method_verifier.cc revision 2ed8deff799448e094fa7a7cb9cf3b718820f4c6
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "handle_scope-inl.h"
46#include "verifier/dex_gc_map.h"
47
48namespace art {
49namespace verifier {
50
51static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
52static constexpr bool gDebugVerify = false;
53// TODO: Add a constant to method_verifier to turn on verbose logging?
54
55void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
56                                 uint32_t insns_size, uint16_t registers_size,
57                                 MethodVerifier* verifier) {
58  DCHECK_GT(insns_size, 0U);
59  register_lines_.reset(new RegisterLine*[insns_size]());
60  size_ = insns_size;
61  for (uint32_t i = 0; i < insns_size; i++) {
62    bool interesting = false;
63    switch (mode) {
64      case kTrackRegsAll:
65        interesting = flags[i].IsOpcode();
66        break;
67      case kTrackCompilerInterestPoints:
68        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
69        break;
70      case kTrackRegsBranches:
71        interesting = flags[i].IsBranchTarget();
72        break;
73      default:
74        break;
75    }
76    if (interesting) {
77      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
78    }
79  }
80}
81
82PcToRegisterLineTable::~PcToRegisterLineTable() {
83  for (size_t i = 0; i < size_; i++) {
84    delete register_lines_[i];
85    if (kIsDebugBuild) {
86      register_lines_[i] = nullptr;
87    }
88  }
89}
90
91MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
92                                                        mirror::Class* klass,
93                                                        bool allow_soft_failures,
94                                                        std::string* error) {
95  if (klass->IsVerified()) {
96    return kNoFailure;
97  }
98  bool early_failure = false;
99  std::string failure_message;
100  const DexFile& dex_file = klass->GetDexFile();
101  const DexFile::ClassDef* class_def = klass->GetClassDef();
102  mirror::Class* super = klass->GetSuperClass();
103  std::string temp;
104  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
105    early_failure = true;
106    failure_message = " that has no super class";
107  } else if (super != nullptr && super->IsFinal()) {
108    early_failure = true;
109    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
110  } else if (class_def == nullptr) {
111    early_failure = true;
112    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
113  }
114  if (early_failure) {
115    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
116    if (Runtime::Current()->IsCompiler()) {
117      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
118      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
119    }
120    return kHardFailure;
121  }
122  StackHandleScope<2> hs(self);
123  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
124  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
125  return VerifyClass(self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
126}
127
128MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
129                                                        const DexFile* dex_file,
130                                                        ConstHandle<mirror::DexCache> dex_cache,
131                                                        ConstHandle<mirror::ClassLoader> class_loader,
132                                                        const DexFile::ClassDef* class_def,
133                                                        bool allow_soft_failures,
134                                                        std::string* error) {
135  DCHECK(class_def != nullptr);
136  const byte* class_data = dex_file->GetClassData(*class_def);
137  if (class_data == nullptr) {
138    // empty class, probably a marker interface
139    return kNoFailure;
140  }
141  ClassDataItemIterator it(*dex_file, class_data);
142  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
143    it.Next();
144  }
145  size_t error_count = 0;
146  bool hard_fail = false;
147  ClassLinker* linker = Runtime::Current()->GetClassLinker();
148  int64_t previous_direct_method_idx = -1;
149  while (it.HasNextDirectMethod()) {
150    self->AllowThreadSuspension();
151    uint32_t method_idx = it.GetMemberIndex();
152    if (method_idx == previous_direct_method_idx) {
153      // smali can create dex files with two encoded_methods sharing the same method_idx
154      // http://code.google.com/p/smali/issues/detail?id=119
155      it.Next();
156      continue;
157    }
158    previous_direct_method_idx = method_idx;
159    InvokeType type = it.GetMethodInvokeType(*class_def);
160    mirror::ArtMethod* method =
161        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
162                              NullHandle<mirror::ArtMethod>(), type);
163    if (method == nullptr) {
164      DCHECK(self->IsExceptionPending());
165      // We couldn't resolve the method, but continue regardless.
166      self->ClearException();
167    }
168    StackHandleScope<1> hs(self);
169    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
170    MethodVerifier::FailureKind result = VerifyMethod(self,
171                                                      method_idx,
172                                                      dex_file,
173                                                      dex_cache,
174                                                      class_loader,
175                                                      class_def,
176                                                      it.GetMethodCodeItem(),
177                                                      h_method,
178                                                      it.GetMethodAccessFlags(),
179                                                      allow_soft_failures,
180                                                      false);
181    if (result != kNoFailure) {
182      if (result == kHardFailure) {
183        hard_fail = true;
184        if (error_count > 0) {
185          *error += "\n";
186        }
187        *error = "Verifier rejected class ";
188        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
189        *error += " due to bad method ";
190        *error += PrettyMethod(method_idx, *dex_file);
191      }
192      ++error_count;
193    }
194    it.Next();
195  }
196  int64_t previous_virtual_method_idx = -1;
197  while (it.HasNextVirtualMethod()) {
198    self->AllowThreadSuspension();
199    uint32_t method_idx = it.GetMemberIndex();
200    if (method_idx == previous_virtual_method_idx) {
201      // smali can create dex files with two encoded_methods sharing the same method_idx
202      // http://code.google.com/p/smali/issues/detail?id=119
203      it.Next();
204      continue;
205    }
206    previous_virtual_method_idx = method_idx;
207    InvokeType type = it.GetMethodInvokeType(*class_def);
208    mirror::ArtMethod* method =
209        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
210                              NullHandle<mirror::ArtMethod>(), type);
211    if (method == nullptr) {
212      DCHECK(self->IsExceptionPending());
213      // We couldn't resolve the method, but continue regardless.
214      self->ClearException();
215    }
216    StackHandleScope<1> hs(self);
217    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
218    MethodVerifier::FailureKind result = VerifyMethod(self,
219                                                      method_idx,
220                                                      dex_file,
221                                                      dex_cache,
222                                                      class_loader,
223                                                      class_def,
224                                                      it.GetMethodCodeItem(),
225                                                      h_method,
226                                                      it.GetMethodAccessFlags(),
227                                                      allow_soft_failures,
228                                                      false);
229    if (result != kNoFailure) {
230      if (result == kHardFailure) {
231        hard_fail = true;
232        if (error_count > 0) {
233          *error += "\n";
234        }
235        *error = "Verifier rejected class ";
236        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
237        *error += " due to bad method ";
238        *error += PrettyMethod(method_idx, *dex_file);
239      }
240      ++error_count;
241    }
242    it.Next();
243  }
244  if (error_count == 0) {
245    return kNoFailure;
246  } else {
247    return hard_fail ? kHardFailure : kSoftFailure;
248  }
249}
250
251MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
252                                                         const DexFile* dex_file,
253                                                         ConstHandle<mirror::DexCache> dex_cache,
254                                                         ConstHandle<mirror::ClassLoader> class_loader,
255                                                         const DexFile::ClassDef* class_def,
256                                                         const DexFile::CodeItem* code_item,
257                                                         ConstHandle<mirror::ArtMethod> method,
258                                                         uint32_t method_access_flags,
259                                                         bool allow_soft_failures,
260                                                         bool need_precise_constants) {
261  MethodVerifier::FailureKind result = kNoFailure;
262  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
263
264  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
265                          method_idx, method, method_access_flags, true, allow_soft_failures,
266                          need_precise_constants);
267  if (verifier.Verify()) {
268    // Verification completed, however failures may be pending that didn't cause the verification
269    // to hard fail.
270    CHECK(!verifier.have_pending_hard_failure_);
271    if (verifier.failures_.size() != 0) {
272      if (VLOG_IS_ON(verifier)) {
273          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
274                                << PrettyMethod(method_idx, *dex_file) << "\n");
275      }
276      result = kSoftFailure;
277    }
278  } else {
279    // Bad method data.
280    CHECK_NE(verifier.failures_.size(), 0U);
281    CHECK(verifier.have_pending_hard_failure_);
282    verifier.DumpFailures(LOG(INFO) << "Verification error in "
283                                    << PrettyMethod(method_idx, *dex_file) << "\n");
284    if (gDebugVerify) {
285      std::cout << "\n" << verifier.info_messages_.str();
286      verifier.Dump(std::cout);
287    }
288    result = kHardFailure;
289  }
290  if (kTimeVerifyMethod) {
291    uint64_t duration_ns = NanoTime() - start_ns;
292    if (duration_ns > MsToNs(100)) {
293      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
294                   << " took " << PrettyDuration(duration_ns);
295    }
296  }
297  return result;
298}
299
300MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
301                                         const DexFile* dex_file,
302                                         ConstHandle<mirror::DexCache> dex_cache,
303                                         ConstHandle<mirror::ClassLoader> class_loader,
304                                         const DexFile::ClassDef* class_def,
305                                         const DexFile::CodeItem* code_item,
306                                         ConstHandle<mirror::ArtMethod> method,
307                                         uint32_t method_access_flags) {
308  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
309                                                class_def, code_item, dex_method_idx, method,
310                                                method_access_flags, true, true, true, true);
311  verifier->Verify();
312  verifier->DumpFailures(os);
313  os << verifier->info_messages_.str();
314  verifier->Dump(os);
315
316  return verifier;
317}
318
319MethodVerifier::MethodVerifier(Thread* self,
320                               const DexFile* dex_file, ConstHandle<mirror::DexCache> dex_cache,
321                               ConstHandle<mirror::ClassLoader> class_loader,
322                               const DexFile::ClassDef* class_def,
323                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
324                               ConstHandle<mirror::ArtMethod> method, uint32_t method_access_flags,
325                               bool can_load_classes, bool allow_soft_failures,
326                               bool need_precise_constants, bool verify_to_dump)
327    : self_(self),
328      reg_types_(can_load_classes),
329      work_insn_idx_(-1),
330      dex_method_idx_(dex_method_idx),
331      mirror_method_(method),
332      method_access_flags_(method_access_flags),
333      return_type_(nullptr),
334      dex_file_(dex_file),
335      dex_cache_(dex_cache),
336      class_loader_(class_loader),
337      class_def_(class_def),
338      code_item_(code_item),
339      declaring_class_(nullptr),
340      interesting_dex_pc_(-1),
341      monitor_enter_dex_pcs_(nullptr),
342      have_pending_hard_failure_(false),
343      have_pending_runtime_throw_failure_(false),
344      new_instance_count_(0),
345      monitor_enter_count_(0),
346      can_load_classes_(can_load_classes),
347      allow_soft_failures_(allow_soft_failures),
348      need_precise_constants_(need_precise_constants),
349      has_check_casts_(false),
350      has_virtual_or_interface_invokes_(false),
351      verify_to_dump_(verify_to_dump) {
352  Runtime::Current()->AddMethodVerifier(this);
353  DCHECK(class_def != nullptr);
354}
355
356MethodVerifier::~MethodVerifier() {
357  Runtime::Current()->RemoveMethodVerifier(this);
358  STLDeleteElements(&failure_messages_);
359}
360
361void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
362                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
363  Thread* self = Thread::Current();
364  StackHandleScope<3> hs(self);
365  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
366  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
367  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
368  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
369                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
370                          false, true, false);
371  verifier.interesting_dex_pc_ = dex_pc;
372  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
373  verifier.FindLocksAtDexPc();
374}
375
376void MethodVerifier::FindLocksAtDexPc() {
377  CHECK(monitor_enter_dex_pcs_ != nullptr);
378  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
379
380  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
381  // verification. In practice, the phase we want relies on data structures set up by all the
382  // earlier passes, so we just run the full method verification and bail out early when we've
383  // got what we wanted.
384  Verify();
385}
386
387mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
388                                                           uint32_t dex_pc) {
389  Thread* self = Thread::Current();
390  StackHandleScope<3> hs(self);
391  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
392  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
393  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
394  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
395                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
396                          true, true, false);
397  return verifier.FindAccessedFieldAtDexPc(dex_pc);
398}
399
400mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
401  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
402
403  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
404  // verification. In practice, the phase we want relies on data structures set up by all the
405  // earlier passes, so we just run the full method verification and bail out early when we've
406  // got what we wanted.
407  bool success = Verify();
408  if (!success) {
409    return nullptr;
410  }
411  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
412  if (register_line == nullptr) {
413    return nullptr;
414  }
415  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
416  return GetQuickFieldAccess(inst, register_line);
417}
418
419mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
420                                                            uint32_t dex_pc) {
421  Thread* self = Thread::Current();
422  StackHandleScope<3> hs(self);
423  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
424  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
425  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
426  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
427                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
428                          true, true, false);
429  return verifier.FindInvokedMethodAtDexPc(dex_pc);
430}
431
432mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
433  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
434
435  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
436  // verification. In practice, the phase we want relies on data structures set up by all the
437  // earlier passes, so we just run the full method verification and bail out early when we've
438  // got what we wanted.
439  bool success = Verify();
440  if (!success) {
441    return nullptr;
442  }
443  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
444  if (register_line == nullptr) {
445    return nullptr;
446  }
447  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
448  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
449  return GetQuickInvokedMethod(inst, register_line, is_range);
450}
451
452bool MethodVerifier::Verify() {
453  // If there aren't any instructions, make sure that's expected, then exit successfully.
454  if (code_item_ == nullptr) {
455    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
456      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
457      return false;
458    } else {
459      return true;
460    }
461  }
462  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
463  if (code_item_->ins_size_ > code_item_->registers_size_) {
464    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
465                                      << " regs=" << code_item_->registers_size_;
466    return false;
467  }
468  // Allocate and initialize an array to hold instruction data.
469  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
470  // Run through the instructions and see if the width checks out.
471  bool result = ComputeWidthsAndCountOps();
472  // Flag instructions guarded by a "try" block and check exception handlers.
473  result = result && ScanTryCatchBlocks();
474  // Perform static instruction verification.
475  result = result && VerifyInstructions();
476  // Perform code-flow analysis and return.
477  result = result && VerifyCodeFlow();
478  // Compute information for compiler.
479  if (result && Runtime::Current()->IsCompiler()) {
480    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
481  }
482  return result;
483}
484
485std::ostream& MethodVerifier::Fail(VerifyError error) {
486  switch (error) {
487    case VERIFY_ERROR_NO_CLASS:
488    case VERIFY_ERROR_NO_FIELD:
489    case VERIFY_ERROR_NO_METHOD:
490    case VERIFY_ERROR_ACCESS_CLASS:
491    case VERIFY_ERROR_ACCESS_FIELD:
492    case VERIFY_ERROR_ACCESS_METHOD:
493    case VERIFY_ERROR_INSTANTIATION:
494    case VERIFY_ERROR_CLASS_CHANGE:
495      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
496        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
497        // class change and instantiation errors into soft verification errors so that we re-verify
498        // at runtime. We may fail to find or to agree on access because of not yet available class
499        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
500        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
501        // paths" that dynamically perform the verification and cause the behavior to be that akin
502        // to an interpreter.
503        error = VERIFY_ERROR_BAD_CLASS_SOFT;
504      } else {
505        // If we fail again at runtime, mark that this instruction would throw and force this
506        // method to be executed using the interpreter with checks.
507        have_pending_runtime_throw_failure_ = true;
508      }
509      break;
510      // Indication that verification should be retried at runtime.
511    case VERIFY_ERROR_BAD_CLASS_SOFT:
512      if (!allow_soft_failures_) {
513        have_pending_hard_failure_ = true;
514      }
515      break;
516      // Hard verification failures at compile time will still fail at runtime, so the class is
517      // marked as rejected to prevent it from being compiled.
518    case VERIFY_ERROR_BAD_CLASS_HARD: {
519      if (Runtime::Current()->IsCompiler()) {
520        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
521        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
522      }
523      have_pending_hard_failure_ = true;
524      break;
525    }
526  }
527  failures_.push_back(error);
528  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
529                                    work_insn_idx_));
530  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
531  failure_messages_.push_back(failure_message);
532  return *failure_message;
533}
534
535std::ostream& MethodVerifier::LogVerifyInfo() {
536  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
537                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
538}
539
540void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
541  size_t failure_num = failure_messages_.size();
542  DCHECK_NE(failure_num, 0U);
543  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
544  prepend += last_fail_message->str();
545  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
546  delete last_fail_message;
547}
548
549void MethodVerifier::AppendToLastFailMessage(std::string append) {
550  size_t failure_num = failure_messages_.size();
551  DCHECK_NE(failure_num, 0U);
552  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
553  (*last_fail_message) << append;
554}
555
556bool MethodVerifier::ComputeWidthsAndCountOps() {
557  const uint16_t* insns = code_item_->insns_;
558  size_t insns_size = code_item_->insns_size_in_code_units_;
559  const Instruction* inst = Instruction::At(insns);
560  size_t new_instance_count = 0;
561  size_t monitor_enter_count = 0;
562  size_t dex_pc = 0;
563
564  while (dex_pc < insns_size) {
565    Instruction::Code opcode = inst->Opcode();
566    switch (opcode) {
567      case Instruction::APUT_OBJECT:
568      case Instruction::CHECK_CAST:
569        has_check_casts_ = true;
570        break;
571      case Instruction::INVOKE_VIRTUAL:
572      case Instruction::INVOKE_VIRTUAL_RANGE:
573      case Instruction::INVOKE_INTERFACE:
574      case Instruction::INVOKE_INTERFACE_RANGE:
575        has_virtual_or_interface_invokes_ = true;
576        break;
577      case Instruction::MONITOR_ENTER:
578        monitor_enter_count++;
579        break;
580      case Instruction::NEW_INSTANCE:
581        new_instance_count++;
582        break;
583      default:
584        break;
585    }
586    size_t inst_size = inst->SizeInCodeUnits();
587    insn_flags_[dex_pc].SetIsOpcode();
588    dex_pc += inst_size;
589    inst = inst->RelativeAt(inst_size);
590  }
591
592  if (dex_pc != insns_size) {
593    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
594                                      << dex_pc << " vs. " << insns_size << ")";
595    return false;
596  }
597
598  new_instance_count_ = new_instance_count;
599  monitor_enter_count_ = monitor_enter_count;
600  return true;
601}
602
603bool MethodVerifier::ScanTryCatchBlocks() {
604  uint32_t tries_size = code_item_->tries_size_;
605  if (tries_size == 0) {
606    return true;
607  }
608  uint32_t insns_size = code_item_->insns_size_in_code_units_;
609  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
610
611  for (uint32_t idx = 0; idx < tries_size; idx++) {
612    const DexFile::TryItem* try_item = &tries[idx];
613    uint32_t start = try_item->start_addr_;
614    uint32_t end = start + try_item->insn_count_;
615    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
616      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
617                                        << " endAddr=" << end << " (size=" << insns_size << ")";
618      return false;
619    }
620    if (!insn_flags_[start].IsOpcode()) {
621      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
622          << "'try' block starts inside an instruction (" << start << ")";
623      return false;
624    }
625    uint32_t dex_pc = start;
626    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
627    while (dex_pc < end) {
628      insn_flags_[dex_pc].SetInTry();
629      size_t insn_size = inst->SizeInCodeUnits();
630      dex_pc += insn_size;
631      inst = inst->RelativeAt(insn_size);
632    }
633  }
634  // Iterate over each of the handlers to verify target addresses.
635  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
636  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
637  ClassLinker* linker = Runtime::Current()->GetClassLinker();
638  for (uint32_t idx = 0; idx < handlers_size; idx++) {
639    CatchHandlerIterator iterator(handlers_ptr);
640    for (; iterator.HasNext(); iterator.Next()) {
641      uint32_t dex_pc= iterator.GetHandlerAddress();
642      if (!insn_flags_[dex_pc].IsOpcode()) {
643        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
644            << "exception handler starts at bad address (" << dex_pc << ")";
645        return false;
646      }
647      insn_flags_[dex_pc].SetBranchTarget();
648      // Ensure exception types are resolved so that they don't need resolution to be delivered,
649      // unresolved exception types will be ignored by exception delivery
650      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
651        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
652                                                            iterator.GetHandlerTypeIndex(),
653                                                            dex_cache_, class_loader_);
654        if (exception_type == nullptr) {
655          DCHECK(self_->IsExceptionPending());
656          self_->ClearException();
657        }
658      }
659    }
660    handlers_ptr = iterator.EndDataPointer();
661  }
662  return true;
663}
664
665bool MethodVerifier::VerifyInstructions() {
666  const Instruction* inst = Instruction::At(code_item_->insns_);
667
668  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
669  insn_flags_[0].SetBranchTarget();
670  insn_flags_[0].SetCompileTimeInfoPoint();
671
672  uint32_t insns_size = code_item_->insns_size_in_code_units_;
673  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
674    if (!VerifyInstruction(inst, dex_pc)) {
675      DCHECK_NE(failures_.size(), 0U);
676      return false;
677    }
678    /* Flag instructions that are garbage collection points */
679    // All invoke points are marked as "Throw" points already.
680    // We are relying on this to also count all the invokes as interesting.
681    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
682      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
683    } else if (inst->IsReturn()) {
684      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
685    }
686    dex_pc += inst->SizeInCodeUnits();
687    inst = inst->Next();
688  }
689  return true;
690}
691
692bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
693  bool result = true;
694  switch (inst->GetVerifyTypeArgumentA()) {
695    case Instruction::kVerifyRegA:
696      result = result && CheckRegisterIndex(inst->VRegA());
697      break;
698    case Instruction::kVerifyRegAWide:
699      result = result && CheckWideRegisterIndex(inst->VRegA());
700      break;
701  }
702  switch (inst->GetVerifyTypeArgumentB()) {
703    case Instruction::kVerifyRegB:
704      result = result && CheckRegisterIndex(inst->VRegB());
705      break;
706    case Instruction::kVerifyRegBField:
707      result = result && CheckFieldIndex(inst->VRegB());
708      break;
709    case Instruction::kVerifyRegBMethod:
710      result = result && CheckMethodIndex(inst->VRegB());
711      break;
712    case Instruction::kVerifyRegBNewInstance:
713      result = result && CheckNewInstance(inst->VRegB());
714      break;
715    case Instruction::kVerifyRegBString:
716      result = result && CheckStringIndex(inst->VRegB());
717      break;
718    case Instruction::kVerifyRegBType:
719      result = result && CheckTypeIndex(inst->VRegB());
720      break;
721    case Instruction::kVerifyRegBWide:
722      result = result && CheckWideRegisterIndex(inst->VRegB());
723      break;
724  }
725  switch (inst->GetVerifyTypeArgumentC()) {
726    case Instruction::kVerifyRegC:
727      result = result && CheckRegisterIndex(inst->VRegC());
728      break;
729    case Instruction::kVerifyRegCField:
730      result = result && CheckFieldIndex(inst->VRegC());
731      break;
732    case Instruction::kVerifyRegCNewArray:
733      result = result && CheckNewArray(inst->VRegC());
734      break;
735    case Instruction::kVerifyRegCType:
736      result = result && CheckTypeIndex(inst->VRegC());
737      break;
738    case Instruction::kVerifyRegCWide:
739      result = result && CheckWideRegisterIndex(inst->VRegC());
740      break;
741  }
742  switch (inst->GetVerifyExtraFlags()) {
743    case Instruction::kVerifyArrayData:
744      result = result && CheckArrayData(code_offset);
745      break;
746    case Instruction::kVerifyBranchTarget:
747      result = result && CheckBranchTarget(code_offset);
748      break;
749    case Instruction::kVerifySwitchTargets:
750      result = result && CheckSwitchTargets(code_offset);
751      break;
752    case Instruction::kVerifyVarArgNonZero:
753      // Fall-through.
754    case Instruction::kVerifyVarArg: {
755      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
756        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
757                                             "non-range invoke";
758        return false;
759      }
760      uint32_t args[Instruction::kMaxVarArgRegs];
761      inst->GetVarArgs(args);
762      result = result && CheckVarArgRegs(inst->VRegA(), args);
763      break;
764    }
765    case Instruction::kVerifyVarArgRangeNonZero:
766      // Fall-through.
767    case Instruction::kVerifyVarArgRange:
768      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
769          inst->VRegA() <= 0) {
770        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
771                                             "range invoke";
772        return false;
773      }
774      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
775      break;
776    case Instruction::kVerifyError:
777      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
778      result = false;
779      break;
780  }
781  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) {
782    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
783    result = false;
784  }
785  return result;
786}
787
788inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
789  if (idx >= code_item_->registers_size_) {
790    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
791                                      << code_item_->registers_size_ << ")";
792    return false;
793  }
794  return true;
795}
796
797inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
798  if (idx + 1 >= code_item_->registers_size_) {
799    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
800                                      << "+1 >= " << code_item_->registers_size_ << ")";
801    return false;
802  }
803  return true;
804}
805
806inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
807  if (idx >= dex_file_->GetHeader().field_ids_size_) {
808    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
809                                      << dex_file_->GetHeader().field_ids_size_ << ")";
810    return false;
811  }
812  return true;
813}
814
815inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
816  if (idx >= dex_file_->GetHeader().method_ids_size_) {
817    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
818                                      << dex_file_->GetHeader().method_ids_size_ << ")";
819    return false;
820  }
821  return true;
822}
823
824inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
825  if (idx >= dex_file_->GetHeader().type_ids_size_) {
826    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
827                                      << dex_file_->GetHeader().type_ids_size_ << ")";
828    return false;
829  }
830  // We don't need the actual class, just a pointer to the class name.
831  const char* descriptor = dex_file_->StringByTypeIdx(idx);
832  if (descriptor[0] != 'L') {
833    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
834    return false;
835  }
836  return true;
837}
838
839inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
840  if (idx >= dex_file_->GetHeader().string_ids_size_) {
841    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
842                                      << dex_file_->GetHeader().string_ids_size_ << ")";
843    return false;
844  }
845  return true;
846}
847
848inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
849  if (idx >= dex_file_->GetHeader().type_ids_size_) {
850    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
851                                      << dex_file_->GetHeader().type_ids_size_ << ")";
852    return false;
853  }
854  return true;
855}
856
857bool MethodVerifier::CheckNewArray(uint32_t idx) {
858  if (idx >= dex_file_->GetHeader().type_ids_size_) {
859    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
860                                      << dex_file_->GetHeader().type_ids_size_ << ")";
861    return false;
862  }
863  int bracket_count = 0;
864  const char* descriptor = dex_file_->StringByTypeIdx(idx);
865  const char* cp = descriptor;
866  while (*cp++ == '[') {
867    bracket_count++;
868  }
869  if (bracket_count == 0) {
870    /* The given class must be an array type. */
871    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
872        << "can't new-array class '" << descriptor << "' (not an array)";
873    return false;
874  } else if (bracket_count > 255) {
875    /* It is illegal to create an array of more than 255 dimensions. */
876    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
877        << "can't new-array class '" << descriptor << "' (exceeds limit)";
878    return false;
879  }
880  return true;
881}
882
883bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
884  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
885  const uint16_t* insns = code_item_->insns_ + cur_offset;
886  const uint16_t* array_data;
887  int32_t array_data_offset;
888
889  DCHECK_LT(cur_offset, insn_count);
890  /* make sure the start of the array data table is in range */
891  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
892  if ((int32_t) cur_offset + array_data_offset < 0 ||
893      cur_offset + array_data_offset + 2 >= insn_count) {
894    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
895                                      << ", data offset " << array_data_offset
896                                      << ", count " << insn_count;
897    return false;
898  }
899  /* offset to array data table is a relative branch-style offset */
900  array_data = insns + array_data_offset;
901  /* make sure the table is 32-bit aligned */
902  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
903    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
904                                      << ", data offset " << array_data_offset;
905    return false;
906  }
907  uint32_t value_width = array_data[1];
908  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
909  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
910  /* make sure the end of the switch is in range */
911  if (cur_offset + array_data_offset + table_size > insn_count) {
912    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
913                                      << ", data offset " << array_data_offset << ", end "
914                                      << cur_offset + array_data_offset + table_size
915                                      << ", count " << insn_count;
916    return false;
917  }
918  return true;
919}
920
921bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
922  int32_t offset;
923  bool isConditional, selfOkay;
924  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
925    return false;
926  }
927  if (!selfOkay && offset == 0) {
928    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
929                                      << reinterpret_cast<void*>(cur_offset);
930    return false;
931  }
932  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
933  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
934  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
935    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
936                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
937    return false;
938  }
939  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
940  int32_t abs_offset = cur_offset + offset;
941  if (abs_offset < 0 ||
942      (uint32_t) abs_offset >= insn_count ||
943      !insn_flags_[abs_offset].IsOpcode()) {
944    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
945                                      << reinterpret_cast<void*>(abs_offset) << ") at "
946                                      << reinterpret_cast<void*>(cur_offset);
947    return false;
948  }
949  insn_flags_[abs_offset].SetBranchTarget();
950  return true;
951}
952
953bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
954                                  bool* selfOkay) {
955  const uint16_t* insns = code_item_->insns_ + cur_offset;
956  *pConditional = false;
957  *selfOkay = false;
958  switch (*insns & 0xff) {
959    case Instruction::GOTO:
960      *pOffset = ((int16_t) *insns) >> 8;
961      break;
962    case Instruction::GOTO_32:
963      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
964      *selfOkay = true;
965      break;
966    case Instruction::GOTO_16:
967      *pOffset = (int16_t) insns[1];
968      break;
969    case Instruction::IF_EQ:
970    case Instruction::IF_NE:
971    case Instruction::IF_LT:
972    case Instruction::IF_GE:
973    case Instruction::IF_GT:
974    case Instruction::IF_LE:
975    case Instruction::IF_EQZ:
976    case Instruction::IF_NEZ:
977    case Instruction::IF_LTZ:
978    case Instruction::IF_GEZ:
979    case Instruction::IF_GTZ:
980    case Instruction::IF_LEZ:
981      *pOffset = (int16_t) insns[1];
982      *pConditional = true;
983      break;
984    default:
985      return false;
986      break;
987  }
988  return true;
989}
990
991bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
992  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
993  DCHECK_LT(cur_offset, insn_count);
994  const uint16_t* insns = code_item_->insns_ + cur_offset;
995  /* make sure the start of the switch is in range */
996  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
997  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
998    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
999                                      << ", switch offset " << switch_offset
1000                                      << ", count " << insn_count;
1001    return false;
1002  }
1003  /* offset to switch table is a relative branch-style offset */
1004  const uint16_t* switch_insns = insns + switch_offset;
1005  /* make sure the table is 32-bit aligned */
1006  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1007    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1008                                      << ", switch offset " << switch_offset;
1009    return false;
1010  }
1011  uint32_t switch_count = switch_insns[1];
1012  int32_t keys_offset, targets_offset;
1013  uint16_t expected_signature;
1014  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1015    /* 0=sig, 1=count, 2/3=firstKey */
1016    targets_offset = 4;
1017    keys_offset = -1;
1018    expected_signature = Instruction::kPackedSwitchSignature;
1019  } else {
1020    /* 0=sig, 1=count, 2..count*2 = keys */
1021    keys_offset = 2;
1022    targets_offset = 2 + 2 * switch_count;
1023    expected_signature = Instruction::kSparseSwitchSignature;
1024  }
1025  uint32_t table_size = targets_offset + switch_count * 2;
1026  if (switch_insns[0] != expected_signature) {
1027    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1028        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1029                        switch_insns[0], expected_signature);
1030    return false;
1031  }
1032  /* make sure the end of the switch is in range */
1033  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1034    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1035                                      << ", switch offset " << switch_offset
1036                                      << ", end " << (cur_offset + switch_offset + table_size)
1037                                      << ", count " << insn_count;
1038    return false;
1039  }
1040  /* for a sparse switch, verify the keys are in ascending order */
1041  if (keys_offset > 0 && switch_count > 1) {
1042    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1043    for (uint32_t targ = 1; targ < switch_count; targ++) {
1044      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1045                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1046      if (key <= last_key) {
1047        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1048                                          << ", this=" << key;
1049        return false;
1050      }
1051      last_key = key;
1052    }
1053  }
1054  /* verify each switch target */
1055  for (uint32_t targ = 0; targ < switch_count; targ++) {
1056    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1057                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1058    int32_t abs_offset = cur_offset + offset;
1059    if (abs_offset < 0 ||
1060        abs_offset >= (int32_t) insn_count ||
1061        !insn_flags_[abs_offset].IsOpcode()) {
1062      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1063                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1064                                        << reinterpret_cast<void*>(cur_offset)
1065                                        << "[" << targ << "]";
1066      return false;
1067    }
1068    insn_flags_[abs_offset].SetBranchTarget();
1069  }
1070  return true;
1071}
1072
1073bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1074  if (vA > Instruction::kMaxVarArgRegs) {
1075    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1076    return false;
1077  }
1078  uint16_t registers_size = code_item_->registers_size_;
1079  for (uint32_t idx = 0; idx < vA; idx++) {
1080    if (arg[idx] >= registers_size) {
1081      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1082                                        << ") in non-range invoke (>= " << registers_size << ")";
1083      return false;
1084    }
1085  }
1086
1087  return true;
1088}
1089
1090bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1091  uint16_t registers_size = code_item_->registers_size_;
1092  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1093  // integer overflow when adding them here.
1094  if (vA + vC > registers_size) {
1095    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1096                                      << " in range invoke (> " << registers_size << ")";
1097    return false;
1098  }
1099  return true;
1100}
1101
1102bool MethodVerifier::VerifyCodeFlow() {
1103  uint16_t registers_size = code_item_->registers_size_;
1104  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1105
1106  if (registers_size * insns_size > 4*1024*1024) {
1107    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1108                 << " insns_size=" << insns_size << ")";
1109  }
1110  /* Create and initialize table holding register status */
1111  reg_table_.Init(kTrackCompilerInterestPoints,
1112                  insn_flags_.get(),
1113                  insns_size,
1114                  registers_size,
1115                  this);
1116
1117
1118  work_line_.reset(RegisterLine::Create(registers_size, this));
1119  saved_line_.reset(RegisterLine::Create(registers_size, this));
1120
1121  /* Initialize register types of method arguments. */
1122  if (!SetTypesFromSignature()) {
1123    DCHECK_NE(failures_.size(), 0U);
1124    std::string prepend("Bad signature in ");
1125    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1126    PrependToLastFailMessage(prepend);
1127    return false;
1128  }
1129  /* Perform code flow verification. */
1130  if (!CodeFlowVerifyMethod()) {
1131    DCHECK_NE(failures_.size(), 0U);
1132    return false;
1133  }
1134  return true;
1135}
1136
1137std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1138  DCHECK_EQ(failures_.size(), failure_messages_.size());
1139  for (size_t i = 0; i < failures_.size(); ++i) {
1140      os << failure_messages_[i]->str() << "\n";
1141  }
1142  return os;
1143}
1144
1145extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1146    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1147  v->Dump(std::cerr);
1148}
1149
1150void MethodVerifier::Dump(std::ostream& os) {
1151  if (code_item_ == nullptr) {
1152    os << "Native method\n";
1153    return;
1154  }
1155  {
1156    os << "Register Types:\n";
1157    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1158    std::ostream indent_os(&indent_filter);
1159    reg_types_.Dump(indent_os);
1160  }
1161  os << "Dumping instructions and register lines:\n";
1162  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1163  std::ostream indent_os(&indent_filter);
1164  const Instruction* inst = Instruction::At(code_item_->insns_);
1165  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1166      dex_pc += inst->SizeInCodeUnits()) {
1167    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1168    if (reg_line != nullptr) {
1169      indent_os << reg_line->Dump(this) << "\n";
1170    }
1171    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1172    const bool kDumpHexOfInstruction = false;
1173    if (kDumpHexOfInstruction) {
1174      indent_os << inst->DumpHex(5) << " ";
1175    }
1176    indent_os << inst->DumpString(dex_file_) << "\n";
1177    inst = inst->Next();
1178  }
1179}
1180
1181static bool IsPrimitiveDescriptor(char descriptor) {
1182  switch (descriptor) {
1183    case 'I':
1184    case 'C':
1185    case 'S':
1186    case 'B':
1187    case 'Z':
1188    case 'F':
1189    case 'D':
1190    case 'J':
1191      return true;
1192    default:
1193      return false;
1194  }
1195}
1196
1197bool MethodVerifier::SetTypesFromSignature() {
1198  RegisterLine* reg_line = reg_table_.GetLine(0);
1199  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1200  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1201
1202  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1203  // Include the "this" pointer.
1204  size_t cur_arg = 0;
1205  if (!IsStatic()) {
1206    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1207    // argument as uninitialized. This restricts field access until the superclass constructor is
1208    // called.
1209    const RegType& declaring_class = GetDeclaringClass();
1210    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1211      reg_line->SetRegisterType(this, arg_start + cur_arg,
1212                                reg_types_.UninitializedThisArgument(declaring_class));
1213    } else {
1214      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1215    }
1216    cur_arg++;
1217  }
1218
1219  const DexFile::ProtoId& proto_id =
1220      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1221  DexFileParameterIterator iterator(*dex_file_, proto_id);
1222
1223  for (; iterator.HasNext(); iterator.Next()) {
1224    const char* descriptor = iterator.GetDescriptor();
1225    if (descriptor == nullptr) {
1226      LOG(FATAL) << "Null descriptor";
1227    }
1228    if (cur_arg >= expected_args) {
1229      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1230                                        << " args, found more (" << descriptor << ")";
1231      return false;
1232    }
1233    switch (descriptor[0]) {
1234      case 'L':
1235      case '[':
1236        // We assume that reference arguments are initialized. The only way it could be otherwise
1237        // (assuming the caller was verified) is if the current method is <init>, but in that case
1238        // it's effectively considered initialized the instant we reach here (in the sense that we
1239        // can return without doing anything or call virtual methods).
1240        {
1241          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1242          if (!reg_type.IsNonZeroReferenceTypes()) {
1243            DCHECK(HasFailures());
1244            return false;
1245          }
1246          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1247        }
1248        break;
1249      case 'Z':
1250        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1251        break;
1252      case 'C':
1253        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1254        break;
1255      case 'B':
1256        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1257        break;
1258      case 'I':
1259        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1260        break;
1261      case 'S':
1262        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1263        break;
1264      case 'F':
1265        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1266        break;
1267      case 'J':
1268      case 'D': {
1269        if (cur_arg + 1 >= expected_args) {
1270          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1271              << " args, found more (" << descriptor << ")";
1272          return false;
1273        }
1274
1275        const RegType* lo_half;
1276        const RegType* hi_half;
1277        if (descriptor[0] == 'J') {
1278          lo_half = &reg_types_.LongLo();
1279          hi_half = &reg_types_.LongHi();
1280        } else {
1281          lo_half = &reg_types_.DoubleLo();
1282          hi_half = &reg_types_.DoubleHi();
1283        }
1284        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1285        cur_arg++;
1286        break;
1287      }
1288      default:
1289        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1290                                          << descriptor << "'";
1291        return false;
1292    }
1293    cur_arg++;
1294  }
1295  if (cur_arg != expected_args) {
1296    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1297                                      << " arguments, found " << cur_arg;
1298    return false;
1299  }
1300  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1301  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1302  // format. Only major difference from the method argument format is that 'V' is supported.
1303  bool result;
1304  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1305    result = descriptor[1] == '\0';
1306  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1307    size_t i = 0;
1308    do {
1309      i++;
1310    } while (descriptor[i] == '[');  // process leading [
1311    if (descriptor[i] == 'L') {  // object array
1312      do {
1313        i++;  // find closing ;
1314      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1315      result = descriptor[i] == ';';
1316    } else {  // primitive array
1317      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1318    }
1319  } else if (descriptor[0] == 'L') {
1320    // could be more thorough here, but shouldn't be required
1321    size_t i = 0;
1322    do {
1323      i++;
1324    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1325    result = descriptor[i] == ';';
1326  } else {
1327    result = false;
1328  }
1329  if (!result) {
1330    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1331                                      << descriptor << "'";
1332  }
1333  return result;
1334}
1335
1336bool MethodVerifier::CodeFlowVerifyMethod() {
1337  const uint16_t* insns = code_item_->insns_;
1338  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1339
1340  /* Begin by marking the first instruction as "changed". */
1341  insn_flags_[0].SetChanged();
1342  uint32_t start_guess = 0;
1343
1344  /* Continue until no instructions are marked "changed". */
1345  while (true) {
1346    self_->AllowThreadSuspension();
1347    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1348    uint32_t insn_idx = start_guess;
1349    for (; insn_idx < insns_size; insn_idx++) {
1350      if (insn_flags_[insn_idx].IsChanged())
1351        break;
1352    }
1353    if (insn_idx == insns_size) {
1354      if (start_guess != 0) {
1355        /* try again, starting from the top */
1356        start_guess = 0;
1357        continue;
1358      } else {
1359        /* all flags are clear */
1360        break;
1361      }
1362    }
1363    // We carry the working set of registers from instruction to instruction. If this address can
1364    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1365    // "changed" flags, we need to load the set of registers from the table.
1366    // Because we always prefer to continue on to the next instruction, we should never have a
1367    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1368    // target.
1369    work_insn_idx_ = insn_idx;
1370    if (insn_flags_[insn_idx].IsBranchTarget()) {
1371      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1372    } else if (kIsDebugBuild) {
1373      /*
1374       * Sanity check: retrieve the stored register line (assuming
1375       * a full table) and make sure it actually matches.
1376       */
1377      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1378      if (register_line != nullptr) {
1379        if (work_line_->CompareLine(register_line) != 0) {
1380          Dump(std::cout);
1381          std::cout << info_messages_.str();
1382          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1383                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1384                     << " work_line=" << work_line_->Dump(this) << "\n"
1385                     << "  expected=" << register_line->Dump(this);
1386        }
1387      }
1388    }
1389    if (!CodeFlowVerifyInstruction(&start_guess)) {
1390      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1391      prepend += " failed to verify: ";
1392      PrependToLastFailMessage(prepend);
1393      return false;
1394    }
1395    /* Clear "changed" and mark as visited. */
1396    insn_flags_[insn_idx].SetVisited();
1397    insn_flags_[insn_idx].ClearChanged();
1398  }
1399
1400  if (gDebugVerify) {
1401    /*
1402     * Scan for dead code. There's nothing "evil" about dead code
1403     * (besides the wasted space), but it indicates a flaw somewhere
1404     * down the line, possibly in the verifier.
1405     *
1406     * If we've substituted "always throw" instructions into the stream,
1407     * we are almost certainly going to have some dead code.
1408     */
1409    int dead_start = -1;
1410    uint32_t insn_idx = 0;
1411    for (; insn_idx < insns_size;
1412         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1413      /*
1414       * Switch-statement data doesn't get "visited" by scanner. It
1415       * may or may not be preceded by a padding NOP (for alignment).
1416       */
1417      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1418          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1419          insns[insn_idx] == Instruction::kArrayDataSignature ||
1420          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1421           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1422            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1423            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1424        insn_flags_[insn_idx].SetVisited();
1425      }
1426
1427      if (!insn_flags_[insn_idx].IsVisited()) {
1428        if (dead_start < 0)
1429          dead_start = insn_idx;
1430      } else if (dead_start >= 0) {
1431        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1432                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1433        dead_start = -1;
1434      }
1435    }
1436    if (dead_start >= 0) {
1437      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1438                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1439    }
1440    // To dump the state of the verify after a method, do something like:
1441    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1442    //     "boolean java.lang.String.equals(java.lang.Object)") {
1443    //   LOG(INFO) << info_messages_.str();
1444    // }
1445  }
1446  return true;
1447}
1448
1449bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1450  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1451  // We want the state _before_ the instruction, for the case where the dex pc we're
1452  // interested in is itself a monitor-enter instruction (which is a likely place
1453  // for a thread to be suspended).
1454  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1455    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1456    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1457      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1458    }
1459  }
1460
1461  /*
1462   * Once we finish decoding the instruction, we need to figure out where
1463   * we can go from here. There are three possible ways to transfer
1464   * control to another statement:
1465   *
1466   * (1) Continue to the next instruction. Applies to all but
1467   *     unconditional branches, method returns, and exception throws.
1468   * (2) Branch to one or more possible locations. Applies to branches
1469   *     and switch statements.
1470   * (3) Exception handlers. Applies to any instruction that can
1471   *     throw an exception that is handled by an encompassing "try"
1472   *     block.
1473   *
1474   * We can also return, in which case there is no successor instruction
1475   * from this point.
1476   *
1477   * The behavior can be determined from the opcode flags.
1478   */
1479  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1480  const Instruction* inst = Instruction::At(insns);
1481  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1482
1483  int32_t branch_target = 0;
1484  bool just_set_result = false;
1485  if (gDebugVerify) {
1486    // Generate processing back trace to debug verifier
1487    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1488                    << work_line_->Dump(this) << "\n";
1489  }
1490
1491  /*
1492   * Make a copy of the previous register state. If the instruction
1493   * can throw an exception, we will copy/merge this into the "catch"
1494   * address rather than work_line, because we don't want the result
1495   * from the "successful" code path (e.g. a check-cast that "improves"
1496   * a type) to be visible to the exception handler.
1497   */
1498  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1499    saved_line_->CopyFromLine(work_line_.get());
1500  } else if (kIsDebugBuild) {
1501    saved_line_->FillWithGarbage();
1502  }
1503
1504
1505  // We need to ensure the work line is consistent while performing validation. When we spot a
1506  // peephole pattern we compute a new line for either the fallthrough instruction or the
1507  // branch target.
1508  std::unique_ptr<RegisterLine> branch_line;
1509  std::unique_ptr<RegisterLine> fallthrough_line;
1510
1511  switch (inst->Opcode()) {
1512    case Instruction::NOP:
1513      /*
1514       * A "pure" NOP has no effect on anything. Data tables start with
1515       * a signature that looks like a NOP; if we see one of these in
1516       * the course of executing code then we have a problem.
1517       */
1518      if (inst->VRegA_10x() != 0) {
1519        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1520      }
1521      break;
1522
1523    case Instruction::MOVE:
1524      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1525      break;
1526    case Instruction::MOVE_FROM16:
1527      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1528      break;
1529    case Instruction::MOVE_16:
1530      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1531      break;
1532    case Instruction::MOVE_WIDE:
1533      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1534      break;
1535    case Instruction::MOVE_WIDE_FROM16:
1536      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1537      break;
1538    case Instruction::MOVE_WIDE_16:
1539      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1540      break;
1541    case Instruction::MOVE_OBJECT:
1542      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1543      break;
1544    case Instruction::MOVE_OBJECT_FROM16:
1545      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1546      break;
1547    case Instruction::MOVE_OBJECT_16:
1548      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1549      break;
1550
1551    /*
1552     * The move-result instructions copy data out of a "pseudo-register"
1553     * with the results from the last method invocation. In practice we
1554     * might want to hold the result in an actual CPU register, so the
1555     * Dalvik spec requires that these only appear immediately after an
1556     * invoke or filled-new-array.
1557     *
1558     * These calls invalidate the "result" register. (This is now
1559     * redundant with the reset done below, but it can make the debug info
1560     * easier to read in some cases.)
1561     */
1562    case Instruction::MOVE_RESULT:
1563      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1564      break;
1565    case Instruction::MOVE_RESULT_WIDE:
1566      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1567      break;
1568    case Instruction::MOVE_RESULT_OBJECT:
1569      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1570      break;
1571
1572    case Instruction::MOVE_EXCEPTION: {
1573      /*
1574       * This statement can only appear as the first instruction in an exception handler. We verify
1575       * that as part of extracting the exception type from the catch block list.
1576       */
1577      const RegType& res_type = GetCaughtExceptionType();
1578      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1579      break;
1580    }
1581    case Instruction::RETURN_VOID:
1582      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1583        if (!GetMethodReturnType().IsConflict()) {
1584          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1585        }
1586      }
1587      break;
1588    case Instruction::RETURN:
1589      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1590        /* check the method signature */
1591        const RegType& return_type = GetMethodReturnType();
1592        if (!return_type.IsCategory1Types()) {
1593          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1594                                            << return_type;
1595        } else {
1596          // Compilers may generate synthetic functions that write byte values into boolean fields.
1597          // Also, it may use integer values for boolean, byte, short, and character return types.
1598          const uint32_t vregA = inst->VRegA_11x();
1599          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1600          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1601                          ((return_type.IsBoolean() || return_type.IsByte() ||
1602                           return_type.IsShort() || return_type.IsChar()) &&
1603                           src_type.IsInteger()));
1604          /* check the register contents */
1605          bool success =
1606              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1607          if (!success) {
1608            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1609          }
1610        }
1611      }
1612      break;
1613    case Instruction::RETURN_WIDE:
1614      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1615        /* check the method signature */
1616        const RegType& return_type = GetMethodReturnType();
1617        if (!return_type.IsCategory2Types()) {
1618          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1619        } else {
1620          /* check the register contents */
1621          const uint32_t vregA = inst->VRegA_11x();
1622          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1623          if (!success) {
1624            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1625          }
1626        }
1627      }
1628      break;
1629    case Instruction::RETURN_OBJECT:
1630      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1631        const RegType& return_type = GetMethodReturnType();
1632        if (!return_type.IsReferenceTypes()) {
1633          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1634        } else {
1635          /* return_type is the *expected* return type, not register value */
1636          DCHECK(!return_type.IsZero());
1637          DCHECK(!return_type.IsUninitializedReference());
1638          const uint32_t vregA = inst->VRegA_11x();
1639          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1640          // Disallow returning uninitialized values and verify that the reference in vAA is an
1641          // instance of the "return_type"
1642          if (reg_type.IsUninitializedTypes()) {
1643            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1644                                              << reg_type << "'";
1645          } else if (!return_type.IsAssignableFrom(reg_type)) {
1646            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1647              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1648                  << "' or '" << reg_type << "'";
1649            } else {
1650              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1651                  << "', but expected from declaration '" << return_type << "'";
1652            }
1653          }
1654        }
1655      }
1656      break;
1657
1658      /* could be boolean, int, float, or a null reference */
1659    case Instruction::CONST_4: {
1660      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1661      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1662                                  DetermineCat1Constant(val, need_precise_constants_));
1663      break;
1664    }
1665    case Instruction::CONST_16: {
1666      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1667      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1668                                  DetermineCat1Constant(val, need_precise_constants_));
1669      break;
1670    }
1671    case Instruction::CONST: {
1672      int32_t val = inst->VRegB_31i();
1673      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1674                                  DetermineCat1Constant(val, need_precise_constants_));
1675      break;
1676    }
1677    case Instruction::CONST_HIGH16: {
1678      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1679      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1680                                  DetermineCat1Constant(val, need_precise_constants_));
1681      break;
1682    }
1683      /* could be long or double; resolved upon use */
1684    case Instruction::CONST_WIDE_16: {
1685      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1686      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1687      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1688      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1689      break;
1690    }
1691    case Instruction::CONST_WIDE_32: {
1692      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1693      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1694      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1695      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1696      break;
1697    }
1698    case Instruction::CONST_WIDE: {
1699      int64_t val = inst->VRegB_51l();
1700      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1701      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1702      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1703      break;
1704    }
1705    case Instruction::CONST_WIDE_HIGH16: {
1706      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1707      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1708      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1709      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1710      break;
1711    }
1712    case Instruction::CONST_STRING:
1713      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1714      break;
1715    case Instruction::CONST_STRING_JUMBO:
1716      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1717      break;
1718    case Instruction::CONST_CLASS: {
1719      // Get type from instruction if unresolved then we need an access check
1720      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1721      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1722      // Register holds class, ie its type is class, on error it will hold Conflict.
1723      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1724                                  res_type.IsConflict() ? res_type
1725                                                        : reg_types_.JavaLangClass());
1726      break;
1727    }
1728    case Instruction::MONITOR_ENTER:
1729      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1730      break;
1731    case Instruction::MONITOR_EXIT:
1732      /*
1733       * monitor-exit instructions are odd. They can throw exceptions,
1734       * but when they do they act as if they succeeded and the PC is
1735       * pointing to the following instruction. (This behavior goes back
1736       * to the need to handle asynchronous exceptions, a now-deprecated
1737       * feature that Dalvik doesn't support.)
1738       *
1739       * In practice we don't need to worry about this. The only
1740       * exceptions that can be thrown from monitor-exit are for a
1741       * null reference and -exit without a matching -enter. If the
1742       * structured locking checks are working, the former would have
1743       * failed on the -enter instruction, and the latter is impossible.
1744       *
1745       * This is fortunate, because issue 3221411 prevents us from
1746       * chasing the "can throw" path when monitor verification is
1747       * enabled. If we can fully verify the locking we can ignore
1748       * some catch blocks (which will show up as "dead" code when
1749       * we skip them here); if we can't, then the code path could be
1750       * "live" so we still need to check it.
1751       */
1752      opcode_flags &= ~Instruction::kThrow;
1753      work_line_->PopMonitor(this, inst->VRegA_11x());
1754      break;
1755
1756    case Instruction::CHECK_CAST:
1757    case Instruction::INSTANCE_OF: {
1758      /*
1759       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1760       * could be a "upcast" -- not expected, so we don't try to address it.)
1761       *
1762       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1763       * dec_insn.vA when branching to a handler.
1764       */
1765      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1766      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1767      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1768      if (res_type.IsConflict()) {
1769        // If this is a primitive type, fail HARD.
1770        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1771        if (klass != nullptr && klass->IsPrimitive()) {
1772          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1773              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1774              << GetDeclaringClass();
1775          break;
1776        }
1777
1778        DCHECK_NE(failures_.size(), 0U);
1779        if (!is_checkcast) {
1780          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1781        }
1782        break;  // bad class
1783      }
1784      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1785      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1786      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1787      if (!res_type.IsNonZeroReferenceTypes()) {
1788        if (is_checkcast) {
1789          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1790        } else {
1791          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1792        }
1793      } else if (!orig_type.IsReferenceTypes()) {
1794        if (is_checkcast) {
1795          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1796        } else {
1797          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1798        }
1799      } else {
1800        if (is_checkcast) {
1801          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1802        } else {
1803          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1804        }
1805      }
1806      break;
1807    }
1808    case Instruction::ARRAY_LENGTH: {
1809      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1810      if (res_type.IsReferenceTypes()) {
1811        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1812          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1813        } else {
1814          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1815        }
1816      } else {
1817        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1818      }
1819      break;
1820    }
1821    case Instruction::NEW_INSTANCE: {
1822      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1823      if (res_type.IsConflict()) {
1824        DCHECK_NE(failures_.size(), 0U);
1825        break;  // bad class
1826      }
1827      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1828      // can't create an instance of an interface or abstract class */
1829      if (!res_type.IsInstantiableTypes()) {
1830        Fail(VERIFY_ERROR_INSTANTIATION)
1831            << "new-instance on primitive, interface or abstract class" << res_type;
1832        // Soft failure so carry on to set register type.
1833      }
1834      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1835      // Any registers holding previous allocations from this address that have not yet been
1836      // initialized must be marked invalid.
1837      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1838      // add the new uninitialized reference to the register state
1839      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1840      break;
1841    }
1842    case Instruction::NEW_ARRAY:
1843      VerifyNewArray(inst, false, false);
1844      break;
1845    case Instruction::FILLED_NEW_ARRAY:
1846      VerifyNewArray(inst, true, false);
1847      just_set_result = true;  // Filled new array sets result register
1848      break;
1849    case Instruction::FILLED_NEW_ARRAY_RANGE:
1850      VerifyNewArray(inst, true, true);
1851      just_set_result = true;  // Filled new array range sets result register
1852      break;
1853    case Instruction::CMPL_FLOAT:
1854    case Instruction::CMPG_FLOAT:
1855      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1856        break;
1857      }
1858      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1859        break;
1860      }
1861      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1862      break;
1863    case Instruction::CMPL_DOUBLE:
1864    case Instruction::CMPG_DOUBLE:
1865      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
1866                                              reg_types_.DoubleHi())) {
1867        break;
1868      }
1869      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
1870                                              reg_types_.DoubleHi())) {
1871        break;
1872      }
1873      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1874      break;
1875    case Instruction::CMP_LONG:
1876      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
1877                                              reg_types_.LongHi())) {
1878        break;
1879      }
1880      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
1881                                              reg_types_.LongHi())) {
1882        break;
1883      }
1884      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1885      break;
1886    case Instruction::THROW: {
1887      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
1888      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1889        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1890            << "thrown class " << res_type << " not instanceof Throwable";
1891      }
1892      break;
1893    }
1894    case Instruction::GOTO:
1895    case Instruction::GOTO_16:
1896    case Instruction::GOTO_32:
1897      /* no effect on or use of registers */
1898      break;
1899
1900    case Instruction::PACKED_SWITCH:
1901    case Instruction::SPARSE_SWITCH:
1902      /* verify that vAA is an integer, or can be converted to one */
1903      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
1904      break;
1905
1906    case Instruction::FILL_ARRAY_DATA: {
1907      /* Similar to the verification done for APUT */
1908      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
1909      /* array_type can be null if the reg type is Zero */
1910      if (!array_type.IsZero()) {
1911        if (!array_type.IsArrayTypes()) {
1912          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1913                                            << array_type;
1914        } else {
1915          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
1916          DCHECK(!component_type.IsConflict());
1917          if (component_type.IsNonZeroReferenceTypes()) {
1918            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1919                                              << component_type;
1920          } else {
1921            // Now verify if the element width in the table matches the element width declared in
1922            // the array
1923            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1924            if (array_data[0] != Instruction::kArrayDataSignature) {
1925              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1926            } else {
1927              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1928              // Since we don't compress the data in Dex, expect to see equal width of data stored
1929              // in the table and expected from the array class.
1930              if (array_data[1] != elem_width) {
1931                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1932                                                  << " vs " << elem_width << ")";
1933              }
1934            }
1935          }
1936        }
1937      }
1938      break;
1939    }
1940    case Instruction::IF_EQ:
1941    case Instruction::IF_NE: {
1942      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
1943      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
1944      bool mismatch = false;
1945      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1946        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1947      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1948        mismatch = !reg_type2.IsReferenceTypes();
1949      } else {  // both integral?
1950        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1951      }
1952      if (mismatch) {
1953        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1954                                          << reg_type2 << ") must both be references or integral";
1955      }
1956      break;
1957    }
1958    case Instruction::IF_LT:
1959    case Instruction::IF_GE:
1960    case Instruction::IF_GT:
1961    case Instruction::IF_LE: {
1962      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
1963      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
1964      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1965        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1966                                          << reg_type2 << ") must be integral";
1967      }
1968      break;
1969    }
1970    case Instruction::IF_EQZ:
1971    case Instruction::IF_NEZ: {
1972      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
1973      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1974        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1975                                          << " unexpected as arg to if-eqz/if-nez";
1976      }
1977
1978      // Find previous instruction - its existence is a precondition to peephole optimization.
1979      uint32_t instance_of_idx = 0;
1980      if (0 != work_insn_idx_) {
1981        instance_of_idx = work_insn_idx_ - 1;
1982        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1983          instance_of_idx--;
1984        }
1985        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1986      } else {
1987        break;
1988      }
1989
1990      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1991
1992      /* Check for peep-hole pattern of:
1993       *    ...;
1994       *    instance-of vX, vY, T;
1995       *    ifXXX vX, label ;
1996       *    ...;
1997       * label:
1998       *    ...;
1999       * and sharpen the type of vY to be type T.
2000       * Note, this pattern can't be if:
2001       *  - if there are other branches to this branch,
2002       *  - when vX == vY.
2003       */
2004      if (!CurrentInsnFlags()->IsBranchTarget() &&
2005          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2006          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2007          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2008        // Check the type of the instance-of is different than that of registers type, as if they
2009        // are the same there is no work to be done here. Check that the conversion is not to or
2010        // from an unresolved type as type information is imprecise. If the instance-of is to an
2011        // interface then ignore the type information as interfaces can only be treated as Objects
2012        // and we don't want to disallow field and other operations on the object. If the value
2013        // being instance-of checked against is known null (zero) then allow the optimization as
2014        // we didn't have type information. If the merge of the instance-of type with the original
2015        // type is assignable to the original then allow optimization. This check is performed to
2016        // ensure that subsequent merges don't lose type information - such as becoming an
2017        // interface from a class that would lose information relevant to field checks.
2018        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2019        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2020
2021        if (!orig_type.Equals(cast_type) &&
2022            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2023            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2024            !cast_type.GetClass()->IsInterface() &&
2025            (orig_type.IsZero() ||
2026                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2027          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2028          if (inst->Opcode() == Instruction::IF_EQZ) {
2029            fallthrough_line.reset(update_line);
2030          } else {
2031            branch_line.reset(update_line);
2032          }
2033          update_line->CopyFromLine(work_line_.get());
2034          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2035          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2036            // See if instance-of was preceded by a move-object operation, common due to the small
2037            // register encoding space of instance-of, and propagate type information to the source
2038            // of the move-object.
2039            uint32_t move_idx = instance_of_idx - 1;
2040            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2041              move_idx--;
2042            }
2043            CHECK(insn_flags_[move_idx].IsOpcode());
2044            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2045            switch (move_inst->Opcode()) {
2046              case Instruction::MOVE_OBJECT:
2047                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2048                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2049                }
2050                break;
2051              case Instruction::MOVE_OBJECT_FROM16:
2052                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2053                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2054                }
2055                break;
2056              case Instruction::MOVE_OBJECT_16:
2057                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2058                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2059                }
2060                break;
2061              default:
2062                break;
2063            }
2064          }
2065        }
2066      }
2067
2068      break;
2069    }
2070    case Instruction::IF_LTZ:
2071    case Instruction::IF_GEZ:
2072    case Instruction::IF_GTZ:
2073    case Instruction::IF_LEZ: {
2074      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2075      if (!reg_type.IsIntegralTypes()) {
2076        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2077                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2078      }
2079      break;
2080    }
2081    case Instruction::AGET_BOOLEAN:
2082      VerifyAGet(inst, reg_types_.Boolean(), true);
2083      break;
2084    case Instruction::AGET_BYTE:
2085      VerifyAGet(inst, reg_types_.Byte(), true);
2086      break;
2087    case Instruction::AGET_CHAR:
2088      VerifyAGet(inst, reg_types_.Char(), true);
2089      break;
2090    case Instruction::AGET_SHORT:
2091      VerifyAGet(inst, reg_types_.Short(), true);
2092      break;
2093    case Instruction::AGET:
2094      VerifyAGet(inst, reg_types_.Integer(), true);
2095      break;
2096    case Instruction::AGET_WIDE:
2097      VerifyAGet(inst, reg_types_.LongLo(), true);
2098      break;
2099    case Instruction::AGET_OBJECT:
2100      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2101      break;
2102
2103    case Instruction::APUT_BOOLEAN:
2104      VerifyAPut(inst, reg_types_.Boolean(), true);
2105      break;
2106    case Instruction::APUT_BYTE:
2107      VerifyAPut(inst, reg_types_.Byte(), true);
2108      break;
2109    case Instruction::APUT_CHAR:
2110      VerifyAPut(inst, reg_types_.Char(), true);
2111      break;
2112    case Instruction::APUT_SHORT:
2113      VerifyAPut(inst, reg_types_.Short(), true);
2114      break;
2115    case Instruction::APUT:
2116      VerifyAPut(inst, reg_types_.Integer(), true);
2117      break;
2118    case Instruction::APUT_WIDE:
2119      VerifyAPut(inst, reg_types_.LongLo(), true);
2120      break;
2121    case Instruction::APUT_OBJECT:
2122      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2123      break;
2124
2125    case Instruction::IGET_BOOLEAN:
2126      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2127      break;
2128    case Instruction::IGET_BYTE:
2129      VerifyISGet(inst, reg_types_.Byte(), true, false);
2130      break;
2131    case Instruction::IGET_CHAR:
2132      VerifyISGet(inst, reg_types_.Char(), true, false);
2133      break;
2134    case Instruction::IGET_SHORT:
2135      VerifyISGet(inst, reg_types_.Short(), true, false);
2136      break;
2137    case Instruction::IGET:
2138      VerifyISGet(inst, reg_types_.Integer(), true, false);
2139      break;
2140    case Instruction::IGET_WIDE:
2141      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2142      break;
2143    case Instruction::IGET_OBJECT:
2144      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2145      break;
2146
2147    case Instruction::IPUT_BOOLEAN:
2148      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2149      break;
2150    case Instruction::IPUT_BYTE:
2151      VerifyISPut(inst, reg_types_.Byte(), true, false);
2152      break;
2153    case Instruction::IPUT_CHAR:
2154      VerifyISPut(inst, reg_types_.Char(), true, false);
2155      break;
2156    case Instruction::IPUT_SHORT:
2157      VerifyISPut(inst, reg_types_.Short(), true, false);
2158      break;
2159    case Instruction::IPUT:
2160      VerifyISPut(inst, reg_types_.Integer(), true, false);
2161      break;
2162    case Instruction::IPUT_WIDE:
2163      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2164      break;
2165    case Instruction::IPUT_OBJECT:
2166      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2167      break;
2168
2169    case Instruction::SGET_BOOLEAN:
2170      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2171      break;
2172    case Instruction::SGET_BYTE:
2173      VerifyISGet(inst, reg_types_.Byte(), true, true);
2174      break;
2175    case Instruction::SGET_CHAR:
2176      VerifyISGet(inst, reg_types_.Char(), true, true);
2177      break;
2178    case Instruction::SGET_SHORT:
2179      VerifyISGet(inst, reg_types_.Short(), true, true);
2180      break;
2181    case Instruction::SGET:
2182      VerifyISGet(inst, reg_types_.Integer(), true, true);
2183      break;
2184    case Instruction::SGET_WIDE:
2185      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2186      break;
2187    case Instruction::SGET_OBJECT:
2188      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2189      break;
2190
2191    case Instruction::SPUT_BOOLEAN:
2192      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2193      break;
2194    case Instruction::SPUT_BYTE:
2195      VerifyISPut(inst, reg_types_.Byte(), true, true);
2196      break;
2197    case Instruction::SPUT_CHAR:
2198      VerifyISPut(inst, reg_types_.Char(), true, true);
2199      break;
2200    case Instruction::SPUT_SHORT:
2201      VerifyISPut(inst, reg_types_.Short(), true, true);
2202      break;
2203    case Instruction::SPUT:
2204      VerifyISPut(inst, reg_types_.Integer(), true, true);
2205      break;
2206    case Instruction::SPUT_WIDE:
2207      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2208      break;
2209    case Instruction::SPUT_OBJECT:
2210      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2211      break;
2212
2213    case Instruction::INVOKE_VIRTUAL:
2214    case Instruction::INVOKE_VIRTUAL_RANGE:
2215    case Instruction::INVOKE_SUPER:
2216    case Instruction::INVOKE_SUPER_RANGE: {
2217      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2218                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2219      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2220                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2221      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2222                                                              is_super);
2223      const RegType* return_type = nullptr;
2224      if (called_method != nullptr) {
2225        StackHandleScope<1> hs(self_);
2226        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2227        MethodHelper mh(h_called_method);
2228        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2229        if (return_type_class != nullptr) {
2230          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2231                                              return_type_class,
2232                                              return_type_class->CannotBeAssignedFromOtherTypes());
2233        } else {
2234          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2235          self_->ClearException();
2236        }
2237      }
2238      if (return_type == nullptr) {
2239        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2240        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2241        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2242        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2243        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2244      }
2245      if (!return_type->IsLowHalf()) {
2246        work_line_->SetResultRegisterType(this, *return_type);
2247      } else {
2248        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2249      }
2250      just_set_result = true;
2251      break;
2252    }
2253    case Instruction::INVOKE_DIRECT:
2254    case Instruction::INVOKE_DIRECT_RANGE: {
2255      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2256      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2257                                                                   is_range, false);
2258      const char* return_type_descriptor;
2259      bool is_constructor;
2260      const RegType* return_type = nullptr;
2261      if (called_method == nullptr) {
2262        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2263        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2264        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2265        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2266        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2267      } else {
2268        is_constructor = called_method->IsConstructor();
2269        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2270        StackHandleScope<1> hs(self_);
2271        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2272        MethodHelper mh(h_called_method);
2273        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2274        if (return_type_class != nullptr) {
2275          return_type = &reg_types_.FromClass(return_type_descriptor,
2276                                              return_type_class,
2277                                              return_type_class->CannotBeAssignedFromOtherTypes());
2278        } else {
2279          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2280          self_->ClearException();
2281        }
2282      }
2283      if (is_constructor) {
2284        /*
2285         * Some additional checks when calling a constructor. We know from the invocation arg check
2286         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2287         * that to require that called_method->klass is the same as this->klass or this->super,
2288         * allowing the latter only if the "this" argument is the same as the "this" argument to
2289         * this method (which implies that we're in a constructor ourselves).
2290         */
2291        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2292        if (this_type.IsConflict())  // failure.
2293          break;
2294
2295        /* no null refs allowed (?) */
2296        if (this_type.IsZero()) {
2297          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2298          break;
2299        }
2300
2301        /* must be in same class or in superclass */
2302        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2303        // TODO: re-enable constructor type verification
2304        // if (this_super_klass.IsConflict()) {
2305          // Unknown super class, fail so we re-check at runtime.
2306          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2307          // break;
2308        // }
2309
2310        /* arg must be an uninitialized reference */
2311        if (!this_type.IsUninitializedTypes()) {
2312          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2313              << this_type;
2314          break;
2315        }
2316
2317        /*
2318         * Replace the uninitialized reference with an initialized one. We need to do this for all
2319         * registers that have the same object instance in them, not just the "this" register.
2320         */
2321        work_line_->MarkRefsAsInitialized(this, this_type);
2322      }
2323      if (return_type == nullptr) {
2324        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2325                                                 false);
2326      }
2327      if (!return_type->IsLowHalf()) {
2328        work_line_->SetResultRegisterType(this, *return_type);
2329      } else {
2330        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2331      }
2332      just_set_result = true;
2333      break;
2334    }
2335    case Instruction::INVOKE_STATIC:
2336    case Instruction::INVOKE_STATIC_RANGE: {
2337        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2338        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2339                                                                     METHOD_STATIC,
2340                                                                     is_range,
2341                                                                     false);
2342        const char* descriptor;
2343        if (called_method == nullptr) {
2344          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2345          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2346          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2347          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2348        } else {
2349          descriptor = called_method->GetReturnTypeDescriptor();
2350        }
2351        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2352        if (!return_type.IsLowHalf()) {
2353          work_line_->SetResultRegisterType(this, return_type);
2354        } else {
2355          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2356        }
2357        just_set_result = true;
2358      }
2359      break;
2360    case Instruction::INVOKE_INTERFACE:
2361    case Instruction::INVOKE_INTERFACE_RANGE: {
2362      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2363      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2364                                                                METHOD_INTERFACE,
2365                                                                is_range,
2366                                                                false);
2367      if (abs_method != nullptr) {
2368        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2369        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2370          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2371              << PrettyMethod(abs_method) << "'";
2372          break;
2373        }
2374      }
2375      /* Get the type of the "this" arg, which should either be a sub-interface of called
2376       * interface or Object (see comments in RegType::JoinClass).
2377       */
2378      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2379      if (this_type.IsZero()) {
2380        /* null pointer always passes (and always fails at runtime) */
2381      } else {
2382        if (this_type.IsUninitializedTypes()) {
2383          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2384              << this_type;
2385          break;
2386        }
2387        // In the past we have tried to assert that "called_interface" is assignable
2388        // from "this_type.GetClass()", however, as we do an imprecise Join
2389        // (RegType::JoinClass) we don't have full information on what interfaces are
2390        // implemented by "this_type". For example, two classes may implement the same
2391        // interfaces and have a common parent that doesn't implement the interface. The
2392        // join will set "this_type" to the parent class and a test that this implements
2393        // the interface will incorrectly fail.
2394      }
2395      /*
2396       * We don't have an object instance, so we can't find the concrete method. However, all of
2397       * the type information is in the abstract method, so we're good.
2398       */
2399      const char* descriptor;
2400      if (abs_method == nullptr) {
2401        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2402        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2403        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2404        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2405      } else {
2406        descriptor = abs_method->GetReturnTypeDescriptor();
2407      }
2408      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2409      if (!return_type.IsLowHalf()) {
2410        work_line_->SetResultRegisterType(this, return_type);
2411      } else {
2412        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2413      }
2414      just_set_result = true;
2415      break;
2416    }
2417    case Instruction::NEG_INT:
2418    case Instruction::NOT_INT:
2419      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2420      break;
2421    case Instruction::NEG_LONG:
2422    case Instruction::NOT_LONG:
2423      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2424                                   reg_types_.LongLo(), reg_types_.LongHi());
2425      break;
2426    case Instruction::NEG_FLOAT:
2427      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2428      break;
2429    case Instruction::NEG_DOUBLE:
2430      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2431                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2432      break;
2433    case Instruction::INT_TO_LONG:
2434      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2435                                     reg_types_.Integer());
2436      break;
2437    case Instruction::INT_TO_FLOAT:
2438      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2439      break;
2440    case Instruction::INT_TO_DOUBLE:
2441      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2442                                     reg_types_.Integer());
2443      break;
2444    case Instruction::LONG_TO_INT:
2445      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2446                                       reg_types_.LongLo(), reg_types_.LongHi());
2447      break;
2448    case Instruction::LONG_TO_FLOAT:
2449      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2450                                       reg_types_.LongLo(), reg_types_.LongHi());
2451      break;
2452    case Instruction::LONG_TO_DOUBLE:
2453      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2454                                   reg_types_.LongLo(), reg_types_.LongHi());
2455      break;
2456    case Instruction::FLOAT_TO_INT:
2457      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2458      break;
2459    case Instruction::FLOAT_TO_LONG:
2460      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2461                                     reg_types_.Float());
2462      break;
2463    case Instruction::FLOAT_TO_DOUBLE:
2464      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2465                                     reg_types_.Float());
2466      break;
2467    case Instruction::DOUBLE_TO_INT:
2468      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2469                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2470      break;
2471    case Instruction::DOUBLE_TO_LONG:
2472      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2473                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2474      break;
2475    case Instruction::DOUBLE_TO_FLOAT:
2476      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2477                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2478      break;
2479    case Instruction::INT_TO_BYTE:
2480      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2481      break;
2482    case Instruction::INT_TO_CHAR:
2483      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2484      break;
2485    case Instruction::INT_TO_SHORT:
2486      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2487      break;
2488
2489    case Instruction::ADD_INT:
2490    case Instruction::SUB_INT:
2491    case Instruction::MUL_INT:
2492    case Instruction::REM_INT:
2493    case Instruction::DIV_INT:
2494    case Instruction::SHL_INT:
2495    case Instruction::SHR_INT:
2496    case Instruction::USHR_INT:
2497      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2498                                reg_types_.Integer(), false);
2499      break;
2500    case Instruction::AND_INT:
2501    case Instruction::OR_INT:
2502    case Instruction::XOR_INT:
2503      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2504                                reg_types_.Integer(), true);
2505      break;
2506    case Instruction::ADD_LONG:
2507    case Instruction::SUB_LONG:
2508    case Instruction::MUL_LONG:
2509    case Instruction::DIV_LONG:
2510    case Instruction::REM_LONG:
2511    case Instruction::AND_LONG:
2512    case Instruction::OR_LONG:
2513    case Instruction::XOR_LONG:
2514      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2515                                    reg_types_.LongLo(), reg_types_.LongHi(),
2516                                    reg_types_.LongLo(), reg_types_.LongHi());
2517      break;
2518    case Instruction::SHL_LONG:
2519    case Instruction::SHR_LONG:
2520    case Instruction::USHR_LONG:
2521      /* shift distance is Int, making these different from other binary operations */
2522      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2523                                         reg_types_.Integer());
2524      break;
2525    case Instruction::ADD_FLOAT:
2526    case Instruction::SUB_FLOAT:
2527    case Instruction::MUL_FLOAT:
2528    case Instruction::DIV_FLOAT:
2529    case Instruction::REM_FLOAT:
2530      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2531                                reg_types_.Float(), false);
2532      break;
2533    case Instruction::ADD_DOUBLE:
2534    case Instruction::SUB_DOUBLE:
2535    case Instruction::MUL_DOUBLE:
2536    case Instruction::DIV_DOUBLE:
2537    case Instruction::REM_DOUBLE:
2538      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2539                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2540                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2541      break;
2542    case Instruction::ADD_INT_2ADDR:
2543    case Instruction::SUB_INT_2ADDR:
2544    case Instruction::MUL_INT_2ADDR:
2545    case Instruction::REM_INT_2ADDR:
2546    case Instruction::SHL_INT_2ADDR:
2547    case Instruction::SHR_INT_2ADDR:
2548    case Instruction::USHR_INT_2ADDR:
2549      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2550                                     reg_types_.Integer(), false);
2551      break;
2552    case Instruction::AND_INT_2ADDR:
2553    case Instruction::OR_INT_2ADDR:
2554    case Instruction::XOR_INT_2ADDR:
2555      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2556                                     reg_types_.Integer(), true);
2557      break;
2558    case Instruction::DIV_INT_2ADDR:
2559      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2560                                     reg_types_.Integer(), false);
2561      break;
2562    case Instruction::ADD_LONG_2ADDR:
2563    case Instruction::SUB_LONG_2ADDR:
2564    case Instruction::MUL_LONG_2ADDR:
2565    case Instruction::DIV_LONG_2ADDR:
2566    case Instruction::REM_LONG_2ADDR:
2567    case Instruction::AND_LONG_2ADDR:
2568    case Instruction::OR_LONG_2ADDR:
2569    case Instruction::XOR_LONG_2ADDR:
2570      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2571                                         reg_types_.LongLo(), reg_types_.LongHi(),
2572                                         reg_types_.LongLo(), reg_types_.LongHi());
2573      break;
2574    case Instruction::SHL_LONG_2ADDR:
2575    case Instruction::SHR_LONG_2ADDR:
2576    case Instruction::USHR_LONG_2ADDR:
2577      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2578                                              reg_types_.Integer());
2579      break;
2580    case Instruction::ADD_FLOAT_2ADDR:
2581    case Instruction::SUB_FLOAT_2ADDR:
2582    case Instruction::MUL_FLOAT_2ADDR:
2583    case Instruction::DIV_FLOAT_2ADDR:
2584    case Instruction::REM_FLOAT_2ADDR:
2585      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2586                                     reg_types_.Float(), false);
2587      break;
2588    case Instruction::ADD_DOUBLE_2ADDR:
2589    case Instruction::SUB_DOUBLE_2ADDR:
2590    case Instruction::MUL_DOUBLE_2ADDR:
2591    case Instruction::DIV_DOUBLE_2ADDR:
2592    case Instruction::REM_DOUBLE_2ADDR:
2593      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2594                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2595                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2596      break;
2597    case Instruction::ADD_INT_LIT16:
2598    case Instruction::RSUB_INT:
2599    case Instruction::MUL_INT_LIT16:
2600    case Instruction::DIV_INT_LIT16:
2601    case Instruction::REM_INT_LIT16:
2602      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2603                                 true);
2604      break;
2605    case Instruction::AND_INT_LIT16:
2606    case Instruction::OR_INT_LIT16:
2607    case Instruction::XOR_INT_LIT16:
2608      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2609                                 true);
2610      break;
2611    case Instruction::ADD_INT_LIT8:
2612    case Instruction::RSUB_INT_LIT8:
2613    case Instruction::MUL_INT_LIT8:
2614    case Instruction::DIV_INT_LIT8:
2615    case Instruction::REM_INT_LIT8:
2616    case Instruction::SHL_INT_LIT8:
2617    case Instruction::SHR_INT_LIT8:
2618    case Instruction::USHR_INT_LIT8:
2619      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2620                                 false);
2621      break;
2622    case Instruction::AND_INT_LIT8:
2623    case Instruction::OR_INT_LIT8:
2624    case Instruction::XOR_INT_LIT8:
2625      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2626                                 false);
2627      break;
2628
2629    // Special instructions.
2630    case Instruction::RETURN_VOID_BARRIER:
2631      if (!IsConstructor() || IsStatic()) {
2632          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2633      }
2634      break;
2635    // Note: the following instructions encode offsets derived from class linking.
2636    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2637    // meaning if the class linking and resolution were successful.
2638    case Instruction::IGET_QUICK:
2639      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2640      break;
2641    case Instruction::IGET_WIDE_QUICK:
2642      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2643      break;
2644    case Instruction::IGET_OBJECT_QUICK:
2645      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2646      break;
2647    case Instruction::IPUT_QUICK:
2648      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2649      break;
2650    case Instruction::IPUT_BOOLEAN_QUICK:
2651        VerifyIPutQuick(inst, reg_types_.Boolean(), true);
2652      break;
2653    case Instruction::IPUT_BYTE_QUICK:
2654        VerifyIPutQuick(inst, reg_types_.Byte(), true);
2655      break;
2656    case Instruction::IPUT_CHAR_QUICK:
2657        VerifyIPutQuick(inst, reg_types_.Char(), true);
2658      break;
2659    case Instruction::IPUT_SHORT_QUICK:
2660        VerifyIPutQuick(inst, reg_types_.Short(), true);
2661      break;
2662    case Instruction::IPUT_WIDE_QUICK:
2663      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2664      break;
2665    case Instruction::IPUT_OBJECT_QUICK:
2666      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2667      break;
2668    case Instruction::INVOKE_VIRTUAL_QUICK:
2669    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2670      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2671      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2672      if (called_method != nullptr) {
2673        const char* descriptor = called_method->GetReturnTypeDescriptor();
2674        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2675        if (!return_type.IsLowHalf()) {
2676          work_line_->SetResultRegisterType(this, return_type);
2677        } else {
2678          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2679        }
2680        just_set_result = true;
2681      }
2682      break;
2683    }
2684
2685    /* These should never appear during verification. */
2686    case Instruction::UNUSED_3E:
2687    case Instruction::UNUSED_3F:
2688    case Instruction::UNUSED_40:
2689    case Instruction::UNUSED_41:
2690    case Instruction::UNUSED_42:
2691    case Instruction::UNUSED_43:
2692    case Instruction::UNUSED_79:
2693    case Instruction::UNUSED_7A:
2694    case Instruction::UNUSED_EF:
2695    case Instruction::UNUSED_F0:
2696    case Instruction::UNUSED_F1:
2697    case Instruction::UNUSED_F2:
2698    case Instruction::UNUSED_F3:
2699    case Instruction::UNUSED_F4:
2700    case Instruction::UNUSED_F5:
2701    case Instruction::UNUSED_F6:
2702    case Instruction::UNUSED_F7:
2703    case Instruction::UNUSED_F8:
2704    case Instruction::UNUSED_F9:
2705    case Instruction::UNUSED_FA:
2706    case Instruction::UNUSED_FB:
2707    case Instruction::UNUSED_FC:
2708    case Instruction::UNUSED_FD:
2709    case Instruction::UNUSED_FE:
2710    case Instruction::UNUSED_FF:
2711      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2712      break;
2713
2714    /*
2715     * DO NOT add a "default" clause here. Without it the compiler will
2716     * complain if an instruction is missing (which is desirable).
2717     */
2718  }  // end - switch (dec_insn.opcode)
2719
2720  if (have_pending_hard_failure_) {
2721    if (Runtime::Current()->IsCompiler()) {
2722      /* When compiling, check that the last failure is a hard failure */
2723      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2724    }
2725    /* immediate failure, reject class */
2726    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2727    return false;
2728  } else if (have_pending_runtime_throw_failure_) {
2729    /* checking interpreter will throw, mark following code as unreachable */
2730    opcode_flags = Instruction::kThrow;
2731  }
2732  /*
2733   * If we didn't just set the result register, clear it out. This ensures that you can only use
2734   * "move-result" immediately after the result is set. (We could check this statically, but it's
2735   * not expensive and it makes our debugging output cleaner.)
2736   */
2737  if (!just_set_result) {
2738    work_line_->SetResultTypeToUnknown(this);
2739  }
2740
2741
2742
2743  /*
2744   * Handle "branch". Tag the branch target.
2745   *
2746   * NOTE: instructions like Instruction::EQZ provide information about the
2747   * state of the register when the branch is taken or not taken. For example,
2748   * somebody could get a reference field, check it for zero, and if the
2749   * branch is taken immediately store that register in a boolean field
2750   * since the value is known to be zero. We do not currently account for
2751   * that, and will reject the code.
2752   *
2753   * TODO: avoid re-fetching the branch target
2754   */
2755  if ((opcode_flags & Instruction::kBranch) != 0) {
2756    bool isConditional, selfOkay;
2757    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2758      /* should never happen after static verification */
2759      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2760      return false;
2761    }
2762    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2763    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2764      return false;
2765    }
2766    /* update branch target, set "changed" if appropriate */
2767    if (nullptr != branch_line.get()) {
2768      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2769        return false;
2770      }
2771    } else {
2772      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2773        return false;
2774      }
2775    }
2776  }
2777
2778  /*
2779   * Handle "switch". Tag all possible branch targets.
2780   *
2781   * We've already verified that the table is structurally sound, so we
2782   * just need to walk through and tag the targets.
2783   */
2784  if ((opcode_flags & Instruction::kSwitch) != 0) {
2785    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2786    const uint16_t* switch_insns = insns + offset_to_switch;
2787    int switch_count = switch_insns[1];
2788    int offset_to_targets, targ;
2789
2790    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2791      /* 0 = sig, 1 = count, 2/3 = first key */
2792      offset_to_targets = 4;
2793    } else {
2794      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2795      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2796      offset_to_targets = 2 + 2 * switch_count;
2797    }
2798
2799    /* verify each switch target */
2800    for (targ = 0; targ < switch_count; targ++) {
2801      int offset;
2802      uint32_t abs_offset;
2803
2804      /* offsets are 32-bit, and only partly endian-swapped */
2805      offset = switch_insns[offset_to_targets + targ * 2] |
2806         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2807      abs_offset = work_insn_idx_ + offset;
2808      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2809      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2810        return false;
2811      }
2812      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2813        return false;
2814      }
2815    }
2816  }
2817
2818  /*
2819   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2820   * "try" block when they throw, control transfers out of the method.)
2821   */
2822  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2823    bool has_catch_all_handler = false;
2824    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2825
2826    // Need the linker to try and resolve the handled class to check if it's Throwable.
2827    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2828
2829    for (; iterator.HasNext(); iterator.Next()) {
2830      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2831      if (handler_type_idx == DexFile::kDexNoIndex16) {
2832        has_catch_all_handler = true;
2833      } else {
2834        // It is also a catch-all if it is java.lang.Throwable.
2835        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2836                                                   class_loader_);
2837        if (klass != nullptr) {
2838          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2839            has_catch_all_handler = true;
2840          }
2841        } else {
2842          // Clear exception.
2843          DCHECK(self_->IsExceptionPending());
2844          self_->ClearException();
2845        }
2846      }
2847      /*
2848       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2849       * "work_regs", because at runtime the exception will be thrown before the instruction
2850       * modifies any registers.
2851       */
2852      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2853        return false;
2854      }
2855    }
2856
2857    /*
2858     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2859     * instruction. This does apply to monitor-exit because of async exception handling.
2860     */
2861    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2862      /*
2863       * The state in work_line reflects the post-execution state. If the current instruction is a
2864       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2865       * it will do so before grabbing the lock).
2866       */
2867      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2868        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2869            << "expected to be within a catch-all for an instruction where a monitor is held";
2870        return false;
2871      }
2872    }
2873  }
2874
2875  /* Handle "continue". Tag the next consecutive instruction.
2876   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2877   *        because it changes work_line_ when performing peephole optimization
2878   *        and this change should not be used in those cases.
2879   */
2880  if ((opcode_flags & Instruction::kContinue) != 0) {
2881    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2882    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
2883    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2884      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2885      return false;
2886    }
2887    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2888    // next instruction isn't one.
2889    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2890      return false;
2891    }
2892    if (nullptr != fallthrough_line.get()) {
2893      // Make workline consistent with fallthrough computed from peephole optimization.
2894      work_line_->CopyFromLine(fallthrough_line.get());
2895    }
2896    if (insn_flags_[next_insn_idx].IsReturn()) {
2897      // For returns we only care about the operand to the return, all other registers are dead.
2898      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2899      Instruction::Code opcode = ret_inst->Opcode();
2900      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2901        work_line_->MarkAllRegistersAsConflicts(this);
2902      } else {
2903        if (opcode == Instruction::RETURN_WIDE) {
2904          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
2905        } else {
2906          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
2907        }
2908      }
2909    }
2910    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2911    if (next_line != nullptr) {
2912      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2913      // needed. If the merge changes the state of the registers then the work line will be
2914      // updated.
2915      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2916        return false;
2917      }
2918    } else {
2919      /*
2920       * We're not recording register data for the next instruction, so we don't know what the
2921       * prior state was. We have to assume that something has changed and re-evaluate it.
2922       */
2923      insn_flags_[next_insn_idx].SetChanged();
2924    }
2925  }
2926
2927  /* If we're returning from the method, make sure monitor stack is empty. */
2928  if ((opcode_flags & Instruction::kReturn) != 0) {
2929    if (!work_line_->VerifyMonitorStackEmpty(this)) {
2930      return false;
2931    }
2932  }
2933
2934  /*
2935   * Update start_guess. Advance to the next instruction of that's
2936   * possible, otherwise use the branch target if one was found. If
2937   * neither of those exists we're in a return or throw; leave start_guess
2938   * alone and let the caller sort it out.
2939   */
2940  if ((opcode_flags & Instruction::kContinue) != 0) {
2941    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2942    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
2943  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2944    /* we're still okay if branch_target is zero */
2945    *start_guess = work_insn_idx_ + branch_target;
2946  }
2947
2948  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2949  DCHECK(insn_flags_[*start_guess].IsOpcode());
2950
2951  return true;
2952}  // NOLINT(readability/fn_size)
2953
2954const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2955  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2956  const RegType& referrer = GetDeclaringClass();
2957  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
2958  const RegType& result = klass != nullptr ?
2959      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
2960      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2961  if (result.IsConflict()) {
2962    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2963        << "' in " << referrer;
2964    return result;
2965  }
2966  if (klass == nullptr && !result.IsUnresolvedTypes()) {
2967    dex_cache_->SetResolvedType(class_idx, result.GetClass());
2968  }
2969  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2970  // check at runtime if access is allowed and so pass here. If result is
2971  // primitive, skip the access check.
2972  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2973      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2974    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2975                                    << referrer << "' -> '" << result << "'";
2976  }
2977  return result;
2978}
2979
2980const RegType& MethodVerifier::GetCaughtExceptionType() {
2981  const RegType* common_super = nullptr;
2982  if (code_item_->tries_size_ != 0) {
2983    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2984    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2985    for (uint32_t i = 0; i < handlers_size; i++) {
2986      CatchHandlerIterator iterator(handlers_ptr);
2987      for (; iterator.HasNext(); iterator.Next()) {
2988        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2989          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2990            common_super = &reg_types_.JavaLangThrowable(false);
2991          } else {
2992            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2993            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2994              if (exception.IsUnresolvedTypes()) {
2995                // We don't know enough about the type. Fail here and let runtime handle it.
2996                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2997                return exception;
2998              } else {
2999                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3000                return reg_types_.Conflict();
3001              }
3002            } else if (common_super == nullptr) {
3003              common_super = &exception;
3004            } else if (common_super->Equals(exception)) {
3005              // odd case, but nothing to do
3006            } else {
3007              common_super = &common_super->Merge(exception, &reg_types_);
3008              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
3009            }
3010          }
3011        }
3012      }
3013      handlers_ptr = iterator.EndDataPointer();
3014    }
3015  }
3016  if (common_super == nullptr) {
3017    /* no catch blocks, or no catches with classes we can find */
3018    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3019    return reg_types_.Conflict();
3020  }
3021  return *common_super;
3022}
3023
3024mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3025                                                               MethodType method_type) {
3026  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3027  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3028  if (klass_type.IsConflict()) {
3029    std::string append(" in attempt to access method ");
3030    append += dex_file_->GetMethodName(method_id);
3031    AppendToLastFailMessage(append);
3032    return nullptr;
3033  }
3034  if (klass_type.IsUnresolvedTypes()) {
3035    return nullptr;  // Can't resolve Class so no more to do here
3036  }
3037  mirror::Class* klass = klass_type.GetClass();
3038  const RegType& referrer = GetDeclaringClass();
3039  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3040  if (res_method == nullptr) {
3041    const char* name = dex_file_->GetMethodName(method_id);
3042    const Signature signature = dex_file_->GetMethodSignature(method_id);
3043
3044    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3045      res_method = klass->FindDirectMethod(name, signature);
3046    } else if (method_type == METHOD_INTERFACE) {
3047      res_method = klass->FindInterfaceMethod(name, signature);
3048    } else {
3049      res_method = klass->FindVirtualMethod(name, signature);
3050    }
3051    if (res_method != nullptr) {
3052      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
3053    } else {
3054      // If a virtual or interface method wasn't found with the expected type, look in
3055      // the direct methods. This can happen when the wrong invoke type is used or when
3056      // a class has changed, and will be flagged as an error in later checks.
3057      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3058        res_method = klass->FindDirectMethod(name, signature);
3059      }
3060      if (res_method == nullptr) {
3061        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3062                                     << PrettyDescriptor(klass) << "." << name
3063                                     << " " << signature;
3064        return nullptr;
3065      }
3066    }
3067  }
3068  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3069  // enforce them here.
3070  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3071    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3072                                      << PrettyMethod(res_method);
3073    return nullptr;
3074  }
3075  // Disallow any calls to class initializers.
3076  if (res_method->IsClassInitializer()) {
3077    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3078                                      << PrettyMethod(res_method);
3079    return nullptr;
3080  }
3081  // Check if access is allowed.
3082  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3083    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3084                                     << " from " << referrer << ")";
3085    return res_method;
3086  }
3087  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3088  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3089    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3090                                      << PrettyMethod(res_method);
3091    return nullptr;
3092  }
3093  // Check that interface methods match interface classes.
3094  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3095    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3096                                    << " is in an interface class " << PrettyClass(klass);
3097    return nullptr;
3098  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3099    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3100                                    << " is in a non-interface class " << PrettyClass(klass);
3101    return nullptr;
3102  }
3103  // See if the method type implied by the invoke instruction matches the access flags for the
3104  // target method.
3105  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3106      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3107      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3108      ) {
3109    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3110                                       " type of " << PrettyMethod(res_method);
3111    return nullptr;
3112  }
3113  return res_method;
3114}
3115
3116template <class T>
3117mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3118                                                                    MethodType method_type,
3119                                                                    bool is_range,
3120                                                                    mirror::ArtMethod* res_method) {
3121  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3122  // match the call to the signature. Also, we might be calling through an abstract method
3123  // definition (which doesn't have register count values).
3124  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3125  /* caught by static verifier */
3126  DCHECK(is_range || expected_args <= 5);
3127  if (expected_args > code_item_->outs_size_) {
3128    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3129        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3130    return nullptr;
3131  }
3132
3133  uint32_t arg[5];
3134  if (!is_range) {
3135    inst->GetVarArgs(arg);
3136  }
3137  uint32_t sig_registers = 0;
3138
3139  /*
3140   * Check the "this" argument, which must be an instance of the class that declared the method.
3141   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3142   * rigorous check here (which is okay since we have to do it at runtime).
3143   */
3144  if (method_type != METHOD_STATIC) {
3145    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3146    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3147      CHECK(have_pending_hard_failure_);
3148      return nullptr;
3149    }
3150    if (actual_arg_type.IsUninitializedReference()) {
3151      if (res_method) {
3152        if (!res_method->IsConstructor()) {
3153          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3154          return nullptr;
3155        }
3156      } else {
3157        // Check whether the name of the called method is "<init>"
3158        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3159        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3160          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3161          return nullptr;
3162        }
3163      }
3164    }
3165    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3166      const RegType* res_method_class;
3167      if (res_method != nullptr) {
3168        mirror::Class* klass = res_method->GetDeclaringClass();
3169        std::string temp;
3170        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3171                                                 klass->CannotBeAssignedFromOtherTypes());
3172      } else {
3173        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3174        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3175        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3176                                                      dex_file_->StringByTypeIdx(class_idx),
3177                                                      false);
3178      }
3179      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3180        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3181            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3182                << "' not instance of '" << *res_method_class << "'";
3183        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3184        // the compiler.
3185        if (have_pending_hard_failure_) {
3186          return nullptr;
3187        }
3188      }
3189    }
3190    sig_registers = 1;
3191  }
3192
3193  for ( ; it->HasNext(); it->Next()) {
3194    if (sig_registers >= expected_args) {
3195      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3196          " arguments, found " << sig_registers << " or more.";
3197      return nullptr;
3198    }
3199
3200    const char* param_descriptor = it->GetDescriptor();
3201
3202    if (param_descriptor == nullptr) {
3203      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3204          "component";
3205      return nullptr;
3206    }
3207
3208    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3209    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3210        arg[sig_registers];
3211    if (reg_type.IsIntegralTypes()) {
3212      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3213      if (!src_type.IsIntegralTypes()) {
3214        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3215            << " but expected " << reg_type;
3216        return res_method;
3217      }
3218    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3219      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3220      // compiler.
3221      if (have_pending_hard_failure_) {
3222        return res_method;
3223      }
3224    }
3225    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3226  }
3227  if (expected_args != sig_registers) {
3228    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3229        " arguments, found " << sig_registers;
3230    return nullptr;
3231  }
3232  return res_method;
3233}
3234
3235void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3236                                                          MethodType method_type,
3237                                                          bool is_range) {
3238  // As the method may not have been resolved, make this static check against what we expect.
3239  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3240  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3241  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3242  DexFileParameterIterator it(*dex_file_,
3243                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3244  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3245                                                             nullptr);
3246}
3247
3248class MethodParamListDescriptorIterator {
3249 public:
3250  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3251      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3252      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3253  }
3254
3255  bool HasNext() {
3256    return pos_ < params_size_;
3257  }
3258
3259  void Next() {
3260    ++pos_;
3261  }
3262
3263  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3264    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3265  }
3266
3267 private:
3268  mirror::ArtMethod* res_method_;
3269  size_t pos_;
3270  const DexFile::TypeList* params_;
3271  const size_t params_size_;
3272};
3273
3274mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3275                                                             MethodType method_type,
3276                                                             bool is_range,
3277                                                             bool is_super) {
3278  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3279  // we're making.
3280  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3281
3282  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3283  if (res_method == nullptr) {  // error or class is unresolved
3284    // Check what we can statically.
3285    if (!have_pending_hard_failure_) {
3286      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3287    }
3288    return nullptr;
3289  }
3290
3291  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3292  // has a vtable entry for the target method.
3293  if (is_super) {
3294    DCHECK(method_type == METHOD_VIRTUAL);
3295    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3296    if (super.IsUnresolvedTypes()) {
3297      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3298                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3299                                   << " to super " << PrettyMethod(res_method);
3300      return nullptr;
3301    }
3302    mirror::Class* super_klass = super.GetClass();
3303    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3304      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3305                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3306                                   << " to super " << super
3307                                   << "." << res_method->GetName()
3308                                   << res_method->GetSignature();
3309      return nullptr;
3310    }
3311  }
3312
3313  // Process the target method's signature. This signature may or may not
3314  MethodParamListDescriptorIterator it(res_method);
3315  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3316                                                                             is_range, res_method);
3317}
3318
3319mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3320                                                         RegisterLine* reg_line, bool is_range) {
3321  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3322         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3323  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range);
3324  if (!actual_arg_type.HasClass()) {
3325    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3326    return nullptr;
3327  }
3328  mirror::Class* klass = actual_arg_type.GetClass();
3329  mirror::Class* dispatch_class;
3330  if (klass->IsInterface()) {
3331    // Derive Object.class from Class.class.getSuperclass().
3332    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3333    CHECK(object_klass->IsObjectClass());
3334    dispatch_class = object_klass;
3335  } else {
3336    dispatch_class = klass;
3337  }
3338  CHECK(dispatch_class->HasVTable()) << PrettyDescriptor(dispatch_class);
3339  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3340  CHECK_LT(static_cast<int32_t>(vtable_index), dispatch_class->GetVTableLength())
3341      << PrettyDescriptor(klass);
3342  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3343  CHECK(!self_->IsExceptionPending());
3344  return res_method;
3345}
3346
3347mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3348                                                                     bool is_range) {
3349  DCHECK(Runtime::Current()->IsStarted());
3350  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3351                                                             is_range);
3352  if (res_method == nullptr) {
3353    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3354    return nullptr;
3355  }
3356  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3357
3358  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3359  // match the call to the signature. Also, we might be calling through an abstract method
3360  // definition (which doesn't have register count values).
3361  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3362  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3363    return nullptr;
3364  }
3365  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3366  /* caught by static verifier */
3367  DCHECK(is_range || expected_args <= 5);
3368  if (expected_args > code_item_->outs_size_) {
3369    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3370        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3371    return nullptr;
3372  }
3373
3374  /*
3375   * Check the "this" argument, which must be an instance of the class that declared the method.
3376   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3377   * rigorous check here (which is okay since we have to do it at runtime).
3378   */
3379  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3380    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3381    return nullptr;
3382  }
3383  if (!actual_arg_type.IsZero()) {
3384    mirror::Class* klass = res_method->GetDeclaringClass();
3385    std::string temp;
3386    const RegType& res_method_class =
3387        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3388                             klass->CannotBeAssignedFromOtherTypes());
3389    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3390      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3391          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3392          << "' not instance of '" << res_method_class << "'";
3393      return nullptr;
3394    }
3395  }
3396  /*
3397   * Process the target method's signature. This signature may or may not
3398   * have been verified, so we can't assume it's properly formed.
3399   */
3400  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3401  size_t params_size = params == nullptr ? 0 : params->Size();
3402  uint32_t arg[5];
3403  if (!is_range) {
3404    inst->GetVarArgs(arg);
3405  }
3406  size_t actual_args = 1;
3407  for (size_t param_index = 0; param_index < params_size; param_index++) {
3408    if (actual_args >= expected_args) {
3409      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3410                                        << "'. Expected " << expected_args
3411                                         << " arguments, processing argument " << actual_args
3412                                        << " (where longs/doubles count twice).";
3413      return nullptr;
3414    }
3415    const char* descriptor =
3416        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3417    if (descriptor == nullptr) {
3418      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3419                                        << " missing signature component";
3420      return nullptr;
3421    }
3422    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3423    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3424    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3425      return res_method;
3426    }
3427    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3428  }
3429  if (actual_args != expected_args) {
3430    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3431              << " expected " << expected_args << " arguments, found " << actual_args;
3432    return nullptr;
3433  } else {
3434    return res_method;
3435  }
3436}
3437
3438void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3439  uint32_t type_idx;
3440  if (!is_filled) {
3441    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3442    type_idx = inst->VRegC_22c();
3443  } else if (!is_range) {
3444    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3445    type_idx = inst->VRegB_35c();
3446  } else {
3447    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3448    type_idx = inst->VRegB_3rc();
3449  }
3450  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3451  if (res_type.IsConflict()) {  // bad class
3452    DCHECK_NE(failures_.size(), 0U);
3453  } else {
3454    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3455    if (!res_type.IsArrayTypes()) {
3456      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3457    } else if (!is_filled) {
3458      /* make sure "size" register is valid type */
3459      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3460      /* set register type to array class */
3461      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3462      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3463    } else {
3464      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3465      // the list and fail. It's legal, if silly, for arg_count to be zero.
3466      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3467      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3468      uint32_t arg[5];
3469      if (!is_range) {
3470        inst->GetVarArgs(arg);
3471      }
3472      for (size_t ui = 0; ui < arg_count; ui++) {
3473        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3474        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3475          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3476          return;
3477        }
3478      }
3479      // filled-array result goes into "result" register
3480      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3481      work_line_->SetResultRegisterType(this, precise_type);
3482    }
3483  }
3484}
3485
3486void MethodVerifier::VerifyAGet(const Instruction* inst,
3487                                const RegType& insn_type, bool is_primitive) {
3488  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3489  if (!index_type.IsArrayIndexTypes()) {
3490    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3491  } else {
3492    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3493    if (array_type.IsZero()) {
3494      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3495      // instruction type. TODO: have a proper notion of bottom here.
3496      if (!is_primitive || insn_type.IsCategory1Types()) {
3497        // Reference or category 1
3498        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3499      } else {
3500        // Category 2
3501        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3502                                        reg_types_.FromCat2ConstLo(0, false),
3503                                        reg_types_.FromCat2ConstHi(0, false));
3504      }
3505    } else if (!array_type.IsArrayTypes()) {
3506      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3507    } else {
3508      /* verify the class */
3509      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3510      if (!component_type.IsReferenceTypes() && !is_primitive) {
3511        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3512            << " source for aget-object";
3513      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3514        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3515            << " source for category 1 aget";
3516      } else if (is_primitive && !insn_type.Equals(component_type) &&
3517                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3518                 (insn_type.IsLong() && component_type.IsDouble()))) {
3519        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3520            << " incompatible with aget of type " << insn_type;
3521      } else {
3522        // Use knowledge of the field type which is stronger than the type inferred from the
3523        // instruction, which can't differentiate object types and ints from floats, longs from
3524        // doubles.
3525        if (!component_type.IsLowHalf()) {
3526          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3527        } else {
3528          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3529                                          component_type.HighHalf(&reg_types_));
3530        }
3531      }
3532    }
3533  }
3534}
3535
3536void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3537                                        const uint32_t vregA) {
3538  // Primitive assignability rules are weaker than regular assignability rules.
3539  bool instruction_compatible;
3540  bool value_compatible;
3541  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3542  if (target_type.IsIntegralTypes()) {
3543    instruction_compatible = target_type.Equals(insn_type);
3544    value_compatible = value_type.IsIntegralTypes();
3545  } else if (target_type.IsFloat()) {
3546    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3547    value_compatible = value_type.IsFloatTypes();
3548  } else if (target_type.IsLong()) {
3549    instruction_compatible = insn_type.IsLong();
3550    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3551    // as target_type depends on the resolved type of the field.
3552    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3553      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3554      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3555    } else {
3556      value_compatible = false;
3557    }
3558  } else if (target_type.IsDouble()) {
3559    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3560    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3561    // as target_type depends on the resolved type of the field.
3562    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3563      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3564      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3565    } else {
3566      value_compatible = false;
3567    }
3568  } else {
3569    instruction_compatible = false;  // reference with primitive store
3570    value_compatible = false;  // unused
3571  }
3572  if (!instruction_compatible) {
3573    // This is a global failure rather than a class change failure as the instructions and
3574    // the descriptors for the type should have been consistent within the same file at
3575    // compile time.
3576    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3577        << "' but expected type '" << target_type << "'";
3578    return;
3579  }
3580  if (!value_compatible) {
3581    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3582        << " of type " << value_type << " but expected " << target_type << " for put";
3583    return;
3584  }
3585}
3586
3587void MethodVerifier::VerifyAPut(const Instruction* inst,
3588                                const RegType& insn_type, bool is_primitive) {
3589  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3590  if (!index_type.IsArrayIndexTypes()) {
3591    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3592  } else {
3593    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3594    if (array_type.IsZero()) {
3595      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3596      // instruction type.
3597    } else if (!array_type.IsArrayTypes()) {
3598      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3599    } else {
3600      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3601      const uint32_t vregA = inst->VRegA_23x();
3602      if (is_primitive) {
3603        VerifyPrimitivePut(component_type, insn_type, vregA);
3604      } else {
3605        if (!component_type.IsReferenceTypes()) {
3606          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3607              << " source for aput-object";
3608        } else {
3609          // The instruction agrees with the type of array, confirm the value to be stored does too
3610          // Note: we use the instruction type (rather than the component type) for aput-object as
3611          // incompatible classes will be caught at runtime as an array store exception
3612          work_line_->VerifyRegisterType(this, vregA, insn_type);
3613        }
3614      }
3615    }
3616  }
3617}
3618
3619mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3620  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3621  // Check access to class
3622  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3623  if (klass_type.IsConflict()) {  // bad class
3624    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3625                                         field_idx, dex_file_->GetFieldName(field_id),
3626                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3627    return nullptr;
3628  }
3629  if (klass_type.IsUnresolvedTypes()) {
3630    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3631  }
3632  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3633  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3634                                                          class_loader_);
3635  if (field == nullptr) {
3636    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3637              << dex_file_->GetFieldName(field_id) << ") in "
3638              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3639    DCHECK(self_->IsExceptionPending());
3640    self_->ClearException();
3641    return nullptr;
3642  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3643                                                  field->GetAccessFlags())) {
3644    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3645                                    << " from " << GetDeclaringClass();
3646    return nullptr;
3647  } else if (!field->IsStatic()) {
3648    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3649    return nullptr;
3650  }
3651  return field;
3652}
3653
3654mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3655  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3656  // Check access to class
3657  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3658  if (klass_type.IsConflict()) {
3659    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3660                                         field_idx, dex_file_->GetFieldName(field_id),
3661                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3662    return nullptr;
3663  }
3664  if (klass_type.IsUnresolvedTypes()) {
3665    return nullptr;  // Can't resolve Class so no more to do here
3666  }
3667  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3668  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3669                                                          class_loader_);
3670  if (field == nullptr) {
3671    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3672              << dex_file_->GetFieldName(field_id) << ") in "
3673              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3674    DCHECK(self_->IsExceptionPending());
3675    self_->ClearException();
3676    return nullptr;
3677  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3678                                                  field->GetAccessFlags())) {
3679    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3680                                    << " from " << GetDeclaringClass();
3681    return nullptr;
3682  } else if (field->IsStatic()) {
3683    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3684                                    << " to not be static";
3685    return nullptr;
3686  } else if (obj_type.IsZero()) {
3687    // Cannot infer and check type, however, access will cause null pointer exception
3688    return field;
3689  } else if (!obj_type.IsReferenceTypes()) {
3690    // Trying to read a field from something that isn't a reference
3691    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3692                                      << "non-reference type " << obj_type;
3693    return nullptr;
3694  } else {
3695    mirror::Class* klass = field->GetDeclaringClass();
3696    const RegType& field_klass =
3697        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3698                             klass, klass->CannotBeAssignedFromOtherTypes());
3699    if (obj_type.IsUninitializedTypes() &&
3700        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3701            !field_klass.Equals(GetDeclaringClass()))) {
3702      // Field accesses through uninitialized references are only allowable for constructors where
3703      // the field is declared in this class
3704      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3705                                        << " of a not fully initialized object within the context"
3706                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3707      return nullptr;
3708    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3709      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3710      // of C1. For resolution to occur the declared class of the field must be compatible with
3711      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3712      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3713                                  << " from object of type " << obj_type;
3714      return nullptr;
3715    } else {
3716      return field;
3717    }
3718  }
3719}
3720
3721void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3722                                 bool is_primitive, bool is_static) {
3723  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3724  mirror::ArtField* field;
3725  if (is_static) {
3726    field = GetStaticField(field_idx);
3727  } else {
3728    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3729    field = GetInstanceField(object_type, field_idx);
3730  }
3731  const RegType* field_type = nullptr;
3732  if (field != nullptr) {
3733    mirror::Class* field_type_class;
3734    {
3735      StackHandleScope<1> hs(self_);
3736      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3737      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3738    }
3739    if (field_type_class != nullptr) {
3740      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3741                                         field_type_class->CannotBeAssignedFromOtherTypes());
3742    } else {
3743      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3744      self_->ClearException();
3745    }
3746  }
3747  if (field_type == nullptr) {
3748    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3749    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3750    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3751  }
3752  DCHECK(field_type != nullptr);
3753  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3754  if (is_primitive) {
3755    if (field_type->Equals(insn_type) ||
3756        (field_type->IsFloat() && insn_type.IsInteger()) ||
3757        (field_type->IsDouble() && insn_type.IsLong())) {
3758      // expected that read is of the correct primitive type or that int reads are reading
3759      // floats or long reads are reading doubles
3760    } else {
3761      // This is a global failure rather than a class change failure as the instructions and
3762      // the descriptors for the type should have been consistent within the same file at
3763      // compile time
3764      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3765                                        << " to be of type '" << insn_type
3766                                        << "' but found type '" << *field_type << "' in get";
3767      return;
3768    }
3769  } else {
3770    if (!insn_type.IsAssignableFrom(*field_type)) {
3771      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3772                                        << " to be compatible with type '" << insn_type
3773                                        << "' but found type '" << *field_type
3774                                        << "' in Get-object";
3775      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3776      return;
3777    }
3778  }
3779  if (!field_type->IsLowHalf()) {
3780    work_line_->SetRegisterType(this, vregA, *field_type);
3781  } else {
3782    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3783  }
3784}
3785
3786void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3787                                 bool is_primitive, bool is_static) {
3788  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3789  mirror::ArtField* field;
3790  if (is_static) {
3791    field = GetStaticField(field_idx);
3792  } else {
3793    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3794    field = GetInstanceField(object_type, field_idx);
3795  }
3796  const RegType* field_type = nullptr;
3797  if (field != nullptr) {
3798    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3799      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3800                                      << " from other class " << GetDeclaringClass();
3801      return;
3802    }
3803    mirror::Class* field_type_class;
3804    {
3805      StackHandleScope<1> hs(self_);
3806      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3807      FieldHelper fh(h_field);
3808      field_type_class = fh.GetType(can_load_classes_);
3809    }
3810    if (field_type_class != nullptr) {
3811      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3812                                         field_type_class->CannotBeAssignedFromOtherTypes());
3813    } else {
3814      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3815      self_->ClearException();
3816    }
3817  }
3818  if (field_type == nullptr) {
3819    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3820    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3821    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3822  }
3823  DCHECK(field_type != nullptr);
3824  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3825  if (is_primitive) {
3826    VerifyPrimitivePut(*field_type, insn_type, vregA);
3827  } else {
3828    if (!insn_type.IsAssignableFrom(*field_type)) {
3829      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3830                                        << " to be compatible with type '" << insn_type
3831                                        << "' but found type '" << *field_type
3832                                        << "' in put-object";
3833      return;
3834    }
3835    work_line_->VerifyRegisterType(this, vregA, *field_type);
3836  }
3837}
3838
3839mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3840                                                      RegisterLine* reg_line) {
3841  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3842         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3843         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3844         inst->Opcode() == Instruction::IPUT_QUICK ||
3845         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3846         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3847  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
3848  if (!object_type.HasClass()) {
3849    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3850    return nullptr;
3851  }
3852  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3853  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3854                                                                      field_offset);
3855  if (f == nullptr) {
3856    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3857                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3858  }
3859  return f;
3860}
3861
3862void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3863                                     bool is_primitive) {
3864  DCHECK(Runtime::Current()->IsStarted());
3865  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3866  if (field == nullptr) {
3867    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3868    return;
3869  }
3870  mirror::Class* field_type_class;
3871  {
3872    StackHandleScope<1> hs(self_);
3873    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3874    FieldHelper fh(h_field);
3875    field_type_class = fh.GetType(can_load_classes_);
3876  }
3877  const RegType* field_type;
3878  if (field_type_class != nullptr) {
3879    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3880                                       field_type_class->CannotBeAssignedFromOtherTypes());
3881  } else {
3882    DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3883    self_->ClearException();
3884    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3885                                            field->GetTypeDescriptor(), false);
3886  }
3887  DCHECK(field_type != nullptr);
3888  const uint32_t vregA = inst->VRegA_22c();
3889  if (is_primitive) {
3890    if (field_type->Equals(insn_type) ||
3891        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3892        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3893      // expected that read is of the correct primitive type or that int reads are reading
3894      // floats or long reads are reading doubles
3895    } else {
3896      // This is a global failure rather than a class change failure as the instructions and
3897      // the descriptors for the type should have been consistent within the same file at
3898      // compile time
3899      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3900                                        << " to be of type '" << insn_type
3901                                        << "' but found type '" << *field_type << "' in Get";
3902      return;
3903    }
3904  } else {
3905    if (!insn_type.IsAssignableFrom(*field_type)) {
3906      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3907                                        << " to be compatible with type '" << insn_type
3908                                        << "' but found type '" << *field_type
3909                                        << "' in get-object";
3910      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3911      return;
3912    }
3913  }
3914  if (!field_type->IsLowHalf()) {
3915    work_line_->SetRegisterType(this, vregA, *field_type);
3916  } else {
3917    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3918  }
3919}
3920
3921void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3922                                     bool is_primitive) {
3923  DCHECK(Runtime::Current()->IsStarted());
3924  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3925  if (field == nullptr) {
3926    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3927    return;
3928  }
3929  const char* descriptor = field->GetTypeDescriptor();
3930  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3931  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3932  if (field != nullptr) {
3933    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3934      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3935                                      << " from other class " << GetDeclaringClass();
3936      return;
3937    }
3938  }
3939  const uint32_t vregA = inst->VRegA_22c();
3940  if (is_primitive) {
3941    // Primitive field assignability rules are weaker than regular assignability rules
3942    bool instruction_compatible;
3943    bool value_compatible;
3944    const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3945    if (field_type.IsIntegralTypes()) {
3946      instruction_compatible = insn_type.IsIntegralTypes();
3947      value_compatible = value_type.IsIntegralTypes();
3948    } else if (field_type.IsFloat()) {
3949      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3950      value_compatible = value_type.IsFloatTypes();
3951    } else if (field_type.IsLong()) {
3952      instruction_compatible = insn_type.IsLong();
3953      value_compatible = value_type.IsLongTypes();
3954    } else if (field_type.IsDouble()) {
3955      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3956      value_compatible = value_type.IsDoubleTypes();
3957    } else {
3958      instruction_compatible = false;  // reference field with primitive store
3959      value_compatible = false;  // unused
3960    }
3961    if (!instruction_compatible) {
3962      // This is a global failure rather than a class change failure as the instructions and
3963      // the descriptors for the type should have been consistent within the same file at
3964      // compile time
3965      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3966                                        << " to be of type '" << insn_type
3967                                        << "' but found type '" << field_type
3968                                        << "' in put";
3969      return;
3970    }
3971    if (!value_compatible) {
3972      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3973          << " of type " << value_type
3974          << " but expected " << field_type
3975          << " for store to " << PrettyField(field) << " in put";
3976      return;
3977    }
3978  } else {
3979    if (!insn_type.IsAssignableFrom(field_type)) {
3980      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3981                                        << " to be compatible with type '" << insn_type
3982                                        << "' but found type '" << field_type
3983                                        << "' in put-object";
3984      return;
3985    }
3986    work_line_->VerifyRegisterType(this, vregA, field_type);
3987  }
3988}
3989
3990bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3991  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3992    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3993    return false;
3994  }
3995  return true;
3996}
3997
3998bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
3999                                     bool update_merge_line) {
4000  bool changed = true;
4001  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4002  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4003    /*
4004     * We haven't processed this instruction before, and we haven't touched the registers here, so
4005     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4006     * only way a register can transition out of "unknown", so this is not just an optimization.)
4007     */
4008    if (!insn_flags_[next_insn].IsReturn()) {
4009      target_line->CopyFromLine(merge_line);
4010    } else {
4011      // Verify that the monitor stack is empty on return.
4012      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4013        return false;
4014      }
4015      // For returns we only care about the operand to the return, all other registers are dead.
4016      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4017      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4018      Instruction::Code opcode = ret_inst->Opcode();
4019      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4020        target_line->MarkAllRegistersAsConflicts(this);
4021      } else {
4022        target_line->CopyFromLine(merge_line);
4023        if (opcode == Instruction::RETURN_WIDE) {
4024          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4025        } else {
4026          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4027        }
4028      }
4029    }
4030  } else {
4031    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4032                                 RegisterLine::Create(target_line->NumRegs(), this) :
4033                                 nullptr);
4034    if (gDebugVerify) {
4035      copy->CopyFromLine(target_line);
4036    }
4037    changed = target_line->MergeRegisters(this, merge_line);
4038    if (have_pending_hard_failure_) {
4039      return false;
4040    }
4041    if (gDebugVerify && changed) {
4042      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4043                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4044                      << copy->Dump(this) << "  MERGE\n"
4045                      << merge_line->Dump(this) << "  ==\n"
4046                      << target_line->Dump(this) << "\n";
4047    }
4048    if (update_merge_line && changed) {
4049      merge_line->CopyFromLine(target_line);
4050    }
4051  }
4052  if (changed) {
4053    insn_flags_[next_insn].SetChanged();
4054  }
4055  return true;
4056}
4057
4058InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4059  return &insn_flags_[work_insn_idx_];
4060}
4061
4062const RegType& MethodVerifier::GetMethodReturnType() {
4063  if (return_type_ == nullptr) {
4064    if (mirror_method_.Get() != nullptr) {
4065      StackHandleScope<1> hs(self_);
4066      mirror::Class* return_type_class =
4067          MethodHelper(hs.NewHandle(mirror_method_.Get())).GetReturnType(can_load_classes_);
4068      if (return_type_class != nullptr) {
4069        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4070                                             return_type_class,
4071                                             return_type_class->CannotBeAssignedFromOtherTypes());
4072      } else {
4073        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4074        self_->ClearException();
4075      }
4076    }
4077    if (return_type_ == nullptr) {
4078      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4079      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4080      uint16_t return_type_idx = proto_id.return_type_idx_;
4081      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4082      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4083    }
4084  }
4085  return *return_type_;
4086}
4087
4088const RegType& MethodVerifier::GetDeclaringClass() {
4089  if (declaring_class_ == nullptr) {
4090    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4091    const char* descriptor
4092        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4093    if (mirror_method_.Get() != nullptr) {
4094      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4095      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4096                                               klass->CannotBeAssignedFromOtherTypes());
4097    } else {
4098      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4099    }
4100  }
4101  return *declaring_class_;
4102}
4103
4104std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4105  RegisterLine* line = reg_table_.GetLine(dex_pc);
4106  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4107  std::vector<int32_t> result;
4108  for (size_t i = 0; i < line->NumRegs(); ++i) {
4109    const RegType& type = line->GetRegisterType(this, i);
4110    if (type.IsConstant()) {
4111      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4112      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4113      result.push_back(const_val->ConstantValue());
4114    } else if (type.IsConstantLo()) {
4115      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4116      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4117      result.push_back(const_val->ConstantValueLo());
4118    } else if (type.IsConstantHi()) {
4119      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4120      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4121      result.push_back(const_val->ConstantValueHi());
4122    } else if (type.IsIntegralTypes()) {
4123      result.push_back(kIntVReg);
4124      result.push_back(0);
4125    } else if (type.IsFloat()) {
4126      result.push_back(kFloatVReg);
4127      result.push_back(0);
4128    } else if (type.IsLong()) {
4129      result.push_back(kLongLoVReg);
4130      result.push_back(0);
4131      result.push_back(kLongHiVReg);
4132      result.push_back(0);
4133      ++i;
4134    } else if (type.IsDouble()) {
4135      result.push_back(kDoubleLoVReg);
4136      result.push_back(0);
4137      result.push_back(kDoubleHiVReg);
4138      result.push_back(0);
4139      ++i;
4140    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4141      result.push_back(kUndefined);
4142      result.push_back(0);
4143    } else {
4144      CHECK(type.IsNonZeroReferenceTypes());
4145      result.push_back(kReferenceVReg);
4146      result.push_back(0);
4147    }
4148  }
4149  return result;
4150}
4151
4152const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4153  if (precise) {
4154    // Precise constant type.
4155    return reg_types_.FromCat1Const(value, true);
4156  } else {
4157    // Imprecise constant type.
4158    if (value < -32768) {
4159      return reg_types_.IntConstant();
4160    } else if (value < -128) {
4161      return reg_types_.ShortConstant();
4162    } else if (value < 0) {
4163      return reg_types_.ByteConstant();
4164    } else if (value == 0) {
4165      return reg_types_.Zero();
4166    } else if (value == 1) {
4167      return reg_types_.One();
4168    } else if (value < 128) {
4169      return reg_types_.PosByteConstant();
4170    } else if (value < 32768) {
4171      return reg_types_.PosShortConstant();
4172    } else if (value < 65536) {
4173      return reg_types_.CharConstant();
4174    } else {
4175      return reg_types_.IntConstant();
4176    }
4177  }
4178}
4179
4180void MethodVerifier::Init() {
4181  art::verifier::RegTypeCache::Init();
4182}
4183
4184void MethodVerifier::Shutdown() {
4185  verifier::RegTypeCache::ShutDown();
4186}
4187
4188void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4189  RegTypeCache::VisitStaticRoots(callback, arg);
4190}
4191
4192void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4193  reg_types_.VisitRoots(callback, arg);
4194}
4195
4196}  // namespace verifier
4197}  // namespace art
4198