method_verifier.cc revision 2d7e5aa6c707537f1906ed77b0ff29ec3dd261f7
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "base/stringpiece.h"
24#include "class_linker.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "verifier/dex_gc_map.h"
44
45namespace art {
46namespace verifier {
47
48static const bool gDebugVerify = false;
49// TODO: Add a constant to method_verifier to turn on verbose logging?
50
51void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
52                                 uint32_t insns_size, uint16_t registers_size,
53                                 MethodVerifier* verifier) {
54  DCHECK_GT(insns_size, 0U);
55  register_lines_.reset(new RegisterLine*[insns_size]());
56  size_ = insns_size;
57  for (uint32_t i = 0; i < insns_size; i++) {
58    bool interesting = false;
59    switch (mode) {
60      case kTrackRegsAll:
61        interesting = flags[i].IsOpcode();
62        break;
63      case kTrackCompilerInterestPoints:
64        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
65        break;
66      case kTrackRegsBranches:
67        interesting = flags[i].IsBranchTarget();
68        break;
69      default:
70        break;
71    }
72    if (interesting) {
73      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
74    }
75  }
76}
77
78PcToRegisterLineTable::~PcToRegisterLineTable() {
79  for (size_t i = 0; i < size_; i++) {
80    delete register_lines_[i];
81    if (kIsDebugBuild) {
82      register_lines_[i] = nullptr;
83    }
84  }
85}
86
87MethodVerifier::FailureKind MethodVerifier::VerifyClass(const mirror::Class* klass,
88                                                        bool allow_soft_failures,
89                                                        std::string* error) {
90  if (klass->IsVerified()) {
91    return kNoFailure;
92  }
93  bool early_failure = false;
94  std::string failure_message;
95  ClassHelper kh(klass);
96  const DexFile& dex_file = kh.GetDexFile();
97  const DexFile::ClassDef* class_def = kh.GetClassDef();
98  mirror::Class* super = klass->GetSuperClass();
99  if (super == NULL && strcmp("Ljava/lang/Object;", kh.GetDescriptor()) != 0) {
100    early_failure = true;
101    failure_message = " that has no super class";
102  } else if (super != NULL && super->IsFinal()) {
103    early_failure = true;
104    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
105  } else if (class_def == NULL) {
106    early_failure = true;
107    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
108  }
109  if (early_failure) {
110    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
111    if (Runtime::Current()->IsCompiler()) {
112      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
113      AddRejectedClass(ref);
114    }
115    return kHardFailure;
116  }
117  Thread* self = Thread::Current();
118  SirtRef<mirror::DexCache> dex_cache(self, kh.GetDexCache());
119  SirtRef<mirror::ClassLoader> class_loader(self, klass->GetClassLoader());
120  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
121}
122
123MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
124                                                        SirtRef<mirror::DexCache>& dex_cache,
125                                                        SirtRef<mirror::ClassLoader>& class_loader,
126                                                        const DexFile::ClassDef* class_def,
127                                                        bool allow_soft_failures,
128                                                        std::string* error) {
129  DCHECK(class_def != nullptr);
130  const byte* class_data = dex_file->GetClassData(*class_def);
131  if (class_data == NULL) {
132    // empty class, probably a marker interface
133    return kNoFailure;
134  }
135  ClassDataItemIterator it(*dex_file, class_data);
136  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
137    it.Next();
138  }
139  size_t error_count = 0;
140  bool hard_fail = false;
141  ClassLinker* linker = Runtime::Current()->GetClassLinker();
142  int64_t previous_direct_method_idx = -1;
143  while (it.HasNextDirectMethod()) {
144    uint32_t method_idx = it.GetMemberIndex();
145    if (method_idx == previous_direct_method_idx) {
146      // smali can create dex files with two encoded_methods sharing the same method_idx
147      // http://code.google.com/p/smali/issues/detail?id=119
148      it.Next();
149      continue;
150    }
151    previous_direct_method_idx = method_idx;
152    InvokeType type = it.GetMethodInvokeType(*class_def);
153    mirror::ArtMethod* method =
154        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
155    if (method == NULL) {
156      DCHECK(Thread::Current()->IsExceptionPending());
157      // We couldn't resolve the method, but continue regardless.
158      Thread::Current()->ClearException();
159    }
160    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
161                                                      dex_file,
162                                                      dex_cache,
163                                                      class_loader,
164                                                      class_def,
165                                                      it.GetMethodCodeItem(),
166                                                      method,
167                                                      it.GetMemberAccessFlags(),
168                                                      allow_soft_failures);
169    if (result != kNoFailure) {
170      if (result == kHardFailure) {
171        hard_fail = true;
172        if (error_count > 0) {
173          *error += "\n";
174        }
175        *error = "Verifier rejected class ";
176        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
177        *error += " due to bad method ";
178        *error += PrettyMethod(method_idx, *dex_file);
179      }
180      ++error_count;
181    }
182    it.Next();
183  }
184  int64_t previous_virtual_method_idx = -1;
185  while (it.HasNextVirtualMethod()) {
186    uint32_t method_idx = it.GetMemberIndex();
187    if (method_idx == previous_virtual_method_idx) {
188      // smali can create dex files with two encoded_methods sharing the same method_idx
189      // http://code.google.com/p/smali/issues/detail?id=119
190      it.Next();
191      continue;
192    }
193    previous_virtual_method_idx = method_idx;
194    InvokeType type = it.GetMethodInvokeType(*class_def);
195    mirror::ArtMethod* method =
196        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
197    if (method == NULL) {
198      DCHECK(Thread::Current()->IsExceptionPending());
199      // We couldn't resolve the method, but continue regardless.
200      Thread::Current()->ClearException();
201    }
202    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
203                                                      dex_file,
204                                                      dex_cache,
205                                                      class_loader,
206                                                      class_def,
207                                                      it.GetMethodCodeItem(),
208                                                      method,
209                                                      it.GetMemberAccessFlags(),
210                                                      allow_soft_failures);
211    if (result != kNoFailure) {
212      if (result == kHardFailure) {
213        hard_fail = true;
214        if (error_count > 0) {
215          *error += "\n";
216        }
217        *error = "Verifier rejected class ";
218        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
219        *error += " due to bad method ";
220        *error += PrettyMethod(method_idx, *dex_file);
221      }
222      ++error_count;
223    }
224    it.Next();
225  }
226  if (error_count == 0) {
227    return kNoFailure;
228  } else {
229    return hard_fail ? kHardFailure : kSoftFailure;
230  }
231}
232
233MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
234                                                         const DexFile* dex_file,
235                                                         SirtRef<mirror::DexCache>& dex_cache,
236                                                         SirtRef<mirror::ClassLoader>& class_loader,
237                                                         const DexFile::ClassDef* class_def,
238                                                         const DexFile::CodeItem* code_item,
239                                                         mirror::ArtMethod* method,
240                                                         uint32_t method_access_flags,
241                                                         bool allow_soft_failures) {
242  MethodVerifier::FailureKind result = kNoFailure;
243  uint64_t start_ns = NanoTime();
244
245  MethodVerifier verifier_(dex_file, &dex_cache, &class_loader, class_def, code_item,
246                           method_idx, method, method_access_flags, true, allow_soft_failures);
247  if (verifier_.Verify()) {
248    // Verification completed, however failures may be pending that didn't cause the verification
249    // to hard fail.
250    CHECK(!verifier_.have_pending_hard_failure_);
251    if (verifier_.failures_.size() != 0) {
252      if (VLOG_IS_ON(verifier)) {
253          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
254                                << PrettyMethod(method_idx, *dex_file) << "\n");
255      }
256      result = kSoftFailure;
257    }
258  } else {
259    // Bad method data.
260    CHECK_NE(verifier_.failures_.size(), 0U);
261    CHECK(verifier_.have_pending_hard_failure_);
262    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
263                                    << PrettyMethod(method_idx, *dex_file) << "\n");
264    if (gDebugVerify) {
265      std::cout << "\n" << verifier_.info_messages_.str();
266      verifier_.Dump(std::cout);
267    }
268    result = kHardFailure;
269  }
270  uint64_t duration_ns = NanoTime() - start_ns;
271  if (duration_ns > MsToNs(100)) {
272    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
273                 << " took " << PrettyDuration(duration_ns);
274  }
275  return result;
276}
277
278void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
279                                         const DexFile* dex_file,
280                                         SirtRef<mirror::DexCache>& dex_cache,
281                                         SirtRef<mirror::ClassLoader>& class_loader,
282                                         const DexFile::ClassDef* class_def,
283                                         const DexFile::CodeItem* code_item,
284                                         mirror::ArtMethod* method,
285                                         uint32_t method_access_flags) {
286  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
287                          dex_method_idx, method, method_access_flags, true, true);
288  verifier.Verify();
289  verifier.DumpFailures(os);
290  os << verifier.info_messages_.str();
291  verifier.Dump(os);
292}
293
294MethodVerifier::MethodVerifier(const DexFile* dex_file, SirtRef<mirror::DexCache>* dex_cache,
295                               SirtRef<mirror::ClassLoader>* class_loader,
296                               const DexFile::ClassDef* class_def,
297                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
298                               mirror::ArtMethod* method, uint32_t method_access_flags,
299                               bool can_load_classes, bool allow_soft_failures)
300    : reg_types_(can_load_classes),
301      work_insn_idx_(-1),
302      dex_method_idx_(dex_method_idx),
303      mirror_method_(method),
304      method_access_flags_(method_access_flags),
305      return_type_(nullptr),
306      dex_file_(dex_file),
307      dex_cache_(dex_cache),
308      class_loader_(class_loader),
309      class_def_(class_def),
310      code_item_(code_item),
311      declaring_class_(NULL),
312      interesting_dex_pc_(-1),
313      monitor_enter_dex_pcs_(nullptr),
314      have_pending_hard_failure_(false),
315      have_pending_runtime_throw_failure_(false),
316      new_instance_count_(0),
317      monitor_enter_count_(0),
318      can_load_classes_(can_load_classes),
319      allow_soft_failures_(allow_soft_failures),
320      has_check_casts_(false),
321      has_virtual_or_interface_invokes_(false) {
322  Runtime::Current()->AddMethodVerifier(this);
323  DCHECK(class_def != nullptr);
324}
325
326MethodVerifier::~MethodVerifier() {
327  Runtime::Current()->RemoveMethodVerifier(this);
328  STLDeleteElements(&failure_messages_);
329}
330
331void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
332                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
333  MethodHelper mh(m);
334  Thread* self = Thread::Current();
335  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
336  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
337  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
338                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
339                          true);
340  verifier.interesting_dex_pc_ = dex_pc;
341  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
342  verifier.FindLocksAtDexPc();
343}
344
345void MethodVerifier::FindLocksAtDexPc() {
346  CHECK(monitor_enter_dex_pcs_ != NULL);
347  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
348
349  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
350  // verification. In practice, the phase we want relies on data structures set up by all the
351  // earlier passes, so we just run the full method verification and bail out early when we've
352  // got what we wanted.
353  Verify();
354}
355
356mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
357                                                        uint32_t dex_pc) {
358  MethodHelper mh(m);
359  Thread* self = Thread::Current();
360  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
361  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
362  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
363                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
364                          true);
365  return verifier.FindAccessedFieldAtDexPc(dex_pc);
366}
367
368mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
369  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
370
371  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
372  // verification. In practice, the phase we want relies on data structures set up by all the
373  // earlier passes, so we just run the full method verification and bail out early when we've
374  // got what we wanted.
375  bool success = Verify();
376  if (!success) {
377    return NULL;
378  }
379  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
380  if (register_line == NULL) {
381    return NULL;
382  }
383  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
384  return GetQuickFieldAccess(inst, register_line);
385}
386
387mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
388                                                            uint32_t dex_pc) {
389  MethodHelper mh(m);
390  Thread* self = Thread::Current();
391  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
392  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
393  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
394                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
395                          true);
396  return verifier.FindInvokedMethodAtDexPc(dex_pc);
397}
398
399mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
400  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
401
402  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
403  // verification. In practice, the phase we want relies on data structures set up by all the
404  // earlier passes, so we just run the full method verification and bail out early when we've
405  // got what we wanted.
406  bool success = Verify();
407  if (!success) {
408    return NULL;
409  }
410  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
411  if (register_line == NULL) {
412    return NULL;
413  }
414  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
415  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
416  return GetQuickInvokedMethod(inst, register_line, is_range);
417}
418
419bool MethodVerifier::Verify() {
420  // If there aren't any instructions, make sure that's expected, then exit successfully.
421  if (code_item_ == NULL) {
422    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
423      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
424      return false;
425    } else {
426      return true;
427    }
428  }
429  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
430  if (code_item_->ins_size_ > code_item_->registers_size_) {
431    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
432                                      << " regs=" << code_item_->registers_size_;
433    return false;
434  }
435  // Allocate and initialize an array to hold instruction data.
436  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
437  // Run through the instructions and see if the width checks out.
438  bool result = ComputeWidthsAndCountOps();
439  // Flag instructions guarded by a "try" block and check exception handlers.
440  result = result && ScanTryCatchBlocks();
441  // Perform static instruction verification.
442  result = result && VerifyInstructions();
443  // Perform code-flow analysis and return.
444  return result && VerifyCodeFlow();
445}
446
447std::ostream& MethodVerifier::Fail(VerifyError error) {
448  switch (error) {
449    case VERIFY_ERROR_NO_CLASS:
450    case VERIFY_ERROR_NO_FIELD:
451    case VERIFY_ERROR_NO_METHOD:
452    case VERIFY_ERROR_ACCESS_CLASS:
453    case VERIFY_ERROR_ACCESS_FIELD:
454    case VERIFY_ERROR_ACCESS_METHOD:
455    case VERIFY_ERROR_INSTANTIATION:
456    case VERIFY_ERROR_CLASS_CHANGE:
457      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
458        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
459        // class change and instantiation errors into soft verification errors so that we re-verify
460        // at runtime. We may fail to find or to agree on access because of not yet available class
461        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
462        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
463        // paths" that dynamically perform the verification and cause the behavior to be that akin
464        // to an interpreter.
465        error = VERIFY_ERROR_BAD_CLASS_SOFT;
466      } else {
467        // If we fail again at runtime, mark that this instruction would throw and force this
468        // method to be executed using the interpreter with checks.
469        have_pending_runtime_throw_failure_ = true;
470      }
471      break;
472      // Indication that verification should be retried at runtime.
473    case VERIFY_ERROR_BAD_CLASS_SOFT:
474      if (!allow_soft_failures_) {
475        have_pending_hard_failure_ = true;
476      }
477      break;
478      // Hard verification failures at compile time will still fail at runtime, so the class is
479      // marked as rejected to prevent it from being compiled.
480    case VERIFY_ERROR_BAD_CLASS_HARD: {
481      if (Runtime::Current()->IsCompiler()) {
482        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
483        AddRejectedClass(ref);
484      }
485      have_pending_hard_failure_ = true;
486      break;
487    }
488  }
489  failures_.push_back(error);
490  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
491                                    work_insn_idx_));
492  std::ostringstream* failure_message = new std::ostringstream(location);
493  failure_messages_.push_back(failure_message);
494  return *failure_message;
495}
496
497void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
498  size_t failure_num = failure_messages_.size();
499  DCHECK_NE(failure_num, 0U);
500  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
501  prepend += last_fail_message->str();
502  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
503  delete last_fail_message;
504}
505
506void MethodVerifier::AppendToLastFailMessage(std::string append) {
507  size_t failure_num = failure_messages_.size();
508  DCHECK_NE(failure_num, 0U);
509  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
510  (*last_fail_message) << append;
511}
512
513bool MethodVerifier::ComputeWidthsAndCountOps() {
514  const uint16_t* insns = code_item_->insns_;
515  size_t insns_size = code_item_->insns_size_in_code_units_;
516  const Instruction* inst = Instruction::At(insns);
517  size_t new_instance_count = 0;
518  size_t monitor_enter_count = 0;
519  size_t dex_pc = 0;
520
521  while (dex_pc < insns_size) {
522    Instruction::Code opcode = inst->Opcode();
523    switch (opcode) {
524      case Instruction::APUT_OBJECT:
525      case Instruction::CHECK_CAST:
526        has_check_casts_ = true;
527        break;
528      case Instruction::INVOKE_VIRTUAL:
529      case Instruction::INVOKE_VIRTUAL_RANGE:
530      case Instruction::INVOKE_INTERFACE:
531      case Instruction::INVOKE_INTERFACE_RANGE:
532        has_virtual_or_interface_invokes_ = true;
533        break;
534      case Instruction::MONITOR_ENTER:
535        monitor_enter_count++;
536        break;
537      case Instruction::NEW_INSTANCE:
538        new_instance_count++;
539        break;
540      default:
541        break;
542    }
543    size_t inst_size = inst->SizeInCodeUnits();
544    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
545    dex_pc += inst_size;
546    inst = inst->Next();
547  }
548
549  if (dex_pc != insns_size) {
550    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
551                                      << dex_pc << " vs. " << insns_size << ")";
552    return false;
553  }
554
555  new_instance_count_ = new_instance_count;
556  monitor_enter_count_ = monitor_enter_count;
557  return true;
558}
559
560bool MethodVerifier::ScanTryCatchBlocks() {
561  uint32_t tries_size = code_item_->tries_size_;
562  if (tries_size == 0) {
563    return true;
564  }
565  uint32_t insns_size = code_item_->insns_size_in_code_units_;
566  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
567
568  for (uint32_t idx = 0; idx < tries_size; idx++) {
569    const DexFile::TryItem* try_item = &tries[idx];
570    uint32_t start = try_item->start_addr_;
571    uint32_t end = start + try_item->insn_count_;
572    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
573      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
574                                        << " endAddr=" << end << " (size=" << insns_size << ")";
575      return false;
576    }
577    if (!insn_flags_[start].IsOpcode()) {
578      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
579          << "'try' block starts inside an instruction (" << start << ")";
580      return false;
581    }
582    for (uint32_t dex_pc = start; dex_pc < end;
583        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
584      insn_flags_[dex_pc].SetInTry();
585    }
586  }
587  // Iterate over each of the handlers to verify target addresses.
588  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
589  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
590  ClassLinker* linker = Runtime::Current()->GetClassLinker();
591  for (uint32_t idx = 0; idx < handlers_size; idx++) {
592    CatchHandlerIterator iterator(handlers_ptr);
593    for (; iterator.HasNext(); iterator.Next()) {
594      uint32_t dex_pc= iterator.GetHandlerAddress();
595      if (!insn_flags_[dex_pc].IsOpcode()) {
596        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
597            << "exception handler starts at bad address (" << dex_pc << ")";
598        return false;
599      }
600      insn_flags_[dex_pc].SetBranchTarget();
601      // Ensure exception types are resolved so that they don't need resolution to be delivered,
602      // unresolved exception types will be ignored by exception delivery
603      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
604        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
605                                                            iterator.GetHandlerTypeIndex(),
606                                                            *dex_cache_, *class_loader_);
607        if (exception_type == NULL) {
608          DCHECK(Thread::Current()->IsExceptionPending());
609          Thread::Current()->ClearException();
610        }
611      }
612    }
613    handlers_ptr = iterator.EndDataPointer();
614  }
615  return true;
616}
617
618bool MethodVerifier::VerifyInstructions() {
619  const Instruction* inst = Instruction::At(code_item_->insns_);
620
621  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
622  insn_flags_[0].SetBranchTarget();
623  insn_flags_[0].SetCompileTimeInfoPoint();
624
625  uint32_t insns_size = code_item_->insns_size_in_code_units_;
626  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
627    if (!VerifyInstruction(inst, dex_pc)) {
628      DCHECK_NE(failures_.size(), 0U);
629      return false;
630    }
631    /* Flag instructions that are garbage collection points */
632    // All invoke points are marked as "Throw" points already.
633    // We are relying on this to also count all the invokes as interesting.
634    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
635      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
636    } else if (inst->IsReturn()) {
637      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
638    }
639    dex_pc += inst->SizeInCodeUnits();
640    inst = inst->Next();
641  }
642  return true;
643}
644
645bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
646  DecodedInstruction dec_insn(inst);
647  bool result = true;
648  switch (inst->GetVerifyTypeArgumentA()) {
649    case Instruction::kVerifyRegA:
650      result = result && CheckRegisterIndex(dec_insn.vA);
651      break;
652    case Instruction::kVerifyRegAWide:
653      result = result && CheckWideRegisterIndex(dec_insn.vA);
654      break;
655  }
656  switch (inst->GetVerifyTypeArgumentB()) {
657    case Instruction::kVerifyRegB:
658      result = result && CheckRegisterIndex(dec_insn.vB);
659      break;
660    case Instruction::kVerifyRegBField:
661      result = result && CheckFieldIndex(dec_insn.vB);
662      break;
663    case Instruction::kVerifyRegBMethod:
664      result = result && CheckMethodIndex(dec_insn.vB);
665      break;
666    case Instruction::kVerifyRegBNewInstance:
667      result = result && CheckNewInstance(dec_insn.vB);
668      break;
669    case Instruction::kVerifyRegBString:
670      result = result && CheckStringIndex(dec_insn.vB);
671      break;
672    case Instruction::kVerifyRegBType:
673      result = result && CheckTypeIndex(dec_insn.vB);
674      break;
675    case Instruction::kVerifyRegBWide:
676      result = result && CheckWideRegisterIndex(dec_insn.vB);
677      break;
678  }
679  switch (inst->GetVerifyTypeArgumentC()) {
680    case Instruction::kVerifyRegC:
681      result = result && CheckRegisterIndex(dec_insn.vC);
682      break;
683    case Instruction::kVerifyRegCField:
684      result = result && CheckFieldIndex(dec_insn.vC);
685      break;
686    case Instruction::kVerifyRegCNewArray:
687      result = result && CheckNewArray(dec_insn.vC);
688      break;
689    case Instruction::kVerifyRegCType:
690      result = result && CheckTypeIndex(dec_insn.vC);
691      break;
692    case Instruction::kVerifyRegCWide:
693      result = result && CheckWideRegisterIndex(dec_insn.vC);
694      break;
695  }
696  switch (inst->GetVerifyExtraFlags()) {
697    case Instruction::kVerifyArrayData:
698      result = result && CheckArrayData(code_offset);
699      break;
700    case Instruction::kVerifyBranchTarget:
701      result = result && CheckBranchTarget(code_offset);
702      break;
703    case Instruction::kVerifySwitchTargets:
704      result = result && CheckSwitchTargets(code_offset);
705      break;
706    case Instruction::kVerifyVarArg:
707      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
708      break;
709    case Instruction::kVerifyVarArgRange:
710      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
711      break;
712    case Instruction::kVerifyError:
713      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
714      result = false;
715      break;
716  }
717  return result;
718}
719
720bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
721  if (idx >= code_item_->registers_size_) {
722    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
723                                      << code_item_->registers_size_ << ")";
724    return false;
725  }
726  return true;
727}
728
729bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
730  if (idx + 1 >= code_item_->registers_size_) {
731    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
732                                      << "+1 >= " << code_item_->registers_size_ << ")";
733    return false;
734  }
735  return true;
736}
737
738bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
739  if (idx >= dex_file_->GetHeader().field_ids_size_) {
740    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
741                                      << dex_file_->GetHeader().field_ids_size_ << ")";
742    return false;
743  }
744  return true;
745}
746
747bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
748  if (idx >= dex_file_->GetHeader().method_ids_size_) {
749    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
750                                      << dex_file_->GetHeader().method_ids_size_ << ")";
751    return false;
752  }
753  return true;
754}
755
756bool MethodVerifier::CheckNewInstance(uint32_t idx) {
757  if (idx >= dex_file_->GetHeader().type_ids_size_) {
758    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
759                                      << dex_file_->GetHeader().type_ids_size_ << ")";
760    return false;
761  }
762  // We don't need the actual class, just a pointer to the class name.
763  const char* descriptor = dex_file_->StringByTypeIdx(idx);
764  if (descriptor[0] != 'L') {
765    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
766    return false;
767  }
768  return true;
769}
770
771bool MethodVerifier::CheckStringIndex(uint32_t idx) {
772  if (idx >= dex_file_->GetHeader().string_ids_size_) {
773    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
774                                      << dex_file_->GetHeader().string_ids_size_ << ")";
775    return false;
776  }
777  return true;
778}
779
780bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
781  if (idx >= dex_file_->GetHeader().type_ids_size_) {
782    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
783                                      << dex_file_->GetHeader().type_ids_size_ << ")";
784    return false;
785  }
786  return true;
787}
788
789bool MethodVerifier::CheckNewArray(uint32_t idx) {
790  if (idx >= dex_file_->GetHeader().type_ids_size_) {
791    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
792                                      << dex_file_->GetHeader().type_ids_size_ << ")";
793    return false;
794  }
795  int bracket_count = 0;
796  const char* descriptor = dex_file_->StringByTypeIdx(idx);
797  const char* cp = descriptor;
798  while (*cp++ == '[') {
799    bracket_count++;
800  }
801  if (bracket_count == 0) {
802    /* The given class must be an array type. */
803    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
804        << "can't new-array class '" << descriptor << "' (not an array)";
805    return false;
806  } else if (bracket_count > 255) {
807    /* It is illegal to create an array of more than 255 dimensions. */
808    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
809        << "can't new-array class '" << descriptor << "' (exceeds limit)";
810    return false;
811  }
812  return true;
813}
814
815bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
816  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
817  const uint16_t* insns = code_item_->insns_ + cur_offset;
818  const uint16_t* array_data;
819  int32_t array_data_offset;
820
821  DCHECK_LT(cur_offset, insn_count);
822  /* make sure the start of the array data table is in range */
823  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
824  if ((int32_t) cur_offset + array_data_offset < 0 ||
825      cur_offset + array_data_offset + 2 >= insn_count) {
826    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
827                                      << ", data offset " << array_data_offset
828                                      << ", count " << insn_count;
829    return false;
830  }
831  /* offset to array data table is a relative branch-style offset */
832  array_data = insns + array_data_offset;
833  /* make sure the table is 32-bit aligned */
834  if ((((uint32_t) array_data) & 0x03) != 0) {
835    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
836                                      << ", data offset " << array_data_offset;
837    return false;
838  }
839  uint32_t value_width = array_data[1];
840  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
841  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
842  /* make sure the end of the switch is in range */
843  if (cur_offset + array_data_offset + table_size > insn_count) {
844    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
845                                      << ", data offset " << array_data_offset << ", end "
846                                      << cur_offset + array_data_offset + table_size
847                                      << ", count " << insn_count;
848    return false;
849  }
850  return true;
851}
852
853bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
854  int32_t offset;
855  bool isConditional, selfOkay;
856  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
857    return false;
858  }
859  if (!selfOkay && offset == 0) {
860    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
861                                      << reinterpret_cast<void*>(cur_offset);
862    return false;
863  }
864  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
865  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
866  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
867    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
868                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
869    return false;
870  }
871  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
872  int32_t abs_offset = cur_offset + offset;
873  if (abs_offset < 0 ||
874      (uint32_t) abs_offset >= insn_count ||
875      !insn_flags_[abs_offset].IsOpcode()) {
876    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
877                                      << reinterpret_cast<void*>(abs_offset) << ") at "
878                                      << reinterpret_cast<void*>(cur_offset);
879    return false;
880  }
881  insn_flags_[abs_offset].SetBranchTarget();
882  return true;
883}
884
885bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
886                                  bool* selfOkay) {
887  const uint16_t* insns = code_item_->insns_ + cur_offset;
888  *pConditional = false;
889  *selfOkay = false;
890  switch (*insns & 0xff) {
891    case Instruction::GOTO:
892      *pOffset = ((int16_t) *insns) >> 8;
893      break;
894    case Instruction::GOTO_32:
895      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
896      *selfOkay = true;
897      break;
898    case Instruction::GOTO_16:
899      *pOffset = (int16_t) insns[1];
900      break;
901    case Instruction::IF_EQ:
902    case Instruction::IF_NE:
903    case Instruction::IF_LT:
904    case Instruction::IF_GE:
905    case Instruction::IF_GT:
906    case Instruction::IF_LE:
907    case Instruction::IF_EQZ:
908    case Instruction::IF_NEZ:
909    case Instruction::IF_LTZ:
910    case Instruction::IF_GEZ:
911    case Instruction::IF_GTZ:
912    case Instruction::IF_LEZ:
913      *pOffset = (int16_t) insns[1];
914      *pConditional = true;
915      break;
916    default:
917      return false;
918      break;
919  }
920  return true;
921}
922
923bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
924  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
925  DCHECK_LT(cur_offset, insn_count);
926  const uint16_t* insns = code_item_->insns_ + cur_offset;
927  /* make sure the start of the switch is in range */
928  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
929  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
930    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
931                                      << ", switch offset " << switch_offset
932                                      << ", count " << insn_count;
933    return false;
934  }
935  /* offset to switch table is a relative branch-style offset */
936  const uint16_t* switch_insns = insns + switch_offset;
937  /* make sure the table is 32-bit aligned */
938  if ((((uint32_t) switch_insns) & 0x03) != 0) {
939    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
940                                      << ", switch offset " << switch_offset;
941    return false;
942  }
943  uint32_t switch_count = switch_insns[1];
944  int32_t keys_offset, targets_offset;
945  uint16_t expected_signature;
946  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
947    /* 0=sig, 1=count, 2/3=firstKey */
948    targets_offset = 4;
949    keys_offset = -1;
950    expected_signature = Instruction::kPackedSwitchSignature;
951  } else {
952    /* 0=sig, 1=count, 2..count*2 = keys */
953    keys_offset = 2;
954    targets_offset = 2 + 2 * switch_count;
955    expected_signature = Instruction::kSparseSwitchSignature;
956  }
957  uint32_t table_size = targets_offset + switch_count * 2;
958  if (switch_insns[0] != expected_signature) {
959    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
960        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
961                        switch_insns[0], expected_signature);
962    return false;
963  }
964  /* make sure the end of the switch is in range */
965  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
966    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
967                                      << ", switch offset " << switch_offset
968                                      << ", end " << (cur_offset + switch_offset + table_size)
969                                      << ", count " << insn_count;
970    return false;
971  }
972  /* for a sparse switch, verify the keys are in ascending order */
973  if (keys_offset > 0 && switch_count > 1) {
974    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
975    for (uint32_t targ = 1; targ < switch_count; targ++) {
976      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
977                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
978      if (key <= last_key) {
979        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
980                                          << ", this=" << key;
981        return false;
982      }
983      last_key = key;
984    }
985  }
986  /* verify each switch target */
987  for (uint32_t targ = 0; targ < switch_count; targ++) {
988    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
989                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
990    int32_t abs_offset = cur_offset + offset;
991    if (abs_offset < 0 ||
992        abs_offset >= (int32_t) insn_count ||
993        !insn_flags_[abs_offset].IsOpcode()) {
994      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
995                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
996                                        << reinterpret_cast<void*>(cur_offset)
997                                        << "[" << targ << "]";
998      return false;
999    }
1000    insn_flags_[abs_offset].SetBranchTarget();
1001  }
1002  return true;
1003}
1004
1005bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1006  if (vA > 5) {
1007    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1008    return false;
1009  }
1010  uint16_t registers_size = code_item_->registers_size_;
1011  for (uint32_t idx = 0; idx < vA; idx++) {
1012    if (arg[idx] >= registers_size) {
1013      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1014                                        << ") in non-range invoke (>= " << registers_size << ")";
1015      return false;
1016    }
1017  }
1018
1019  return true;
1020}
1021
1022bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1023  uint16_t registers_size = code_item_->registers_size_;
1024  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1025  // integer overflow when adding them here.
1026  if (vA + vC > registers_size) {
1027    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1028                                      << " in range invoke (> " << registers_size << ")";
1029    return false;
1030  }
1031  return true;
1032}
1033
1034bool MethodVerifier::VerifyCodeFlow() {
1035  uint16_t registers_size = code_item_->registers_size_;
1036  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1037
1038  if (registers_size * insns_size > 4*1024*1024) {
1039    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1040                 << " insns_size=" << insns_size << ")";
1041  }
1042  /* Create and initialize table holding register status */
1043  reg_table_.Init(kTrackCompilerInterestPoints,
1044                  insn_flags_.get(),
1045                  insns_size,
1046                  registers_size,
1047                  this);
1048
1049
1050  work_line_.reset(RegisterLine::Create(registers_size, this));
1051  saved_line_.reset(RegisterLine::Create(registers_size, this));
1052
1053  /* Initialize register types of method arguments. */
1054  if (!SetTypesFromSignature()) {
1055    DCHECK_NE(failures_.size(), 0U);
1056    std::string prepend("Bad signature in ");
1057    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1058    PrependToLastFailMessage(prepend);
1059    return false;
1060  }
1061  /* Perform code flow verification. */
1062  if (!CodeFlowVerifyMethod()) {
1063    DCHECK_NE(failures_.size(), 0U);
1064    return false;
1065  }
1066
1067  // Compute information for compiler.
1068  if (Runtime::Current()->IsCompiler()) {
1069    MethodReference ref(dex_file_, dex_method_idx_);
1070    bool compile = IsCandidateForCompilation(ref, method_access_flags_);
1071    if (compile) {
1072      /* Generate a register map and add it to the method. */
1073      const std::vector<uint8_t>* dex_gc_map = GenerateGcMap();
1074      if (dex_gc_map == NULL) {
1075        DCHECK_NE(failures_.size(), 0U);
1076        return false;  // Not a real failure, but a failure to encode
1077      }
1078      if (kIsDebugBuild) {
1079        VerifyGcMap(*dex_gc_map);
1080      }
1081      verifier::MethodVerifier::SetDexGcMap(ref, dex_gc_map);
1082    }
1083
1084    if (has_check_casts_) {
1085      MethodVerifier::MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet();
1086      if (method_to_safe_casts != NULL) {
1087        SetSafeCastMap(ref, method_to_safe_casts);
1088      }
1089    }
1090
1091    if (has_virtual_or_interface_invokes_) {
1092      MethodVerifier::PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap();
1093      if (pc_to_concrete_method != NULL) {
1094        SetDevirtMap(ref, pc_to_concrete_method);
1095      }
1096    }
1097  }
1098  return true;
1099}
1100
1101std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1102  DCHECK_EQ(failures_.size(), failure_messages_.size());
1103  for (size_t i = 0; i < failures_.size(); ++i) {
1104      os << failure_messages_[i]->str() << "\n";
1105  }
1106  return os;
1107}
1108
1109extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1110    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1111  v->Dump(std::cerr);
1112}
1113
1114void MethodVerifier::Dump(std::ostream& os) {
1115  if (code_item_ == NULL) {
1116    os << "Native method\n";
1117    return;
1118  }
1119  {
1120    os << "Register Types:\n";
1121    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1122    std::ostream indent_os(&indent_filter);
1123    reg_types_.Dump(indent_os);
1124  }
1125  os << "Dumping instructions and register lines:\n";
1126  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1127  std::ostream indent_os(&indent_filter);
1128  const Instruction* inst = Instruction::At(code_item_->insns_);
1129  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1130      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1131    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1132    if (reg_line != NULL) {
1133      indent_os << reg_line->Dump() << "\n";
1134    }
1135    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1136    const bool kDumpHexOfInstruction = false;
1137    if (kDumpHexOfInstruction) {
1138      indent_os << inst->DumpHex(5) << " ";
1139    }
1140    indent_os << inst->DumpString(dex_file_) << "\n";
1141    inst = inst->Next();
1142  }
1143}
1144
1145static bool IsPrimitiveDescriptor(char descriptor) {
1146  switch (descriptor) {
1147    case 'I':
1148    case 'C':
1149    case 'S':
1150    case 'B':
1151    case 'Z':
1152    case 'F':
1153    case 'D':
1154    case 'J':
1155      return true;
1156    default:
1157      return false;
1158  }
1159}
1160
1161bool MethodVerifier::SetTypesFromSignature() {
1162  RegisterLine* reg_line = reg_table_.GetLine(0);
1163  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1164  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1165
1166  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1167  // Include the "this" pointer.
1168  size_t cur_arg = 0;
1169  if (!IsStatic()) {
1170    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1171    // argument as uninitialized. This restricts field access until the superclass constructor is
1172    // called.
1173    const RegType& declaring_class = GetDeclaringClass();
1174    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1175      reg_line->SetRegisterType(arg_start + cur_arg,
1176                                reg_types_.UninitializedThisArgument(declaring_class));
1177    } else {
1178      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1179    }
1180    cur_arg++;
1181  }
1182
1183  const DexFile::ProtoId& proto_id =
1184      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1185  DexFileParameterIterator iterator(*dex_file_, proto_id);
1186
1187  for (; iterator.HasNext(); iterator.Next()) {
1188    const char* descriptor = iterator.GetDescriptor();
1189    if (descriptor == NULL) {
1190      LOG(FATAL) << "Null descriptor";
1191    }
1192    if (cur_arg >= expected_args) {
1193      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1194                                        << " args, found more (" << descriptor << ")";
1195      return false;
1196    }
1197    switch (descriptor[0]) {
1198      case 'L':
1199      case '[':
1200        // We assume that reference arguments are initialized. The only way it could be otherwise
1201        // (assuming the caller was verified) is if the current method is <init>, but in that case
1202        // it's effectively considered initialized the instant we reach here (in the sense that we
1203        // can return without doing anything or call virtual methods).
1204        {
1205          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
1206                                                              false);
1207          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1208        }
1209        break;
1210      case 'Z':
1211        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1212        break;
1213      case 'C':
1214        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1215        break;
1216      case 'B':
1217        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1218        break;
1219      case 'I':
1220        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1221        break;
1222      case 'S':
1223        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1224        break;
1225      case 'F':
1226        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1227        break;
1228      case 'J':
1229      case 'D': {
1230        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1231        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1232        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1233        cur_arg++;
1234        break;
1235      }
1236      default:
1237        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1238                                          << descriptor << "'";
1239        return false;
1240    }
1241    cur_arg++;
1242  }
1243  if (cur_arg != expected_args) {
1244    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1245                                      << " arguments, found " << cur_arg;
1246    return false;
1247  }
1248  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1249  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1250  // format. Only major difference from the method argument format is that 'V' is supported.
1251  bool result;
1252  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1253    result = descriptor[1] == '\0';
1254  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1255    size_t i = 0;
1256    do {
1257      i++;
1258    } while (descriptor[i] == '[');  // process leading [
1259    if (descriptor[i] == 'L') {  // object array
1260      do {
1261        i++;  // find closing ;
1262      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1263      result = descriptor[i] == ';';
1264    } else {  // primitive array
1265      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1266    }
1267  } else if (descriptor[0] == 'L') {
1268    // could be more thorough here, but shouldn't be required
1269    size_t i = 0;
1270    do {
1271      i++;
1272    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1273    result = descriptor[i] == ';';
1274  } else {
1275    result = false;
1276  }
1277  if (!result) {
1278    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1279                                      << descriptor << "'";
1280  }
1281  return result;
1282}
1283
1284bool MethodVerifier::CodeFlowVerifyMethod() {
1285  const uint16_t* insns = code_item_->insns_;
1286  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1287
1288  /* Begin by marking the first instruction as "changed". */
1289  insn_flags_[0].SetChanged();
1290  uint32_t start_guess = 0;
1291
1292  /* Continue until no instructions are marked "changed". */
1293  while (true) {
1294    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1295    uint32_t insn_idx = start_guess;
1296    for (; insn_idx < insns_size; insn_idx++) {
1297      if (insn_flags_[insn_idx].IsChanged())
1298        break;
1299    }
1300    if (insn_idx == insns_size) {
1301      if (start_guess != 0) {
1302        /* try again, starting from the top */
1303        start_guess = 0;
1304        continue;
1305      } else {
1306        /* all flags are clear */
1307        break;
1308      }
1309    }
1310    // We carry the working set of registers from instruction to instruction. If this address can
1311    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1312    // "changed" flags, we need to load the set of registers from the table.
1313    // Because we always prefer to continue on to the next instruction, we should never have a
1314    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1315    // target.
1316    work_insn_idx_ = insn_idx;
1317    if (insn_flags_[insn_idx].IsBranchTarget()) {
1318      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1319    } else {
1320#ifndef NDEBUG
1321      /*
1322       * Sanity check: retrieve the stored register line (assuming
1323       * a full table) and make sure it actually matches.
1324       */
1325      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1326      if (register_line != NULL) {
1327        if (work_line_->CompareLine(register_line) != 0) {
1328          Dump(std::cout);
1329          std::cout << info_messages_.str();
1330          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1331                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1332                     << " work_line=" << *work_line_ << "\n"
1333                     << "  expected=" << *register_line;
1334        }
1335      }
1336#endif
1337    }
1338    if (!CodeFlowVerifyInstruction(&start_guess)) {
1339      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1340      prepend += " failed to verify: ";
1341      PrependToLastFailMessage(prepend);
1342      return false;
1343    }
1344    /* Clear "changed" and mark as visited. */
1345    insn_flags_[insn_idx].SetVisited();
1346    insn_flags_[insn_idx].ClearChanged();
1347  }
1348
1349  if (gDebugVerify) {
1350    /*
1351     * Scan for dead code. There's nothing "evil" about dead code
1352     * (besides the wasted space), but it indicates a flaw somewhere
1353     * down the line, possibly in the verifier.
1354     *
1355     * If we've substituted "always throw" instructions into the stream,
1356     * we are almost certainly going to have some dead code.
1357     */
1358    int dead_start = -1;
1359    uint32_t insn_idx = 0;
1360    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1361      /*
1362       * Switch-statement data doesn't get "visited" by scanner. It
1363       * may or may not be preceded by a padding NOP (for alignment).
1364       */
1365      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1366          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1367          insns[insn_idx] == Instruction::kArrayDataSignature ||
1368          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1369           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1370            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1371            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1372        insn_flags_[insn_idx].SetVisited();
1373      }
1374
1375      if (!insn_flags_[insn_idx].IsVisited()) {
1376        if (dead_start < 0)
1377          dead_start = insn_idx;
1378      } else if (dead_start >= 0) {
1379        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1380                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1381        dead_start = -1;
1382      }
1383    }
1384    if (dead_start >= 0) {
1385      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1386                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1387    }
1388    // To dump the state of the verify after a method, do something like:
1389    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1390    //     "boolean java.lang.String.equals(java.lang.Object)") {
1391    //   LOG(INFO) << info_messages_.str();
1392    // }
1393  }
1394  return true;
1395}
1396
1397bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1398  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1399  // We want the state _before_ the instruction, for the case where the dex pc we're
1400  // interested in is itself a monitor-enter instruction (which is a likely place
1401  // for a thread to be suspended).
1402  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1403    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1404    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1405      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1406    }
1407  }
1408
1409  /*
1410   * Once we finish decoding the instruction, we need to figure out where
1411   * we can go from here. There are three possible ways to transfer
1412   * control to another statement:
1413   *
1414   * (1) Continue to the next instruction. Applies to all but
1415   *     unconditional branches, method returns, and exception throws.
1416   * (2) Branch to one or more possible locations. Applies to branches
1417   *     and switch statements.
1418   * (3) Exception handlers. Applies to any instruction that can
1419   *     throw an exception that is handled by an encompassing "try"
1420   *     block.
1421   *
1422   * We can also return, in which case there is no successor instruction
1423   * from this point.
1424   *
1425   * The behavior can be determined from the opcode flags.
1426   */
1427  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1428  const Instruction* inst = Instruction::At(insns);
1429  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1430
1431  int32_t branch_target = 0;
1432  bool just_set_result = false;
1433  if (gDebugVerify) {
1434    // Generate processing back trace to debug verifier
1435    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1436                    << *work_line_.get() << "\n";
1437  }
1438
1439  /*
1440   * Make a copy of the previous register state. If the instruction
1441   * can throw an exception, we will copy/merge this into the "catch"
1442   * address rather than work_line, because we don't want the result
1443   * from the "successful" code path (e.g. a check-cast that "improves"
1444   * a type) to be visible to the exception handler.
1445   */
1446  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1447    saved_line_->CopyFromLine(work_line_.get());
1448  } else {
1449#ifndef NDEBUG
1450    saved_line_->FillWithGarbage();
1451#endif
1452  }
1453
1454
1455  // We need to ensure the work line is consistent while performing validation. When we spot a
1456  // peephole pattern we compute a new line for either the fallthrough instruction or the
1457  // branch target.
1458  UniquePtr<RegisterLine> branch_line;
1459  UniquePtr<RegisterLine> fallthrough_line;
1460
1461  switch (inst->Opcode()) {
1462    case Instruction::NOP:
1463      /*
1464       * A "pure" NOP has no effect on anything. Data tables start with
1465       * a signature that looks like a NOP; if we see one of these in
1466       * the course of executing code then we have a problem.
1467       */
1468      if (inst->VRegA_10x() != 0) {
1469        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1470      }
1471      break;
1472
1473    case Instruction::MOVE:
1474      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1475      break;
1476    case Instruction::MOVE_FROM16:
1477      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1478      break;
1479    case Instruction::MOVE_16:
1480      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1481      break;
1482    case Instruction::MOVE_WIDE:
1483      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1484      break;
1485    case Instruction::MOVE_WIDE_FROM16:
1486      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1487      break;
1488    case Instruction::MOVE_WIDE_16:
1489      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1490      break;
1491    case Instruction::MOVE_OBJECT:
1492      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1493      break;
1494    case Instruction::MOVE_OBJECT_FROM16:
1495      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1496      break;
1497    case Instruction::MOVE_OBJECT_16:
1498      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1499      break;
1500
1501    /*
1502     * The move-result instructions copy data out of a "pseudo-register"
1503     * with the results from the last method invocation. In practice we
1504     * might want to hold the result in an actual CPU register, so the
1505     * Dalvik spec requires that these only appear immediately after an
1506     * invoke or filled-new-array.
1507     *
1508     * These calls invalidate the "result" register. (This is now
1509     * redundant with the reset done below, but it can make the debug info
1510     * easier to read in some cases.)
1511     */
1512    case Instruction::MOVE_RESULT:
1513      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1514      break;
1515    case Instruction::MOVE_RESULT_WIDE:
1516      work_line_->CopyResultRegister2(inst->VRegA_11x());
1517      break;
1518    case Instruction::MOVE_RESULT_OBJECT:
1519      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1520      break;
1521
1522    case Instruction::MOVE_EXCEPTION: {
1523      /*
1524       * This statement can only appear as the first instruction in an exception handler. We verify
1525       * that as part of extracting the exception type from the catch block list.
1526       */
1527      const RegType& res_type = GetCaughtExceptionType();
1528      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1529      break;
1530    }
1531    case Instruction::RETURN_VOID:
1532      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1533        if (!GetMethodReturnType().IsConflict()) {
1534          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1535        }
1536      }
1537      break;
1538    case Instruction::RETURN:
1539      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1540        /* check the method signature */
1541        const RegType& return_type = GetMethodReturnType();
1542        if (!return_type.IsCategory1Types()) {
1543          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1544                                            << return_type;
1545        } else {
1546          // Compilers may generate synthetic functions that write byte values into boolean fields.
1547          // Also, it may use integer values for boolean, byte, short, and character return types.
1548          const uint32_t vregA = inst->VRegA_11x();
1549          const RegType& src_type = work_line_->GetRegisterType(vregA);
1550          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1551                          ((return_type.IsBoolean() || return_type.IsByte() ||
1552                           return_type.IsShort() || return_type.IsChar()) &&
1553                           src_type.IsInteger()));
1554          /* check the register contents */
1555          bool success =
1556              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1557          if (!success) {
1558            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1559          }
1560        }
1561      }
1562      break;
1563    case Instruction::RETURN_WIDE:
1564      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1565        /* check the method signature */
1566        const RegType& return_type = GetMethodReturnType();
1567        if (!return_type.IsCategory2Types()) {
1568          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1569        } else {
1570          /* check the register contents */
1571          const uint32_t vregA = inst->VRegA_11x();
1572          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1573          if (!success) {
1574            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1575          }
1576        }
1577      }
1578      break;
1579    case Instruction::RETURN_OBJECT:
1580      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1581        const RegType& return_type = GetMethodReturnType();
1582        if (!return_type.IsReferenceTypes()) {
1583          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1584        } else {
1585          /* return_type is the *expected* return type, not register value */
1586          DCHECK(!return_type.IsZero());
1587          DCHECK(!return_type.IsUninitializedReference());
1588          const uint32_t vregA = inst->VRegA_11x();
1589          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1590          // Disallow returning uninitialized values and verify that the reference in vAA is an
1591          // instance of the "return_type"
1592          if (reg_type.IsUninitializedTypes()) {
1593            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1594                                              << reg_type << "'";
1595          } else if (!return_type.IsAssignableFrom(reg_type)) {
1596            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1597              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1598                  << "' or '" << reg_type << "'";
1599            } else {
1600              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1601                  << "', but expected from declaration '" << return_type << "'";
1602            }
1603          }
1604        }
1605      }
1606      break;
1607
1608      /* could be boolean, int, float, or a null reference */
1609    case Instruction::CONST_4: {
1610      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1611      work_line_->SetRegisterType(inst->VRegA_11n(), reg_types_.FromCat1Const(val, true));
1612      break;
1613    }
1614    case Instruction::CONST_16: {
1615      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1616      work_line_->SetRegisterType(inst->VRegA_21s(), reg_types_.FromCat1Const(val, true));
1617      break;
1618    }
1619    case Instruction::CONST:
1620      work_line_->SetRegisterType(inst->VRegA_31i(),
1621                                  reg_types_.FromCat1Const(inst->VRegB_31i(), true));
1622      break;
1623    case Instruction::CONST_HIGH16:
1624      work_line_->SetRegisterType(inst->VRegA_21h(),
1625                                  reg_types_.FromCat1Const(inst->VRegB_21h() << 16, true));
1626      break;
1627      /* could be long or double; resolved upon use */
1628    case Instruction::CONST_WIDE_16: {
1629      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1630      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1631      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1632      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1633      break;
1634    }
1635    case Instruction::CONST_WIDE_32: {
1636      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1637      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1638      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1639      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1640      break;
1641    }
1642    case Instruction::CONST_WIDE: {
1643      int64_t val = inst->VRegB_51l();
1644      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1645      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1646      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1647      break;
1648    }
1649    case Instruction::CONST_WIDE_HIGH16: {
1650      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1651      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1652      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1653      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1654      break;
1655    }
1656    case Instruction::CONST_STRING:
1657      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1658      break;
1659    case Instruction::CONST_STRING_JUMBO:
1660      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1661      break;
1662    case Instruction::CONST_CLASS: {
1663      // Get type from instruction if unresolved then we need an access check
1664      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1665      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1666      // Register holds class, ie its type is class, on error it will hold Conflict.
1667      work_line_->SetRegisterType(inst->VRegA_21c(),
1668                                  res_type.IsConflict() ? res_type
1669                                                        : reg_types_.JavaLangClass(true));
1670      break;
1671    }
1672    case Instruction::MONITOR_ENTER:
1673      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1674      break;
1675    case Instruction::MONITOR_EXIT:
1676      /*
1677       * monitor-exit instructions are odd. They can throw exceptions,
1678       * but when they do they act as if they succeeded and the PC is
1679       * pointing to the following instruction. (This behavior goes back
1680       * to the need to handle asynchronous exceptions, a now-deprecated
1681       * feature that Dalvik doesn't support.)
1682       *
1683       * In practice we don't need to worry about this. The only
1684       * exceptions that can be thrown from monitor-exit are for a
1685       * null reference and -exit without a matching -enter. If the
1686       * structured locking checks are working, the former would have
1687       * failed on the -enter instruction, and the latter is impossible.
1688       *
1689       * This is fortunate, because issue 3221411 prevents us from
1690       * chasing the "can throw" path when monitor verification is
1691       * enabled. If we can fully verify the locking we can ignore
1692       * some catch blocks (which will show up as "dead" code when
1693       * we skip them here); if we can't, then the code path could be
1694       * "live" so we still need to check it.
1695       */
1696      opcode_flags &= ~Instruction::kThrow;
1697      work_line_->PopMonitor(inst->VRegA_11x());
1698      break;
1699
1700    case Instruction::CHECK_CAST:
1701    case Instruction::INSTANCE_OF: {
1702      /*
1703       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1704       * could be a "upcast" -- not expected, so we don't try to address it.)
1705       *
1706       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1707       * dec_insn.vA when branching to a handler.
1708       */
1709      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1710      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1711      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1712      if (res_type.IsConflict()) {
1713        DCHECK_NE(failures_.size(), 0U);
1714        if (!is_checkcast) {
1715          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1716        }
1717        break;  // bad class
1718      }
1719      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1720      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1721      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1722      if (!res_type.IsNonZeroReferenceTypes()) {
1723        if (is_checkcast) {
1724          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1725        } else {
1726          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1727        }
1728      } else if (!orig_type.IsReferenceTypes()) {
1729        if (is_checkcast) {
1730          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1731        } else {
1732          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1733        }
1734      } else {
1735        if (is_checkcast) {
1736          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1737        } else {
1738          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1739        }
1740      }
1741      break;
1742    }
1743    case Instruction::ARRAY_LENGTH: {
1744      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1745      if (res_type.IsReferenceTypes()) {
1746        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1747          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1748        } else {
1749          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1750        }
1751      }
1752      break;
1753    }
1754    case Instruction::NEW_INSTANCE: {
1755      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1756      if (res_type.IsConflict()) {
1757        DCHECK_NE(failures_.size(), 0U);
1758        break;  // bad class
1759      }
1760      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1761      // can't create an instance of an interface or abstract class */
1762      if (!res_type.IsInstantiableTypes()) {
1763        Fail(VERIFY_ERROR_INSTANTIATION)
1764            << "new-instance on primitive, interface or abstract class" << res_type;
1765        // Soft failure so carry on to set register type.
1766      }
1767      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1768      // Any registers holding previous allocations from this address that have not yet been
1769      // initialized must be marked invalid.
1770      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1771      // add the new uninitialized reference to the register state
1772      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1773      break;
1774    }
1775    case Instruction::NEW_ARRAY:
1776      VerifyNewArray(inst, false, false);
1777      break;
1778    case Instruction::FILLED_NEW_ARRAY:
1779      VerifyNewArray(inst, true, false);
1780      just_set_result = true;  // Filled new array sets result register
1781      break;
1782    case Instruction::FILLED_NEW_ARRAY_RANGE:
1783      VerifyNewArray(inst, true, true);
1784      just_set_result = true;  // Filled new array range sets result register
1785      break;
1786    case Instruction::CMPL_FLOAT:
1787    case Instruction::CMPG_FLOAT:
1788      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1789        break;
1790      }
1791      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1792        break;
1793      }
1794      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1795      break;
1796    case Instruction::CMPL_DOUBLE:
1797    case Instruction::CMPG_DOUBLE:
1798      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1799                                              reg_types_.DoubleHi())) {
1800        break;
1801      }
1802      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1803                                              reg_types_.DoubleHi())) {
1804        break;
1805      }
1806      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1807      break;
1808    case Instruction::CMP_LONG:
1809      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1810                                              reg_types_.LongHi())) {
1811        break;
1812      }
1813      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1814                                              reg_types_.LongHi())) {
1815        break;
1816      }
1817      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1818      break;
1819    case Instruction::THROW: {
1820      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1821      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1822        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1823            << "thrown class " << res_type << " not instanceof Throwable";
1824      }
1825      break;
1826    }
1827    case Instruction::GOTO:
1828    case Instruction::GOTO_16:
1829    case Instruction::GOTO_32:
1830      /* no effect on or use of registers */
1831      break;
1832
1833    case Instruction::PACKED_SWITCH:
1834    case Instruction::SPARSE_SWITCH:
1835      /* verify that vAA is an integer, or can be converted to one */
1836      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1837      break;
1838
1839    case Instruction::FILL_ARRAY_DATA: {
1840      /* Similar to the verification done for APUT */
1841      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1842      /* array_type can be null if the reg type is Zero */
1843      if (!array_type.IsZero()) {
1844        if (!array_type.IsArrayTypes()) {
1845          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1846                                            << array_type;
1847        } else {
1848          const RegType& component_type = reg_types_.GetComponentType(array_type,
1849                                                                      class_loader_->get());
1850          DCHECK(!component_type.IsConflict());
1851          if (component_type.IsNonZeroReferenceTypes()) {
1852            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1853                                              << component_type;
1854          } else {
1855            // Now verify if the element width in the table matches the element width declared in
1856            // the array
1857            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1858            if (array_data[0] != Instruction::kArrayDataSignature) {
1859              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1860            } else {
1861              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1862              // Since we don't compress the data in Dex, expect to see equal width of data stored
1863              // in the table and expected from the array class.
1864              if (array_data[1] != elem_width) {
1865                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1866                                                  << " vs " << elem_width << ")";
1867              }
1868            }
1869          }
1870        }
1871      }
1872      break;
1873    }
1874    case Instruction::IF_EQ:
1875    case Instruction::IF_NE: {
1876      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1877      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1878      bool mismatch = false;
1879      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1880        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1881      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1882        mismatch = !reg_type2.IsReferenceTypes();
1883      } else {  // both integral?
1884        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1885      }
1886      if (mismatch) {
1887        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1888                                          << reg_type2 << ") must both be references or integral";
1889      }
1890      break;
1891    }
1892    case Instruction::IF_LT:
1893    case Instruction::IF_GE:
1894    case Instruction::IF_GT:
1895    case Instruction::IF_LE: {
1896      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1897      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1898      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1899        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1900                                          << reg_type2 << ") must be integral";
1901      }
1902      break;
1903    }
1904    case Instruction::IF_EQZ:
1905    case Instruction::IF_NEZ: {
1906      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1907      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1908        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1909                                          << " unexpected as arg to if-eqz/if-nez";
1910      }
1911
1912      // Find previous instruction - its existence is a precondition to peephole optimization.
1913      uint32_t instance_of_idx = 0;
1914      if (0 != work_insn_idx_) {
1915        instance_of_idx = work_insn_idx_ - 1;
1916        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1917          instance_of_idx--;
1918        }
1919        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1920      } else {
1921        break;
1922      }
1923
1924      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1925
1926      /* Check for peep-hole pattern of:
1927       *    ...;
1928       *    instance-of vX, vY, T;
1929       *    ifXXX vX, label ;
1930       *    ...;
1931       * label:
1932       *    ...;
1933       * and sharpen the type of vY to be type T.
1934       * Note, this pattern can't be if:
1935       *  - if there are other branches to this branch,
1936       *  - when vX == vY.
1937       */
1938      if (!CurrentInsnFlags()->IsBranchTarget() &&
1939          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1940          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1941          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1942        // Check that the we are not attempting conversion to interface types,
1943        // which is not done because of the multiple inheritance implications.
1944        // Also don't change the type if it would result in an upcast.
1945        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1946        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1947
1948        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1949            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1950          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1951          if (inst->Opcode() == Instruction::IF_EQZ) {
1952            fallthrough_line.reset(update_line);
1953          } else {
1954            branch_line.reset(update_line);
1955          }
1956          update_line->CopyFromLine(work_line_.get());
1957          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1958          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1959            // See if instance-of was preceded by a move-object operation, common due to the small
1960            // register encoding space of instance-of, and propagate type information to the source
1961            // of the move-object.
1962            uint32_t move_idx = instance_of_idx - 1;
1963            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1964              move_idx--;
1965            }
1966            CHECK(insn_flags_[move_idx].IsOpcode());
1967            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1968            switch (move_inst->Opcode()) {
1969              case Instruction::MOVE_OBJECT:
1970                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1971                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1972                }
1973                break;
1974              case Instruction::MOVE_OBJECT_FROM16:
1975                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1976                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1977                }
1978                break;
1979              case Instruction::MOVE_OBJECT_16:
1980                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1981                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1982                }
1983                break;
1984              default:
1985                break;
1986            }
1987          }
1988        }
1989      }
1990
1991      break;
1992    }
1993    case Instruction::IF_LTZ:
1994    case Instruction::IF_GEZ:
1995    case Instruction::IF_GTZ:
1996    case Instruction::IF_LEZ: {
1997      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1998      if (!reg_type.IsIntegralTypes()) {
1999        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2000                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2001      }
2002      break;
2003    }
2004    case Instruction::AGET_BOOLEAN:
2005      VerifyAGet(inst, reg_types_.Boolean(), true);
2006      break;
2007    case Instruction::AGET_BYTE:
2008      VerifyAGet(inst, reg_types_.Byte(), true);
2009      break;
2010    case Instruction::AGET_CHAR:
2011      VerifyAGet(inst, reg_types_.Char(), true);
2012      break;
2013    case Instruction::AGET_SHORT:
2014      VerifyAGet(inst, reg_types_.Short(), true);
2015      break;
2016    case Instruction::AGET:
2017      VerifyAGet(inst, reg_types_.Integer(), true);
2018      break;
2019    case Instruction::AGET_WIDE:
2020      VerifyAGet(inst, reg_types_.LongLo(), true);
2021      break;
2022    case Instruction::AGET_OBJECT:
2023      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2024      break;
2025
2026    case Instruction::APUT_BOOLEAN:
2027      VerifyAPut(inst, reg_types_.Boolean(), true);
2028      break;
2029    case Instruction::APUT_BYTE:
2030      VerifyAPut(inst, reg_types_.Byte(), true);
2031      break;
2032    case Instruction::APUT_CHAR:
2033      VerifyAPut(inst, reg_types_.Char(), true);
2034      break;
2035    case Instruction::APUT_SHORT:
2036      VerifyAPut(inst, reg_types_.Short(), true);
2037      break;
2038    case Instruction::APUT:
2039      VerifyAPut(inst, reg_types_.Integer(), true);
2040      break;
2041    case Instruction::APUT_WIDE:
2042      VerifyAPut(inst, reg_types_.LongLo(), true);
2043      break;
2044    case Instruction::APUT_OBJECT:
2045      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2046      break;
2047
2048    case Instruction::IGET_BOOLEAN:
2049      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2050      break;
2051    case Instruction::IGET_BYTE:
2052      VerifyISGet(inst, reg_types_.Byte(), true, false);
2053      break;
2054    case Instruction::IGET_CHAR:
2055      VerifyISGet(inst, reg_types_.Char(), true, false);
2056      break;
2057    case Instruction::IGET_SHORT:
2058      VerifyISGet(inst, reg_types_.Short(), true, false);
2059      break;
2060    case Instruction::IGET:
2061      VerifyISGet(inst, reg_types_.Integer(), true, false);
2062      break;
2063    case Instruction::IGET_WIDE:
2064      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2065      break;
2066    case Instruction::IGET_OBJECT:
2067      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2068      break;
2069
2070    case Instruction::IPUT_BOOLEAN:
2071      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2072      break;
2073    case Instruction::IPUT_BYTE:
2074      VerifyISPut(inst, reg_types_.Byte(), true, false);
2075      break;
2076    case Instruction::IPUT_CHAR:
2077      VerifyISPut(inst, reg_types_.Char(), true, false);
2078      break;
2079    case Instruction::IPUT_SHORT:
2080      VerifyISPut(inst, reg_types_.Short(), true, false);
2081      break;
2082    case Instruction::IPUT:
2083      VerifyISPut(inst, reg_types_.Integer(), true, false);
2084      break;
2085    case Instruction::IPUT_WIDE:
2086      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2087      break;
2088    case Instruction::IPUT_OBJECT:
2089      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2090      break;
2091
2092    case Instruction::SGET_BOOLEAN:
2093      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2094      break;
2095    case Instruction::SGET_BYTE:
2096      VerifyISGet(inst, reg_types_.Byte(), true, true);
2097      break;
2098    case Instruction::SGET_CHAR:
2099      VerifyISGet(inst, reg_types_.Char(), true, true);
2100      break;
2101    case Instruction::SGET_SHORT:
2102      VerifyISGet(inst, reg_types_.Short(), true, true);
2103      break;
2104    case Instruction::SGET:
2105      VerifyISGet(inst, reg_types_.Integer(), true, true);
2106      break;
2107    case Instruction::SGET_WIDE:
2108      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2109      break;
2110    case Instruction::SGET_OBJECT:
2111      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2112      break;
2113
2114    case Instruction::SPUT_BOOLEAN:
2115      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2116      break;
2117    case Instruction::SPUT_BYTE:
2118      VerifyISPut(inst, reg_types_.Byte(), true, true);
2119      break;
2120    case Instruction::SPUT_CHAR:
2121      VerifyISPut(inst, reg_types_.Char(), true, true);
2122      break;
2123    case Instruction::SPUT_SHORT:
2124      VerifyISPut(inst, reg_types_.Short(), true, true);
2125      break;
2126    case Instruction::SPUT:
2127      VerifyISPut(inst, reg_types_.Integer(), true, true);
2128      break;
2129    case Instruction::SPUT_WIDE:
2130      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2131      break;
2132    case Instruction::SPUT_OBJECT:
2133      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2134      break;
2135
2136    case Instruction::INVOKE_VIRTUAL:
2137    case Instruction::INVOKE_VIRTUAL_RANGE:
2138    case Instruction::INVOKE_SUPER:
2139    case Instruction::INVOKE_SUPER_RANGE: {
2140      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2141                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2142      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2143                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2144      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2145                                                                   is_range, is_super);
2146      const RegType* return_type = nullptr;
2147      if (called_method != nullptr) {
2148        MethodHelper mh(called_method);
2149        mirror::Class* return_type_class = mh.GetReturnType();
2150        if (return_type_class != nullptr) {
2151          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2152                                              return_type_class->CannotBeAssignedFromOtherTypes());
2153        } else {
2154          Thread* self = Thread::Current();
2155          DCHECK(self->IsExceptionPending());
2156          self->ClearException();
2157        }
2158      }
2159      if (return_type == nullptr) {
2160        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2161        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2162        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2163        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2164        return_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2165      }
2166      if (!return_type->IsLowHalf()) {
2167        work_line_->SetResultRegisterType(*return_type);
2168      } else {
2169        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2170      }
2171      just_set_result = true;
2172      break;
2173    }
2174    case Instruction::INVOKE_DIRECT:
2175    case Instruction::INVOKE_DIRECT_RANGE: {
2176      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2177      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2178                                                                   is_range, false);
2179      const char* return_type_descriptor;
2180      bool is_constructor;
2181      if (called_method == NULL) {
2182        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2183        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2184        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2185        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2186        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2187      } else {
2188        is_constructor = called_method->IsConstructor();
2189        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2190      }
2191      if (is_constructor) {
2192        /*
2193         * Some additional checks when calling a constructor. We know from the invocation arg check
2194         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2195         * that to require that called_method->klass is the same as this->klass or this->super,
2196         * allowing the latter only if the "this" argument is the same as the "this" argument to
2197         * this method (which implies that we're in a constructor ourselves).
2198         */
2199        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2200        if (this_type.IsConflict())  // failure.
2201          break;
2202
2203        /* no null refs allowed (?) */
2204        if (this_type.IsZero()) {
2205          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2206          break;
2207        }
2208
2209        /* must be in same class or in superclass */
2210        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2211        // TODO: re-enable constructor type verification
2212        // if (this_super_klass.IsConflict()) {
2213          // Unknown super class, fail so we re-check at runtime.
2214          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2215          // break;
2216        // }
2217
2218        /* arg must be an uninitialized reference */
2219        if (!this_type.IsUninitializedTypes()) {
2220          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2221              << this_type;
2222          break;
2223        }
2224
2225        /*
2226         * Replace the uninitialized reference with an initialized one. We need to do this for all
2227         * registers that have the same object instance in them, not just the "this" register.
2228         */
2229        work_line_->MarkRefsAsInitialized(this_type);
2230      }
2231      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(),
2232                                                             return_type_descriptor, false);
2233      if (!return_type.IsLowHalf()) {
2234        work_line_->SetResultRegisterType(return_type);
2235      } else {
2236        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2237      }
2238      just_set_result = true;
2239      break;
2240    }
2241    case Instruction::INVOKE_STATIC:
2242    case Instruction::INVOKE_STATIC_RANGE: {
2243        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2244        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2245                                                                     METHOD_STATIC,
2246                                                                     is_range,
2247                                                                     false);
2248        const char* descriptor;
2249        if (called_method == NULL) {
2250          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2251          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2252          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2253          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2254        } else {
2255          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2256        }
2257        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2258                                                                false);
2259        if (!return_type.IsLowHalf()) {
2260          work_line_->SetResultRegisterType(return_type);
2261        } else {
2262          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2263        }
2264        just_set_result = true;
2265      }
2266      break;
2267    case Instruction::INVOKE_INTERFACE:
2268    case Instruction::INVOKE_INTERFACE_RANGE: {
2269      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2270      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2271                                                                METHOD_INTERFACE,
2272                                                                is_range,
2273                                                                false);
2274      if (abs_method != NULL) {
2275        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2276        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2277          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2278              << PrettyMethod(abs_method) << "'";
2279          break;
2280        }
2281      }
2282      /* Get the type of the "this" arg, which should either be a sub-interface of called
2283       * interface or Object (see comments in RegType::JoinClass).
2284       */
2285      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2286      if (this_type.IsZero()) {
2287        /* null pointer always passes (and always fails at runtime) */
2288      } else {
2289        if (this_type.IsUninitializedTypes()) {
2290          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2291              << this_type;
2292          break;
2293        }
2294        // In the past we have tried to assert that "called_interface" is assignable
2295        // from "this_type.GetClass()", however, as we do an imprecise Join
2296        // (RegType::JoinClass) we don't have full information on what interfaces are
2297        // implemented by "this_type". For example, two classes may implement the same
2298        // interfaces and have a common parent that doesn't implement the interface. The
2299        // join will set "this_type" to the parent class and a test that this implements
2300        // the interface will incorrectly fail.
2301      }
2302      /*
2303       * We don't have an object instance, so we can't find the concrete method. However, all of
2304       * the type information is in the abstract method, so we're good.
2305       */
2306      const char* descriptor;
2307      if (abs_method == NULL) {
2308        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2309        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2310        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2311        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2312      } else {
2313        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2314      }
2315      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2316                                                             false);
2317      if (!return_type.IsLowHalf()) {
2318        work_line_->SetResultRegisterType(return_type);
2319      } else {
2320        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2321      }
2322      just_set_result = true;
2323      break;
2324    }
2325    case Instruction::NEG_INT:
2326    case Instruction::NOT_INT:
2327      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2328      break;
2329    case Instruction::NEG_LONG:
2330    case Instruction::NOT_LONG:
2331      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2332                                   reg_types_.LongLo(), reg_types_.LongHi());
2333      break;
2334    case Instruction::NEG_FLOAT:
2335      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2336      break;
2337    case Instruction::NEG_DOUBLE:
2338      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2339                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2340      break;
2341    case Instruction::INT_TO_LONG:
2342      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2343                                     reg_types_.Integer());
2344      break;
2345    case Instruction::INT_TO_FLOAT:
2346      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2347      break;
2348    case Instruction::INT_TO_DOUBLE:
2349      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2350                                     reg_types_.Integer());
2351      break;
2352    case Instruction::LONG_TO_INT:
2353      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2354                                       reg_types_.LongLo(), reg_types_.LongHi());
2355      break;
2356    case Instruction::LONG_TO_FLOAT:
2357      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2358                                       reg_types_.LongLo(), reg_types_.LongHi());
2359      break;
2360    case Instruction::LONG_TO_DOUBLE:
2361      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2362                                   reg_types_.LongLo(), reg_types_.LongHi());
2363      break;
2364    case Instruction::FLOAT_TO_INT:
2365      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2366      break;
2367    case Instruction::FLOAT_TO_LONG:
2368      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2369                                     reg_types_.Float());
2370      break;
2371    case Instruction::FLOAT_TO_DOUBLE:
2372      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2373                                     reg_types_.Float());
2374      break;
2375    case Instruction::DOUBLE_TO_INT:
2376      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2377                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2378      break;
2379    case Instruction::DOUBLE_TO_LONG:
2380      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2381                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2382      break;
2383    case Instruction::DOUBLE_TO_FLOAT:
2384      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2385                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2386      break;
2387    case Instruction::INT_TO_BYTE:
2388      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2389      break;
2390    case Instruction::INT_TO_CHAR:
2391      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2392      break;
2393    case Instruction::INT_TO_SHORT:
2394      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2395      break;
2396
2397    case Instruction::ADD_INT:
2398    case Instruction::SUB_INT:
2399    case Instruction::MUL_INT:
2400    case Instruction::REM_INT:
2401    case Instruction::DIV_INT:
2402    case Instruction::SHL_INT:
2403    case Instruction::SHR_INT:
2404    case Instruction::USHR_INT:
2405      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2406                                reg_types_.Integer(), false);
2407      break;
2408    case Instruction::AND_INT:
2409    case Instruction::OR_INT:
2410    case Instruction::XOR_INT:
2411      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2412                                reg_types_.Integer(), true);
2413      break;
2414    case Instruction::ADD_LONG:
2415    case Instruction::SUB_LONG:
2416    case Instruction::MUL_LONG:
2417    case Instruction::DIV_LONG:
2418    case Instruction::REM_LONG:
2419    case Instruction::AND_LONG:
2420    case Instruction::OR_LONG:
2421    case Instruction::XOR_LONG:
2422      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2423                                    reg_types_.LongLo(), reg_types_.LongHi(),
2424                                    reg_types_.LongLo(), reg_types_.LongHi());
2425      break;
2426    case Instruction::SHL_LONG:
2427    case Instruction::SHR_LONG:
2428    case Instruction::USHR_LONG:
2429      /* shift distance is Int, making these different from other binary operations */
2430      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2431                                         reg_types_.Integer());
2432      break;
2433    case Instruction::ADD_FLOAT:
2434    case Instruction::SUB_FLOAT:
2435    case Instruction::MUL_FLOAT:
2436    case Instruction::DIV_FLOAT:
2437    case Instruction::REM_FLOAT:
2438      work_line_->CheckBinaryOp(inst,
2439                                reg_types_.Float(),
2440                                reg_types_.Float(),
2441                                reg_types_.Float(),
2442                                false);
2443      break;
2444    case Instruction::ADD_DOUBLE:
2445    case Instruction::SUB_DOUBLE:
2446    case Instruction::MUL_DOUBLE:
2447    case Instruction::DIV_DOUBLE:
2448    case Instruction::REM_DOUBLE:
2449      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2450                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2451                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2452      break;
2453    case Instruction::ADD_INT_2ADDR:
2454    case Instruction::SUB_INT_2ADDR:
2455    case Instruction::MUL_INT_2ADDR:
2456    case Instruction::REM_INT_2ADDR:
2457    case Instruction::SHL_INT_2ADDR:
2458    case Instruction::SHR_INT_2ADDR:
2459    case Instruction::USHR_INT_2ADDR:
2460      work_line_->CheckBinaryOp2addr(inst,
2461                                     reg_types_.Integer(),
2462                                     reg_types_.Integer(),
2463                                     reg_types_.Integer(),
2464                                     false);
2465      break;
2466    case Instruction::AND_INT_2ADDR:
2467    case Instruction::OR_INT_2ADDR:
2468    case Instruction::XOR_INT_2ADDR:
2469      work_line_->CheckBinaryOp2addr(inst,
2470                                     reg_types_.Integer(),
2471                                     reg_types_.Integer(),
2472                                     reg_types_.Integer(),
2473                                     true);
2474      break;
2475    case Instruction::DIV_INT_2ADDR:
2476      work_line_->CheckBinaryOp2addr(inst,
2477                                     reg_types_.Integer(),
2478                                     reg_types_.Integer(),
2479                                     reg_types_.Integer(),
2480                                     false);
2481      break;
2482    case Instruction::ADD_LONG_2ADDR:
2483    case Instruction::SUB_LONG_2ADDR:
2484    case Instruction::MUL_LONG_2ADDR:
2485    case Instruction::DIV_LONG_2ADDR:
2486    case Instruction::REM_LONG_2ADDR:
2487    case Instruction::AND_LONG_2ADDR:
2488    case Instruction::OR_LONG_2ADDR:
2489    case Instruction::XOR_LONG_2ADDR:
2490      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2491                                         reg_types_.LongLo(), reg_types_.LongHi(),
2492                                         reg_types_.LongLo(), reg_types_.LongHi());
2493      break;
2494    case Instruction::SHL_LONG_2ADDR:
2495    case Instruction::SHR_LONG_2ADDR:
2496    case Instruction::USHR_LONG_2ADDR:
2497      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2498                                              reg_types_.Integer());
2499      break;
2500    case Instruction::ADD_FLOAT_2ADDR:
2501    case Instruction::SUB_FLOAT_2ADDR:
2502    case Instruction::MUL_FLOAT_2ADDR:
2503    case Instruction::DIV_FLOAT_2ADDR:
2504    case Instruction::REM_FLOAT_2ADDR:
2505      work_line_->CheckBinaryOp2addr(inst,
2506                                     reg_types_.Float(),
2507                                     reg_types_.Float(),
2508                                     reg_types_.Float(),
2509                                     false);
2510      break;
2511    case Instruction::ADD_DOUBLE_2ADDR:
2512    case Instruction::SUB_DOUBLE_2ADDR:
2513    case Instruction::MUL_DOUBLE_2ADDR:
2514    case Instruction::DIV_DOUBLE_2ADDR:
2515    case Instruction::REM_DOUBLE_2ADDR:
2516      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2517                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2518                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2519      break;
2520    case Instruction::ADD_INT_LIT16:
2521    case Instruction::RSUB_INT:
2522    case Instruction::MUL_INT_LIT16:
2523    case Instruction::DIV_INT_LIT16:
2524    case Instruction::REM_INT_LIT16:
2525      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2526      break;
2527    case Instruction::AND_INT_LIT16:
2528    case Instruction::OR_INT_LIT16:
2529    case Instruction::XOR_INT_LIT16:
2530      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2531      break;
2532    case Instruction::ADD_INT_LIT8:
2533    case Instruction::RSUB_INT_LIT8:
2534    case Instruction::MUL_INT_LIT8:
2535    case Instruction::DIV_INT_LIT8:
2536    case Instruction::REM_INT_LIT8:
2537    case Instruction::SHL_INT_LIT8:
2538    case Instruction::SHR_INT_LIT8:
2539    case Instruction::USHR_INT_LIT8:
2540      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2541      break;
2542    case Instruction::AND_INT_LIT8:
2543    case Instruction::OR_INT_LIT8:
2544    case Instruction::XOR_INT_LIT8:
2545      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2546      break;
2547
2548    // Special instructions.
2549    case Instruction::RETURN_VOID_BARRIER:
2550      DCHECK(Runtime::Current()->IsStarted()) << PrettyMethod(dex_method_idx_, *dex_file_);
2551      if (!IsConstructor() || IsStatic()) {
2552          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2553      }
2554      break;
2555    // Note: the following instructions encode offsets derived from class linking.
2556    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2557    // meaning if the class linking and resolution were successful.
2558    case Instruction::IGET_QUICK:
2559      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2560      break;
2561    case Instruction::IGET_WIDE_QUICK:
2562      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2563      break;
2564    case Instruction::IGET_OBJECT_QUICK:
2565      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2566      break;
2567    case Instruction::IPUT_QUICK:
2568      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2569      break;
2570    case Instruction::IPUT_WIDE_QUICK:
2571      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2572      break;
2573    case Instruction::IPUT_OBJECT_QUICK:
2574      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2575      break;
2576    case Instruction::INVOKE_VIRTUAL_QUICK:
2577    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2578      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2579      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2580      if (called_method != NULL) {
2581        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2582        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2583                                                               false);
2584        if (!return_type.IsLowHalf()) {
2585          work_line_->SetResultRegisterType(return_type);
2586        } else {
2587          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2588        }
2589        just_set_result = true;
2590      }
2591      break;
2592    }
2593
2594    /* These should never appear during verification. */
2595    case Instruction::UNUSED_3E:
2596    case Instruction::UNUSED_3F:
2597    case Instruction::UNUSED_40:
2598    case Instruction::UNUSED_41:
2599    case Instruction::UNUSED_42:
2600    case Instruction::UNUSED_43:
2601    case Instruction::UNUSED_79:
2602    case Instruction::UNUSED_7A:
2603    case Instruction::UNUSED_EB:
2604    case Instruction::UNUSED_EC:
2605    case Instruction::UNUSED_ED:
2606    case Instruction::UNUSED_EE:
2607    case Instruction::UNUSED_EF:
2608    case Instruction::UNUSED_F0:
2609    case Instruction::UNUSED_F1:
2610    case Instruction::UNUSED_F2:
2611    case Instruction::UNUSED_F3:
2612    case Instruction::UNUSED_F4:
2613    case Instruction::UNUSED_F5:
2614    case Instruction::UNUSED_F6:
2615    case Instruction::UNUSED_F7:
2616    case Instruction::UNUSED_F8:
2617    case Instruction::UNUSED_F9:
2618    case Instruction::UNUSED_FA:
2619    case Instruction::UNUSED_FB:
2620    case Instruction::UNUSED_FC:
2621    case Instruction::UNUSED_FD:
2622    case Instruction::UNUSED_FE:
2623    case Instruction::UNUSED_FF:
2624      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2625      break;
2626
2627    /*
2628     * DO NOT add a "default" clause here. Without it the compiler will
2629     * complain if an instruction is missing (which is desirable).
2630     */
2631  }  // end - switch (dec_insn.opcode)
2632
2633  if (have_pending_hard_failure_) {
2634    if (Runtime::Current()->IsCompiler()) {
2635      /* When compiling, check that the last failure is a hard failure */
2636      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2637    }
2638    /* immediate failure, reject class */
2639    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2640    return false;
2641  } else if (have_pending_runtime_throw_failure_) {
2642    /* checking interpreter will throw, mark following code as unreachable */
2643    opcode_flags = Instruction::kThrow;
2644  }
2645  /*
2646   * If we didn't just set the result register, clear it out. This ensures that you can only use
2647   * "move-result" immediately after the result is set. (We could check this statically, but it's
2648   * not expensive and it makes our debugging output cleaner.)
2649   */
2650  if (!just_set_result) {
2651    work_line_->SetResultTypeToUnknown();
2652  }
2653
2654
2655
2656  /*
2657   * Handle "branch". Tag the branch target.
2658   *
2659   * NOTE: instructions like Instruction::EQZ provide information about the
2660   * state of the register when the branch is taken or not taken. For example,
2661   * somebody could get a reference field, check it for zero, and if the
2662   * branch is taken immediately store that register in a boolean field
2663   * since the value is known to be zero. We do not currently account for
2664   * that, and will reject the code.
2665   *
2666   * TODO: avoid re-fetching the branch target
2667   */
2668  if ((opcode_flags & Instruction::kBranch) != 0) {
2669    bool isConditional, selfOkay;
2670    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2671      /* should never happen after static verification */
2672      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2673      return false;
2674    }
2675    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2676    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2677      return false;
2678    }
2679    /* update branch target, set "changed" if appropriate */
2680    if (NULL != branch_line.get()) {
2681      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2682        return false;
2683      }
2684    } else {
2685      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2686        return false;
2687      }
2688    }
2689  }
2690
2691  /*
2692   * Handle "switch". Tag all possible branch targets.
2693   *
2694   * We've already verified that the table is structurally sound, so we
2695   * just need to walk through and tag the targets.
2696   */
2697  if ((opcode_flags & Instruction::kSwitch) != 0) {
2698    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2699    const uint16_t* switch_insns = insns + offset_to_switch;
2700    int switch_count = switch_insns[1];
2701    int offset_to_targets, targ;
2702
2703    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2704      /* 0 = sig, 1 = count, 2/3 = first key */
2705      offset_to_targets = 4;
2706    } else {
2707      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2708      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2709      offset_to_targets = 2 + 2 * switch_count;
2710    }
2711
2712    /* verify each switch target */
2713    for (targ = 0; targ < switch_count; targ++) {
2714      int offset;
2715      uint32_t abs_offset;
2716
2717      /* offsets are 32-bit, and only partly endian-swapped */
2718      offset = switch_insns[offset_to_targets + targ * 2] |
2719         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2720      abs_offset = work_insn_idx_ + offset;
2721      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2722      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2723        return false;
2724      }
2725      if (!UpdateRegisters(abs_offset, work_line_.get()))
2726        return false;
2727    }
2728  }
2729
2730  /*
2731   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2732   * "try" block when they throw, control transfers out of the method.)
2733   */
2734  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2735    bool within_catch_all = false;
2736    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2737
2738    for (; iterator.HasNext(); iterator.Next()) {
2739      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2740        within_catch_all = true;
2741      }
2742      /*
2743       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2744       * "work_regs", because at runtime the exception will be thrown before the instruction
2745       * modifies any registers.
2746       */
2747      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2748        return false;
2749      }
2750    }
2751
2752    /*
2753     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2754     * instruction. This does apply to monitor-exit because of async exception handling.
2755     */
2756    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2757      /*
2758       * The state in work_line reflects the post-execution state. If the current instruction is a
2759       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2760       * it will do so before grabbing the lock).
2761       */
2762      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2763        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2764            << "expected to be within a catch-all for an instruction where a monitor is held";
2765        return false;
2766      }
2767    }
2768  }
2769
2770  /* Handle "continue". Tag the next consecutive instruction.
2771   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2772   *        because it changes work_line_ when performing peephole optimization
2773   *        and this change should not be used in those cases.
2774   */
2775  if ((opcode_flags & Instruction::kContinue) != 0) {
2776    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2777    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2778      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2779      return false;
2780    }
2781    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2782    // next instruction isn't one.
2783    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2784      return false;
2785    }
2786    if (NULL != fallthrough_line.get()) {
2787      // Make workline consistent with fallthrough computed from peephole optimization.
2788      work_line_->CopyFromLine(fallthrough_line.get());
2789    }
2790    if (insn_flags_[next_insn_idx].IsReturn()) {
2791      // For returns we only care about the operand to the return, all other registers are dead.
2792      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2793      Instruction::Code opcode = ret_inst->Opcode();
2794      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2795        work_line_->MarkAllRegistersAsConflicts();
2796      } else {
2797        if (opcode == Instruction::RETURN_WIDE) {
2798          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2799        } else {
2800          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2801        }
2802      }
2803    }
2804    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2805    if (next_line != NULL) {
2806      // Merge registers into what we have for the next instruction,
2807      // and set the "changed" flag if needed.
2808      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2809        return false;
2810      }
2811    } else {
2812      /*
2813       * We're not recording register data for the next instruction, so we don't know what the
2814       * prior state was. We have to assume that something has changed and re-evaluate it.
2815       */
2816      insn_flags_[next_insn_idx].SetChanged();
2817    }
2818  }
2819
2820  /* If we're returning from the method, make sure monitor stack is empty. */
2821  if ((opcode_flags & Instruction::kReturn) != 0) {
2822    if (!work_line_->VerifyMonitorStackEmpty()) {
2823      return false;
2824    }
2825  }
2826
2827  /*
2828   * Update start_guess. Advance to the next instruction of that's
2829   * possible, otherwise use the branch target if one was found. If
2830   * neither of those exists we're in a return or throw; leave start_guess
2831   * alone and let the caller sort it out.
2832   */
2833  if ((opcode_flags & Instruction::kContinue) != 0) {
2834    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2835  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2836    /* we're still okay if branch_target is zero */
2837    *start_guess = work_insn_idx_ + branch_target;
2838  }
2839
2840  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2841  DCHECK(insn_flags_[*start_guess].IsOpcode());
2842
2843  return true;
2844}  // NOLINT(readability/fn_size)
2845
2846const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2847  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2848  const RegType& referrer = GetDeclaringClass();
2849  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2850  const RegType& result =
2851      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2852                                           klass->CannotBeAssignedFromOtherTypes())
2853                    : reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2854  if (result.IsConflict()) {
2855    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2856        << "' in " << referrer;
2857    return result;
2858  }
2859  if (klass == NULL && !result.IsUnresolvedTypes()) {
2860    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2861  }
2862  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2863  // check at runtime if access is allowed and so pass here. If result is
2864  // primitive, skip the access check.
2865  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2866      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2867    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2868                                    << referrer << "' -> '" << result << "'";
2869  }
2870  return result;
2871}
2872
2873const RegType& MethodVerifier::GetCaughtExceptionType() {
2874  const RegType* common_super = NULL;
2875  if (code_item_->tries_size_ != 0) {
2876    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2877    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2878    for (uint32_t i = 0; i < handlers_size; i++) {
2879      CatchHandlerIterator iterator(handlers_ptr);
2880      for (; iterator.HasNext(); iterator.Next()) {
2881        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2882          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2883            common_super = &reg_types_.JavaLangThrowable(false);
2884          } else {
2885            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2886            if (common_super == NULL) {
2887              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2888              // as that is caught at runtime
2889              common_super = &exception;
2890            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2891              if (exception.IsUnresolvedTypes()) {
2892                // We don't know enough about the type. Fail here and let runtime handle it.
2893                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2894                return exception;
2895              } else {
2896                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2897                return reg_types_.Conflict();
2898              }
2899            } else if (common_super->Equals(exception)) {
2900              // odd case, but nothing to do
2901            } else {
2902              common_super = &common_super->Merge(exception, &reg_types_);
2903              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2904            }
2905          }
2906        }
2907      }
2908      handlers_ptr = iterator.EndDataPointer();
2909    }
2910  }
2911  if (common_super == NULL) {
2912    /* no catch blocks, or no catches with classes we can find */
2913    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2914    return reg_types_.Conflict();
2915  }
2916  return *common_super;
2917}
2918
2919mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2920                                                               MethodType method_type) {
2921  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2922  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2923  if (klass_type.IsConflict()) {
2924    std::string append(" in attempt to access method ");
2925    append += dex_file_->GetMethodName(method_id);
2926    AppendToLastFailMessage(append);
2927    return NULL;
2928  }
2929  if (klass_type.IsUnresolvedTypes()) {
2930    return NULL;  // Can't resolve Class so no more to do here
2931  }
2932  mirror::Class* klass = klass_type.GetClass();
2933  const RegType& referrer = GetDeclaringClass();
2934  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2935  if (res_method == NULL) {
2936    const char* name = dex_file_->GetMethodName(method_id);
2937    const Signature signature = dex_file_->GetMethodSignature(method_id);
2938
2939    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2940      res_method = klass->FindDirectMethod(name, signature);
2941    } else if (method_type == METHOD_INTERFACE) {
2942      res_method = klass->FindInterfaceMethod(name, signature);
2943    } else {
2944      res_method = klass->FindVirtualMethod(name, signature);
2945    }
2946    if (res_method != NULL) {
2947      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2948    } else {
2949      // If a virtual or interface method wasn't found with the expected type, look in
2950      // the direct methods. This can happen when the wrong invoke type is used or when
2951      // a class has changed, and will be flagged as an error in later checks.
2952      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2953        res_method = klass->FindDirectMethod(name, signature);
2954      }
2955      if (res_method == NULL) {
2956        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2957                                     << PrettyDescriptor(klass) << "." << name
2958                                     << " " << signature;
2959        return NULL;
2960      }
2961    }
2962  }
2963  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2964  // enforce them here.
2965  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2966    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2967                                      << PrettyMethod(res_method);
2968    return NULL;
2969  }
2970  // Disallow any calls to class initializers.
2971  if (MethodHelper(res_method).IsClassInitializer()) {
2972    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2973                                      << PrettyMethod(res_method);
2974    return NULL;
2975  }
2976  // Check if access is allowed.
2977  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2978    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2979                                     << " from " << referrer << ")";
2980    return res_method;
2981  }
2982  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2983  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2984    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2985                                      << PrettyMethod(res_method);
2986    return NULL;
2987  }
2988  // Check that interface methods match interface classes.
2989  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2990    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2991                                    << " is in an interface class " << PrettyClass(klass);
2992    return NULL;
2993  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2994    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2995                                    << " is in a non-interface class " << PrettyClass(klass);
2996    return NULL;
2997  }
2998  // See if the method type implied by the invoke instruction matches the access flags for the
2999  // target method.
3000  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3001      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3002      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3003      ) {
3004    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3005                                       " type of " << PrettyMethod(res_method);
3006    return NULL;
3007  }
3008  return res_method;
3009}
3010
3011mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3012                                                             MethodType method_type,
3013                                                             bool is_range,
3014                                                             bool is_super) {
3015  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3016  // we're making.
3017  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3018  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3019  if (res_method == NULL) {  // error or class is unresolved
3020    return NULL;
3021  }
3022
3023  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3024  // has a vtable entry for the target method.
3025  if (is_super) {
3026    DCHECK(method_type == METHOD_VIRTUAL);
3027    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3028    if (super.IsUnresolvedTypes()) {
3029      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3030                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3031                                   << " to super " << PrettyMethod(res_method);
3032      return NULL;
3033    }
3034    mirror::Class* super_klass = super.GetClass();
3035    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3036      MethodHelper mh(res_method);
3037      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3038                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3039                                   << " to super " << super
3040                                   << "." << mh.GetName()
3041                                   << mh.GetSignature();
3042      return NULL;
3043    }
3044  }
3045  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3046  // match the call to the signature. Also, we might be calling through an abstract method
3047  // definition (which doesn't have register count values).
3048  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3049  /* caught by static verifier */
3050  DCHECK(is_range || expected_args <= 5);
3051  if (expected_args > code_item_->outs_size_) {
3052    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3053        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3054    return NULL;
3055  }
3056
3057  /*
3058   * Check the "this" argument, which must be an instance of the class that declared the method.
3059   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3060   * rigorous check here (which is okay since we have to do it at runtime).
3061   */
3062  size_t actual_args = 0;
3063  if (!res_method->IsStatic()) {
3064    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3065    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3066      return NULL;
3067    }
3068    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3069      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3070      return NULL;
3071    }
3072    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3073      mirror::Class* klass = res_method->GetDeclaringClass();
3074      const RegType& res_method_class =
3075          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3076                               klass->CannotBeAssignedFromOtherTypes());
3077      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3078        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3079            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3080            << "' not instance of '" << res_method_class << "'";
3081        return NULL;
3082      }
3083    }
3084    actual_args++;
3085  }
3086  /*
3087   * Process the target method's signature. This signature may or may not
3088   * have been verified, so we can't assume it's properly formed.
3089   */
3090  MethodHelper mh(res_method);
3091  const DexFile::TypeList* params = mh.GetParameterTypeList();
3092  size_t params_size = params == NULL ? 0 : params->Size();
3093  uint32_t arg[5];
3094  if (!is_range) {
3095    inst->GetArgs(arg);
3096  }
3097  for (size_t param_index = 0; param_index < params_size; param_index++) {
3098    if (actual_args >= expected_args) {
3099      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3100          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3101          << " (where longs/doubles count twice).";
3102      return NULL;
3103    }
3104    const char* descriptor =
3105        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3106    if (descriptor == NULL) {
3107      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3108          << " missing signature component";
3109      return NULL;
3110    }
3111    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3112    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3113    if (reg_type.IsIntegralTypes()) {
3114      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3115      if (!src_type.IsIntegralTypes()) {
3116        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3117                                          << " but expected " << reg_type;
3118        return res_method;
3119      }
3120    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3121      return res_method;
3122    }
3123    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3124  }
3125  if (actual_args != expected_args) {
3126    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3127        << " expected " << expected_args << " arguments, found " << actual_args;
3128    return NULL;
3129  } else {
3130    return res_method;
3131  }
3132}
3133
3134mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3135                                                         RegisterLine* reg_line, bool is_range) {
3136  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3137         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3138  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3139  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3140    return NULL;
3141  } else if (actual_arg_type.IsZero()) {  // Invoke on "null" instance: we can't go further.
3142    return NULL;
3143  }
3144  mirror::Class* this_class = NULL;
3145  if (!actual_arg_type.IsUnresolvedTypes()) {
3146    this_class = actual_arg_type.GetClass();
3147  } else {
3148    const std::string& descriptor(actual_arg_type.GetDescriptor());
3149    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3150    this_class = class_linker->FindClass(descriptor.c_str(), *class_loader_);
3151    if (this_class == NULL) {
3152      Thread* self = Thread::Current();
3153      self->ClearException();
3154      // Look for a system class
3155      SirtRef<mirror::ClassLoader> null_class_loader(self, nullptr);
3156      this_class = class_linker->FindClass(descriptor.c_str(), null_class_loader);
3157    }
3158  }
3159  if (this_class == NULL) {
3160    return NULL;
3161  }
3162  mirror::ObjectArray<mirror::ArtMethod>* vtable = this_class->GetVTable();
3163  CHECK(vtable != NULL);
3164  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3165  CHECK(vtable_index < vtable->GetLength());
3166  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3167  CHECK(!Thread::Current()->IsExceptionPending());
3168  return res_method;
3169}
3170
3171mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3172                                                                     bool is_range) {
3173  DCHECK(Runtime::Current()->IsStarted());
3174  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3175                                                             is_range);
3176  if (res_method == NULL) {
3177    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3178    return NULL;
3179  }
3180  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3181
3182  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3183  // match the call to the signature. Also, we might be calling through an abstract method
3184  // definition (which doesn't have register count values).
3185  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3186  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3187    return NULL;
3188  }
3189  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3190  /* caught by static verifier */
3191  DCHECK(is_range || expected_args <= 5);
3192  if (expected_args > code_item_->outs_size_) {
3193    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3194        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3195    return NULL;
3196  }
3197
3198  /*
3199   * Check the "this" argument, which must be an instance of the class that declared the method.
3200   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3201   * rigorous check here (which is okay since we have to do it at runtime).
3202   */
3203  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3204    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3205    return NULL;
3206  }
3207  if (!actual_arg_type.IsZero()) {
3208    mirror::Class* klass = res_method->GetDeclaringClass();
3209    const RegType& res_method_class =
3210        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3211                             klass->CannotBeAssignedFromOtherTypes());
3212    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3213      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3214          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3215          << "' not instance of '" << res_method_class << "'";
3216      return NULL;
3217    }
3218  }
3219  /*
3220   * Process the target method's signature. This signature may or may not
3221   * have been verified, so we can't assume it's properly formed.
3222   */
3223  MethodHelper mh(res_method);
3224  const DexFile::TypeList* params = mh.GetParameterTypeList();
3225  size_t params_size = params == NULL ? 0 : params->Size();
3226  uint32_t arg[5];
3227  if (!is_range) {
3228    inst->GetArgs(arg);
3229  }
3230  size_t actual_args = 1;
3231  for (size_t param_index = 0; param_index < params_size; param_index++) {
3232    if (actual_args >= expected_args) {
3233      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3234                                        << "'. Expected " << expected_args
3235                                         << " arguments, processing argument " << actual_args
3236                                        << " (where longs/doubles count twice).";
3237      return NULL;
3238    }
3239    const char* descriptor =
3240        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3241    if (descriptor == NULL) {
3242      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3243                                        << " missing signature component";
3244      return NULL;
3245    }
3246    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3247    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3248    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3249      return res_method;
3250    }
3251    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3252  }
3253  if (actual_args != expected_args) {
3254    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3255              << " expected " << expected_args << " arguments, found " << actual_args;
3256    return NULL;
3257  } else {
3258    return res_method;
3259  }
3260}
3261
3262void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3263  uint32_t type_idx;
3264  if (!is_filled) {
3265    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3266    type_idx = inst->VRegC_22c();
3267  } else if (!is_range) {
3268    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3269    type_idx = inst->VRegB_35c();
3270  } else {
3271    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3272    type_idx = inst->VRegB_3rc();
3273  }
3274  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3275  if (res_type.IsConflict()) {  // bad class
3276    DCHECK_NE(failures_.size(), 0U);
3277  } else {
3278    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3279    if (!res_type.IsArrayTypes()) {
3280      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3281    } else if (!is_filled) {
3282      /* make sure "size" register is valid type */
3283      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3284      /* set register type to array class */
3285      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3286      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3287    } else {
3288      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3289      // the list and fail. It's legal, if silly, for arg_count to be zero.
3290      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->get());
3291      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3292      uint32_t arg[5];
3293      if (!is_range) {
3294        inst->GetArgs(arg);
3295      }
3296      for (size_t ui = 0; ui < arg_count; ui++) {
3297        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3298        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3299          work_line_->SetResultRegisterType(reg_types_.Conflict());
3300          return;
3301        }
3302      }
3303      // filled-array result goes into "result" register
3304      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3305      work_line_->SetResultRegisterType(precise_type);
3306    }
3307  }
3308}
3309
3310void MethodVerifier::VerifyAGet(const Instruction* inst,
3311                                const RegType& insn_type, bool is_primitive) {
3312  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3313  if (!index_type.IsArrayIndexTypes()) {
3314    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3315  } else {
3316    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3317    if (array_type.IsZero()) {
3318      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3319      // instruction type. TODO: have a proper notion of bottom here.
3320      if (!is_primitive || insn_type.IsCategory1Types()) {
3321        // Reference or category 1
3322        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3323      } else {
3324        // Category 2
3325        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3326                                        reg_types_.FromCat2ConstHi(0, false));
3327      }
3328    } else if (!array_type.IsArrayTypes()) {
3329      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3330    } else {
3331      /* verify the class */
3332      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3333      if (!component_type.IsReferenceTypes() && !is_primitive) {
3334        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3335            << " source for aget-object";
3336      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3337        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3338            << " source for category 1 aget";
3339      } else if (is_primitive && !insn_type.Equals(component_type) &&
3340                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3341                 (insn_type.IsLong() && component_type.IsDouble()))) {
3342        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3343            << " incompatible with aget of type " << insn_type;
3344      } else {
3345        // Use knowledge of the field type which is stronger than the type inferred from the
3346        // instruction, which can't differentiate object types and ints from floats, longs from
3347        // doubles.
3348        if (!component_type.IsLowHalf()) {
3349          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3350        } else {
3351          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3352                                          component_type.HighHalf(&reg_types_));
3353        }
3354      }
3355    }
3356  }
3357}
3358
3359void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3360                                        const uint32_t vregA) {
3361  // Primitive assignability rules are weaker than regular assignability rules.
3362  bool instruction_compatible;
3363  bool value_compatible;
3364  const RegType& value_type = work_line_->GetRegisterType(vregA);
3365  if (target_type.IsIntegralTypes()) {
3366    instruction_compatible = target_type.Equals(insn_type);
3367    value_compatible = value_type.IsIntegralTypes();
3368  } else if (target_type.IsFloat()) {
3369    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3370    value_compatible = value_type.IsFloatTypes();
3371  } else if (target_type.IsLong()) {
3372    instruction_compatible = insn_type.IsLong();
3373    value_compatible = value_type.IsLongTypes();
3374  } else if (target_type.IsDouble()) {
3375    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3376    value_compatible = value_type.IsDoubleTypes();
3377  } else {
3378    instruction_compatible = false;  // reference with primitive store
3379    value_compatible = false;  // unused
3380  }
3381  if (!instruction_compatible) {
3382    // This is a global failure rather than a class change failure as the instructions and
3383    // the descriptors for the type should have been consistent within the same file at
3384    // compile time.
3385    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3386        << "' but expected type '" << target_type << "'";
3387    return;
3388  }
3389  if (!value_compatible) {
3390    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3391        << " of type " << value_type << " but expected " << target_type << " for put";
3392    return;
3393  }
3394}
3395
3396void MethodVerifier::VerifyAPut(const Instruction* inst,
3397                             const RegType& insn_type, bool is_primitive) {
3398  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3399  if (!index_type.IsArrayIndexTypes()) {
3400    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3401  } else {
3402    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3403    if (array_type.IsZero()) {
3404      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3405      // instruction type.
3406    } else if (!array_type.IsArrayTypes()) {
3407      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3408    } else {
3409      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3410      const uint32_t vregA = inst->VRegA_23x();
3411      if (is_primitive) {
3412        VerifyPrimitivePut(component_type, insn_type, vregA);
3413      } else {
3414        if (!component_type.IsReferenceTypes()) {
3415          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3416              << " source for aput-object";
3417        } else {
3418          // The instruction agrees with the type of array, confirm the value to be stored does too
3419          // Note: we use the instruction type (rather than the component type) for aput-object as
3420          // incompatible classes will be caught at runtime as an array store exception
3421          work_line_->VerifyRegisterType(vregA, insn_type);
3422        }
3423      }
3424    }
3425  }
3426}
3427
3428mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3429  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3430  // Check access to class
3431  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3432  if (klass_type.IsConflict()) {  // bad class
3433    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3434                                         field_idx, dex_file_->GetFieldName(field_id),
3435                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3436    return NULL;
3437  }
3438  if (klass_type.IsUnresolvedTypes()) {
3439    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3440  }
3441  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3442  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3443                                                          *class_loader_);
3444  if (field == NULL) {
3445    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3446              << dex_file_->GetFieldName(field_id) << ") in "
3447              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3448    DCHECK(Thread::Current()->IsExceptionPending());
3449    Thread::Current()->ClearException();
3450    return NULL;
3451  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3452                                                  field->GetAccessFlags())) {
3453    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3454                                    << " from " << GetDeclaringClass();
3455    return NULL;
3456  } else if (!field->IsStatic()) {
3457    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3458    return NULL;
3459  }
3460  return field;
3461}
3462
3463mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3464  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3465  // Check access to class
3466  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3467  if (klass_type.IsConflict()) {
3468    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3469                                         field_idx, dex_file_->GetFieldName(field_id),
3470                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3471    return NULL;
3472  }
3473  if (klass_type.IsUnresolvedTypes()) {
3474    return NULL;  // Can't resolve Class so no more to do here
3475  }
3476  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3477  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3478                                                          *class_loader_);
3479  if (field == NULL) {
3480    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3481              << dex_file_->GetFieldName(field_id) << ") in "
3482              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3483    DCHECK(Thread::Current()->IsExceptionPending());
3484    Thread::Current()->ClearException();
3485    return NULL;
3486  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3487                                                  field->GetAccessFlags())) {
3488    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3489                                    << " from " << GetDeclaringClass();
3490    return NULL;
3491  } else if (field->IsStatic()) {
3492    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3493                                    << " to not be static";
3494    return NULL;
3495  } else if (obj_type.IsZero()) {
3496    // Cannot infer and check type, however, access will cause null pointer exception
3497    return field;
3498  } else {
3499    mirror::Class* klass = field->GetDeclaringClass();
3500    const RegType& field_klass =
3501        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3502                             klass, klass->CannotBeAssignedFromOtherTypes());
3503    if (obj_type.IsUninitializedTypes() &&
3504        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3505            !field_klass.Equals(GetDeclaringClass()))) {
3506      // Field accesses through uninitialized references are only allowable for constructors where
3507      // the field is declared in this class
3508      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3509                                        << " of a not fully initialized object within the context"
3510                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3511      return NULL;
3512    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3513      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3514      // of C1. For resolution to occur the declared class of the field must be compatible with
3515      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3516      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3517                                  << " from object of type " << obj_type;
3518      return NULL;
3519    } else {
3520      return field;
3521    }
3522  }
3523}
3524
3525void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3526                                 bool is_primitive, bool is_static) {
3527  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3528  mirror::ArtField* field;
3529  if (is_static) {
3530    field = GetStaticField(field_idx);
3531  } else {
3532    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3533    field = GetInstanceField(object_type, field_idx);
3534  }
3535  const RegType* field_type = nullptr;
3536  if (field != NULL) {
3537    FieldHelper fh(field);
3538    mirror::Class* field_type_class = fh.GetType(false);
3539    if (field_type_class != nullptr) {
3540      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3541                                         field_type_class->CannotBeAssignedFromOtherTypes());
3542    }
3543  }
3544  if (field_type == nullptr) {
3545    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3546    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3547    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3548  }
3549  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3550  if (is_primitive) {
3551    if (field_type->Equals(insn_type) ||
3552        (field_type->IsFloat() && insn_type.IsInteger()) ||
3553        (field_type->IsDouble() && insn_type.IsLong())) {
3554      // expected that read is of the correct primitive type or that int reads are reading
3555      // floats or long reads are reading doubles
3556    } else {
3557      // This is a global failure rather than a class change failure as the instructions and
3558      // the descriptors for the type should have been consistent within the same file at
3559      // compile time
3560      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3561                                        << " to be of type '" << insn_type
3562                                        << "' but found type '" << field_type << "' in get";
3563      return;
3564    }
3565  } else {
3566    if (!insn_type.IsAssignableFrom(*field_type)) {
3567      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3568                                        << " to be compatible with type '" << insn_type
3569                                        << "' but found type '" << field_type
3570                                        << "' in get-object";
3571      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3572      return;
3573    }
3574  }
3575  if (!field_type->IsLowHalf()) {
3576    work_line_->SetRegisterType(vregA, *field_type);
3577  } else {
3578    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3579  }
3580}
3581
3582void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3583                                 bool is_primitive, bool is_static) {
3584  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3585  mirror::ArtField* field;
3586  if (is_static) {
3587    field = GetStaticField(field_idx);
3588  } else {
3589    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3590    field = GetInstanceField(object_type, field_idx);
3591  }
3592  const RegType* field_type = nullptr;
3593  if (field != NULL) {
3594    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3595      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3596                                      << " from other class " << GetDeclaringClass();
3597      return;
3598    }
3599    FieldHelper fh(field);
3600    mirror::Class* field_type_class = fh.GetType(false);
3601    if (field_type_class != nullptr) {
3602      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3603                                         field_type_class->CannotBeAssignedFromOtherTypes());
3604    }
3605  }
3606  if (field_type == nullptr) {
3607    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3608    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3609    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3610  }
3611  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3612  if (is_primitive) {
3613    VerifyPrimitivePut(*field_type, insn_type, vregA);
3614  } else {
3615    if (!insn_type.IsAssignableFrom(*field_type)) {
3616      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3617                                        << " to be compatible with type '" << insn_type
3618                                        << "' but found type '" << field_type
3619                                        << "' in put-object";
3620      return;
3621    }
3622    work_line_->VerifyRegisterType(vregA, *field_type);
3623  }
3624}
3625
3626// Look for an instance field with this offset.
3627// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3628static mirror::ArtField* FindInstanceFieldWithOffset(const mirror::Class* klass,
3629                                                  uint32_t field_offset)
3630    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3631  const mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3632  if (instance_fields != NULL) {
3633    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3634      mirror::ArtField* field = instance_fields->Get(i);
3635      if (field->GetOffset().Uint32Value() == field_offset) {
3636        return field;
3637      }
3638    }
3639  }
3640  // We did not find field in class: look into superclass.
3641  if (klass->GetSuperClass() != NULL) {
3642    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3643  } else {
3644    return NULL;
3645  }
3646}
3647
3648// Returns the access field of a quick field access (iget/iput-quick) or NULL
3649// if it cannot be found.
3650mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3651                                                   RegisterLine* reg_line) {
3652  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3653         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3654         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3655         inst->Opcode() == Instruction::IPUT_QUICK ||
3656         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3657         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3658  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3659  mirror::Class* object_class = NULL;
3660  if (!object_type.IsUnresolvedTypes()) {
3661    object_class = object_type.GetClass();
3662  } else {
3663    // We need to resolve the class from its descriptor.
3664    const std::string& descriptor(object_type.GetDescriptor());
3665    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3666    Thread* self = Thread::Current();
3667    object_class = class_linker->FindClass(descriptor.c_str(), *class_loader_);
3668    if (object_class == NULL) {
3669      self->ClearException();
3670      // Look for a system class
3671      SirtRef<mirror::ClassLoader> null_class_loader(self, nullptr);
3672      object_class = class_linker->FindClass(descriptor.c_str(), null_class_loader);
3673    }
3674  }
3675  if (object_class == NULL) {
3676    // Failed to get the Class* from reg type.
3677    LOG(WARNING) << "Failed to get Class* from " << object_type;
3678    return NULL;
3679  }
3680  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3681  return FindInstanceFieldWithOffset(object_class, field_offset);
3682}
3683
3684void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3685                                     bool is_primitive) {
3686  DCHECK(Runtime::Current()->IsStarted());
3687  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3688  if (field == NULL) {
3689    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3690    return;
3691  }
3692  FieldHelper fh(field);
3693  mirror::Class* field_type_class = fh.GetType(false);
3694  const RegType* field_type;
3695  if (field_type_class != nullptr) {
3696    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3697                                       field_type_class->CannotBeAssignedFromOtherTypes());
3698  } else {
3699    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3700                                            fh.GetTypeDescriptor(), false);
3701  }
3702  const uint32_t vregA = inst->VRegA_22c();
3703  if (is_primitive) {
3704    if (field_type->Equals(insn_type) ||
3705        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3706        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3707      // expected that read is of the correct primitive type or that int reads are reading
3708      // floats or long reads are reading doubles
3709    } else {
3710      // This is a global failure rather than a class change failure as the instructions and
3711      // the descriptors for the type should have been consistent within the same file at
3712      // compile time
3713      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3714                                        << " to be of type '" << insn_type
3715                                        << "' but found type '" << field_type << "' in get";
3716      return;
3717    }
3718  } else {
3719    if (!insn_type.IsAssignableFrom(*field_type)) {
3720      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3721                                        << " to be compatible with type '" << insn_type
3722                                        << "' but found type '" << field_type
3723                                        << "' in get-object";
3724      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3725      return;
3726    }
3727  }
3728  if (!field_type->IsLowHalf()) {
3729    work_line_->SetRegisterType(vregA, *field_type);
3730  } else {
3731    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3732  }
3733}
3734
3735void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3736                                     bool is_primitive) {
3737  DCHECK(Runtime::Current()->IsStarted());
3738  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3739  if (field == NULL) {
3740    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3741    return;
3742  }
3743  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3744  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3745  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3746  if (field != NULL) {
3747    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3748      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3749                                      << " from other class " << GetDeclaringClass();
3750      return;
3751    }
3752  }
3753  const uint32_t vregA = inst->VRegA_22c();
3754  if (is_primitive) {
3755    // Primitive field assignability rules are weaker than regular assignability rules
3756    bool instruction_compatible;
3757    bool value_compatible;
3758    const RegType& value_type = work_line_->GetRegisterType(vregA);
3759    if (field_type.IsIntegralTypes()) {
3760      instruction_compatible = insn_type.IsIntegralTypes();
3761      value_compatible = value_type.IsIntegralTypes();
3762    } else if (field_type.IsFloat()) {
3763      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3764      value_compatible = value_type.IsFloatTypes();
3765    } else if (field_type.IsLong()) {
3766      instruction_compatible = insn_type.IsLong();
3767      value_compatible = value_type.IsLongTypes();
3768    } else if (field_type.IsDouble()) {
3769      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3770      value_compatible = value_type.IsDoubleTypes();
3771    } else {
3772      instruction_compatible = false;  // reference field with primitive store
3773      value_compatible = false;  // unused
3774    }
3775    if (!instruction_compatible) {
3776      // This is a global failure rather than a class change failure as the instructions and
3777      // the descriptors for the type should have been consistent within the same file at
3778      // compile time
3779      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3780                                        << " to be of type '" << insn_type
3781                                        << "' but found type '" << field_type
3782                                        << "' in put";
3783      return;
3784    }
3785    if (!value_compatible) {
3786      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3787          << " of type " << value_type
3788          << " but expected " << field_type
3789          << " for store to " << PrettyField(field) << " in put";
3790      return;
3791    }
3792  } else {
3793    if (!insn_type.IsAssignableFrom(field_type)) {
3794      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3795                                        << " to be compatible with type '" << insn_type
3796                                        << "' but found type '" << field_type
3797                                        << "' in put-object";
3798      return;
3799    }
3800    work_line_->VerifyRegisterType(vregA, field_type);
3801  }
3802}
3803
3804bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3805  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3806    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3807    return false;
3808  }
3809  return true;
3810}
3811
3812bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3813  bool changed = true;
3814  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3815  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3816    /*
3817     * We haven't processed this instruction before, and we haven't touched the registers here, so
3818     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3819     * only way a register can transition out of "unknown", so this is not just an optimization.)
3820     */
3821    if (!insn_flags_[next_insn].IsReturn()) {
3822      target_line->CopyFromLine(merge_line);
3823    } else {
3824      // Verify that the monitor stack is empty on return.
3825      if (!merge_line->VerifyMonitorStackEmpty()) {
3826        return false;
3827      }
3828      // For returns we only care about the operand to the return, all other registers are dead.
3829      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3830      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3831      Instruction::Code opcode = ret_inst->Opcode();
3832      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3833        target_line->MarkAllRegistersAsConflicts();
3834      } else {
3835        target_line->CopyFromLine(merge_line);
3836        if (opcode == Instruction::RETURN_WIDE) {
3837          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3838        } else {
3839          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3840        }
3841      }
3842    }
3843  } else {
3844    UniquePtr<RegisterLine> copy(gDebugVerify ?
3845                                 RegisterLine::Create(target_line->NumRegs(), this) :
3846                                 NULL);
3847    if (gDebugVerify) {
3848      copy->CopyFromLine(target_line);
3849    }
3850    changed = target_line->MergeRegisters(merge_line);
3851    if (have_pending_hard_failure_) {
3852      return false;
3853    }
3854    if (gDebugVerify && changed) {
3855      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3856                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3857                      << *copy.get() << "  MERGE\n"
3858                      << *merge_line << "  ==\n"
3859                      << *target_line << "\n";
3860    }
3861  }
3862  if (changed) {
3863    insn_flags_[next_insn].SetChanged();
3864  }
3865  return true;
3866}
3867
3868InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3869  return &insn_flags_[work_insn_idx_];
3870}
3871
3872const RegType& MethodVerifier::GetMethodReturnType() {
3873  if (return_type_ == nullptr) {
3874    if (mirror_method_ != NULL) {
3875      MethodHelper mh(mirror_method_);
3876      mirror::Class* return_type_class = mh.GetReturnType();
3877      if (return_type_class != nullptr) {
3878        return_type_ = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3879                                             return_type_class->CannotBeAssignedFromOtherTypes());
3880      } else {
3881        Thread* self = Thread::Current();
3882        DCHECK(self->IsExceptionPending());
3883        self->ClearException();
3884      }
3885    }
3886    if (return_type_ == nullptr) {
3887      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3888      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3889      uint16_t return_type_idx = proto_id.return_type_idx_;
3890      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3891      return_type_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3892    }
3893  }
3894  return *return_type_;
3895}
3896
3897const RegType& MethodVerifier::GetDeclaringClass() {
3898  if (declaring_class_ == NULL) {
3899    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3900    const char* descriptor
3901        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3902    if (mirror_method_ != NULL) {
3903      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3904      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3905                                               klass->CannotBeAssignedFromOtherTypes());
3906    } else {
3907      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3908    }
3909  }
3910  return *declaring_class_;
3911}
3912
3913void MethodVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits,
3914                                       size_t* log2_max_gc_pc) {
3915  size_t local_gc_points = 0;
3916  size_t max_insn = 0;
3917  size_t max_ref_reg = -1;
3918  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3919    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3920      local_gc_points++;
3921      max_insn = i;
3922      RegisterLine* line = reg_table_.GetLine(i);
3923      max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg);
3924    }
3925  }
3926  *gc_points = local_gc_points;
3927  *ref_bitmap_bits = max_ref_reg + 1;  // if max register is 0 we need 1 bit to encode (ie +1)
3928  size_t i = 0;
3929  while ((1U << i) <= max_insn) {
3930    i++;
3931  }
3932  *log2_max_gc_pc = i;
3933}
3934
3935MethodVerifier::MethodSafeCastSet* MethodVerifier::GenerateSafeCastSet() {
3936  /*
3937   * Walks over the method code and adds any cast instructions in which
3938   * the type cast is implicit to a set, which is used in the code generation
3939   * to elide these casts.
3940   */
3941  if (!failure_messages_.empty()) {
3942    return NULL;
3943  }
3944  UniquePtr<MethodSafeCastSet> mscs;
3945  const Instruction* inst = Instruction::At(code_item_->insns_);
3946  const Instruction* end = Instruction::At(code_item_->insns_ +
3947                                           code_item_->insns_size_in_code_units_);
3948
3949  for (; inst < end; inst = inst->Next()) {
3950    Instruction::Code code = inst->Opcode();
3951    if ((code == Instruction::CHECK_CAST) || (code == Instruction::APUT_OBJECT)) {
3952      uint32_t dex_pc = inst->GetDexPc(code_item_->insns_);
3953      RegisterLine* line = reg_table_.GetLine(dex_pc);
3954      bool is_safe_cast = false;
3955      if (code == Instruction::CHECK_CAST) {
3956        const RegType& reg_type(line->GetRegisterType(inst->VRegA_21c()));
3957        const RegType& cast_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
3958        is_safe_cast = cast_type.IsStrictlyAssignableFrom(reg_type);
3959      } else {
3960        const RegType& array_type(line->GetRegisterType(inst->VRegB_23x()));
3961        // We only know its safe to assign to an array if the array type is precise. For example,
3962        // an Object[] can have any type of object stored in it, but it may also be assigned a
3963        // String[] in which case the stores need to be of Strings.
3964        if (array_type.IsPreciseReference()) {
3965          const RegType& value_type(line->GetRegisterType(inst->VRegA_23x()));
3966          const RegType& component_type(reg_types_.GetComponentType(array_type,
3967                                                                    class_loader_->get()));
3968          is_safe_cast = component_type.IsStrictlyAssignableFrom(value_type);
3969        }
3970      }
3971      if (is_safe_cast) {
3972        if (mscs.get() == NULL) {
3973          mscs.reset(new MethodSafeCastSet());
3974        }
3975        mscs->insert(dex_pc);
3976      }
3977    }
3978  }
3979  return mscs.release();
3980}
3981
3982MethodVerifier::PcToConcreteMethodMap* MethodVerifier::GenerateDevirtMap() {
3983  // It is risky to rely on reg_types for sharpening in cases of soft
3984  // verification, we might end up sharpening to a wrong implementation. Just abort.
3985  if (!failure_messages_.empty()) {
3986    return NULL;
3987  }
3988
3989  UniquePtr<PcToConcreteMethodMap> pc_to_concrete_method_map;
3990  const uint16_t* insns = code_item_->insns_;
3991  const Instruction* inst = Instruction::At(insns);
3992  const Instruction* end = Instruction::At(insns + code_item_->insns_size_in_code_units_);
3993
3994  for (; inst < end; inst = inst->Next()) {
3995    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
3996        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
3997    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
3998        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3999
4000    if (!is_interface && !is_virtual) {
4001      continue;
4002    }
4003    // Get reg type for register holding the reference to the object that will be dispatched upon.
4004    uint32_t dex_pc = inst->GetDexPc(insns);
4005    RegisterLine* line = reg_table_.GetLine(dex_pc);
4006    bool is_range = (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
4007        (inst->Opcode() ==  Instruction::INVOKE_INTERFACE_RANGE);
4008    const RegType&
4009        reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c()));
4010
4011    if (!reg_type.HasClass()) {
4012      // We will compute devirtualization information only when we know the Class of the reg type.
4013      continue;
4014    }
4015    mirror::Class* reg_class = reg_type.GetClass();
4016    if (reg_class->IsInterface()) {
4017      // We can't devirtualize when the known type of the register is an interface.
4018      continue;
4019    }
4020    if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) {
4021      // We can't devirtualize abstract classes except on arrays of abstract classes.
4022      continue;
4023    }
4024    mirror::ArtMethod* abstract_method = (*dex_cache_)->GetResolvedMethod(
4025        is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
4026    if (abstract_method == NULL) {
4027      // If the method is not found in the cache this means that it was never found
4028      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
4029      continue;
4030    }
4031    // Find the concrete method.
4032    mirror::ArtMethod* concrete_method = NULL;
4033    if (is_interface) {
4034      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
4035    }
4036    if (is_virtual) {
4037      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
4038    }
4039    if (concrete_method == NULL || concrete_method->IsAbstract()) {
4040      // In cases where concrete_method is not found, or is abstract, continue to the next invoke.
4041      continue;
4042    }
4043    if (reg_type.IsPreciseReference() || concrete_method->IsFinal() ||
4044        concrete_method->GetDeclaringClass()->IsFinal()) {
4045      // If we knew exactly the class being dispatched upon, or if the target method cannot be
4046      // overridden record the target to be used in the compiler driver.
4047      if (pc_to_concrete_method_map.get() == NULL) {
4048        pc_to_concrete_method_map.reset(new PcToConcreteMethodMap());
4049      }
4050      MethodReference concrete_ref(
4051          concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
4052          concrete_method->GetDexMethodIndex());
4053      pc_to_concrete_method_map->Put(dex_pc, concrete_ref);
4054    }
4055  }
4056  return pc_to_concrete_method_map.release();
4057}
4058
4059const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
4060  size_t num_entries, ref_bitmap_bits, pc_bits;
4061  ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
4062  // There's a single byte to encode the size of each bitmap
4063  if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) {
4064    // TODO: either a better GC map format or per method failures
4065    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4066       << ref_bitmap_bits << " registers";
4067    return NULL;
4068  }
4069  size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8;
4070  // There are 2 bytes to encode the number of entries
4071  if (num_entries >= 65536) {
4072    // TODO: either a better GC map format or per method failures
4073    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4074       << num_entries << " entries";
4075    return NULL;
4076  }
4077  size_t pc_bytes;
4078  RegisterMapFormat format;
4079  if (pc_bits <= 8) {
4080    format = kRegMapFormatCompact8;
4081    pc_bytes = 1;
4082  } else if (pc_bits <= 16) {
4083    format = kRegMapFormatCompact16;
4084    pc_bytes = 2;
4085  } else {
4086    // TODO: either a better GC map format or per method failures
4087    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4088       << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)";
4089    return NULL;
4090  }
4091  size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4;
4092  std::vector<uint8_t>* table = new std::vector<uint8_t>;
4093  if (table == NULL) {
4094    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")";
4095    return NULL;
4096  }
4097  table->reserve(table_size);
4098  // Write table header
4099  table->push_back(format | ((ref_bitmap_bytes >> DexPcToReferenceMap::kRegMapFormatShift) &
4100                             ~DexPcToReferenceMap::kRegMapFormatMask));
4101  table->push_back(ref_bitmap_bytes & 0xFF);
4102  table->push_back(num_entries & 0xFF);
4103  table->push_back((num_entries >> 8) & 0xFF);
4104  // Write table data
4105  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4106    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4107      table->push_back(i & 0xFF);
4108      if (pc_bytes == 2) {
4109        table->push_back((i >> 8) & 0xFF);
4110      }
4111      RegisterLine* line = reg_table_.GetLine(i);
4112      line->WriteReferenceBitMap(*table, ref_bitmap_bytes);
4113    }
4114  }
4115  DCHECK_EQ(table->size(), table_size);
4116  return table;
4117}
4118
4119void MethodVerifier::VerifyGcMap(const std::vector<uint8_t>& data) {
4120  // Check that for every GC point there is a map entry, there aren't entries for non-GC points,
4121  // that the table data is well formed and all references are marked (or not) in the bitmap
4122  DexPcToReferenceMap map(&data[0]);
4123  DCHECK_EQ(data.size(), map.RawSize());
4124  size_t map_index = 0;
4125  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4126    const uint8_t* reg_bitmap = map.FindBitMap(i, false);
4127    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4128      CHECK_LT(map_index, map.NumEntries());
4129      CHECK_EQ(map.GetDexPc(map_index), i);
4130      CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
4131      map_index++;
4132      RegisterLine* line = reg_table_.GetLine(i);
4133      for (size_t j = 0; j < code_item_->registers_size_; j++) {
4134        if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) {
4135          CHECK_LT(j / 8, map.RegWidth());
4136          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1);
4137        } else if ((j / 8) < map.RegWidth()) {
4138          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0);
4139        } else {
4140          // If a register doesn't contain a reference then the bitmap may be shorter than the line
4141        }
4142      }
4143    } else {
4144      CHECK(reg_bitmap == NULL);
4145    }
4146  }
4147}
4148
4149void MethodVerifier::SetDexGcMap(MethodReference ref, const std::vector<uint8_t>* gc_map) {
4150  DCHECK(Runtime::Current()->IsCompiler());
4151  {
4152    WriterMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4153    DexGcMapTable::iterator it = dex_gc_maps_->find(ref);
4154    if (it != dex_gc_maps_->end()) {
4155      delete it->second;
4156      dex_gc_maps_->erase(it);
4157    }
4158    dex_gc_maps_->Put(ref, gc_map);
4159  }
4160  DCHECK(GetDexGcMap(ref) != NULL);
4161}
4162
4163
4164void  MethodVerifier::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) {
4165  DCHECK(Runtime::Current()->IsCompiler());
4166  WriterMutexLock mu(Thread::Current(), *safecast_map_lock_);
4167  SafeCastMap::iterator it = safecast_map_->find(ref);
4168  if (it != safecast_map_->end()) {
4169    delete it->second;
4170    safecast_map_->erase(it);
4171  }
4172  safecast_map_->Put(ref, cast_set);
4173  DCHECK(safecast_map_->find(ref) != safecast_map_->end());
4174}
4175
4176bool MethodVerifier::IsSafeCast(MethodReference ref, uint32_t pc) {
4177  DCHECK(Runtime::Current()->IsCompiler());
4178  ReaderMutexLock mu(Thread::Current(), *safecast_map_lock_);
4179  SafeCastMap::const_iterator it = safecast_map_->find(ref);
4180  if (it == safecast_map_->end()) {
4181    return false;
4182  }
4183
4184  // Look up the cast address in the set of safe casts
4185  MethodVerifier::MethodSafeCastSet::const_iterator cast_it = it->second->find(pc);
4186  return cast_it != it->second->end();
4187}
4188
4189const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(MethodReference ref) {
4190  DCHECK(Runtime::Current()->IsCompiler());
4191  ReaderMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4192  DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
4193  CHECK(it != dex_gc_maps_->end())
4194    << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file);
4195  CHECK(it->second != NULL);
4196  return it->second;
4197}
4198
4199void  MethodVerifier::SetDevirtMap(MethodReference ref,
4200                                   const PcToConcreteMethodMap* devirt_map) {
4201  DCHECK(Runtime::Current()->IsCompiler());
4202  WriterMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4203  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
4204  if (it != devirt_maps_->end()) {
4205    delete it->second;
4206    devirt_maps_->erase(it);
4207  }
4208
4209  devirt_maps_->Put(ref, devirt_map);
4210  DCHECK(devirt_maps_->find(ref) != devirt_maps_->end());
4211}
4212
4213const MethodReference* MethodVerifier::GetDevirtMap(const MethodReference& ref,
4214                                                                    uint32_t dex_pc) {
4215  DCHECK(Runtime::Current()->IsCompiler());
4216  ReaderMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4217  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
4218  if (it == devirt_maps_->end()) {
4219    return NULL;
4220  }
4221
4222  // Look up the PC in the map, get the concrete method to execute and return its reference.
4223  MethodVerifier::PcToConcreteMethodMap::const_iterator pc_to_concrete_method
4224      = it->second->find(dex_pc);
4225  if (pc_to_concrete_method != it->second->end()) {
4226    return &(pc_to_concrete_method->second);
4227  } else {
4228    return NULL;
4229  }
4230}
4231
4232std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4233  RegisterLine* line = reg_table_.GetLine(dex_pc);
4234  std::vector<int32_t> result;
4235  for (size_t i = 0; i < line->NumRegs(); ++i) {
4236    const RegType& type = line->GetRegisterType(i);
4237    if (type.IsConstant()) {
4238      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4239      result.push_back(type.ConstantValue());
4240    } else if (type.IsConstantLo()) {
4241      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4242      result.push_back(type.ConstantValueLo());
4243    } else if (type.IsConstantHi()) {
4244      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4245      result.push_back(type.ConstantValueHi());
4246    } else if (type.IsIntegralTypes()) {
4247      result.push_back(kIntVReg);
4248      result.push_back(0);
4249    } else if (type.IsFloat()) {
4250      result.push_back(kFloatVReg);
4251      result.push_back(0);
4252    } else if (type.IsLong()) {
4253      result.push_back(kLongLoVReg);
4254      result.push_back(0);
4255      result.push_back(kLongHiVReg);
4256      result.push_back(0);
4257      ++i;
4258    } else if (type.IsDouble()) {
4259      result.push_back(kDoubleLoVReg);
4260      result.push_back(0);
4261      result.push_back(kDoubleHiVReg);
4262      result.push_back(0);
4263      ++i;
4264    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4265      result.push_back(kUndefined);
4266      result.push_back(0);
4267    } else {
4268      CHECK(type.IsNonZeroReferenceTypes());
4269      result.push_back(kReferenceVReg);
4270      result.push_back(0);
4271    }
4272  }
4273  return result;
4274}
4275
4276bool MethodVerifier::IsCandidateForCompilation(MethodReference& method_ref,
4277                                               const uint32_t access_flags) {
4278#ifdef ART_SEA_IR_MODE
4279    bool use_sea = Runtime::Current()->IsSeaIRMode();
4280    use_sea = use_sea && (std::string::npos != PrettyMethod(
4281                          method_ref.dex_method_index, *(method_ref.dex_file)).find("fibonacci"));
4282    if (use_sea) return true;
4283#endif
4284  // Don't compile class initializers, ever.
4285  if (((access_flags & kAccConstructor) != 0) && ((access_flags & kAccStatic) != 0)) {
4286    return false;
4287  }
4288  return (Runtime::Current()->GetCompilerFilter() != Runtime::kInterpretOnly);
4289}
4290
4291ReaderWriterMutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
4292MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
4293
4294ReaderWriterMutex* MethodVerifier::safecast_map_lock_ = NULL;
4295MethodVerifier::SafeCastMap* MethodVerifier::safecast_map_ = NULL;
4296
4297ReaderWriterMutex* MethodVerifier::devirt_maps_lock_ = NULL;
4298MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
4299
4300ReaderWriterMutex* MethodVerifier::rejected_classes_lock_ = NULL;
4301MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
4302
4303void MethodVerifier::Init() {
4304  if (Runtime::Current()->IsCompiler()) {
4305    dex_gc_maps_lock_ = new ReaderWriterMutex("verifier GC maps lock");
4306    Thread* self = Thread::Current();
4307    {
4308      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4309      dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
4310    }
4311
4312    safecast_map_lock_ = new ReaderWriterMutex("verifier Cast Elision lock");
4313    {
4314      WriterMutexLock mu(self, *safecast_map_lock_);
4315      safecast_map_ = new MethodVerifier::SafeCastMap();
4316    }
4317
4318    devirt_maps_lock_ = new ReaderWriterMutex("verifier Devirtualization lock");
4319
4320    {
4321      WriterMutexLock mu(self, *devirt_maps_lock_);
4322      devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
4323    }
4324
4325    rejected_classes_lock_ = new ReaderWriterMutex("verifier rejected classes lock");
4326    {
4327      WriterMutexLock mu(self, *rejected_classes_lock_);
4328      rejected_classes_ = new MethodVerifier::RejectedClassesTable;
4329    }
4330  }
4331  art::verifier::RegTypeCache::Init();
4332}
4333
4334void MethodVerifier::Shutdown() {
4335  if (Runtime::Current()->IsCompiler()) {
4336    Thread* self = Thread::Current();
4337    {
4338      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4339      STLDeleteValues(dex_gc_maps_);
4340      delete dex_gc_maps_;
4341      dex_gc_maps_ = NULL;
4342    }
4343    delete dex_gc_maps_lock_;
4344    dex_gc_maps_lock_ = NULL;
4345
4346    {
4347      WriterMutexLock mu(self, *safecast_map_lock_);
4348      STLDeleteValues(safecast_map_);
4349      delete safecast_map_;
4350      safecast_map_ = NULL;
4351    }
4352    delete safecast_map_lock_;
4353    safecast_map_lock_ = NULL;
4354
4355    {
4356      WriterMutexLock mu(self, *devirt_maps_lock_);
4357      STLDeleteValues(devirt_maps_);
4358      delete devirt_maps_;
4359      devirt_maps_ = NULL;
4360    }
4361    delete devirt_maps_lock_;
4362    devirt_maps_lock_ = NULL;
4363
4364    {
4365      WriterMutexLock mu(self, *rejected_classes_lock_);
4366      delete rejected_classes_;
4367      rejected_classes_ = NULL;
4368    }
4369    delete rejected_classes_lock_;
4370    rejected_classes_lock_ = NULL;
4371  }
4372  verifier::RegTypeCache::ShutDown();
4373}
4374
4375void MethodVerifier::AddRejectedClass(ClassReference ref) {
4376  DCHECK(Runtime::Current()->IsCompiler());
4377  {
4378    WriterMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4379    rejected_classes_->insert(ref);
4380  }
4381  CHECK(IsClassRejected(ref));
4382}
4383
4384bool MethodVerifier::IsClassRejected(ClassReference ref) {
4385  DCHECK(Runtime::Current()->IsCompiler());
4386  ReaderMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4387  return (rejected_classes_->find(ref) != rejected_classes_->end());
4388}
4389
4390void MethodVerifier::VisitRoots(RootVisitor* visitor, void* arg) {
4391  reg_types_.VisitRoots(visitor, arg);
4392}
4393
4394}  // namespace verifier
4395}  // namespace art
4396