method_verifier.cc revision 286763464072ffb599846f76720c7ec54392ae6e
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "art_field-inl.h"
22#include "art_method-inl.h"
23#include "base/logging.h"
24#include "base/mutex-inl.h"
25#include "base/time_utils.h"
26#include "class_linker.h"
27#include "compiler_callbacks.h"
28#include "dex_file-inl.h"
29#include "dex_instruction-inl.h"
30#include "dex_instruction_utils.h"
31#include "dex_instruction_visitor.h"
32#include "gc/accounting/card_table-inl.h"
33#include "indenter.h"
34#include "intern_table.h"
35#include "leb128.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "utils.h"
46#include "handle_scope-inl.h"
47#include "verifier/dex_gc_map.h"
48
49namespace art {
50namespace verifier {
51
52static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
53static constexpr bool gDebugVerify = false;
54// TODO: Add a constant to method_verifier to turn on verbose logging?
55
56void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
57                                 uint32_t insns_size, uint16_t registers_size,
58                                 MethodVerifier* verifier) {
59  DCHECK_GT(insns_size, 0U);
60  register_lines_.reset(new RegisterLine*[insns_size]());
61  size_ = insns_size;
62  for (uint32_t i = 0; i < insns_size; i++) {
63    bool interesting = false;
64    switch (mode) {
65      case kTrackRegsAll:
66        interesting = flags[i].IsOpcode();
67        break;
68      case kTrackCompilerInterestPoints:
69        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
70        break;
71      case kTrackRegsBranches:
72        interesting = flags[i].IsBranchTarget();
73        break;
74      default:
75        break;
76    }
77    if (interesting) {
78      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
79    }
80  }
81}
82
83PcToRegisterLineTable::~PcToRegisterLineTable() {
84  for (size_t i = 0; i < size_; i++) {
85    delete register_lines_[i];
86    if (kIsDebugBuild) {
87      register_lines_[i] = nullptr;
88    }
89  }
90}
91
92// Note: returns true on failure.
93ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
94                                             const char* error_msg, uint32_t work_insn_idx) {
95  if (kIsDebugBuild) {
96    // In a debug build, abort if the error condition is wrong.
97    DCHECK(condition) << error_msg << work_insn_idx;
98  } else {
99    // In a non-debug build, just fail the class.
100    if (!condition) {
101      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
102      return true;
103    }
104  }
105
106  return false;
107}
108
109static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
110  if (verifier->IsConstructor()) {
111    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
112    reg_line->CheckConstructorReturn(verifier);
113  }
114  reg_line->MarkAllRegistersAsConflicts(verifier);
115}
116
117MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
118    ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
119  StackHandleScope<2> hs(Thread::Current());
120  mirror::Class* klass = method->GetDeclaringClass();
121  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
122  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
123  return VerifyMethod(hs.Self(), method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(
164      self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
165}
166
167MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
168                                                        const DexFile* dex_file,
169                                                        Handle<mirror::DexCache> dex_cache,
170                                                        Handle<mirror::ClassLoader> class_loader,
171                                                        const DexFile::ClassDef* class_def,
172                                                        bool allow_soft_failures,
173                                                        std::string* error) {
174  DCHECK(class_def != nullptr);
175
176  // A class must not be abstract and final.
177  if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
178    *error = "Verifier rejected class ";
179    *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
180    *error += ": class is abstract and final.";
181    return kHardFailure;
182  }
183
184  const uint8_t* class_data = dex_file->GetClassData(*class_def);
185  if (class_data == nullptr) {
186    // empty class, probably a marker interface
187    return kNoFailure;
188  }
189  ClassDataItemIterator it(*dex_file, class_data);
190  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
191    it.Next();
192  }
193  size_t error_count = 0;
194  bool hard_fail = false;
195  ClassLinker* linker = Runtime::Current()->GetClassLinker();
196  int64_t previous_direct_method_idx = -1;
197  while (it.HasNextDirectMethod()) {
198    self->AllowThreadSuspension();
199    uint32_t method_idx = it.GetMemberIndex();
200    if (method_idx == previous_direct_method_idx) {
201      // smali can create dex files with two encoded_methods sharing the same method_idx
202      // http://code.google.com/p/smali/issues/detail?id=119
203      it.Next();
204      continue;
205    }
206    previous_direct_method_idx = method_idx;
207    InvokeType type = it.GetMethodInvokeType(*class_def);
208    ArtMethod* method = linker->ResolveMethod(
209        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
210    if (method == nullptr) {
211      DCHECK(self->IsExceptionPending());
212      // We couldn't resolve the method, but continue regardless.
213      self->ClearException();
214    } else {
215      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
216    }
217    StackHandleScope<1> hs(self);
218    MethodVerifier::FailureKind result = VerifyMethod(self,
219                                                      method_idx,
220                                                      dex_file,
221                                                      dex_cache,
222                                                      class_loader,
223                                                      class_def,
224                                                      it.GetMethodCodeItem(),
225        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
226    if (result != kNoFailure) {
227      if (result == kHardFailure) {
228        hard_fail = true;
229        if (error_count > 0) {
230          *error += "\n";
231        }
232        *error = "Verifier rejected class ";
233        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
234        *error += " due to bad method ";
235        *error += PrettyMethod(method_idx, *dex_file);
236      }
237      ++error_count;
238    }
239    it.Next();
240  }
241  int64_t previous_virtual_method_idx = -1;
242  while (it.HasNextVirtualMethod()) {
243    self->AllowThreadSuspension();
244    uint32_t method_idx = it.GetMemberIndex();
245    if (method_idx == previous_virtual_method_idx) {
246      // smali can create dex files with two encoded_methods sharing the same method_idx
247      // http://code.google.com/p/smali/issues/detail?id=119
248      it.Next();
249      continue;
250    }
251    previous_virtual_method_idx = method_idx;
252    InvokeType type = it.GetMethodInvokeType(*class_def);
253    ArtMethod* method = linker->ResolveMethod(
254        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
255    if (method == nullptr) {
256      DCHECK(self->IsExceptionPending());
257      // We couldn't resolve the method, but continue regardless.
258      self->ClearException();
259    }
260    StackHandleScope<1> hs(self);
261    MethodVerifier::FailureKind result = VerifyMethod(self,
262                                                      method_idx,
263                                                      dex_file,
264                                                      dex_cache,
265                                                      class_loader,
266                                                      class_def,
267                                                      it.GetMethodCodeItem(),
268        method, it.GetMethodAccessFlags(), allow_soft_failures, false);
269    if (result != kNoFailure) {
270      if (result == kHardFailure) {
271        hard_fail = true;
272        if (error_count > 0) {
273          *error += "\n";
274        }
275        *error = "Verifier rejected class ";
276        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
277        *error += " due to bad method ";
278        *error += PrettyMethod(method_idx, *dex_file);
279      }
280      ++error_count;
281    }
282    it.Next();
283  }
284  if (error_count == 0) {
285    return kNoFailure;
286  } else {
287    return hard_fail ? kHardFailure : kSoftFailure;
288  }
289}
290
291static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
292  if (code_item == nullptr) {
293    return false;
294  }
295
296  uint16_t registers_size = code_item->registers_size_;
297  uint32_t insns_size = code_item->insns_size_in_code_units_;
298
299  return registers_size * insns_size > 4*1024*1024;
300}
301
302MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
303                                                         const DexFile* dex_file,
304                                                         Handle<mirror::DexCache> dex_cache,
305                                                         Handle<mirror::ClassLoader> class_loader,
306                                                         const DexFile::ClassDef* class_def,
307                                                         const DexFile::CodeItem* code_item,
308                                                         ArtMethod* method,
309                                                         uint32_t method_access_flags,
310                                                         bool allow_soft_failures,
311                                                         bool need_precise_constants) {
312  MethodVerifier::FailureKind result = kNoFailure;
313  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
314
315  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
316                          method_idx, method, method_access_flags, true, allow_soft_failures,
317                          need_precise_constants, true);
318  if (verifier.Verify()) {
319    // Verification completed, however failures may be pending that didn't cause the verification
320    // to hard fail.
321    CHECK(!verifier.have_pending_hard_failure_);
322    if (verifier.failures_.size() != 0) {
323      if (VLOG_IS_ON(verifier)) {
324          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
325                                << PrettyMethod(method_idx, *dex_file) << "\n");
326      }
327      result = kSoftFailure;
328    }
329  } else {
330    // Bad method data.
331    CHECK_NE(verifier.failures_.size(), 0U);
332    CHECK(verifier.have_pending_hard_failure_);
333    verifier.DumpFailures(LOG(INFO) << "Verification error in "
334                                    << PrettyMethod(method_idx, *dex_file) << "\n");
335    if (gDebugVerify) {
336      std::cout << "\n" << verifier.info_messages_.str();
337      verifier.Dump(std::cout);
338    }
339    result = kHardFailure;
340  }
341  if (kTimeVerifyMethod) {
342    uint64_t duration_ns = NanoTime() - start_ns;
343    if (duration_ns > MsToNs(100)) {
344      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
345                   << " took " << PrettyDuration(duration_ns)
346                   << (IsLargeMethod(code_item) ? " (large method)" : "");
347    }
348  }
349  return result;
350}
351
352MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
353                                         const DexFile* dex_file,
354                                         Handle<mirror::DexCache> dex_cache,
355                                         Handle<mirror::ClassLoader> class_loader,
356                                         const DexFile::ClassDef* class_def,
357                                         const DexFile::CodeItem* code_item,
358                                         ArtMethod* method,
359                                         uint32_t method_access_flags) {
360  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
361                                                class_def, code_item, dex_method_idx, method,
362                                                method_access_flags, true, true, true, true);
363  verifier->Verify();
364  verifier->DumpFailures(os);
365  os << verifier->info_messages_.str();
366  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
367  // and querying any info is dangerous/can abort.
368  if (verifier->have_pending_hard_failure_) {
369    delete verifier;
370    return nullptr;
371  } else {
372    verifier->Dump(os);
373    return verifier;
374  }
375}
376
377MethodVerifier::MethodVerifier(Thread* self,
378                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
379                               Handle<mirror::ClassLoader> class_loader,
380                               const DexFile::ClassDef* class_def,
381                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
382                               ArtMethod* method, uint32_t method_access_flags,
383                               bool can_load_classes, bool allow_soft_failures,
384                               bool need_precise_constants, bool verify_to_dump,
385                               bool allow_thread_suspension)
386    : self_(self),
387      reg_types_(can_load_classes),
388      work_insn_idx_(-1),
389      dex_method_idx_(dex_method_idx),
390      mirror_method_(method),
391      method_access_flags_(method_access_flags),
392      return_type_(nullptr),
393      dex_file_(dex_file),
394      dex_cache_(dex_cache),
395      class_loader_(class_loader),
396      class_def_(class_def),
397      code_item_(code_item),
398      declaring_class_(nullptr),
399      interesting_dex_pc_(-1),
400      monitor_enter_dex_pcs_(nullptr),
401      have_pending_hard_failure_(false),
402      have_pending_runtime_throw_failure_(false),
403      new_instance_count_(0),
404      monitor_enter_count_(0),
405      can_load_classes_(can_load_classes),
406      allow_soft_failures_(allow_soft_failures),
407      need_precise_constants_(need_precise_constants),
408      has_check_casts_(false),
409      has_virtual_or_interface_invokes_(false),
410      verify_to_dump_(verify_to_dump),
411      allow_thread_suspension_(allow_thread_suspension) {
412  self->PushVerifier(this);
413  DCHECK(class_def != nullptr);
414}
415
416MethodVerifier::~MethodVerifier() {
417  Thread::Current()->PopVerifier(this);
418  STLDeleteElements(&failure_messages_);
419}
420
421void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
422                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
423  StackHandleScope<2> hs(Thread::Current());
424  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
425  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
426  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
427                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
428                          false, true, false, false);
429  verifier.interesting_dex_pc_ = dex_pc;
430  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
431  verifier.FindLocksAtDexPc();
432}
433
434static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
435  const Instruction* inst = Instruction::At(code_item->insns_);
436
437  uint32_t insns_size = code_item->insns_size_in_code_units_;
438  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
439    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
440      return true;
441    }
442
443    dex_pc += inst->SizeInCodeUnits();
444    inst = inst->Next();
445  }
446
447  return false;
448}
449
450void MethodVerifier::FindLocksAtDexPc() {
451  CHECK(monitor_enter_dex_pcs_ != nullptr);
452  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
453
454  // Quick check whether there are any monitor_enter instructions at all.
455  if (!HasMonitorEnterInstructions(code_item_)) {
456    return;
457  }
458
459  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
460  // verification. In practice, the phase we want relies on data structures set up by all the
461  // earlier passes, so we just run the full method verification and bail out early when we've
462  // got what we wanted.
463  Verify();
464}
465
466ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
467  StackHandleScope<2> hs(Thread::Current());
468  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
469  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
470  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
471                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
472                          true, false, true);
473  return verifier.FindAccessedFieldAtDexPc(dex_pc);
474}
475
476ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
477  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
478
479  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
480  // verification. In practice, the phase we want relies on data structures set up by all the
481  // earlier passes, so we just run the full method verification and bail out early when we've
482  // got what we wanted.
483  bool success = Verify();
484  if (!success) {
485    return nullptr;
486  }
487  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
488  if (register_line == nullptr) {
489    return nullptr;
490  }
491  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
492  return GetQuickFieldAccess(inst, register_line);
493}
494
495ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
496  StackHandleScope<2> hs(Thread::Current());
497  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
498  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
499  MethodVerifier verifier(hs.Self(), m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
500                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
501                          true, false, true);
502  return verifier.FindInvokedMethodAtDexPc(dex_pc);
503}
504
505ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
506  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
507
508  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
509  // verification. In practice, the phase we want relies on data structures set up by all the
510  // earlier passes, so we just run the full method verification and bail out early when we've
511  // got what we wanted.
512  bool success = Verify();
513  if (!success) {
514    return nullptr;
515  }
516  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
517  if (register_line == nullptr) {
518    return nullptr;
519  }
520  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
521  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
522  return GetQuickInvokedMethod(inst, register_line, is_range, false);
523}
524
525SafeMap<uint32_t, std::set<uint32_t>> MethodVerifier::FindStringInitMap(ArtMethod* m) {
526  Thread* self = Thread::Current();
527  StackHandleScope<2> hs(self);
528  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
529  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
530  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
531                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(),
532                          true, true, false, true);
533  return verifier.FindStringInitMap();
534}
535
536SafeMap<uint32_t, std::set<uint32_t>>& MethodVerifier::FindStringInitMap() {
537  Verify();
538  return GetStringInitPcRegMap();
539}
540
541bool MethodVerifier::Verify() {
542  // If there aren't any instructions, make sure that's expected, then exit successfully.
543  if (code_item_ == nullptr) {
544    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
545      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
546      return false;
547    } else {
548      return true;
549    }
550  }
551  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
552  if (code_item_->ins_size_ > code_item_->registers_size_) {
553    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
554                                      << " regs=" << code_item_->registers_size_;
555    return false;
556  }
557  // Allocate and initialize an array to hold instruction data.
558  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
559  // Run through the instructions and see if the width checks out.
560  bool result = ComputeWidthsAndCountOps();
561  // Flag instructions guarded by a "try" block and check exception handlers.
562  result = result && ScanTryCatchBlocks();
563  // Perform static instruction verification.
564  result = result && VerifyInstructions();
565  // Perform code-flow analysis and return.
566  result = result && VerifyCodeFlow();
567  // Compute information for compiler.
568  if (result && Runtime::Current()->IsCompiler()) {
569    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
570  }
571  return result;
572}
573
574std::ostream& MethodVerifier::Fail(VerifyError error) {
575  switch (error) {
576    case VERIFY_ERROR_NO_CLASS:
577    case VERIFY_ERROR_NO_FIELD:
578    case VERIFY_ERROR_NO_METHOD:
579    case VERIFY_ERROR_ACCESS_CLASS:
580    case VERIFY_ERROR_ACCESS_FIELD:
581    case VERIFY_ERROR_ACCESS_METHOD:
582    case VERIFY_ERROR_INSTANTIATION:
583    case VERIFY_ERROR_CLASS_CHANGE:
584      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
585        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
586        // class change and instantiation errors into soft verification errors so that we re-verify
587        // at runtime. We may fail to find or to agree on access because of not yet available class
588        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
589        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
590        // paths" that dynamically perform the verification and cause the behavior to be that akin
591        // to an interpreter.
592        error = VERIFY_ERROR_BAD_CLASS_SOFT;
593      } else {
594        // If we fail again at runtime, mark that this instruction would throw and force this
595        // method to be executed using the interpreter with checks.
596        have_pending_runtime_throw_failure_ = true;
597
598        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
599        // try to merge garbage.
600        // Note: this assumes that Fail is called before we do any work_line modifications.
601        const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
602        const Instruction* inst = Instruction::At(insns);
603        int opcode_flags = Instruction::FlagsOf(inst->Opcode());
604
605        if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
606          saved_line_->CopyFromLine(work_line_.get());
607        }
608      }
609      break;
610      // Indication that verification should be retried at runtime.
611    case VERIFY_ERROR_BAD_CLASS_SOFT:
612      if (!allow_soft_failures_) {
613        have_pending_hard_failure_ = true;
614      }
615      break;
616      // Hard verification failures at compile time will still fail at runtime, so the class is
617      // marked as rejected to prevent it from being compiled.
618    case VERIFY_ERROR_BAD_CLASS_HARD: {
619      if (Runtime::Current()->IsAotCompiler()) {
620        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
621        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
622      }
623      have_pending_hard_failure_ = true;
624      break;
625    }
626  }
627  failures_.push_back(error);
628  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
629                                    work_insn_idx_));
630  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
631  failure_messages_.push_back(failure_message);
632  return *failure_message;
633}
634
635std::ostream& MethodVerifier::LogVerifyInfo() {
636  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
637                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
638}
639
640void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
641  size_t failure_num = failure_messages_.size();
642  DCHECK_NE(failure_num, 0U);
643  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
644  prepend += last_fail_message->str();
645  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
646  delete last_fail_message;
647}
648
649void MethodVerifier::AppendToLastFailMessage(std::string append) {
650  size_t failure_num = failure_messages_.size();
651  DCHECK_NE(failure_num, 0U);
652  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
653  (*last_fail_message) << append;
654}
655
656bool MethodVerifier::ComputeWidthsAndCountOps() {
657  const uint16_t* insns = code_item_->insns_;
658  size_t insns_size = code_item_->insns_size_in_code_units_;
659  const Instruction* inst = Instruction::At(insns);
660  size_t new_instance_count = 0;
661  size_t monitor_enter_count = 0;
662  size_t dex_pc = 0;
663
664  while (dex_pc < insns_size) {
665    Instruction::Code opcode = inst->Opcode();
666    switch (opcode) {
667      case Instruction::APUT_OBJECT:
668      case Instruction::CHECK_CAST:
669        has_check_casts_ = true;
670        break;
671      case Instruction::INVOKE_VIRTUAL:
672      case Instruction::INVOKE_VIRTUAL_RANGE:
673      case Instruction::INVOKE_INTERFACE:
674      case Instruction::INVOKE_INTERFACE_RANGE:
675        has_virtual_or_interface_invokes_ = true;
676        break;
677      case Instruction::MONITOR_ENTER:
678        monitor_enter_count++;
679        break;
680      case Instruction::NEW_INSTANCE:
681        new_instance_count++;
682        break;
683      default:
684        break;
685    }
686    size_t inst_size = inst->SizeInCodeUnits();
687    insn_flags_[dex_pc].SetIsOpcode();
688    dex_pc += inst_size;
689    inst = inst->RelativeAt(inst_size);
690  }
691
692  if (dex_pc != insns_size) {
693    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
694                                      << dex_pc << " vs. " << insns_size << ")";
695    return false;
696  }
697
698  new_instance_count_ = new_instance_count;
699  monitor_enter_count_ = monitor_enter_count;
700  return true;
701}
702
703bool MethodVerifier::ScanTryCatchBlocks() {
704  uint32_t tries_size = code_item_->tries_size_;
705  if (tries_size == 0) {
706    return true;
707  }
708  uint32_t insns_size = code_item_->insns_size_in_code_units_;
709  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
710
711  for (uint32_t idx = 0; idx < tries_size; idx++) {
712    const DexFile::TryItem* try_item = &tries[idx];
713    uint32_t start = try_item->start_addr_;
714    uint32_t end = start + try_item->insn_count_;
715    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
716      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
717                                        << " endAddr=" << end << " (size=" << insns_size << ")";
718      return false;
719    }
720    if (!insn_flags_[start].IsOpcode()) {
721      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
722          << "'try' block starts inside an instruction (" << start << ")";
723      return false;
724    }
725    uint32_t dex_pc = start;
726    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
727    while (dex_pc < end) {
728      insn_flags_[dex_pc].SetInTry();
729      size_t insn_size = inst->SizeInCodeUnits();
730      dex_pc += insn_size;
731      inst = inst->RelativeAt(insn_size);
732    }
733  }
734  // Iterate over each of the handlers to verify target addresses.
735  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
736  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
737  ClassLinker* linker = Runtime::Current()->GetClassLinker();
738  for (uint32_t idx = 0; idx < handlers_size; idx++) {
739    CatchHandlerIterator iterator(handlers_ptr);
740    for (; iterator.HasNext(); iterator.Next()) {
741      uint32_t dex_pc= iterator.GetHandlerAddress();
742      if (!insn_flags_[dex_pc].IsOpcode()) {
743        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
744            << "exception handler starts at bad address (" << dex_pc << ")";
745        return false;
746      }
747      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
748        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
749            << "exception handler begins with move-result* (" << dex_pc << ")";
750        return false;
751      }
752      insn_flags_[dex_pc].SetBranchTarget();
753      // Ensure exception types are resolved so that they don't need resolution to be delivered,
754      // unresolved exception types will be ignored by exception delivery
755      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
756        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
757                                                            iterator.GetHandlerTypeIndex(),
758                                                            dex_cache_, class_loader_);
759        if (exception_type == nullptr) {
760          DCHECK(self_->IsExceptionPending());
761          self_->ClearException();
762        }
763      }
764    }
765    handlers_ptr = iterator.EndDataPointer();
766  }
767  return true;
768}
769
770bool MethodVerifier::VerifyInstructions() {
771  const Instruction* inst = Instruction::At(code_item_->insns_);
772
773  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
774  insn_flags_[0].SetBranchTarget();
775  insn_flags_[0].SetCompileTimeInfoPoint();
776
777  uint32_t insns_size = code_item_->insns_size_in_code_units_;
778  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
779    if (!VerifyInstruction(inst, dex_pc)) {
780      DCHECK_NE(failures_.size(), 0U);
781      return false;
782    }
783    /* Flag instructions that are garbage collection points */
784    // All invoke points are marked as "Throw" points already.
785    // We are relying on this to also count all the invokes as interesting.
786    if (inst->IsBranch()) {
787      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
788      // The compiler also needs safepoints for fall-through to loop heads.
789      // Such a loop head must be a target of a branch.
790      int32_t offset = 0;
791      bool cond, self_ok;
792      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
793      DCHECK(target_ok);
794      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
795    } else if (inst->IsSwitch() || inst->IsThrow()) {
796      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
797    } else if (inst->IsReturn()) {
798      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
799    }
800    dex_pc += inst->SizeInCodeUnits();
801    inst = inst->Next();
802  }
803  return true;
804}
805
806bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
807  bool result = true;
808  switch (inst->GetVerifyTypeArgumentA()) {
809    case Instruction::kVerifyRegA:
810      result = result && CheckRegisterIndex(inst->VRegA());
811      break;
812    case Instruction::kVerifyRegAWide:
813      result = result && CheckWideRegisterIndex(inst->VRegA());
814      break;
815  }
816  switch (inst->GetVerifyTypeArgumentB()) {
817    case Instruction::kVerifyRegB:
818      result = result && CheckRegisterIndex(inst->VRegB());
819      break;
820    case Instruction::kVerifyRegBField:
821      result = result && CheckFieldIndex(inst->VRegB());
822      break;
823    case Instruction::kVerifyRegBMethod:
824      result = result && CheckMethodIndex(inst->VRegB());
825      break;
826    case Instruction::kVerifyRegBNewInstance:
827      result = result && CheckNewInstance(inst->VRegB());
828      break;
829    case Instruction::kVerifyRegBString:
830      result = result && CheckStringIndex(inst->VRegB());
831      break;
832    case Instruction::kVerifyRegBType:
833      result = result && CheckTypeIndex(inst->VRegB());
834      break;
835    case Instruction::kVerifyRegBWide:
836      result = result && CheckWideRegisterIndex(inst->VRegB());
837      break;
838  }
839  switch (inst->GetVerifyTypeArgumentC()) {
840    case Instruction::kVerifyRegC:
841      result = result && CheckRegisterIndex(inst->VRegC());
842      break;
843    case Instruction::kVerifyRegCField:
844      result = result && CheckFieldIndex(inst->VRegC());
845      break;
846    case Instruction::kVerifyRegCNewArray:
847      result = result && CheckNewArray(inst->VRegC());
848      break;
849    case Instruction::kVerifyRegCType:
850      result = result && CheckTypeIndex(inst->VRegC());
851      break;
852    case Instruction::kVerifyRegCWide:
853      result = result && CheckWideRegisterIndex(inst->VRegC());
854      break;
855  }
856  switch (inst->GetVerifyExtraFlags()) {
857    case Instruction::kVerifyArrayData:
858      result = result && CheckArrayData(code_offset);
859      break;
860    case Instruction::kVerifyBranchTarget:
861      result = result && CheckBranchTarget(code_offset);
862      break;
863    case Instruction::kVerifySwitchTargets:
864      result = result && CheckSwitchTargets(code_offset);
865      break;
866    case Instruction::kVerifyVarArgNonZero:
867      // Fall-through.
868    case Instruction::kVerifyVarArg: {
869      // Instructions that can actually return a negative value shouldn't have this flag.
870      uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
871      if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
872          v_a > Instruction::kMaxVarArgRegs) {
873        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
874                                             "non-range invoke";
875        return false;
876      }
877
878      uint32_t args[Instruction::kMaxVarArgRegs];
879      inst->GetVarArgs(args);
880      result = result && CheckVarArgRegs(v_a, args);
881      break;
882    }
883    case Instruction::kVerifyVarArgRangeNonZero:
884      // Fall-through.
885    case Instruction::kVerifyVarArgRange:
886      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
887          inst->VRegA() <= 0) {
888        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
889                                             "range invoke";
890        return false;
891      }
892      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
893      break;
894    case Instruction::kVerifyError:
895      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
896      result = false;
897      break;
898  }
899  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
900    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
901    result = false;
902  }
903  return result;
904}
905
906inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
907  if (idx >= code_item_->registers_size_) {
908    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
909                                      << code_item_->registers_size_ << ")";
910    return false;
911  }
912  return true;
913}
914
915inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
916  if (idx + 1 >= code_item_->registers_size_) {
917    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
918                                      << "+1 >= " << code_item_->registers_size_ << ")";
919    return false;
920  }
921  return true;
922}
923
924inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
925  if (idx >= dex_file_->GetHeader().field_ids_size_) {
926    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
927                                      << dex_file_->GetHeader().field_ids_size_ << ")";
928    return false;
929  }
930  return true;
931}
932
933inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
934  if (idx >= dex_file_->GetHeader().method_ids_size_) {
935    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
936                                      << dex_file_->GetHeader().method_ids_size_ << ")";
937    return false;
938  }
939  return true;
940}
941
942inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
943  if (idx >= dex_file_->GetHeader().type_ids_size_) {
944    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
945                                      << dex_file_->GetHeader().type_ids_size_ << ")";
946    return false;
947  }
948  // We don't need the actual class, just a pointer to the class name.
949  const char* descriptor = dex_file_->StringByTypeIdx(idx);
950  if (descriptor[0] != 'L') {
951    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
952    return false;
953  }
954  return true;
955}
956
957inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
958  if (idx >= dex_file_->GetHeader().string_ids_size_) {
959    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
960                                      << dex_file_->GetHeader().string_ids_size_ << ")";
961    return false;
962  }
963  return true;
964}
965
966inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
967  if (idx >= dex_file_->GetHeader().type_ids_size_) {
968    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
969                                      << dex_file_->GetHeader().type_ids_size_ << ")";
970    return false;
971  }
972  return true;
973}
974
975bool MethodVerifier::CheckNewArray(uint32_t idx) {
976  if (idx >= dex_file_->GetHeader().type_ids_size_) {
977    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
978                                      << dex_file_->GetHeader().type_ids_size_ << ")";
979    return false;
980  }
981  int bracket_count = 0;
982  const char* descriptor = dex_file_->StringByTypeIdx(idx);
983  const char* cp = descriptor;
984  while (*cp++ == '[') {
985    bracket_count++;
986  }
987  if (bracket_count == 0) {
988    /* The given class must be an array type. */
989    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
990        << "can't new-array class '" << descriptor << "' (not an array)";
991    return false;
992  } else if (bracket_count > 255) {
993    /* It is illegal to create an array of more than 255 dimensions. */
994    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
995        << "can't new-array class '" << descriptor << "' (exceeds limit)";
996    return false;
997  }
998  return true;
999}
1000
1001bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
1002  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1003  const uint16_t* insns = code_item_->insns_ + cur_offset;
1004  const uint16_t* array_data;
1005  int32_t array_data_offset;
1006
1007  DCHECK_LT(cur_offset, insn_count);
1008  /* make sure the start of the array data table is in range */
1009  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
1010  if ((int32_t) cur_offset + array_data_offset < 0 ||
1011      cur_offset + array_data_offset + 2 >= insn_count) {
1012    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1013                                      << ", data offset " << array_data_offset
1014                                      << ", count " << insn_count;
1015    return false;
1016  }
1017  /* offset to array data table is a relative branch-style offset */
1018  array_data = insns + array_data_offset;
1019  /* make sure the table is 32-bit aligned */
1020  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
1021    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1022                                      << ", data offset " << array_data_offset;
1023    return false;
1024  }
1025  uint32_t value_width = array_data[1];
1026  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1027  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1028  /* make sure the end of the switch is in range */
1029  if (cur_offset + array_data_offset + table_size > insn_count) {
1030    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1031                                      << ", data offset " << array_data_offset << ", end "
1032                                      << cur_offset + array_data_offset + table_size
1033                                      << ", count " << insn_count;
1034    return false;
1035  }
1036  return true;
1037}
1038
1039bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1040  int32_t offset;
1041  bool isConditional, selfOkay;
1042  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1043    return false;
1044  }
1045  if (!selfOkay && offset == 0) {
1046    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1047                                      << reinterpret_cast<void*>(cur_offset);
1048    return false;
1049  }
1050  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1051  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1052  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1053    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1054                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1055    return false;
1056  }
1057  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1058  int32_t abs_offset = cur_offset + offset;
1059  if (abs_offset < 0 ||
1060      (uint32_t) abs_offset >= insn_count ||
1061      !insn_flags_[abs_offset].IsOpcode()) {
1062    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1063                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1064                                      << reinterpret_cast<void*>(cur_offset);
1065    return false;
1066  }
1067  insn_flags_[abs_offset].SetBranchTarget();
1068  return true;
1069}
1070
1071bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1072                                  bool* selfOkay) {
1073  const uint16_t* insns = code_item_->insns_ + cur_offset;
1074  *pConditional = false;
1075  *selfOkay = false;
1076  switch (*insns & 0xff) {
1077    case Instruction::GOTO:
1078      *pOffset = ((int16_t) *insns) >> 8;
1079      break;
1080    case Instruction::GOTO_32:
1081      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1082      *selfOkay = true;
1083      break;
1084    case Instruction::GOTO_16:
1085      *pOffset = (int16_t) insns[1];
1086      break;
1087    case Instruction::IF_EQ:
1088    case Instruction::IF_NE:
1089    case Instruction::IF_LT:
1090    case Instruction::IF_GE:
1091    case Instruction::IF_GT:
1092    case Instruction::IF_LE:
1093    case Instruction::IF_EQZ:
1094    case Instruction::IF_NEZ:
1095    case Instruction::IF_LTZ:
1096    case Instruction::IF_GEZ:
1097    case Instruction::IF_GTZ:
1098    case Instruction::IF_LEZ:
1099      *pOffset = (int16_t) insns[1];
1100      *pConditional = true;
1101      break;
1102    default:
1103      return false;
1104  }
1105  return true;
1106}
1107
1108bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1109  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1110  DCHECK_LT(cur_offset, insn_count);
1111  const uint16_t* insns = code_item_->insns_ + cur_offset;
1112  /* make sure the start of the switch is in range */
1113  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1114  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 > insn_count) {
1115    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1116                                      << ", switch offset " << switch_offset
1117                                      << ", count " << insn_count;
1118    return false;
1119  }
1120  /* offset to switch table is a relative branch-style offset */
1121  const uint16_t* switch_insns = insns + switch_offset;
1122  /* make sure the table is 32-bit aligned */
1123  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1124    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1125                                      << ", switch offset " << switch_offset;
1126    return false;
1127  }
1128  uint32_t switch_count = switch_insns[1];
1129  int32_t keys_offset, targets_offset;
1130  uint16_t expected_signature;
1131  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1132    /* 0=sig, 1=count, 2/3=firstKey */
1133    targets_offset = 4;
1134    keys_offset = -1;
1135    expected_signature = Instruction::kPackedSwitchSignature;
1136  } else {
1137    /* 0=sig, 1=count, 2..count*2 = keys */
1138    keys_offset = 2;
1139    targets_offset = 2 + 2 * switch_count;
1140    expected_signature = Instruction::kSparseSwitchSignature;
1141  }
1142  uint32_t table_size = targets_offset + switch_count * 2;
1143  if (switch_insns[0] != expected_signature) {
1144    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1145        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1146                        switch_insns[0], expected_signature);
1147    return false;
1148  }
1149  /* make sure the end of the switch is in range */
1150  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1151    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1152                                      << ", switch offset " << switch_offset
1153                                      << ", end " << (cur_offset + switch_offset + table_size)
1154                                      << ", count " << insn_count;
1155    return false;
1156  }
1157  /* for a sparse switch, verify the keys are in ascending order */
1158  if (keys_offset > 0 && switch_count > 1) {
1159    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1160    for (uint32_t targ = 1; targ < switch_count; targ++) {
1161      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1162                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1163      if (key <= last_key) {
1164        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1165                                          << ", this=" << key;
1166        return false;
1167      }
1168      last_key = key;
1169    }
1170  }
1171  /* verify each switch target */
1172  for (uint32_t targ = 0; targ < switch_count; targ++) {
1173    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1174                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1175    int32_t abs_offset = cur_offset + offset;
1176    if (abs_offset < 0 ||
1177        abs_offset >= (int32_t) insn_count ||
1178        !insn_flags_[abs_offset].IsOpcode()) {
1179      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1180                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1181                                        << reinterpret_cast<void*>(cur_offset)
1182                                        << "[" << targ << "]";
1183      return false;
1184    }
1185    insn_flags_[abs_offset].SetBranchTarget();
1186  }
1187  return true;
1188}
1189
1190bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1191  uint16_t registers_size = code_item_->registers_size_;
1192  for (uint32_t idx = 0; idx < vA; idx++) {
1193    if (arg[idx] >= registers_size) {
1194      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1195                                        << ") in non-range invoke (>= " << registers_size << ")";
1196      return false;
1197    }
1198  }
1199
1200  return true;
1201}
1202
1203bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1204  uint16_t registers_size = code_item_->registers_size_;
1205  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1206  // integer overflow when adding them here.
1207  if (vA + vC > registers_size) {
1208    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1209                                      << " in range invoke (> " << registers_size << ")";
1210    return false;
1211  }
1212  return true;
1213}
1214
1215bool MethodVerifier::VerifyCodeFlow() {
1216  uint16_t registers_size = code_item_->registers_size_;
1217  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1218
1219  /* Create and initialize table holding register status */
1220  reg_table_.Init(kTrackCompilerInterestPoints,
1221                  insn_flags_.get(),
1222                  insns_size,
1223                  registers_size,
1224                  this);
1225
1226
1227  work_line_.reset(RegisterLine::Create(registers_size, this));
1228  saved_line_.reset(RegisterLine::Create(registers_size, this));
1229
1230  /* Initialize register types of method arguments. */
1231  if (!SetTypesFromSignature()) {
1232    DCHECK_NE(failures_.size(), 0U);
1233    std::string prepend("Bad signature in ");
1234    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1235    PrependToLastFailMessage(prepend);
1236    return false;
1237  }
1238  /* Perform code flow verification. */
1239  if (!CodeFlowVerifyMethod()) {
1240    DCHECK_NE(failures_.size(), 0U);
1241    return false;
1242  }
1243  return true;
1244}
1245
1246std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1247  DCHECK_EQ(failures_.size(), failure_messages_.size());
1248  for (size_t i = 0; i < failures_.size(); ++i) {
1249      os << failure_messages_[i]->str() << "\n";
1250  }
1251  return os;
1252}
1253
1254void MethodVerifier::Dump(std::ostream& os) {
1255  if (code_item_ == nullptr) {
1256    os << "Native method\n";
1257    return;
1258  }
1259  {
1260    os << "Register Types:\n";
1261    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1262    std::ostream indent_os(&indent_filter);
1263    reg_types_.Dump(indent_os);
1264  }
1265  os << "Dumping instructions and register lines:\n";
1266  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1267  std::ostream indent_os(&indent_filter);
1268  const Instruction* inst = Instruction::At(code_item_->insns_);
1269  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1270      dex_pc += inst->SizeInCodeUnits()) {
1271    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1272    if (reg_line != nullptr) {
1273      indent_os << reg_line->Dump(this) << "\n";
1274    }
1275    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1276    const bool kDumpHexOfInstruction = false;
1277    if (kDumpHexOfInstruction) {
1278      indent_os << inst->DumpHex(5) << " ";
1279    }
1280    indent_os << inst->DumpString(dex_file_) << "\n";
1281    inst = inst->Next();
1282  }
1283}
1284
1285static bool IsPrimitiveDescriptor(char descriptor) {
1286  switch (descriptor) {
1287    case 'I':
1288    case 'C':
1289    case 'S':
1290    case 'B':
1291    case 'Z':
1292    case 'F':
1293    case 'D':
1294    case 'J':
1295      return true;
1296    default:
1297      return false;
1298  }
1299}
1300
1301bool MethodVerifier::SetTypesFromSignature() {
1302  RegisterLine* reg_line = reg_table_.GetLine(0);
1303
1304  // Should have been verified earlier.
1305  DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
1306
1307  uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1308  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1309
1310  // Include the "this" pointer.
1311  size_t cur_arg = 0;
1312  if (!IsStatic()) {
1313    if (expected_args == 0) {
1314      // Expect at least a receiver.
1315      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1316      return false;
1317    }
1318
1319    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1320    // argument as uninitialized. This restricts field access until the superclass constructor is
1321    // called.
1322    const RegType& declaring_class = GetDeclaringClass();
1323    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1324      reg_line->SetRegisterType(this, arg_start + cur_arg,
1325                                reg_types_.UninitializedThisArgument(declaring_class));
1326    } else {
1327      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1328    }
1329    cur_arg++;
1330  }
1331
1332  const DexFile::ProtoId& proto_id =
1333      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1334  DexFileParameterIterator iterator(*dex_file_, proto_id);
1335
1336  for (; iterator.HasNext(); iterator.Next()) {
1337    const char* descriptor = iterator.GetDescriptor();
1338    if (descriptor == nullptr) {
1339      LOG(FATAL) << "Null descriptor";
1340    }
1341    if (cur_arg >= expected_args) {
1342      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1343                                        << " args, found more (" << descriptor << ")";
1344      return false;
1345    }
1346    switch (descriptor[0]) {
1347      case 'L':
1348      case '[':
1349        // We assume that reference arguments are initialized. The only way it could be otherwise
1350        // (assuming the caller was verified) is if the current method is <init>, but in that case
1351        // it's effectively considered initialized the instant we reach here (in the sense that we
1352        // can return without doing anything or call virtual methods).
1353        {
1354          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1355          if (!reg_type.IsNonZeroReferenceTypes()) {
1356            DCHECK(HasFailures());
1357            return false;
1358          }
1359          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1360        }
1361        break;
1362      case 'Z':
1363        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1364        break;
1365      case 'C':
1366        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1367        break;
1368      case 'B':
1369        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1370        break;
1371      case 'I':
1372        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1373        break;
1374      case 'S':
1375        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1376        break;
1377      case 'F':
1378        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1379        break;
1380      case 'J':
1381      case 'D': {
1382        if (cur_arg + 1 >= expected_args) {
1383          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1384              << " args, found more (" << descriptor << ")";
1385          return false;
1386        }
1387
1388        const RegType* lo_half;
1389        const RegType* hi_half;
1390        if (descriptor[0] == 'J') {
1391          lo_half = &reg_types_.LongLo();
1392          hi_half = &reg_types_.LongHi();
1393        } else {
1394          lo_half = &reg_types_.DoubleLo();
1395          hi_half = &reg_types_.DoubleHi();
1396        }
1397        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1398        cur_arg++;
1399        break;
1400      }
1401      default:
1402        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1403                                          << descriptor << "'";
1404        return false;
1405    }
1406    cur_arg++;
1407  }
1408  if (cur_arg != expected_args) {
1409    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1410                                      << " arguments, found " << cur_arg;
1411    return false;
1412  }
1413  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1414  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1415  // format. Only major difference from the method argument format is that 'V' is supported.
1416  bool result;
1417  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1418    result = descriptor[1] == '\0';
1419  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1420    size_t i = 0;
1421    do {
1422      i++;
1423    } while (descriptor[i] == '[');  // process leading [
1424    if (descriptor[i] == 'L') {  // object array
1425      do {
1426        i++;  // find closing ;
1427      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1428      result = descriptor[i] == ';';
1429    } else {  // primitive array
1430      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1431    }
1432  } else if (descriptor[0] == 'L') {
1433    // could be more thorough here, but shouldn't be required
1434    size_t i = 0;
1435    do {
1436      i++;
1437    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1438    result = descriptor[i] == ';';
1439  } else {
1440    result = false;
1441  }
1442  if (!result) {
1443    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1444                                      << descriptor << "'";
1445  }
1446  return result;
1447}
1448
1449bool MethodVerifier::CodeFlowVerifyMethod() {
1450  const uint16_t* insns = code_item_->insns_;
1451  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1452
1453  /* Begin by marking the first instruction as "changed". */
1454  insn_flags_[0].SetChanged();
1455  uint32_t start_guess = 0;
1456
1457  /* Continue until no instructions are marked "changed". */
1458  while (true) {
1459    if (allow_thread_suspension_) {
1460      self_->AllowThreadSuspension();
1461    }
1462    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1463    uint32_t insn_idx = start_guess;
1464    for (; insn_idx < insns_size; insn_idx++) {
1465      if (insn_flags_[insn_idx].IsChanged())
1466        break;
1467    }
1468    if (insn_idx == insns_size) {
1469      if (start_guess != 0) {
1470        /* try again, starting from the top */
1471        start_guess = 0;
1472        continue;
1473      } else {
1474        /* all flags are clear */
1475        break;
1476      }
1477    }
1478    // We carry the working set of registers from instruction to instruction. If this address can
1479    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1480    // "changed" flags, we need to load the set of registers from the table.
1481    // Because we always prefer to continue on to the next instruction, we should never have a
1482    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1483    // target.
1484    work_insn_idx_ = insn_idx;
1485    if (insn_flags_[insn_idx].IsBranchTarget()) {
1486      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1487    } else if (kIsDebugBuild) {
1488      /*
1489       * Sanity check: retrieve the stored register line (assuming
1490       * a full table) and make sure it actually matches.
1491       */
1492      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1493      if (register_line != nullptr) {
1494        if (work_line_->CompareLine(register_line) != 0) {
1495          Dump(std::cout);
1496          std::cout << info_messages_.str();
1497          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1498                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1499                     << " work_line=" << work_line_->Dump(this) << "\n"
1500                     << "  expected=" << register_line->Dump(this);
1501        }
1502      }
1503    }
1504    if (!CodeFlowVerifyInstruction(&start_guess)) {
1505      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1506      prepend += " failed to verify: ";
1507      PrependToLastFailMessage(prepend);
1508      return false;
1509    }
1510    /* Clear "changed" and mark as visited. */
1511    insn_flags_[insn_idx].SetVisited();
1512    insn_flags_[insn_idx].ClearChanged();
1513  }
1514
1515  if (gDebugVerify) {
1516    /*
1517     * Scan for dead code. There's nothing "evil" about dead code
1518     * (besides the wasted space), but it indicates a flaw somewhere
1519     * down the line, possibly in the verifier.
1520     *
1521     * If we've substituted "always throw" instructions into the stream,
1522     * we are almost certainly going to have some dead code.
1523     */
1524    int dead_start = -1;
1525    uint32_t insn_idx = 0;
1526    for (; insn_idx < insns_size;
1527         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1528      /*
1529       * Switch-statement data doesn't get "visited" by scanner. It
1530       * may or may not be preceded by a padding NOP (for alignment).
1531       */
1532      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1533          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1534          insns[insn_idx] == Instruction::kArrayDataSignature ||
1535          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1536           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1537            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1538            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1539        insn_flags_[insn_idx].SetVisited();
1540      }
1541
1542      if (!insn_flags_[insn_idx].IsVisited()) {
1543        if (dead_start < 0)
1544          dead_start = insn_idx;
1545      } else if (dead_start >= 0) {
1546        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1547                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1548        dead_start = -1;
1549      }
1550    }
1551    if (dead_start >= 0) {
1552      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1553                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1554    }
1555    // To dump the state of the verify after a method, do something like:
1556    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1557    //     "boolean java.lang.String.equals(java.lang.Object)") {
1558    //   LOG(INFO) << info_messages_.str();
1559    // }
1560  }
1561  return true;
1562}
1563
1564// Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1565// is no such field.
1566static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
1567  const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1568  DCHECK(class_def != nullptr);
1569  const uint8_t* class_data = dex_file.GetClassData(*class_def);
1570  DCHECK(class_data != nullptr);
1571  ClassDataItemIterator it(dex_file, class_data);
1572  // Skip static fields.
1573  while (it.HasNextStaticField()) {
1574    it.Next();
1575  }
1576  while (it.HasNextInstanceField()) {
1577    if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
1578      return it.GetMemberIndex();
1579    }
1580    it.Next();
1581  }
1582  return DexFile::kDexNoIndex;
1583}
1584
1585bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1586  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1587  // We want the state _before_ the instruction, for the case where the dex pc we're
1588  // interested in is itself a monitor-enter instruction (which is a likely place
1589  // for a thread to be suspended).
1590  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1591    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1592    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1593      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1594    }
1595  }
1596
1597  /*
1598   * Once we finish decoding the instruction, we need to figure out where
1599   * we can go from here. There are three possible ways to transfer
1600   * control to another statement:
1601   *
1602   * (1) Continue to the next instruction. Applies to all but
1603   *     unconditional branches, method returns, and exception throws.
1604   * (2) Branch to one or more possible locations. Applies to branches
1605   *     and switch statements.
1606   * (3) Exception handlers. Applies to any instruction that can
1607   *     throw an exception that is handled by an encompassing "try"
1608   *     block.
1609   *
1610   * We can also return, in which case there is no successor instruction
1611   * from this point.
1612   *
1613   * The behavior can be determined from the opcode flags.
1614   */
1615  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1616  const Instruction* inst = Instruction::At(insns);
1617  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1618
1619  int32_t branch_target = 0;
1620  bool just_set_result = false;
1621  if (gDebugVerify) {
1622    // Generate processing back trace to debug verifier
1623    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1624                    << work_line_->Dump(this) << "\n";
1625  }
1626
1627  /*
1628   * Make a copy of the previous register state. If the instruction
1629   * can throw an exception, we will copy/merge this into the "catch"
1630   * address rather than work_line, because we don't want the result
1631   * from the "successful" code path (e.g. a check-cast that "improves"
1632   * a type) to be visible to the exception handler.
1633   */
1634  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1635    saved_line_->CopyFromLine(work_line_.get());
1636  } else if (kIsDebugBuild) {
1637    saved_line_->FillWithGarbage();
1638  }
1639
1640
1641  // We need to ensure the work line is consistent while performing validation. When we spot a
1642  // peephole pattern we compute a new line for either the fallthrough instruction or the
1643  // branch target.
1644  std::unique_ptr<RegisterLine> branch_line;
1645  std::unique_ptr<RegisterLine> fallthrough_line;
1646
1647  /*
1648   * If we are in a constructor, and we currently have an UninitializedThis type
1649   * in a register somewhere, we need to make sure it isn't overwritten.
1650   */
1651  bool track_uninitialized_this = false;
1652  size_t uninitialized_this_loc = 0;
1653  if (IsConstructor()) {
1654    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
1655  }
1656
1657  switch (inst->Opcode()) {
1658    case Instruction::NOP:
1659      /*
1660       * A "pure" NOP has no effect on anything. Data tables start with
1661       * a signature that looks like a NOP; if we see one of these in
1662       * the course of executing code then we have a problem.
1663       */
1664      if (inst->VRegA_10x() != 0) {
1665        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1666      }
1667      break;
1668
1669    case Instruction::MOVE:
1670      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1671      break;
1672    case Instruction::MOVE_FROM16:
1673      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1674      break;
1675    case Instruction::MOVE_16:
1676      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1677      break;
1678    case Instruction::MOVE_WIDE:
1679      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1680      break;
1681    case Instruction::MOVE_WIDE_FROM16:
1682      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1683      break;
1684    case Instruction::MOVE_WIDE_16:
1685      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1686      break;
1687    case Instruction::MOVE_OBJECT:
1688      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1689      break;
1690    case Instruction::MOVE_OBJECT_FROM16:
1691      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1692      break;
1693    case Instruction::MOVE_OBJECT_16:
1694      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1695      break;
1696
1697    /*
1698     * The move-result instructions copy data out of a "pseudo-register"
1699     * with the results from the last method invocation. In practice we
1700     * might want to hold the result in an actual CPU register, so the
1701     * Dalvik spec requires that these only appear immediately after an
1702     * invoke or filled-new-array.
1703     *
1704     * These calls invalidate the "result" register. (This is now
1705     * redundant with the reset done below, but it can make the debug info
1706     * easier to read in some cases.)
1707     */
1708    case Instruction::MOVE_RESULT:
1709      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1710      break;
1711    case Instruction::MOVE_RESULT_WIDE:
1712      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1713      break;
1714    case Instruction::MOVE_RESULT_OBJECT:
1715      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1716      break;
1717
1718    case Instruction::MOVE_EXCEPTION: {
1719      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1720      // where one entrypoint to the catch block is not actually an exception path.
1721      if (work_insn_idx_ == 0) {
1722        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1723        break;
1724      }
1725      /*
1726       * This statement can only appear as the first instruction in an exception handler. We verify
1727       * that as part of extracting the exception type from the catch block list.
1728       */
1729      const RegType& res_type = GetCaughtExceptionType();
1730      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1731      break;
1732    }
1733    case Instruction::RETURN_VOID:
1734      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1735        if (!GetMethodReturnType().IsConflict()) {
1736          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1737        }
1738      }
1739      break;
1740    case Instruction::RETURN:
1741      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1742        /* check the method signature */
1743        const RegType& return_type = GetMethodReturnType();
1744        if (!return_type.IsCategory1Types()) {
1745          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1746                                            << return_type;
1747        } else {
1748          // Compilers may generate synthetic functions that write byte values into boolean fields.
1749          // Also, it may use integer values for boolean, byte, short, and character return types.
1750          const uint32_t vregA = inst->VRegA_11x();
1751          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1752          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1753                          ((return_type.IsBoolean() || return_type.IsByte() ||
1754                           return_type.IsShort() || return_type.IsChar()) &&
1755                           src_type.IsInteger()));
1756          /* check the register contents */
1757          bool success =
1758              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1759          if (!success) {
1760            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1761          }
1762        }
1763      }
1764      break;
1765    case Instruction::RETURN_WIDE:
1766      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1767        /* check the method signature */
1768        const RegType& return_type = GetMethodReturnType();
1769        if (!return_type.IsCategory2Types()) {
1770          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1771        } else {
1772          /* check the register contents */
1773          const uint32_t vregA = inst->VRegA_11x();
1774          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1775          if (!success) {
1776            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1777          }
1778        }
1779      }
1780      break;
1781    case Instruction::RETURN_OBJECT:
1782      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1783        const RegType& return_type = GetMethodReturnType();
1784        if (!return_type.IsReferenceTypes()) {
1785          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1786        } else {
1787          /* return_type is the *expected* return type, not register value */
1788          DCHECK(!return_type.IsZero());
1789          DCHECK(!return_type.IsUninitializedReference());
1790          const uint32_t vregA = inst->VRegA_11x();
1791          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1792          // Disallow returning uninitialized values and verify that the reference in vAA is an
1793          // instance of the "return_type"
1794          if (reg_type.IsUninitializedTypes()) {
1795            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1796                                              << reg_type << "'";
1797          } else if (!return_type.IsAssignableFrom(reg_type)) {
1798            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1799              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1800                  << "' or '" << reg_type << "'";
1801            } else {
1802              bool soft_error = false;
1803              // Check whether arrays are involved. They will show a valid class status, even
1804              // if their components are erroneous.
1805              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
1806                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
1807                if (soft_error) {
1808                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
1809                        << reg_type << " vs " << return_type;
1810                }
1811              }
1812
1813              if (!soft_error) {
1814                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1815                    << "', but expected from declaration '" << return_type << "'";
1816              }
1817            }
1818          }
1819        }
1820      }
1821      break;
1822
1823      /* could be boolean, int, float, or a null reference */
1824    case Instruction::CONST_4: {
1825      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1826      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1827                                  DetermineCat1Constant(val, need_precise_constants_));
1828      break;
1829    }
1830    case Instruction::CONST_16: {
1831      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1832      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1833                                  DetermineCat1Constant(val, need_precise_constants_));
1834      break;
1835    }
1836    case Instruction::CONST: {
1837      int32_t val = inst->VRegB_31i();
1838      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1839                                  DetermineCat1Constant(val, need_precise_constants_));
1840      break;
1841    }
1842    case Instruction::CONST_HIGH16: {
1843      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1844      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1845                                  DetermineCat1Constant(val, need_precise_constants_));
1846      break;
1847    }
1848      /* could be long or double; resolved upon use */
1849    case Instruction::CONST_WIDE_16: {
1850      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1851      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1852      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1853      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1854      break;
1855    }
1856    case Instruction::CONST_WIDE_32: {
1857      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1858      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1859      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1860      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1861      break;
1862    }
1863    case Instruction::CONST_WIDE: {
1864      int64_t val = inst->VRegB_51l();
1865      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1866      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1867      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1868      break;
1869    }
1870    case Instruction::CONST_WIDE_HIGH16: {
1871      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1872      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1873      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1874      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1875      break;
1876    }
1877    case Instruction::CONST_STRING:
1878      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1879      break;
1880    case Instruction::CONST_STRING_JUMBO:
1881      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1882      break;
1883    case Instruction::CONST_CLASS: {
1884      // Get type from instruction if unresolved then we need an access check
1885      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1886      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1887      // Register holds class, ie its type is class, on error it will hold Conflict.
1888      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1889                                  res_type.IsConflict() ? res_type
1890                                                        : reg_types_.JavaLangClass());
1891      break;
1892    }
1893    case Instruction::MONITOR_ENTER:
1894      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1895      break;
1896    case Instruction::MONITOR_EXIT:
1897      /*
1898       * monitor-exit instructions are odd. They can throw exceptions,
1899       * but when they do they act as if they succeeded and the PC is
1900       * pointing to the following instruction. (This behavior goes back
1901       * to the need to handle asynchronous exceptions, a now-deprecated
1902       * feature that Dalvik doesn't support.)
1903       *
1904       * In practice we don't need to worry about this. The only
1905       * exceptions that can be thrown from monitor-exit are for a
1906       * null reference and -exit without a matching -enter. If the
1907       * structured locking checks are working, the former would have
1908       * failed on the -enter instruction, and the latter is impossible.
1909       *
1910       * This is fortunate, because issue 3221411 prevents us from
1911       * chasing the "can throw" path when monitor verification is
1912       * enabled. If we can fully verify the locking we can ignore
1913       * some catch blocks (which will show up as "dead" code when
1914       * we skip them here); if we can't, then the code path could be
1915       * "live" so we still need to check it.
1916       */
1917      opcode_flags &= ~Instruction::kThrow;
1918      work_line_->PopMonitor(this, inst->VRegA_11x());
1919      break;
1920
1921    case Instruction::CHECK_CAST:
1922    case Instruction::INSTANCE_OF: {
1923      /*
1924       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1925       * could be a "upcast" -- not expected, so we don't try to address it.)
1926       *
1927       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1928       * dec_insn.vA when branching to a handler.
1929       */
1930      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1931      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1932      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1933      if (res_type.IsConflict()) {
1934        // If this is a primitive type, fail HARD.
1935        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1936        if (klass != nullptr && klass->IsPrimitive()) {
1937          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1938              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1939              << GetDeclaringClass();
1940          break;
1941        }
1942
1943        DCHECK_NE(failures_.size(), 0U);
1944        if (!is_checkcast) {
1945          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1946        }
1947        break;  // bad class
1948      }
1949      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1950      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1951      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1952      if (!res_type.IsNonZeroReferenceTypes()) {
1953        if (is_checkcast) {
1954          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1955        } else {
1956          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1957        }
1958      } else if (!orig_type.IsReferenceTypes()) {
1959        if (is_checkcast) {
1960          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1961        } else {
1962          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1963        }
1964      } else {
1965        if (is_checkcast) {
1966          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1967        } else {
1968          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1969        }
1970      }
1971      break;
1972    }
1973    case Instruction::ARRAY_LENGTH: {
1974      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1975      if (res_type.IsReferenceTypes()) {
1976        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1977          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1978        } else {
1979          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1980        }
1981      } else {
1982        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1983      }
1984      break;
1985    }
1986    case Instruction::NEW_INSTANCE: {
1987      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1988      if (res_type.IsConflict()) {
1989        DCHECK_NE(failures_.size(), 0U);
1990        break;  // bad class
1991      }
1992      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1993      // can't create an instance of an interface or abstract class */
1994      if (!res_type.IsInstantiableTypes()) {
1995        Fail(VERIFY_ERROR_INSTANTIATION)
1996            << "new-instance on primitive, interface or abstract class" << res_type;
1997        // Soft failure so carry on to set register type.
1998      }
1999      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2000      // Any registers holding previous allocations from this address that have not yet been
2001      // initialized must be marked invalid.
2002      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2003      // add the new uninitialized reference to the register state
2004      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
2005      break;
2006    }
2007    case Instruction::NEW_ARRAY:
2008      VerifyNewArray(inst, false, false);
2009      break;
2010    case Instruction::FILLED_NEW_ARRAY:
2011      VerifyNewArray(inst, true, false);
2012      just_set_result = true;  // Filled new array sets result register
2013      break;
2014    case Instruction::FILLED_NEW_ARRAY_RANGE:
2015      VerifyNewArray(inst, true, true);
2016      just_set_result = true;  // Filled new array range sets result register
2017      break;
2018    case Instruction::CMPL_FLOAT:
2019    case Instruction::CMPG_FLOAT:
2020      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2021        break;
2022      }
2023      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2024        break;
2025      }
2026      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2027      break;
2028    case Instruction::CMPL_DOUBLE:
2029    case Instruction::CMPG_DOUBLE:
2030      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2031                                              reg_types_.DoubleHi())) {
2032        break;
2033      }
2034      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2035                                              reg_types_.DoubleHi())) {
2036        break;
2037      }
2038      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2039      break;
2040    case Instruction::CMP_LONG:
2041      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2042                                              reg_types_.LongHi())) {
2043        break;
2044      }
2045      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2046                                              reg_types_.LongHi())) {
2047        break;
2048      }
2049      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
2050      break;
2051    case Instruction::THROW: {
2052      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2053      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2054        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2055            << "thrown class " << res_type << " not instanceof Throwable";
2056      }
2057      break;
2058    }
2059    case Instruction::GOTO:
2060    case Instruction::GOTO_16:
2061    case Instruction::GOTO_32:
2062      /* no effect on or use of registers */
2063      break;
2064
2065    case Instruction::PACKED_SWITCH:
2066    case Instruction::SPARSE_SWITCH:
2067      /* verify that vAA is an integer, or can be converted to one */
2068      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2069      break;
2070
2071    case Instruction::FILL_ARRAY_DATA: {
2072      /* Similar to the verification done for APUT */
2073      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2074      /* array_type can be null if the reg type is Zero */
2075      if (!array_type.IsZero()) {
2076        if (!array_type.IsArrayTypes()) {
2077          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2078                                            << array_type;
2079        } else {
2080          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2081          DCHECK(!component_type.IsConflict());
2082          if (component_type.IsNonZeroReferenceTypes()) {
2083            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2084                                              << component_type;
2085          } else {
2086            // Now verify if the element width in the table matches the element width declared in
2087            // the array
2088            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2089            if (array_data[0] != Instruction::kArrayDataSignature) {
2090              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2091            } else {
2092              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2093              // Since we don't compress the data in Dex, expect to see equal width of data stored
2094              // in the table and expected from the array class.
2095              if (array_data[1] != elem_width) {
2096                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2097                                                  << " vs " << elem_width << ")";
2098              }
2099            }
2100          }
2101        }
2102      }
2103      break;
2104    }
2105    case Instruction::IF_EQ:
2106    case Instruction::IF_NE: {
2107      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2108      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2109      bool mismatch = false;
2110      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2111        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2112      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2113        mismatch = !reg_type2.IsReferenceTypes();
2114      } else {  // both integral?
2115        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2116      }
2117      if (mismatch) {
2118        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2119                                          << reg_type2 << ") must both be references or integral";
2120      }
2121      break;
2122    }
2123    case Instruction::IF_LT:
2124    case Instruction::IF_GE:
2125    case Instruction::IF_GT:
2126    case Instruction::IF_LE: {
2127      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2128      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2129      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2130        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2131                                          << reg_type2 << ") must be integral";
2132      }
2133      break;
2134    }
2135    case Instruction::IF_EQZ:
2136    case Instruction::IF_NEZ: {
2137      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2138      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2139        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2140                                          << " unexpected as arg to if-eqz/if-nez";
2141      }
2142
2143      // Find previous instruction - its existence is a precondition to peephole optimization.
2144      uint32_t instance_of_idx = 0;
2145      if (0 != work_insn_idx_) {
2146        instance_of_idx = work_insn_idx_ - 1;
2147        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2148          instance_of_idx--;
2149        }
2150        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2151                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2152                        work_insn_idx_)) {
2153          break;
2154        }
2155      } else {
2156        break;
2157      }
2158
2159      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2160
2161      /* Check for peep-hole pattern of:
2162       *    ...;
2163       *    instance-of vX, vY, T;
2164       *    ifXXX vX, label ;
2165       *    ...;
2166       * label:
2167       *    ...;
2168       * and sharpen the type of vY to be type T.
2169       * Note, this pattern can't be if:
2170       *  - if there are other branches to this branch,
2171       *  - when vX == vY.
2172       */
2173      if (!CurrentInsnFlags()->IsBranchTarget() &&
2174          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2175          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2176          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2177        // Check the type of the instance-of is different than that of registers type, as if they
2178        // are the same there is no work to be done here. Check that the conversion is not to or
2179        // from an unresolved type as type information is imprecise. If the instance-of is to an
2180        // interface then ignore the type information as interfaces can only be treated as Objects
2181        // and we don't want to disallow field and other operations on the object. If the value
2182        // being instance-of checked against is known null (zero) then allow the optimization as
2183        // we didn't have type information. If the merge of the instance-of type with the original
2184        // type is assignable to the original then allow optimization. This check is performed to
2185        // ensure that subsequent merges don't lose type information - such as becoming an
2186        // interface from a class that would lose information relevant to field checks.
2187        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2188        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2189
2190        if (!orig_type.Equals(cast_type) &&
2191            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2192            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2193            !cast_type.GetClass()->IsInterface() &&
2194            (orig_type.IsZero() ||
2195                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2196          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2197          if (inst->Opcode() == Instruction::IF_EQZ) {
2198            fallthrough_line.reset(update_line);
2199          } else {
2200            branch_line.reset(update_line);
2201          }
2202          update_line->CopyFromLine(work_line_.get());
2203          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2204          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2205            // See if instance-of was preceded by a move-object operation, common due to the small
2206            // register encoding space of instance-of, and propagate type information to the source
2207            // of the move-object.
2208            uint32_t move_idx = instance_of_idx - 1;
2209            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2210              move_idx--;
2211            }
2212            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2213                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2214                            work_insn_idx_)) {
2215              break;
2216            }
2217            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2218            switch (move_inst->Opcode()) {
2219              case Instruction::MOVE_OBJECT:
2220                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2221                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2222                }
2223                break;
2224              case Instruction::MOVE_OBJECT_FROM16:
2225                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2226                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2227                }
2228                break;
2229              case Instruction::MOVE_OBJECT_16:
2230                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2231                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2232                }
2233                break;
2234              default:
2235                break;
2236            }
2237          }
2238        }
2239      }
2240
2241      break;
2242    }
2243    case Instruction::IF_LTZ:
2244    case Instruction::IF_GEZ:
2245    case Instruction::IF_GTZ:
2246    case Instruction::IF_LEZ: {
2247      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2248      if (!reg_type.IsIntegralTypes()) {
2249        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2250                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2251      }
2252      break;
2253    }
2254    case Instruction::AGET_BOOLEAN:
2255      VerifyAGet(inst, reg_types_.Boolean(), true);
2256      break;
2257    case Instruction::AGET_BYTE:
2258      VerifyAGet(inst, reg_types_.Byte(), true);
2259      break;
2260    case Instruction::AGET_CHAR:
2261      VerifyAGet(inst, reg_types_.Char(), true);
2262      break;
2263    case Instruction::AGET_SHORT:
2264      VerifyAGet(inst, reg_types_.Short(), true);
2265      break;
2266    case Instruction::AGET:
2267      VerifyAGet(inst, reg_types_.Integer(), true);
2268      break;
2269    case Instruction::AGET_WIDE:
2270      VerifyAGet(inst, reg_types_.LongLo(), true);
2271      break;
2272    case Instruction::AGET_OBJECT:
2273      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2274      break;
2275
2276    case Instruction::APUT_BOOLEAN:
2277      VerifyAPut(inst, reg_types_.Boolean(), true);
2278      break;
2279    case Instruction::APUT_BYTE:
2280      VerifyAPut(inst, reg_types_.Byte(), true);
2281      break;
2282    case Instruction::APUT_CHAR:
2283      VerifyAPut(inst, reg_types_.Char(), true);
2284      break;
2285    case Instruction::APUT_SHORT:
2286      VerifyAPut(inst, reg_types_.Short(), true);
2287      break;
2288    case Instruction::APUT:
2289      VerifyAPut(inst, reg_types_.Integer(), true);
2290      break;
2291    case Instruction::APUT_WIDE:
2292      VerifyAPut(inst, reg_types_.LongLo(), true);
2293      break;
2294    case Instruction::APUT_OBJECT:
2295      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2296      break;
2297
2298    case Instruction::IGET_BOOLEAN:
2299      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2300      break;
2301    case Instruction::IGET_BYTE:
2302      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2303      break;
2304    case Instruction::IGET_CHAR:
2305      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2306      break;
2307    case Instruction::IGET_SHORT:
2308      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2309      break;
2310    case Instruction::IGET:
2311      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2312      break;
2313    case Instruction::IGET_WIDE:
2314      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2315      break;
2316    case Instruction::IGET_OBJECT:
2317      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2318                                                    false);
2319      break;
2320
2321    case Instruction::IPUT_BOOLEAN:
2322      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2323      break;
2324    case Instruction::IPUT_BYTE:
2325      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2326      break;
2327    case Instruction::IPUT_CHAR:
2328      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2329      break;
2330    case Instruction::IPUT_SHORT:
2331      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2332      break;
2333    case Instruction::IPUT:
2334      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2335      break;
2336    case Instruction::IPUT_WIDE:
2337      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2338      break;
2339    case Instruction::IPUT_OBJECT:
2340      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2341                                                    false);
2342      break;
2343
2344    case Instruction::SGET_BOOLEAN:
2345      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2346      break;
2347    case Instruction::SGET_BYTE:
2348      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2349      break;
2350    case Instruction::SGET_CHAR:
2351      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2352      break;
2353    case Instruction::SGET_SHORT:
2354      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2355      break;
2356    case Instruction::SGET:
2357      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2358      break;
2359    case Instruction::SGET_WIDE:
2360      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2361      break;
2362    case Instruction::SGET_OBJECT:
2363      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2364                                                    true);
2365      break;
2366
2367    case Instruction::SPUT_BOOLEAN:
2368      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2369      break;
2370    case Instruction::SPUT_BYTE:
2371      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2372      break;
2373    case Instruction::SPUT_CHAR:
2374      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2375      break;
2376    case Instruction::SPUT_SHORT:
2377      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2378      break;
2379    case Instruction::SPUT:
2380      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2381      break;
2382    case Instruction::SPUT_WIDE:
2383      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2384      break;
2385    case Instruction::SPUT_OBJECT:
2386      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2387                                                    true);
2388      break;
2389
2390    case Instruction::INVOKE_VIRTUAL:
2391    case Instruction::INVOKE_VIRTUAL_RANGE:
2392    case Instruction::INVOKE_SUPER:
2393    case Instruction::INVOKE_SUPER_RANGE: {
2394      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2395                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2396      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2397                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2398      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range, is_super);
2399      const RegType* return_type = nullptr;
2400      if (called_method != nullptr) {
2401        StackHandleScope<1> hs(self_);
2402        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2403        if (return_type_class != nullptr) {
2404          return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2405                                   return_type_class,
2406                                   return_type_class->CannotBeAssignedFromOtherTypes());
2407        } else {
2408          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2409          self_->ClearException();
2410        }
2411      }
2412      if (return_type == nullptr) {
2413        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2414        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2415        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2416        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2417        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2418      }
2419      if (!return_type->IsLowHalf()) {
2420        work_line_->SetResultRegisterType(this, *return_type);
2421      } else {
2422        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2423      }
2424      just_set_result = true;
2425      break;
2426    }
2427    case Instruction::INVOKE_DIRECT:
2428    case Instruction::INVOKE_DIRECT_RANGE: {
2429      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2430      ArtMethod* called_method = VerifyInvocationArgs(inst,
2431                                                      METHOD_DIRECT,
2432                                                      is_range,
2433                                                      false);
2434      const char* return_type_descriptor;
2435      bool is_constructor;
2436      const RegType* return_type = nullptr;
2437      if (called_method == nullptr) {
2438        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2439        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2440        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2441        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2442        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2443      } else {
2444        is_constructor = called_method->IsConstructor();
2445        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2446        StackHandleScope<1> hs(self_);
2447        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_);
2448        if (return_type_class != nullptr) {
2449          return_type = &FromClass(return_type_descriptor,
2450                                   return_type_class,
2451                                   return_type_class->CannotBeAssignedFromOtherTypes());
2452        } else {
2453          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2454          self_->ClearException();
2455        }
2456      }
2457      if (is_constructor) {
2458        /*
2459         * Some additional checks when calling a constructor. We know from the invocation arg check
2460         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2461         * that to require that called_method->klass is the same as this->klass or this->super,
2462         * allowing the latter only if the "this" argument is the same as the "this" argument to
2463         * this method (which implies that we're in a constructor ourselves).
2464         */
2465        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2466        if (this_type.IsConflict())  // failure.
2467          break;
2468
2469        /* no null refs allowed (?) */
2470        if (this_type.IsZero()) {
2471          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2472          break;
2473        }
2474
2475        /* must be in same class or in superclass */
2476        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2477        // TODO: re-enable constructor type verification
2478        // if (this_super_klass.IsConflict()) {
2479          // Unknown super class, fail so we re-check at runtime.
2480          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2481          // break;
2482        // }
2483
2484        /* arg must be an uninitialized reference */
2485        if (!this_type.IsUninitializedTypes()) {
2486          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2487              << this_type;
2488          break;
2489        }
2490
2491        /*
2492         * Replace the uninitialized reference with an initialized one. We need to do this for all
2493         * registers that have the same object instance in them, not just the "this" register.
2494         */
2495        const uint32_t this_reg = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
2496        work_line_->MarkRefsAsInitialized(this, this_type, this_reg, work_insn_idx_);
2497      }
2498      if (return_type == nullptr) {
2499        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2500                                                 false);
2501      }
2502      if (!return_type->IsLowHalf()) {
2503        work_line_->SetResultRegisterType(this, *return_type);
2504      } else {
2505        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2506      }
2507      just_set_result = true;
2508      break;
2509    }
2510    case Instruction::INVOKE_STATIC:
2511    case Instruction::INVOKE_STATIC_RANGE: {
2512        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2513        ArtMethod* called_method = VerifyInvocationArgs(inst,
2514                                                        METHOD_STATIC,
2515                                                        is_range,
2516                                                        false);
2517        const char* descriptor;
2518        if (called_method == nullptr) {
2519          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2520          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2521          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2522          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2523        } else {
2524          descriptor = called_method->GetReturnTypeDescriptor();
2525        }
2526        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2527        if (!return_type.IsLowHalf()) {
2528          work_line_->SetResultRegisterType(this, return_type);
2529        } else {
2530          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2531        }
2532        just_set_result = true;
2533      }
2534      break;
2535    case Instruction::INVOKE_INTERFACE:
2536    case Instruction::INVOKE_INTERFACE_RANGE: {
2537      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2538      ArtMethod* abs_method = VerifyInvocationArgs(inst,
2539                                                   METHOD_INTERFACE,
2540                                                   is_range,
2541                                                   false);
2542      if (abs_method != nullptr) {
2543        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2544        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2545          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2546              << PrettyMethod(abs_method) << "'";
2547          break;
2548        }
2549      }
2550      /* Get the type of the "this" arg, which should either be a sub-interface of called
2551       * interface or Object (see comments in RegType::JoinClass).
2552       */
2553      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2554      if (this_type.IsZero()) {
2555        /* null pointer always passes (and always fails at runtime) */
2556      } else {
2557        if (this_type.IsUninitializedTypes()) {
2558          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2559              << this_type;
2560          break;
2561        }
2562        // In the past we have tried to assert that "called_interface" is assignable
2563        // from "this_type.GetClass()", however, as we do an imprecise Join
2564        // (RegType::JoinClass) we don't have full information on what interfaces are
2565        // implemented by "this_type". For example, two classes may implement the same
2566        // interfaces and have a common parent that doesn't implement the interface. The
2567        // join will set "this_type" to the parent class and a test that this implements
2568        // the interface will incorrectly fail.
2569      }
2570      /*
2571       * We don't have an object instance, so we can't find the concrete method. However, all of
2572       * the type information is in the abstract method, so we're good.
2573       */
2574      const char* descriptor;
2575      if (abs_method == nullptr) {
2576        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2577        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2578        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2579        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2580      } else {
2581        descriptor = abs_method->GetReturnTypeDescriptor();
2582      }
2583      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2584      if (!return_type.IsLowHalf()) {
2585        work_line_->SetResultRegisterType(this, return_type);
2586      } else {
2587        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2588      }
2589      just_set_result = true;
2590      break;
2591    }
2592    case Instruction::NEG_INT:
2593    case Instruction::NOT_INT:
2594      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2595      break;
2596    case Instruction::NEG_LONG:
2597    case Instruction::NOT_LONG:
2598      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2599                                   reg_types_.LongLo(), reg_types_.LongHi());
2600      break;
2601    case Instruction::NEG_FLOAT:
2602      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2603      break;
2604    case Instruction::NEG_DOUBLE:
2605      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2606                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2607      break;
2608    case Instruction::INT_TO_LONG:
2609      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2610                                     reg_types_.Integer());
2611      break;
2612    case Instruction::INT_TO_FLOAT:
2613      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2614      break;
2615    case Instruction::INT_TO_DOUBLE:
2616      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2617                                     reg_types_.Integer());
2618      break;
2619    case Instruction::LONG_TO_INT:
2620      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2621                                       reg_types_.LongLo(), reg_types_.LongHi());
2622      break;
2623    case Instruction::LONG_TO_FLOAT:
2624      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2625                                       reg_types_.LongLo(), reg_types_.LongHi());
2626      break;
2627    case Instruction::LONG_TO_DOUBLE:
2628      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2629                                   reg_types_.LongLo(), reg_types_.LongHi());
2630      break;
2631    case Instruction::FLOAT_TO_INT:
2632      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2633      break;
2634    case Instruction::FLOAT_TO_LONG:
2635      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2636                                     reg_types_.Float());
2637      break;
2638    case Instruction::FLOAT_TO_DOUBLE:
2639      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2640                                     reg_types_.Float());
2641      break;
2642    case Instruction::DOUBLE_TO_INT:
2643      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2644                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2645      break;
2646    case Instruction::DOUBLE_TO_LONG:
2647      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2648                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2649      break;
2650    case Instruction::DOUBLE_TO_FLOAT:
2651      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2652                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2653      break;
2654    case Instruction::INT_TO_BYTE:
2655      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2656      break;
2657    case Instruction::INT_TO_CHAR:
2658      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2659      break;
2660    case Instruction::INT_TO_SHORT:
2661      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2662      break;
2663
2664    case Instruction::ADD_INT:
2665    case Instruction::SUB_INT:
2666    case Instruction::MUL_INT:
2667    case Instruction::REM_INT:
2668    case Instruction::DIV_INT:
2669    case Instruction::SHL_INT:
2670    case Instruction::SHR_INT:
2671    case Instruction::USHR_INT:
2672      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2673                                reg_types_.Integer(), false);
2674      break;
2675    case Instruction::AND_INT:
2676    case Instruction::OR_INT:
2677    case Instruction::XOR_INT:
2678      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2679                                reg_types_.Integer(), true);
2680      break;
2681    case Instruction::ADD_LONG:
2682    case Instruction::SUB_LONG:
2683    case Instruction::MUL_LONG:
2684    case Instruction::DIV_LONG:
2685    case Instruction::REM_LONG:
2686    case Instruction::AND_LONG:
2687    case Instruction::OR_LONG:
2688    case Instruction::XOR_LONG:
2689      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2690                                    reg_types_.LongLo(), reg_types_.LongHi(),
2691                                    reg_types_.LongLo(), reg_types_.LongHi());
2692      break;
2693    case Instruction::SHL_LONG:
2694    case Instruction::SHR_LONG:
2695    case Instruction::USHR_LONG:
2696      /* shift distance is Int, making these different from other binary operations */
2697      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2698                                         reg_types_.Integer());
2699      break;
2700    case Instruction::ADD_FLOAT:
2701    case Instruction::SUB_FLOAT:
2702    case Instruction::MUL_FLOAT:
2703    case Instruction::DIV_FLOAT:
2704    case Instruction::REM_FLOAT:
2705      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2706                                reg_types_.Float(), false);
2707      break;
2708    case Instruction::ADD_DOUBLE:
2709    case Instruction::SUB_DOUBLE:
2710    case Instruction::MUL_DOUBLE:
2711    case Instruction::DIV_DOUBLE:
2712    case Instruction::REM_DOUBLE:
2713      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2714                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2715                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2716      break;
2717    case Instruction::ADD_INT_2ADDR:
2718    case Instruction::SUB_INT_2ADDR:
2719    case Instruction::MUL_INT_2ADDR:
2720    case Instruction::REM_INT_2ADDR:
2721    case Instruction::SHL_INT_2ADDR:
2722    case Instruction::SHR_INT_2ADDR:
2723    case Instruction::USHR_INT_2ADDR:
2724      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2725                                     reg_types_.Integer(), false);
2726      break;
2727    case Instruction::AND_INT_2ADDR:
2728    case Instruction::OR_INT_2ADDR:
2729    case Instruction::XOR_INT_2ADDR:
2730      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2731                                     reg_types_.Integer(), true);
2732      break;
2733    case Instruction::DIV_INT_2ADDR:
2734      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2735                                     reg_types_.Integer(), false);
2736      break;
2737    case Instruction::ADD_LONG_2ADDR:
2738    case Instruction::SUB_LONG_2ADDR:
2739    case Instruction::MUL_LONG_2ADDR:
2740    case Instruction::DIV_LONG_2ADDR:
2741    case Instruction::REM_LONG_2ADDR:
2742    case Instruction::AND_LONG_2ADDR:
2743    case Instruction::OR_LONG_2ADDR:
2744    case Instruction::XOR_LONG_2ADDR:
2745      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2746                                         reg_types_.LongLo(), reg_types_.LongHi(),
2747                                         reg_types_.LongLo(), reg_types_.LongHi());
2748      break;
2749    case Instruction::SHL_LONG_2ADDR:
2750    case Instruction::SHR_LONG_2ADDR:
2751    case Instruction::USHR_LONG_2ADDR:
2752      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2753                                              reg_types_.Integer());
2754      break;
2755    case Instruction::ADD_FLOAT_2ADDR:
2756    case Instruction::SUB_FLOAT_2ADDR:
2757    case Instruction::MUL_FLOAT_2ADDR:
2758    case Instruction::DIV_FLOAT_2ADDR:
2759    case Instruction::REM_FLOAT_2ADDR:
2760      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2761                                     reg_types_.Float(), false);
2762      break;
2763    case Instruction::ADD_DOUBLE_2ADDR:
2764    case Instruction::SUB_DOUBLE_2ADDR:
2765    case Instruction::MUL_DOUBLE_2ADDR:
2766    case Instruction::DIV_DOUBLE_2ADDR:
2767    case Instruction::REM_DOUBLE_2ADDR:
2768      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2769                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2770                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2771      break;
2772    case Instruction::ADD_INT_LIT16:
2773    case Instruction::RSUB_INT_LIT16:
2774    case Instruction::MUL_INT_LIT16:
2775    case Instruction::DIV_INT_LIT16:
2776    case Instruction::REM_INT_LIT16:
2777      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2778                                 true);
2779      break;
2780    case Instruction::AND_INT_LIT16:
2781    case Instruction::OR_INT_LIT16:
2782    case Instruction::XOR_INT_LIT16:
2783      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2784                                 true);
2785      break;
2786    case Instruction::ADD_INT_LIT8:
2787    case Instruction::RSUB_INT_LIT8:
2788    case Instruction::MUL_INT_LIT8:
2789    case Instruction::DIV_INT_LIT8:
2790    case Instruction::REM_INT_LIT8:
2791    case Instruction::SHL_INT_LIT8:
2792    case Instruction::SHR_INT_LIT8:
2793    case Instruction::USHR_INT_LIT8:
2794      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2795                                 false);
2796      break;
2797    case Instruction::AND_INT_LIT8:
2798    case Instruction::OR_INT_LIT8:
2799    case Instruction::XOR_INT_LIT8:
2800      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2801                                 false);
2802      break;
2803
2804    // Special instructions.
2805    case Instruction::RETURN_VOID_NO_BARRIER:
2806      if (IsConstructor() && !IsStatic()) {
2807        auto& declaring_class = GetDeclaringClass();
2808        if (declaring_class.IsUnresolvedReference()) {
2809          // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
2810          // manually over the underlying dex file.
2811          uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
2812              dex_file_->GetMethodId(dex_method_idx_).class_idx_);
2813          if (first_index != DexFile::kDexNoIndex) {
2814            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
2815                              << first_index;
2816          }
2817          break;
2818        }
2819        auto* klass = declaring_class.GetClass();
2820        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2821          if (klass->GetInstanceField(i)->IsFinal()) {
2822            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
2823                << PrettyField(klass->GetInstanceField(i));
2824            break;
2825          }
2826        }
2827      }
2828      break;
2829    // Note: the following instructions encode offsets derived from class linking.
2830    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2831    // meaning if the class linking and resolution were successful.
2832    case Instruction::IGET_QUICK:
2833      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2834      break;
2835    case Instruction::IGET_WIDE_QUICK:
2836      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2837      break;
2838    case Instruction::IGET_OBJECT_QUICK:
2839      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2840      break;
2841    case Instruction::IGET_BOOLEAN_QUICK:
2842      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2843      break;
2844    case Instruction::IGET_BYTE_QUICK:
2845      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2846      break;
2847    case Instruction::IGET_CHAR_QUICK:
2848      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2849      break;
2850    case Instruction::IGET_SHORT_QUICK:
2851      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2852      break;
2853    case Instruction::IPUT_QUICK:
2854      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2855      break;
2856    case Instruction::IPUT_BOOLEAN_QUICK:
2857      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2858      break;
2859    case Instruction::IPUT_BYTE_QUICK:
2860      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2861      break;
2862    case Instruction::IPUT_CHAR_QUICK:
2863      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2864      break;
2865    case Instruction::IPUT_SHORT_QUICK:
2866      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2867      break;
2868    case Instruction::IPUT_WIDE_QUICK:
2869      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2870      break;
2871    case Instruction::IPUT_OBJECT_QUICK:
2872      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2873      break;
2874    case Instruction::INVOKE_VIRTUAL_QUICK:
2875    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2876      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2877      ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2878      if (called_method != nullptr) {
2879        const char* descriptor = called_method->GetReturnTypeDescriptor();
2880        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2881        if (!return_type.IsLowHalf()) {
2882          work_line_->SetResultRegisterType(this, return_type);
2883        } else {
2884          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2885        }
2886        just_set_result = true;
2887      }
2888      break;
2889    }
2890
2891    /* These should never appear during verification. */
2892    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2893    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2894    case Instruction::UNUSED_79:
2895    case Instruction::UNUSED_7A:
2896      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2897      break;
2898
2899    /*
2900     * DO NOT add a "default" clause here. Without it the compiler will
2901     * complain if an instruction is missing (which is desirable).
2902     */
2903  }  // end - switch (dec_insn.opcode)
2904
2905  /*
2906   * If we are in a constructor, and we had an UninitializedThis type
2907   * in a register somewhere, we need to make sure it wasn't overwritten.
2908   */
2909  if (track_uninitialized_this) {
2910    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
2911                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2912    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
2913                                                    was_invoke_direct)) {
2914      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2915          << "Constructor failed to initialize this object";
2916    }
2917  }
2918
2919  if (have_pending_hard_failure_) {
2920    if (Runtime::Current()->IsAotCompiler()) {
2921      /* When AOT compiling, check that the last failure is a hard failure */
2922      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
2923        LOG(ERROR) << "Pending failures:";
2924        for (auto& error : failures_) {
2925          LOG(ERROR) << error;
2926        }
2927        for (auto& error_msg : failure_messages_) {
2928          LOG(ERROR) << error_msg->str();
2929        }
2930        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
2931      }
2932    }
2933    /* immediate failure, reject class */
2934    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2935    return false;
2936  } else if (have_pending_runtime_throw_failure_) {
2937    /* checking interpreter will throw, mark following code as unreachable */
2938    opcode_flags = Instruction::kThrow;
2939  }
2940  /*
2941   * If we didn't just set the result register, clear it out. This ensures that you can only use
2942   * "move-result" immediately after the result is set. (We could check this statically, but it's
2943   * not expensive and it makes our debugging output cleaner.)
2944   */
2945  if (!just_set_result) {
2946    work_line_->SetResultTypeToUnknown(this);
2947  }
2948
2949
2950
2951  /*
2952   * Handle "branch". Tag the branch target.
2953   *
2954   * NOTE: instructions like Instruction::EQZ provide information about the
2955   * state of the register when the branch is taken or not taken. For example,
2956   * somebody could get a reference field, check it for zero, and if the
2957   * branch is taken immediately store that register in a boolean field
2958   * since the value is known to be zero. We do not currently account for
2959   * that, and will reject the code.
2960   *
2961   * TODO: avoid re-fetching the branch target
2962   */
2963  if ((opcode_flags & Instruction::kBranch) != 0) {
2964    bool isConditional, selfOkay;
2965    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2966      /* should never happen after static verification */
2967      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2968      return false;
2969    }
2970    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2971    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2972      return false;
2973    }
2974    /* update branch target, set "changed" if appropriate */
2975    if (nullptr != branch_line.get()) {
2976      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2977        return false;
2978      }
2979    } else {
2980      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2981        return false;
2982      }
2983    }
2984  }
2985
2986  /*
2987   * Handle "switch". Tag all possible branch targets.
2988   *
2989   * We've already verified that the table is structurally sound, so we
2990   * just need to walk through and tag the targets.
2991   */
2992  if ((opcode_flags & Instruction::kSwitch) != 0) {
2993    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2994    const uint16_t* switch_insns = insns + offset_to_switch;
2995    int switch_count = switch_insns[1];
2996    int offset_to_targets, targ;
2997
2998    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2999      /* 0 = sig, 1 = count, 2/3 = first key */
3000      offset_to_targets = 4;
3001    } else {
3002      /* 0 = sig, 1 = count, 2..count * 2 = keys */
3003      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3004      offset_to_targets = 2 + 2 * switch_count;
3005    }
3006
3007    /* verify each switch target */
3008    for (targ = 0; targ < switch_count; targ++) {
3009      int offset;
3010      uint32_t abs_offset;
3011
3012      /* offsets are 32-bit, and only partly endian-swapped */
3013      offset = switch_insns[offset_to_targets + targ * 2] |
3014         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3015      abs_offset = work_insn_idx_ + offset;
3016      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
3017      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
3018        return false;
3019      }
3020      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3021        return false;
3022      }
3023    }
3024  }
3025
3026  /*
3027   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3028   * "try" block when they throw, control transfers out of the method.)
3029   */
3030  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
3031    bool has_catch_all_handler = false;
3032    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
3033
3034    // Need the linker to try and resolve the handled class to check if it's Throwable.
3035    ClassLinker* linker = Runtime::Current()->GetClassLinker();
3036
3037    for (; iterator.HasNext(); iterator.Next()) {
3038      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
3039      if (handler_type_idx == DexFile::kDexNoIndex16) {
3040        has_catch_all_handler = true;
3041      } else {
3042        // It is also a catch-all if it is java.lang.Throwable.
3043        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
3044                                                   class_loader_);
3045        if (klass != nullptr) {
3046          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
3047            has_catch_all_handler = true;
3048          }
3049        } else {
3050          // Clear exception.
3051          DCHECK(self_->IsExceptionPending());
3052          self_->ClearException();
3053        }
3054      }
3055      /*
3056       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3057       * "work_regs", because at runtime the exception will be thrown before the instruction
3058       * modifies any registers.
3059       */
3060      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3061        return false;
3062      }
3063    }
3064
3065    /*
3066     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3067     * instruction. This does apply to monitor-exit because of async exception handling.
3068     */
3069    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3070      /*
3071       * The state in work_line reflects the post-execution state. If the current instruction is a
3072       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3073       * it will do so before grabbing the lock).
3074       */
3075      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3076        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3077            << "expected to be within a catch-all for an instruction where a monitor is held";
3078        return false;
3079      }
3080    }
3081  }
3082
3083  /* Handle "continue". Tag the next consecutive instruction.
3084   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3085   *        because it changes work_line_ when performing peephole optimization
3086   *        and this change should not be used in those cases.
3087   */
3088  if ((opcode_flags & Instruction::kContinue) != 0) {
3089    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3090    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3091    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3092      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3093      return false;
3094    }
3095    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3096    // next instruction isn't one.
3097    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3098      return false;
3099    }
3100    if (nullptr != fallthrough_line.get()) {
3101      // Make workline consistent with fallthrough computed from peephole optimization.
3102      work_line_->CopyFromLine(fallthrough_line.get());
3103    }
3104    if (insn_flags_[next_insn_idx].IsReturn()) {
3105      // For returns we only care about the operand to the return, all other registers are dead.
3106      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3107      Instruction::Code opcode = ret_inst->Opcode();
3108      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3109        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3110      } else {
3111        if (opcode == Instruction::RETURN_WIDE) {
3112          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3113        } else {
3114          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3115        }
3116      }
3117    }
3118    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3119    if (next_line != nullptr) {
3120      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3121      // needed. If the merge changes the state of the registers then the work line will be
3122      // updated.
3123      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3124        return false;
3125      }
3126    } else {
3127      /*
3128       * We're not recording register data for the next instruction, so we don't know what the
3129       * prior state was. We have to assume that something has changed and re-evaluate it.
3130       */
3131      insn_flags_[next_insn_idx].SetChanged();
3132    }
3133  }
3134
3135  /* If we're returning from the method, make sure monitor stack is empty. */
3136  if ((opcode_flags & Instruction::kReturn) != 0) {
3137    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3138      return false;
3139    }
3140  }
3141
3142  /*
3143   * Update start_guess. Advance to the next instruction of that's
3144   * possible, otherwise use the branch target if one was found. If
3145   * neither of those exists we're in a return or throw; leave start_guess
3146   * alone and let the caller sort it out.
3147   */
3148  if ((opcode_flags & Instruction::kContinue) != 0) {
3149    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3150    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3151  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3152    /* we're still okay if branch_target is zero */
3153    *start_guess = work_insn_idx_ + branch_target;
3154  }
3155
3156  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3157  DCHECK(insn_flags_[*start_guess].IsOpcode());
3158
3159  return true;
3160}  // NOLINT(readability/fn_size)
3161
3162const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3163  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3164  const RegType& referrer = GetDeclaringClass();
3165  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3166  const RegType& result = klass != nullptr ?
3167      FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3168      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3169  if (result.IsConflict()) {
3170    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3171        << "' in " << referrer;
3172    return result;
3173  }
3174  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3175    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3176  }
3177  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3178  // check at runtime if access is allowed and so pass here. If result is
3179  // primitive, skip the access check.
3180  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3181      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3182    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3183                                    << referrer << "' -> '" << result << "'";
3184  }
3185  return result;
3186}
3187
3188const RegType& MethodVerifier::GetCaughtExceptionType() {
3189  const RegType* common_super = nullptr;
3190  if (code_item_->tries_size_ != 0) {
3191    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3192    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3193    for (uint32_t i = 0; i < handlers_size; i++) {
3194      CatchHandlerIterator iterator(handlers_ptr);
3195      for (; iterator.HasNext(); iterator.Next()) {
3196        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3197          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3198            common_super = &reg_types_.JavaLangThrowable(false);
3199          } else {
3200            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3201            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3202              if (exception.IsUnresolvedTypes()) {
3203                // We don't know enough about the type. Fail here and let runtime handle it.
3204                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3205                return exception;
3206              } else {
3207                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3208                return reg_types_.Conflict();
3209              }
3210            } else if (common_super == nullptr) {
3211              common_super = &exception;
3212            } else if (common_super->Equals(exception)) {
3213              // odd case, but nothing to do
3214            } else {
3215              common_super = &common_super->Merge(exception, &reg_types_);
3216              if (FailOrAbort(this,
3217                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3218                              "java.lang.Throwable is not assignable-from common_super at ",
3219                              work_insn_idx_)) {
3220                break;
3221              }
3222            }
3223          }
3224        }
3225      }
3226      handlers_ptr = iterator.EndDataPointer();
3227    }
3228  }
3229  if (common_super == nullptr) {
3230    /* no catch blocks, or no catches with classes we can find */
3231    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3232    return reg_types_.Conflict();
3233  }
3234  return *common_super;
3235}
3236
3237ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3238    uint32_t dex_method_idx, MethodType method_type) {
3239  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3240  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3241  if (klass_type.IsConflict()) {
3242    std::string append(" in attempt to access method ");
3243    append += dex_file_->GetMethodName(method_id);
3244    AppendToLastFailMessage(append);
3245    return nullptr;
3246  }
3247  if (klass_type.IsUnresolvedTypes()) {
3248    return nullptr;  // Can't resolve Class so no more to do here
3249  }
3250  mirror::Class* klass = klass_type.GetClass();
3251  const RegType& referrer = GetDeclaringClass();
3252  auto* cl = Runtime::Current()->GetClassLinker();
3253  auto pointer_size = cl->GetImagePointerSize();
3254  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3255  if (res_method == nullptr) {
3256    const char* name = dex_file_->GetMethodName(method_id);
3257    const Signature signature = dex_file_->GetMethodSignature(method_id);
3258
3259    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3260      res_method = klass->FindDirectMethod(name, signature, pointer_size);
3261    } else if (method_type == METHOD_INTERFACE) {
3262      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3263    } else {
3264      res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3265    }
3266    if (res_method != nullptr) {
3267      dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3268    } else {
3269      // If a virtual or interface method wasn't found with the expected type, look in
3270      // the direct methods. This can happen when the wrong invoke type is used or when
3271      // a class has changed, and will be flagged as an error in later checks.
3272      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3273        res_method = klass->FindDirectMethod(name, signature, pointer_size);
3274      }
3275      if (res_method == nullptr) {
3276        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3277                                     << PrettyDescriptor(klass) << "." << name
3278                                     << " " << signature;
3279        return nullptr;
3280      }
3281    }
3282  }
3283  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3284  // enforce them here.
3285  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3286    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3287                                      << PrettyMethod(res_method);
3288    return nullptr;
3289  }
3290  // Disallow any calls to class initializers.
3291  if (res_method->IsClassInitializer()) {
3292    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3293                                      << PrettyMethod(res_method);
3294    return nullptr;
3295  }
3296  // Check if access is allowed.
3297  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3298    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3299                                     << " from " << referrer << ")";
3300    return res_method;
3301  }
3302  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3303  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3304    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3305                                      << PrettyMethod(res_method);
3306    return nullptr;
3307  }
3308  // Check that interface methods match interface classes.
3309  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3310    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3311                                    << " is in an interface class " << PrettyClass(klass);
3312    return nullptr;
3313  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3314    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3315                                    << " is in a non-interface class " << PrettyClass(klass);
3316    return nullptr;
3317  }
3318  // See if the method type implied by the invoke instruction matches the access flags for the
3319  // target method.
3320  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3321      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3322      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3323      ) {
3324    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3325                                       " type of " << PrettyMethod(res_method);
3326    return nullptr;
3327  }
3328  return res_method;
3329}
3330
3331template <class T>
3332ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3333    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3334  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3335  // match the call to the signature. Also, we might be calling through an abstract method
3336  // definition (which doesn't have register count values).
3337  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3338  /* caught by static verifier */
3339  DCHECK(is_range || expected_args <= 5);
3340  if (expected_args > code_item_->outs_size_) {
3341    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3342        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3343    return nullptr;
3344  }
3345
3346  uint32_t arg[5];
3347  if (!is_range) {
3348    inst->GetVarArgs(arg);
3349  }
3350  uint32_t sig_registers = 0;
3351
3352  /*
3353   * Check the "this" argument, which must be an instance of the class that declared the method.
3354   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3355   * rigorous check here (which is okay since we have to do it at runtime).
3356   */
3357  if (method_type != METHOD_STATIC) {
3358    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3359    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3360      CHECK(have_pending_hard_failure_);
3361      return nullptr;
3362    }
3363    if (actual_arg_type.IsUninitializedReference()) {
3364      if (res_method) {
3365        if (!res_method->IsConstructor()) {
3366          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3367          return nullptr;
3368        }
3369      } else {
3370        // Check whether the name of the called method is "<init>"
3371        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3372        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3373          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3374          return nullptr;
3375        }
3376      }
3377    }
3378    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3379      const RegType* res_method_class;
3380      if (res_method != nullptr) {
3381        mirror::Class* klass = res_method->GetDeclaringClass();
3382        std::string temp;
3383        res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3384                                      klass->CannotBeAssignedFromOtherTypes());
3385      } else {
3386        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3387        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3388        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3389                                                      dex_file_->StringByTypeIdx(class_idx),
3390                                                      false);
3391      }
3392      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3393        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3394            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3395                << "' not instance of '" << *res_method_class << "'";
3396        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3397        // the compiler.
3398        if (have_pending_hard_failure_) {
3399          return nullptr;
3400        }
3401      }
3402    }
3403    sig_registers = 1;
3404  }
3405
3406  for ( ; it->HasNext(); it->Next()) {
3407    if (sig_registers >= expected_args) {
3408      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3409          " arguments, found " << sig_registers << " or more.";
3410      return nullptr;
3411    }
3412
3413    const char* param_descriptor = it->GetDescriptor();
3414
3415    if (param_descriptor == nullptr) {
3416      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3417          "component";
3418      return nullptr;
3419    }
3420
3421    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3422    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3423        arg[sig_registers];
3424    if (reg_type.IsIntegralTypes()) {
3425      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3426      if (!src_type.IsIntegralTypes()) {
3427        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3428            << " but expected " << reg_type;
3429        return nullptr;
3430      }
3431    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3432      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3433      // compiler.
3434      if (have_pending_hard_failure_) {
3435        return nullptr;
3436      }
3437    }
3438    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3439  }
3440  if (expected_args != sig_registers) {
3441    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3442        " arguments, found " << sig_registers;
3443    return nullptr;
3444  }
3445  return res_method;
3446}
3447
3448void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3449                                                          MethodType method_type,
3450                                                          bool is_range) {
3451  // As the method may not have been resolved, make this static check against what we expect.
3452  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3453  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3454  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3455  DexFileParameterIterator it(*dex_file_,
3456                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3457  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3458                                                             nullptr);
3459}
3460
3461class MethodParamListDescriptorIterator {
3462 public:
3463  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
3464      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3465      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3466  }
3467
3468  bool HasNext() {
3469    return pos_ < params_size_;
3470  }
3471
3472  void Next() {
3473    ++pos_;
3474  }
3475
3476  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3477    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3478  }
3479
3480 private:
3481  ArtMethod* res_method_;
3482  size_t pos_;
3483  const DexFile::TypeList* params_;
3484  const size_t params_size_;
3485};
3486
3487ArtMethod* MethodVerifier::VerifyInvocationArgs(
3488    const Instruction* inst, MethodType method_type, bool is_range, bool is_super) {
3489  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3490  // we're making.
3491  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3492
3493  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3494  if (res_method == nullptr) {  // error or class is unresolved
3495    // Check what we can statically.
3496    if (!have_pending_hard_failure_) {
3497      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3498    }
3499    return nullptr;
3500  }
3501
3502  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3503  // has a vtable entry for the target method.
3504  if (is_super) {
3505    DCHECK(method_type == METHOD_VIRTUAL);
3506    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3507    if (super.IsUnresolvedTypes()) {
3508      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3509                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3510                                   << " to super " << PrettyMethod(res_method);
3511      return nullptr;
3512    }
3513    mirror::Class* super_klass = super.GetClass();
3514    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3515      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3516                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3517                                   << " to super " << super
3518                                   << "." << res_method->GetName()
3519                                   << res_method->GetSignature();
3520      return nullptr;
3521    }
3522  }
3523
3524  // Process the target method's signature. This signature may or may not
3525  MethodParamListDescriptorIterator it(res_method);
3526  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3527                                                                             is_range, res_method);
3528}
3529
3530ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
3531                                                 bool is_range, bool allow_failure) {
3532  if (is_range) {
3533    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3534  } else {
3535    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3536  }
3537  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3538  if (!actual_arg_type.HasClass()) {
3539    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3540    return nullptr;
3541  }
3542  mirror::Class* klass = actual_arg_type.GetClass();
3543  mirror::Class* dispatch_class;
3544  if (klass->IsInterface()) {
3545    // Derive Object.class from Class.class.getSuperclass().
3546    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3547    if (FailOrAbort(this, object_klass->IsObjectClass(),
3548                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3549      return nullptr;
3550    }
3551    dispatch_class = object_klass;
3552  } else {
3553    dispatch_class = klass;
3554  }
3555  if (!dispatch_class->HasVTable()) {
3556    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3557                work_insn_idx_);
3558    return nullptr;
3559  }
3560  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3561  auto* cl = Runtime::Current()->GetClassLinker();
3562  auto pointer_size = cl->GetImagePointerSize();
3563  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3564    FailOrAbort(this, allow_failure,
3565                "Receiver class has not enough vtable slots for quickened invoke at ",
3566                work_insn_idx_);
3567    return nullptr;
3568  }
3569  ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
3570  if (self_->IsExceptionPending()) {
3571    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3572                work_insn_idx_);
3573    return nullptr;
3574  }
3575  return res_method;
3576}
3577
3578ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
3579  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3580      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3581
3582  ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3583  if (res_method == nullptr) {
3584    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3585    return nullptr;
3586  }
3587  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3588                  work_insn_idx_)) {
3589    return nullptr;
3590  }
3591  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3592                  work_insn_idx_)) {
3593    return nullptr;
3594  }
3595
3596  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3597  // match the call to the signature. Also, we might be calling through an abstract method
3598  // definition (which doesn't have register count values).
3599  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3600  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3601    return nullptr;
3602  }
3603  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3604  /* caught by static verifier */
3605  DCHECK(is_range || expected_args <= 5);
3606  if (expected_args > code_item_->outs_size_) {
3607    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3608        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3609    return nullptr;
3610  }
3611
3612  /*
3613   * Check the "this" argument, which must be an instance of the class that declared the method.
3614   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3615   * rigorous check here (which is okay since we have to do it at runtime).
3616   */
3617  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3618    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3619    return nullptr;
3620  }
3621  if (!actual_arg_type.IsZero()) {
3622    mirror::Class* klass = res_method->GetDeclaringClass();
3623    std::string temp;
3624    const RegType& res_method_class =
3625        FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
3626    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3627      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3628          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3629          << "' not instance of '" << res_method_class << "'";
3630      return nullptr;
3631    }
3632  }
3633  /*
3634   * Process the target method's signature. This signature may or may not
3635   * have been verified, so we can't assume it's properly formed.
3636   */
3637  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3638  size_t params_size = params == nullptr ? 0 : params->Size();
3639  uint32_t arg[5];
3640  if (!is_range) {
3641    inst->GetVarArgs(arg);
3642  }
3643  size_t actual_args = 1;
3644  for (size_t param_index = 0; param_index < params_size; param_index++) {
3645    if (actual_args >= expected_args) {
3646      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3647                                        << "'. Expected " << expected_args
3648                                         << " arguments, processing argument " << actual_args
3649                                        << " (where longs/doubles count twice).";
3650      return nullptr;
3651    }
3652    const char* descriptor =
3653        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3654    if (descriptor == nullptr) {
3655      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3656                                        << " missing signature component";
3657      return nullptr;
3658    }
3659    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3660    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3661    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3662      return res_method;
3663    }
3664    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3665  }
3666  if (actual_args != expected_args) {
3667    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3668              << " expected " << expected_args << " arguments, found " << actual_args;
3669    return nullptr;
3670  } else {
3671    return res_method;
3672  }
3673}
3674
3675void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3676  uint32_t type_idx;
3677  if (!is_filled) {
3678    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3679    type_idx = inst->VRegC_22c();
3680  } else if (!is_range) {
3681    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3682    type_idx = inst->VRegB_35c();
3683  } else {
3684    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3685    type_idx = inst->VRegB_3rc();
3686  }
3687  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3688  if (res_type.IsConflict()) {  // bad class
3689    DCHECK_NE(failures_.size(), 0U);
3690  } else {
3691    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3692    if (!res_type.IsArrayTypes()) {
3693      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3694    } else if (!is_filled) {
3695      /* make sure "size" register is valid type */
3696      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3697      /* set register type to array class */
3698      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3699      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3700    } else {
3701      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3702      // the list and fail. It's legal, if silly, for arg_count to be zero.
3703      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3704      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3705      uint32_t arg[5];
3706      if (!is_range) {
3707        inst->GetVarArgs(arg);
3708      }
3709      for (size_t ui = 0; ui < arg_count; ui++) {
3710        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3711        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3712          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3713          return;
3714        }
3715      }
3716      // filled-array result goes into "result" register
3717      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3718      work_line_->SetResultRegisterType(this, precise_type);
3719    }
3720  }
3721}
3722
3723void MethodVerifier::VerifyAGet(const Instruction* inst,
3724                                const RegType& insn_type, bool is_primitive) {
3725  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3726  if (!index_type.IsArrayIndexTypes()) {
3727    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3728  } else {
3729    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3730    if (array_type.IsZero()) {
3731      have_pending_runtime_throw_failure_ = true;
3732      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3733      // instruction type. TODO: have a proper notion of bottom here.
3734      if (!is_primitive || insn_type.IsCategory1Types()) {
3735        // Reference or category 1
3736        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3737      } else {
3738        // Category 2
3739        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3740                                        reg_types_.FromCat2ConstLo(0, false),
3741                                        reg_types_.FromCat2ConstHi(0, false));
3742      }
3743    } else if (!array_type.IsArrayTypes()) {
3744      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3745    } else {
3746      /* verify the class */
3747      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3748      if (!component_type.IsReferenceTypes() && !is_primitive) {
3749        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3750            << " source for aget-object";
3751      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3752        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3753            << " source for category 1 aget";
3754      } else if (is_primitive && !insn_type.Equals(component_type) &&
3755                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3756                 (insn_type.IsLong() && component_type.IsDouble()))) {
3757        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3758            << " incompatible with aget of type " << insn_type;
3759      } else {
3760        // Use knowledge of the field type which is stronger than the type inferred from the
3761        // instruction, which can't differentiate object types and ints from floats, longs from
3762        // doubles.
3763        if (!component_type.IsLowHalf()) {
3764          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3765        } else {
3766          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3767                                          component_type.HighHalf(&reg_types_));
3768        }
3769      }
3770    }
3771  }
3772}
3773
3774void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3775                                        const uint32_t vregA) {
3776  // Primitive assignability rules are weaker than regular assignability rules.
3777  bool instruction_compatible;
3778  bool value_compatible;
3779  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3780  if (target_type.IsIntegralTypes()) {
3781    instruction_compatible = target_type.Equals(insn_type);
3782    value_compatible = value_type.IsIntegralTypes();
3783  } else if (target_type.IsFloat()) {
3784    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3785    value_compatible = value_type.IsFloatTypes();
3786  } else if (target_type.IsLong()) {
3787    instruction_compatible = insn_type.IsLong();
3788    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3789    // as target_type depends on the resolved type of the field.
3790    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3791      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3792      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3793    } else {
3794      value_compatible = false;
3795    }
3796  } else if (target_type.IsDouble()) {
3797    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3798    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3799    // as target_type depends on the resolved type of the field.
3800    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3801      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3802      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3803    } else {
3804      value_compatible = false;
3805    }
3806  } else {
3807    instruction_compatible = false;  // reference with primitive store
3808    value_compatible = false;  // unused
3809  }
3810  if (!instruction_compatible) {
3811    // This is a global failure rather than a class change failure as the instructions and
3812    // the descriptors for the type should have been consistent within the same file at
3813    // compile time.
3814    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3815        << "' but expected type '" << target_type << "'";
3816    return;
3817  }
3818  if (!value_compatible) {
3819    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3820        << " of type " << value_type << " but expected " << target_type << " for put";
3821    return;
3822  }
3823}
3824
3825void MethodVerifier::VerifyAPut(const Instruction* inst,
3826                                const RegType& insn_type, bool is_primitive) {
3827  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3828  if (!index_type.IsArrayIndexTypes()) {
3829    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3830  } else {
3831    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3832    if (array_type.IsZero()) {
3833      // Null array type; this code path will fail at runtime.
3834      // Still check that the given value matches the instruction's type.
3835      work_line_->VerifyRegisterType(this, inst->VRegA_23x(), insn_type);
3836    } else if (!array_type.IsArrayTypes()) {
3837      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3838    } else {
3839      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3840      const uint32_t vregA = inst->VRegA_23x();
3841      if (is_primitive) {
3842        VerifyPrimitivePut(component_type, insn_type, vregA);
3843      } else {
3844        if (!component_type.IsReferenceTypes()) {
3845          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3846              << " source for aput-object";
3847        } else {
3848          // The instruction agrees with the type of array, confirm the value to be stored does too
3849          // Note: we use the instruction type (rather than the component type) for aput-object as
3850          // incompatible classes will be caught at runtime as an array store exception
3851          work_line_->VerifyRegisterType(this, vregA, insn_type);
3852        }
3853      }
3854    }
3855  }
3856}
3857
3858ArtField* MethodVerifier::GetStaticField(int field_idx) {
3859  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3860  // Check access to class
3861  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3862  if (klass_type.IsConflict()) {  // bad class
3863    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3864                                         field_idx, dex_file_->GetFieldName(field_id),
3865                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3866    return nullptr;
3867  }
3868  if (klass_type.IsUnresolvedTypes()) {
3869    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3870  }
3871  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3872  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3873                                                  class_loader_);
3874  if (field == nullptr) {
3875    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3876              << dex_file_->GetFieldName(field_id) << ") in "
3877              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3878    DCHECK(self_->IsExceptionPending());
3879    self_->ClearException();
3880    return nullptr;
3881  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3882                                                  field->GetAccessFlags())) {
3883    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3884                                    << " from " << GetDeclaringClass();
3885    return nullptr;
3886  } else if (!field->IsStatic()) {
3887    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3888    return nullptr;
3889  }
3890  return field;
3891}
3892
3893ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3894  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3895  // Check access to class
3896  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3897  if (klass_type.IsConflict()) {
3898    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3899                                         field_idx, dex_file_->GetFieldName(field_id),
3900                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3901    return nullptr;
3902  }
3903  if (klass_type.IsUnresolvedTypes()) {
3904    return nullptr;  // Can't resolve Class so no more to do here
3905  }
3906  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3907  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3908                                                  class_loader_);
3909  if (field == nullptr) {
3910    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3911              << dex_file_->GetFieldName(field_id) << ") in "
3912              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3913    DCHECK(self_->IsExceptionPending());
3914    self_->ClearException();
3915    return nullptr;
3916  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3917                                                  field->GetAccessFlags())) {
3918    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3919                                    << " from " << GetDeclaringClass();
3920    return nullptr;
3921  } else if (field->IsStatic()) {
3922    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3923                                    << " to not be static";
3924    return nullptr;
3925  } else if (obj_type.IsZero()) {
3926    // Cannot infer and check type, however, access will cause null pointer exception
3927    return field;
3928  } else if (!obj_type.IsReferenceTypes()) {
3929    // Trying to read a field from something that isn't a reference
3930    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3931                                      << "non-reference type " << obj_type;
3932    return nullptr;
3933  } else {
3934    mirror::Class* klass = field->GetDeclaringClass();
3935    const RegType& field_klass =
3936        FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3937                  klass, klass->CannotBeAssignedFromOtherTypes());
3938    if (obj_type.IsUninitializedTypes() &&
3939        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3940            !field_klass.Equals(GetDeclaringClass()))) {
3941      // Field accesses through uninitialized references are only allowable for constructors where
3942      // the field is declared in this class
3943      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3944                                        << " of a not fully initialized object within the context"
3945                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3946      return nullptr;
3947    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3948      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3949      // of C1. For resolution to occur the declared class of the field must be compatible with
3950      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3951      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3952                                  << " from object of type " << obj_type;
3953      return nullptr;
3954    } else {
3955      return field;
3956    }
3957  }
3958}
3959
3960template <MethodVerifier::FieldAccessType kAccType>
3961void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3962                                         bool is_primitive, bool is_static) {
3963  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3964  ArtField* field;
3965  if (is_static) {
3966    field = GetStaticField(field_idx);
3967  } else {
3968    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3969    field = GetInstanceField(object_type, field_idx);
3970    if (UNLIKELY(have_pending_hard_failure_)) {
3971      return;
3972    }
3973  }
3974  const RegType* field_type = nullptr;
3975  if (field != nullptr) {
3976    if (kAccType == FieldAccessType::kAccPut) {
3977      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3978        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3979                                        << " from other class " << GetDeclaringClass();
3980        return;
3981      }
3982    }
3983
3984    mirror::Class* field_type_class =
3985        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
3986    if (field_type_class != nullptr) {
3987      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
3988                              field_type_class->CannotBeAssignedFromOtherTypes());
3989    } else {
3990      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3991      self_->ClearException();
3992    }
3993  }
3994  if (field_type == nullptr) {
3995    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3996    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3997    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3998  }
3999  DCHECK(field_type != nullptr);
4000  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4001  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4002                "Unexpected third access type");
4003  if (kAccType == FieldAccessType::kAccPut) {
4004    // sput or iput.
4005    if (is_primitive) {
4006      VerifyPrimitivePut(*field_type, insn_type, vregA);
4007    } else {
4008      if (!insn_type.IsAssignableFrom(*field_type)) {
4009        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4010                                                << " to be compatible with type '" << insn_type
4011                                                << "' but found type '" << *field_type
4012                                                << "' in put-object";
4013        return;
4014      }
4015      work_line_->VerifyRegisterType(this, vregA, *field_type);
4016    }
4017  } else if (kAccType == FieldAccessType::kAccGet) {
4018    // sget or iget.
4019    if (is_primitive) {
4020      if (field_type->Equals(insn_type) ||
4021          (field_type->IsFloat() && insn_type.IsInteger()) ||
4022          (field_type->IsDouble() && insn_type.IsLong())) {
4023        // expected that read is of the correct primitive type or that int reads are reading
4024        // floats or long reads are reading doubles
4025      } else {
4026        // This is a global failure rather than a class change failure as the instructions and
4027        // the descriptors for the type should have been consistent within the same file at
4028        // compile time
4029        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4030                                          << " to be of type '" << insn_type
4031                                          << "' but found type '" << *field_type << "' in get";
4032        return;
4033      }
4034    } else {
4035      if (!insn_type.IsAssignableFrom(*field_type)) {
4036        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4037                                          << " to be compatible with type '" << insn_type
4038                                          << "' but found type '" << *field_type
4039                                          << "' in get-object";
4040        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4041        return;
4042      }
4043    }
4044    if (!field_type->IsLowHalf()) {
4045      work_line_->SetRegisterType(this, vregA, *field_type);
4046    } else {
4047      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4048    }
4049  } else {
4050    LOG(FATAL) << "Unexpected case.";
4051  }
4052}
4053
4054ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4055                                                      RegisterLine* reg_line) {
4056  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4057  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4058  if (!object_type.HasClass()) {
4059    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4060    return nullptr;
4061  }
4062  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4063  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4064  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4065  if (f == nullptr) {
4066    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4067                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4068  }
4069  return f;
4070}
4071
4072template <MethodVerifier::FieldAccessType kAccType>
4073void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4074                                            bool is_primitive) {
4075  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4076
4077  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4078  if (field == nullptr) {
4079    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4080    return;
4081  }
4082
4083  // For an IPUT_QUICK, we now test for final flag of the field.
4084  if (kAccType == FieldAccessType::kAccPut) {
4085    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4086      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4087                                      << " from other class " << GetDeclaringClass();
4088      return;
4089    }
4090  }
4091
4092  // Get the field type.
4093  const RegType* field_type;
4094  {
4095    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4096        field->GetType<false>();
4097
4098    if (field_type_class != nullptr) {
4099      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4100                              field_type_class->CannotBeAssignedFromOtherTypes());
4101    } else {
4102      Thread* self = Thread::Current();
4103      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4104      self->ClearException();
4105      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4106                                              field->GetTypeDescriptor(), false);
4107    }
4108    if (field_type == nullptr) {
4109      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4110      return;
4111    }
4112  }
4113
4114  const uint32_t vregA = inst->VRegA_22c();
4115  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4116                "Unexpected third access type");
4117  if (kAccType == FieldAccessType::kAccPut) {
4118    if (is_primitive) {
4119      // Primitive field assignability rules are weaker than regular assignability rules
4120      bool instruction_compatible;
4121      bool value_compatible;
4122      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4123      if (field_type->IsIntegralTypes()) {
4124        instruction_compatible = insn_type.IsIntegralTypes();
4125        value_compatible = value_type.IsIntegralTypes();
4126      } else if (field_type->IsFloat()) {
4127        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4128        value_compatible = value_type.IsFloatTypes();
4129      } else if (field_type->IsLong()) {
4130        instruction_compatible = insn_type.IsLong();
4131        value_compatible = value_type.IsLongTypes();
4132      } else if (field_type->IsDouble()) {
4133        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4134        value_compatible = value_type.IsDoubleTypes();
4135      } else {
4136        instruction_compatible = false;  // reference field with primitive store
4137        value_compatible = false;  // unused
4138      }
4139      if (!instruction_compatible) {
4140        // This is a global failure rather than a class change failure as the instructions and
4141        // the descriptors for the type should have been consistent within the same file at
4142        // compile time
4143        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4144                                          << " to be of type '" << insn_type
4145                                          << "' but found type '" << *field_type
4146                                          << "' in put";
4147        return;
4148      }
4149      if (!value_compatible) {
4150        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4151            << " of type " << value_type
4152            << " but expected " << *field_type
4153            << " for store to " << PrettyField(field) << " in put";
4154        return;
4155      }
4156    } else {
4157      if (!insn_type.IsAssignableFrom(*field_type)) {
4158        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4159                                          << " to be compatible with type '" << insn_type
4160                                          << "' but found type '" << *field_type
4161                                          << "' in put-object";
4162        return;
4163      }
4164      work_line_->VerifyRegisterType(this, vregA, *field_type);
4165    }
4166  } else if (kAccType == FieldAccessType::kAccGet) {
4167    if (is_primitive) {
4168      if (field_type->Equals(insn_type) ||
4169          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4170          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4171        // expected that read is of the correct primitive type or that int reads are reading
4172        // floats or long reads are reading doubles
4173      } else {
4174        // This is a global failure rather than a class change failure as the instructions and
4175        // the descriptors for the type should have been consistent within the same file at
4176        // compile time
4177        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4178                                          << " to be of type '" << insn_type
4179                                          << "' but found type '" << *field_type << "' in Get";
4180        return;
4181      }
4182    } else {
4183      if (!insn_type.IsAssignableFrom(*field_type)) {
4184        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4185                                          << " to be compatible with type '" << insn_type
4186                                          << "' but found type '" << *field_type
4187                                          << "' in get-object";
4188        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4189        return;
4190      }
4191    }
4192    if (!field_type->IsLowHalf()) {
4193      work_line_->SetRegisterType(this, vregA, *field_type);
4194    } else {
4195      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4196    }
4197  } else {
4198    LOG(FATAL) << "Unexpected case.";
4199  }
4200}
4201
4202bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4203  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4204    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4205    return false;
4206  }
4207  return true;
4208}
4209
4210bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4211  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4212      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4213    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4214    return false;
4215  }
4216  return true;
4217}
4218
4219bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4220  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4221}
4222
4223bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4224                                     bool update_merge_line) {
4225  bool changed = true;
4226  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4227  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4228    /*
4229     * We haven't processed this instruction before, and we haven't touched the registers here, so
4230     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4231     * only way a register can transition out of "unknown", so this is not just an optimization.)
4232     */
4233    if (!insn_flags_[next_insn].IsReturn()) {
4234      target_line->CopyFromLine(merge_line);
4235    } else {
4236      // Verify that the monitor stack is empty on return.
4237      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4238        return false;
4239      }
4240      // For returns we only care about the operand to the return, all other registers are dead.
4241      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4242      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4243      Instruction::Code opcode = ret_inst->Opcode();
4244      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4245        SafelyMarkAllRegistersAsConflicts(this, target_line);
4246      } else {
4247        target_line->CopyFromLine(merge_line);
4248        if (opcode == Instruction::RETURN_WIDE) {
4249          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4250        } else {
4251          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4252        }
4253      }
4254    }
4255  } else {
4256    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4257                                 RegisterLine::Create(target_line->NumRegs(), this) :
4258                                 nullptr);
4259    if (gDebugVerify) {
4260      copy->CopyFromLine(target_line);
4261    }
4262    changed = target_line->MergeRegisters(this, merge_line);
4263    if (have_pending_hard_failure_) {
4264      return false;
4265    }
4266    if (gDebugVerify && changed) {
4267      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4268                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4269                      << copy->Dump(this) << "  MERGE\n"
4270                      << merge_line->Dump(this) << "  ==\n"
4271                      << target_line->Dump(this) << "\n";
4272    }
4273    if (update_merge_line && changed) {
4274      merge_line->CopyFromLine(target_line);
4275    }
4276  }
4277  if (changed) {
4278    insn_flags_[next_insn].SetChanged();
4279  }
4280  return true;
4281}
4282
4283InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4284  return &insn_flags_[work_insn_idx_];
4285}
4286
4287const RegType& MethodVerifier::GetMethodReturnType() {
4288  if (return_type_ == nullptr) {
4289    if (mirror_method_ != nullptr) {
4290      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4291      if (return_type_class != nullptr) {
4292        return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
4293                                  return_type_class,
4294                                  return_type_class->CannotBeAssignedFromOtherTypes());
4295      } else {
4296        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4297        self_->ClearException();
4298      }
4299    }
4300    if (return_type_ == nullptr) {
4301      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4302      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4303      uint16_t return_type_idx = proto_id.return_type_idx_;
4304      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4305      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4306    }
4307  }
4308  return *return_type_;
4309}
4310
4311const RegType& MethodVerifier::GetDeclaringClass() {
4312  if (declaring_class_ == nullptr) {
4313    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4314    const char* descriptor
4315        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4316    if (mirror_method_ != nullptr) {
4317      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4318      declaring_class_ = &FromClass(descriptor, klass,
4319                                    klass->CannotBeAssignedFromOtherTypes());
4320    } else {
4321      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4322    }
4323  }
4324  return *declaring_class_;
4325}
4326
4327std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4328  RegisterLine* line = reg_table_.GetLine(dex_pc);
4329  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4330  std::vector<int32_t> result;
4331  for (size_t i = 0; i < line->NumRegs(); ++i) {
4332    const RegType& type = line->GetRegisterType(this, i);
4333    if (type.IsConstant()) {
4334      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4335      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4336      result.push_back(const_val->ConstantValue());
4337    } else if (type.IsConstantLo()) {
4338      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4339      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4340      result.push_back(const_val->ConstantValueLo());
4341    } else if (type.IsConstantHi()) {
4342      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4343      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4344      result.push_back(const_val->ConstantValueHi());
4345    } else if (type.IsIntegralTypes()) {
4346      result.push_back(kIntVReg);
4347      result.push_back(0);
4348    } else if (type.IsFloat()) {
4349      result.push_back(kFloatVReg);
4350      result.push_back(0);
4351    } else if (type.IsLong()) {
4352      result.push_back(kLongLoVReg);
4353      result.push_back(0);
4354      result.push_back(kLongHiVReg);
4355      result.push_back(0);
4356      ++i;
4357    } else if (type.IsDouble()) {
4358      result.push_back(kDoubleLoVReg);
4359      result.push_back(0);
4360      result.push_back(kDoubleHiVReg);
4361      result.push_back(0);
4362      ++i;
4363    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4364      result.push_back(kUndefined);
4365      result.push_back(0);
4366    } else {
4367      CHECK(type.IsNonZeroReferenceTypes());
4368      result.push_back(kReferenceVReg);
4369      result.push_back(0);
4370    }
4371  }
4372  return result;
4373}
4374
4375const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4376  if (precise) {
4377    // Precise constant type.
4378    return reg_types_.FromCat1Const(value, true);
4379  } else {
4380    // Imprecise constant type.
4381    if (value < -32768) {
4382      return reg_types_.IntConstant();
4383    } else if (value < -128) {
4384      return reg_types_.ShortConstant();
4385    } else if (value < 0) {
4386      return reg_types_.ByteConstant();
4387    } else if (value == 0) {
4388      return reg_types_.Zero();
4389    } else if (value == 1) {
4390      return reg_types_.One();
4391    } else if (value < 128) {
4392      return reg_types_.PosByteConstant();
4393    } else if (value < 32768) {
4394      return reg_types_.PosShortConstant();
4395    } else if (value < 65536) {
4396      return reg_types_.CharConstant();
4397    } else {
4398      return reg_types_.IntConstant();
4399    }
4400  }
4401}
4402
4403void MethodVerifier::Init() {
4404  art::verifier::RegTypeCache::Init();
4405}
4406
4407void MethodVerifier::Shutdown() {
4408  verifier::RegTypeCache::ShutDown();
4409}
4410
4411void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
4412  RegTypeCache::VisitStaticRoots(visitor);
4413}
4414
4415void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
4416  reg_types_.VisitRoots(visitor, root_info);
4417}
4418
4419const RegType& MethodVerifier::FromClass(const char* descriptor,
4420                                         mirror::Class* klass,
4421                                         bool precise) {
4422  DCHECK(klass != nullptr);
4423  if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
4424    Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
4425        << "non-instantiable klass " << descriptor;
4426    precise = false;
4427  }
4428  return reg_types_.FromClass(descriptor, klass, precise);
4429}
4430
4431}  // namespace verifier
4432}  // namespace art
4433