method_verifier.cc revision 277ccbd200ea43590dfc06a93ae184a765327ad0
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "handle_scope-inl.h"
46#include "verifier/dex_gc_map.h"
47
48namespace art {
49namespace verifier {
50
51static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
52static constexpr bool gDebugVerify = false;
53// TODO: Add a constant to method_verifier to turn on verbose logging?
54
55void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
56                                 uint32_t insns_size, uint16_t registers_size,
57                                 MethodVerifier* verifier) {
58  DCHECK_GT(insns_size, 0U);
59  register_lines_.reset(new RegisterLine*[insns_size]());
60  size_ = insns_size;
61  for (uint32_t i = 0; i < insns_size; i++) {
62    bool interesting = false;
63    switch (mode) {
64      case kTrackRegsAll:
65        interesting = flags[i].IsOpcode();
66        break;
67      case kTrackCompilerInterestPoints:
68        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
69        break;
70      case kTrackRegsBranches:
71        interesting = flags[i].IsBranchTarget();
72        break;
73      default:
74        break;
75    }
76    if (interesting) {
77      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
78    }
79  }
80}
81
82PcToRegisterLineTable::~PcToRegisterLineTable() {
83  for (size_t i = 0; i < size_; i++) {
84    delete register_lines_[i];
85    if (kIsDebugBuild) {
86      register_lines_[i] = nullptr;
87    }
88  }
89}
90
91// Note: returns true on failure.
92ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
93                                             const char* error_msg, uint32_t work_insn_idx) {
94  if (kIsDebugBuild) {
95    // In a debug build, abort if the error condition is wrong.
96    DCHECK(condition) << error_msg << work_insn_idx;
97  } else {
98    // In a non-debug build, just fail the class.
99    if (!condition) {
100      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
101      return true;
102    }
103  }
104
105  return false;
106}
107
108MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
109                                                        mirror::Class* klass,
110                                                        bool allow_soft_failures,
111                                                        std::string* error) {
112  if (klass->IsVerified()) {
113    return kNoFailure;
114  }
115  bool early_failure = false;
116  std::string failure_message;
117  const DexFile& dex_file = klass->GetDexFile();
118  const DexFile::ClassDef* class_def = klass->GetClassDef();
119  mirror::Class* super = klass->GetSuperClass();
120  std::string temp;
121  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
122    early_failure = true;
123    failure_message = " that has no super class";
124  } else if (super != nullptr && super->IsFinal()) {
125    early_failure = true;
126    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
127  } else if (class_def == nullptr) {
128    early_failure = true;
129    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
130  }
131  if (early_failure) {
132    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
133    if (Runtime::Current()->IsCompiler()) {
134      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
135      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
136    }
137    return kHardFailure;
138  }
139  StackHandleScope<2> hs(self);
140  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
141  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
142  return VerifyClass(self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
143}
144
145MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
146                                                        const DexFile* dex_file,
147                                                        Handle<mirror::DexCache> dex_cache,
148                                                        Handle<mirror::ClassLoader> class_loader,
149                                                        const DexFile::ClassDef* class_def,
150                                                        bool allow_soft_failures,
151                                                        std::string* error) {
152  DCHECK(class_def != nullptr);
153  const uint8_t* class_data = dex_file->GetClassData(*class_def);
154  if (class_data == nullptr) {
155    // empty class, probably a marker interface
156    return kNoFailure;
157  }
158  ClassDataItemIterator it(*dex_file, class_data);
159  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
160    it.Next();
161  }
162  size_t error_count = 0;
163  bool hard_fail = false;
164  ClassLinker* linker = Runtime::Current()->GetClassLinker();
165  int64_t previous_direct_method_idx = -1;
166  while (it.HasNextDirectMethod()) {
167    self->AllowThreadSuspension();
168    uint32_t method_idx = it.GetMemberIndex();
169    if (method_idx == previous_direct_method_idx) {
170      // smali can create dex files with two encoded_methods sharing the same method_idx
171      // http://code.google.com/p/smali/issues/detail?id=119
172      it.Next();
173      continue;
174    }
175    previous_direct_method_idx = method_idx;
176    InvokeType type = it.GetMethodInvokeType(*class_def);
177    mirror::ArtMethod* method =
178        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
179                              NullHandle<mirror::ArtMethod>(), type);
180    if (method == nullptr) {
181      DCHECK(self->IsExceptionPending());
182      // We couldn't resolve the method, but continue regardless.
183      self->ClearException();
184    }
185    StackHandleScope<1> hs(self);
186    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
187    MethodVerifier::FailureKind result = VerifyMethod(self,
188                                                      method_idx,
189                                                      dex_file,
190                                                      dex_cache,
191                                                      class_loader,
192                                                      class_def,
193                                                      it.GetMethodCodeItem(),
194                                                      h_method,
195                                                      it.GetMethodAccessFlags(),
196                                                      allow_soft_failures,
197                                                      false);
198    if (result != kNoFailure) {
199      if (result == kHardFailure) {
200        hard_fail = true;
201        if (error_count > 0) {
202          *error += "\n";
203        }
204        *error = "Verifier rejected class ";
205        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
206        *error += " due to bad method ";
207        *error += PrettyMethod(method_idx, *dex_file);
208      }
209      ++error_count;
210    }
211    it.Next();
212  }
213  int64_t previous_virtual_method_idx = -1;
214  while (it.HasNextVirtualMethod()) {
215    self->AllowThreadSuspension();
216    uint32_t method_idx = it.GetMemberIndex();
217    if (method_idx == previous_virtual_method_idx) {
218      // smali can create dex files with two encoded_methods sharing the same method_idx
219      // http://code.google.com/p/smali/issues/detail?id=119
220      it.Next();
221      continue;
222    }
223    previous_virtual_method_idx = method_idx;
224    InvokeType type = it.GetMethodInvokeType(*class_def);
225    mirror::ArtMethod* method =
226        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
227                              NullHandle<mirror::ArtMethod>(), type);
228    if (method == nullptr) {
229      DCHECK(self->IsExceptionPending());
230      // We couldn't resolve the method, but continue regardless.
231      self->ClearException();
232    }
233    StackHandleScope<1> hs(self);
234    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
235    MethodVerifier::FailureKind result = VerifyMethod(self,
236                                                      method_idx,
237                                                      dex_file,
238                                                      dex_cache,
239                                                      class_loader,
240                                                      class_def,
241                                                      it.GetMethodCodeItem(),
242                                                      h_method,
243                                                      it.GetMethodAccessFlags(),
244                                                      allow_soft_failures,
245                                                      false);
246    if (result != kNoFailure) {
247      if (result == kHardFailure) {
248        hard_fail = true;
249        if (error_count > 0) {
250          *error += "\n";
251        }
252        *error = "Verifier rejected class ";
253        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
254        *error += " due to bad method ";
255        *error += PrettyMethod(method_idx, *dex_file);
256      }
257      ++error_count;
258    }
259    it.Next();
260  }
261  if (error_count == 0) {
262    return kNoFailure;
263  } else {
264    return hard_fail ? kHardFailure : kSoftFailure;
265  }
266}
267
268MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
269                                                         const DexFile* dex_file,
270                                                         Handle<mirror::DexCache> dex_cache,
271                                                         Handle<mirror::ClassLoader> class_loader,
272                                                         const DexFile::ClassDef* class_def,
273                                                         const DexFile::CodeItem* code_item,
274                                                         Handle<mirror::ArtMethod> method,
275                                                         uint32_t method_access_flags,
276                                                         bool allow_soft_failures,
277                                                         bool need_precise_constants) {
278  MethodVerifier::FailureKind result = kNoFailure;
279  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
280
281  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
282                          method_idx, method, method_access_flags, true, allow_soft_failures,
283                          need_precise_constants);
284  if (verifier.Verify()) {
285    // Verification completed, however failures may be pending that didn't cause the verification
286    // to hard fail.
287    CHECK(!verifier.have_pending_hard_failure_);
288    if (verifier.failures_.size() != 0) {
289      if (VLOG_IS_ON(verifier)) {
290          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
291                                << PrettyMethod(method_idx, *dex_file) << "\n");
292      }
293      result = kSoftFailure;
294    }
295  } else {
296    // Bad method data.
297    CHECK_NE(verifier.failures_.size(), 0U);
298    CHECK(verifier.have_pending_hard_failure_);
299    verifier.DumpFailures(LOG(INFO) << "Verification error in "
300                                    << PrettyMethod(method_idx, *dex_file) << "\n");
301    if (gDebugVerify) {
302      std::cout << "\n" << verifier.info_messages_.str();
303      verifier.Dump(std::cout);
304    }
305    result = kHardFailure;
306  }
307  if (kTimeVerifyMethod) {
308    uint64_t duration_ns = NanoTime() - start_ns;
309    if (duration_ns > MsToNs(100)) {
310      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
311                   << " took " << PrettyDuration(duration_ns);
312    }
313  }
314  return result;
315}
316
317MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
318                                         const DexFile* dex_file,
319                                         Handle<mirror::DexCache> dex_cache,
320                                         Handle<mirror::ClassLoader> class_loader,
321                                         const DexFile::ClassDef* class_def,
322                                         const DexFile::CodeItem* code_item,
323                                         Handle<mirror::ArtMethod> method,
324                                         uint32_t method_access_flags) {
325  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
326                                                class_def, code_item, dex_method_idx, method,
327                                                method_access_flags, true, true, true, true);
328  verifier->Verify();
329  verifier->DumpFailures(os);
330  os << verifier->info_messages_.str();
331  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
332  // and querying any info is dangerous/can abort.
333  if (verifier->have_pending_hard_failure_) {
334    delete verifier;
335    return nullptr;
336  } else {
337    verifier->Dump(os);
338    return verifier;
339  }
340}
341
342MethodVerifier::MethodVerifier(Thread* self,
343                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
344                               Handle<mirror::ClassLoader> class_loader,
345                               const DexFile::ClassDef* class_def,
346                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
347                               Handle<mirror::ArtMethod> method, uint32_t method_access_flags,
348                               bool can_load_classes, bool allow_soft_failures,
349                               bool need_precise_constants, bool verify_to_dump)
350    : self_(self),
351      reg_types_(can_load_classes),
352      work_insn_idx_(-1),
353      dex_method_idx_(dex_method_idx),
354      mirror_method_(method),
355      method_access_flags_(method_access_flags),
356      return_type_(nullptr),
357      dex_file_(dex_file),
358      dex_cache_(dex_cache),
359      class_loader_(class_loader),
360      class_def_(class_def),
361      code_item_(code_item),
362      declaring_class_(nullptr),
363      interesting_dex_pc_(-1),
364      monitor_enter_dex_pcs_(nullptr),
365      have_pending_hard_failure_(false),
366      have_pending_runtime_throw_failure_(false),
367      new_instance_count_(0),
368      monitor_enter_count_(0),
369      can_load_classes_(can_load_classes),
370      allow_soft_failures_(allow_soft_failures),
371      need_precise_constants_(need_precise_constants),
372      has_check_casts_(false),
373      has_virtual_or_interface_invokes_(false),
374      verify_to_dump_(verify_to_dump) {
375  Runtime::Current()->AddMethodVerifier(this);
376  DCHECK(class_def != nullptr);
377}
378
379MethodVerifier::~MethodVerifier() {
380  Runtime::Current()->RemoveMethodVerifier(this);
381  STLDeleteElements(&failure_messages_);
382}
383
384void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
385                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
386  Thread* self = Thread::Current();
387  StackHandleScope<3> hs(self);
388  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
389  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
390  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
391  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
392                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
393                          false, true, false);
394  verifier.interesting_dex_pc_ = dex_pc;
395  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
396  verifier.FindLocksAtDexPc();
397}
398
399static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
400  const Instruction* inst = Instruction::At(code_item->insns_);
401
402  uint32_t insns_size = code_item->insns_size_in_code_units_;
403  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
404    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
405      return true;
406    }
407
408    dex_pc += inst->SizeInCodeUnits();
409    inst = inst->Next();
410  }
411
412  return false;
413}
414
415void MethodVerifier::FindLocksAtDexPc() {
416  CHECK(monitor_enter_dex_pcs_ != nullptr);
417  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
418
419  // Quick check whether there are any monitor_enter instructions at all.
420  if (!HasMonitorEnterInstructions(code_item_)) {
421    return;
422  }
423
424  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
425  // verification. In practice, the phase we want relies on data structures set up by all the
426  // earlier passes, so we just run the full method verification and bail out early when we've
427  // got what we wanted.
428  Verify();
429}
430
431mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
432                                                           uint32_t dex_pc) {
433  Thread* self = Thread::Current();
434  StackHandleScope<3> hs(self);
435  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
436  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
437  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
438  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
439                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
440                          true, true, false);
441  return verifier.FindAccessedFieldAtDexPc(dex_pc);
442}
443
444mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
445  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
446
447  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
448  // verification. In practice, the phase we want relies on data structures set up by all the
449  // earlier passes, so we just run the full method verification and bail out early when we've
450  // got what we wanted.
451  bool success = Verify();
452  if (!success) {
453    return nullptr;
454  }
455  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
456  if (register_line == nullptr) {
457    return nullptr;
458  }
459  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
460  return GetQuickFieldAccess(inst, register_line);
461}
462
463mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
464                                                            uint32_t dex_pc) {
465  Thread* self = Thread::Current();
466  StackHandleScope<3> hs(self);
467  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
468  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
469  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
470  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
471                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
472                          true, true, false);
473  return verifier.FindInvokedMethodAtDexPc(dex_pc);
474}
475
476mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
477  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
478
479  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
480  // verification. In practice, the phase we want relies on data structures set up by all the
481  // earlier passes, so we just run the full method verification and bail out early when we've
482  // got what we wanted.
483  bool success = Verify();
484  if (!success) {
485    return nullptr;
486  }
487  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
488  if (register_line == nullptr) {
489    return nullptr;
490  }
491  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
492  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
493  return GetQuickInvokedMethod(inst, register_line, is_range);
494}
495
496bool MethodVerifier::Verify() {
497  // If there aren't any instructions, make sure that's expected, then exit successfully.
498  if (code_item_ == nullptr) {
499    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
500      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
501      return false;
502    } else {
503      return true;
504    }
505  }
506  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
507  if (code_item_->ins_size_ > code_item_->registers_size_) {
508    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
509                                      << " regs=" << code_item_->registers_size_;
510    return false;
511  }
512  // Allocate and initialize an array to hold instruction data.
513  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
514  // Run through the instructions and see if the width checks out.
515  bool result = ComputeWidthsAndCountOps();
516  // Flag instructions guarded by a "try" block and check exception handlers.
517  result = result && ScanTryCatchBlocks();
518  // Perform static instruction verification.
519  result = result && VerifyInstructions();
520  // Perform code-flow analysis and return.
521  result = result && VerifyCodeFlow();
522  // Compute information for compiler.
523  if (result && Runtime::Current()->IsCompiler()) {
524    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
525  }
526  return result;
527}
528
529std::ostream& MethodVerifier::Fail(VerifyError error) {
530  switch (error) {
531    case VERIFY_ERROR_NO_CLASS:
532    case VERIFY_ERROR_NO_FIELD:
533    case VERIFY_ERROR_NO_METHOD:
534    case VERIFY_ERROR_ACCESS_CLASS:
535    case VERIFY_ERROR_ACCESS_FIELD:
536    case VERIFY_ERROR_ACCESS_METHOD:
537    case VERIFY_ERROR_INSTANTIATION:
538    case VERIFY_ERROR_CLASS_CHANGE:
539      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
540        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
541        // class change and instantiation errors into soft verification errors so that we re-verify
542        // at runtime. We may fail to find or to agree on access because of not yet available class
543        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
544        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
545        // paths" that dynamically perform the verification and cause the behavior to be that akin
546        // to an interpreter.
547        error = VERIFY_ERROR_BAD_CLASS_SOFT;
548      } else {
549        // If we fail again at runtime, mark that this instruction would throw and force this
550        // method to be executed using the interpreter with checks.
551        have_pending_runtime_throw_failure_ = true;
552      }
553      break;
554      // Indication that verification should be retried at runtime.
555    case VERIFY_ERROR_BAD_CLASS_SOFT:
556      if (!allow_soft_failures_) {
557        have_pending_hard_failure_ = true;
558      }
559      break;
560      // Hard verification failures at compile time will still fail at runtime, so the class is
561      // marked as rejected to prevent it from being compiled.
562    case VERIFY_ERROR_BAD_CLASS_HARD: {
563      if (Runtime::Current()->IsCompiler()) {
564        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
565        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
566      }
567      have_pending_hard_failure_ = true;
568      break;
569    }
570  }
571  failures_.push_back(error);
572  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
573                                    work_insn_idx_));
574  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
575  failure_messages_.push_back(failure_message);
576  return *failure_message;
577}
578
579std::ostream& MethodVerifier::LogVerifyInfo() {
580  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
581                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
582}
583
584void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
585  size_t failure_num = failure_messages_.size();
586  DCHECK_NE(failure_num, 0U);
587  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
588  prepend += last_fail_message->str();
589  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
590  delete last_fail_message;
591}
592
593void MethodVerifier::AppendToLastFailMessage(std::string append) {
594  size_t failure_num = failure_messages_.size();
595  DCHECK_NE(failure_num, 0U);
596  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
597  (*last_fail_message) << append;
598}
599
600bool MethodVerifier::ComputeWidthsAndCountOps() {
601  const uint16_t* insns = code_item_->insns_;
602  size_t insns_size = code_item_->insns_size_in_code_units_;
603  const Instruction* inst = Instruction::At(insns);
604  size_t new_instance_count = 0;
605  size_t monitor_enter_count = 0;
606  size_t dex_pc = 0;
607
608  while (dex_pc < insns_size) {
609    Instruction::Code opcode = inst->Opcode();
610    switch (opcode) {
611      case Instruction::APUT_OBJECT:
612      case Instruction::CHECK_CAST:
613        has_check_casts_ = true;
614        break;
615      case Instruction::INVOKE_VIRTUAL:
616      case Instruction::INVOKE_VIRTUAL_RANGE:
617      case Instruction::INVOKE_INTERFACE:
618      case Instruction::INVOKE_INTERFACE_RANGE:
619        has_virtual_or_interface_invokes_ = true;
620        break;
621      case Instruction::MONITOR_ENTER:
622        monitor_enter_count++;
623        break;
624      case Instruction::NEW_INSTANCE:
625        new_instance_count++;
626        break;
627      default:
628        break;
629    }
630    size_t inst_size = inst->SizeInCodeUnits();
631    insn_flags_[dex_pc].SetIsOpcode();
632    dex_pc += inst_size;
633    inst = inst->RelativeAt(inst_size);
634  }
635
636  if (dex_pc != insns_size) {
637    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
638                                      << dex_pc << " vs. " << insns_size << ")";
639    return false;
640  }
641
642  new_instance_count_ = new_instance_count;
643  monitor_enter_count_ = monitor_enter_count;
644  return true;
645}
646
647bool MethodVerifier::ScanTryCatchBlocks() {
648  uint32_t tries_size = code_item_->tries_size_;
649  if (tries_size == 0) {
650    return true;
651  }
652  uint32_t insns_size = code_item_->insns_size_in_code_units_;
653  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
654
655  for (uint32_t idx = 0; idx < tries_size; idx++) {
656    const DexFile::TryItem* try_item = &tries[idx];
657    uint32_t start = try_item->start_addr_;
658    uint32_t end = start + try_item->insn_count_;
659    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
660      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
661                                        << " endAddr=" << end << " (size=" << insns_size << ")";
662      return false;
663    }
664    if (!insn_flags_[start].IsOpcode()) {
665      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
666          << "'try' block starts inside an instruction (" << start << ")";
667      return false;
668    }
669    uint32_t dex_pc = start;
670    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
671    while (dex_pc < end) {
672      insn_flags_[dex_pc].SetInTry();
673      size_t insn_size = inst->SizeInCodeUnits();
674      dex_pc += insn_size;
675      inst = inst->RelativeAt(insn_size);
676    }
677  }
678  // Iterate over each of the handlers to verify target addresses.
679  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
680  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
681  ClassLinker* linker = Runtime::Current()->GetClassLinker();
682  for (uint32_t idx = 0; idx < handlers_size; idx++) {
683    CatchHandlerIterator iterator(handlers_ptr);
684    for (; iterator.HasNext(); iterator.Next()) {
685      uint32_t dex_pc= iterator.GetHandlerAddress();
686      if (!insn_flags_[dex_pc].IsOpcode()) {
687        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
688            << "exception handler starts at bad address (" << dex_pc << ")";
689        return false;
690      }
691      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
692        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
693            << "exception handler begins with move-result* (" << dex_pc << ")";
694        return false;
695      }
696      insn_flags_[dex_pc].SetBranchTarget();
697      // Ensure exception types are resolved so that they don't need resolution to be delivered,
698      // unresolved exception types will be ignored by exception delivery
699      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
700        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
701                                                            iterator.GetHandlerTypeIndex(),
702                                                            dex_cache_, class_loader_);
703        if (exception_type == nullptr) {
704          DCHECK(self_->IsExceptionPending());
705          self_->ClearException();
706        }
707      }
708    }
709    handlers_ptr = iterator.EndDataPointer();
710  }
711  return true;
712}
713
714bool MethodVerifier::VerifyInstructions() {
715  const Instruction* inst = Instruction::At(code_item_->insns_);
716
717  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
718  insn_flags_[0].SetBranchTarget();
719  insn_flags_[0].SetCompileTimeInfoPoint();
720
721  uint32_t insns_size = code_item_->insns_size_in_code_units_;
722  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
723    if (!VerifyInstruction(inst, dex_pc)) {
724      DCHECK_NE(failures_.size(), 0U);
725      return false;
726    }
727    /* Flag instructions that are garbage collection points */
728    // All invoke points are marked as "Throw" points already.
729    // We are relying on this to also count all the invokes as interesting.
730    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
731      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
732    } else if (inst->IsReturn()) {
733      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
734    }
735    dex_pc += inst->SizeInCodeUnits();
736    inst = inst->Next();
737  }
738  return true;
739}
740
741bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
742  bool result = true;
743  switch (inst->GetVerifyTypeArgumentA()) {
744    case Instruction::kVerifyRegA:
745      result = result && CheckRegisterIndex(inst->VRegA());
746      break;
747    case Instruction::kVerifyRegAWide:
748      result = result && CheckWideRegisterIndex(inst->VRegA());
749      break;
750  }
751  switch (inst->GetVerifyTypeArgumentB()) {
752    case Instruction::kVerifyRegB:
753      result = result && CheckRegisterIndex(inst->VRegB());
754      break;
755    case Instruction::kVerifyRegBField:
756      result = result && CheckFieldIndex(inst->VRegB());
757      break;
758    case Instruction::kVerifyRegBMethod:
759      result = result && CheckMethodIndex(inst->VRegB());
760      break;
761    case Instruction::kVerifyRegBNewInstance:
762      result = result && CheckNewInstance(inst->VRegB());
763      break;
764    case Instruction::kVerifyRegBString:
765      result = result && CheckStringIndex(inst->VRegB());
766      break;
767    case Instruction::kVerifyRegBType:
768      result = result && CheckTypeIndex(inst->VRegB());
769      break;
770    case Instruction::kVerifyRegBWide:
771      result = result && CheckWideRegisterIndex(inst->VRegB());
772      break;
773  }
774  switch (inst->GetVerifyTypeArgumentC()) {
775    case Instruction::kVerifyRegC:
776      result = result && CheckRegisterIndex(inst->VRegC());
777      break;
778    case Instruction::kVerifyRegCField:
779      result = result && CheckFieldIndex(inst->VRegC());
780      break;
781    case Instruction::kVerifyRegCNewArray:
782      result = result && CheckNewArray(inst->VRegC());
783      break;
784    case Instruction::kVerifyRegCType:
785      result = result && CheckTypeIndex(inst->VRegC());
786      break;
787    case Instruction::kVerifyRegCWide:
788      result = result && CheckWideRegisterIndex(inst->VRegC());
789      break;
790  }
791  switch (inst->GetVerifyExtraFlags()) {
792    case Instruction::kVerifyArrayData:
793      result = result && CheckArrayData(code_offset);
794      break;
795    case Instruction::kVerifyBranchTarget:
796      result = result && CheckBranchTarget(code_offset);
797      break;
798    case Instruction::kVerifySwitchTargets:
799      result = result && CheckSwitchTargets(code_offset);
800      break;
801    case Instruction::kVerifyVarArgNonZero:
802      // Fall-through.
803    case Instruction::kVerifyVarArg: {
804      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
805        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
806                                             "non-range invoke";
807        return false;
808      }
809      uint32_t args[Instruction::kMaxVarArgRegs];
810      inst->GetVarArgs(args);
811      result = result && CheckVarArgRegs(inst->VRegA(), args);
812      break;
813    }
814    case Instruction::kVerifyVarArgRangeNonZero:
815      // Fall-through.
816    case Instruction::kVerifyVarArgRange:
817      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
818          inst->VRegA() <= 0) {
819        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
820                                             "range invoke";
821        return false;
822      }
823      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
824      break;
825    case Instruction::kVerifyError:
826      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
827      result = false;
828      break;
829  }
830  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) {
831    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
832    result = false;
833  }
834  return result;
835}
836
837inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
838  if (idx >= code_item_->registers_size_) {
839    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
840                                      << code_item_->registers_size_ << ")";
841    return false;
842  }
843  return true;
844}
845
846inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
847  if (idx + 1 >= code_item_->registers_size_) {
848    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
849                                      << "+1 >= " << code_item_->registers_size_ << ")";
850    return false;
851  }
852  return true;
853}
854
855inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
856  if (idx >= dex_file_->GetHeader().field_ids_size_) {
857    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
858                                      << dex_file_->GetHeader().field_ids_size_ << ")";
859    return false;
860  }
861  return true;
862}
863
864inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
865  if (idx >= dex_file_->GetHeader().method_ids_size_) {
866    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
867                                      << dex_file_->GetHeader().method_ids_size_ << ")";
868    return false;
869  }
870  return true;
871}
872
873inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
874  if (idx >= dex_file_->GetHeader().type_ids_size_) {
875    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
876                                      << dex_file_->GetHeader().type_ids_size_ << ")";
877    return false;
878  }
879  // We don't need the actual class, just a pointer to the class name.
880  const char* descriptor = dex_file_->StringByTypeIdx(idx);
881  if (descriptor[0] != 'L') {
882    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
883    return false;
884  }
885  return true;
886}
887
888inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
889  if (idx >= dex_file_->GetHeader().string_ids_size_) {
890    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
891                                      << dex_file_->GetHeader().string_ids_size_ << ")";
892    return false;
893  }
894  return true;
895}
896
897inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
898  if (idx >= dex_file_->GetHeader().type_ids_size_) {
899    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
900                                      << dex_file_->GetHeader().type_ids_size_ << ")";
901    return false;
902  }
903  return true;
904}
905
906bool MethodVerifier::CheckNewArray(uint32_t idx) {
907  if (idx >= dex_file_->GetHeader().type_ids_size_) {
908    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
909                                      << dex_file_->GetHeader().type_ids_size_ << ")";
910    return false;
911  }
912  int bracket_count = 0;
913  const char* descriptor = dex_file_->StringByTypeIdx(idx);
914  const char* cp = descriptor;
915  while (*cp++ == '[') {
916    bracket_count++;
917  }
918  if (bracket_count == 0) {
919    /* The given class must be an array type. */
920    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
921        << "can't new-array class '" << descriptor << "' (not an array)";
922    return false;
923  } else if (bracket_count > 255) {
924    /* It is illegal to create an array of more than 255 dimensions. */
925    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
926        << "can't new-array class '" << descriptor << "' (exceeds limit)";
927    return false;
928  }
929  return true;
930}
931
932bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
933  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
934  const uint16_t* insns = code_item_->insns_ + cur_offset;
935  const uint16_t* array_data;
936  int32_t array_data_offset;
937
938  DCHECK_LT(cur_offset, insn_count);
939  /* make sure the start of the array data table is in range */
940  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
941  if ((int32_t) cur_offset + array_data_offset < 0 ||
942      cur_offset + array_data_offset + 2 >= insn_count) {
943    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
944                                      << ", data offset " << array_data_offset
945                                      << ", count " << insn_count;
946    return false;
947  }
948  /* offset to array data table is a relative branch-style offset */
949  array_data = insns + array_data_offset;
950  /* make sure the table is 32-bit aligned */
951  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
952    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
953                                      << ", data offset " << array_data_offset;
954    return false;
955  }
956  uint32_t value_width = array_data[1];
957  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
958  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
959  /* make sure the end of the switch is in range */
960  if (cur_offset + array_data_offset + table_size > insn_count) {
961    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
962                                      << ", data offset " << array_data_offset << ", end "
963                                      << cur_offset + array_data_offset + table_size
964                                      << ", count " << insn_count;
965    return false;
966  }
967  return true;
968}
969
970bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
971  int32_t offset;
972  bool isConditional, selfOkay;
973  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
974    return false;
975  }
976  if (!selfOkay && offset == 0) {
977    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
978                                      << reinterpret_cast<void*>(cur_offset);
979    return false;
980  }
981  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
982  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
983  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
984    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
985                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
986    return false;
987  }
988  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
989  int32_t abs_offset = cur_offset + offset;
990  if (abs_offset < 0 ||
991      (uint32_t) abs_offset >= insn_count ||
992      !insn_flags_[abs_offset].IsOpcode()) {
993    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
994                                      << reinterpret_cast<void*>(abs_offset) << ") at "
995                                      << reinterpret_cast<void*>(cur_offset);
996    return false;
997  }
998  insn_flags_[abs_offset].SetBranchTarget();
999  return true;
1000}
1001
1002bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1003                                  bool* selfOkay) {
1004  const uint16_t* insns = code_item_->insns_ + cur_offset;
1005  *pConditional = false;
1006  *selfOkay = false;
1007  switch (*insns & 0xff) {
1008    case Instruction::GOTO:
1009      *pOffset = ((int16_t) *insns) >> 8;
1010      break;
1011    case Instruction::GOTO_32:
1012      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1013      *selfOkay = true;
1014      break;
1015    case Instruction::GOTO_16:
1016      *pOffset = (int16_t) insns[1];
1017      break;
1018    case Instruction::IF_EQ:
1019    case Instruction::IF_NE:
1020    case Instruction::IF_LT:
1021    case Instruction::IF_GE:
1022    case Instruction::IF_GT:
1023    case Instruction::IF_LE:
1024    case Instruction::IF_EQZ:
1025    case Instruction::IF_NEZ:
1026    case Instruction::IF_LTZ:
1027    case Instruction::IF_GEZ:
1028    case Instruction::IF_GTZ:
1029    case Instruction::IF_LEZ:
1030      *pOffset = (int16_t) insns[1];
1031      *pConditional = true;
1032      break;
1033    default:
1034      return false;
1035      break;
1036  }
1037  return true;
1038}
1039
1040bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1041  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1042  DCHECK_LT(cur_offset, insn_count);
1043  const uint16_t* insns = code_item_->insns_ + cur_offset;
1044  /* make sure the start of the switch is in range */
1045  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1046  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
1047    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1048                                      << ", switch offset " << switch_offset
1049                                      << ", count " << insn_count;
1050    return false;
1051  }
1052  /* offset to switch table is a relative branch-style offset */
1053  const uint16_t* switch_insns = insns + switch_offset;
1054  /* make sure the table is 32-bit aligned */
1055  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1056    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1057                                      << ", switch offset " << switch_offset;
1058    return false;
1059  }
1060  uint32_t switch_count = switch_insns[1];
1061  int32_t keys_offset, targets_offset;
1062  uint16_t expected_signature;
1063  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1064    /* 0=sig, 1=count, 2/3=firstKey */
1065    targets_offset = 4;
1066    keys_offset = -1;
1067    expected_signature = Instruction::kPackedSwitchSignature;
1068  } else {
1069    /* 0=sig, 1=count, 2..count*2 = keys */
1070    keys_offset = 2;
1071    targets_offset = 2 + 2 * switch_count;
1072    expected_signature = Instruction::kSparseSwitchSignature;
1073  }
1074  uint32_t table_size = targets_offset + switch_count * 2;
1075  if (switch_insns[0] != expected_signature) {
1076    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1077        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1078                        switch_insns[0], expected_signature);
1079    return false;
1080  }
1081  /* make sure the end of the switch is in range */
1082  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1083    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1084                                      << ", switch offset " << switch_offset
1085                                      << ", end " << (cur_offset + switch_offset + table_size)
1086                                      << ", count " << insn_count;
1087    return false;
1088  }
1089  /* for a sparse switch, verify the keys are in ascending order */
1090  if (keys_offset > 0 && switch_count > 1) {
1091    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1092    for (uint32_t targ = 1; targ < switch_count; targ++) {
1093      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1094                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1095      if (key <= last_key) {
1096        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1097                                          << ", this=" << key;
1098        return false;
1099      }
1100      last_key = key;
1101    }
1102  }
1103  /* verify each switch target */
1104  for (uint32_t targ = 0; targ < switch_count; targ++) {
1105    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1106                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1107    int32_t abs_offset = cur_offset + offset;
1108    if (abs_offset < 0 ||
1109        abs_offset >= (int32_t) insn_count ||
1110        !insn_flags_[abs_offset].IsOpcode()) {
1111      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1112                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1113                                        << reinterpret_cast<void*>(cur_offset)
1114                                        << "[" << targ << "]";
1115      return false;
1116    }
1117    insn_flags_[abs_offset].SetBranchTarget();
1118  }
1119  return true;
1120}
1121
1122bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1123  if (vA > Instruction::kMaxVarArgRegs) {
1124    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1125    return false;
1126  }
1127  uint16_t registers_size = code_item_->registers_size_;
1128  for (uint32_t idx = 0; idx < vA; idx++) {
1129    if (arg[idx] >= registers_size) {
1130      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1131                                        << ") in non-range invoke (>= " << registers_size << ")";
1132      return false;
1133    }
1134  }
1135
1136  return true;
1137}
1138
1139bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1140  uint16_t registers_size = code_item_->registers_size_;
1141  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1142  // integer overflow when adding them here.
1143  if (vA + vC > registers_size) {
1144    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1145                                      << " in range invoke (> " << registers_size << ")";
1146    return false;
1147  }
1148  return true;
1149}
1150
1151bool MethodVerifier::VerifyCodeFlow() {
1152  uint16_t registers_size = code_item_->registers_size_;
1153  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1154
1155  if (registers_size * insns_size > 4*1024*1024) {
1156    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1157                 << " insns_size=" << insns_size << ")";
1158  }
1159  /* Create and initialize table holding register status */
1160  reg_table_.Init(kTrackCompilerInterestPoints,
1161                  insn_flags_.get(),
1162                  insns_size,
1163                  registers_size,
1164                  this);
1165
1166
1167  work_line_.reset(RegisterLine::Create(registers_size, this));
1168  saved_line_.reset(RegisterLine::Create(registers_size, this));
1169
1170  /* Initialize register types of method arguments. */
1171  if (!SetTypesFromSignature()) {
1172    DCHECK_NE(failures_.size(), 0U);
1173    std::string prepend("Bad signature in ");
1174    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1175    PrependToLastFailMessage(prepend);
1176    return false;
1177  }
1178  /* Perform code flow verification. */
1179  if (!CodeFlowVerifyMethod()) {
1180    DCHECK_NE(failures_.size(), 0U);
1181    return false;
1182  }
1183  return true;
1184}
1185
1186std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1187  DCHECK_EQ(failures_.size(), failure_messages_.size());
1188  for (size_t i = 0; i < failures_.size(); ++i) {
1189      os << failure_messages_[i]->str() << "\n";
1190  }
1191  return os;
1192}
1193
1194void MethodVerifier::Dump(std::ostream& os) {
1195  if (code_item_ == nullptr) {
1196    os << "Native method\n";
1197    return;
1198  }
1199  {
1200    os << "Register Types:\n";
1201    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1202    std::ostream indent_os(&indent_filter);
1203    reg_types_.Dump(indent_os);
1204  }
1205  os << "Dumping instructions and register lines:\n";
1206  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1207  std::ostream indent_os(&indent_filter);
1208  const Instruction* inst = Instruction::At(code_item_->insns_);
1209  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1210      dex_pc += inst->SizeInCodeUnits()) {
1211    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1212    if (reg_line != nullptr) {
1213      indent_os << reg_line->Dump(this) << "\n";
1214    }
1215    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1216    const bool kDumpHexOfInstruction = false;
1217    if (kDumpHexOfInstruction) {
1218      indent_os << inst->DumpHex(5) << " ";
1219    }
1220    indent_os << inst->DumpString(dex_file_) << "\n";
1221    inst = inst->Next();
1222  }
1223}
1224
1225static bool IsPrimitiveDescriptor(char descriptor) {
1226  switch (descriptor) {
1227    case 'I':
1228    case 'C':
1229    case 'S':
1230    case 'B':
1231    case 'Z':
1232    case 'F':
1233    case 'D':
1234    case 'J':
1235      return true;
1236    default:
1237      return false;
1238  }
1239}
1240
1241bool MethodVerifier::SetTypesFromSignature() {
1242  RegisterLine* reg_line = reg_table_.GetLine(0);
1243  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1244  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1245
1246  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1247  // Include the "this" pointer.
1248  size_t cur_arg = 0;
1249  if (!IsStatic()) {
1250    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1251    // argument as uninitialized. This restricts field access until the superclass constructor is
1252    // called.
1253    const RegType& declaring_class = GetDeclaringClass();
1254    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1255      reg_line->SetRegisterType(this, arg_start + cur_arg,
1256                                reg_types_.UninitializedThisArgument(declaring_class));
1257    } else {
1258      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1259    }
1260    cur_arg++;
1261  }
1262
1263  const DexFile::ProtoId& proto_id =
1264      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1265  DexFileParameterIterator iterator(*dex_file_, proto_id);
1266
1267  for (; iterator.HasNext(); iterator.Next()) {
1268    const char* descriptor = iterator.GetDescriptor();
1269    if (descriptor == nullptr) {
1270      LOG(FATAL) << "Null descriptor";
1271    }
1272    if (cur_arg >= expected_args) {
1273      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1274                                        << " args, found more (" << descriptor << ")";
1275      return false;
1276    }
1277    switch (descriptor[0]) {
1278      case 'L':
1279      case '[':
1280        // We assume that reference arguments are initialized. The only way it could be otherwise
1281        // (assuming the caller was verified) is if the current method is <init>, but in that case
1282        // it's effectively considered initialized the instant we reach here (in the sense that we
1283        // can return without doing anything or call virtual methods).
1284        {
1285          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1286          if (!reg_type.IsNonZeroReferenceTypes()) {
1287            DCHECK(HasFailures());
1288            return false;
1289          }
1290          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1291        }
1292        break;
1293      case 'Z':
1294        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1295        break;
1296      case 'C':
1297        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1298        break;
1299      case 'B':
1300        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1301        break;
1302      case 'I':
1303        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1304        break;
1305      case 'S':
1306        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1307        break;
1308      case 'F':
1309        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1310        break;
1311      case 'J':
1312      case 'D': {
1313        if (cur_arg + 1 >= expected_args) {
1314          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1315              << " args, found more (" << descriptor << ")";
1316          return false;
1317        }
1318
1319        const RegType* lo_half;
1320        const RegType* hi_half;
1321        if (descriptor[0] == 'J') {
1322          lo_half = &reg_types_.LongLo();
1323          hi_half = &reg_types_.LongHi();
1324        } else {
1325          lo_half = &reg_types_.DoubleLo();
1326          hi_half = &reg_types_.DoubleHi();
1327        }
1328        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1329        cur_arg++;
1330        break;
1331      }
1332      default:
1333        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1334                                          << descriptor << "'";
1335        return false;
1336    }
1337    cur_arg++;
1338  }
1339  if (cur_arg != expected_args) {
1340    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1341                                      << " arguments, found " << cur_arg;
1342    return false;
1343  }
1344  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1345  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1346  // format. Only major difference from the method argument format is that 'V' is supported.
1347  bool result;
1348  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1349    result = descriptor[1] == '\0';
1350  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1351    size_t i = 0;
1352    do {
1353      i++;
1354    } while (descriptor[i] == '[');  // process leading [
1355    if (descriptor[i] == 'L') {  // object array
1356      do {
1357        i++;  // find closing ;
1358      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1359      result = descriptor[i] == ';';
1360    } else {  // primitive array
1361      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1362    }
1363  } else if (descriptor[0] == 'L') {
1364    // could be more thorough here, but shouldn't be required
1365    size_t i = 0;
1366    do {
1367      i++;
1368    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1369    result = descriptor[i] == ';';
1370  } else {
1371    result = false;
1372  }
1373  if (!result) {
1374    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1375                                      << descriptor << "'";
1376  }
1377  return result;
1378}
1379
1380bool MethodVerifier::CodeFlowVerifyMethod() {
1381  const uint16_t* insns = code_item_->insns_;
1382  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1383
1384  /* Begin by marking the first instruction as "changed". */
1385  insn_flags_[0].SetChanged();
1386  uint32_t start_guess = 0;
1387
1388  /* Continue until no instructions are marked "changed". */
1389  while (true) {
1390    self_->AllowThreadSuspension();
1391    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1392    uint32_t insn_idx = start_guess;
1393    for (; insn_idx < insns_size; insn_idx++) {
1394      if (insn_flags_[insn_idx].IsChanged())
1395        break;
1396    }
1397    if (insn_idx == insns_size) {
1398      if (start_guess != 0) {
1399        /* try again, starting from the top */
1400        start_guess = 0;
1401        continue;
1402      } else {
1403        /* all flags are clear */
1404        break;
1405      }
1406    }
1407    // We carry the working set of registers from instruction to instruction. If this address can
1408    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1409    // "changed" flags, we need to load the set of registers from the table.
1410    // Because we always prefer to continue on to the next instruction, we should never have a
1411    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1412    // target.
1413    work_insn_idx_ = insn_idx;
1414    if (insn_flags_[insn_idx].IsBranchTarget()) {
1415      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1416    } else if (kIsDebugBuild) {
1417      /*
1418       * Sanity check: retrieve the stored register line (assuming
1419       * a full table) and make sure it actually matches.
1420       */
1421      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1422      if (register_line != nullptr) {
1423        if (work_line_->CompareLine(register_line) != 0) {
1424          Dump(std::cout);
1425          std::cout << info_messages_.str();
1426          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1427                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1428                     << " work_line=" << work_line_->Dump(this) << "\n"
1429                     << "  expected=" << register_line->Dump(this);
1430        }
1431      }
1432    }
1433    if (!CodeFlowVerifyInstruction(&start_guess)) {
1434      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1435      prepend += " failed to verify: ";
1436      PrependToLastFailMessage(prepend);
1437      return false;
1438    }
1439    /* Clear "changed" and mark as visited. */
1440    insn_flags_[insn_idx].SetVisited();
1441    insn_flags_[insn_idx].ClearChanged();
1442  }
1443
1444  if (gDebugVerify) {
1445    /*
1446     * Scan for dead code. There's nothing "evil" about dead code
1447     * (besides the wasted space), but it indicates a flaw somewhere
1448     * down the line, possibly in the verifier.
1449     *
1450     * If we've substituted "always throw" instructions into the stream,
1451     * we are almost certainly going to have some dead code.
1452     */
1453    int dead_start = -1;
1454    uint32_t insn_idx = 0;
1455    for (; insn_idx < insns_size;
1456         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1457      /*
1458       * Switch-statement data doesn't get "visited" by scanner. It
1459       * may or may not be preceded by a padding NOP (for alignment).
1460       */
1461      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1462          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1463          insns[insn_idx] == Instruction::kArrayDataSignature ||
1464          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1465           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1466            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1467            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1468        insn_flags_[insn_idx].SetVisited();
1469      }
1470
1471      if (!insn_flags_[insn_idx].IsVisited()) {
1472        if (dead_start < 0)
1473          dead_start = insn_idx;
1474      } else if (dead_start >= 0) {
1475        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1476                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1477        dead_start = -1;
1478      }
1479    }
1480    if (dead_start >= 0) {
1481      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1482                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1483    }
1484    // To dump the state of the verify after a method, do something like:
1485    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1486    //     "boolean java.lang.String.equals(java.lang.Object)") {
1487    //   LOG(INFO) << info_messages_.str();
1488    // }
1489  }
1490  return true;
1491}
1492
1493bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1494  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1495  // We want the state _before_ the instruction, for the case where the dex pc we're
1496  // interested in is itself a monitor-enter instruction (which is a likely place
1497  // for a thread to be suspended).
1498  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1499    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1500    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1501      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1502    }
1503  }
1504
1505  /*
1506   * Once we finish decoding the instruction, we need to figure out where
1507   * we can go from here. There are three possible ways to transfer
1508   * control to another statement:
1509   *
1510   * (1) Continue to the next instruction. Applies to all but
1511   *     unconditional branches, method returns, and exception throws.
1512   * (2) Branch to one or more possible locations. Applies to branches
1513   *     and switch statements.
1514   * (3) Exception handlers. Applies to any instruction that can
1515   *     throw an exception that is handled by an encompassing "try"
1516   *     block.
1517   *
1518   * We can also return, in which case there is no successor instruction
1519   * from this point.
1520   *
1521   * The behavior can be determined from the opcode flags.
1522   */
1523  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1524  const Instruction* inst = Instruction::At(insns);
1525  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1526
1527  int32_t branch_target = 0;
1528  bool just_set_result = false;
1529  if (gDebugVerify) {
1530    // Generate processing back trace to debug verifier
1531    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1532                    << work_line_->Dump(this) << "\n";
1533  }
1534
1535  /*
1536   * Make a copy of the previous register state. If the instruction
1537   * can throw an exception, we will copy/merge this into the "catch"
1538   * address rather than work_line, because we don't want the result
1539   * from the "successful" code path (e.g. a check-cast that "improves"
1540   * a type) to be visible to the exception handler.
1541   */
1542  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1543    saved_line_->CopyFromLine(work_line_.get());
1544  } else if (kIsDebugBuild) {
1545    saved_line_->FillWithGarbage();
1546  }
1547
1548
1549  // We need to ensure the work line is consistent while performing validation. When we spot a
1550  // peephole pattern we compute a new line for either the fallthrough instruction or the
1551  // branch target.
1552  std::unique_ptr<RegisterLine> branch_line;
1553  std::unique_ptr<RegisterLine> fallthrough_line;
1554
1555  switch (inst->Opcode()) {
1556    case Instruction::NOP:
1557      /*
1558       * A "pure" NOP has no effect on anything. Data tables start with
1559       * a signature that looks like a NOP; if we see one of these in
1560       * the course of executing code then we have a problem.
1561       */
1562      if (inst->VRegA_10x() != 0) {
1563        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1564      }
1565      break;
1566
1567    case Instruction::MOVE:
1568      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1569      break;
1570    case Instruction::MOVE_FROM16:
1571      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1572      break;
1573    case Instruction::MOVE_16:
1574      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1575      break;
1576    case Instruction::MOVE_WIDE:
1577      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1578      break;
1579    case Instruction::MOVE_WIDE_FROM16:
1580      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1581      break;
1582    case Instruction::MOVE_WIDE_16:
1583      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1584      break;
1585    case Instruction::MOVE_OBJECT:
1586      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1587      break;
1588    case Instruction::MOVE_OBJECT_FROM16:
1589      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1590      break;
1591    case Instruction::MOVE_OBJECT_16:
1592      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1593      break;
1594
1595    /*
1596     * The move-result instructions copy data out of a "pseudo-register"
1597     * with the results from the last method invocation. In practice we
1598     * might want to hold the result in an actual CPU register, so the
1599     * Dalvik spec requires that these only appear immediately after an
1600     * invoke or filled-new-array.
1601     *
1602     * These calls invalidate the "result" register. (This is now
1603     * redundant with the reset done below, but it can make the debug info
1604     * easier to read in some cases.)
1605     */
1606    case Instruction::MOVE_RESULT:
1607      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1608      break;
1609    case Instruction::MOVE_RESULT_WIDE:
1610      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1611      break;
1612    case Instruction::MOVE_RESULT_OBJECT:
1613      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1614      break;
1615
1616    case Instruction::MOVE_EXCEPTION: {
1617      /*
1618       * This statement can only appear as the first instruction in an exception handler. We verify
1619       * that as part of extracting the exception type from the catch block list.
1620       */
1621      const RegType& res_type = GetCaughtExceptionType();
1622      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1623      break;
1624    }
1625    case Instruction::RETURN_VOID:
1626      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1627        if (!GetMethodReturnType().IsConflict()) {
1628          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1629        }
1630      }
1631      break;
1632    case Instruction::RETURN:
1633      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1634        /* check the method signature */
1635        const RegType& return_type = GetMethodReturnType();
1636        if (!return_type.IsCategory1Types()) {
1637          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1638                                            << return_type;
1639        } else {
1640          // Compilers may generate synthetic functions that write byte values into boolean fields.
1641          // Also, it may use integer values for boolean, byte, short, and character return types.
1642          const uint32_t vregA = inst->VRegA_11x();
1643          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1644          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1645                          ((return_type.IsBoolean() || return_type.IsByte() ||
1646                           return_type.IsShort() || return_type.IsChar()) &&
1647                           src_type.IsInteger()));
1648          /* check the register contents */
1649          bool success =
1650              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1651          if (!success) {
1652            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1653          }
1654        }
1655      }
1656      break;
1657    case Instruction::RETURN_WIDE:
1658      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1659        /* check the method signature */
1660        const RegType& return_type = GetMethodReturnType();
1661        if (!return_type.IsCategory2Types()) {
1662          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1663        } else {
1664          /* check the register contents */
1665          const uint32_t vregA = inst->VRegA_11x();
1666          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1667          if (!success) {
1668            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1669          }
1670        }
1671      }
1672      break;
1673    case Instruction::RETURN_OBJECT:
1674      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1675        const RegType& return_type = GetMethodReturnType();
1676        if (!return_type.IsReferenceTypes()) {
1677          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1678        } else {
1679          /* return_type is the *expected* return type, not register value */
1680          DCHECK(!return_type.IsZero());
1681          DCHECK(!return_type.IsUninitializedReference());
1682          const uint32_t vregA = inst->VRegA_11x();
1683          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1684          // Disallow returning uninitialized values and verify that the reference in vAA is an
1685          // instance of the "return_type"
1686          if (reg_type.IsUninitializedTypes()) {
1687            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1688                                              << reg_type << "'";
1689          } else if (!return_type.IsAssignableFrom(reg_type)) {
1690            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1691              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1692                  << "' or '" << reg_type << "'";
1693            } else {
1694              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1695                  << "', but expected from declaration '" << return_type << "'";
1696            }
1697          }
1698        }
1699      }
1700      break;
1701
1702      /* could be boolean, int, float, or a null reference */
1703    case Instruction::CONST_4: {
1704      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1705      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1706                                  DetermineCat1Constant(val, need_precise_constants_));
1707      break;
1708    }
1709    case Instruction::CONST_16: {
1710      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1711      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1712                                  DetermineCat1Constant(val, need_precise_constants_));
1713      break;
1714    }
1715    case Instruction::CONST: {
1716      int32_t val = inst->VRegB_31i();
1717      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1718                                  DetermineCat1Constant(val, need_precise_constants_));
1719      break;
1720    }
1721    case Instruction::CONST_HIGH16: {
1722      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1723      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1724                                  DetermineCat1Constant(val, need_precise_constants_));
1725      break;
1726    }
1727      /* could be long or double; resolved upon use */
1728    case Instruction::CONST_WIDE_16: {
1729      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1730      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1731      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1732      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1733      break;
1734    }
1735    case Instruction::CONST_WIDE_32: {
1736      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1737      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1738      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1739      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1740      break;
1741    }
1742    case Instruction::CONST_WIDE: {
1743      int64_t val = inst->VRegB_51l();
1744      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1745      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1746      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1747      break;
1748    }
1749    case Instruction::CONST_WIDE_HIGH16: {
1750      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1751      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1752      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1753      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1754      break;
1755    }
1756    case Instruction::CONST_STRING:
1757      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1758      break;
1759    case Instruction::CONST_STRING_JUMBO:
1760      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1761      break;
1762    case Instruction::CONST_CLASS: {
1763      // Get type from instruction if unresolved then we need an access check
1764      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1765      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1766      // Register holds class, ie its type is class, on error it will hold Conflict.
1767      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1768                                  res_type.IsConflict() ? res_type
1769                                                        : reg_types_.JavaLangClass());
1770      break;
1771    }
1772    case Instruction::MONITOR_ENTER:
1773      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1774      break;
1775    case Instruction::MONITOR_EXIT:
1776      /*
1777       * monitor-exit instructions are odd. They can throw exceptions,
1778       * but when they do they act as if they succeeded and the PC is
1779       * pointing to the following instruction. (This behavior goes back
1780       * to the need to handle asynchronous exceptions, a now-deprecated
1781       * feature that Dalvik doesn't support.)
1782       *
1783       * In practice we don't need to worry about this. The only
1784       * exceptions that can be thrown from monitor-exit are for a
1785       * null reference and -exit without a matching -enter. If the
1786       * structured locking checks are working, the former would have
1787       * failed on the -enter instruction, and the latter is impossible.
1788       *
1789       * This is fortunate, because issue 3221411 prevents us from
1790       * chasing the "can throw" path when monitor verification is
1791       * enabled. If we can fully verify the locking we can ignore
1792       * some catch blocks (which will show up as "dead" code when
1793       * we skip them here); if we can't, then the code path could be
1794       * "live" so we still need to check it.
1795       */
1796      opcode_flags &= ~Instruction::kThrow;
1797      work_line_->PopMonitor(this, inst->VRegA_11x());
1798      break;
1799
1800    case Instruction::CHECK_CAST:
1801    case Instruction::INSTANCE_OF: {
1802      /*
1803       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1804       * could be a "upcast" -- not expected, so we don't try to address it.)
1805       *
1806       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1807       * dec_insn.vA when branching to a handler.
1808       */
1809      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1810      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1811      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1812      if (res_type.IsConflict()) {
1813        // If this is a primitive type, fail HARD.
1814        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1815        if (klass != nullptr && klass->IsPrimitive()) {
1816          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1817              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1818              << GetDeclaringClass();
1819          break;
1820        }
1821
1822        DCHECK_NE(failures_.size(), 0U);
1823        if (!is_checkcast) {
1824          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1825        }
1826        break;  // bad class
1827      }
1828      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1829      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1830      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1831      if (!res_type.IsNonZeroReferenceTypes()) {
1832        if (is_checkcast) {
1833          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1834        } else {
1835          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1836        }
1837      } else if (!orig_type.IsReferenceTypes()) {
1838        if (is_checkcast) {
1839          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1840        } else {
1841          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1842        }
1843      } else {
1844        if (is_checkcast) {
1845          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1846        } else {
1847          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1848        }
1849      }
1850      break;
1851    }
1852    case Instruction::ARRAY_LENGTH: {
1853      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1854      if (res_type.IsReferenceTypes()) {
1855        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1856          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1857        } else {
1858          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1859        }
1860      } else {
1861        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1862      }
1863      break;
1864    }
1865    case Instruction::NEW_INSTANCE: {
1866      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1867      if (res_type.IsConflict()) {
1868        DCHECK_NE(failures_.size(), 0U);
1869        break;  // bad class
1870      }
1871      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1872      // can't create an instance of an interface or abstract class */
1873      if (!res_type.IsInstantiableTypes()) {
1874        Fail(VERIFY_ERROR_INSTANTIATION)
1875            << "new-instance on primitive, interface or abstract class" << res_type;
1876        // Soft failure so carry on to set register type.
1877      }
1878      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1879      // Any registers holding previous allocations from this address that have not yet been
1880      // initialized must be marked invalid.
1881      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1882      // add the new uninitialized reference to the register state
1883      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1884      break;
1885    }
1886    case Instruction::NEW_ARRAY:
1887      VerifyNewArray(inst, false, false);
1888      break;
1889    case Instruction::FILLED_NEW_ARRAY:
1890      VerifyNewArray(inst, true, false);
1891      just_set_result = true;  // Filled new array sets result register
1892      break;
1893    case Instruction::FILLED_NEW_ARRAY_RANGE:
1894      VerifyNewArray(inst, true, true);
1895      just_set_result = true;  // Filled new array range sets result register
1896      break;
1897    case Instruction::CMPL_FLOAT:
1898    case Instruction::CMPG_FLOAT:
1899      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1900        break;
1901      }
1902      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1903        break;
1904      }
1905      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1906      break;
1907    case Instruction::CMPL_DOUBLE:
1908    case Instruction::CMPG_DOUBLE:
1909      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
1910                                              reg_types_.DoubleHi())) {
1911        break;
1912      }
1913      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
1914                                              reg_types_.DoubleHi())) {
1915        break;
1916      }
1917      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1918      break;
1919    case Instruction::CMP_LONG:
1920      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
1921                                              reg_types_.LongHi())) {
1922        break;
1923      }
1924      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
1925                                              reg_types_.LongHi())) {
1926        break;
1927      }
1928      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1929      break;
1930    case Instruction::THROW: {
1931      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
1932      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1933        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1934            << "thrown class " << res_type << " not instanceof Throwable";
1935      }
1936      break;
1937    }
1938    case Instruction::GOTO:
1939    case Instruction::GOTO_16:
1940    case Instruction::GOTO_32:
1941      /* no effect on or use of registers */
1942      break;
1943
1944    case Instruction::PACKED_SWITCH:
1945    case Instruction::SPARSE_SWITCH:
1946      /* verify that vAA is an integer, or can be converted to one */
1947      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
1948      break;
1949
1950    case Instruction::FILL_ARRAY_DATA: {
1951      /* Similar to the verification done for APUT */
1952      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
1953      /* array_type can be null if the reg type is Zero */
1954      if (!array_type.IsZero()) {
1955        if (!array_type.IsArrayTypes()) {
1956          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1957                                            << array_type;
1958        } else {
1959          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
1960          DCHECK(!component_type.IsConflict());
1961          if (component_type.IsNonZeroReferenceTypes()) {
1962            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1963                                              << component_type;
1964          } else {
1965            // Now verify if the element width in the table matches the element width declared in
1966            // the array
1967            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1968            if (array_data[0] != Instruction::kArrayDataSignature) {
1969              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1970            } else {
1971              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1972              // Since we don't compress the data in Dex, expect to see equal width of data stored
1973              // in the table and expected from the array class.
1974              if (array_data[1] != elem_width) {
1975                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1976                                                  << " vs " << elem_width << ")";
1977              }
1978            }
1979          }
1980        }
1981      }
1982      break;
1983    }
1984    case Instruction::IF_EQ:
1985    case Instruction::IF_NE: {
1986      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
1987      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
1988      bool mismatch = false;
1989      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1990        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1991      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1992        mismatch = !reg_type2.IsReferenceTypes();
1993      } else {  // both integral?
1994        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1995      }
1996      if (mismatch) {
1997        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1998                                          << reg_type2 << ") must both be references or integral";
1999      }
2000      break;
2001    }
2002    case Instruction::IF_LT:
2003    case Instruction::IF_GE:
2004    case Instruction::IF_GT:
2005    case Instruction::IF_LE: {
2006      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2007      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2008      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2009        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2010                                          << reg_type2 << ") must be integral";
2011      }
2012      break;
2013    }
2014    case Instruction::IF_EQZ:
2015    case Instruction::IF_NEZ: {
2016      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2017      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2018        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2019                                          << " unexpected as arg to if-eqz/if-nez";
2020      }
2021
2022      // Find previous instruction - its existence is a precondition to peephole optimization.
2023      uint32_t instance_of_idx = 0;
2024      if (0 != work_insn_idx_) {
2025        instance_of_idx = work_insn_idx_ - 1;
2026        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2027          instance_of_idx--;
2028        }
2029        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2030                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2031                        work_insn_idx_)) {
2032          break;
2033        }
2034      } else {
2035        break;
2036      }
2037
2038      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2039
2040      /* Check for peep-hole pattern of:
2041       *    ...;
2042       *    instance-of vX, vY, T;
2043       *    ifXXX vX, label ;
2044       *    ...;
2045       * label:
2046       *    ...;
2047       * and sharpen the type of vY to be type T.
2048       * Note, this pattern can't be if:
2049       *  - if there are other branches to this branch,
2050       *  - when vX == vY.
2051       */
2052      if (!CurrentInsnFlags()->IsBranchTarget() &&
2053          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2054          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2055          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2056        // Check the type of the instance-of is different than that of registers type, as if they
2057        // are the same there is no work to be done here. Check that the conversion is not to or
2058        // from an unresolved type as type information is imprecise. If the instance-of is to an
2059        // interface then ignore the type information as interfaces can only be treated as Objects
2060        // and we don't want to disallow field and other operations on the object. If the value
2061        // being instance-of checked against is known null (zero) then allow the optimization as
2062        // we didn't have type information. If the merge of the instance-of type with the original
2063        // type is assignable to the original then allow optimization. This check is performed to
2064        // ensure that subsequent merges don't lose type information - such as becoming an
2065        // interface from a class that would lose information relevant to field checks.
2066        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2067        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2068
2069        if (!orig_type.Equals(cast_type) &&
2070            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2071            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2072            !cast_type.GetClass()->IsInterface() &&
2073            (orig_type.IsZero() ||
2074                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2075          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2076          if (inst->Opcode() == Instruction::IF_EQZ) {
2077            fallthrough_line.reset(update_line);
2078          } else {
2079            branch_line.reset(update_line);
2080          }
2081          update_line->CopyFromLine(work_line_.get());
2082          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2083          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2084            // See if instance-of was preceded by a move-object operation, common due to the small
2085            // register encoding space of instance-of, and propagate type information to the source
2086            // of the move-object.
2087            uint32_t move_idx = instance_of_idx - 1;
2088            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2089              move_idx--;
2090            }
2091            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2092                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2093                            work_insn_idx_)) {
2094              break;
2095            }
2096            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2097            switch (move_inst->Opcode()) {
2098              case Instruction::MOVE_OBJECT:
2099                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2100                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2101                }
2102                break;
2103              case Instruction::MOVE_OBJECT_FROM16:
2104                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2105                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2106                }
2107                break;
2108              case Instruction::MOVE_OBJECT_16:
2109                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2110                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2111                }
2112                break;
2113              default:
2114                break;
2115            }
2116          }
2117        }
2118      }
2119
2120      break;
2121    }
2122    case Instruction::IF_LTZ:
2123    case Instruction::IF_GEZ:
2124    case Instruction::IF_GTZ:
2125    case Instruction::IF_LEZ: {
2126      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2127      if (!reg_type.IsIntegralTypes()) {
2128        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2129                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2130      }
2131      break;
2132    }
2133    case Instruction::AGET_BOOLEAN:
2134      VerifyAGet(inst, reg_types_.Boolean(), true);
2135      break;
2136    case Instruction::AGET_BYTE:
2137      VerifyAGet(inst, reg_types_.Byte(), true);
2138      break;
2139    case Instruction::AGET_CHAR:
2140      VerifyAGet(inst, reg_types_.Char(), true);
2141      break;
2142    case Instruction::AGET_SHORT:
2143      VerifyAGet(inst, reg_types_.Short(), true);
2144      break;
2145    case Instruction::AGET:
2146      VerifyAGet(inst, reg_types_.Integer(), true);
2147      break;
2148    case Instruction::AGET_WIDE:
2149      VerifyAGet(inst, reg_types_.LongLo(), true);
2150      break;
2151    case Instruction::AGET_OBJECT:
2152      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2153      break;
2154
2155    case Instruction::APUT_BOOLEAN:
2156      VerifyAPut(inst, reg_types_.Boolean(), true);
2157      break;
2158    case Instruction::APUT_BYTE:
2159      VerifyAPut(inst, reg_types_.Byte(), true);
2160      break;
2161    case Instruction::APUT_CHAR:
2162      VerifyAPut(inst, reg_types_.Char(), true);
2163      break;
2164    case Instruction::APUT_SHORT:
2165      VerifyAPut(inst, reg_types_.Short(), true);
2166      break;
2167    case Instruction::APUT:
2168      VerifyAPut(inst, reg_types_.Integer(), true);
2169      break;
2170    case Instruction::APUT_WIDE:
2171      VerifyAPut(inst, reg_types_.LongLo(), true);
2172      break;
2173    case Instruction::APUT_OBJECT:
2174      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2175      break;
2176
2177    case Instruction::IGET_BOOLEAN:
2178      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2179      break;
2180    case Instruction::IGET_BYTE:
2181      VerifyISGet(inst, reg_types_.Byte(), true, false);
2182      break;
2183    case Instruction::IGET_CHAR:
2184      VerifyISGet(inst, reg_types_.Char(), true, false);
2185      break;
2186    case Instruction::IGET_SHORT:
2187      VerifyISGet(inst, reg_types_.Short(), true, false);
2188      break;
2189    case Instruction::IGET:
2190      VerifyISGet(inst, reg_types_.Integer(), true, false);
2191      break;
2192    case Instruction::IGET_WIDE:
2193      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2194      break;
2195    case Instruction::IGET_OBJECT:
2196      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2197      break;
2198
2199    case Instruction::IPUT_BOOLEAN:
2200      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2201      break;
2202    case Instruction::IPUT_BYTE:
2203      VerifyISPut(inst, reg_types_.Byte(), true, false);
2204      break;
2205    case Instruction::IPUT_CHAR:
2206      VerifyISPut(inst, reg_types_.Char(), true, false);
2207      break;
2208    case Instruction::IPUT_SHORT:
2209      VerifyISPut(inst, reg_types_.Short(), true, false);
2210      break;
2211    case Instruction::IPUT:
2212      VerifyISPut(inst, reg_types_.Integer(), true, false);
2213      break;
2214    case Instruction::IPUT_WIDE:
2215      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2216      break;
2217    case Instruction::IPUT_OBJECT:
2218      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2219      break;
2220
2221    case Instruction::SGET_BOOLEAN:
2222      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2223      break;
2224    case Instruction::SGET_BYTE:
2225      VerifyISGet(inst, reg_types_.Byte(), true, true);
2226      break;
2227    case Instruction::SGET_CHAR:
2228      VerifyISGet(inst, reg_types_.Char(), true, true);
2229      break;
2230    case Instruction::SGET_SHORT:
2231      VerifyISGet(inst, reg_types_.Short(), true, true);
2232      break;
2233    case Instruction::SGET:
2234      VerifyISGet(inst, reg_types_.Integer(), true, true);
2235      break;
2236    case Instruction::SGET_WIDE:
2237      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2238      break;
2239    case Instruction::SGET_OBJECT:
2240      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2241      break;
2242
2243    case Instruction::SPUT_BOOLEAN:
2244      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2245      break;
2246    case Instruction::SPUT_BYTE:
2247      VerifyISPut(inst, reg_types_.Byte(), true, true);
2248      break;
2249    case Instruction::SPUT_CHAR:
2250      VerifyISPut(inst, reg_types_.Char(), true, true);
2251      break;
2252    case Instruction::SPUT_SHORT:
2253      VerifyISPut(inst, reg_types_.Short(), true, true);
2254      break;
2255    case Instruction::SPUT:
2256      VerifyISPut(inst, reg_types_.Integer(), true, true);
2257      break;
2258    case Instruction::SPUT_WIDE:
2259      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2260      break;
2261    case Instruction::SPUT_OBJECT:
2262      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2263      break;
2264
2265    case Instruction::INVOKE_VIRTUAL:
2266    case Instruction::INVOKE_VIRTUAL_RANGE:
2267    case Instruction::INVOKE_SUPER:
2268    case Instruction::INVOKE_SUPER_RANGE: {
2269      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2270                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2271      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2272                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2273      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2274                                                              is_super);
2275      const RegType* return_type = nullptr;
2276      if (called_method != nullptr) {
2277        StackHandleScope<1> hs(self_);
2278        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2279        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2280        if (return_type_class != nullptr) {
2281          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2282                                              return_type_class,
2283                                              return_type_class->CannotBeAssignedFromOtherTypes());
2284        } else {
2285          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2286          self_->ClearException();
2287        }
2288      }
2289      if (return_type == nullptr) {
2290        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2291        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2292        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2293        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2294        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2295      }
2296      if (!return_type->IsLowHalf()) {
2297        work_line_->SetResultRegisterType(this, *return_type);
2298      } else {
2299        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2300      }
2301      just_set_result = true;
2302      break;
2303    }
2304    case Instruction::INVOKE_DIRECT:
2305    case Instruction::INVOKE_DIRECT_RANGE: {
2306      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2307      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2308                                                                   is_range, false);
2309      const char* return_type_descriptor;
2310      bool is_constructor;
2311      const RegType* return_type = nullptr;
2312      if (called_method == nullptr) {
2313        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2314        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2315        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2316        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2317        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2318      } else {
2319        is_constructor = called_method->IsConstructor();
2320        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2321        StackHandleScope<1> hs(self_);
2322        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2323        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2324        if (return_type_class != nullptr) {
2325          return_type = &reg_types_.FromClass(return_type_descriptor,
2326                                              return_type_class,
2327                                              return_type_class->CannotBeAssignedFromOtherTypes());
2328        } else {
2329          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2330          self_->ClearException();
2331        }
2332      }
2333      if (is_constructor) {
2334        /*
2335         * Some additional checks when calling a constructor. We know from the invocation arg check
2336         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2337         * that to require that called_method->klass is the same as this->klass or this->super,
2338         * allowing the latter only if the "this" argument is the same as the "this" argument to
2339         * this method (which implies that we're in a constructor ourselves).
2340         */
2341        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2342        if (this_type.IsConflict())  // failure.
2343          break;
2344
2345        /* no null refs allowed (?) */
2346        if (this_type.IsZero()) {
2347          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2348          break;
2349        }
2350
2351        /* must be in same class or in superclass */
2352        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2353        // TODO: re-enable constructor type verification
2354        // if (this_super_klass.IsConflict()) {
2355          // Unknown super class, fail so we re-check at runtime.
2356          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2357          // break;
2358        // }
2359
2360        /* arg must be an uninitialized reference */
2361        if (!this_type.IsUninitializedTypes()) {
2362          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2363              << this_type;
2364          break;
2365        }
2366
2367        /*
2368         * Replace the uninitialized reference with an initialized one. We need to do this for all
2369         * registers that have the same object instance in them, not just the "this" register.
2370         */
2371        work_line_->MarkRefsAsInitialized(this, this_type);
2372      }
2373      if (return_type == nullptr) {
2374        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2375                                                 false);
2376      }
2377      if (!return_type->IsLowHalf()) {
2378        work_line_->SetResultRegisterType(this, *return_type);
2379      } else {
2380        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2381      }
2382      just_set_result = true;
2383      break;
2384    }
2385    case Instruction::INVOKE_STATIC:
2386    case Instruction::INVOKE_STATIC_RANGE: {
2387        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2388        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2389                                                                     METHOD_STATIC,
2390                                                                     is_range,
2391                                                                     false);
2392        const char* descriptor;
2393        if (called_method == nullptr) {
2394          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2395          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2396          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2397          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2398        } else {
2399          descriptor = called_method->GetReturnTypeDescriptor();
2400        }
2401        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2402        if (!return_type.IsLowHalf()) {
2403          work_line_->SetResultRegisterType(this, return_type);
2404        } else {
2405          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2406        }
2407        just_set_result = true;
2408      }
2409      break;
2410    case Instruction::INVOKE_INTERFACE:
2411    case Instruction::INVOKE_INTERFACE_RANGE: {
2412      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2413      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2414                                                                METHOD_INTERFACE,
2415                                                                is_range,
2416                                                                false);
2417      if (abs_method != nullptr) {
2418        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2419        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2420          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2421              << PrettyMethod(abs_method) << "'";
2422          break;
2423        }
2424      }
2425      /* Get the type of the "this" arg, which should either be a sub-interface of called
2426       * interface or Object (see comments in RegType::JoinClass).
2427       */
2428      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2429      if (this_type.IsZero()) {
2430        /* null pointer always passes (and always fails at runtime) */
2431      } else {
2432        if (this_type.IsUninitializedTypes()) {
2433          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2434              << this_type;
2435          break;
2436        }
2437        // In the past we have tried to assert that "called_interface" is assignable
2438        // from "this_type.GetClass()", however, as we do an imprecise Join
2439        // (RegType::JoinClass) we don't have full information on what interfaces are
2440        // implemented by "this_type". For example, two classes may implement the same
2441        // interfaces and have a common parent that doesn't implement the interface. The
2442        // join will set "this_type" to the parent class and a test that this implements
2443        // the interface will incorrectly fail.
2444      }
2445      /*
2446       * We don't have an object instance, so we can't find the concrete method. However, all of
2447       * the type information is in the abstract method, so we're good.
2448       */
2449      const char* descriptor;
2450      if (abs_method == nullptr) {
2451        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2452        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2453        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2454        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2455      } else {
2456        descriptor = abs_method->GetReturnTypeDescriptor();
2457      }
2458      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2459      if (!return_type.IsLowHalf()) {
2460        work_line_->SetResultRegisterType(this, return_type);
2461      } else {
2462        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2463      }
2464      just_set_result = true;
2465      break;
2466    }
2467    case Instruction::NEG_INT:
2468    case Instruction::NOT_INT:
2469      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2470      break;
2471    case Instruction::NEG_LONG:
2472    case Instruction::NOT_LONG:
2473      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2474                                   reg_types_.LongLo(), reg_types_.LongHi());
2475      break;
2476    case Instruction::NEG_FLOAT:
2477      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2478      break;
2479    case Instruction::NEG_DOUBLE:
2480      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2481                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2482      break;
2483    case Instruction::INT_TO_LONG:
2484      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2485                                     reg_types_.Integer());
2486      break;
2487    case Instruction::INT_TO_FLOAT:
2488      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2489      break;
2490    case Instruction::INT_TO_DOUBLE:
2491      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2492                                     reg_types_.Integer());
2493      break;
2494    case Instruction::LONG_TO_INT:
2495      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2496                                       reg_types_.LongLo(), reg_types_.LongHi());
2497      break;
2498    case Instruction::LONG_TO_FLOAT:
2499      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2500                                       reg_types_.LongLo(), reg_types_.LongHi());
2501      break;
2502    case Instruction::LONG_TO_DOUBLE:
2503      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2504                                   reg_types_.LongLo(), reg_types_.LongHi());
2505      break;
2506    case Instruction::FLOAT_TO_INT:
2507      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2508      break;
2509    case Instruction::FLOAT_TO_LONG:
2510      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2511                                     reg_types_.Float());
2512      break;
2513    case Instruction::FLOAT_TO_DOUBLE:
2514      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2515                                     reg_types_.Float());
2516      break;
2517    case Instruction::DOUBLE_TO_INT:
2518      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2519                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2520      break;
2521    case Instruction::DOUBLE_TO_LONG:
2522      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2523                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2524      break;
2525    case Instruction::DOUBLE_TO_FLOAT:
2526      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2527                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2528      break;
2529    case Instruction::INT_TO_BYTE:
2530      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2531      break;
2532    case Instruction::INT_TO_CHAR:
2533      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2534      break;
2535    case Instruction::INT_TO_SHORT:
2536      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2537      break;
2538
2539    case Instruction::ADD_INT:
2540    case Instruction::SUB_INT:
2541    case Instruction::MUL_INT:
2542    case Instruction::REM_INT:
2543    case Instruction::DIV_INT:
2544    case Instruction::SHL_INT:
2545    case Instruction::SHR_INT:
2546    case Instruction::USHR_INT:
2547      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2548                                reg_types_.Integer(), false);
2549      break;
2550    case Instruction::AND_INT:
2551    case Instruction::OR_INT:
2552    case Instruction::XOR_INT:
2553      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2554                                reg_types_.Integer(), true);
2555      break;
2556    case Instruction::ADD_LONG:
2557    case Instruction::SUB_LONG:
2558    case Instruction::MUL_LONG:
2559    case Instruction::DIV_LONG:
2560    case Instruction::REM_LONG:
2561    case Instruction::AND_LONG:
2562    case Instruction::OR_LONG:
2563    case Instruction::XOR_LONG:
2564      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2565                                    reg_types_.LongLo(), reg_types_.LongHi(),
2566                                    reg_types_.LongLo(), reg_types_.LongHi());
2567      break;
2568    case Instruction::SHL_LONG:
2569    case Instruction::SHR_LONG:
2570    case Instruction::USHR_LONG:
2571      /* shift distance is Int, making these different from other binary operations */
2572      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2573                                         reg_types_.Integer());
2574      break;
2575    case Instruction::ADD_FLOAT:
2576    case Instruction::SUB_FLOAT:
2577    case Instruction::MUL_FLOAT:
2578    case Instruction::DIV_FLOAT:
2579    case Instruction::REM_FLOAT:
2580      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2581                                reg_types_.Float(), false);
2582      break;
2583    case Instruction::ADD_DOUBLE:
2584    case Instruction::SUB_DOUBLE:
2585    case Instruction::MUL_DOUBLE:
2586    case Instruction::DIV_DOUBLE:
2587    case Instruction::REM_DOUBLE:
2588      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2589                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2590                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2591      break;
2592    case Instruction::ADD_INT_2ADDR:
2593    case Instruction::SUB_INT_2ADDR:
2594    case Instruction::MUL_INT_2ADDR:
2595    case Instruction::REM_INT_2ADDR:
2596    case Instruction::SHL_INT_2ADDR:
2597    case Instruction::SHR_INT_2ADDR:
2598    case Instruction::USHR_INT_2ADDR:
2599      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2600                                     reg_types_.Integer(), false);
2601      break;
2602    case Instruction::AND_INT_2ADDR:
2603    case Instruction::OR_INT_2ADDR:
2604    case Instruction::XOR_INT_2ADDR:
2605      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2606                                     reg_types_.Integer(), true);
2607      break;
2608    case Instruction::DIV_INT_2ADDR:
2609      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2610                                     reg_types_.Integer(), false);
2611      break;
2612    case Instruction::ADD_LONG_2ADDR:
2613    case Instruction::SUB_LONG_2ADDR:
2614    case Instruction::MUL_LONG_2ADDR:
2615    case Instruction::DIV_LONG_2ADDR:
2616    case Instruction::REM_LONG_2ADDR:
2617    case Instruction::AND_LONG_2ADDR:
2618    case Instruction::OR_LONG_2ADDR:
2619    case Instruction::XOR_LONG_2ADDR:
2620      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2621                                         reg_types_.LongLo(), reg_types_.LongHi(),
2622                                         reg_types_.LongLo(), reg_types_.LongHi());
2623      break;
2624    case Instruction::SHL_LONG_2ADDR:
2625    case Instruction::SHR_LONG_2ADDR:
2626    case Instruction::USHR_LONG_2ADDR:
2627      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2628                                              reg_types_.Integer());
2629      break;
2630    case Instruction::ADD_FLOAT_2ADDR:
2631    case Instruction::SUB_FLOAT_2ADDR:
2632    case Instruction::MUL_FLOAT_2ADDR:
2633    case Instruction::DIV_FLOAT_2ADDR:
2634    case Instruction::REM_FLOAT_2ADDR:
2635      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2636                                     reg_types_.Float(), false);
2637      break;
2638    case Instruction::ADD_DOUBLE_2ADDR:
2639    case Instruction::SUB_DOUBLE_2ADDR:
2640    case Instruction::MUL_DOUBLE_2ADDR:
2641    case Instruction::DIV_DOUBLE_2ADDR:
2642    case Instruction::REM_DOUBLE_2ADDR:
2643      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2644                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2645                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2646      break;
2647    case Instruction::ADD_INT_LIT16:
2648    case Instruction::RSUB_INT_LIT16:
2649    case Instruction::MUL_INT_LIT16:
2650    case Instruction::DIV_INT_LIT16:
2651    case Instruction::REM_INT_LIT16:
2652      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2653                                 true);
2654      break;
2655    case Instruction::AND_INT_LIT16:
2656    case Instruction::OR_INT_LIT16:
2657    case Instruction::XOR_INT_LIT16:
2658      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2659                                 true);
2660      break;
2661    case Instruction::ADD_INT_LIT8:
2662    case Instruction::RSUB_INT_LIT8:
2663    case Instruction::MUL_INT_LIT8:
2664    case Instruction::DIV_INT_LIT8:
2665    case Instruction::REM_INT_LIT8:
2666    case Instruction::SHL_INT_LIT8:
2667    case Instruction::SHR_INT_LIT8:
2668    case Instruction::USHR_INT_LIT8:
2669      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2670                                 false);
2671      break;
2672    case Instruction::AND_INT_LIT8:
2673    case Instruction::OR_INT_LIT8:
2674    case Instruction::XOR_INT_LIT8:
2675      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2676                                 false);
2677      break;
2678
2679    // Special instructions.
2680    case Instruction::RETURN_VOID_BARRIER:
2681      if (!IsConstructor() || IsStatic()) {
2682          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2683      }
2684      break;
2685    // Note: the following instructions encode offsets derived from class linking.
2686    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2687    // meaning if the class linking and resolution were successful.
2688    case Instruction::IGET_QUICK:
2689      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2690      break;
2691    case Instruction::IGET_WIDE_QUICK:
2692      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2693      break;
2694    case Instruction::IGET_OBJECT_QUICK:
2695      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2696      break;
2697    case Instruction::IPUT_QUICK:
2698      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2699      break;
2700    case Instruction::IPUT_BOOLEAN_QUICK:
2701        VerifyIPutQuick(inst, reg_types_.Boolean(), true);
2702      break;
2703    case Instruction::IPUT_BYTE_QUICK:
2704        VerifyIPutQuick(inst, reg_types_.Byte(), true);
2705      break;
2706    case Instruction::IPUT_CHAR_QUICK:
2707        VerifyIPutQuick(inst, reg_types_.Char(), true);
2708      break;
2709    case Instruction::IPUT_SHORT_QUICK:
2710        VerifyIPutQuick(inst, reg_types_.Short(), true);
2711      break;
2712    case Instruction::IPUT_WIDE_QUICK:
2713      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2714      break;
2715    case Instruction::IPUT_OBJECT_QUICK:
2716      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2717      break;
2718    case Instruction::INVOKE_VIRTUAL_QUICK:
2719    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2720      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2721      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2722      if (called_method != nullptr) {
2723        const char* descriptor = called_method->GetReturnTypeDescriptor();
2724        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2725        if (!return_type.IsLowHalf()) {
2726          work_line_->SetResultRegisterType(this, return_type);
2727        } else {
2728          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2729        }
2730        just_set_result = true;
2731      }
2732      break;
2733    }
2734
2735    /* These should never appear during verification. */
2736    case Instruction::UNUSED_3E:
2737    case Instruction::UNUSED_3F:
2738    case Instruction::UNUSED_40:
2739    case Instruction::UNUSED_41:
2740    case Instruction::UNUSED_42:
2741    case Instruction::UNUSED_43:
2742    case Instruction::UNUSED_79:
2743    case Instruction::UNUSED_7A:
2744    case Instruction::UNUSED_EF:
2745    case Instruction::UNUSED_F0:
2746    case Instruction::UNUSED_F1:
2747    case Instruction::UNUSED_F2:
2748    case Instruction::UNUSED_F3:
2749    case Instruction::UNUSED_F4:
2750    case Instruction::UNUSED_F5:
2751    case Instruction::UNUSED_F6:
2752    case Instruction::UNUSED_F7:
2753    case Instruction::UNUSED_F8:
2754    case Instruction::UNUSED_F9:
2755    case Instruction::UNUSED_FA:
2756    case Instruction::UNUSED_FB:
2757    case Instruction::UNUSED_FC:
2758    case Instruction::UNUSED_FD:
2759    case Instruction::UNUSED_FE:
2760    case Instruction::UNUSED_FF:
2761      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2762      break;
2763
2764    /*
2765     * DO NOT add a "default" clause here. Without it the compiler will
2766     * complain if an instruction is missing (which is desirable).
2767     */
2768  }  // end - switch (dec_insn.opcode)
2769
2770  if (have_pending_hard_failure_) {
2771    if (Runtime::Current()->IsCompiler()) {
2772      /* When compiling, check that the last failure is a hard failure */
2773      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2774    }
2775    /* immediate failure, reject class */
2776    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2777    return false;
2778  } else if (have_pending_runtime_throw_failure_) {
2779    /* checking interpreter will throw, mark following code as unreachable */
2780    opcode_flags = Instruction::kThrow;
2781  }
2782  /*
2783   * If we didn't just set the result register, clear it out. This ensures that you can only use
2784   * "move-result" immediately after the result is set. (We could check this statically, but it's
2785   * not expensive and it makes our debugging output cleaner.)
2786   */
2787  if (!just_set_result) {
2788    work_line_->SetResultTypeToUnknown(this);
2789  }
2790
2791
2792
2793  /*
2794   * Handle "branch". Tag the branch target.
2795   *
2796   * NOTE: instructions like Instruction::EQZ provide information about the
2797   * state of the register when the branch is taken or not taken. For example,
2798   * somebody could get a reference field, check it for zero, and if the
2799   * branch is taken immediately store that register in a boolean field
2800   * since the value is known to be zero. We do not currently account for
2801   * that, and will reject the code.
2802   *
2803   * TODO: avoid re-fetching the branch target
2804   */
2805  if ((opcode_flags & Instruction::kBranch) != 0) {
2806    bool isConditional, selfOkay;
2807    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2808      /* should never happen after static verification */
2809      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2810      return false;
2811    }
2812    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2813    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2814      return false;
2815    }
2816    /* update branch target, set "changed" if appropriate */
2817    if (nullptr != branch_line.get()) {
2818      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2819        return false;
2820      }
2821    } else {
2822      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2823        return false;
2824      }
2825    }
2826  }
2827
2828  /*
2829   * Handle "switch". Tag all possible branch targets.
2830   *
2831   * We've already verified that the table is structurally sound, so we
2832   * just need to walk through and tag the targets.
2833   */
2834  if ((opcode_flags & Instruction::kSwitch) != 0) {
2835    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2836    const uint16_t* switch_insns = insns + offset_to_switch;
2837    int switch_count = switch_insns[1];
2838    int offset_to_targets, targ;
2839
2840    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2841      /* 0 = sig, 1 = count, 2/3 = first key */
2842      offset_to_targets = 4;
2843    } else {
2844      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2845      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2846      offset_to_targets = 2 + 2 * switch_count;
2847    }
2848
2849    /* verify each switch target */
2850    for (targ = 0; targ < switch_count; targ++) {
2851      int offset;
2852      uint32_t abs_offset;
2853
2854      /* offsets are 32-bit, and only partly endian-swapped */
2855      offset = switch_insns[offset_to_targets + targ * 2] |
2856         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2857      abs_offset = work_insn_idx_ + offset;
2858      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2859      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
2860        return false;
2861      }
2862      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2863        return false;
2864      }
2865    }
2866  }
2867
2868  /*
2869   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2870   * "try" block when they throw, control transfers out of the method.)
2871   */
2872  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2873    bool has_catch_all_handler = false;
2874    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2875
2876    // Need the linker to try and resolve the handled class to check if it's Throwable.
2877    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2878
2879    for (; iterator.HasNext(); iterator.Next()) {
2880      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2881      if (handler_type_idx == DexFile::kDexNoIndex16) {
2882        has_catch_all_handler = true;
2883      } else {
2884        // It is also a catch-all if it is java.lang.Throwable.
2885        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2886                                                   class_loader_);
2887        if (klass != nullptr) {
2888          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2889            has_catch_all_handler = true;
2890          }
2891        } else {
2892          // Clear exception.
2893          DCHECK(self_->IsExceptionPending());
2894          self_->ClearException();
2895        }
2896      }
2897      /*
2898       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2899       * "work_regs", because at runtime the exception will be thrown before the instruction
2900       * modifies any registers.
2901       */
2902      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2903        return false;
2904      }
2905    }
2906
2907    /*
2908     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2909     * instruction. This does apply to monitor-exit because of async exception handling.
2910     */
2911    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2912      /*
2913       * The state in work_line reflects the post-execution state. If the current instruction is a
2914       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2915       * it will do so before grabbing the lock).
2916       */
2917      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2918        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2919            << "expected to be within a catch-all for an instruction where a monitor is held";
2920        return false;
2921      }
2922    }
2923  }
2924
2925  /* Handle "continue". Tag the next consecutive instruction.
2926   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2927   *        because it changes work_line_ when performing peephole optimization
2928   *        and this change should not be used in those cases.
2929   */
2930  if ((opcode_flags & Instruction::kContinue) != 0) {
2931    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2932    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
2933    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2934      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2935      return false;
2936    }
2937    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2938    // next instruction isn't one.
2939    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2940      return false;
2941    }
2942    if (nullptr != fallthrough_line.get()) {
2943      // Make workline consistent with fallthrough computed from peephole optimization.
2944      work_line_->CopyFromLine(fallthrough_line.get());
2945    }
2946    if (insn_flags_[next_insn_idx].IsReturn()) {
2947      // For returns we only care about the operand to the return, all other registers are dead.
2948      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2949      Instruction::Code opcode = ret_inst->Opcode();
2950      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2951        work_line_->MarkAllRegistersAsConflicts(this);
2952      } else {
2953        if (opcode == Instruction::RETURN_WIDE) {
2954          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
2955        } else {
2956          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
2957        }
2958      }
2959    }
2960    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2961    if (next_line != nullptr) {
2962      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2963      // needed. If the merge changes the state of the registers then the work line will be
2964      // updated.
2965      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2966        return false;
2967      }
2968    } else {
2969      /*
2970       * We're not recording register data for the next instruction, so we don't know what the
2971       * prior state was. We have to assume that something has changed and re-evaluate it.
2972       */
2973      insn_flags_[next_insn_idx].SetChanged();
2974    }
2975  }
2976
2977  /* If we're returning from the method, make sure monitor stack is empty. */
2978  if ((opcode_flags & Instruction::kReturn) != 0) {
2979    if (!work_line_->VerifyMonitorStackEmpty(this)) {
2980      return false;
2981    }
2982  }
2983
2984  /*
2985   * Update start_guess. Advance to the next instruction of that's
2986   * possible, otherwise use the branch target if one was found. If
2987   * neither of those exists we're in a return or throw; leave start_guess
2988   * alone and let the caller sort it out.
2989   */
2990  if ((opcode_flags & Instruction::kContinue) != 0) {
2991    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2992    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
2993  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2994    /* we're still okay if branch_target is zero */
2995    *start_guess = work_insn_idx_ + branch_target;
2996  }
2997
2998  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2999  DCHECK(insn_flags_[*start_guess].IsOpcode());
3000
3001  return true;
3002}  // NOLINT(readability/fn_size)
3003
3004const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3005  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3006  const RegType& referrer = GetDeclaringClass();
3007  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3008  const RegType& result = klass != nullptr ?
3009      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3010      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3011  if (result.IsConflict()) {
3012    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3013        << "' in " << referrer;
3014    return result;
3015  }
3016  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3017    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3018  }
3019  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3020  // check at runtime if access is allowed and so pass here. If result is
3021  // primitive, skip the access check.
3022  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3023      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3024    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3025                                    << referrer << "' -> '" << result << "'";
3026  }
3027  return result;
3028}
3029
3030const RegType& MethodVerifier::GetCaughtExceptionType() {
3031  const RegType* common_super = nullptr;
3032  if (code_item_->tries_size_ != 0) {
3033    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3034    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3035    for (uint32_t i = 0; i < handlers_size; i++) {
3036      CatchHandlerIterator iterator(handlers_ptr);
3037      for (; iterator.HasNext(); iterator.Next()) {
3038        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3039          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3040            common_super = &reg_types_.JavaLangThrowable(false);
3041          } else {
3042            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3043            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3044              if (exception.IsUnresolvedTypes()) {
3045                // We don't know enough about the type. Fail here and let runtime handle it.
3046                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3047                return exception;
3048              } else {
3049                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3050                return reg_types_.Conflict();
3051              }
3052            } else if (common_super == nullptr) {
3053              common_super = &exception;
3054            } else if (common_super->Equals(exception)) {
3055              // odd case, but nothing to do
3056            } else {
3057              common_super = &common_super->Merge(exception, &reg_types_);
3058              if (FailOrAbort(this,
3059                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3060                              "java.lang.Throwable is not assignable-from common_super at ",
3061                              work_insn_idx_)) {
3062                break;
3063              }
3064            }
3065          }
3066        }
3067      }
3068      handlers_ptr = iterator.EndDataPointer();
3069    }
3070  }
3071  if (common_super == nullptr) {
3072    /* no catch blocks, or no catches with classes we can find */
3073    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3074    return reg_types_.Conflict();
3075  }
3076  return *common_super;
3077}
3078
3079mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3080                                                               MethodType method_type) {
3081  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3082  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3083  if (klass_type.IsConflict()) {
3084    std::string append(" in attempt to access method ");
3085    append += dex_file_->GetMethodName(method_id);
3086    AppendToLastFailMessage(append);
3087    return nullptr;
3088  }
3089  if (klass_type.IsUnresolvedTypes()) {
3090    return nullptr;  // Can't resolve Class so no more to do here
3091  }
3092  mirror::Class* klass = klass_type.GetClass();
3093  const RegType& referrer = GetDeclaringClass();
3094  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3095  if (res_method == nullptr) {
3096    const char* name = dex_file_->GetMethodName(method_id);
3097    const Signature signature = dex_file_->GetMethodSignature(method_id);
3098
3099    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3100      res_method = klass->FindDirectMethod(name, signature);
3101    } else if (method_type == METHOD_INTERFACE) {
3102      res_method = klass->FindInterfaceMethod(name, signature);
3103    } else {
3104      res_method = klass->FindVirtualMethod(name, signature);
3105    }
3106    if (res_method != nullptr) {
3107      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
3108    } else {
3109      // If a virtual or interface method wasn't found with the expected type, look in
3110      // the direct methods. This can happen when the wrong invoke type is used or when
3111      // a class has changed, and will be flagged as an error in later checks.
3112      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3113        res_method = klass->FindDirectMethod(name, signature);
3114      }
3115      if (res_method == nullptr) {
3116        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3117                                     << PrettyDescriptor(klass) << "." << name
3118                                     << " " << signature;
3119        return nullptr;
3120      }
3121    }
3122  }
3123  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3124  // enforce them here.
3125  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3126    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3127                                      << PrettyMethod(res_method);
3128    return nullptr;
3129  }
3130  // Disallow any calls to class initializers.
3131  if (res_method->IsClassInitializer()) {
3132    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3133                                      << PrettyMethod(res_method);
3134    return nullptr;
3135  }
3136  // Check if access is allowed.
3137  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3138    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3139                                     << " from " << referrer << ")";
3140    return res_method;
3141  }
3142  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3143  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3144    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3145                                      << PrettyMethod(res_method);
3146    return nullptr;
3147  }
3148  // Check that interface methods match interface classes.
3149  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3150    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3151                                    << " is in an interface class " << PrettyClass(klass);
3152    return nullptr;
3153  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3154    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3155                                    << " is in a non-interface class " << PrettyClass(klass);
3156    return nullptr;
3157  }
3158  // See if the method type implied by the invoke instruction matches the access flags for the
3159  // target method.
3160  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3161      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3162      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3163      ) {
3164    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3165                                       " type of " << PrettyMethod(res_method);
3166    return nullptr;
3167  }
3168  return res_method;
3169}
3170
3171template <class T>
3172mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3173                                                                    MethodType method_type,
3174                                                                    bool is_range,
3175                                                                    mirror::ArtMethod* res_method) {
3176  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3177  // match the call to the signature. Also, we might be calling through an abstract method
3178  // definition (which doesn't have register count values).
3179  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3180  /* caught by static verifier */
3181  DCHECK(is_range || expected_args <= 5);
3182  if (expected_args > code_item_->outs_size_) {
3183    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3184        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3185    return nullptr;
3186  }
3187
3188  uint32_t arg[5];
3189  if (!is_range) {
3190    inst->GetVarArgs(arg);
3191  }
3192  uint32_t sig_registers = 0;
3193
3194  /*
3195   * Check the "this" argument, which must be an instance of the class that declared the method.
3196   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3197   * rigorous check here (which is okay since we have to do it at runtime).
3198   */
3199  if (method_type != METHOD_STATIC) {
3200    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3201    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3202      CHECK(have_pending_hard_failure_);
3203      return nullptr;
3204    }
3205    if (actual_arg_type.IsUninitializedReference()) {
3206      if (res_method) {
3207        if (!res_method->IsConstructor()) {
3208          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3209          return nullptr;
3210        }
3211      } else {
3212        // Check whether the name of the called method is "<init>"
3213        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3214        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3215          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3216          return nullptr;
3217        }
3218      }
3219    }
3220    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3221      const RegType* res_method_class;
3222      if (res_method != nullptr) {
3223        mirror::Class* klass = res_method->GetDeclaringClass();
3224        std::string temp;
3225        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3226                                                 klass->CannotBeAssignedFromOtherTypes());
3227      } else {
3228        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3229        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3230        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3231                                                      dex_file_->StringByTypeIdx(class_idx),
3232                                                      false);
3233      }
3234      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3235        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3236            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3237                << "' not instance of '" << *res_method_class << "'";
3238        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3239        // the compiler.
3240        if (have_pending_hard_failure_) {
3241          return nullptr;
3242        }
3243      }
3244    }
3245    sig_registers = 1;
3246  }
3247
3248  for ( ; it->HasNext(); it->Next()) {
3249    if (sig_registers >= expected_args) {
3250      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3251          " arguments, found " << sig_registers << " or more.";
3252      return nullptr;
3253    }
3254
3255    const char* param_descriptor = it->GetDescriptor();
3256
3257    if (param_descriptor == nullptr) {
3258      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3259          "component";
3260      return nullptr;
3261    }
3262
3263    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3264    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3265        arg[sig_registers];
3266    if (reg_type.IsIntegralTypes()) {
3267      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3268      if (!src_type.IsIntegralTypes()) {
3269        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3270            << " but expected " << reg_type;
3271        return res_method;
3272      }
3273    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3274      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3275      // compiler.
3276      if (have_pending_hard_failure_) {
3277        return res_method;
3278      }
3279    }
3280    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3281  }
3282  if (expected_args != sig_registers) {
3283    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3284        " arguments, found " << sig_registers;
3285    return nullptr;
3286  }
3287  return res_method;
3288}
3289
3290void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3291                                                          MethodType method_type,
3292                                                          bool is_range) {
3293  // As the method may not have been resolved, make this static check against what we expect.
3294  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3295  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3296  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3297  DexFileParameterIterator it(*dex_file_,
3298                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3299  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3300                                                             nullptr);
3301}
3302
3303class MethodParamListDescriptorIterator {
3304 public:
3305  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3306      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3307      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3308  }
3309
3310  bool HasNext() {
3311    return pos_ < params_size_;
3312  }
3313
3314  void Next() {
3315    ++pos_;
3316  }
3317
3318  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3319    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3320  }
3321
3322 private:
3323  mirror::ArtMethod* res_method_;
3324  size_t pos_;
3325  const DexFile::TypeList* params_;
3326  const size_t params_size_;
3327};
3328
3329mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3330                                                             MethodType method_type,
3331                                                             bool is_range,
3332                                                             bool is_super) {
3333  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3334  // we're making.
3335  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3336
3337  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3338  if (res_method == nullptr) {  // error or class is unresolved
3339    // Check what we can statically.
3340    if (!have_pending_hard_failure_) {
3341      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3342    }
3343    return nullptr;
3344  }
3345
3346  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3347  // has a vtable entry for the target method.
3348  if (is_super) {
3349    DCHECK(method_type == METHOD_VIRTUAL);
3350    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3351    if (super.IsUnresolvedTypes()) {
3352      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3353                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3354                                   << " to super " << PrettyMethod(res_method);
3355      return nullptr;
3356    }
3357    mirror::Class* super_klass = super.GetClass();
3358    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3359      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3360                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3361                                   << " to super " << super
3362                                   << "." << res_method->GetName()
3363                                   << res_method->GetSignature();
3364      return nullptr;
3365    }
3366  }
3367
3368  // Process the target method's signature. This signature may or may not
3369  MethodParamListDescriptorIterator it(res_method);
3370  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3371                                                                             is_range, res_method);
3372}
3373
3374mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3375                                                         RegisterLine* reg_line, bool is_range) {
3376  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3377         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3378  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range);
3379  if (!actual_arg_type.HasClass()) {
3380    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3381    return nullptr;
3382  }
3383  mirror::Class* klass = actual_arg_type.GetClass();
3384  mirror::Class* dispatch_class;
3385  if (klass->IsInterface()) {
3386    // Derive Object.class from Class.class.getSuperclass().
3387    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3388    if (FailOrAbort(this, object_klass->IsObjectClass(),
3389                    "Failed to find Object class in quickened invoke receiver",
3390                    work_insn_idx_)) {
3391      return nullptr;
3392    }
3393    dispatch_class = object_klass;
3394  } else {
3395    dispatch_class = klass;
3396  }
3397  if (FailOrAbort(this, dispatch_class->HasVTable(),
3398                  "Receiver class has no vtable for quickened invoke at ",
3399                  work_insn_idx_)) {
3400    return nullptr;
3401  }
3402  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3403  if (FailOrAbort(this, static_cast<int32_t>(vtable_index) < dispatch_class->GetVTableLength(),
3404                  "Receiver class has not enough vtable slots for quickened invoke at ",
3405                  work_insn_idx_)) {
3406    return nullptr;
3407  }
3408  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3409  if (FailOrAbort(this, !Thread::Current()->IsExceptionPending(),
3410                  "Unexpected exception pending for quickened invoke at ",
3411                  work_insn_idx_)) {
3412    return nullptr;
3413  }
3414  return res_method;
3415}
3416
3417mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3418                                                                bool is_range) {
3419  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3420  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3421                                                             is_range);
3422  if (res_method == nullptr) {
3423    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3424    return nullptr;
3425  }
3426  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3427                  work_insn_idx_)) {
3428    return nullptr;
3429  }
3430  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3431                  work_insn_idx_)) {
3432    return nullptr;
3433  }
3434
3435  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3436  // match the call to the signature. Also, we might be calling through an abstract method
3437  // definition (which doesn't have register count values).
3438  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3439  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3440    return nullptr;
3441  }
3442  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3443  /* caught by static verifier */
3444  DCHECK(is_range || expected_args <= 5);
3445  if (expected_args > code_item_->outs_size_) {
3446    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3447        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3448    return nullptr;
3449  }
3450
3451  /*
3452   * Check the "this" argument, which must be an instance of the class that declared the method.
3453   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3454   * rigorous check here (which is okay since we have to do it at runtime).
3455   */
3456  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3457    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3458    return nullptr;
3459  }
3460  if (!actual_arg_type.IsZero()) {
3461    mirror::Class* klass = res_method->GetDeclaringClass();
3462    std::string temp;
3463    const RegType& res_method_class =
3464        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3465                             klass->CannotBeAssignedFromOtherTypes());
3466    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3467      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3468          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3469          << "' not instance of '" << res_method_class << "'";
3470      return nullptr;
3471    }
3472  }
3473  /*
3474   * Process the target method's signature. This signature may or may not
3475   * have been verified, so we can't assume it's properly formed.
3476   */
3477  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3478  size_t params_size = params == nullptr ? 0 : params->Size();
3479  uint32_t arg[5];
3480  if (!is_range) {
3481    inst->GetVarArgs(arg);
3482  }
3483  size_t actual_args = 1;
3484  for (size_t param_index = 0; param_index < params_size; param_index++) {
3485    if (actual_args >= expected_args) {
3486      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3487                                        << "'. Expected " << expected_args
3488                                         << " arguments, processing argument " << actual_args
3489                                        << " (where longs/doubles count twice).";
3490      return nullptr;
3491    }
3492    const char* descriptor =
3493        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3494    if (descriptor == nullptr) {
3495      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3496                                        << " missing signature component";
3497      return nullptr;
3498    }
3499    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3500    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3501    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3502      return res_method;
3503    }
3504    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3505  }
3506  if (actual_args != expected_args) {
3507    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3508              << " expected " << expected_args << " arguments, found " << actual_args;
3509    return nullptr;
3510  } else {
3511    return res_method;
3512  }
3513}
3514
3515void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3516  uint32_t type_idx;
3517  if (!is_filled) {
3518    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3519    type_idx = inst->VRegC_22c();
3520  } else if (!is_range) {
3521    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3522    type_idx = inst->VRegB_35c();
3523  } else {
3524    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3525    type_idx = inst->VRegB_3rc();
3526  }
3527  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3528  if (res_type.IsConflict()) {  // bad class
3529    DCHECK_NE(failures_.size(), 0U);
3530  } else {
3531    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3532    if (!res_type.IsArrayTypes()) {
3533      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3534    } else if (!is_filled) {
3535      /* make sure "size" register is valid type */
3536      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3537      /* set register type to array class */
3538      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3539      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3540    } else {
3541      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3542      // the list and fail. It's legal, if silly, for arg_count to be zero.
3543      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3544      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3545      uint32_t arg[5];
3546      if (!is_range) {
3547        inst->GetVarArgs(arg);
3548      }
3549      for (size_t ui = 0; ui < arg_count; ui++) {
3550        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3551        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3552          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3553          return;
3554        }
3555      }
3556      // filled-array result goes into "result" register
3557      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3558      work_line_->SetResultRegisterType(this, precise_type);
3559    }
3560  }
3561}
3562
3563void MethodVerifier::VerifyAGet(const Instruction* inst,
3564                                const RegType& insn_type, bool is_primitive) {
3565  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3566  if (!index_type.IsArrayIndexTypes()) {
3567    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3568  } else {
3569    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3570    if (array_type.IsZero()) {
3571      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3572      // instruction type. TODO: have a proper notion of bottom here.
3573      if (!is_primitive || insn_type.IsCategory1Types()) {
3574        // Reference or category 1
3575        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3576      } else {
3577        // Category 2
3578        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3579                                        reg_types_.FromCat2ConstLo(0, false),
3580                                        reg_types_.FromCat2ConstHi(0, false));
3581      }
3582    } else if (!array_type.IsArrayTypes()) {
3583      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3584    } else {
3585      /* verify the class */
3586      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3587      if (!component_type.IsReferenceTypes() && !is_primitive) {
3588        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3589            << " source for aget-object";
3590      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3591        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3592            << " source for category 1 aget";
3593      } else if (is_primitive && !insn_type.Equals(component_type) &&
3594                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3595                 (insn_type.IsLong() && component_type.IsDouble()))) {
3596        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3597            << " incompatible with aget of type " << insn_type;
3598      } else {
3599        // Use knowledge of the field type which is stronger than the type inferred from the
3600        // instruction, which can't differentiate object types and ints from floats, longs from
3601        // doubles.
3602        if (!component_type.IsLowHalf()) {
3603          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3604        } else {
3605          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3606                                          component_type.HighHalf(&reg_types_));
3607        }
3608      }
3609    }
3610  }
3611}
3612
3613void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3614                                        const uint32_t vregA) {
3615  // Primitive assignability rules are weaker than regular assignability rules.
3616  bool instruction_compatible;
3617  bool value_compatible;
3618  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3619  if (target_type.IsIntegralTypes()) {
3620    instruction_compatible = target_type.Equals(insn_type);
3621    value_compatible = value_type.IsIntegralTypes();
3622  } else if (target_type.IsFloat()) {
3623    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3624    value_compatible = value_type.IsFloatTypes();
3625  } else if (target_type.IsLong()) {
3626    instruction_compatible = insn_type.IsLong();
3627    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3628    // as target_type depends on the resolved type of the field.
3629    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3630      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3631      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3632    } else {
3633      value_compatible = false;
3634    }
3635  } else if (target_type.IsDouble()) {
3636    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3637    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3638    // as target_type depends on the resolved type of the field.
3639    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3640      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3641      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3642    } else {
3643      value_compatible = false;
3644    }
3645  } else {
3646    instruction_compatible = false;  // reference with primitive store
3647    value_compatible = false;  // unused
3648  }
3649  if (!instruction_compatible) {
3650    // This is a global failure rather than a class change failure as the instructions and
3651    // the descriptors for the type should have been consistent within the same file at
3652    // compile time.
3653    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3654        << "' but expected type '" << target_type << "'";
3655    return;
3656  }
3657  if (!value_compatible) {
3658    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3659        << " of type " << value_type << " but expected " << target_type << " for put";
3660    return;
3661  }
3662}
3663
3664void MethodVerifier::VerifyAPut(const Instruction* inst,
3665                                const RegType& insn_type, bool is_primitive) {
3666  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3667  if (!index_type.IsArrayIndexTypes()) {
3668    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3669  } else {
3670    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3671    if (array_type.IsZero()) {
3672      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3673      // instruction type.
3674    } else if (!array_type.IsArrayTypes()) {
3675      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3676    } else {
3677      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3678      const uint32_t vregA = inst->VRegA_23x();
3679      if (is_primitive) {
3680        VerifyPrimitivePut(component_type, insn_type, vregA);
3681      } else {
3682        if (!component_type.IsReferenceTypes()) {
3683          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3684              << " source for aput-object";
3685        } else {
3686          // The instruction agrees with the type of array, confirm the value to be stored does too
3687          // Note: we use the instruction type (rather than the component type) for aput-object as
3688          // incompatible classes will be caught at runtime as an array store exception
3689          work_line_->VerifyRegisterType(this, vregA, insn_type);
3690        }
3691      }
3692    }
3693  }
3694}
3695
3696mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3697  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3698  // Check access to class
3699  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3700  if (klass_type.IsConflict()) {  // bad class
3701    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3702                                         field_idx, dex_file_->GetFieldName(field_id),
3703                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3704    return nullptr;
3705  }
3706  if (klass_type.IsUnresolvedTypes()) {
3707    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3708  }
3709  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3710  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3711                                                          class_loader_);
3712  if (field == nullptr) {
3713    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3714              << dex_file_->GetFieldName(field_id) << ") in "
3715              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3716    DCHECK(self_->IsExceptionPending());
3717    self_->ClearException();
3718    return nullptr;
3719  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3720                                                  field->GetAccessFlags())) {
3721    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3722                                    << " from " << GetDeclaringClass();
3723    return nullptr;
3724  } else if (!field->IsStatic()) {
3725    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3726    return nullptr;
3727  }
3728  return field;
3729}
3730
3731mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3732  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3733  // Check access to class
3734  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3735  if (klass_type.IsConflict()) {
3736    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3737                                         field_idx, dex_file_->GetFieldName(field_id),
3738                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3739    return nullptr;
3740  }
3741  if (klass_type.IsUnresolvedTypes()) {
3742    return nullptr;  // Can't resolve Class so no more to do here
3743  }
3744  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3745  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3746                                                          class_loader_);
3747  if (field == nullptr) {
3748    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3749              << dex_file_->GetFieldName(field_id) << ") in "
3750              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3751    DCHECK(self_->IsExceptionPending());
3752    self_->ClearException();
3753    return nullptr;
3754  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3755                                                  field->GetAccessFlags())) {
3756    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3757                                    << " from " << GetDeclaringClass();
3758    return nullptr;
3759  } else if (field->IsStatic()) {
3760    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3761                                    << " to not be static";
3762    return nullptr;
3763  } else if (obj_type.IsZero()) {
3764    // Cannot infer and check type, however, access will cause null pointer exception
3765    return field;
3766  } else if (!obj_type.IsReferenceTypes()) {
3767    // Trying to read a field from something that isn't a reference
3768    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3769                                      << "non-reference type " << obj_type;
3770    return nullptr;
3771  } else {
3772    mirror::Class* klass = field->GetDeclaringClass();
3773    const RegType& field_klass =
3774        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3775                             klass, klass->CannotBeAssignedFromOtherTypes());
3776    if (obj_type.IsUninitializedTypes() &&
3777        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3778            !field_klass.Equals(GetDeclaringClass()))) {
3779      // Field accesses through uninitialized references are only allowable for constructors where
3780      // the field is declared in this class
3781      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3782                                        << " of a not fully initialized object within the context"
3783                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3784      return nullptr;
3785    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3786      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3787      // of C1. For resolution to occur the declared class of the field must be compatible with
3788      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3789      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3790                                  << " from object of type " << obj_type;
3791      return nullptr;
3792    } else {
3793      return field;
3794    }
3795  }
3796}
3797
3798void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3799                                 bool is_primitive, bool is_static) {
3800  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3801  mirror::ArtField* field;
3802  if (is_static) {
3803    field = GetStaticField(field_idx);
3804  } else {
3805    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3806    field = GetInstanceField(object_type, field_idx);
3807  }
3808  const RegType* field_type = nullptr;
3809  if (field != nullptr) {
3810    mirror::Class* field_type_class;
3811    {
3812      StackHandleScope<1> hs(self_);
3813      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3814      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3815    }
3816    if (field_type_class != nullptr) {
3817      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3818                                         field_type_class->CannotBeAssignedFromOtherTypes());
3819    } else {
3820      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3821      self_->ClearException();
3822    }
3823  }
3824  if (field_type == nullptr) {
3825    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3826    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3827    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3828  }
3829  DCHECK(field_type != nullptr);
3830  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3831  if (is_primitive) {
3832    if (field_type->Equals(insn_type) ||
3833        (field_type->IsFloat() && insn_type.IsInteger()) ||
3834        (field_type->IsDouble() && insn_type.IsLong())) {
3835      // expected that read is of the correct primitive type or that int reads are reading
3836      // floats or long reads are reading doubles
3837    } else {
3838      // This is a global failure rather than a class change failure as the instructions and
3839      // the descriptors for the type should have been consistent within the same file at
3840      // compile time
3841      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3842                                        << " to be of type '" << insn_type
3843                                        << "' but found type '" << *field_type << "' in get";
3844      return;
3845    }
3846  } else {
3847    if (!insn_type.IsAssignableFrom(*field_type)) {
3848      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3849                                        << " to be compatible with type '" << insn_type
3850                                        << "' but found type '" << *field_type
3851                                        << "' in Get-object";
3852      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3853      return;
3854    }
3855  }
3856  if (!field_type->IsLowHalf()) {
3857    work_line_->SetRegisterType(this, vregA, *field_type);
3858  } else {
3859    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3860  }
3861}
3862
3863void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3864                                 bool is_primitive, bool is_static) {
3865  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3866  mirror::ArtField* field;
3867  if (is_static) {
3868    field = GetStaticField(field_idx);
3869  } else {
3870    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3871    field = GetInstanceField(object_type, field_idx);
3872  }
3873  const RegType* field_type = nullptr;
3874  if (field != nullptr) {
3875    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3876      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3877                                      << " from other class " << GetDeclaringClass();
3878      return;
3879    }
3880    mirror::Class* field_type_class;
3881    {
3882      StackHandleScope<1> hs(self_);
3883      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3884      FieldHelper fh(h_field);
3885      field_type_class = fh.GetType(can_load_classes_);
3886    }
3887    if (field_type_class != nullptr) {
3888      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3889                                         field_type_class->CannotBeAssignedFromOtherTypes());
3890    } else {
3891      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3892      self_->ClearException();
3893    }
3894  }
3895  if (field_type == nullptr) {
3896    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3897    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3898    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3899  }
3900  DCHECK(field_type != nullptr);
3901  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3902  if (is_primitive) {
3903    VerifyPrimitivePut(*field_type, insn_type, vregA);
3904  } else {
3905    if (!insn_type.IsAssignableFrom(*field_type)) {
3906      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3907                                        << " to be compatible with type '" << insn_type
3908                                        << "' but found type '" << *field_type
3909                                        << "' in put-object";
3910      return;
3911    }
3912    work_line_->VerifyRegisterType(this, vregA, *field_type);
3913  }
3914}
3915
3916mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3917                                                      RegisterLine* reg_line) {
3918  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3919         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3920         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3921         inst->Opcode() == Instruction::IPUT_QUICK ||
3922         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3923         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK ||
3924         inst->Opcode() == Instruction::IPUT_BOOLEAN_QUICK ||
3925         inst->Opcode() == Instruction::IPUT_BYTE_QUICK ||
3926         inst->Opcode() == Instruction::IPUT_CHAR_QUICK ||
3927         inst->Opcode() == Instruction::IPUT_SHORT_QUICK);
3928  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
3929  if (!object_type.HasClass()) {
3930    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3931    return nullptr;
3932  }
3933  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3934  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3935                                                                      field_offset);
3936  if (f == nullptr) {
3937    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3938                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3939  }
3940  return f;
3941}
3942
3943void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3944                                     bool is_primitive) {
3945  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3946  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3947  if (field == nullptr) {
3948    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3949    return;
3950  }
3951  mirror::Class* field_type_class;
3952  {
3953    StackHandleScope<1> hs(self_);
3954    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3955    FieldHelper fh(h_field);
3956    field_type_class = fh.GetType(can_load_classes_);
3957  }
3958  const RegType* field_type;
3959  if (field_type_class != nullptr) {
3960    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3961                                       field_type_class->CannotBeAssignedFromOtherTypes());
3962  } else {
3963    DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3964    self_->ClearException();
3965    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3966                                            field->GetTypeDescriptor(), false);
3967  }
3968  DCHECK(field_type != nullptr);
3969  const uint32_t vregA = inst->VRegA_22c();
3970  if (is_primitive) {
3971    if (field_type->Equals(insn_type) ||
3972        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3973        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3974      // expected that read is of the correct primitive type or that int reads are reading
3975      // floats or long reads are reading doubles
3976    } else {
3977      // This is a global failure rather than a class change failure as the instructions and
3978      // the descriptors for the type should have been consistent within the same file at
3979      // compile time
3980      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3981                                        << " to be of type '" << insn_type
3982                                        << "' but found type '" << *field_type << "' in Get";
3983      return;
3984    }
3985  } else {
3986    if (!insn_type.IsAssignableFrom(*field_type)) {
3987      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3988                                        << " to be compatible with type '" << insn_type
3989                                        << "' but found type '" << *field_type
3990                                        << "' in get-object";
3991      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3992      return;
3993    }
3994  }
3995  if (!field_type->IsLowHalf()) {
3996    work_line_->SetRegisterType(this, vregA, *field_type);
3997  } else {
3998    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3999  }
4000}
4001
4002void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
4003                                     bool is_primitive) {
4004  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4005  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4006  if (field == nullptr) {
4007    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4008    return;
4009  }
4010  const char* descriptor = field->GetTypeDescriptor();
4011  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
4012  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
4013  if (field != nullptr) {
4014    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4015      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4016                                      << " from other class " << GetDeclaringClass();
4017      return;
4018    }
4019  }
4020  const uint32_t vregA = inst->VRegA_22c();
4021  if (is_primitive) {
4022    // Primitive field assignability rules are weaker than regular assignability rules
4023    bool instruction_compatible;
4024    bool value_compatible;
4025    const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4026    if (field_type.IsIntegralTypes()) {
4027      instruction_compatible = insn_type.IsIntegralTypes();
4028      value_compatible = value_type.IsIntegralTypes();
4029    } else if (field_type.IsFloat()) {
4030      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4031      value_compatible = value_type.IsFloatTypes();
4032    } else if (field_type.IsLong()) {
4033      instruction_compatible = insn_type.IsLong();
4034      value_compatible = value_type.IsLongTypes();
4035    } else if (field_type.IsDouble()) {
4036      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4037      value_compatible = value_type.IsDoubleTypes();
4038    } else {
4039      instruction_compatible = false;  // reference field with primitive store
4040      value_compatible = false;  // unused
4041    }
4042    if (!instruction_compatible) {
4043      // This is a global failure rather than a class change failure as the instructions and
4044      // the descriptors for the type should have been consistent within the same file at
4045      // compile time
4046      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4047                                        << " to be of type '" << insn_type
4048                                        << "' but found type '" << field_type
4049                                        << "' in put";
4050      return;
4051    }
4052    if (!value_compatible) {
4053      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4054          << " of type " << value_type
4055          << " but expected " << field_type
4056          << " for store to " << PrettyField(field) << " in put";
4057      return;
4058    }
4059  } else {
4060    if (!insn_type.IsAssignableFrom(field_type)) {
4061      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4062                                        << " to be compatible with type '" << insn_type
4063                                        << "' but found type '" << field_type
4064                                        << "' in put-object";
4065      return;
4066    }
4067    work_line_->VerifyRegisterType(this, vregA, field_type);
4068  }
4069}
4070
4071bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4072  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4073    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4074    return false;
4075  }
4076  return true;
4077}
4078
4079bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4080  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4081      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4082    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4083    return false;
4084  }
4085  return true;
4086}
4087
4088bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4089  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4090}
4091
4092bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4093                                     bool update_merge_line) {
4094  bool changed = true;
4095  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4096  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4097    /*
4098     * We haven't processed this instruction before, and we haven't touched the registers here, so
4099     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4100     * only way a register can transition out of "unknown", so this is not just an optimization.)
4101     */
4102    if (!insn_flags_[next_insn].IsReturn()) {
4103      target_line->CopyFromLine(merge_line);
4104    } else {
4105      // Verify that the monitor stack is empty on return.
4106      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4107        return false;
4108      }
4109      // For returns we only care about the operand to the return, all other registers are dead.
4110      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4111      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4112      Instruction::Code opcode = ret_inst->Opcode();
4113      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4114        target_line->MarkAllRegistersAsConflicts(this);
4115      } else {
4116        target_line->CopyFromLine(merge_line);
4117        if (opcode == Instruction::RETURN_WIDE) {
4118          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4119        } else {
4120          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4121        }
4122      }
4123    }
4124  } else {
4125    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4126                                 RegisterLine::Create(target_line->NumRegs(), this) :
4127                                 nullptr);
4128    if (gDebugVerify) {
4129      copy->CopyFromLine(target_line);
4130    }
4131    changed = target_line->MergeRegisters(this, merge_line);
4132    if (have_pending_hard_failure_) {
4133      return false;
4134    }
4135    if (gDebugVerify && changed) {
4136      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4137                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4138                      << copy->Dump(this) << "  MERGE\n"
4139                      << merge_line->Dump(this) << "  ==\n"
4140                      << target_line->Dump(this) << "\n";
4141    }
4142    if (update_merge_line && changed) {
4143      merge_line->CopyFromLine(target_line);
4144    }
4145  }
4146  if (changed) {
4147    insn_flags_[next_insn].SetChanged();
4148  }
4149  return true;
4150}
4151
4152InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4153  return &insn_flags_[work_insn_idx_];
4154}
4155
4156const RegType& MethodVerifier::GetMethodReturnType() {
4157  if (return_type_ == nullptr) {
4158    if (mirror_method_.Get() != nullptr) {
4159      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4160      if (return_type_class != nullptr) {
4161        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4162                                             return_type_class,
4163                                             return_type_class->CannotBeAssignedFromOtherTypes());
4164      } else {
4165        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4166        self_->ClearException();
4167      }
4168    }
4169    if (return_type_ == nullptr) {
4170      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4171      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4172      uint16_t return_type_idx = proto_id.return_type_idx_;
4173      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4174      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4175    }
4176  }
4177  return *return_type_;
4178}
4179
4180const RegType& MethodVerifier::GetDeclaringClass() {
4181  if (declaring_class_ == nullptr) {
4182    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4183    const char* descriptor
4184        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4185    if (mirror_method_.Get() != nullptr) {
4186      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4187      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4188                                               klass->CannotBeAssignedFromOtherTypes());
4189    } else {
4190      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4191    }
4192  }
4193  return *declaring_class_;
4194}
4195
4196std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4197  RegisterLine* line = reg_table_.GetLine(dex_pc);
4198  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4199  std::vector<int32_t> result;
4200  for (size_t i = 0; i < line->NumRegs(); ++i) {
4201    const RegType& type = line->GetRegisterType(this, i);
4202    if (type.IsConstant()) {
4203      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4204      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4205      result.push_back(const_val->ConstantValue());
4206    } else if (type.IsConstantLo()) {
4207      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4208      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4209      result.push_back(const_val->ConstantValueLo());
4210    } else if (type.IsConstantHi()) {
4211      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4212      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4213      result.push_back(const_val->ConstantValueHi());
4214    } else if (type.IsIntegralTypes()) {
4215      result.push_back(kIntVReg);
4216      result.push_back(0);
4217    } else if (type.IsFloat()) {
4218      result.push_back(kFloatVReg);
4219      result.push_back(0);
4220    } else if (type.IsLong()) {
4221      result.push_back(kLongLoVReg);
4222      result.push_back(0);
4223      result.push_back(kLongHiVReg);
4224      result.push_back(0);
4225      ++i;
4226    } else if (type.IsDouble()) {
4227      result.push_back(kDoubleLoVReg);
4228      result.push_back(0);
4229      result.push_back(kDoubleHiVReg);
4230      result.push_back(0);
4231      ++i;
4232    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4233      result.push_back(kUndefined);
4234      result.push_back(0);
4235    } else {
4236      CHECK(type.IsNonZeroReferenceTypes());
4237      result.push_back(kReferenceVReg);
4238      result.push_back(0);
4239    }
4240  }
4241  return result;
4242}
4243
4244const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4245  if (precise) {
4246    // Precise constant type.
4247    return reg_types_.FromCat1Const(value, true);
4248  } else {
4249    // Imprecise constant type.
4250    if (value < -32768) {
4251      return reg_types_.IntConstant();
4252    } else if (value < -128) {
4253      return reg_types_.ShortConstant();
4254    } else if (value < 0) {
4255      return reg_types_.ByteConstant();
4256    } else if (value == 0) {
4257      return reg_types_.Zero();
4258    } else if (value == 1) {
4259      return reg_types_.One();
4260    } else if (value < 128) {
4261      return reg_types_.PosByteConstant();
4262    } else if (value < 32768) {
4263      return reg_types_.PosShortConstant();
4264    } else if (value < 65536) {
4265      return reg_types_.CharConstant();
4266    } else {
4267      return reg_types_.IntConstant();
4268    }
4269  }
4270}
4271
4272void MethodVerifier::Init() {
4273  art::verifier::RegTypeCache::Init();
4274}
4275
4276void MethodVerifier::Shutdown() {
4277  verifier::RegTypeCache::ShutDown();
4278}
4279
4280void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4281  RegTypeCache::VisitStaticRoots(callback, arg);
4282}
4283
4284void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4285  reg_types_.VisitRoots(callback, arg);
4286}
4287
4288}  // namespace verifier
4289}  // namespace art
4290