
68    }
69    if (interesting) {
70      pc_to_register_line_.Put(i, new RegisterLine(registers_size, verifier));
71    }
72  }
73}
74
75MethodVerifier::FailureKind MethodVerifier::VerifyClass(const mirror::Class* klass,
76                                                        std::string& error,
77                                                        bool allow_soft_failures) {
78  if (klass->IsVerified()) {
79    return kNoFailure;
80  }
81  mirror::Class* super = klass->GetSuperClass();
82  if (super == NULL && StringPiece(ClassHelper(klass).GetDescriptor()) != "Ljava/lang/Object;") {
83    error = "Verifier rejected class ";
84    error += PrettyDescriptor(klass);
85    error += " that has no super class";
86    return kHardFailure;
87  }
88  if (super != NULL && super->IsFinal()) {
89    error = "Verifier rejected class ";
90    error += PrettyDescriptor(klass);
91    error += " that attempts to sub-class final class ";
92    error += PrettyDescriptor(super);
93    return kHardFailure;
94  }
95  ClassHelper kh(klass);
96  const DexFile& dex_file = kh.GetDexFile();
97  uint32_t class_def_idx;
98  if (!dex_file.FindClassDefIndex(kh.GetDescriptor(), class_def_idx)) {
99    error = "Verifier rejected class ";
100    error += PrettyDescriptor(klass);
101    error += " that isn't present in dex file ";
102    error += dex_file.GetLocation();
103    return kHardFailure;
104  }
105  return VerifyClass(&dex_file, kh.GetDexCache(), klass->GetClassLoader(), class_def_idx, error, allow_soft_failures);
106}
107
108MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
109                                                        mirror::DexCache* dex_cache,
110                                                        mirror::ClassLoader* class_loader,
111                                                        uint32_t class_def_idx,
112                                                        std::string& error,
113                                                        bool allow_soft_failures) {
114  const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
115  const byte* class_data = dex_file->GetClassData(class_def);
116  if (class_data == NULL) {
117    // empty class, probably a marker interface
118    return kNoFailure;
119  }
120  ClassDataItemIterator it(*dex_file, class_data);
121  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
122    it.Next();
123  }
124  size_t error_count = 0;
125  bool hard_fail = false;
126  ClassLinker* linker = Runtime::Current()->GetClassLinker();
127  int64_t previous_direct_method_idx = -1;
128  while (it.HasNextDirectMethod()) {
129    uint32_t method_idx = it.GetMemberIndex();
130    if (method_idx == previous_direct_method_idx) {
131      // smali can create dex files with two encoded_methods sharing the same method_idx
132      // http://code.google.com/p/smali/issues/detail?id=119
133      it.Next();
134      continue;
135    }
136    previous_direct_method_idx = method_idx;
137    InvokeType type = it.GetMethodInvokeType(class_def);
138    mirror::AbstractMethod* method =
139        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
140    if (method == NULL) {
141      DCHECK(Thread::Current()->IsExceptionPending());
142      // We couldn't resolve the method, but continue regardless.
143      Thread::Current()->ClearException();
144    }
145    MethodVerifier::FailureKind result = VerifyMethod(method_idx, dex_file, dex_cache, class_loader,
146        class_def_idx, it.GetMethodCodeItem(), method, it.GetMemberAccessFlags(), allow_soft_failures);
147    if (result != kNoFailure) {
148      if (result == kHardFailure) {
149        hard_fail = true;
150        if (error_count > 0) {
151          error += "\n";
152        }
153        error = "Verifier rejected class ";
154        error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
155        error += " due to bad method ";
156        error += PrettyMethod(method_idx, *dex_file);
157      }
158      ++error_count;
159    }
160    it.Next();
161  }
162  int64_t previous_virtual_method_idx = -1;
163  while (it.HasNextVirtualMethod()) {
164    uint32_t method_idx = it.GetMemberIndex();
165    if (method_idx == previous_virtual_method_idx) {
166      // smali can create dex files with two encoded_methods sharing the same method_idx
167      // http://code.google.com/p/smali/issues/detail?id=119
168      it.Next();
169      continue;
170    }
171    previous_virtual_method_idx = method_idx;
172    InvokeType type = it.GetMethodInvokeType(class_def);
173    mirror::AbstractMethod* method =
174        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
175    if (method == NULL) {
176      DCHECK(Thread::Current()->IsExceptionPending());
177      // We couldn't resolve the method, but continue regardless.
178      Thread::Current()->ClearException();
179    }
180    MethodVerifier::FailureKind result = VerifyMethod(method_idx, dex_file, dex_cache, class_loader,
181        class_def_idx, it.GetMethodCodeItem(), method, it.GetMemberAccessFlags(), allow_soft_failures);
182    if (result != kNoFailure) {
183      if (result == kHardFailure) {
184        hard_fail = true;
185        if (error_count > 0) {
186          error += "\n";
187        }
188        error = "Verifier rejected class ";
189        error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
190        error += " due to bad method ";
191        error += PrettyMethod(method_idx, *dex_file);
192      }
193      ++error_count;
194    }
195    it.Next();
196  }
197  if (error_count == 0) {
198    return kNoFailure;
199  } else {
200    return hard_fail ? kHardFailure : kSoftFailure;
201  }
202}
203
204MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
205                                                         const DexFile* dex_file,
206                                                         mirror::DexCache* dex_cache,
207                                                         mirror::ClassLoader* class_loader,
208                                                         uint32_t class_def_idx,
209                                                         const DexFile::CodeItem* code_item,
210                                                         mirror::AbstractMethod* method,
211                                                         uint32_t method_access_flags,
212                                                         bool allow_soft_failures) {
213  MethodVerifier::FailureKind result = kNoFailure;
214  uint64_t start_ns = NanoTime();
215
216  MethodVerifier verifier(dex_file, dex_cache, class_loader, class_def_idx, code_item, method_idx,
217                          method, method_access_flags, true, allow_soft_failures);
218  if (verifier.Verify()) {
219    // Verification completed, however failures may be pending that didn't cause the verification
220    // to hard fail.
221    CHECK(!verifier.have_pending_hard_failure_);
222    if (verifier.failures_.size() != 0) {
223      verifier.DumpFailures(LOG(INFO) << "Soft verification failures in "
224                                      << PrettyMethod(method_idx, *dex_file) << "\n");
225      result = kSoftFailure;
226    }
227  } else {
228    // Bad method data.
229    CHECK_NE(verifier.failures_.size(), 0U);
230    CHECK(verifier.have_pending_hard_failure_);
231    verifier.DumpFailures(LOG(INFO) << "Verification error in "
232                                    << PrettyMethod(method_idx, *dex_file) << "\n");
233    if (gDebugVerify) {
234      std::cout << "\n" << verifier.info_messages_.str();
235      verifier.Dump(std::cout);
236    }
237    result = kHardFailure;
238  }
239  uint64_t duration_ns = NanoTime() - start_ns;
240  if (duration_ns > MsToNs(100)) {
241    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
242                 << " took " << PrettyDuration(duration_ns);
243  }
244  return result;
245}
246
247void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
248                                         const DexFile* dex_file, mirror::DexCache* dex_cache,
249                                         mirror::ClassLoader* class_loader, uint32_t class_def_idx,
250                                         const DexFile::CodeItem* code_item,
251                                         mirror::AbstractMethod* method,
252                                         uint32_t method_access_flags) {
253  MethodVerifier verifier(dex_file, dex_cache, class_loader, class_def_idx, code_item,
254                          dex_method_idx, method, method_access_flags, true, true);
255  verifier.Verify();
256  verifier.DumpFailures(os);
257  os << verifier.info_messages_.str();
258  verifier.Dump(os);
259}
260
261MethodVerifier::MethodVerifier(const DexFile* dex_file, mirror::DexCache* dex_cache,
262                               mirror::ClassLoader* class_loader, uint32_t class_def_idx,
263                               const DexFile::CodeItem* code_item,
264                               uint32_t dex_method_idx, mirror::AbstractMethod* method,
265                               uint32_t method_access_flags, bool can_load_classes,
266                               bool allow_soft_failures)
267    : reg_types_(can_load_classes),
268      work_insn_idx_(-1),
269      dex_method_idx_(dex_method_idx),
270      mirror_method_(method),
271      method_access_flags_(method_access_flags),
272      dex_file_(dex_file),
273      dex_cache_(dex_cache),
274      class_loader_(class_loader),
275      class_def_idx_(class_def_idx),
276      code_item_(code_item),
277      declaring_class_(NULL),
278      interesting_dex_pc_(-1),
279      monitor_enter_dex_pcs_(NULL),
280      have_pending_hard_failure_(false),
281      have_pending_runtime_throw_failure_(false),
282      new_instance_count_(0),
283      monitor_enter_count_(0),
284      can_load_classes_(can_load_classes),
285      allow_soft_failures_(allow_soft_failures) {
286}
287
288void MethodVerifier::FindLocksAtDexPc(mirror::AbstractMethod* m, uint32_t dex_pc,
289                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
290  MethodHelper mh(m);
291  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
292                          mh.GetClassDefIndex(), mh.GetCodeItem(), m->GetDexMethodIndex(),
293                          m, m->GetAccessFlags(), false, true);
294  verifier.interesting_dex_pc_ = dex_pc;
295  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
296  verifier.FindLocksAtDexPc();
297}
298
299void MethodVerifier::FindLocksAtDexPc() {
300  CHECK(monitor_enter_dex_pcs_ != NULL);
301  CHECK(code_item_ != NULL); // This only makes sense for methods with code.
302
303  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
304  // verification. In practice, the phase we want relies on data structures set up by all the
305  // earlier passes, so we just run the full method verification and bail out early when we've
306  // got what we wanted.
307  Verify();
308}
309
310mirror::Field* MethodVerifier::FindAccessedFieldAtDexPc(mirror::AbstractMethod* m,
311                                                        uint32_t dex_pc) {
312  MethodHelper mh(m);
313  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
314                          mh.GetClassDefIndex(), mh.GetCodeItem(), m->GetDexMethodIndex(),
315                          m, m->GetAccessFlags(), false, true);
316  return verifier.FindAccessedFieldAtDexPc(dex_pc);
317}
318
319mirror::Field* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
320  CHECK(code_item_ != NULL); // This only makes sense for methods with code.
321
322  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
323  // verification. In practice, the phase we want relies on data structures set up by all the
324  // earlier passes, so we just run the full method verification and bail out early when we've
325  // got what we wanted.
326  bool success = Verify();
327  if (!success) {
328    return NULL;
329  }
330  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
331  if (register_line == NULL) {
332    return NULL;
333  }
334  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
335  return GetQuickFieldAccess(inst, register_line);
336}
337
338mirror::AbstractMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::AbstractMethod* m,
339                                                                 uint32_t dex_pc) {
340  MethodHelper mh(m);
341  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
342                          mh.GetClassDefIndex(), mh.GetCodeItem(), m->GetDexMethodIndex(),
343                          m, m->GetAccessFlags(), false, true);
344  return verifier.FindInvokedMethodAtDexPc(dex_pc);
345}
346
347mirror::AbstractMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
348  CHECK(code_item_ != NULL); // This only makes sense for methods with code.
349
350  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
351  // verification. In practice, the phase we want relies on data structures set up by all the
352  // earlier passes, so we just run the full method verification and bail out early when we've
353  // got what we wanted.
354  bool success = Verify();
355  if (!success) {
356    return NULL;
357  }
358  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
359  if (register_line == NULL) {
360    return NULL;
361  }
362  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
363  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
364  return GetQuickInvokedMethod(inst, register_line, is_range);
365}
366
367bool MethodVerifier::Verify() {
368  // If there aren't any instructions, make sure that's expected, then exit successfully.
369  if (code_item_ == NULL) {
370    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
371      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
372      return false;
373    } else {
374      return true;
375    }
376  }
377  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
378  if (code_item_->ins_size_ > code_item_->registers_size_) {
379    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
380                                      << " regs=" << code_item_->registers_size_;
381    return false;
382  }
383  // Allocate and initialize an array to hold instruction data.
384  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
385  // Run through the instructions and see if the width checks out.
386  bool result = ComputeWidthsAndCountOps();
387  // Flag instructions guarded by a "try" block and check exception handlers.
388  result = result && ScanTryCatchBlocks();
389  // Perform static instruction verification.
390  result = result && VerifyInstructions();
391  // Perform code-flow analysis and return.
392  return result && VerifyCodeFlow();
393}
394
395std::ostream& MethodVerifier::Fail(VerifyError error) {
396  switch (error) {
397    case VERIFY_ERROR_NO_CLASS:
398    case VERIFY_ERROR_NO_FIELD:
399    case VERIFY_ERROR_NO_METHOD:
400    case VERIFY_ERROR_ACCESS_CLASS:
401    case VERIFY_ERROR_ACCESS_FIELD:
402    case VERIFY_ERROR_ACCESS_METHOD:
403    case VERIFY_ERROR_INSTANTIATION:
404    case VERIFY_ERROR_CLASS_CHANGE:
405      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
406        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
407        // class change and instantiation errors into soft verification errors so that we re-verify
408        // at runtime. We may fail to find or to agree on access because of not yet available class
409        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
410        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
411        // paths" that dynamically perform the verification and cause the behavior to be that akin
412        // to an interpreter.
413        error = VERIFY_ERROR_BAD_CLASS_SOFT;
414      } else {
415        have_pending_runtime_throw_failure_ = true;
416      }
417      break;
418      // Indication that verification should be retried at runtime.
419    case VERIFY_ERROR_BAD_CLASS_SOFT:
420      if (!allow_soft_failures_) {
421        have_pending_hard_failure_ = true;
422      }
423      break;
424      // Hard verification failures at compile time will still fail at runtime, so the class is
425      // marked as rejected to prevent it from being compiled.
426    case VERIFY_ERROR_BAD_CLASS_HARD: {
427      if (Runtime::Current()->IsCompiler()) {
428        ClassReference ref(dex_file_, class_def_idx_);
429        AddRejectedClass(ref);
430      }
431      have_pending_hard_failure_ = true;
432      break;
433    }
434  }
435  failures_.push_back(error);
436  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
437                                    work_insn_idx_));
438  std::ostringstream* failure_message = new std::ostringstream(location);
439  failure_messages_.push_back(failure_message);
440  return *failure_message;
441}
442
443void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
444  size_t failure_num = failure_messages_.size();
445  DCHECK_NE(failure_num, 0U);
446  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
447  prepend += last_fail_message->str();
448  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
449  delete last_fail_message;
450}
451
452void MethodVerifier::AppendToLastFailMessage(std::string append) {
453  size_t failure_num = failure_messages_.size();
454  DCHECK_NE(failure_num, 0U);
455  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
456  (*last_fail_message) << append;
457}
458
459bool MethodVerifier::ComputeWidthsAndCountOps() {
460  const uint16_t* insns = code_item_->insns_;
461  size_t insns_size = code_item_->insns_size_in_code_units_;
462  const Instruction* inst = Instruction::At(insns);
463  size_t new_instance_count = 0;
464  size_t monitor_enter_count = 0;
465  size_t dex_pc = 0;
466
467  while (dex_pc < insns_size) {
468    Instruction::Code opcode = inst->Opcode();
469    if (opcode == Instruction::NEW_INSTANCE) {
470      new_instance_count++;
471    } else if (opcode == Instruction::MONITOR_ENTER) {
472      monitor_enter_count++;
473    }
474    size_t inst_size = inst->SizeInCodeUnits();
475    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
476    dex_pc += inst_size;
477    inst = inst->Next();
478  }
479
480  if (dex_pc != insns_size) {
481    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
482                                      << dex_pc << " vs. " << insns_size << ")";
483    return false;
484  }
485
486  new_instance_count_ = new_instance_count;
487  monitor_enter_count_ = monitor_enter_count;
488  return true;
489}
490
491bool MethodVerifier::ScanTryCatchBlocks() {
492  uint32_t tries_size = code_item_->tries_size_;
493  if (tries_size == 0) {
494    return true;
495  }
496  uint32_t insns_size = code_item_->insns_size_in_code_units_;
497  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
498
499  for (uint32_t idx = 0; idx < tries_size; idx++) {
500    const DexFile::TryItem* try_item = &tries[idx];
501    uint32_t start = try_item->start_addr_;
502    uint32_t end = start + try_item->insn_count_;
503    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
504      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
505                                        << " endAddr=" << end << " (size=" << insns_size << ")";
506      return false;
507    }
508    if (!insn_flags_[start].IsOpcode()) {
509      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'try' block starts inside an instruction (" << start << ")";
510      return false;
511    }
512    for (uint32_t dex_pc = start; dex_pc < end;
513        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
514      insn_flags_[dex_pc].SetInTry();
515    }
516  }
517  // Iterate over each of the handlers to verify target addresses.
518  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
519  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
520  ClassLinker* linker = Runtime::Current()->GetClassLinker();
521  for (uint32_t idx = 0; idx < handlers_size; idx++) {
522    CatchHandlerIterator iterator(handlers_ptr);
523    for (; iterator.HasNext(); iterator.Next()) {
524      uint32_t dex_pc= iterator.GetHandlerAddress();
525      if (!insn_flags_[dex_pc].IsOpcode()) {
526        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "exception handler starts at bad address (" << dex_pc << ")";
527        return false;
528      }
529      const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
530      if (inst->Opcode() != Instruction::MOVE_EXCEPTION) {
531        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "exception handler doesn't start with move-exception ("
532                                          << dex_pc << ")";
533        return false;
534      }
535      insn_flags_[dex_pc].SetBranchTarget();
536      // Ensure exception types are resolved so that they don't need resolution to be delivered,
537      // unresolved exception types will be ignored by exception delivery
538      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
539        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
540                                                            iterator.GetHandlerTypeIndex(),
541                                                            dex_cache_, class_loader_);
542        if (exception_type == NULL) {
543          DCHECK(Thread::Current()->IsExceptionPending());
544          Thread::Current()->ClearException();
545        }
546      }
547    }
548    handlers_ptr = iterator.EndDataPointer();
549  }
550  return true;
551}
552
553bool MethodVerifier::VerifyInstructions() {
554  const Instruction* inst = Instruction::At(code_item_->insns_);
555
556  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
557  insn_flags_[0].SetBranchTarget();
558  insn_flags_[0].SetCompileTimeInfoPoint();
559
560  uint32_t insns_size = code_item_->insns_size_in_code_units_;
561  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
562    if (!VerifyInstruction(inst, dex_pc)) {
563      DCHECK_NE(failures_.size(), 0U);
564      return false;
565    }
566    /* Flag instructions that are garbage collection points */
567    // All invoke points are marked as "Throw" points already.
568    // We are relying on this to also count all the invokes as interesting.
569    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow() || inst->IsReturn()) {
570      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
571    }
572    dex_pc += inst->SizeInCodeUnits();
573    inst = inst->Next();
574  }
575  return true;
576}
577
578bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
579  DecodedInstruction dec_insn(inst);
580  bool result = true;
581  switch (inst->GetVerifyTypeArgumentA()) {
582    case Instruction::kVerifyRegA:
583      result = result && CheckRegisterIndex(dec_insn.vA);
584      break;
585    case Instruction::kVerifyRegAWide:
586      result = result && CheckWideRegisterIndex(dec_insn.vA);
587      break;
588  }
589  switch (inst->GetVerifyTypeArgumentB()) {
590    case Instruction::kVerifyRegB:
591      result = result && CheckRegisterIndex(dec_insn.vB);
592      break;
593    case Instruction::kVerifyRegBField:
594      result = result && CheckFieldIndex(dec_insn.vB);
595      break;
596    case Instruction::kVerifyRegBMethod:
597      result = result && CheckMethodIndex(dec_insn.vB);
598      break;
599    case Instruction::kVerifyRegBNewInstance:
600      result = result && CheckNewInstance(dec_insn.vB);
601      break;
602    case Instruction::kVerifyRegBString:
603      result = result && CheckStringIndex(dec_insn.vB);
604      break;
605    case Instruction::kVerifyRegBType:
606      result = result && CheckTypeIndex(dec_insn.vB);
607      break;
608    case Instruction::kVerifyRegBWide:
609      result = result && CheckWideRegisterIndex(dec_insn.vB);
610      break;
611  }
612  switch (inst->GetVerifyTypeArgumentC()) {
613    case Instruction::kVerifyRegC:
614      result = result && CheckRegisterIndex(dec_insn.vC);
615      break;
616    case Instruction::kVerifyRegCField:
617      result = result && CheckFieldIndex(dec_insn.vC);
618      break;
619    case Instruction::kVerifyRegCNewArray:
620      result = result && CheckNewArray(dec_insn.vC);
621      break;
622    case Instruction::kVerifyRegCType:
623      result = result && CheckTypeIndex(dec_insn.vC);
624      break;
625    case Instruction::kVerifyRegCWide:
626      result = result && CheckWideRegisterIndex(dec_insn.vC);
627      break;
628  }
629  switch (inst->GetVerifyExtraFlags()) {
630    case Instruction::kVerifyArrayData:
631      result = result && CheckArrayData(code_offset);
632      break;
633    case Instruction::kVerifyBranchTarget:
634      result = result && CheckBranchTarget(code_offset);
635      break;
636    case Instruction::kVerifySwitchTargets:
637      result = result && CheckSwitchTargets(code_offset);
638      break;
639    case Instruction::kVerifyVarArg:
640      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
641      break;
642    case Instruction::kVerifyVarArgRange:
643      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
644      break;
645    case Instruction::kVerifyError:
646      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
647      result = false;
648      break;
649  }
650  return result;
651}
652
653bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
654  if (idx >= code_item_->registers_size_) {
655    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
656                                      << code_item_->registers_size_ << ")";
657    return false;
658  }
659  return true;
660}
661
662bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
663  if (idx + 1 >= code_item_->registers_size_) {
664    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
665                                      << "+1 >= " << code_item_->registers_size_ << ")";
666    return false;
667  }
668  return true;
669}
670
671bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
672  if (idx >= dex_file_->GetHeader().field_ids_size_) {
673    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
674                                      << dex_file_->GetHeader().field_ids_size_ << ")";
675    return false;
676  }
677  return true;
678}
679
680bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
681  if (idx >= dex_file_->GetHeader().method_ids_size_) {
682    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
683                                      << dex_file_->GetHeader().method_ids_size_ << ")";
684    return false;
685  }
686  return true;
687}
688
689bool MethodVerifier::CheckNewInstance(uint32_t idx) {
690  if (idx >= dex_file_->GetHeader().type_ids_size_) {
691    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
692                                      << dex_file_->GetHeader().type_ids_size_ << ")";
693    return false;
694  }
695  // We don't need the actual class, just a pointer to the class name.
696  const char* descriptor = dex_file_->StringByTypeIdx(idx);
697  if (descriptor[0] != 'L') {
698    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
699    return false;
700  }
701  return true;
702}
703
704bool MethodVerifier::CheckStringIndex(uint32_t idx) {
705  if (idx >= dex_file_->GetHeader().string_ids_size_) {
706    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
707                                      << dex_file_->GetHeader().string_ids_size_ << ")";
708    return false;
709  }
710  return true;
711}
712
713bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
714  if (idx >= dex_file_->GetHeader().type_ids_size_) {
715    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
716                                      << dex_file_->GetHeader().type_ids_size_ << ")";
717    return false;
718  }
719  return true;
720}
721
722bool MethodVerifier::CheckNewArray(uint32_t idx) {
723  if (idx >= dex_file_->GetHeader().type_ids_size_) {
724    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
725                                      << dex_file_->GetHeader().type_ids_size_ << ")";
726    return false;
727  }
728  int bracket_count = 0;
729  const char* descriptor = dex_file_->StringByTypeIdx(idx);
730  const char* cp = descriptor;
731  while (*cp++ == '[') {
732    bracket_count++;
733  }
734  if (bracket_count == 0) {
735    /* The given class must be an array type. */
736    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't new-array class '" << descriptor << "' (not an array)";
737    return false;
738  } else if (bracket_count > 255) {
739    /* It is illegal to create an array of more than 255 dimensions. */
740    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't new-array class '" << descriptor << "' (exceeds limit)";
741    return false;
742  }
743  return true;
744}
745
746bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
747  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
748  const uint16_t* insns = code_item_->insns_ + cur_offset;
749  const uint16_t* array_data;
750  int32_t array_data_offset;
751
752  DCHECK_LT(cur_offset, insn_count);
753  /* make sure the start of the array data table is in range */
754  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
755  if ((int32_t) cur_offset + array_data_offset < 0 ||
756      cur_offset + array_data_offset + 2 >= insn_count) {
757    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
758                                      << ", data offset " << array_data_offset << ", count " << insn_count;
759    return false;
760  }
761  /* offset to array data table is a relative branch-style offset */
762  array_data = insns + array_data_offset;
763  /* make sure the table is 32-bit aligned */
764  if ((((uint32_t) array_data) & 0x03) != 0) {
765    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
766                                      << ", data offset " << array_data_offset;
767    return false;
768  }
769  uint32_t value_width = array_data[1];
770  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
771  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
772  /* make sure the end of the switch is in range */
773  if (cur_offset + array_data_offset + table_size > insn_count) {
774    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
775                                      << ", data offset " << array_data_offset << ", end "
776                                      << cur_offset + array_data_offset + table_size
777                                      << ", count " << insn_count;
778    return false;
779  }
780  return true;
781}
782
783bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
784  int32_t offset;
785  bool isConditional, selfOkay;
786  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
787    return false;
788  }
789  if (!selfOkay && offset == 0) {
790    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at" << reinterpret_cast<void*>(cur_offset);
791    return false;
792  }
793  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
794  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
795  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
796    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow " << reinterpret_cast<void*>(cur_offset) << " +" << offset;
797    return false;
798  }
799  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
800  int32_t abs_offset = cur_offset + offset;
801  if (abs_offset < 0 || (uint32_t) abs_offset >= insn_count || !insn_flags_[abs_offset].IsOpcode()) {
802    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
803                                      << reinterpret_cast<void*>(abs_offset) << ") at "
804                                      << reinterpret_cast<void*>(cur_offset);
805    return false;
806  }
807  insn_flags_[abs_offset].SetBranchTarget();
808  return true;
809}
810
811bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
812                                  bool* selfOkay) {
813  const uint16_t* insns = code_item_->insns_ + cur_offset;
814  *pConditional = false;
815  *selfOkay = false;
816  switch (*insns & 0xff) {
817    case Instruction::GOTO:
818      *pOffset = ((int16_t) *insns) >> 8;
819      break;
820    case Instruction::GOTO_32:
821      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
822      *selfOkay = true;
823      break;
824    case Instruction::GOTO_16:
825      *pOffset = (int16_t) insns[1];
826      break;
827    case Instruction::IF_EQ:
828    case Instruction::IF_NE:
829    case Instruction::IF_LT:
830    case Instruction::IF_GE:
831    case Instruction::IF_GT:
832    case Instruction::IF_LE:
833    case Instruction::IF_EQZ:
834    case Instruction::IF_NEZ:
835    case Instruction::IF_LTZ:
836    case Instruction::IF_GEZ:
837    case Instruction::IF_GTZ:
838    case Instruction::IF_LEZ:
839      *pOffset = (int16_t) insns[1];
840      *pConditional = true;
841      break;
842    default:
843      return false;
844      break;
845  }
846  return true;
847}
848
849bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
850  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
851  DCHECK_LT(cur_offset, insn_count);
852  const uint16_t* insns = code_item_->insns_ + cur_offset;
853  /* make sure the start of the switch is in range */
854  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
855  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
856    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
857                                      << ", switch offset " << switch_offset << ", count " << insn_count;
858    return false;
859  }
860  /* offset to switch table is a relative branch-style offset */
861  const uint16_t* switch_insns = insns + switch_offset;
862  /* make sure the table is 32-bit aligned */
863  if ((((uint32_t) switch_insns) & 0x03) != 0) {
864    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
865                                      << ", switch offset " << switch_offset;
866    return false;
867  }
868  uint32_t switch_count = switch_insns[1];
869  int32_t keys_offset, targets_offset;
870  uint16_t expected_signature;
871  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
872    /* 0=sig, 1=count, 2/3=firstKey */
873    targets_offset = 4;
874    keys_offset = -1;
875    expected_signature = Instruction::kPackedSwitchSignature;
876  } else {
877    /* 0=sig, 1=count, 2..count*2 = keys */
878    keys_offset = 2;
879    targets_offset = 2 + 2 * switch_count;
880    expected_signature = Instruction::kSparseSwitchSignature;
881  }
882  uint32_t table_size = targets_offset + switch_count * 2;
883  if (switch_insns[0] != expected_signature) {
884    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << StringPrintf("wrong signature for switch table (%x, wanted %x)",
885                                                      switch_insns[0], expected_signature);
886    return false;
887  }
888  /* make sure the end of the switch is in range */
889  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
890    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset << ", switch offset "
891                                      << switch_offset << ", end "
892                                      << (cur_offset + switch_offset + table_size)
893                                      << ", count " << insn_count;
894    return false;
895  }
896  /* for a sparse switch, verify the keys are in ascending order */
897  if (keys_offset > 0 && switch_count > 1) {
898    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
899    for (uint32_t targ = 1; targ < switch_count; targ++) {
900      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
901                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
902      if (key <= last_key) {
903        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
904                                          << ", this=" << key;
905        return false;
906      }
907      last_key = key;
908    }
909  }
910  /* verify each switch target */
911  for (uint32_t targ = 0; targ < switch_count; targ++) {
912    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
913                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
914    int32_t abs_offset = cur_offset + offset;
915    if (abs_offset < 0 || abs_offset >= (int32_t) insn_count || !insn_flags_[abs_offset].IsOpcode()) {
916      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset << " (-> "
917                                        << reinterpret_cast<void*>(abs_offset) << ") at "
918                                        << reinterpret_cast<void*>(cur_offset) << "[" << targ << "]";
919      return false;
920    }
921    insn_flags_[abs_offset].SetBranchTarget();
922  }
923  return true;
924}
925
926bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
927  if (vA > 5) {
928    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
929    return false;
930  }
931  uint16_t registers_size = code_item_->registers_size_;
932  for (uint32_t idx = 0; idx < vA; idx++) {
933    if (arg[idx] >= registers_size) {
934      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
935                                        << ") in non-range invoke (>= " << registers_size << ")";
936      return false;
937    }
938  }
939
940  return true;
941}
942
943bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
944  uint16_t registers_size = code_item_->registers_size_;
945  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
946  // integer overflow when adding them here.
947  if (vA + vC > registers_size) {
948    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC << " in range invoke (> "
949                                      << registers_size << ")";
950    return false;
951  }
952  return true;
953}
954
955static const std::vector<uint8_t>* CreateLengthPrefixedDexGcMap(const std::vector<uint8_t>& gc_map) {
956  std::vector<uint8_t>* length_prefixed_gc_map = new std::vector<uint8_t>;
957  length_prefixed_gc_map->reserve(gc_map.size() + 4);
958  length_prefixed_gc_map->push_back((gc_map.size() & 0xff000000) >> 24);
959  length_prefixed_gc_map->push_back((gc_map.size() & 0x00ff0000) >> 16);
960  length_prefixed_gc_map->push_back((gc_map.size() & 0x0000ff00) >> 8);
961  length_prefixed_gc_map->push_back((gc_map.size() & 0x000000ff) >> 0);
962  length_prefixed_gc_map->insert(length_prefixed_gc_map->end(),
963                                 gc_map.begin(),
964                                 gc_map.end());
965  DCHECK_EQ(gc_map.size() + 4, length_prefixed_gc_map->size());
966  DCHECK_EQ(gc_map.size(),
967            static_cast<size_t>((length_prefixed_gc_map->at(0) << 24) |
968                                (length_prefixed_gc_map->at(1) << 16) |
969                                (length_prefixed_gc_map->at(2) << 8) |
970                                (length_prefixed_gc_map->at(3) << 0)));
971  return length_prefixed_gc_map;
972}
973
974bool MethodVerifier::VerifyCodeFlow() {
975  uint16_t registers_size = code_item_->registers_size_;
976  uint32_t insns_size = code_item_->insns_size_in_code_units_;
977
978  if (registers_size * insns_size > 4*1024*1024) {
979    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
980                 << " insns_size=" << insns_size << ")";
981  }
982  /* Create and initialize table holding register status */
983  reg_table_.Init(kTrackCompilerInterestPoints, insn_flags_.get(), insns_size, registers_size, this);
984
985
986  work_line_.reset(new RegisterLine(registers_size, this));
987  saved_line_.reset(new RegisterLine(registers_size, this));
988
989  /* Initialize register types of method arguments. */
990  if (!SetTypesFromSignature()) {
991    DCHECK_NE(failures_.size(), 0U);
992    std::string prepend("Bad signature in ");
993    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
994    PrependToLastFailMessage(prepend);
995    return false;
996  }
997  /* Perform code flow verification. */
998  if (!CodeFlowVerifyMethod()) {
999    DCHECK_NE(failures_.size(), 0U);
1000    return false;
1001  }
1002
1003  /* Generate a register map and add it to the method. */
1004  UniquePtr<const std::vector<uint8_t> > map(GenerateGcMap());
1005  if (map.get() == NULL) {
1006    DCHECK_NE(failures_.size(), 0U);
1007    return false;  // Not a real failure, but a failure to encode
1008  }
1009  if (kIsDebugBuild) {
1010    VerifyGcMap(*map);
1011  }
1012  MethodReference ref(dex_file_, dex_method_idx_);
1013  const std::vector<uint8_t>* dex_gc_map = CreateLengthPrefixedDexGcMap(*(map.get()));
1014  verifier::MethodVerifier::SetDexGcMap(ref, *dex_gc_map);
1015
1016  MethodVerifier::MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet();
1017  if (method_to_safe_casts != NULL) {
1018    SetSafeCastMap(ref, method_to_safe_casts);
1019  }
1020
1021  MethodVerifier::PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap();
1022  if (pc_to_concrete_method != NULL) {
1023    SetDevirtMap(ref, pc_to_concrete_method);
1024  }
1025  return true;
1026}
1027
1028std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1029  DCHECK_EQ(failures_.size(), failure_messages_.size());
1030  for (size_t i = 0; i < failures_.size(); ++i) {
1031    os << failure_messages_[i]->str() << "\n";
1032  }
1033  return os;
1034}
1035
1036extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1037    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1038  v->Dump(std::cerr);
1039}
1040
1041void MethodVerifier::Dump(std::ostream& os) {
1042  if (code_item_ == NULL) {
1043    os << "Native method\n";
1044    return;
1045  }
1046  {
1047    os << "Register Types:\n";
1048    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1049    std::ostream indent_os(&indent_filter);
1050    reg_types_.Dump(indent_os);
1051  }
1052  os << "Dumping instructions and register lines:\n";
1053  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1054  std::ostream indent_os(&indent_filter);
1055  const Instruction* inst = Instruction::At(code_item_->insns_);
1056  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1057      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1058    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1059    if (reg_line != NULL) {
1060      indent_os << reg_line->Dump() << "\n";
1061    }
1062    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1063    const bool kDumpHexOfInstruction = false;
1064    if (kDumpHexOfInstruction) {
1065      indent_os << inst->DumpHex(5) << " ";
1066    }
1067    indent_os << inst->DumpString(dex_file_) << "\n";
1068    inst = inst->Next();
1069  }
1070}
1071
1072static bool IsPrimitiveDescriptor(char descriptor) {
1073  switch (descriptor) {
1074    case 'I':
1075    case 'C':
1076    case 'S':
1077    case 'B':
1078    case 'Z':
1079    case 'F':
1080    case 'D':
1081    case 'J':
1082      return true;
1083    default:
1084      return false;
1085  }
1086}
1087
1088bool MethodVerifier::SetTypesFromSignature() {
1089  RegisterLine* reg_line = reg_table_.GetLine(0);
1090  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1091  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1092
1093  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1094  //Include the "this" pointer.
1095  size_t cur_arg = 0;
1096  if (!IsStatic()) {
1097    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1098    // argument as uninitialized. This restricts field access until the superclass constructor is
1099    // called.
1100    const RegType& declaring_class = GetDeclaringClass();
1101    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1102      reg_line->SetRegisterType(arg_start + cur_arg,
1103                                reg_types_.UninitializedThisArgument(declaring_class));
1104    } else {
1105      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1106    }
1107    cur_arg++;
1108  }
1109
1110  const DexFile::ProtoId& proto_id =
1111      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1112  DexFileParameterIterator iterator(*dex_file_, proto_id);
1113
1114  for (; iterator.HasNext(); iterator.Next()) {
1115    const char* descriptor = iterator.GetDescriptor();
1116    if (descriptor == NULL) {
1117      LOG(FATAL) << "Null descriptor";
1118    }
1119    if (cur_arg >= expected_args) {
1120      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1121                                        << " args, found more (" << descriptor << ")";
1122      return false;
1123    }
1124    switch (descriptor[0]) {
1125      case 'L':
1126      case '[':
1127        // We assume that reference arguments are initialized. The only way it could be otherwise
1128        // (assuming the caller was verified) is if the current method is <init>, but in that case
1129        // it's effectively considered initialized the instant we reach here (in the sense that we
1130        // can return without doing anything or call virtual methods).
1131        {
1132          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
1133          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1134        }
1135        break;
1136      case 'Z':
1137        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1138        break;
1139      case 'C':
1140        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1141        break;
1142      case 'B':
1143        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1144        break;
1145      case 'I':
1146        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1147        break;
1148      case 'S':
1149        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1150        break;
1151      case 'F':
1152        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1153        break;
1154      case 'J':
1155      case 'D': {
1156        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1157        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1158        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1159        cur_arg++;
1160        break;
1161      }
1162      default:
1163        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '" << descriptor << "'";
1164        return false;
1165    }
1166    cur_arg++;
1167  }
1168  if (cur_arg != expected_args) {
1169    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args << " arguments, found " << cur_arg;
1170    return false;
1171  }
1172  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1173  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1174  // format. Only major difference from the method argument format is that 'V' is supported.
1175  bool result;
1176  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1177    result = descriptor[1] == '\0';
1178  } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive
1179    size_t i = 0;
1180    do {
1181      i++;
1182    } while (descriptor[i] == '[');  // process leading [
1183    if (descriptor[i] == 'L') {  // object array
1184      do {
1185        i++;  // find closing ;
1186      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1187      result = descriptor[i] == ';';
1188    } else {  // primitive array
1189      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1190    }
1191  } else if (descriptor[0] == 'L') {
1192    // could be more thorough here, but shouldn't be required
1193    size_t i = 0;
1194    do {
1195      i++;
1196    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1197    result = descriptor[i] == ';';
1198  } else {
1199    result = false;
1200  }
1201  if (!result) {
1202    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1203                                      << descriptor << "'";
1204  }
1205  return result;
1206}
1207
1208bool MethodVerifier::CodeFlowVerifyMethod() {
1209  const uint16_t* insns = code_item_->insns_;
1210  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1211
1212  /* Begin by marking the first instruction as "changed". */
1213  insn_flags_[0].SetChanged();
1214  uint32_t start_guess = 0;
1215
1216  /* Continue until no instructions are marked "changed". */
1217  while (true) {
1218    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1219    uint32_t insn_idx = start_guess;
1220    for (; insn_idx < insns_size; insn_idx++) {
1221      if (insn_flags_[insn_idx].IsChanged())
1222        break;
1223    }
1224    if (insn_idx == insns_size) {
1225      if (start_guess != 0) {
1226        /* try again, starting from the top */
1227        start_guess = 0;
1228        continue;
1229      } else {
1230        /* all flags are clear */
1231        break;
1232      }
1233    }
1234    // We carry the working set of registers from instruction to instruction. If this address can
1235    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1236    // "changed" flags, we need to load the set of registers from the table.
1237    // Because we always prefer to continue on to the next instruction, we should never have a
1238    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1239    // target.
1240    work_insn_idx_ = insn_idx;
1241    if (insn_flags_[insn_idx].IsBranchTarget()) {
1242      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1243    } else {
1244#ifndef NDEBUG
1245      /*
1246       * Sanity check: retrieve the stored register line (assuming
1247       * a full table) and make sure it actually matches.
1248       */
1249      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1250      if (register_line != NULL) {
1251        if (work_line_->CompareLine(register_line) != 0) {
1252          Dump(std::cout);
1253          std::cout << info_messages_.str();
1254          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1255                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1256                     << " work_line=" << *work_line_ << "\n"
1257                     << "  expected=" << *register_line;
1258        }
1259      }
1260#endif
1261    }
1262    if (!CodeFlowVerifyInstruction(&start_guess)) {
1263      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1264      prepend += " failed to verify: ";
1265      PrependToLastFailMessage(prepend);
1266      return false;
1267    }
1268    /* Clear "changed" and mark as visited. */
1269    insn_flags_[insn_idx].SetVisited();
1270    insn_flags_[insn_idx].ClearChanged();
1271  }
1272
1273  if (gDebugVerify) {
1274    /*
1275     * Scan for dead code. There's nothing "evil" about dead code
1276     * (besides the wasted space), but it indicates a flaw somewhere
1277     * down the line, possibly in the verifier.
1278     *
1279     * If we've substituted "always throw" instructions into the stream,
1280     * we are almost certainly going to have some dead code.
1281     */
1282    int dead_start = -1;
1283    uint32_t insn_idx = 0;
1284    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1285      /*
1286       * Switch-statement data doesn't get "visited" by scanner. It
1287       * may or may not be preceded by a padding NOP (for alignment).
1288       */
1289      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1290          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1291          insns[insn_idx] == Instruction::kArrayDataSignature ||
1292          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1293           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1294            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1295            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1296        insn_flags_[insn_idx].SetVisited();
1297      }
1298
1299      if (!insn_flags_[insn_idx].IsVisited()) {
1300        if (dead_start < 0)
1301          dead_start = insn_idx;
1302      } else if (dead_start >= 0) {
1303        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start) << "-" << reinterpret_cast<void*>(insn_idx - 1);
1304        dead_start = -1;
1305      }
1306    }
1307    if (dead_start >= 0) {
1308      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start) << "-" << reinterpret_cast<void*>(insn_idx - 1);
1309    }
1310    // To dump the state of the verify after a method, do something like:
1311    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1312    //     "boolean java.lang.String.equals(java.lang.Object)") {
1313    //   LOG(INFO) << info_messages_.str();
1314    // }
1315  }
1316  return true;
1317}
1318
1319bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1320  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1321  // We want the state _before_ the instruction, for the case where the dex pc we're
1322  // interested in is itself a monitor-enter instruction (which is a likely place
1323  // for a thread to be suspended).
1324  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1325    monitor_enter_dex_pcs_->clear(); // The new work line is more accurate than the previous one.
1326    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1327      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1328    }
1329  }
1330
1331  /*
1332   * Once we finish decoding the instruction, we need to figure out where
1333   * we can go from here. There are three possible ways to transfer
1334   * control to another statement:
1335   *
1336   * (1) Continue to the next instruction. Applies to all but
1337   *     unconditional branches, method returns, and exception throws.
1338   * (2) Branch to one or more possible locations. Applies to branches
1339   *     and switch statements.
1340   * (3) Exception handlers. Applies to any instruction that can
1341   *     throw an exception that is handled by an encompassing "try"
1342   *     block.
1343   *
1344   * We can also return, in which case there is no successor instruction
1345   * from this point.
1346   *
1347   * The behavior can be determined from the opcode flags.
1348   */
1349  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1350  const Instruction* inst = Instruction::At(insns);
1351  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1352
1353  int32_t branch_target = 0;
1354  bool just_set_result = false;
1355  if (gDebugVerify) {
1356    // Generate processing back trace to debug verifier
1357    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1358                    << *work_line_.get() << "\n";
1359  }
1360
1361  /*
1362   * Make a copy of the previous register state. If the instruction
1363   * can throw an exception, we will copy/merge this into the "catch"
1364   * address rather than work_line, because we don't want the result
1365   * from the "successful" code path (e.g. a check-cast that "improves"
1366   * a type) to be visible to the exception handler.
1367   */
1368  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1369    saved_line_->CopyFromLine(work_line_.get());
1370  } else {
1371#ifndef NDEBUG
1372    saved_line_->FillWithGarbage();
1373#endif
1374  }
1375
1376
1377  // We need to ensure the work line is consistent while performing validation. When we spot a
1378  // peephole pattern we compute a new line for either the fallthrough instruction or the
1379  // branch target.
1380  UniquePtr<RegisterLine> branch_line;
1381  UniquePtr<RegisterLine> fallthrough_line;
1382
1383  switch (inst->Opcode()) {
1384    case Instruction::NOP:
1385      /*
1386       * A "pure" NOP has no effect on anything. Data tables start with
1387       * a signature that looks like a NOP; if we see one of these in
1388       * the course of executing code then we have a problem.
1389       */
1390      if (inst->VRegA_10x() != 0) {
1391        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1392      }
1393      break;
1394
1395    case Instruction::MOVE:
1396      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1397      break;
1398    case Instruction::MOVE_FROM16:
1399      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1400      break;
1401    case Instruction::MOVE_16:
1402      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1403      break;
1404    case Instruction::MOVE_WIDE:
1405      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1406      break;
1407    case Instruction::MOVE_WIDE_FROM16:
1408      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1409      break;
1410    case Instruction::MOVE_WIDE_16:
1411      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1412      break;
1413    case Instruction::MOVE_OBJECT:
1414      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1415      break;
1416    case Instruction::MOVE_OBJECT_FROM16:
1417      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1418      break;
1419    case Instruction::MOVE_OBJECT_16:
1420      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1421      break;
1422
1423    /*
1424     * The move-result instructions copy data out of a "pseudo-register"
1425     * with the results from the last method invocation. In practice we
1426     * might want to hold the result in an actual CPU register, so the
1427     * Dalvik spec requires that these only appear immediately after an
1428     * invoke or filled-new-array.
1429     *
1430     * These calls invalidate the "result" register. (This is now
1431     * redundant with the reset done below, but it can make the debug info
1432     * easier to read in some cases.)
1433     */
1434    case Instruction::MOVE_RESULT:
1435      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1436      break;
1437    case Instruction::MOVE_RESULT_WIDE:
1438      work_line_->CopyResultRegister2(inst->VRegA_11x());
1439      break;
1440    case Instruction::MOVE_RESULT_OBJECT:
1441      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1442      break;
1443
1444    case Instruction::MOVE_EXCEPTION: {
1445      /*
1446       * This statement can only appear as the first instruction in an exception handler. We verify
1447       * that as part of extracting the exception type from the catch block list.
1448       */
1449      const RegType& res_type = GetCaughtExceptionType();
1450      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1451      break;
1452    }
1453    case Instruction::RETURN_VOID:
1454      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1455        if (!GetMethodReturnType().IsConflict()) {
1456          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1457        }
1458      }
1459      break;
1460    case Instruction::RETURN:
1461      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1462        /* check the method signature */
1463        const RegType& return_type = GetMethodReturnType();
1464        if (!return_type.IsCategory1Types()) {
1465          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type " << return_type;
1466        } else {
1467          // Compilers may generate synthetic functions that write byte values into boolean fields.
1468          // Also, it may use integer values for boolean, byte, short, and character return types.
1469          const uint32_t vregA = inst->VRegA_11x();
1470          const RegType& src_type = work_line_->GetRegisterType(vregA);
1471          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1472                          ((return_type.IsBoolean() || return_type.IsByte() ||
1473                           return_type.IsShort() || return_type.IsChar()) &&
1474                           src_type.IsInteger()));
1475          /* check the register contents */
1476          bool success =
1477              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1478          if (!success) {
1479            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1480          }
1481        }
1482      }
1483      break;
1484    case Instruction::RETURN_WIDE:
1485      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1486        /* check the method signature */
1487        const RegType& return_type = GetMethodReturnType();
1488        if (!return_type.IsCategory2Types()) {
1489          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1490        } else {
1491          /* check the register contents */
1492          const uint32_t vregA = inst->VRegA_11x();
1493          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1494          if (!success) {
1495            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1496          }
1497        }
1498      }
1499      break;
1500    case Instruction::RETURN_OBJECT:
1501      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1502        const RegType& return_type = GetMethodReturnType();
1503        if (!return_type.IsReferenceTypes()) {
1504          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1505        } else {
1506          /* return_type is the *expected* return type, not register value */
1507          DCHECK(!return_type.IsZero());
1508          DCHECK(!return_type.IsUninitializedReference());
1509          const uint32_t vregA = inst->VRegA_11x();
1510          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1511          // Disallow returning uninitialized values and verify that the reference in vAA is an
1512          // instance of the "return_type"
1513          if (reg_type.IsUninitializedTypes()) {
1514            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '" << reg_type << "'";
1515          } else if (!return_type.IsAssignableFrom(reg_type)) {
1516            Fail(reg_type.IsUnresolvedTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT : VERIFY_ERROR_BAD_CLASS_HARD)
1517                << "returning '" << reg_type << "', but expected from declaration '" << return_type << "'";
1518          }
1519        }
1520      }
1521      break;
1522
1523      /* could be boolean, int, float, or a null reference */
1524    case Instruction::CONST_4: {
1525      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1526      work_line_->SetRegisterType(inst->VRegA_11n(), reg_types_.FromCat1Const(val, true));
1527      break;
1528    }
1529    case Instruction::CONST_16: {
1530      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1531      work_line_->SetRegisterType(inst->VRegA_21s(), reg_types_.FromCat1Const(val, true));
1532      break;
1533    }
1534    case Instruction::CONST:
1535      work_line_->SetRegisterType(inst->VRegA_31i(),
1536                                  reg_types_.FromCat1Const(inst->VRegB_31i(), true));
1537      break;
1538    case Instruction::CONST_HIGH16:
1539      work_line_->SetRegisterType(inst->VRegA_21h(),
1540                                  reg_types_.FromCat1Const(inst->VRegB_21h() << 16, true));
1541      break;
1542      /* could be long or double; resolved upon use */
1543    case Instruction::CONST_WIDE_16: {
1544      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1545      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1546      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1547      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1548      break;
1549    }
1550    case Instruction::CONST_WIDE_32: {
1551      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1552      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1553      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1554      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1555      break;
1556    }
1557    case Instruction::CONST_WIDE: {
1558      int64_t val = inst->VRegB_51l();
1559      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1560      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1561      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1562      break;
1563    }
1564    case Instruction::CONST_WIDE_HIGH16: {
1565      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1566      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1567      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1568      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1569      break;
1570    }
1571    case Instruction::CONST_STRING:
1572      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1573      break;
1574    case Instruction::CONST_STRING_JUMBO:
1575      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1576      break;
1577    case Instruction::CONST_CLASS: {
1578      // Get type from instruction if unresolved then we need an access check
1579      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1580      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1581      // Register holds class, ie its type is class, on error it will hold Conflict.
1582      work_line_->SetRegisterType(inst->VRegA_21c(),
1583                                  res_type.IsConflict() ? res_type
1584                                                        : reg_types_.JavaLangClass(true));
1585      break;
1586    }
1587    case Instruction::MONITOR_ENTER:
1588      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1589      break;
1590    case Instruction::MONITOR_EXIT:
1591      /*
1592       * monitor-exit instructions are odd. They can throw exceptions,
1593       * but when they do they act as if they succeeded and the PC is
1594       * pointing to the following instruction. (This behavior goes back
1595       * to the need to handle asynchronous exceptions, a now-deprecated
1596       * feature that Dalvik doesn't support.)
1597       *
1598       * In practice we don't need to worry about this. The only
1599       * exceptions that can be thrown from monitor-exit are for a
1600       * null reference and -exit without a matching -enter. If the
1601       * structured locking checks are working, the former would have
1602       * failed on the -enter instruction, and the latter is impossible.
1603       *
1604       * This is fortunate, because issue 3221411 prevents us from
1605       * chasing the "can throw" path when monitor verification is
1606       * enabled. If we can fully verify the locking we can ignore
1607       * some catch blocks (which will show up as "dead" code when
1608       * we skip them here); if we can't, then the code path could be
1609       * "live" so we still need to check it.
1610       */
1611      opcode_flags &= ~Instruction::kThrow;
1612      work_line_->PopMonitor(inst->VRegA_11x());
1613      break;
1614
1615    case Instruction::CHECK_CAST:
1616    case Instruction::INSTANCE_OF: {
1617      /*
1618       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1619       * could be a "upcast" -- not expected, so we don't try to address it.)
1620       *
1621       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1622       * dec_insn.vA when branching to a handler.
1623       */
1624      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1625      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1626      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1627      if (res_type.IsConflict()) {
1628        DCHECK_NE(failures_.size(), 0U);
1629        if (!is_checkcast) {
1630          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1631        }
1632        break;  // bad class
1633      }
1634      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1635      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1636      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1637      if (!res_type.IsNonZeroReferenceTypes()) {
1638        if (is_checkcast) {
1639          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1640        } else {
1641          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1642        }
1643      } else if (!orig_type.IsReferenceTypes()) {
1644        if (is_checkcast) {
1645          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1646        } else {
1647          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1648        }
1649      } else {
1650        if (is_checkcast) {
1651          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1652        } else {
1653          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1654        }
1655      }
1656      break;
1657    }
1658    case Instruction::ARRAY_LENGTH: {
1659      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1660      if (res_type.IsReferenceTypes()) {
1661        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1662          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1663        } else {
1664          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1665        }
1666      }
1667      break;
1668    }
1669    case Instruction::NEW_INSTANCE: {
1670      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1671      if (res_type.IsConflict()) {
1672        DCHECK_NE(failures_.size(), 0U);
1673        break;  // bad class
1674      }
1675      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1676      // can't create an instance of an interface or abstract class */
1677      if (!res_type.IsInstantiableTypes()) {
1678        Fail(VERIFY_ERROR_INSTANTIATION)
1679            << "new-instance on primitive, interface or abstract class" << res_type;
1680        // Soft failure so carry on to set register type.
1681      }
1682      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1683      // Any registers holding previous allocations from this address that have not yet been
1684      // initialized must be marked invalid.
1685      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1686      // add the new uninitialized reference to the register state
1687      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1688      break;
1689    }
1690    case Instruction::NEW_ARRAY:
1691      VerifyNewArray(inst, false, false);
1692      break;
1693    case Instruction::FILLED_NEW_ARRAY:
1694      VerifyNewArray(inst, true, false);
1695      just_set_result = true;  // Filled new array sets result register
1696      break;
1697    case Instruction::FILLED_NEW_ARRAY_RANGE:
1698      VerifyNewArray(inst, true, true);
1699      just_set_result = true;  // Filled new array range sets result register
1700      break;
1701    case Instruction::CMPL_FLOAT:
1702    case Instruction::CMPG_FLOAT:
1703      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1704        break;
1705      }
1706      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1707        break;
1708      }
1709      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1710      break;
1711    case Instruction::CMPL_DOUBLE:
1712    case Instruction::CMPG_DOUBLE:
1713      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1714                                              reg_types_.DoubleHi())) {
1715        break;
1716      }
1717      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1718                                              reg_types_.DoubleHi())) {
1719        break;
1720      }
1721      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1722      break;
1723    case Instruction::CMP_LONG:
1724      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1725                                              reg_types_.LongHi())) {
1726        break;
1727      }
1728      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1729                                              reg_types_.LongHi())) {
1730        break;
1731      }
1732      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1733      break;
1734    case Instruction::THROW: {
1735      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1736      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1737        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "thrown class " << res_type << " not instanceof Throwable";
1738      }
1739      break;
1740    }
1741    case Instruction::GOTO:
1742    case Instruction::GOTO_16:
1743    case Instruction::GOTO_32:
1744      /* no effect on or use of registers */
1745      break;
1746
1747    case Instruction::PACKED_SWITCH:
1748    case Instruction::SPARSE_SWITCH:
1749      /* verify that vAA is an integer, or can be converted to one */
1750      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1751      break;
1752
1753    case Instruction::FILL_ARRAY_DATA: {
1754      /* Similar to the verification done for APUT */
1755      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1756      /* array_type can be null if the reg type is Zero */
1757      if (!array_type.IsZero()) {
1758        if (!array_type.IsArrayTypes()) {
1759          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type " << array_type;
1760        } else {
1761          const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
1762          DCHECK(!component_type.IsConflict());
1763          if (component_type.IsNonZeroReferenceTypes()) {
1764            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1765                                              << component_type;
1766          } else {
1767            // Now verify if the element width in the table matches the element width declared in
1768            // the array
1769            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1770            if (array_data[0] != Instruction::kArrayDataSignature) {
1771              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1772            } else {
1773              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1774              // Since we don't compress the data in Dex, expect to see equal width of data stored
1775              // in the table and expected from the array class.
1776              if (array_data[1] != elem_width) {
1777                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1778                                                  << " vs " << elem_width << ")";
1779              }
1780            }
1781          }
1782        }
1783      }
1784      break;
1785    }
1786    case Instruction::IF_EQ:
1787    case Instruction::IF_NE: {
1788      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1789      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1790      bool mismatch = false;
1791      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1792        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1793      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1794        mismatch = !reg_type2.IsReferenceTypes();
1795      } else {  // both integral?
1796        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1797      }
1798      if (mismatch) {
1799        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << "," << reg_type2
1800                                          << ") must both be references or integral";
1801      }
1802      break;
1803    }
1804    case Instruction::IF_LT:
1805    case Instruction::IF_GE:
1806    case Instruction::IF_GT:
1807    case Instruction::IF_LE: {
1808      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1809      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1810      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1811        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1812                                          << reg_type2 << ") must be integral";
1813      }
1814      break;
1815    }
1816    case Instruction::IF_EQZ:
1817    case Instruction::IF_NEZ: {
1818      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1819      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1820        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type << " unexpected as arg to if-eqz/if-nez";
1821      }
1822
1823      // Find previous instruction - its existence is a precondition to peephole optimization.
1824      uint32_t instance_of_idx = 0;
1825      if (0 != work_insn_idx_) {
1826        instance_of_idx = work_insn_idx_ - 1;
1827        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1828          instance_of_idx--;
1829        }
1830        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1831      } else {
1832        break;
1833      }
1834
1835      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1836
1837      /* Check for peep-hole pattern of:
1838       *    ...;
1839       *    instance-of vX, vY, T;
1840       *    ifXXX vX, label ;
1841       *    ...;
1842       * label:
1843       *    ...;
1844       * and sharpen the type of vY to be type T.
1845       * Note, this pattern can't be if:
1846       *  - if there are other branches to this branch,
1847       *  - when vX == vY.
1848       */
1849      if (!CurrentInsnFlags()->IsBranchTarget() &&
1850          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1851          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1852          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1853        // Check that the we are not attempting conversion to interface types,
1854        // which is not done because of the multiple inheritance implications.
1855        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1856
1857        if (!cast_type.IsUnresolvedTypes() && !cast_type.GetClass()->IsInterface()) {
1858          RegisterLine* update_line = new RegisterLine(code_item_->registers_size_, this);
1859          if (inst->Opcode() == Instruction::IF_EQZ) {
1860            fallthrough_line.reset(update_line);
1861          } else {
1862            branch_line.reset(update_line);
1863          }
1864          update_line->CopyFromLine(work_line_.get());
1865          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1866          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1867            // See if instance-of was preceded by a move-object operation, common due to the small
1868            // register encoding space of instance-of, and propagate type information to the source
1869            // of the move-object.
1870            uint32_t move_idx = instance_of_idx - 1;
1871            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1872              move_idx--;
1873            }
1874            CHECK(insn_flags_[move_idx].IsOpcode());
1875            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1876            switch (move_inst->Opcode()) {
1877              case Instruction::MOVE_OBJECT:
1878                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1879                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1880                }
1881                break;
1882              case Instruction::MOVE_OBJECT_FROM16:
1883                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1884                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1885                }
1886                break;
1887              case Instruction::MOVE_OBJECT_16:
1888                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1889                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1890                }
1891                break;
1892              default:
1893                break;
1894            }
1895          }
1896        }
1897      }
1898
1899      break;
1900    }
1901    case Instruction::IF_LTZ:
1902    case Instruction::IF_GEZ:
1903    case Instruction::IF_GTZ:
1904    case Instruction::IF_LEZ: {
1905      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1906      if (!reg_type.IsIntegralTypes()) {
1907        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1908                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1909      }
1910      break;
1911    }
1912    case Instruction::AGET_BOOLEAN:
1913      VerifyAGet(inst, reg_types_.Boolean(), true);
1914      break;
1915    case Instruction::AGET_BYTE:
1916      VerifyAGet(inst, reg_types_.Byte(), true);
1917      break;
1918    case Instruction::AGET_CHAR:
1919      VerifyAGet(inst, reg_types_.Char(), true);
1920      break;
1921    case Instruction::AGET_SHORT:
1922      VerifyAGet(inst, reg_types_.Short(), true);
1923      break;
1924    case Instruction::AGET:
1925      VerifyAGet(inst, reg_types_.Integer(), true);
1926      break;
1927    case Instruction::AGET_WIDE:
1928      VerifyAGet(inst, reg_types_.LongLo(), true);
1929      break;
1930    case Instruction::AGET_OBJECT:
1931      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
1932      break;
1933
1934    case Instruction::APUT_BOOLEAN:
1935      VerifyAPut(inst, reg_types_.Boolean(), true);
1936      break;
1937    case Instruction::APUT_BYTE:
1938      VerifyAPut(inst, reg_types_.Byte(), true);
1939      break;
1940    case Instruction::APUT_CHAR:
1941      VerifyAPut(inst, reg_types_.Char(), true);
1942      break;
1943    case Instruction::APUT_SHORT:
1944      VerifyAPut(inst, reg_types_.Short(), true);
1945      break;
1946    case Instruction::APUT:
1947      VerifyAPut(inst, reg_types_.Integer(), true);
1948      break;
1949    case Instruction::APUT_WIDE:
1950      VerifyAPut(inst, reg_types_.LongLo(), true);
1951      break;
1952    case Instruction::APUT_OBJECT:
1953      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
1954      break;
1955
1956    case Instruction::IGET_BOOLEAN:
1957      VerifyISGet(inst, reg_types_.Boolean(), true, false);
1958      break;
1959    case Instruction::IGET_BYTE:
1960      VerifyISGet(inst, reg_types_.Byte(), true, false);
1961      break;
1962    case Instruction::IGET_CHAR:
1963      VerifyISGet(inst, reg_types_.Char(), true, false);
1964      break;
1965    case Instruction::IGET_SHORT:
1966      VerifyISGet(inst, reg_types_.Short(), true, false);
1967      break;
1968    case Instruction::IGET:
1969      VerifyISGet(inst, reg_types_.Integer(), true, false);
1970      break;
1971    case Instruction::IGET_WIDE:
1972      VerifyISGet(inst, reg_types_.LongLo(), true, false);
1973      break;
1974    case Instruction::IGET_OBJECT:
1975      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
1976      break;
1977
1978    case Instruction::IPUT_BOOLEAN:
1979      VerifyISPut(inst, reg_types_.Boolean(), true, false);
1980      break;
1981    case Instruction::IPUT_BYTE:
1982      VerifyISPut(inst, reg_types_.Byte(), true, false);
1983      break;
1984    case Instruction::IPUT_CHAR:
1985      VerifyISPut(inst, reg_types_.Char(), true, false);
1986      break;
1987    case Instruction::IPUT_SHORT:
1988      VerifyISPut(inst, reg_types_.Short(), true, false);
1989      break;
1990    case Instruction::IPUT:
1991      VerifyISPut(inst, reg_types_.Integer(), true, false);
1992      break;
1993    case Instruction::IPUT_WIDE:
1994      VerifyISPut(inst, reg_types_.LongLo(), true, false);
1995      break;
1996    case Instruction::IPUT_OBJECT:
1997      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
1998      break;
1999
2000    case Instruction::SGET_BOOLEAN:
2001      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2002      break;
2003    case Instruction::SGET_BYTE:
2004      VerifyISGet(inst, reg_types_.Byte(), true, true);
2005      break;
2006    case Instruction::SGET_CHAR:
2007      VerifyISGet(inst, reg_types_.Char(), true, true);
2008      break;
2009    case Instruction::SGET_SHORT:
2010      VerifyISGet(inst, reg_types_.Short(), true, true);
2011      break;
2012    case Instruction::SGET:
2013      VerifyISGet(inst, reg_types_.Integer(), true, true);
2014      break;
2015    case Instruction::SGET_WIDE:
2016      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2017      break;
2018    case Instruction::SGET_OBJECT:
2019      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2020      break;
2021
2022    case Instruction::SPUT_BOOLEAN:
2023      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2024      break;
2025    case Instruction::SPUT_BYTE:
2026      VerifyISPut(inst, reg_types_.Byte(), true, true);
2027      break;
2028    case Instruction::SPUT_CHAR:
2029      VerifyISPut(inst, reg_types_.Char(), true, true);
2030      break;
2031    case Instruction::SPUT_SHORT:
2032      VerifyISPut(inst, reg_types_.Short(), true, true);
2033      break;
2034    case Instruction::SPUT:
2035      VerifyISPut(inst, reg_types_.Integer(), true, true);
2036      break;
2037    case Instruction::SPUT_WIDE:
2038      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2039      break;
2040    case Instruction::SPUT_OBJECT:
2041      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2042      break;
2043
2044    case Instruction::INVOKE_VIRTUAL:
2045    case Instruction::INVOKE_VIRTUAL_RANGE:
2046    case Instruction::INVOKE_SUPER:
2047    case Instruction::INVOKE_SUPER_RANGE: {
2048      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2049                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2050      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2051                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2052      mirror::AbstractMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2053                                                                   is_range, is_super);
2054      const char* descriptor;
2055      if (called_method == NULL) {
2056        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2057        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2058        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2059        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2060      } else {
2061        descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2062      }
2063      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2064      if (!return_type.IsLowHalf()) {
2065        work_line_->SetResultRegisterType(return_type);
2066      } else {
2067        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2068      }
2069      just_set_result = true;
2070      break;
2071    }
2072    case Instruction::INVOKE_DIRECT:
2073    case Instruction::INVOKE_DIRECT_RANGE: {
2074      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2075      mirror::AbstractMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2076                                                                   is_range, false);
2077      const char* return_type_descriptor;
2078      bool is_constructor;
2079      if (called_method == NULL) {
2080        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2081        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2082        is_constructor = StringPiece(dex_file_->GetMethodName(method_id)) == "<init>";
2083        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2084        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2085      } else {
2086        is_constructor = called_method->IsConstructor();
2087        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2088      }
2089      if (is_constructor) {
2090        /*
2091         * Some additional checks when calling a constructor. We know from the invocation arg check
2092         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2093         * that to require that called_method->klass is the same as this->klass or this->super,
2094         * allowing the latter only if the "this" argument is the same as the "this" argument to
2095         * this method (which implies that we're in a constructor ourselves).
2096         */
2097        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2098        if (this_type.IsConflict())  // failure.
2099          break;
2100
2101        /* no null refs allowed (?) */
2102        if (this_type.IsZero()) {
2103          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2104          break;
2105        }
2106
2107        /* must be in same class or in superclass */
2108        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2109        // TODO: re-enable constructor type verification
2110        // if (this_super_klass.IsConflict()) {
2111          // Unknown super class, fail so we re-check at runtime.
2112          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2113          // break;
2114        // }
2115
2116        /* arg must be an uninitialized reference */
2117        if (!this_type.IsUninitializedTypes()) {
2118          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2119              << this_type;
2120          break;
2121        }
2122
2123        /*
2124         * Replace the uninitialized reference with an initialized one. We need to do this for all
2125         * registers that have the same object instance in them, not just the "this" register.
2126         */
2127        work_line_->MarkRefsAsInitialized(this_type);
2128      }
2129      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, return_type_descriptor,
2130                                                             false);
2131      if (!return_type.IsLowHalf()) {
2132        work_line_->SetResultRegisterType(return_type);
2133      } else {
2134        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2135      }
2136      just_set_result = true;
2137      break;
2138    }
2139    case Instruction::INVOKE_STATIC:
2140    case Instruction::INVOKE_STATIC_RANGE: {
2141        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2142        mirror::AbstractMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range, false);
2143        const char* descriptor;
2144        if (called_method == NULL) {
2145          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2146          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2147          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2148          descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2149        } else {
2150          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2151        }
2152        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_, descriptor, false);
2153        if (!return_type.IsLowHalf()) {
2154          work_line_->SetResultRegisterType(return_type);
2155        } else {
2156          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2157        }
2158        just_set_result = true;
2159      }
2160      break;
2161    case Instruction::INVOKE_INTERFACE:
2162    case Instruction::INVOKE_INTERFACE_RANGE: {
2163      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2164      mirror::AbstractMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range, false);
2165      if (abs_method != NULL) {
2166        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2167        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2168          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2169              << PrettyMethod(abs_method) << "'";
2170          break;
2171        }
2172      }
2173      /* Get the type of the "this" arg, which should either be a sub-interface of called
2174       * interface or Object (see comments in RegType::JoinClass).
2175       */
2176      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2177      if (this_type.IsZero()) {
2178        /* null pointer always passes (and always fails at runtime) */
2179      } else {
2180        if (this_type.IsUninitializedTypes()) {
2181          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2182              << this_type;
2183          break;
2184        }
2185        // In the past we have tried to assert that "called_interface" is assignable
2186        // from "this_type.GetClass()", however, as we do an imprecise Join
2187        // (RegType::JoinClass) we don't have full information on what interfaces are
2188        // implemented by "this_type". For example, two classes may implement the same
2189        // interfaces and have a common parent that doesn't implement the interface. The
2190        // join will set "this_type" to the parent class and a test that this implements
2191        // the interface will incorrectly fail.
2192      }
2193      /*
2194       * We don't have an object instance, so we can't find the concrete method. However, all of
2195       * the type information is in the abstract method, so we're good.
2196       */
2197      const char* descriptor;
2198      if (abs_method == NULL) {
2199        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2200        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2201        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2202        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2203      } else {
2204        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2205      }
2206      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2207      if (!return_type.IsLowHalf()) {
2208        work_line_->SetResultRegisterType(return_type);
2209      } else {
2210        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2211      }
2212      just_set_result = true;
2213      break;
2214    }
2215    case Instruction::NEG_INT:
2216    case Instruction::NOT_INT:
2217      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2218      break;
2219    case Instruction::NEG_LONG:
2220    case Instruction::NOT_LONG:
2221      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2222                                   reg_types_.LongLo(), reg_types_.LongHi());
2223      break;
2224    case Instruction::NEG_FLOAT:
2225      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2226      break;
2227    case Instruction::NEG_DOUBLE:
2228      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2229                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2230      break;
2231    case Instruction::INT_TO_LONG:
2232      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2233                                     reg_types_.Integer());
2234      break;
2235    case Instruction::INT_TO_FLOAT:
2236      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2237      break;
2238    case Instruction::INT_TO_DOUBLE:
2239      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2240                                     reg_types_.Integer());
2241      break;
2242    case Instruction::LONG_TO_INT:
2243      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2244                                       reg_types_.LongLo(), reg_types_.LongHi());
2245      break;
2246    case Instruction::LONG_TO_FLOAT:
2247      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2248                                       reg_types_.LongLo(), reg_types_.LongHi());
2249      break;
2250    case Instruction::LONG_TO_DOUBLE:
2251      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2252                                   reg_types_.LongLo(), reg_types_.LongHi());
2253      break;
2254    case Instruction::FLOAT_TO_INT:
2255      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2256      break;
2257    case Instruction::FLOAT_TO_LONG:
2258      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2259                                     reg_types_.Float());
2260      break;
2261    case Instruction::FLOAT_TO_DOUBLE:
2262      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2263                                     reg_types_.Float());
2264      break;
2265    case Instruction::DOUBLE_TO_INT:
2266      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2267                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2268      break;
2269    case Instruction::DOUBLE_TO_LONG:
2270      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2271                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2272      break;
2273    case Instruction::DOUBLE_TO_FLOAT:
2274      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2275                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2276      break;
2277    case Instruction::INT_TO_BYTE:
2278      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2279      break;
2280    case Instruction::INT_TO_CHAR:
2281      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2282      break;
2283    case Instruction::INT_TO_SHORT:
2284      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2285      break;
2286
2287    case Instruction::ADD_INT:
2288    case Instruction::SUB_INT:
2289    case Instruction::MUL_INT:
2290    case Instruction::REM_INT:
2291    case Instruction::DIV_INT:
2292    case Instruction::SHL_INT:
2293    case Instruction::SHR_INT:
2294    case Instruction::USHR_INT:
2295      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2296                                reg_types_.Integer(), false);
2297      break;
2298    case Instruction::AND_INT:
2299    case Instruction::OR_INT:
2300    case Instruction::XOR_INT:
2301      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2302                                reg_types_.Integer(), true);
2303      break;
2304    case Instruction::ADD_LONG:
2305    case Instruction::SUB_LONG:
2306    case Instruction::MUL_LONG:
2307    case Instruction::DIV_LONG:
2308    case Instruction::REM_LONG:
2309    case Instruction::AND_LONG:
2310    case Instruction::OR_LONG:
2311    case Instruction::XOR_LONG:
2312      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2313                                    reg_types_.LongLo(), reg_types_.LongHi(),
2314                                    reg_types_.LongLo(), reg_types_.LongHi());
2315      break;
2316    case Instruction::SHL_LONG:
2317    case Instruction::SHR_LONG:
2318    case Instruction::USHR_LONG:
2319      /* shift distance is Int, making these different from other binary operations */
2320      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2321                                         reg_types_.Integer());
2322      break;
2323    case Instruction::ADD_FLOAT:
2324    case Instruction::SUB_FLOAT:
2325    case Instruction::MUL_FLOAT:
2326    case Instruction::DIV_FLOAT:
2327    case Instruction::REM_FLOAT:
2328      work_line_->CheckBinaryOp(inst, reg_types_.Float(), reg_types_.Float(), reg_types_.Float(), false);
2329      break;
2330    case Instruction::ADD_DOUBLE:
2331    case Instruction::SUB_DOUBLE:
2332    case Instruction::MUL_DOUBLE:
2333    case Instruction::DIV_DOUBLE:
2334    case Instruction::REM_DOUBLE:
2335      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2336                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2337                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2338      break;
2339    case Instruction::ADD_INT_2ADDR:
2340    case Instruction::SUB_INT_2ADDR:
2341    case Instruction::MUL_INT_2ADDR:
2342    case Instruction::REM_INT_2ADDR:
2343    case Instruction::SHL_INT_2ADDR:
2344    case Instruction::SHR_INT_2ADDR:
2345    case Instruction::USHR_INT_2ADDR:
2346      work_line_->CheckBinaryOp2addr(inst, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), false);
2347      break;
2348    case Instruction::AND_INT_2ADDR:
2349    case Instruction::OR_INT_2ADDR:
2350    case Instruction::XOR_INT_2ADDR:
2351      work_line_->CheckBinaryOp2addr(inst, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), true);
2352      break;
2353    case Instruction::DIV_INT_2ADDR:
2354      work_line_->CheckBinaryOp2addr(inst, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), false);
2355      break;
2356    case Instruction::ADD_LONG_2ADDR:
2357    case Instruction::SUB_LONG_2ADDR:
2358    case Instruction::MUL_LONG_2ADDR:
2359    case Instruction::DIV_LONG_2ADDR:
2360    case Instruction::REM_LONG_2ADDR:
2361    case Instruction::AND_LONG_2ADDR:
2362    case Instruction::OR_LONG_2ADDR:
2363    case Instruction::XOR_LONG_2ADDR:
2364      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2365                                         reg_types_.LongLo(), reg_types_.LongHi(),
2366                                         reg_types_.LongLo(), reg_types_.LongHi());
2367      break;
2368    case Instruction::SHL_LONG_2ADDR:
2369    case Instruction::SHR_LONG_2ADDR:
2370    case Instruction::USHR_LONG_2ADDR:
2371      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2372                                              reg_types_.Integer());
2373      break;
2374    case Instruction::ADD_FLOAT_2ADDR:
2375    case Instruction::SUB_FLOAT_2ADDR:
2376    case Instruction::MUL_FLOAT_2ADDR:
2377    case Instruction::DIV_FLOAT_2ADDR:
2378    case Instruction::REM_FLOAT_2ADDR:
2379      work_line_->CheckBinaryOp2addr(inst, reg_types_.Float(), reg_types_.Float(), reg_types_.Float(), false);
2380      break;
2381    case Instruction::ADD_DOUBLE_2ADDR:
2382    case Instruction::SUB_DOUBLE_2ADDR:
2383    case Instruction::MUL_DOUBLE_2ADDR:
2384    case Instruction::DIV_DOUBLE_2ADDR:
2385    case Instruction::REM_DOUBLE_2ADDR:
2386      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2387                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2388                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2389      break;
2390    case Instruction::ADD_INT_LIT16:
2391    case Instruction::RSUB_INT:
2392    case Instruction::MUL_INT_LIT16:
2393    case Instruction::DIV_INT_LIT16:
2394    case Instruction::REM_INT_LIT16:
2395      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2396      break;
2397    case Instruction::AND_INT_LIT16:
2398    case Instruction::OR_INT_LIT16:
2399    case Instruction::XOR_INT_LIT16:
2400      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2401      break;
2402    case Instruction::ADD_INT_LIT8:
2403    case Instruction::RSUB_INT_LIT8:
2404    case Instruction::MUL_INT_LIT8:
2405    case Instruction::DIV_INT_LIT8:
2406    case Instruction::REM_INT_LIT8:
2407    case Instruction::SHL_INT_LIT8:
2408    case Instruction::SHR_INT_LIT8:
2409    case Instruction::USHR_INT_LIT8:
2410      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2411      break;
2412    case Instruction::AND_INT_LIT8:
2413    case Instruction::OR_INT_LIT8:
2414    case Instruction::XOR_INT_LIT8:
2415      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2416      break;
2417
2418    // Special instructions.
2419    case Instruction::RETURN_VOID_BARRIER:
2420      DCHECK(Runtime::Current()->IsStarted());
2421      if (!IsConstructor()) {
2422          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2423      }
2424      break;
2425    // Note: the following instructions encode offsets derived from class linking.
2426    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2427    // meaning if the class linking and resolution were successful.
2428    case Instruction::IGET_QUICK:
2429      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2430      break;
2431    case Instruction::IGET_WIDE_QUICK:
2432      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2433      break;
2434    case Instruction::IGET_OBJECT_QUICK:
2435      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2436      break;
2437    case Instruction::IPUT_QUICK:
2438      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2439      break;
2440    case Instruction::IPUT_WIDE_QUICK:
2441      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2442      break;
2443    case Instruction::IPUT_OBJECT_QUICK:
2444      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2445      break;
2446    case Instruction::INVOKE_VIRTUAL_QUICK:
2447    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2448      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2449      mirror::AbstractMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2450      if (called_method != NULL) {
2451        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2452        const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2453        if (!return_type.IsLowHalf()) {
2454          work_line_->SetResultRegisterType(return_type);
2455        } else {
2456          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2457        }
2458        just_set_result = true;
2459      }
2460      break;
2461    }
2462
2463    /* These should never appear during verification. */
2464    case Instruction::UNUSED_3E:
2465    case Instruction::UNUSED_3F:
2466    case Instruction::UNUSED_40:
2467    case Instruction::UNUSED_41:
2468    case Instruction::UNUSED_42:
2469    case Instruction::UNUSED_43:
2470    case Instruction::UNUSED_79:
2471    case Instruction::UNUSED_7A:
2472    case Instruction::UNUSED_EB:
2473    case Instruction::UNUSED_EC:
2474    case Instruction::UNUSED_ED:
2475    case Instruction::UNUSED_EE:
2476    case Instruction::UNUSED_EF:
2477    case Instruction::UNUSED_F0:
2478    case Instruction::UNUSED_F1:
2479    case Instruction::UNUSED_F2:
2480    case Instruction::UNUSED_F3:
2481    case Instruction::UNUSED_F4:
2482    case Instruction::UNUSED_F5:
2483    case Instruction::UNUSED_F6:
2484    case Instruction::UNUSED_F7:
2485    case Instruction::UNUSED_F8:
2486    case Instruction::UNUSED_F9:
2487    case Instruction::UNUSED_FA:
2488    case Instruction::UNUSED_FB:
2489    case Instruction::UNUSED_FC:
2490    case Instruction::UNUSED_FD:
2491    case Instruction::UNUSED_FE:
2492    case Instruction::UNUSED_FF:
2493      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2494      break;
2495
2496    /*
2497     * DO NOT add a "default" clause here. Without it the compiler will
2498     * complain if an instruction is missing (which is desirable).
2499     */
2500  }  // end - switch (dec_insn.opcode)
2501
2502  if (have_pending_hard_failure_) {
2503    if (Runtime::Current()->IsCompiler()) {
2504      /* When compiling, check that the last failure is a hard failure */
2505      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2506    }
2507    /* immediate failure, reject class */
2508    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2509    return false;
2510  } else if (have_pending_runtime_throw_failure_) {
2511    /* slow path will throw, mark following code as unreachable */
2512    opcode_flags = Instruction::kThrow;
2513  }
2514  /*
2515   * If we didn't just set the result register, clear it out. This ensures that you can only use
2516   * "move-result" immediately after the result is set. (We could check this statically, but it's
2517   * not expensive and it makes our debugging output cleaner.)
2518   */
2519  if (!just_set_result) {
2520    work_line_->SetResultTypeToUnknown();
2521  }
2522
2523
2524
2525  /*
2526   * Handle "branch". Tag the branch target.
2527   *
2528   * NOTE: instructions like Instruction::EQZ provide information about the
2529   * state of the register when the branch is taken or not taken. For example,
2530   * somebody could get a reference field, check it for zero, and if the
2531   * branch is taken immediately store that register in a boolean field
2532   * since the value is known to be zero. We do not currently account for
2533   * that, and will reject the code.
2534   *
2535   * TODO: avoid re-fetching the branch target
2536   */
2537  if ((opcode_flags & Instruction::kBranch) != 0) {
2538    bool isConditional, selfOkay;
2539    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2540      /* should never happen after static verification */
2541      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2542      return false;
2543    }
2544    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2545    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2546      return false;
2547    }
2548    /* update branch target, set "changed" if appropriate */
2549    if (NULL != branch_line.get()) {
2550      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2551        return false;
2552      }
2553    } else {
2554      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2555        return false;
2556      }
2557    }
2558  }
2559
2560  /*
2561   * Handle "switch". Tag all possible branch targets.
2562   *
2563   * We've already verified that the table is structurally sound, so we
2564   * just need to walk through and tag the targets.
2565   */
2566  if ((opcode_flags & Instruction::kSwitch) != 0) {
2567    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2568    const uint16_t* switch_insns = insns + offset_to_switch;
2569    int switch_count = switch_insns[1];
2570    int offset_to_targets, targ;
2571
2572    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2573      /* 0 = sig, 1 = count, 2/3 = first key */
2574      offset_to_targets = 4;
2575    } else {
2576      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2577      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2578      offset_to_targets = 2 + 2 * switch_count;
2579    }
2580
2581    /* verify each switch target */
2582    for (targ = 0; targ < switch_count; targ++) {
2583      int offset;
2584      uint32_t abs_offset;
2585
2586      /* offsets are 32-bit, and only partly endian-swapped */
2587      offset = switch_insns[offset_to_targets + targ * 2] |
2588         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2589      abs_offset = work_insn_idx_ + offset;
2590      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2591      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2592        return false;
2593      }
2594      if (!UpdateRegisters(abs_offset, work_line_.get()))
2595        return false;
2596    }
2597  }
2598
2599  /*
2600   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2601   * "try" block when they throw, control transfers out of the method.)
2602   */
2603  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2604    bool within_catch_all = false;
2605    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2606
2607    for (; iterator.HasNext(); iterator.Next()) {
2608      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2609        within_catch_all = true;
2610      }
2611      /*
2612       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2613       * "work_regs", because at runtime the exception will be thrown before the instruction
2614       * modifies any registers.
2615       */
2616      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2617        return false;
2618      }
2619    }
2620
2621    /*
2622     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2623     * instruction. This does apply to monitor-exit because of async exception handling.
2624     */
2625    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2626      /*
2627       * The state in work_line reflects the post-execution state. If the current instruction is a
2628       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2629       * it will do so before grabbing the lock).
2630       */
2631      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2632        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2633            << "expected to be within a catch-all for an instruction where a monitor is held";
2634        return false;
2635      }
2636    }
2637  }
2638
2639  /* Handle "continue". Tag the next consecutive instruction.
2640   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2641   *        because it changes work_line_ when performing peephole optimization
2642   *        and this change should not be used in those cases.
2643   */
2644    if ((opcode_flags & Instruction::kContinue) != 0) {
2645      uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2646      if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2647        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2648        return false;
2649      }
2650      // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2651      // next instruction isn't one.
2652      if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2653        return false;
2654      }
2655      if (NULL != fallthrough_line.get()) {
2656        // Make workline consistent with fallthrough computed from peephole optimization.
2657        work_line_->CopyFromLine(fallthrough_line.get());
2658      }
2659      RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2660      if (next_line != NULL) {
2661        // Merge registers into what we have for the next instruction,
2662        // and set the "changed" flag if needed.
2663        if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2664          return false;
2665        }
2666      } else {
2667        /*
2668         * We're not recording register data for the next instruction, so we don't know what the
2669         * prior state was. We have to assume that something has changed and re-evaluate it.
2670         */
2671        insn_flags_[next_insn_idx].SetChanged();
2672      }
2673    }
2674
2675  /* If we're returning from the method, make sure monitor stack is empty. */
2676  if ((opcode_flags & Instruction::kReturn) != 0) {
2677    if (!work_line_->VerifyMonitorStackEmpty()) {
2678      return false;
2679    }
2680  }
2681
2682  /*
2683   * Update start_guess. Advance to the next instruction of that's
2684   * possible, otherwise use the branch target if one was found. If
2685   * neither of those exists we're in a return or throw; leave start_guess
2686   * alone and let the caller sort it out.
2687   */
2688  if ((opcode_flags & Instruction::kContinue) != 0) {
2689    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2690  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2691    /* we're still okay if branch_target is zero */
2692    *start_guess = work_insn_idx_ + branch_target;
2693  }
2694
2695  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2696  DCHECK(insn_flags_[*start_guess].IsOpcode());
2697
2698  return true;
2699} // NOLINT(readability/fn_size)
2700
2701const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2702  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2703  const RegType& referrer = GetDeclaringClass();
2704  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
2705  const RegType& result =
2706      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2707                                           klass->CannotBeAssignedFromOtherTypes())
2708                    : reg_types_.FromDescriptor(class_loader_, descriptor, false);
2709  if (result.IsConflict()) {
2710    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2711        << "' in " << referrer;
2712    return result;
2713  }
2714  if (klass == NULL && !result.IsUnresolvedTypes()) {
2715    dex_cache_->SetResolvedType(class_idx, result.GetClass());
2716  }
2717  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2718  // check at runtime if access is allowed and so pass here.
2719  if (!result.IsUnresolvedTypes() && !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2720    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2721                                    << referrer << "' -> '" << result << "'";
2722  }
2723  return result;
2724}
2725
2726const RegType& MethodVerifier::GetCaughtExceptionType() {
2727  const RegType* common_super = NULL;
2728  if (code_item_->tries_size_ != 0) {
2729    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2730    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2731    for (uint32_t i = 0; i < handlers_size; i++) {
2732      CatchHandlerIterator iterator(handlers_ptr);
2733      for (; iterator.HasNext(); iterator.Next()) {
2734        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2735          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2736            common_super = &reg_types_.JavaLangThrowable(false);
2737          } else {
2738            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2739            if (common_super == NULL) {
2740              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2741              // as that is caught at runtime
2742              common_super = &exception;
2743            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2744              // We don't know enough about the type and the common path merge will result in
2745              // Conflict. Fail here knowing the correct thing can be done at runtime.
2746              Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2747              return reg_types_.Conflict();
2748            } else if (common_super->Equals(exception)) {
2749              // odd case, but nothing to do
2750            } else {
2751              common_super = &common_super->Merge(exception, &reg_types_);
2752              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2753            }
2754          }
2755        }
2756      }
2757      handlers_ptr = iterator.EndDataPointer();
2758    }
2759  }
2760  if (common_super == NULL) {
2761    /* no catch blocks, or no catches with classes we can find */
2762    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2763    return reg_types_.Conflict();
2764  }
2765  return *common_super;
2766}
2767
2768mirror::AbstractMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2769                                                                    MethodType method_type) {
2770  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2771  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2772  if (klass_type.IsConflict()) {
2773    std::string append(" in attempt to access method ");
2774    append += dex_file_->GetMethodName(method_id);
2775    AppendToLastFailMessage(append);
2776    return NULL;
2777  }
2778  if (klass_type.IsUnresolvedTypes()) {
2779    return NULL;  // Can't resolve Class so no more to do here
2780  }
2781  mirror::Class* klass = klass_type.GetClass();
2782  const RegType& referrer = GetDeclaringClass();
2783  mirror::AbstractMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
2784  if (res_method == NULL) {
2785    const char* name = dex_file_->GetMethodName(method_id);
2786    std::string signature(dex_file_->CreateMethodSignature(method_id.proto_idx_, NULL));
2787
2788    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2789      res_method = klass->FindDirectMethod(name, signature);
2790    } else if (method_type == METHOD_INTERFACE) {
2791      res_method = klass->FindInterfaceMethod(name, signature);
2792    } else {
2793      res_method = klass->FindVirtualMethod(name, signature);
2794    }
2795    if (res_method != NULL) {
2796      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
2797    } else {
2798      // If a virtual or interface method wasn't found with the expected type, look in
2799      // the direct methods. This can happen when the wrong invoke type is used or when
2800      // a class has changed, and will be flagged as an error in later checks.
2801      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2802        res_method = klass->FindDirectMethod(name, signature);
2803      }
2804      if (res_method == NULL) {
2805        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2806                                     << PrettyDescriptor(klass) << "." << name
2807                                     << " " << signature;
2808        return NULL;
2809      }
2810    }
2811  }
2812  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2813  // enforce them here.
2814  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2815    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2816                                      << PrettyMethod(res_method);
2817    return NULL;
2818  }
2819  // Disallow any calls to class initializers.
2820  if (MethodHelper(res_method).IsClassInitializer()) {
2821    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2822                                      << PrettyMethod(res_method);
2823    return NULL;
2824  }
2825  // Check if access is allowed.
2826  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2827    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2828                                     << " from " << referrer << ")";
2829    return res_method;
2830  }
2831  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2832  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2833    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2834                                      << PrettyMethod(res_method);
2835    return NULL;
2836  }
2837  // Check that interface methods match interface classes.
2838  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2839    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2840                                    << " is in an interface class " << PrettyClass(klass);
2841    return NULL;
2842  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2843    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2844                                    << " is in a non-interface class " << PrettyClass(klass);
2845    return NULL;
2846  }
2847  // See if the method type implied by the invoke instruction matches the access flags for the
2848  // target method.
2849  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2850      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2851      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2852      ) {
2853    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2854                                       " type of " << PrettyMethod(res_method);
2855    return NULL;
2856  }
2857  return res_method;
2858}
2859
2860mirror::AbstractMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2861                                                             MethodType method_type,
2862                                                             bool is_range,
2863                                                             bool is_super) {
2864  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
2865  // we're making.
2866  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2867  mirror::AbstractMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
2868  if (res_method == NULL) {  // error or class is unresolved
2869    return NULL;
2870  }
2871
2872  // If we're using invoke-super(method), make sure that the executing method's class' superclass
2873  // has a vtable entry for the target method.
2874  if (is_super) {
2875    DCHECK(method_type == METHOD_VIRTUAL);
2876    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
2877    if (super.IsUnresolvedTypes()) {
2878      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
2879                                   << PrettyMethod(dex_method_idx_, *dex_file_)
2880                                   << " to super " << PrettyMethod(res_method);
2881      return NULL;
2882    }
2883    mirror::Class* super_klass = super.GetClass();
2884    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
2885      MethodHelper mh(res_method);
2886      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
2887                                   << PrettyMethod(dex_method_idx_, *dex_file_)
2888                                   << " to super " << super
2889                                   << "." << mh.GetName()
2890                                   << mh.GetSignature();
2891      return NULL;
2892    }
2893  }
2894  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
2895  // match the call to the signature. Also, we might be calling through an abstract method
2896  // definition (which doesn't have register count values).
2897  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
2898  /* caught by static verifier */
2899  DCHECK(is_range || expected_args <= 5);
2900  if (expected_args > code_item_->outs_size_) {
2901    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
2902        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
2903    return NULL;
2904  }
2905
2906  /*
2907   * Check the "this" argument, which must be an instance of the class that declared the method.
2908   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
2909   * rigorous check here (which is okay since we have to do it at runtime).
2910   */
2911  size_t actual_args = 0;
2912  if (!res_method->IsStatic()) {
2913    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
2914    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
2915      return NULL;
2916    }
2917    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
2918      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
2919      return NULL;
2920    }
2921    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
2922      mirror::Class* klass = res_method->GetDeclaringClass();
2923      const RegType& res_method_class =
2924          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
2925                               klass->CannotBeAssignedFromOtherTypes());
2926      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
2927        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
2928            << "' not instance of '" << res_method_class << "'";
2929        return NULL;
2930      }
2931    }
2932    actual_args++;
2933  }
2934  /*
2935   * Process the target method's signature. This signature may or may not
2936   * have been verified, so we can't assume it's properly formed.
2937   */
2938  MethodHelper mh(res_method);
2939  const DexFile::TypeList* params = mh.GetParameterTypeList();
2940  size_t params_size = params == NULL ? 0 : params->Size();
2941  uint32_t arg[5];
2942  if (!is_range) {
2943    inst->GetArgs(arg);
2944  }
2945  for (size_t param_index = 0; param_index < params_size; param_index++) {
2946    if (actual_args >= expected_args) {
2947      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
2948          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
2949          << " (where longs/doubles count twice).";
2950      return NULL;
2951    }
2952    const char* descriptor =
2953        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
2954    if (descriptor == NULL) {
2955      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
2956          << " missing signature component";
2957      return NULL;
2958    }
2959    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2960    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
2961    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
2962      return res_method;
2963    }
2964    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
2965  }
2966  if (actual_args != expected_args) {
2967    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
2968        << " expected " << expected_args << " arguments, found " << actual_args;
2969    return NULL;
2970  } else {
2971    return res_method;
2972  }
2973}
2974
2975mirror::AbstractMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
2976                                                              RegisterLine* reg_line,
2977                                                              bool is_range) {
2978  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
2979         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2980  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
2981  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
2982    return NULL;
2983  }
2984  mirror::Class* this_class = NULL;
2985  if (!actual_arg_type.IsUnresolvedTypes()) {
2986    this_class = actual_arg_type.GetClass();
2987  } else {
2988    const std::string& descriptor(actual_arg_type.GetDescriptor());
2989    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2990    this_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
2991    if (this_class == NULL) {
2992      Thread::Current()->ClearException();
2993      // Look for a system class
2994      this_class = class_linker->FindClass(descriptor.c_str(), NULL);
2995    }
2996  }
2997  if (this_class == NULL) {
2998    return NULL;
2999  }
3000  mirror::ObjectArray<mirror::AbstractMethod>* vtable = this_class->GetVTable();
3001  CHECK(vtable != NULL);
3002  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3003  CHECK(vtable_index < vtable->GetLength());
3004  mirror::AbstractMethod* res_method = vtable->Get(vtable_index);
3005  CHECK(!Thread::Current()->IsExceptionPending());
3006  return res_method;
3007}
3008
3009mirror::AbstractMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3010                                                                     bool is_range) {
3011  DCHECK(Runtime::Current()->IsStarted());
3012  mirror::AbstractMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3013                                                             is_range);
3014  if (res_method == NULL) {
3015    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3016    return NULL;
3017  }
3018  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3019
3020  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3021  // match the call to the signature. Also, we might be calling through an abstract method
3022  // definition (which doesn't have register count values).
3023  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3024  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3025    return NULL;
3026  }
3027  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3028  /* caught by static verifier */
3029  DCHECK(is_range || expected_args <= 5);
3030  if (expected_args > code_item_->outs_size_) {
3031    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3032        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3033    return NULL;
3034  }
3035
3036  /*
3037   * Check the "this" argument, which must be an instance of the class that declared the method.
3038   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3039   * rigorous check here (which is okay since we have to do it at runtime).
3040   */
3041  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3042    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3043    return NULL;
3044  }
3045  if (!actual_arg_type.IsZero()) {
3046    mirror::Class* klass = res_method->GetDeclaringClass();
3047    const RegType& res_method_class =
3048        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3049                             klass->CannotBeAssignedFromOtherTypes());
3050    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3051      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3052          << "' not instance of '" << res_method_class << "'";
3053      return NULL;
3054    }
3055  }
3056  /*
3057   * Process the target method's signature. This signature may or may not
3058   * have been verified, so we can't assume it's properly formed.
3059   */
3060  MethodHelper mh(res_method);
3061  const DexFile::TypeList* params = mh.GetParameterTypeList();
3062  size_t params_size = params == NULL ? 0 : params->Size();
3063  uint32_t arg[5];
3064  if (!is_range) {
3065    inst->GetArgs(arg);
3066  }
3067  size_t actual_args = 1;
3068  for (size_t param_index = 0; param_index < params_size; param_index++) {
3069    if (actual_args >= expected_args) {
3070      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3071                << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3072                << " (where longs/doubles count twice).";
3073      return NULL;
3074    }
3075    const char* descriptor =
3076        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3077    if (descriptor == NULL) {
3078      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3079                                        << " missing signature component";
3080      return NULL;
3081    }
3082    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3083    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3084    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3085      return res_method;
3086    }
3087    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3088  }
3089  if (actual_args != expected_args) {
3090    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3091              << " expected " << expected_args << " arguments, found " << actual_args;
3092    return NULL;
3093  } else {
3094    return res_method;
3095  }
3096}
3097
3098void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3099  uint32_t type_idx;
3100  if (!is_filled) {
3101    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3102    type_idx = inst->VRegC_22c();
3103  } else if (!is_range) {
3104    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3105    type_idx = inst->VRegB_35c();
3106  } else {
3107    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3108    type_idx = inst->VRegB_3rc();
3109  }
3110  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3111  if (res_type.IsConflict()) {  // bad class
3112    DCHECK_NE(failures_.size(), 0U);
3113  } else {
3114    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3115    if (!res_type.IsArrayTypes()) {
3116      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3117    } else if (!is_filled) {
3118      /* make sure "size" register is valid type */
3119      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3120      /* set register type to array class */
3121      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3122      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3123    } else {
3124      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3125      // the list and fail. It's legal, if silly, for arg_count to be zero.
3126      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_);
3127      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3128      uint32_t arg[5];
3129      if (!is_range) {
3130        inst->GetArgs(arg);
3131      }
3132      for (size_t ui = 0; ui < arg_count; ui++) {
3133        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3134        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3135          work_line_->SetResultRegisterType(reg_types_.Conflict());
3136          return;
3137        }
3138      }
3139      // filled-array result goes into "result" register
3140      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3141      work_line_->SetResultRegisterType(precise_type);
3142    }
3143  }
3144}
3145
3146void MethodVerifier::VerifyAGet(const Instruction* inst,
3147                                const RegType& insn_type, bool is_primitive) {
3148  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3149  if (!index_type.IsArrayIndexTypes()) {
3150    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3151  } else {
3152    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3153    if (array_type.IsZero()) {
3154      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3155      // instruction type. TODO: have a proper notion of bottom here.
3156      if (!is_primitive || insn_type.IsCategory1Types()) {
3157        // Reference or category 1
3158        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3159      } else {
3160        // Category 2
3161        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3162                                        reg_types_.FromCat2ConstHi(0, false));
3163      }
3164    } else if (!array_type.IsArrayTypes()) {
3165      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3166    } else {
3167      /* verify the class */
3168      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3169      if (!component_type.IsReferenceTypes() && !is_primitive) {
3170        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3171            << " source for aget-object";
3172      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3173        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3174            << " source for category 1 aget";
3175      } else if (is_primitive && !insn_type.Equals(component_type) &&
3176                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3177                 (insn_type.IsLong() && component_type.IsDouble()))) {
3178        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3179            << " incompatible with aget of type " << insn_type;
3180      } else {
3181        // Use knowledge of the field type which is stronger than the type inferred from the
3182        // instruction, which can't differentiate object types and ints from floats, longs from
3183        // doubles.
3184        if (!component_type.IsLowHalf()) {
3185          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3186        } else {
3187          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3188                                          component_type.HighHalf(&reg_types_));
3189        }
3190      }
3191    }
3192  }
3193}
3194
3195void MethodVerifier::VerifyAPut(const Instruction* inst,
3196                             const RegType& insn_type, bool is_primitive) {
3197  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3198  if (!index_type.IsArrayIndexTypes()) {
3199    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3200  } else {
3201    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3202    if (array_type.IsZero()) {
3203      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3204      // instruction type.
3205    } else if (!array_type.IsArrayTypes()) {
3206      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3207    } else {
3208      /* verify the class */
3209      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3210      if (!component_type.IsReferenceTypes() && !is_primitive) {
3211        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3212            << " source for aput-object";
3213      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3214        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3215            << " source for category 1 aput";
3216      } else if (is_primitive && !insn_type.Equals(component_type) &&
3217                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3218                   (insn_type.IsLong() && component_type.IsDouble()))) {
3219        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3220            << " incompatible with aput of type " << insn_type;
3221      } else {
3222        // The instruction agrees with the type of array, confirm the value to be stored does too
3223        // Note: we use the instruction type (rather than the component type) for aput-object as
3224        // incompatible classes will be caught at runtime as an array store exception
3225        work_line_->VerifyRegisterType(inst->VRegA_23x(), is_primitive ? component_type : insn_type);
3226      }
3227    }
3228  }
3229}
3230
3231mirror::Field* MethodVerifier::GetStaticField(int field_idx) {
3232  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3233  // Check access to class
3234  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3235  if (klass_type.IsConflict()) { // bad class
3236    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3237                                         field_idx, dex_file_->GetFieldName(field_id),
3238                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3239    return NULL;
3240  }
3241  if (klass_type.IsUnresolvedTypes()) {
3242    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3243  }
3244  mirror::Field* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_, field_idx,
3245                                                                       dex_cache_, class_loader_);
3246  if (field == NULL) {
3247    LOG(INFO) << "Unable to resolve static field " << field_idx << " ("
3248              << dex_file_->GetFieldName(field_id) << ") in "
3249              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3250    DCHECK(Thread::Current()->IsExceptionPending());
3251    Thread::Current()->ClearException();
3252    return NULL;
3253  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3254                                                  field->GetAccessFlags())) {
3255    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3256                                    << " from " << GetDeclaringClass();
3257    return NULL;
3258  } else if (!field->IsStatic()) {
3259    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3260    return NULL;
3261  } else {
3262    return field;
3263  }
3264}
3265
3266mirror::Field* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3267  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3268  // Check access to class
3269  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3270  if (klass_type.IsConflict()) {
3271    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3272                                         field_idx, dex_file_->GetFieldName(field_id),
3273                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3274    return NULL;
3275  }
3276  if (klass_type.IsUnresolvedTypes()) {
3277    return NULL;  // Can't resolve Class so no more to do here
3278  }
3279  mirror::Field* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_, field_idx,
3280                                                                       dex_cache_, class_loader_);
3281  if (field == NULL) {
3282    LOG(INFO) << "Unable to resolve instance field " << field_idx << " ("
3283              << dex_file_->GetFieldName(field_id) << ") in "
3284              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3285    DCHECK(Thread::Current()->IsExceptionPending());
3286    Thread::Current()->ClearException();
3287    return NULL;
3288  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3289                                                  field->GetAccessFlags())) {
3290    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3291                                    << " from " << GetDeclaringClass();
3292    return NULL;
3293  } else if (field->IsStatic()) {
3294    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3295                                    << " to not be static";
3296    return NULL;
3297  } else if (obj_type.IsZero()) {
3298    // Cannot infer and check type, however, access will cause null pointer exception
3299    return field;
3300  } else {
3301    mirror::Class* klass = field->GetDeclaringClass();
3302    const RegType& field_klass =
3303        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3304                             klass, klass->CannotBeAssignedFromOtherTypes());
3305    if (obj_type.IsUninitializedTypes() &&
3306        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3307            !field_klass.Equals(GetDeclaringClass()))) {
3308      // Field accesses through uninitialized references are only allowable for constructors where
3309      // the field is declared in this class
3310      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3311                                        << " of a not fully initialized object within the context of "
3312                                        << PrettyMethod(dex_method_idx_, *dex_file_);
3313      return NULL;
3314    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3315      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3316      // of C1. For resolution to occur the declared class of the field must be compatible with
3317      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3318      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3319                                  << " from object of type " << obj_type;
3320      return NULL;
3321    } else {
3322      return field;
3323    }
3324  }
3325}
3326
3327void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3328                                 bool is_primitive, bool is_static) {
3329  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3330  mirror::Field* field;
3331  if (is_static) {
3332    field = GetStaticField(field_idx);
3333  } else {
3334    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3335    field = GetInstanceField(object_type, field_idx);
3336  }
3337  const char* descriptor;
3338  mirror::ClassLoader* loader;
3339  if (field != NULL) {
3340    descriptor = FieldHelper(field).GetTypeDescriptor();
3341    loader = field->GetDeclaringClass()->GetClassLoader();
3342  } else {
3343    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3344    descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3345    loader = class_loader_;
3346  }
3347  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3348  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3349  if (is_primitive) {
3350    if (field_type.Equals(insn_type) ||
3351        (field_type.IsFloat() && insn_type.IsIntegralTypes()) ||
3352        (field_type.IsDouble() && insn_type.IsLongTypes())) {
3353      // expected that read is of the correct primitive type or that int reads are reading
3354      // floats or long reads are reading doubles
3355    } else {
3356      // This is a global failure rather than a class change failure as the instructions and
3357      // the descriptors for the type should have been consistent within the same file at
3358      // compile time
3359      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3360                                        << " to be of type '" << insn_type
3361                                        << "' but found type '" << field_type << "' in get";
3362      return;
3363    }
3364  } else {
3365    if (!insn_type.IsAssignableFrom(field_type)) {
3366      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3367                                        << " to be compatible with type '" << insn_type
3368                                        << "' but found type '" << field_type
3369                                        << "' in get-object";
3370      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3371      return;
3372    }
3373  }
3374  if (!field_type.IsLowHalf()) {
3375    work_line_->SetRegisterType(vregA, field_type);
3376  } else {
3377    work_line_->SetRegisterTypeWide(vregA, field_type, field_type.HighHalf(&reg_types_));
3378  }
3379}
3380
3381void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3382                                 bool is_primitive, bool is_static) {
3383  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3384  mirror::Field* field;
3385  if (is_static) {
3386    field = GetStaticField(field_idx);
3387  } else {
3388    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3389    field = GetInstanceField(object_type, field_idx);
3390  }
3391  const char* descriptor;
3392  mirror::ClassLoader* loader;
3393  if (field != NULL) {
3394    descriptor = FieldHelper(field).GetTypeDescriptor();
3395    loader = field->GetDeclaringClass()->GetClassLoader();
3396  } else {
3397    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3398    descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3399    loader = class_loader_;
3400  }
3401  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3402  if (field != NULL) {
3403    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3404      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3405                                      << " from other class " << GetDeclaringClass();
3406      return;
3407    }
3408  }
3409  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3410  if (is_primitive) {
3411    // Primitive field assignability rules are weaker than regular assignability rules
3412    bool instruction_compatible;
3413    bool value_compatible;
3414    const RegType& value_type = work_line_->GetRegisterType(vregA);
3415    if (field_type.IsIntegralTypes()) {
3416      instruction_compatible = insn_type.IsIntegralTypes();
3417      value_compatible = value_type.IsIntegralTypes();
3418    } else if (field_type.IsFloat()) {
3419      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3420      value_compatible = value_type.IsFloatTypes();
3421    } else if (field_type.IsLong()) {
3422      instruction_compatible = insn_type.IsLong();
3423      value_compatible = value_type.IsLongTypes();
3424    } else if (field_type.IsDouble()) {
3425      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3426      value_compatible = value_type.IsDoubleTypes();
3427    } else {
3428      instruction_compatible = false;  // reference field with primitive store
3429      value_compatible = false;  // unused
3430    }
3431    if (!instruction_compatible) {
3432      // This is a global failure rather than a class change failure as the instructions and
3433      // the descriptors for the type should have been consistent within the same file at
3434      // compile time
3435      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3436                                        << " to be of type '" << insn_type
3437                                        << "' but found type '" << field_type
3438                                        << "' in put";
3439      return;
3440    }
3441    if (!value_compatible) {
3442      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3443          << " of type " << value_type
3444          << " but expected " << field_type
3445          << " for store to " << PrettyField(field) << " in put";
3446      return;
3447    }
3448  } else {
3449    if (!insn_type.IsAssignableFrom(field_type)) {
3450      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3451                                        << " to be compatible with type '" << insn_type
3452                                        << "' but found type '" << field_type
3453                                        << "' in put-object";
3454      return;
3455    }
3456    work_line_->VerifyRegisterType(vregA, field_type);
3457  }
3458}
3459
3460// Look for an instance field with this offset.
3461// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3462static mirror::Field* FindInstanceFieldWithOffset(const mirror::Class* klass,
3463                                                  uint32_t field_offset)
3464    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3465  const mirror::ObjectArray<mirror::Field>* instance_fields = klass->GetIFields();
3466  if (instance_fields != NULL) {
3467    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3468      mirror::Field* field = instance_fields->Get(i);
3469      if (field->GetOffset().Uint32Value() == field_offset) {
3470        return field;
3471      }
3472    }
3473  }
3474  // We did not find field in class: look into superclass.
3475  if (klass->GetSuperClass() != NULL) {
3476    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3477  } else {
3478    return NULL;
3479  }
3480}
3481
3482// Returns the access field of a quick field access (iget/iput-quick) or NULL
3483// if it cannot be found.
3484mirror::Field* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3485                                                   RegisterLine* reg_line) {
3486  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3487         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3488         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3489         inst->Opcode() == Instruction::IPUT_QUICK ||
3490         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3491         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3492  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3493  mirror::Class* object_class = NULL;
3494  if (!object_type.IsUnresolvedTypes()) {
3495    object_class = object_type.GetClass();
3496  } else {
3497    // We need to resolve the class from its descriptor.
3498    const std::string& descriptor(object_type.GetDescriptor());
3499    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3500    object_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3501    if (object_class == NULL) {
3502      Thread::Current()->ClearException();
3503      // Look for a system class
3504      object_class = class_linker->FindClass(descriptor.c_str(), NULL);
3505    }
3506  }
3507  if (object_class == NULL) {
3508    // Failed to get the Class* from reg type.
3509    LOG(WARNING) << "Failed to get Class* from " << object_type;
3510    return NULL;
3511  }
3512  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3513  return FindInstanceFieldWithOffset(object_class, field_offset);
3514}
3515
3516void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3517                                     bool is_primitive) {
3518  DCHECK(Runtime::Current()->IsStarted());
3519  mirror::Field* field = GetQuickFieldAccess(inst, work_line_.get());
3520  if (field == NULL) {
3521    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3522    return;
3523  }
3524  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3525  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3526  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3527  const uint32_t vregA = inst->VRegA_22c();
3528  if (is_primitive) {
3529    if (field_type.Equals(insn_type) ||
3530        (field_type.IsFloat() && insn_type.IsIntegralTypes()) ||
3531        (field_type.IsDouble() && insn_type.IsLongTypes())) {
3532      // expected that read is of the correct primitive type or that int reads are reading
3533      // floats or long reads are reading doubles
3534    } else {
3535      // This is a global failure rather than a class change failure as the instructions and
3536      // the descriptors for the type should have been consistent within the same file at
3537      // compile time
3538      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3539                                        << " to be of type '" << insn_type
3540                                        << "' but found type '" << field_type << "' in get";
3541      return;
3542    }
3543  } else {
3544    if (!insn_type.IsAssignableFrom(field_type)) {
3545      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3546                                        << " to be compatible with type '" << insn_type
3547                                        << "' but found type '" << field_type
3548                                        << "' in get-object";
3549      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3550      return;
3551    }
3552  }
3553  if (!field_type.IsLowHalf()) {
3554    work_line_->SetRegisterType(vregA, field_type);
3555  } else {
3556    work_line_->SetRegisterTypeWide(vregA, field_type, field_type.HighHalf(&reg_types_));
3557  }
3558}
3559
3560void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3561                                     bool is_primitive) {
3562  DCHECK(Runtime::Current()->IsStarted());
3563  mirror::Field* field = GetQuickFieldAccess(inst, work_line_.get());
3564  if (field == NULL) {
3565    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3566    return;
3567  }
3568  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3569  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3570  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3571  if (field != NULL) {
3572    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3573      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3574                                      << " from other class " << GetDeclaringClass();
3575      return;
3576    }
3577  }
3578  const uint32_t vregA = inst->VRegA_22c();
3579  if (is_primitive) {
3580    // Primitive field assignability rules are weaker than regular assignability rules
3581    bool instruction_compatible;
3582    bool value_compatible;
3583    const RegType& value_type = work_line_->GetRegisterType(vregA);
3584    if (field_type.IsIntegralTypes()) {
3585      instruction_compatible = insn_type.IsIntegralTypes();
3586      value_compatible = value_type.IsIntegralTypes();
3587    } else if (field_type.IsFloat()) {
3588      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3589      value_compatible = value_type.IsFloatTypes();
3590    } else if (field_type.IsLong()) {
3591      instruction_compatible = insn_type.IsLong();
3592      value_compatible = value_type.IsLongTypes();
3593    } else if (field_type.IsDouble()) {
3594      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3595      value_compatible = value_type.IsDoubleTypes();
3596    } else {
3597      instruction_compatible = false;  // reference field with primitive store
3598      value_compatible = false;  // unused
3599    }
3600    if (!instruction_compatible) {
3601      // This is a global failure rather than a class change failure as the instructions and
3602      // the descriptors for the type should have been consistent within the same file at
3603      // compile time
3604      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3605                                        << " to be of type '" << insn_type
3606                                        << "' but found type '" << field_type
3607                                        << "' in put";
3608      return;
3609    }
3610    if (!value_compatible) {
3611      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3612          << " of type " << value_type
3613          << " but expected " << field_type
3614          << " for store to " << PrettyField(field) << " in put";
3615      return;
3616    }
3617  } else {
3618    if (!insn_type.IsAssignableFrom(field_type)) {
3619      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3620                                        << " to be compatible with type '" << insn_type
3621                                        << "' but found type '" << field_type
3622                                        << "' in put-object";
3623      return;
3624    }
3625    work_line_->VerifyRegisterType(vregA, field_type);
3626  }
3627}
3628
3629bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3630  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3631    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3632    return false;
3633  }
3634  return true;
3635}
3636
3637bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3638  bool changed = true;
3639  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3640  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3641    /*
3642     * We haven't processed this instruction before, and we haven't touched the registers here, so
3643     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3644     * only way a register can transition out of "unknown", so this is not just an optimization.)
3645     */
3646    target_line->CopyFromLine(merge_line);
3647  } else {
3648    UniquePtr<RegisterLine> copy(gDebugVerify ? new RegisterLine(target_line->NumRegs(), this) : NULL);
3649    if (gDebugVerify) {
3650      copy->CopyFromLine(target_line);
3651    }
3652    changed = target_line->MergeRegisters(merge_line);
3653    if (have_pending_hard_failure_) {
3654      return false;
3655    }
3656    if (gDebugVerify && changed) {
3657      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3658                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3659                      << *copy.get() << "  MERGE\n"
3660                      << *merge_line << "  ==\n"
3661                      << *target_line << "\n";
3662    }
3663  }
3664  if (changed) {
3665    insn_flags_[next_insn].SetChanged();
3666  }
3667  return true;
3668}
3669
3670InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3671  return &insn_flags_[work_insn_idx_];
3672}
3673
3674const RegType& MethodVerifier::GetMethodReturnType() {
3675  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3676  const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3677  uint16_t return_type_idx = proto_id.return_type_idx_;
3678  const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3679  return reg_types_.FromDescriptor(class_loader_, descriptor, false);
3680}
3681
3682const RegType& MethodVerifier::GetDeclaringClass() {
3683  if (declaring_class_ == NULL) {
3684    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3685    const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3686    if (mirror_method_ != NULL) {
3687      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3688      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3689                                               klass->CannotBeAssignedFromOtherTypes());
3690    } else {
3691      declaring_class_ = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
3692    }
3693  }
3694  return *declaring_class_;
3695}
3696
3697void MethodVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits,
3698                                    size_t* log2_max_gc_pc) {
3699  size_t local_gc_points = 0;
3700  size_t max_insn = 0;
3701  size_t max_ref_reg = -1;
3702  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3703    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3704      local_gc_points++;
3705      max_insn = i;
3706      RegisterLine* line = reg_table_.GetLine(i);
3707      max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg);
3708    }
3709  }
3710  *gc_points = local_gc_points;
3711  *ref_bitmap_bits = max_ref_reg + 1;  // if max register is 0 we need 1 bit to encode (ie +1)
3712  size_t i = 0;
3713  while ((1U << i) <= max_insn) {
3714    i++;
3715  }
3716  *log2_max_gc_pc = i;
3717}
3718
3719MethodVerifier::MethodSafeCastSet* MethodVerifier::GenerateSafeCastSet() {
3720  /*
3721   * Walks over the method code and adds any cast instructions in which
3722   * the type cast is implicit to a set, which is used in the code generation
3723   * to elide these casts.
3724   */
3725  if (!failure_messages_.empty()) {
3726    return NULL;
3727  }
3728  UniquePtr<MethodSafeCastSet> mscs;
3729  const Instruction* inst = Instruction::At(code_item_->insns_);
3730  const Instruction* end = Instruction::At(code_item_->insns_ +
3731                                           code_item_->insns_size_in_code_units_);
3732
3733  for (; inst < end; inst = inst->Next()) {
3734    if (Instruction::CHECK_CAST != inst->Opcode()) {
3735      continue;
3736    }
3737    uint32_t dex_pc = inst->GetDexPc(code_item_->insns_);
3738    RegisterLine* line = reg_table_.GetLine(dex_pc);
3739    const RegType& reg_type(line->GetRegisterType(inst->VRegA_21c()));
3740    const RegType& cast_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
3741    if (cast_type.IsStrictlyAssignableFrom(reg_type)) {
3742      if (mscs.get() == NULL) {
3743        mscs.reset(new MethodSafeCastSet());
3744      }
3745      mscs->insert(dex_pc);
3746    }
3747  }
3748  return mscs.release();
3749}
3750
3751MethodVerifier::PcToConcreteMethodMap* MethodVerifier::GenerateDevirtMap() {
3752  // It is risky to rely on reg_types for sharpening in cases of soft
3753  // verification, we might end up sharpening to a wrong implementation. Just abort.
3754  if (!failure_messages_.empty()) {
3755    return NULL;
3756  }
3757
3758  UniquePtr<PcToConcreteMethodMap> pc_to_concrete_method_map;
3759  const uint16_t* insns = code_item_->insns_ ;
3760  const Instruction* inst = Instruction::At(insns);
3761  const Instruction* end = Instruction::At(insns + code_item_->insns_size_in_code_units_);
3762
3763  for (; inst < end; inst = inst->Next()) {
3764    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
3765        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
3766    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
3767        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3768
3769    if (!is_interface && !is_virtual) {
3770      continue;
3771    }
3772    // Get reg type for register holding the reference to the object that will be dispatched upon.
3773    uint32_t dex_pc = inst->GetDexPc(insns);
3774    RegisterLine* line = reg_table_.GetLine(dex_pc);
3775    bool is_range = (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
3776        (inst->Opcode() ==  Instruction::INVOKE_INTERFACE_RANGE);
3777    const RegType&
3778        reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c()));
3779
3780    if (!reg_type.HasClass()) {
3781      // We will compute devirtualization information only when we know the Class of the reg type.
3782      continue;
3783    }
3784    mirror::Class* reg_class = reg_type.GetClass();
3785    if (reg_class->IsInterface()) {
3786      // We can't devirtualize when the known type of the register is an interface.
3787      continue;
3788    }
3789    if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) {
3790      // We can't devirtualize abstract classes except on arrays of abstract classes.
3791      continue;
3792    }
3793    mirror::AbstractMethod* abstract_method =
3794        dex_cache_->GetResolvedMethod(is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
3795    if (abstract_method == NULL) {
3796      // If the method is not found in the cache this means that it was never found
3797      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
3798      continue;
3799    }
3800    // Find the concrete method.
3801    mirror::AbstractMethod* concrete_method = NULL;
3802    if (is_interface) {
3803      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
3804    }
3805    if (is_virtual) {
3806      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
3807    }
3808    if (concrete_method == NULL || concrete_method->IsAbstract()) {
3809      // In cases where concrete_method is not found, or is abstract, continue to the next invoke.
3810      continue;
3811    }
3812    if (reg_type.IsPreciseReference() || concrete_method->IsFinal() ||
3813        concrete_method->GetDeclaringClass()->IsFinal()) {
3814      // If we knew exactly the class being dispatched upon, or if the target method cannot be
3815      // overridden record the target to be used in the compiler driver.
3816      if (pc_to_concrete_method_map.get() == NULL) {
3817        pc_to_concrete_method_map.reset(new PcToConcreteMethodMap());
3818      }
3819      MethodReference concrete_ref(
3820          concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
3821          concrete_method->GetDexMethodIndex());
3822      pc_to_concrete_method_map->Put(dex_pc, concrete_ref);
3823    }
3824  }
3825  return pc_to_concrete_method_map.release();
3826}
3827
3828const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
3829  size_t num_entries, ref_bitmap_bits, pc_bits;
3830  ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
3831  // There's a single byte to encode the size of each bitmap
3832  if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) {
3833    // TODO: either a better GC map format or per method failures
3834    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3835       << ref_bitmap_bits << " registers";
3836    return NULL;
3837  }
3838  size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8;
3839  // There are 2 bytes to encode the number of entries
3840  if (num_entries >= 65536) {
3841    // TODO: either a better GC map format or per method failures
3842    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3843       << num_entries << " entries";
3844    return NULL;
3845  }
3846  size_t pc_bytes;
3847  RegisterMapFormat format;
3848  if (pc_bits <= 8) {
3849    format = kRegMapFormatCompact8;
3850    pc_bytes = 1;
3851  } else if (pc_bits <= 16) {
3852    format = kRegMapFormatCompact16;
3853    pc_bytes = 2;
3854  } else {
3855    // TODO: either a better GC map format or per method failures
3856    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3857       << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)";
3858    return NULL;
3859  }
3860  size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4;
3861  std::vector<uint8_t>* table = new std::vector<uint8_t>;
3862  if (table == NULL) {
3863    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")";
3864    return NULL;
3865  }
3866  table->reserve(table_size);
3867  // Write table header
3868  table->push_back(format | ((ref_bitmap_bytes >> DexPcToReferenceMap::kRegMapFormatShift) &
3869                             ~DexPcToReferenceMap::kRegMapFormatMask));
3870  table->push_back(ref_bitmap_bytes & 0xFF);
3871  table->push_back(num_entries & 0xFF);
3872  table->push_back((num_entries >> 8) & 0xFF);
3873  // Write table data
3874  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3875    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3876      table->push_back(i & 0xFF);
3877      if (pc_bytes == 2) {
3878        table->push_back((i >> 8) & 0xFF);
3879      }
3880      RegisterLine* line = reg_table_.GetLine(i);
3881      line->WriteReferenceBitMap(*table, ref_bitmap_bytes);
3882    }
3883  }
3884  DCHECK_EQ(table->size(), table_size);
3885  return table;
3886}
3887
3888void MethodVerifier::VerifyGcMap(const std::vector<uint8_t>& data) {
3889  // Check that for every GC point there is a map entry, there aren't entries for non-GC points,
3890  // that the table data is well formed and all references are marked (or not) in the bitmap
3891  DexPcToReferenceMap map(&data[0], data.size());
3892  size_t map_index = 0;
3893  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3894    const uint8_t* reg_bitmap = map.FindBitMap(i, false);
3895    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3896      CHECK_LT(map_index, map.NumEntries());
3897      CHECK_EQ(map.GetDexPc(map_index), i);
3898      CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
3899      map_index++;
3900      RegisterLine* line = reg_table_.GetLine(i);
3901      for (size_t j = 0; j < code_item_->registers_size_; j++) {
3902        if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) {
3903          CHECK_LT(j / 8, map.RegWidth());
3904          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1);
3905        } else if ((j / 8) < map.RegWidth()) {
3906          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0);
3907        } else {
3908          // If a register doesn't contain a reference then the bitmap may be shorter than the line
3909        }
3910      }
3911    } else {
3912      CHECK(reg_bitmap == NULL);
3913    }
3914  }
3915}
3916
3917void MethodVerifier::SetDexGcMap(MethodReference ref, const std::vector<uint8_t>& gc_map) {
3918  {
3919    WriterMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
3920    DexGcMapTable::iterator it = dex_gc_maps_->find(ref);
3921    if (it != dex_gc_maps_->end()) {
3922      delete it->second;
3923      dex_gc_maps_->erase(it);
3924    }
3925    dex_gc_maps_->Put(ref, &gc_map);
3926  }
3927  DCHECK(GetDexGcMap(ref) != NULL);
3928}
3929
3930
3931void  MethodVerifier::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) {
3932  MutexLock mu(Thread::Current(), *safecast_map_lock_);
3933  SafeCastMap::iterator it = safecast_map_->find(ref);
3934  if (it != safecast_map_->end()) {
3935    delete it->second;
3936    safecast_map_->erase(it);
3937  }
3938
3939  safecast_map_->Put(ref, cast_set);
3940  CHECK(safecast_map_->find(ref) != safecast_map_->end());
3941}
3942
3943bool MethodVerifier::IsSafeCast(MethodReference ref, uint32_t pc) {
3944  MutexLock mu(Thread::Current(), *safecast_map_lock_);
3945  SafeCastMap::const_iterator it = safecast_map_->find(ref);
3946  if (it == safecast_map_->end()) {
3947    return false;
3948  }
3949
3950  // Look up the cast address in the set of safe casts
3951  MethodVerifier::MethodSafeCastSet::const_iterator cast_it = it->second->find(pc);
3952  return cast_it != it->second->end();
3953}
3954
3955const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(MethodReference ref) {
3956  ReaderMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
3957  DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
3958  if (it == dex_gc_maps_->end()) {
3959    LOG(WARNING) << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file);
3960    return NULL;
3961  }
3962  CHECK(it->second != NULL);
3963  return it->second;
3964}
3965
3966void  MethodVerifier::SetDevirtMap(MethodReference ref,
3967                                   const PcToConcreteMethodMap* devirt_map) {
3968  WriterMutexLock mu(Thread::Current(), *devirt_maps_lock_);
3969  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
3970  if (it != devirt_maps_->end()) {
3971    delete it->second;
3972    devirt_maps_->erase(it);
3973  }
3974
3975  devirt_maps_->Put(ref, devirt_map);
3976  CHECK(devirt_maps_->find(ref) != devirt_maps_->end());
3977}
3978
3979const MethodReference* MethodVerifier::GetDevirtMap(const MethodReference& ref,
3980                                                                    uint32_t dex_pc) {
3981  ReaderMutexLock mu(Thread::Current(), *devirt_maps_lock_);
3982  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
3983  if (it == devirt_maps_->end()) {
3984    return NULL;
3985  }
3986
3987  // Look up the PC in the map, get the concrete method to execute and return its reference.
3988  MethodVerifier::PcToConcreteMethodMap::const_iterator pc_to_concrete_method = it->second->find(dex_pc);
3989  if (pc_to_concrete_method != it->second->end()) {
3990    return &(pc_to_concrete_method->second);
3991  } else {
3992    return NULL;
3993  }
3994}
3995
3996std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3997  RegisterLine* line = reg_table_.GetLine(dex_pc);
3998  std::vector<int32_t> result;
3999  for (size_t i = 0; i < line->NumRegs(); ++i) {
4000    const RegType& type = line->GetRegisterType(i);
4001    if (type.IsConstant()) {
4002      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4003      result.push_back(type.ConstantValue());
4004    } else if (type.IsConstantLo()) {
4005      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4006      result.push_back(type.ConstantValueLo());
4007    } else if (type.IsConstantHi()) {
4008      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4009      result.push_back(type.ConstantValueHi());
4010    } else if (type.IsIntegralTypes()) {
4011      result.push_back(kIntVReg);
4012      result.push_back(0);
4013    } else if (type.IsFloat()) {
4014      result.push_back(kFloatVReg);
4015      result.push_back(0);
4016    } else if (type.IsLong()) {
4017      result.push_back(kLongLoVReg);
4018      result.push_back(0);
4019      result.push_back(kLongHiVReg);
4020      result.push_back(0);
4021      ++i;
4022    } else if (type.IsDouble()) {
4023      result.push_back(kDoubleLoVReg);
4024      result.push_back(0);
4025      result.push_back(kDoubleHiVReg);
4026      result.push_back(0);
4027      ++i;
4028    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4029      result.push_back(kUndefined);
4030      result.push_back(0);
4031    } else {
4032      CHECK(type.IsNonZeroReferenceTypes());
4033      result.push_back(kReferenceVReg);
4034      result.push_back(0);
4035    }
4036  }
4037  return result;
4038}
4039
4040ReaderWriterMutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
4041MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
4042
4043Mutex* MethodVerifier::safecast_map_lock_ = NULL;
4044MethodVerifier::SafeCastMap* MethodVerifier::safecast_map_ = NULL;
4045
4046ReaderWriterMutex* MethodVerifier::devirt_maps_lock_ = NULL;
4047MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
4048
4049Mutex* MethodVerifier::rejected_classes_lock_ = NULL;
4050MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
4051
4052void MethodVerifier::Init() {
4053  dex_gc_maps_lock_ = new ReaderWriterMutex("verifier GC maps lock");
4054  Thread* self = Thread::Current();
4055  {
4056    WriterMutexLock mu(self, *dex_gc_maps_lock_);
4057    dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
4058  }
4059
4060  safecast_map_lock_ = new Mutex("verifier Cast Elision lock");
4061  {
4062    MutexLock mu(self, *safecast_map_lock_);
4063    safecast_map_ = new MethodVerifier::SafeCastMap();
4064  }
4065
4066  devirt_maps_lock_ = new ReaderWriterMutex("verifier Devirtualization lock");
4067
4068  {
4069    WriterMutexLock mu(self, *devirt_maps_lock_);
4070    devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
4071  }
4072
4073  rejected_classes_lock_ = new Mutex("verifier rejected classes lock");
4074  {
4075    MutexLock mu(self, *rejected_classes_lock_);
4076    rejected_classes_ = new MethodVerifier::RejectedClassesTable;
4077  }
4078  art::verifier::RegTypeCache::Init();
4079}
4080
4081void MethodVerifier::Shutdown() {
4082  Thread* self = Thread::Current();
4083  {
4084    WriterMutexLock mu(self, *dex_gc_maps_lock_);
4085    STLDeleteValues(dex_gc_maps_);
4086    delete dex_gc_maps_;
4087    dex_gc_maps_ = NULL;
4088  }
4089  delete dex_gc_maps_lock_;
4090  dex_gc_maps_lock_ = NULL;
4091
4092  {
4093    WriterMutexLock mu(self, *devirt_maps_lock_);
4094    STLDeleteValues(devirt_maps_);
4095    delete devirt_maps_;
4096    devirt_maps_ = NULL;
4097  }
4098  delete devirt_maps_lock_;
4099  devirt_maps_lock_ = NULL;
4100
4101  {
4102    MutexLock mu(self, *rejected_classes_lock_);
4103    delete rejected_classes_;
4104    rejected_classes_ = NULL;
4105  }
4106  delete rejected_classes_lock_;
4107  rejected_classes_lock_ = NULL;
4108  verifier::RegTypeCache::ShutDown();
4109}
4110
4111void MethodVerifier::AddRejectedClass(ClassReference ref) {
4112  {
4113    MutexLock mu(Thread::Current(), *rejected_classes_lock_);
4114    rejected_classes_->insert(ref);
4115  }
4116  CHECK(IsClassRejected(ref));
4117}
4118
4119bool MethodVerifier::IsClassRejected(ClassReference ref) {
4120  MutexLock mu(Thread::Current(), *rejected_classes_lock_);
4121  return (rejected_classes_->find(ref) != rejected_classes_->end());
4122}
4123
4124}  // namespace verifier
4125}  // namespace art
4126