method_verifier.cc revision 5f09be9e4fbd3002712e820245562b1a57e55c3f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "reg_type-inl.h"
42#include "register_line-inl.h"
43#include "runtime.h"
44#include "scoped_thread_state_change.h"
45#include "handle_scope-inl.h"
46#include "verifier/dex_gc_map.h"
47
48namespace art {
49namespace verifier {
50
51static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
52static constexpr bool gDebugVerify = false;
53// TODO: Add a constant to method_verifier to turn on verbose logging?
54
55void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
56                                 uint32_t insns_size, uint16_t registers_size,
57                                 MethodVerifier* verifier) {
58  DCHECK_GT(insns_size, 0U);
59  register_lines_.reset(new RegisterLine*[insns_size]());
60  size_ = insns_size;
61  for (uint32_t i = 0; i < insns_size; i++) {
62    bool interesting = false;
63    switch (mode) {
64      case kTrackRegsAll:
65        interesting = flags[i].IsOpcode();
66        break;
67      case kTrackCompilerInterestPoints:
68        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
69        break;
70      case kTrackRegsBranches:
71        interesting = flags[i].IsBranchTarget();
72        break;
73      default:
74        break;
75    }
76    if (interesting) {
77      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
78    }
79  }
80}
81
82PcToRegisterLineTable::~PcToRegisterLineTable() {
83  for (size_t i = 0; i < size_; i++) {
84    delete register_lines_[i];
85    if (kIsDebugBuild) {
86      register_lines_[i] = nullptr;
87    }
88  }
89}
90
91MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
92                                                        mirror::Class* klass,
93                                                        bool allow_soft_failures,
94                                                        std::string* error) {
95  if (klass->IsVerified()) {
96    return kNoFailure;
97  }
98  bool early_failure = false;
99  std::string failure_message;
100  const DexFile& dex_file = klass->GetDexFile();
101  const DexFile::ClassDef* class_def = klass->GetClassDef();
102  mirror::Class* super = klass->GetSuperClass();
103  std::string temp;
104  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
105    early_failure = true;
106    failure_message = " that has no super class";
107  } else if (super != nullptr && super->IsFinal()) {
108    early_failure = true;
109    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
110  } else if (class_def == nullptr) {
111    early_failure = true;
112    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
113  }
114  if (early_failure) {
115    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
116    if (Runtime::Current()->IsCompiler()) {
117      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
118      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
119    }
120    return kHardFailure;
121  }
122  StackHandleScope<2> hs(self);
123  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
124  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
125  return VerifyClass(self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
126}
127
128MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
129                                                        const DexFile* dex_file,
130                                                        Handle<mirror::DexCache> dex_cache,
131                                                        Handle<mirror::ClassLoader> class_loader,
132                                                        const DexFile::ClassDef* class_def,
133                                                        bool allow_soft_failures,
134                                                        std::string* error) {
135  DCHECK(class_def != nullptr);
136  const byte* class_data = dex_file->GetClassData(*class_def);
137  if (class_data == nullptr) {
138    // empty class, probably a marker interface
139    return kNoFailure;
140  }
141  ClassDataItemIterator it(*dex_file, class_data);
142  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
143    it.Next();
144  }
145  size_t error_count = 0;
146  bool hard_fail = false;
147  ClassLinker* linker = Runtime::Current()->GetClassLinker();
148  int64_t previous_direct_method_idx = -1;
149  while (it.HasNextDirectMethod()) {
150    self->AllowThreadSuspension();
151    uint32_t method_idx = it.GetMemberIndex();
152    if (method_idx == previous_direct_method_idx) {
153      // smali can create dex files with two encoded_methods sharing the same method_idx
154      // http://code.google.com/p/smali/issues/detail?id=119
155      it.Next();
156      continue;
157    }
158    previous_direct_method_idx = method_idx;
159    InvokeType type = it.GetMethodInvokeType(*class_def);
160    mirror::ArtMethod* method =
161        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
162                              NullHandle<mirror::ArtMethod>(), type);
163    if (method == nullptr) {
164      DCHECK(self->IsExceptionPending());
165      // We couldn't resolve the method, but continue regardless.
166      self->ClearException();
167    }
168    StackHandleScope<1> hs(self);
169    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
170    MethodVerifier::FailureKind result = VerifyMethod(self,
171                                                      method_idx,
172                                                      dex_file,
173                                                      dex_cache,
174                                                      class_loader,
175                                                      class_def,
176                                                      it.GetMethodCodeItem(),
177                                                      h_method,
178                                                      it.GetMethodAccessFlags(),
179                                                      allow_soft_failures,
180                                                      false);
181    if (result != kNoFailure) {
182      if (result == kHardFailure) {
183        hard_fail = true;
184        if (error_count > 0) {
185          *error += "\n";
186        }
187        *error = "Verifier rejected class ";
188        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
189        *error += " due to bad method ";
190        *error += PrettyMethod(method_idx, *dex_file);
191      }
192      ++error_count;
193    }
194    it.Next();
195  }
196  int64_t previous_virtual_method_idx = -1;
197  while (it.HasNextVirtualMethod()) {
198    self->AllowThreadSuspension();
199    uint32_t method_idx = it.GetMemberIndex();
200    if (method_idx == previous_virtual_method_idx) {
201      // smali can create dex files with two encoded_methods sharing the same method_idx
202      // http://code.google.com/p/smali/issues/detail?id=119
203      it.Next();
204      continue;
205    }
206    previous_virtual_method_idx = method_idx;
207    InvokeType type = it.GetMethodInvokeType(*class_def);
208    mirror::ArtMethod* method =
209        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
210                              NullHandle<mirror::ArtMethod>(), type);
211    if (method == nullptr) {
212      DCHECK(self->IsExceptionPending());
213      // We couldn't resolve the method, but continue regardless.
214      self->ClearException();
215    }
216    StackHandleScope<1> hs(self);
217    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
218    MethodVerifier::FailureKind result = VerifyMethod(self,
219                                                      method_idx,
220                                                      dex_file,
221                                                      dex_cache,
222                                                      class_loader,
223                                                      class_def,
224                                                      it.GetMethodCodeItem(),
225                                                      h_method,
226                                                      it.GetMethodAccessFlags(),
227                                                      allow_soft_failures,
228                                                      false);
229    if (result != kNoFailure) {
230      if (result == kHardFailure) {
231        hard_fail = true;
232        if (error_count > 0) {
233          *error += "\n";
234        }
235        *error = "Verifier rejected class ";
236        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
237        *error += " due to bad method ";
238        *error += PrettyMethod(method_idx, *dex_file);
239      }
240      ++error_count;
241    }
242    it.Next();
243  }
244  if (error_count == 0) {
245    return kNoFailure;
246  } else {
247    return hard_fail ? kHardFailure : kSoftFailure;
248  }
249}
250
251MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
252                                                         const DexFile* dex_file,
253                                                         Handle<mirror::DexCache> dex_cache,
254                                                         Handle<mirror::ClassLoader> class_loader,
255                                                         const DexFile::ClassDef* class_def,
256                                                         const DexFile::CodeItem* code_item,
257                                                         Handle<mirror::ArtMethod> method,
258                                                         uint32_t method_access_flags,
259                                                         bool allow_soft_failures,
260                                                         bool need_precise_constants) {
261  MethodVerifier::FailureKind result = kNoFailure;
262  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
263
264  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
265                          method_idx, method, method_access_flags, true, allow_soft_failures,
266                          need_precise_constants);
267  if (verifier.Verify()) {
268    // Verification completed, however failures may be pending that didn't cause the verification
269    // to hard fail.
270    CHECK(!verifier.have_pending_hard_failure_);
271    if (verifier.failures_.size() != 0) {
272      if (VLOG_IS_ON(verifier)) {
273          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
274                                << PrettyMethod(method_idx, *dex_file) << "\n");
275      }
276      result = kSoftFailure;
277    }
278  } else {
279    // Bad method data.
280    CHECK_NE(verifier.failures_.size(), 0U);
281    CHECK(verifier.have_pending_hard_failure_);
282    verifier.DumpFailures(LOG(INFO) << "Verification error in "
283                                    << PrettyMethod(method_idx, *dex_file) << "\n");
284    if (gDebugVerify) {
285      std::cout << "\n" << verifier.info_messages_.str();
286      verifier.Dump(std::cout);
287    }
288    result = kHardFailure;
289  }
290  if (kTimeVerifyMethod) {
291    uint64_t duration_ns = NanoTime() - start_ns;
292    if (duration_ns > MsToNs(100)) {
293      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
294                   << " took " << PrettyDuration(duration_ns);
295    }
296  }
297  return result;
298}
299
300MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
301                                         const DexFile* dex_file,
302                                         Handle<mirror::DexCache> dex_cache,
303                                         Handle<mirror::ClassLoader> class_loader,
304                                         const DexFile::ClassDef* class_def,
305                                         const DexFile::CodeItem* code_item,
306                                         Handle<mirror::ArtMethod> method,
307                                         uint32_t method_access_flags) {
308  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
309                                                class_def, code_item, dex_method_idx, method,
310                                                method_access_flags, true, true, true, true);
311  verifier->Verify();
312  verifier->DumpFailures(os);
313  os << verifier->info_messages_.str();
314  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
315  // and querying any info is dangerous/can abort.
316  if (verifier->have_pending_hard_failure_) {
317    delete verifier;
318    return nullptr;
319  } else {
320    verifier->Dump(os);
321    return verifier;
322  }
323}
324
325MethodVerifier::MethodVerifier(Thread* self,
326                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
327                               Handle<mirror::ClassLoader> class_loader,
328                               const DexFile::ClassDef* class_def,
329                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
330                               Handle<mirror::ArtMethod> method, uint32_t method_access_flags,
331                               bool can_load_classes, bool allow_soft_failures,
332                               bool need_precise_constants, bool verify_to_dump)
333    : self_(self),
334      reg_types_(can_load_classes),
335      work_insn_idx_(-1),
336      dex_method_idx_(dex_method_idx),
337      mirror_method_(method),
338      method_access_flags_(method_access_flags),
339      return_type_(nullptr),
340      dex_file_(dex_file),
341      dex_cache_(dex_cache),
342      class_loader_(class_loader),
343      class_def_(class_def),
344      code_item_(code_item),
345      declaring_class_(nullptr),
346      interesting_dex_pc_(-1),
347      monitor_enter_dex_pcs_(nullptr),
348      have_pending_hard_failure_(false),
349      have_pending_runtime_throw_failure_(false),
350      new_instance_count_(0),
351      monitor_enter_count_(0),
352      can_load_classes_(can_load_classes),
353      allow_soft_failures_(allow_soft_failures),
354      need_precise_constants_(need_precise_constants),
355      has_check_casts_(false),
356      has_virtual_or_interface_invokes_(false),
357      verify_to_dump_(verify_to_dump) {
358  Runtime::Current()->AddMethodVerifier(this);
359  DCHECK(class_def != nullptr);
360}
361
362MethodVerifier::~MethodVerifier() {
363  Runtime::Current()->RemoveMethodVerifier(this);
364  STLDeleteElements(&failure_messages_);
365}
366
367void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
368                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
369  Thread* self = Thread::Current();
370  StackHandleScope<3> hs(self);
371  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
372  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
373  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
374  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
375                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
376                          false, true, false);
377  verifier.interesting_dex_pc_ = dex_pc;
378  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
379  verifier.FindLocksAtDexPc();
380}
381
382void MethodVerifier::FindLocksAtDexPc() {
383  CHECK(monitor_enter_dex_pcs_ != nullptr);
384  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
385
386  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
387  // verification. In practice, the phase we want relies on data structures set up by all the
388  // earlier passes, so we just run the full method verification and bail out early when we've
389  // got what we wanted.
390  Verify();
391}
392
393mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
394                                                           uint32_t dex_pc) {
395  Thread* self = Thread::Current();
396  StackHandleScope<3> hs(self);
397  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
398  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
399  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
400  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
401                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
402                          true, true, false);
403  return verifier.FindAccessedFieldAtDexPc(dex_pc);
404}
405
406mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
407  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
408
409  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
410  // verification. In practice, the phase we want relies on data structures set up by all the
411  // earlier passes, so we just run the full method verification and bail out early when we've
412  // got what we wanted.
413  bool success = Verify();
414  if (!success) {
415    return nullptr;
416  }
417  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
418  if (register_line == nullptr) {
419    return nullptr;
420  }
421  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
422  return GetQuickFieldAccess(inst, register_line);
423}
424
425mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
426                                                            uint32_t dex_pc) {
427  Thread* self = Thread::Current();
428  StackHandleScope<3> hs(self);
429  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
430  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
431  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
432  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
433                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
434                          true, true, false);
435  return verifier.FindInvokedMethodAtDexPc(dex_pc);
436}
437
438mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
439  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
440
441  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
442  // verification. In practice, the phase we want relies on data structures set up by all the
443  // earlier passes, so we just run the full method verification and bail out early when we've
444  // got what we wanted.
445  bool success = Verify();
446  if (!success) {
447    return nullptr;
448  }
449  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
450  if (register_line == nullptr) {
451    return nullptr;
452  }
453  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
454  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
455  return GetQuickInvokedMethod(inst, register_line, is_range);
456}
457
458bool MethodVerifier::Verify() {
459  // If there aren't any instructions, make sure that's expected, then exit successfully.
460  if (code_item_ == nullptr) {
461    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
462      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
463      return false;
464    } else {
465      return true;
466    }
467  }
468  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
469  if (code_item_->ins_size_ > code_item_->registers_size_) {
470    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
471                                      << " regs=" << code_item_->registers_size_;
472    return false;
473  }
474  // Allocate and initialize an array to hold instruction data.
475  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
476  // Run through the instructions and see if the width checks out.
477  bool result = ComputeWidthsAndCountOps();
478  // Flag instructions guarded by a "try" block and check exception handlers.
479  result = result && ScanTryCatchBlocks();
480  // Perform static instruction verification.
481  result = result && VerifyInstructions();
482  // Perform code-flow analysis and return.
483  result = result && VerifyCodeFlow();
484  // Compute information for compiler.
485  if (result && Runtime::Current()->IsCompiler()) {
486    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
487  }
488  return result;
489}
490
491std::ostream& MethodVerifier::Fail(VerifyError error) {
492  switch (error) {
493    case VERIFY_ERROR_NO_CLASS:
494    case VERIFY_ERROR_NO_FIELD:
495    case VERIFY_ERROR_NO_METHOD:
496    case VERIFY_ERROR_ACCESS_CLASS:
497    case VERIFY_ERROR_ACCESS_FIELD:
498    case VERIFY_ERROR_ACCESS_METHOD:
499    case VERIFY_ERROR_INSTANTIATION:
500    case VERIFY_ERROR_CLASS_CHANGE:
501      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
502        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
503        // class change and instantiation errors into soft verification errors so that we re-verify
504        // at runtime. We may fail to find or to agree on access because of not yet available class
505        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
506        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
507        // paths" that dynamically perform the verification and cause the behavior to be that akin
508        // to an interpreter.
509        error = VERIFY_ERROR_BAD_CLASS_SOFT;
510      } else {
511        // If we fail again at runtime, mark that this instruction would throw and force this
512        // method to be executed using the interpreter with checks.
513        have_pending_runtime_throw_failure_ = true;
514      }
515      break;
516      // Indication that verification should be retried at runtime.
517    case VERIFY_ERROR_BAD_CLASS_SOFT:
518      if (!allow_soft_failures_) {
519        have_pending_hard_failure_ = true;
520      }
521      break;
522      // Hard verification failures at compile time will still fail at runtime, so the class is
523      // marked as rejected to prevent it from being compiled.
524    case VERIFY_ERROR_BAD_CLASS_HARD: {
525      if (Runtime::Current()->IsCompiler()) {
526        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
527        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
528      }
529      have_pending_hard_failure_ = true;
530      break;
531    }
532  }
533  failures_.push_back(error);
534  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
535                                    work_insn_idx_));
536  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
537  failure_messages_.push_back(failure_message);
538  return *failure_message;
539}
540
541std::ostream& MethodVerifier::LogVerifyInfo() {
542  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
543                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
544}
545
546void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
547  size_t failure_num = failure_messages_.size();
548  DCHECK_NE(failure_num, 0U);
549  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
550  prepend += last_fail_message->str();
551  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
552  delete last_fail_message;
553}
554
555void MethodVerifier::AppendToLastFailMessage(std::string append) {
556  size_t failure_num = failure_messages_.size();
557  DCHECK_NE(failure_num, 0U);
558  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
559  (*last_fail_message) << append;
560}
561
562bool MethodVerifier::ComputeWidthsAndCountOps() {
563  const uint16_t* insns = code_item_->insns_;
564  size_t insns_size = code_item_->insns_size_in_code_units_;
565  const Instruction* inst = Instruction::At(insns);
566  size_t new_instance_count = 0;
567  size_t monitor_enter_count = 0;
568  size_t dex_pc = 0;
569
570  while (dex_pc < insns_size) {
571    Instruction::Code opcode = inst->Opcode();
572    switch (opcode) {
573      case Instruction::APUT_OBJECT:
574      case Instruction::CHECK_CAST:
575        has_check_casts_ = true;
576        break;
577      case Instruction::INVOKE_VIRTUAL:
578      case Instruction::INVOKE_VIRTUAL_RANGE:
579      case Instruction::INVOKE_INTERFACE:
580      case Instruction::INVOKE_INTERFACE_RANGE:
581        has_virtual_or_interface_invokes_ = true;
582        break;
583      case Instruction::MONITOR_ENTER:
584        monitor_enter_count++;
585        break;
586      case Instruction::NEW_INSTANCE:
587        new_instance_count++;
588        break;
589      default:
590        break;
591    }
592    size_t inst_size = inst->SizeInCodeUnits();
593    insn_flags_[dex_pc].SetIsOpcode();
594    dex_pc += inst_size;
595    inst = inst->RelativeAt(inst_size);
596  }
597
598  if (dex_pc != insns_size) {
599    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
600                                      << dex_pc << " vs. " << insns_size << ")";
601    return false;
602  }
603
604  new_instance_count_ = new_instance_count;
605  monitor_enter_count_ = monitor_enter_count;
606  return true;
607}
608
609bool MethodVerifier::ScanTryCatchBlocks() {
610  uint32_t tries_size = code_item_->tries_size_;
611  if (tries_size == 0) {
612    return true;
613  }
614  uint32_t insns_size = code_item_->insns_size_in_code_units_;
615  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
616
617  for (uint32_t idx = 0; idx < tries_size; idx++) {
618    const DexFile::TryItem* try_item = &tries[idx];
619    uint32_t start = try_item->start_addr_;
620    uint32_t end = start + try_item->insn_count_;
621    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
622      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
623                                        << " endAddr=" << end << " (size=" << insns_size << ")";
624      return false;
625    }
626    if (!insn_flags_[start].IsOpcode()) {
627      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
628          << "'try' block starts inside an instruction (" << start << ")";
629      return false;
630    }
631    uint32_t dex_pc = start;
632    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
633    while (dex_pc < end) {
634      insn_flags_[dex_pc].SetInTry();
635      size_t insn_size = inst->SizeInCodeUnits();
636      dex_pc += insn_size;
637      inst = inst->RelativeAt(insn_size);
638    }
639  }
640  // Iterate over each of the handlers to verify target addresses.
641  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
642  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
643  ClassLinker* linker = Runtime::Current()->GetClassLinker();
644  for (uint32_t idx = 0; idx < handlers_size; idx++) {
645    CatchHandlerIterator iterator(handlers_ptr);
646    for (; iterator.HasNext(); iterator.Next()) {
647      uint32_t dex_pc= iterator.GetHandlerAddress();
648      if (!insn_flags_[dex_pc].IsOpcode()) {
649        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
650            << "exception handler starts at bad address (" << dex_pc << ")";
651        return false;
652      }
653      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
654        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
655            << "exception handler begins with move-result* (" << dex_pc << ")";
656        return false;
657      }
658      insn_flags_[dex_pc].SetBranchTarget();
659      // Ensure exception types are resolved so that they don't need resolution to be delivered,
660      // unresolved exception types will be ignored by exception delivery
661      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
662        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
663                                                            iterator.GetHandlerTypeIndex(),
664                                                            dex_cache_, class_loader_);
665        if (exception_type == nullptr) {
666          DCHECK(self_->IsExceptionPending());
667          self_->ClearException();
668        }
669      }
670    }
671    handlers_ptr = iterator.EndDataPointer();
672  }
673  return true;
674}
675
676bool MethodVerifier::VerifyInstructions() {
677  const Instruction* inst = Instruction::At(code_item_->insns_);
678
679  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
680  insn_flags_[0].SetBranchTarget();
681  insn_flags_[0].SetCompileTimeInfoPoint();
682
683  uint32_t insns_size = code_item_->insns_size_in_code_units_;
684  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
685    if (!VerifyInstruction(inst, dex_pc)) {
686      DCHECK_NE(failures_.size(), 0U);
687      return false;
688    }
689    /* Flag instructions that are garbage collection points */
690    // All invoke points are marked as "Throw" points already.
691    // We are relying on this to also count all the invokes as interesting.
692    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
693      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
694    } else if (inst->IsReturn()) {
695      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
696    }
697    dex_pc += inst->SizeInCodeUnits();
698    inst = inst->Next();
699  }
700  return true;
701}
702
703bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
704  bool result = true;
705  switch (inst->GetVerifyTypeArgumentA()) {
706    case Instruction::kVerifyRegA:
707      result = result && CheckRegisterIndex(inst->VRegA());
708      break;
709    case Instruction::kVerifyRegAWide:
710      result = result && CheckWideRegisterIndex(inst->VRegA());
711      break;
712  }
713  switch (inst->GetVerifyTypeArgumentB()) {
714    case Instruction::kVerifyRegB:
715      result = result && CheckRegisterIndex(inst->VRegB());
716      break;
717    case Instruction::kVerifyRegBField:
718      result = result && CheckFieldIndex(inst->VRegB());
719      break;
720    case Instruction::kVerifyRegBMethod:
721      result = result && CheckMethodIndex(inst->VRegB());
722      break;
723    case Instruction::kVerifyRegBNewInstance:
724      result = result && CheckNewInstance(inst->VRegB());
725      break;
726    case Instruction::kVerifyRegBString:
727      result = result && CheckStringIndex(inst->VRegB());
728      break;
729    case Instruction::kVerifyRegBType:
730      result = result && CheckTypeIndex(inst->VRegB());
731      break;
732    case Instruction::kVerifyRegBWide:
733      result = result && CheckWideRegisterIndex(inst->VRegB());
734      break;
735  }
736  switch (inst->GetVerifyTypeArgumentC()) {
737    case Instruction::kVerifyRegC:
738      result = result && CheckRegisterIndex(inst->VRegC());
739      break;
740    case Instruction::kVerifyRegCField:
741      result = result && CheckFieldIndex(inst->VRegC());
742      break;
743    case Instruction::kVerifyRegCNewArray:
744      result = result && CheckNewArray(inst->VRegC());
745      break;
746    case Instruction::kVerifyRegCType:
747      result = result && CheckTypeIndex(inst->VRegC());
748      break;
749    case Instruction::kVerifyRegCWide:
750      result = result && CheckWideRegisterIndex(inst->VRegC());
751      break;
752  }
753  switch (inst->GetVerifyExtraFlags()) {
754    case Instruction::kVerifyArrayData:
755      result = result && CheckArrayData(code_offset);
756      break;
757    case Instruction::kVerifyBranchTarget:
758      result = result && CheckBranchTarget(code_offset);
759      break;
760    case Instruction::kVerifySwitchTargets:
761      result = result && CheckSwitchTargets(code_offset);
762      break;
763    case Instruction::kVerifyVarArgNonZero:
764      // Fall-through.
765    case Instruction::kVerifyVarArg: {
766      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
767        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
768                                             "non-range invoke";
769        return false;
770      }
771      uint32_t args[Instruction::kMaxVarArgRegs];
772      inst->GetVarArgs(args);
773      result = result && CheckVarArgRegs(inst->VRegA(), args);
774      break;
775    }
776    case Instruction::kVerifyVarArgRangeNonZero:
777      // Fall-through.
778    case Instruction::kVerifyVarArgRange:
779      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
780          inst->VRegA() <= 0) {
781        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
782                                             "range invoke";
783        return false;
784      }
785      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
786      break;
787    case Instruction::kVerifyError:
788      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
789      result = false;
790      break;
791  }
792  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) {
793    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
794    result = false;
795  }
796  return result;
797}
798
799inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
800  if (idx >= code_item_->registers_size_) {
801    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
802                                      << code_item_->registers_size_ << ")";
803    return false;
804  }
805  return true;
806}
807
808inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
809  if (idx + 1 >= code_item_->registers_size_) {
810    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
811                                      << "+1 >= " << code_item_->registers_size_ << ")";
812    return false;
813  }
814  return true;
815}
816
817inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
818  if (idx >= dex_file_->GetHeader().field_ids_size_) {
819    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
820                                      << dex_file_->GetHeader().field_ids_size_ << ")";
821    return false;
822  }
823  return true;
824}
825
826inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
827  if (idx >= dex_file_->GetHeader().method_ids_size_) {
828    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
829                                      << dex_file_->GetHeader().method_ids_size_ << ")";
830    return false;
831  }
832  return true;
833}
834
835inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
836  if (idx >= dex_file_->GetHeader().type_ids_size_) {
837    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
838                                      << dex_file_->GetHeader().type_ids_size_ << ")";
839    return false;
840  }
841  // We don't need the actual class, just a pointer to the class name.
842  const char* descriptor = dex_file_->StringByTypeIdx(idx);
843  if (descriptor[0] != 'L') {
844    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
845    return false;
846  }
847  return true;
848}
849
850inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
851  if (idx >= dex_file_->GetHeader().string_ids_size_) {
852    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
853                                      << dex_file_->GetHeader().string_ids_size_ << ")";
854    return false;
855  }
856  return true;
857}
858
859inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
860  if (idx >= dex_file_->GetHeader().type_ids_size_) {
861    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
862                                      << dex_file_->GetHeader().type_ids_size_ << ")";
863    return false;
864  }
865  return true;
866}
867
868bool MethodVerifier::CheckNewArray(uint32_t idx) {
869  if (idx >= dex_file_->GetHeader().type_ids_size_) {
870    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
871                                      << dex_file_->GetHeader().type_ids_size_ << ")";
872    return false;
873  }
874  int bracket_count = 0;
875  const char* descriptor = dex_file_->StringByTypeIdx(idx);
876  const char* cp = descriptor;
877  while (*cp++ == '[') {
878    bracket_count++;
879  }
880  if (bracket_count == 0) {
881    /* The given class must be an array type. */
882    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
883        << "can't new-array class '" << descriptor << "' (not an array)";
884    return false;
885  } else if (bracket_count > 255) {
886    /* It is illegal to create an array of more than 255 dimensions. */
887    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
888        << "can't new-array class '" << descriptor << "' (exceeds limit)";
889    return false;
890  }
891  return true;
892}
893
894bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
895  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
896  const uint16_t* insns = code_item_->insns_ + cur_offset;
897  const uint16_t* array_data;
898  int32_t array_data_offset;
899
900  DCHECK_LT(cur_offset, insn_count);
901  /* make sure the start of the array data table is in range */
902  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
903  if ((int32_t) cur_offset + array_data_offset < 0 ||
904      cur_offset + array_data_offset + 2 >= insn_count) {
905    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
906                                      << ", data offset " << array_data_offset
907                                      << ", count " << insn_count;
908    return false;
909  }
910  /* offset to array data table is a relative branch-style offset */
911  array_data = insns + array_data_offset;
912  /* make sure the table is 32-bit aligned */
913  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
914    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
915                                      << ", data offset " << array_data_offset;
916    return false;
917  }
918  uint32_t value_width = array_data[1];
919  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
920  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
921  /* make sure the end of the switch is in range */
922  if (cur_offset + array_data_offset + table_size > insn_count) {
923    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
924                                      << ", data offset " << array_data_offset << ", end "
925                                      << cur_offset + array_data_offset + table_size
926                                      << ", count " << insn_count;
927    return false;
928  }
929  return true;
930}
931
932bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
933  int32_t offset;
934  bool isConditional, selfOkay;
935  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
936    return false;
937  }
938  if (!selfOkay && offset == 0) {
939    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
940                                      << reinterpret_cast<void*>(cur_offset);
941    return false;
942  }
943  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
944  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
945  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
946    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
947                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
948    return false;
949  }
950  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
951  int32_t abs_offset = cur_offset + offset;
952  if (abs_offset < 0 ||
953      (uint32_t) abs_offset >= insn_count ||
954      !insn_flags_[abs_offset].IsOpcode()) {
955    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
956                                      << reinterpret_cast<void*>(abs_offset) << ") at "
957                                      << reinterpret_cast<void*>(cur_offset);
958    return false;
959  }
960  insn_flags_[abs_offset].SetBranchTarget();
961  return true;
962}
963
964bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
965                                  bool* selfOkay) {
966  const uint16_t* insns = code_item_->insns_ + cur_offset;
967  *pConditional = false;
968  *selfOkay = false;
969  switch (*insns & 0xff) {
970    case Instruction::GOTO:
971      *pOffset = ((int16_t) *insns) >> 8;
972      break;
973    case Instruction::GOTO_32:
974      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
975      *selfOkay = true;
976      break;
977    case Instruction::GOTO_16:
978      *pOffset = (int16_t) insns[1];
979      break;
980    case Instruction::IF_EQ:
981    case Instruction::IF_NE:
982    case Instruction::IF_LT:
983    case Instruction::IF_GE:
984    case Instruction::IF_GT:
985    case Instruction::IF_LE:
986    case Instruction::IF_EQZ:
987    case Instruction::IF_NEZ:
988    case Instruction::IF_LTZ:
989    case Instruction::IF_GEZ:
990    case Instruction::IF_GTZ:
991    case Instruction::IF_LEZ:
992      *pOffset = (int16_t) insns[1];
993      *pConditional = true;
994      break;
995    default:
996      return false;
997      break;
998  }
999  return true;
1000}
1001
1002bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1003  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1004  DCHECK_LT(cur_offset, insn_count);
1005  const uint16_t* insns = code_item_->insns_ + cur_offset;
1006  /* make sure the start of the switch is in range */
1007  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1008  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
1009    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1010                                      << ", switch offset " << switch_offset
1011                                      << ", count " << insn_count;
1012    return false;
1013  }
1014  /* offset to switch table is a relative branch-style offset */
1015  const uint16_t* switch_insns = insns + switch_offset;
1016  /* make sure the table is 32-bit aligned */
1017  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1018    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1019                                      << ", switch offset " << switch_offset;
1020    return false;
1021  }
1022  uint32_t switch_count = switch_insns[1];
1023  int32_t keys_offset, targets_offset;
1024  uint16_t expected_signature;
1025  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1026    /* 0=sig, 1=count, 2/3=firstKey */
1027    targets_offset = 4;
1028    keys_offset = -1;
1029    expected_signature = Instruction::kPackedSwitchSignature;
1030  } else {
1031    /* 0=sig, 1=count, 2..count*2 = keys */
1032    keys_offset = 2;
1033    targets_offset = 2 + 2 * switch_count;
1034    expected_signature = Instruction::kSparseSwitchSignature;
1035  }
1036  uint32_t table_size = targets_offset + switch_count * 2;
1037  if (switch_insns[0] != expected_signature) {
1038    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1039        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1040                        switch_insns[0], expected_signature);
1041    return false;
1042  }
1043  /* make sure the end of the switch is in range */
1044  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1045    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1046                                      << ", switch offset " << switch_offset
1047                                      << ", end " << (cur_offset + switch_offset + table_size)
1048                                      << ", count " << insn_count;
1049    return false;
1050  }
1051  /* for a sparse switch, verify the keys are in ascending order */
1052  if (keys_offset > 0 && switch_count > 1) {
1053    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1054    for (uint32_t targ = 1; targ < switch_count; targ++) {
1055      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1056                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1057      if (key <= last_key) {
1058        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1059                                          << ", this=" << key;
1060        return false;
1061      }
1062      last_key = key;
1063    }
1064  }
1065  /* verify each switch target */
1066  for (uint32_t targ = 0; targ < switch_count; targ++) {
1067    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1068                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1069    int32_t abs_offset = cur_offset + offset;
1070    if (abs_offset < 0 ||
1071        abs_offset >= (int32_t) insn_count ||
1072        !insn_flags_[abs_offset].IsOpcode()) {
1073      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1074                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1075                                        << reinterpret_cast<void*>(cur_offset)
1076                                        << "[" << targ << "]";
1077      return false;
1078    }
1079    insn_flags_[abs_offset].SetBranchTarget();
1080  }
1081  return true;
1082}
1083
1084bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1085  if (vA > Instruction::kMaxVarArgRegs) {
1086    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1087    return false;
1088  }
1089  uint16_t registers_size = code_item_->registers_size_;
1090  for (uint32_t idx = 0; idx < vA; idx++) {
1091    if (arg[idx] >= registers_size) {
1092      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1093                                        << ") in non-range invoke (>= " << registers_size << ")";
1094      return false;
1095    }
1096  }
1097
1098  return true;
1099}
1100
1101bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1102  uint16_t registers_size = code_item_->registers_size_;
1103  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1104  // integer overflow when adding them here.
1105  if (vA + vC > registers_size) {
1106    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1107                                      << " in range invoke (> " << registers_size << ")";
1108    return false;
1109  }
1110  return true;
1111}
1112
1113bool MethodVerifier::VerifyCodeFlow() {
1114  uint16_t registers_size = code_item_->registers_size_;
1115  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1116
1117  if (registers_size * insns_size > 4*1024*1024) {
1118    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1119                 << " insns_size=" << insns_size << ")";
1120  }
1121  /* Create and initialize table holding register status */
1122  reg_table_.Init(kTrackCompilerInterestPoints,
1123                  insn_flags_.get(),
1124                  insns_size,
1125                  registers_size,
1126                  this);
1127
1128
1129  work_line_.reset(RegisterLine::Create(registers_size, this));
1130  saved_line_.reset(RegisterLine::Create(registers_size, this));
1131
1132  /* Initialize register types of method arguments. */
1133  if (!SetTypesFromSignature()) {
1134    DCHECK_NE(failures_.size(), 0U);
1135    std::string prepend("Bad signature in ");
1136    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1137    PrependToLastFailMessage(prepend);
1138    return false;
1139  }
1140  /* Perform code flow verification. */
1141  if (!CodeFlowVerifyMethod()) {
1142    DCHECK_NE(failures_.size(), 0U);
1143    return false;
1144  }
1145  return true;
1146}
1147
1148std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1149  DCHECK_EQ(failures_.size(), failure_messages_.size());
1150  for (size_t i = 0; i < failures_.size(); ++i) {
1151      os << failure_messages_[i]->str() << "\n";
1152  }
1153  return os;
1154}
1155
1156extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1157    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1158  v->Dump(std::cerr);
1159}
1160
1161void MethodVerifier::Dump(std::ostream& os) {
1162  if (code_item_ == nullptr) {
1163    os << "Native method\n";
1164    return;
1165  }
1166  {
1167    os << "Register Types:\n";
1168    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1169    std::ostream indent_os(&indent_filter);
1170    reg_types_.Dump(indent_os);
1171  }
1172  os << "Dumping instructions and register lines:\n";
1173  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1174  std::ostream indent_os(&indent_filter);
1175  const Instruction* inst = Instruction::At(code_item_->insns_);
1176  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1177      dex_pc += inst->SizeInCodeUnits()) {
1178    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1179    if (reg_line != nullptr) {
1180      indent_os << reg_line->Dump(this) << "\n";
1181    }
1182    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1183    const bool kDumpHexOfInstruction = false;
1184    if (kDumpHexOfInstruction) {
1185      indent_os << inst->DumpHex(5) << " ";
1186    }
1187    indent_os << inst->DumpString(dex_file_) << "\n";
1188    inst = inst->Next();
1189  }
1190}
1191
1192static bool IsPrimitiveDescriptor(char descriptor) {
1193  switch (descriptor) {
1194    case 'I':
1195    case 'C':
1196    case 'S':
1197    case 'B':
1198    case 'Z':
1199    case 'F':
1200    case 'D':
1201    case 'J':
1202      return true;
1203    default:
1204      return false;
1205  }
1206}
1207
1208bool MethodVerifier::SetTypesFromSignature() {
1209  RegisterLine* reg_line = reg_table_.GetLine(0);
1210  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1211  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1212
1213  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1214  // Include the "this" pointer.
1215  size_t cur_arg = 0;
1216  if (!IsStatic()) {
1217    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1218    // argument as uninitialized. This restricts field access until the superclass constructor is
1219    // called.
1220    const RegType& declaring_class = GetDeclaringClass();
1221    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1222      reg_line->SetRegisterType(this, arg_start + cur_arg,
1223                                reg_types_.UninitializedThisArgument(declaring_class));
1224    } else {
1225      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1226    }
1227    cur_arg++;
1228  }
1229
1230  const DexFile::ProtoId& proto_id =
1231      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1232  DexFileParameterIterator iterator(*dex_file_, proto_id);
1233
1234  for (; iterator.HasNext(); iterator.Next()) {
1235    const char* descriptor = iterator.GetDescriptor();
1236    if (descriptor == nullptr) {
1237      LOG(FATAL) << "Null descriptor";
1238    }
1239    if (cur_arg >= expected_args) {
1240      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1241                                        << " args, found more (" << descriptor << ")";
1242      return false;
1243    }
1244    switch (descriptor[0]) {
1245      case 'L':
1246      case '[':
1247        // We assume that reference arguments are initialized. The only way it could be otherwise
1248        // (assuming the caller was verified) is if the current method is <init>, but in that case
1249        // it's effectively considered initialized the instant we reach here (in the sense that we
1250        // can return without doing anything or call virtual methods).
1251        {
1252          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1253          if (!reg_type.IsNonZeroReferenceTypes()) {
1254            DCHECK(HasFailures());
1255            return false;
1256          }
1257          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1258        }
1259        break;
1260      case 'Z':
1261        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1262        break;
1263      case 'C':
1264        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1265        break;
1266      case 'B':
1267        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1268        break;
1269      case 'I':
1270        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1271        break;
1272      case 'S':
1273        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1274        break;
1275      case 'F':
1276        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1277        break;
1278      case 'J':
1279      case 'D': {
1280        if (cur_arg + 1 >= expected_args) {
1281          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1282              << " args, found more (" << descriptor << ")";
1283          return false;
1284        }
1285
1286        const RegType* lo_half;
1287        const RegType* hi_half;
1288        if (descriptor[0] == 'J') {
1289          lo_half = &reg_types_.LongLo();
1290          hi_half = &reg_types_.LongHi();
1291        } else {
1292          lo_half = &reg_types_.DoubleLo();
1293          hi_half = &reg_types_.DoubleHi();
1294        }
1295        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1296        cur_arg++;
1297        break;
1298      }
1299      default:
1300        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1301                                          << descriptor << "'";
1302        return false;
1303    }
1304    cur_arg++;
1305  }
1306  if (cur_arg != expected_args) {
1307    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1308                                      << " arguments, found " << cur_arg;
1309    return false;
1310  }
1311  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1312  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1313  // format. Only major difference from the method argument format is that 'V' is supported.
1314  bool result;
1315  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1316    result = descriptor[1] == '\0';
1317  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1318    size_t i = 0;
1319    do {
1320      i++;
1321    } while (descriptor[i] == '[');  // process leading [
1322    if (descriptor[i] == 'L') {  // object array
1323      do {
1324        i++;  // find closing ;
1325      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1326      result = descriptor[i] == ';';
1327    } else {  // primitive array
1328      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1329    }
1330  } else if (descriptor[0] == 'L') {
1331    // could be more thorough here, but shouldn't be required
1332    size_t i = 0;
1333    do {
1334      i++;
1335    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1336    result = descriptor[i] == ';';
1337  } else {
1338    result = false;
1339  }
1340  if (!result) {
1341    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1342                                      << descriptor << "'";
1343  }
1344  return result;
1345}
1346
1347bool MethodVerifier::CodeFlowVerifyMethod() {
1348  const uint16_t* insns = code_item_->insns_;
1349  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1350
1351  /* Begin by marking the first instruction as "changed". */
1352  insn_flags_[0].SetChanged();
1353  uint32_t start_guess = 0;
1354
1355  /* Continue until no instructions are marked "changed". */
1356  while (true) {
1357    self_->AllowThreadSuspension();
1358    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1359    uint32_t insn_idx = start_guess;
1360    for (; insn_idx < insns_size; insn_idx++) {
1361      if (insn_flags_[insn_idx].IsChanged())
1362        break;
1363    }
1364    if (insn_idx == insns_size) {
1365      if (start_guess != 0) {
1366        /* try again, starting from the top */
1367        start_guess = 0;
1368        continue;
1369      } else {
1370        /* all flags are clear */
1371        break;
1372      }
1373    }
1374    // We carry the working set of registers from instruction to instruction. If this address can
1375    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1376    // "changed" flags, we need to load the set of registers from the table.
1377    // Because we always prefer to continue on to the next instruction, we should never have a
1378    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1379    // target.
1380    work_insn_idx_ = insn_idx;
1381    if (insn_flags_[insn_idx].IsBranchTarget()) {
1382      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1383    } else if (kIsDebugBuild) {
1384      /*
1385       * Sanity check: retrieve the stored register line (assuming
1386       * a full table) and make sure it actually matches.
1387       */
1388      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1389      if (register_line != nullptr) {
1390        if (work_line_->CompareLine(register_line) != 0) {
1391          Dump(std::cout);
1392          std::cout << info_messages_.str();
1393          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1394                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1395                     << " work_line=" << work_line_->Dump(this) << "\n"
1396                     << "  expected=" << register_line->Dump(this);
1397        }
1398      }
1399    }
1400    if (!CodeFlowVerifyInstruction(&start_guess)) {
1401      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1402      prepend += " failed to verify: ";
1403      PrependToLastFailMessage(prepend);
1404      return false;
1405    }
1406    /* Clear "changed" and mark as visited. */
1407    insn_flags_[insn_idx].SetVisited();
1408    insn_flags_[insn_idx].ClearChanged();
1409  }
1410
1411  if (gDebugVerify) {
1412    /*
1413     * Scan for dead code. There's nothing "evil" about dead code
1414     * (besides the wasted space), but it indicates a flaw somewhere
1415     * down the line, possibly in the verifier.
1416     *
1417     * If we've substituted "always throw" instructions into the stream,
1418     * we are almost certainly going to have some dead code.
1419     */
1420    int dead_start = -1;
1421    uint32_t insn_idx = 0;
1422    for (; insn_idx < insns_size;
1423         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1424      /*
1425       * Switch-statement data doesn't get "visited" by scanner. It
1426       * may or may not be preceded by a padding NOP (for alignment).
1427       */
1428      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1429          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1430          insns[insn_idx] == Instruction::kArrayDataSignature ||
1431          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1432           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1433            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1434            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1435        insn_flags_[insn_idx].SetVisited();
1436      }
1437
1438      if (!insn_flags_[insn_idx].IsVisited()) {
1439        if (dead_start < 0)
1440          dead_start = insn_idx;
1441      } else if (dead_start >= 0) {
1442        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1443                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1444        dead_start = -1;
1445      }
1446    }
1447    if (dead_start >= 0) {
1448      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1449                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1450    }
1451    // To dump the state of the verify after a method, do something like:
1452    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1453    //     "boolean java.lang.String.equals(java.lang.Object)") {
1454    //   LOG(INFO) << info_messages_.str();
1455    // }
1456  }
1457  return true;
1458}
1459
1460bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1461  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1462  // We want the state _before_ the instruction, for the case where the dex pc we're
1463  // interested in is itself a monitor-enter instruction (which is a likely place
1464  // for a thread to be suspended).
1465  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1466    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1467    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1468      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1469    }
1470  }
1471
1472  /*
1473   * Once we finish decoding the instruction, we need to figure out where
1474   * we can go from here. There are three possible ways to transfer
1475   * control to another statement:
1476   *
1477   * (1) Continue to the next instruction. Applies to all but
1478   *     unconditional branches, method returns, and exception throws.
1479   * (2) Branch to one or more possible locations. Applies to branches
1480   *     and switch statements.
1481   * (3) Exception handlers. Applies to any instruction that can
1482   *     throw an exception that is handled by an encompassing "try"
1483   *     block.
1484   *
1485   * We can also return, in which case there is no successor instruction
1486   * from this point.
1487   *
1488   * The behavior can be determined from the opcode flags.
1489   */
1490  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1491  const Instruction* inst = Instruction::At(insns);
1492  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1493
1494  int32_t branch_target = 0;
1495  bool just_set_result = false;
1496  if (gDebugVerify) {
1497    // Generate processing back trace to debug verifier
1498    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1499                    << work_line_->Dump(this) << "\n";
1500  }
1501
1502  /*
1503   * Make a copy of the previous register state. If the instruction
1504   * can throw an exception, we will copy/merge this into the "catch"
1505   * address rather than work_line, because we don't want the result
1506   * from the "successful" code path (e.g. a check-cast that "improves"
1507   * a type) to be visible to the exception handler.
1508   */
1509  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1510    saved_line_->CopyFromLine(work_line_.get());
1511  } else if (kIsDebugBuild) {
1512    saved_line_->FillWithGarbage();
1513  }
1514
1515
1516  // We need to ensure the work line is consistent while performing validation. When we spot a
1517  // peephole pattern we compute a new line for either the fallthrough instruction or the
1518  // branch target.
1519  std::unique_ptr<RegisterLine> branch_line;
1520  std::unique_ptr<RegisterLine> fallthrough_line;
1521
1522  switch (inst->Opcode()) {
1523    case Instruction::NOP:
1524      /*
1525       * A "pure" NOP has no effect on anything. Data tables start with
1526       * a signature that looks like a NOP; if we see one of these in
1527       * the course of executing code then we have a problem.
1528       */
1529      if (inst->VRegA_10x() != 0) {
1530        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1531      }
1532      break;
1533
1534    case Instruction::MOVE:
1535      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1536      break;
1537    case Instruction::MOVE_FROM16:
1538      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1539      break;
1540    case Instruction::MOVE_16:
1541      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1542      break;
1543    case Instruction::MOVE_WIDE:
1544      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1545      break;
1546    case Instruction::MOVE_WIDE_FROM16:
1547      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1548      break;
1549    case Instruction::MOVE_WIDE_16:
1550      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1551      break;
1552    case Instruction::MOVE_OBJECT:
1553      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1554      break;
1555    case Instruction::MOVE_OBJECT_FROM16:
1556      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1557      break;
1558    case Instruction::MOVE_OBJECT_16:
1559      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1560      break;
1561
1562    /*
1563     * The move-result instructions copy data out of a "pseudo-register"
1564     * with the results from the last method invocation. In practice we
1565     * might want to hold the result in an actual CPU register, so the
1566     * Dalvik spec requires that these only appear immediately after an
1567     * invoke or filled-new-array.
1568     *
1569     * These calls invalidate the "result" register. (This is now
1570     * redundant with the reset done below, but it can make the debug info
1571     * easier to read in some cases.)
1572     */
1573    case Instruction::MOVE_RESULT:
1574      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1575      break;
1576    case Instruction::MOVE_RESULT_WIDE:
1577      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1578      break;
1579    case Instruction::MOVE_RESULT_OBJECT:
1580      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1581      break;
1582
1583    case Instruction::MOVE_EXCEPTION: {
1584      /*
1585       * This statement can only appear as the first instruction in an exception handler. We verify
1586       * that as part of extracting the exception type from the catch block list.
1587       */
1588      const RegType& res_type = GetCaughtExceptionType();
1589      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1590      break;
1591    }
1592    case Instruction::RETURN_VOID:
1593      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1594        if (!GetMethodReturnType().IsConflict()) {
1595          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1596        }
1597      }
1598      break;
1599    case Instruction::RETURN:
1600      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1601        /* check the method signature */
1602        const RegType& return_type = GetMethodReturnType();
1603        if (!return_type.IsCategory1Types()) {
1604          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1605                                            << return_type;
1606        } else {
1607          // Compilers may generate synthetic functions that write byte values into boolean fields.
1608          // Also, it may use integer values for boolean, byte, short, and character return types.
1609          const uint32_t vregA = inst->VRegA_11x();
1610          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1611          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1612                          ((return_type.IsBoolean() || return_type.IsByte() ||
1613                           return_type.IsShort() || return_type.IsChar()) &&
1614                           src_type.IsInteger()));
1615          /* check the register contents */
1616          bool success =
1617              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1618          if (!success) {
1619            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1620          }
1621        }
1622      }
1623      break;
1624    case Instruction::RETURN_WIDE:
1625      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1626        /* check the method signature */
1627        const RegType& return_type = GetMethodReturnType();
1628        if (!return_type.IsCategory2Types()) {
1629          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1630        } else {
1631          /* check the register contents */
1632          const uint32_t vregA = inst->VRegA_11x();
1633          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1634          if (!success) {
1635            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1636          }
1637        }
1638      }
1639      break;
1640    case Instruction::RETURN_OBJECT:
1641      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1642        const RegType& return_type = GetMethodReturnType();
1643        if (!return_type.IsReferenceTypes()) {
1644          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1645        } else {
1646          /* return_type is the *expected* return type, not register value */
1647          DCHECK(!return_type.IsZero());
1648          DCHECK(!return_type.IsUninitializedReference());
1649          const uint32_t vregA = inst->VRegA_11x();
1650          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1651          // Disallow returning uninitialized values and verify that the reference in vAA is an
1652          // instance of the "return_type"
1653          if (reg_type.IsUninitializedTypes()) {
1654            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1655                                              << reg_type << "'";
1656          } else if (!return_type.IsAssignableFrom(reg_type)) {
1657            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1658              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1659                  << "' or '" << reg_type << "'";
1660            } else {
1661              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1662                  << "', but expected from declaration '" << return_type << "'";
1663            }
1664          }
1665        }
1666      }
1667      break;
1668
1669      /* could be boolean, int, float, or a null reference */
1670    case Instruction::CONST_4: {
1671      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1672      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1673                                  DetermineCat1Constant(val, need_precise_constants_));
1674      break;
1675    }
1676    case Instruction::CONST_16: {
1677      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1678      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1679                                  DetermineCat1Constant(val, need_precise_constants_));
1680      break;
1681    }
1682    case Instruction::CONST: {
1683      int32_t val = inst->VRegB_31i();
1684      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1685                                  DetermineCat1Constant(val, need_precise_constants_));
1686      break;
1687    }
1688    case Instruction::CONST_HIGH16: {
1689      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1690      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1691                                  DetermineCat1Constant(val, need_precise_constants_));
1692      break;
1693    }
1694      /* could be long or double; resolved upon use */
1695    case Instruction::CONST_WIDE_16: {
1696      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1697      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1698      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1699      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1700      break;
1701    }
1702    case Instruction::CONST_WIDE_32: {
1703      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1704      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1705      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1706      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1707      break;
1708    }
1709    case Instruction::CONST_WIDE: {
1710      int64_t val = inst->VRegB_51l();
1711      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1712      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1713      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1714      break;
1715    }
1716    case Instruction::CONST_WIDE_HIGH16: {
1717      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1718      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1719      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1720      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1721      break;
1722    }
1723    case Instruction::CONST_STRING:
1724      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1725      break;
1726    case Instruction::CONST_STRING_JUMBO:
1727      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1728      break;
1729    case Instruction::CONST_CLASS: {
1730      // Get type from instruction if unresolved then we need an access check
1731      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1732      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1733      // Register holds class, ie its type is class, on error it will hold Conflict.
1734      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1735                                  res_type.IsConflict() ? res_type
1736                                                        : reg_types_.JavaLangClass());
1737      break;
1738    }
1739    case Instruction::MONITOR_ENTER:
1740      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1741      break;
1742    case Instruction::MONITOR_EXIT:
1743      /*
1744       * monitor-exit instructions are odd. They can throw exceptions,
1745       * but when they do they act as if they succeeded and the PC is
1746       * pointing to the following instruction. (This behavior goes back
1747       * to the need to handle asynchronous exceptions, a now-deprecated
1748       * feature that Dalvik doesn't support.)
1749       *
1750       * In practice we don't need to worry about this. The only
1751       * exceptions that can be thrown from monitor-exit are for a
1752       * null reference and -exit without a matching -enter. If the
1753       * structured locking checks are working, the former would have
1754       * failed on the -enter instruction, and the latter is impossible.
1755       *
1756       * This is fortunate, because issue 3221411 prevents us from
1757       * chasing the "can throw" path when monitor verification is
1758       * enabled. If we can fully verify the locking we can ignore
1759       * some catch blocks (which will show up as "dead" code when
1760       * we skip them here); if we can't, then the code path could be
1761       * "live" so we still need to check it.
1762       */
1763      opcode_flags &= ~Instruction::kThrow;
1764      work_line_->PopMonitor(this, inst->VRegA_11x());
1765      break;
1766
1767    case Instruction::CHECK_CAST:
1768    case Instruction::INSTANCE_OF: {
1769      /*
1770       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1771       * could be a "upcast" -- not expected, so we don't try to address it.)
1772       *
1773       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1774       * dec_insn.vA when branching to a handler.
1775       */
1776      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1777      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1778      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1779      if (res_type.IsConflict()) {
1780        // If this is a primitive type, fail HARD.
1781        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1782        if (klass != nullptr && klass->IsPrimitive()) {
1783          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1784              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1785              << GetDeclaringClass();
1786          break;
1787        }
1788
1789        DCHECK_NE(failures_.size(), 0U);
1790        if (!is_checkcast) {
1791          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1792        }
1793        break;  // bad class
1794      }
1795      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1796      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1797      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1798      if (!res_type.IsNonZeroReferenceTypes()) {
1799        if (is_checkcast) {
1800          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1801        } else {
1802          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1803        }
1804      } else if (!orig_type.IsReferenceTypes()) {
1805        if (is_checkcast) {
1806          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1807        } else {
1808          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1809        }
1810      } else {
1811        if (is_checkcast) {
1812          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1813        } else {
1814          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1815        }
1816      }
1817      break;
1818    }
1819    case Instruction::ARRAY_LENGTH: {
1820      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1821      if (res_type.IsReferenceTypes()) {
1822        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1823          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1824        } else {
1825          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1826        }
1827      } else {
1828        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1829      }
1830      break;
1831    }
1832    case Instruction::NEW_INSTANCE: {
1833      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1834      if (res_type.IsConflict()) {
1835        DCHECK_NE(failures_.size(), 0U);
1836        break;  // bad class
1837      }
1838      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1839      // can't create an instance of an interface or abstract class */
1840      if (!res_type.IsInstantiableTypes()) {
1841        Fail(VERIFY_ERROR_INSTANTIATION)
1842            << "new-instance on primitive, interface or abstract class" << res_type;
1843        // Soft failure so carry on to set register type.
1844      }
1845      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1846      // Any registers holding previous allocations from this address that have not yet been
1847      // initialized must be marked invalid.
1848      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1849      // add the new uninitialized reference to the register state
1850      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1851      break;
1852    }
1853    case Instruction::NEW_ARRAY:
1854      VerifyNewArray(inst, false, false);
1855      break;
1856    case Instruction::FILLED_NEW_ARRAY:
1857      VerifyNewArray(inst, true, false);
1858      just_set_result = true;  // Filled new array sets result register
1859      break;
1860    case Instruction::FILLED_NEW_ARRAY_RANGE:
1861      VerifyNewArray(inst, true, true);
1862      just_set_result = true;  // Filled new array range sets result register
1863      break;
1864    case Instruction::CMPL_FLOAT:
1865    case Instruction::CMPG_FLOAT:
1866      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1867        break;
1868      }
1869      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1870        break;
1871      }
1872      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1873      break;
1874    case Instruction::CMPL_DOUBLE:
1875    case Instruction::CMPG_DOUBLE:
1876      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
1877                                              reg_types_.DoubleHi())) {
1878        break;
1879      }
1880      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
1881                                              reg_types_.DoubleHi())) {
1882        break;
1883      }
1884      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1885      break;
1886    case Instruction::CMP_LONG:
1887      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
1888                                              reg_types_.LongHi())) {
1889        break;
1890      }
1891      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
1892                                              reg_types_.LongHi())) {
1893        break;
1894      }
1895      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1896      break;
1897    case Instruction::THROW: {
1898      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
1899      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1900        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1901            << "thrown class " << res_type << " not instanceof Throwable";
1902      }
1903      break;
1904    }
1905    case Instruction::GOTO:
1906    case Instruction::GOTO_16:
1907    case Instruction::GOTO_32:
1908      /* no effect on or use of registers */
1909      break;
1910
1911    case Instruction::PACKED_SWITCH:
1912    case Instruction::SPARSE_SWITCH:
1913      /* verify that vAA is an integer, or can be converted to one */
1914      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
1915      break;
1916
1917    case Instruction::FILL_ARRAY_DATA: {
1918      /* Similar to the verification done for APUT */
1919      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
1920      /* array_type can be null if the reg type is Zero */
1921      if (!array_type.IsZero()) {
1922        if (!array_type.IsArrayTypes()) {
1923          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1924                                            << array_type;
1925        } else {
1926          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
1927          DCHECK(!component_type.IsConflict());
1928          if (component_type.IsNonZeroReferenceTypes()) {
1929            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1930                                              << component_type;
1931          } else {
1932            // Now verify if the element width in the table matches the element width declared in
1933            // the array
1934            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1935            if (array_data[0] != Instruction::kArrayDataSignature) {
1936              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1937            } else {
1938              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1939              // Since we don't compress the data in Dex, expect to see equal width of data stored
1940              // in the table and expected from the array class.
1941              if (array_data[1] != elem_width) {
1942                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1943                                                  << " vs " << elem_width << ")";
1944              }
1945            }
1946          }
1947        }
1948      }
1949      break;
1950    }
1951    case Instruction::IF_EQ:
1952    case Instruction::IF_NE: {
1953      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
1954      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
1955      bool mismatch = false;
1956      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1957        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1958      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1959        mismatch = !reg_type2.IsReferenceTypes();
1960      } else {  // both integral?
1961        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1962      }
1963      if (mismatch) {
1964        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1965                                          << reg_type2 << ") must both be references or integral";
1966      }
1967      break;
1968    }
1969    case Instruction::IF_LT:
1970    case Instruction::IF_GE:
1971    case Instruction::IF_GT:
1972    case Instruction::IF_LE: {
1973      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
1974      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
1975      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1976        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1977                                          << reg_type2 << ") must be integral";
1978      }
1979      break;
1980    }
1981    case Instruction::IF_EQZ:
1982    case Instruction::IF_NEZ: {
1983      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
1984      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1985        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1986                                          << " unexpected as arg to if-eqz/if-nez";
1987      }
1988
1989      // Find previous instruction - its existence is a precondition to peephole optimization.
1990      uint32_t instance_of_idx = 0;
1991      if (0 != work_insn_idx_) {
1992        instance_of_idx = work_insn_idx_ - 1;
1993        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1994          instance_of_idx--;
1995        }
1996        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1997      } else {
1998        break;
1999      }
2000
2001      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2002
2003      /* Check for peep-hole pattern of:
2004       *    ...;
2005       *    instance-of vX, vY, T;
2006       *    ifXXX vX, label ;
2007       *    ...;
2008       * label:
2009       *    ...;
2010       * and sharpen the type of vY to be type T.
2011       * Note, this pattern can't be if:
2012       *  - if there are other branches to this branch,
2013       *  - when vX == vY.
2014       */
2015      if (!CurrentInsnFlags()->IsBranchTarget() &&
2016          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2017          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2018          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2019        // Check the type of the instance-of is different than that of registers type, as if they
2020        // are the same there is no work to be done here. Check that the conversion is not to or
2021        // from an unresolved type as type information is imprecise. If the instance-of is to an
2022        // interface then ignore the type information as interfaces can only be treated as Objects
2023        // and we don't want to disallow field and other operations on the object. If the value
2024        // being instance-of checked against is known null (zero) then allow the optimization as
2025        // we didn't have type information. If the merge of the instance-of type with the original
2026        // type is assignable to the original then allow optimization. This check is performed to
2027        // ensure that subsequent merges don't lose type information - such as becoming an
2028        // interface from a class that would lose information relevant to field checks.
2029        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2030        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2031
2032        if (!orig_type.Equals(cast_type) &&
2033            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2034            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2035            !cast_type.GetClass()->IsInterface() &&
2036            (orig_type.IsZero() ||
2037                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2038          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2039          if (inst->Opcode() == Instruction::IF_EQZ) {
2040            fallthrough_line.reset(update_line);
2041          } else {
2042            branch_line.reset(update_line);
2043          }
2044          update_line->CopyFromLine(work_line_.get());
2045          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2046          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2047            // See if instance-of was preceded by a move-object operation, common due to the small
2048            // register encoding space of instance-of, and propagate type information to the source
2049            // of the move-object.
2050            uint32_t move_idx = instance_of_idx - 1;
2051            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2052              move_idx--;
2053            }
2054            CHECK(insn_flags_[move_idx].IsOpcode());
2055            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2056            switch (move_inst->Opcode()) {
2057              case Instruction::MOVE_OBJECT:
2058                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2059                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2060                }
2061                break;
2062              case Instruction::MOVE_OBJECT_FROM16:
2063                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2064                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2065                }
2066                break;
2067              case Instruction::MOVE_OBJECT_16:
2068                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2069                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2070                }
2071                break;
2072              default:
2073                break;
2074            }
2075          }
2076        }
2077      }
2078
2079      break;
2080    }
2081    case Instruction::IF_LTZ:
2082    case Instruction::IF_GEZ:
2083    case Instruction::IF_GTZ:
2084    case Instruction::IF_LEZ: {
2085      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2086      if (!reg_type.IsIntegralTypes()) {
2087        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2088                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2089      }
2090      break;
2091    }
2092    case Instruction::AGET_BOOLEAN:
2093      VerifyAGet(inst, reg_types_.Boolean(), true);
2094      break;
2095    case Instruction::AGET_BYTE:
2096      VerifyAGet(inst, reg_types_.Byte(), true);
2097      break;
2098    case Instruction::AGET_CHAR:
2099      VerifyAGet(inst, reg_types_.Char(), true);
2100      break;
2101    case Instruction::AGET_SHORT:
2102      VerifyAGet(inst, reg_types_.Short(), true);
2103      break;
2104    case Instruction::AGET:
2105      VerifyAGet(inst, reg_types_.Integer(), true);
2106      break;
2107    case Instruction::AGET_WIDE:
2108      VerifyAGet(inst, reg_types_.LongLo(), true);
2109      break;
2110    case Instruction::AGET_OBJECT:
2111      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2112      break;
2113
2114    case Instruction::APUT_BOOLEAN:
2115      VerifyAPut(inst, reg_types_.Boolean(), true);
2116      break;
2117    case Instruction::APUT_BYTE:
2118      VerifyAPut(inst, reg_types_.Byte(), true);
2119      break;
2120    case Instruction::APUT_CHAR:
2121      VerifyAPut(inst, reg_types_.Char(), true);
2122      break;
2123    case Instruction::APUT_SHORT:
2124      VerifyAPut(inst, reg_types_.Short(), true);
2125      break;
2126    case Instruction::APUT:
2127      VerifyAPut(inst, reg_types_.Integer(), true);
2128      break;
2129    case Instruction::APUT_WIDE:
2130      VerifyAPut(inst, reg_types_.LongLo(), true);
2131      break;
2132    case Instruction::APUT_OBJECT:
2133      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2134      break;
2135
2136    case Instruction::IGET_BOOLEAN:
2137      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2138      break;
2139    case Instruction::IGET_BYTE:
2140      VerifyISGet(inst, reg_types_.Byte(), true, false);
2141      break;
2142    case Instruction::IGET_CHAR:
2143      VerifyISGet(inst, reg_types_.Char(), true, false);
2144      break;
2145    case Instruction::IGET_SHORT:
2146      VerifyISGet(inst, reg_types_.Short(), true, false);
2147      break;
2148    case Instruction::IGET:
2149      VerifyISGet(inst, reg_types_.Integer(), true, false);
2150      break;
2151    case Instruction::IGET_WIDE:
2152      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2153      break;
2154    case Instruction::IGET_OBJECT:
2155      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2156      break;
2157
2158    case Instruction::IPUT_BOOLEAN:
2159      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2160      break;
2161    case Instruction::IPUT_BYTE:
2162      VerifyISPut(inst, reg_types_.Byte(), true, false);
2163      break;
2164    case Instruction::IPUT_CHAR:
2165      VerifyISPut(inst, reg_types_.Char(), true, false);
2166      break;
2167    case Instruction::IPUT_SHORT:
2168      VerifyISPut(inst, reg_types_.Short(), true, false);
2169      break;
2170    case Instruction::IPUT:
2171      VerifyISPut(inst, reg_types_.Integer(), true, false);
2172      break;
2173    case Instruction::IPUT_WIDE:
2174      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2175      break;
2176    case Instruction::IPUT_OBJECT:
2177      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2178      break;
2179
2180    case Instruction::SGET_BOOLEAN:
2181      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2182      break;
2183    case Instruction::SGET_BYTE:
2184      VerifyISGet(inst, reg_types_.Byte(), true, true);
2185      break;
2186    case Instruction::SGET_CHAR:
2187      VerifyISGet(inst, reg_types_.Char(), true, true);
2188      break;
2189    case Instruction::SGET_SHORT:
2190      VerifyISGet(inst, reg_types_.Short(), true, true);
2191      break;
2192    case Instruction::SGET:
2193      VerifyISGet(inst, reg_types_.Integer(), true, true);
2194      break;
2195    case Instruction::SGET_WIDE:
2196      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2197      break;
2198    case Instruction::SGET_OBJECT:
2199      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2200      break;
2201
2202    case Instruction::SPUT_BOOLEAN:
2203      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2204      break;
2205    case Instruction::SPUT_BYTE:
2206      VerifyISPut(inst, reg_types_.Byte(), true, true);
2207      break;
2208    case Instruction::SPUT_CHAR:
2209      VerifyISPut(inst, reg_types_.Char(), true, true);
2210      break;
2211    case Instruction::SPUT_SHORT:
2212      VerifyISPut(inst, reg_types_.Short(), true, true);
2213      break;
2214    case Instruction::SPUT:
2215      VerifyISPut(inst, reg_types_.Integer(), true, true);
2216      break;
2217    case Instruction::SPUT_WIDE:
2218      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2219      break;
2220    case Instruction::SPUT_OBJECT:
2221      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2222      break;
2223
2224    case Instruction::INVOKE_VIRTUAL:
2225    case Instruction::INVOKE_VIRTUAL_RANGE:
2226    case Instruction::INVOKE_SUPER:
2227    case Instruction::INVOKE_SUPER_RANGE: {
2228      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2229                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2230      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2231                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2232      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2233                                                              is_super);
2234      const RegType* return_type = nullptr;
2235      if (called_method != nullptr) {
2236        StackHandleScope<1> hs(self_);
2237        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2238        MethodHelper mh(h_called_method);
2239        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2240        if (return_type_class != nullptr) {
2241          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2242                                              return_type_class,
2243                                              return_type_class->CannotBeAssignedFromOtherTypes());
2244        } else {
2245          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2246          self_->ClearException();
2247        }
2248      }
2249      if (return_type == nullptr) {
2250        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2251        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2252        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2253        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2254        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2255      }
2256      if (!return_type->IsLowHalf()) {
2257        work_line_->SetResultRegisterType(this, *return_type);
2258      } else {
2259        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2260      }
2261      just_set_result = true;
2262      break;
2263    }
2264    case Instruction::INVOKE_DIRECT:
2265    case Instruction::INVOKE_DIRECT_RANGE: {
2266      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2267      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2268                                                                   is_range, false);
2269      const char* return_type_descriptor;
2270      bool is_constructor;
2271      const RegType* return_type = nullptr;
2272      if (called_method == nullptr) {
2273        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2274        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2275        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2276        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2277        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2278      } else {
2279        is_constructor = called_method->IsConstructor();
2280        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2281        StackHandleScope<1> hs(self_);
2282        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2283        MethodHelper mh(h_called_method);
2284        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2285        if (return_type_class != nullptr) {
2286          return_type = &reg_types_.FromClass(return_type_descriptor,
2287                                              return_type_class,
2288                                              return_type_class->CannotBeAssignedFromOtherTypes());
2289        } else {
2290          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2291          self_->ClearException();
2292        }
2293      }
2294      if (is_constructor) {
2295        /*
2296         * Some additional checks when calling a constructor. We know from the invocation arg check
2297         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2298         * that to require that called_method->klass is the same as this->klass or this->super,
2299         * allowing the latter only if the "this" argument is the same as the "this" argument to
2300         * this method (which implies that we're in a constructor ourselves).
2301         */
2302        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2303        if (this_type.IsConflict())  // failure.
2304          break;
2305
2306        /* no null refs allowed (?) */
2307        if (this_type.IsZero()) {
2308          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2309          break;
2310        }
2311
2312        /* must be in same class or in superclass */
2313        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2314        // TODO: re-enable constructor type verification
2315        // if (this_super_klass.IsConflict()) {
2316          // Unknown super class, fail so we re-check at runtime.
2317          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2318          // break;
2319        // }
2320
2321        /* arg must be an uninitialized reference */
2322        if (!this_type.IsUninitializedTypes()) {
2323          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2324              << this_type;
2325          break;
2326        }
2327
2328        /*
2329         * Replace the uninitialized reference with an initialized one. We need to do this for all
2330         * registers that have the same object instance in them, not just the "this" register.
2331         */
2332        work_line_->MarkRefsAsInitialized(this, this_type);
2333      }
2334      if (return_type == nullptr) {
2335        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2336                                                 false);
2337      }
2338      if (!return_type->IsLowHalf()) {
2339        work_line_->SetResultRegisterType(this, *return_type);
2340      } else {
2341        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2342      }
2343      just_set_result = true;
2344      break;
2345    }
2346    case Instruction::INVOKE_STATIC:
2347    case Instruction::INVOKE_STATIC_RANGE: {
2348        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2349        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2350                                                                     METHOD_STATIC,
2351                                                                     is_range,
2352                                                                     false);
2353        const char* descriptor;
2354        if (called_method == nullptr) {
2355          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2356          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2357          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2358          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2359        } else {
2360          descriptor = called_method->GetReturnTypeDescriptor();
2361        }
2362        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2363        if (!return_type.IsLowHalf()) {
2364          work_line_->SetResultRegisterType(this, return_type);
2365        } else {
2366          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2367        }
2368        just_set_result = true;
2369      }
2370      break;
2371    case Instruction::INVOKE_INTERFACE:
2372    case Instruction::INVOKE_INTERFACE_RANGE: {
2373      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2374      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2375                                                                METHOD_INTERFACE,
2376                                                                is_range,
2377                                                                false);
2378      if (abs_method != nullptr) {
2379        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2380        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2381          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2382              << PrettyMethod(abs_method) << "'";
2383          break;
2384        }
2385      }
2386      /* Get the type of the "this" arg, which should either be a sub-interface of called
2387       * interface or Object (see comments in RegType::JoinClass).
2388       */
2389      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2390      if (this_type.IsZero()) {
2391        /* null pointer always passes (and always fails at runtime) */
2392      } else {
2393        if (this_type.IsUninitializedTypes()) {
2394          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2395              << this_type;
2396          break;
2397        }
2398        // In the past we have tried to assert that "called_interface" is assignable
2399        // from "this_type.GetClass()", however, as we do an imprecise Join
2400        // (RegType::JoinClass) we don't have full information on what interfaces are
2401        // implemented by "this_type". For example, two classes may implement the same
2402        // interfaces and have a common parent that doesn't implement the interface. The
2403        // join will set "this_type" to the parent class and a test that this implements
2404        // the interface will incorrectly fail.
2405      }
2406      /*
2407       * We don't have an object instance, so we can't find the concrete method. However, all of
2408       * the type information is in the abstract method, so we're good.
2409       */
2410      const char* descriptor;
2411      if (abs_method == nullptr) {
2412        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2413        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2414        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2415        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2416      } else {
2417        descriptor = abs_method->GetReturnTypeDescriptor();
2418      }
2419      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2420      if (!return_type.IsLowHalf()) {
2421        work_line_->SetResultRegisterType(this, return_type);
2422      } else {
2423        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2424      }
2425      just_set_result = true;
2426      break;
2427    }
2428    case Instruction::NEG_INT:
2429    case Instruction::NOT_INT:
2430      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2431      break;
2432    case Instruction::NEG_LONG:
2433    case Instruction::NOT_LONG:
2434      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2435                                   reg_types_.LongLo(), reg_types_.LongHi());
2436      break;
2437    case Instruction::NEG_FLOAT:
2438      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2439      break;
2440    case Instruction::NEG_DOUBLE:
2441      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2442                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2443      break;
2444    case Instruction::INT_TO_LONG:
2445      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2446                                     reg_types_.Integer());
2447      break;
2448    case Instruction::INT_TO_FLOAT:
2449      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2450      break;
2451    case Instruction::INT_TO_DOUBLE:
2452      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2453                                     reg_types_.Integer());
2454      break;
2455    case Instruction::LONG_TO_INT:
2456      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2457                                       reg_types_.LongLo(), reg_types_.LongHi());
2458      break;
2459    case Instruction::LONG_TO_FLOAT:
2460      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2461                                       reg_types_.LongLo(), reg_types_.LongHi());
2462      break;
2463    case Instruction::LONG_TO_DOUBLE:
2464      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2465                                   reg_types_.LongLo(), reg_types_.LongHi());
2466      break;
2467    case Instruction::FLOAT_TO_INT:
2468      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2469      break;
2470    case Instruction::FLOAT_TO_LONG:
2471      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2472                                     reg_types_.Float());
2473      break;
2474    case Instruction::FLOAT_TO_DOUBLE:
2475      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2476                                     reg_types_.Float());
2477      break;
2478    case Instruction::DOUBLE_TO_INT:
2479      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2480                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2481      break;
2482    case Instruction::DOUBLE_TO_LONG:
2483      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2484                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2485      break;
2486    case Instruction::DOUBLE_TO_FLOAT:
2487      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2488                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2489      break;
2490    case Instruction::INT_TO_BYTE:
2491      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2492      break;
2493    case Instruction::INT_TO_CHAR:
2494      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2495      break;
2496    case Instruction::INT_TO_SHORT:
2497      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2498      break;
2499
2500    case Instruction::ADD_INT:
2501    case Instruction::SUB_INT:
2502    case Instruction::MUL_INT:
2503    case Instruction::REM_INT:
2504    case Instruction::DIV_INT:
2505    case Instruction::SHL_INT:
2506    case Instruction::SHR_INT:
2507    case Instruction::USHR_INT:
2508      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2509                                reg_types_.Integer(), false);
2510      break;
2511    case Instruction::AND_INT:
2512    case Instruction::OR_INT:
2513    case Instruction::XOR_INT:
2514      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2515                                reg_types_.Integer(), true);
2516      break;
2517    case Instruction::ADD_LONG:
2518    case Instruction::SUB_LONG:
2519    case Instruction::MUL_LONG:
2520    case Instruction::DIV_LONG:
2521    case Instruction::REM_LONG:
2522    case Instruction::AND_LONG:
2523    case Instruction::OR_LONG:
2524    case Instruction::XOR_LONG:
2525      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2526                                    reg_types_.LongLo(), reg_types_.LongHi(),
2527                                    reg_types_.LongLo(), reg_types_.LongHi());
2528      break;
2529    case Instruction::SHL_LONG:
2530    case Instruction::SHR_LONG:
2531    case Instruction::USHR_LONG:
2532      /* shift distance is Int, making these different from other binary operations */
2533      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2534                                         reg_types_.Integer());
2535      break;
2536    case Instruction::ADD_FLOAT:
2537    case Instruction::SUB_FLOAT:
2538    case Instruction::MUL_FLOAT:
2539    case Instruction::DIV_FLOAT:
2540    case Instruction::REM_FLOAT:
2541      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2542                                reg_types_.Float(), false);
2543      break;
2544    case Instruction::ADD_DOUBLE:
2545    case Instruction::SUB_DOUBLE:
2546    case Instruction::MUL_DOUBLE:
2547    case Instruction::DIV_DOUBLE:
2548    case Instruction::REM_DOUBLE:
2549      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2550                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2551                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2552      break;
2553    case Instruction::ADD_INT_2ADDR:
2554    case Instruction::SUB_INT_2ADDR:
2555    case Instruction::MUL_INT_2ADDR:
2556    case Instruction::REM_INT_2ADDR:
2557    case Instruction::SHL_INT_2ADDR:
2558    case Instruction::SHR_INT_2ADDR:
2559    case Instruction::USHR_INT_2ADDR:
2560      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2561                                     reg_types_.Integer(), false);
2562      break;
2563    case Instruction::AND_INT_2ADDR:
2564    case Instruction::OR_INT_2ADDR:
2565    case Instruction::XOR_INT_2ADDR:
2566      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2567                                     reg_types_.Integer(), true);
2568      break;
2569    case Instruction::DIV_INT_2ADDR:
2570      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2571                                     reg_types_.Integer(), false);
2572      break;
2573    case Instruction::ADD_LONG_2ADDR:
2574    case Instruction::SUB_LONG_2ADDR:
2575    case Instruction::MUL_LONG_2ADDR:
2576    case Instruction::DIV_LONG_2ADDR:
2577    case Instruction::REM_LONG_2ADDR:
2578    case Instruction::AND_LONG_2ADDR:
2579    case Instruction::OR_LONG_2ADDR:
2580    case Instruction::XOR_LONG_2ADDR:
2581      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2582                                         reg_types_.LongLo(), reg_types_.LongHi(),
2583                                         reg_types_.LongLo(), reg_types_.LongHi());
2584      break;
2585    case Instruction::SHL_LONG_2ADDR:
2586    case Instruction::SHR_LONG_2ADDR:
2587    case Instruction::USHR_LONG_2ADDR:
2588      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2589                                              reg_types_.Integer());
2590      break;
2591    case Instruction::ADD_FLOAT_2ADDR:
2592    case Instruction::SUB_FLOAT_2ADDR:
2593    case Instruction::MUL_FLOAT_2ADDR:
2594    case Instruction::DIV_FLOAT_2ADDR:
2595    case Instruction::REM_FLOAT_2ADDR:
2596      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2597                                     reg_types_.Float(), false);
2598      break;
2599    case Instruction::ADD_DOUBLE_2ADDR:
2600    case Instruction::SUB_DOUBLE_2ADDR:
2601    case Instruction::MUL_DOUBLE_2ADDR:
2602    case Instruction::DIV_DOUBLE_2ADDR:
2603    case Instruction::REM_DOUBLE_2ADDR:
2604      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2605                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2606                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2607      break;
2608    case Instruction::ADD_INT_LIT16:
2609    case Instruction::RSUB_INT:
2610    case Instruction::MUL_INT_LIT16:
2611    case Instruction::DIV_INT_LIT16:
2612    case Instruction::REM_INT_LIT16:
2613      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2614                                 true);
2615      break;
2616    case Instruction::AND_INT_LIT16:
2617    case Instruction::OR_INT_LIT16:
2618    case Instruction::XOR_INT_LIT16:
2619      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2620                                 true);
2621      break;
2622    case Instruction::ADD_INT_LIT8:
2623    case Instruction::RSUB_INT_LIT8:
2624    case Instruction::MUL_INT_LIT8:
2625    case Instruction::DIV_INT_LIT8:
2626    case Instruction::REM_INT_LIT8:
2627    case Instruction::SHL_INT_LIT8:
2628    case Instruction::SHR_INT_LIT8:
2629    case Instruction::USHR_INT_LIT8:
2630      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2631                                 false);
2632      break;
2633    case Instruction::AND_INT_LIT8:
2634    case Instruction::OR_INT_LIT8:
2635    case Instruction::XOR_INT_LIT8:
2636      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2637                                 false);
2638      break;
2639
2640    // Special instructions.
2641    case Instruction::RETURN_VOID_BARRIER:
2642      if (!IsConstructor() || IsStatic()) {
2643          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2644      }
2645      break;
2646    // Note: the following instructions encode offsets derived from class linking.
2647    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2648    // meaning if the class linking and resolution were successful.
2649    case Instruction::IGET_QUICK:
2650      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2651      break;
2652    case Instruction::IGET_WIDE_QUICK:
2653      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2654      break;
2655    case Instruction::IGET_OBJECT_QUICK:
2656      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2657      break;
2658    case Instruction::IPUT_QUICK:
2659      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2660      break;
2661    case Instruction::IPUT_BOOLEAN_QUICK:
2662        VerifyIPutQuick(inst, reg_types_.Boolean(), true);
2663      break;
2664    case Instruction::IPUT_BYTE_QUICK:
2665        VerifyIPutQuick(inst, reg_types_.Byte(), true);
2666      break;
2667    case Instruction::IPUT_CHAR_QUICK:
2668        VerifyIPutQuick(inst, reg_types_.Char(), true);
2669      break;
2670    case Instruction::IPUT_SHORT_QUICK:
2671        VerifyIPutQuick(inst, reg_types_.Short(), true);
2672      break;
2673    case Instruction::IPUT_WIDE_QUICK:
2674      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2675      break;
2676    case Instruction::IPUT_OBJECT_QUICK:
2677      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2678      break;
2679    case Instruction::INVOKE_VIRTUAL_QUICK:
2680    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2681      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2682      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2683      if (called_method != nullptr) {
2684        const char* descriptor = called_method->GetReturnTypeDescriptor();
2685        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2686        if (!return_type.IsLowHalf()) {
2687          work_line_->SetResultRegisterType(this, return_type);
2688        } else {
2689          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2690        }
2691        just_set_result = true;
2692      }
2693      break;
2694    }
2695
2696    /* These should never appear during verification. */
2697    case Instruction::UNUSED_3E:
2698    case Instruction::UNUSED_3F:
2699    case Instruction::UNUSED_40:
2700    case Instruction::UNUSED_41:
2701    case Instruction::UNUSED_42:
2702    case Instruction::UNUSED_43:
2703    case Instruction::UNUSED_79:
2704    case Instruction::UNUSED_7A:
2705    case Instruction::UNUSED_EF:
2706    case Instruction::UNUSED_F0:
2707    case Instruction::UNUSED_F1:
2708    case Instruction::UNUSED_F2:
2709    case Instruction::UNUSED_F3:
2710    case Instruction::UNUSED_F4:
2711    case Instruction::UNUSED_F5:
2712    case Instruction::UNUSED_F6:
2713    case Instruction::UNUSED_F7:
2714    case Instruction::UNUSED_F8:
2715    case Instruction::UNUSED_F9:
2716    case Instruction::UNUSED_FA:
2717    case Instruction::UNUSED_FB:
2718    case Instruction::UNUSED_FC:
2719    case Instruction::UNUSED_FD:
2720    case Instruction::UNUSED_FE:
2721    case Instruction::UNUSED_FF:
2722      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2723      break;
2724
2725    /*
2726     * DO NOT add a "default" clause here. Without it the compiler will
2727     * complain if an instruction is missing (which is desirable).
2728     */
2729  }  // end - switch (dec_insn.opcode)
2730
2731  if (have_pending_hard_failure_) {
2732    if (Runtime::Current()->IsCompiler()) {
2733      /* When compiling, check that the last failure is a hard failure */
2734      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2735    }
2736    /* immediate failure, reject class */
2737    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2738    return false;
2739  } else if (have_pending_runtime_throw_failure_) {
2740    /* checking interpreter will throw, mark following code as unreachable */
2741    opcode_flags = Instruction::kThrow;
2742  }
2743  /*
2744   * If we didn't just set the result register, clear it out. This ensures that you can only use
2745   * "move-result" immediately after the result is set. (We could check this statically, but it's
2746   * not expensive and it makes our debugging output cleaner.)
2747   */
2748  if (!just_set_result) {
2749    work_line_->SetResultTypeToUnknown(this);
2750  }
2751
2752
2753
2754  /*
2755   * Handle "branch". Tag the branch target.
2756   *
2757   * NOTE: instructions like Instruction::EQZ provide information about the
2758   * state of the register when the branch is taken or not taken. For example,
2759   * somebody could get a reference field, check it for zero, and if the
2760   * branch is taken immediately store that register in a boolean field
2761   * since the value is known to be zero. We do not currently account for
2762   * that, and will reject the code.
2763   *
2764   * TODO: avoid re-fetching the branch target
2765   */
2766  if ((opcode_flags & Instruction::kBranch) != 0) {
2767    bool isConditional, selfOkay;
2768    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2769      /* should never happen after static verification */
2770      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2771      return false;
2772    }
2773    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2774    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2775      return false;
2776    }
2777    /* update branch target, set "changed" if appropriate */
2778    if (nullptr != branch_line.get()) {
2779      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2780        return false;
2781      }
2782    } else {
2783      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2784        return false;
2785      }
2786    }
2787  }
2788
2789  /*
2790   * Handle "switch". Tag all possible branch targets.
2791   *
2792   * We've already verified that the table is structurally sound, so we
2793   * just need to walk through and tag the targets.
2794   */
2795  if ((opcode_flags & Instruction::kSwitch) != 0) {
2796    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2797    const uint16_t* switch_insns = insns + offset_to_switch;
2798    int switch_count = switch_insns[1];
2799    int offset_to_targets, targ;
2800
2801    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2802      /* 0 = sig, 1 = count, 2/3 = first key */
2803      offset_to_targets = 4;
2804    } else {
2805      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2806      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2807      offset_to_targets = 2 + 2 * switch_count;
2808    }
2809
2810    /* verify each switch target */
2811    for (targ = 0; targ < switch_count; targ++) {
2812      int offset;
2813      uint32_t abs_offset;
2814
2815      /* offsets are 32-bit, and only partly endian-swapped */
2816      offset = switch_insns[offset_to_targets + targ * 2] |
2817         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2818      abs_offset = work_insn_idx_ + offset;
2819      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2820      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
2821        return false;
2822      }
2823      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2824        return false;
2825      }
2826    }
2827  }
2828
2829  /*
2830   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2831   * "try" block when they throw, control transfers out of the method.)
2832   */
2833  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2834    bool has_catch_all_handler = false;
2835    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2836
2837    // Need the linker to try and resolve the handled class to check if it's Throwable.
2838    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2839
2840    for (; iterator.HasNext(); iterator.Next()) {
2841      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2842      if (handler_type_idx == DexFile::kDexNoIndex16) {
2843        has_catch_all_handler = true;
2844      } else {
2845        // It is also a catch-all if it is java.lang.Throwable.
2846        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2847                                                   class_loader_);
2848        if (klass != nullptr) {
2849          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2850            has_catch_all_handler = true;
2851          }
2852        } else {
2853          // Clear exception.
2854          DCHECK(self_->IsExceptionPending());
2855          self_->ClearException();
2856        }
2857      }
2858      /*
2859       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2860       * "work_regs", because at runtime the exception will be thrown before the instruction
2861       * modifies any registers.
2862       */
2863      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2864        return false;
2865      }
2866    }
2867
2868    /*
2869     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2870     * instruction. This does apply to monitor-exit because of async exception handling.
2871     */
2872    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2873      /*
2874       * The state in work_line reflects the post-execution state. If the current instruction is a
2875       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2876       * it will do so before grabbing the lock).
2877       */
2878      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2879        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2880            << "expected to be within a catch-all for an instruction where a monitor is held";
2881        return false;
2882      }
2883    }
2884  }
2885
2886  /* Handle "continue". Tag the next consecutive instruction.
2887   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2888   *        because it changes work_line_ when performing peephole optimization
2889   *        and this change should not be used in those cases.
2890   */
2891  if ((opcode_flags & Instruction::kContinue) != 0) {
2892    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2893    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
2894    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2895      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2896      return false;
2897    }
2898    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2899    // next instruction isn't one.
2900    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2901      return false;
2902    }
2903    if (nullptr != fallthrough_line.get()) {
2904      // Make workline consistent with fallthrough computed from peephole optimization.
2905      work_line_->CopyFromLine(fallthrough_line.get());
2906    }
2907    if (insn_flags_[next_insn_idx].IsReturn()) {
2908      // For returns we only care about the operand to the return, all other registers are dead.
2909      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2910      Instruction::Code opcode = ret_inst->Opcode();
2911      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2912        work_line_->MarkAllRegistersAsConflicts(this);
2913      } else {
2914        if (opcode == Instruction::RETURN_WIDE) {
2915          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
2916        } else {
2917          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
2918        }
2919      }
2920    }
2921    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2922    if (next_line != nullptr) {
2923      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2924      // needed. If the merge changes the state of the registers then the work line will be
2925      // updated.
2926      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2927        return false;
2928      }
2929    } else {
2930      /*
2931       * We're not recording register data for the next instruction, so we don't know what the
2932       * prior state was. We have to assume that something has changed and re-evaluate it.
2933       */
2934      insn_flags_[next_insn_idx].SetChanged();
2935    }
2936  }
2937
2938  /* If we're returning from the method, make sure monitor stack is empty. */
2939  if ((opcode_flags & Instruction::kReturn) != 0) {
2940    if (!work_line_->VerifyMonitorStackEmpty(this)) {
2941      return false;
2942    }
2943  }
2944
2945  /*
2946   * Update start_guess. Advance to the next instruction of that's
2947   * possible, otherwise use the branch target if one was found. If
2948   * neither of those exists we're in a return or throw; leave start_guess
2949   * alone and let the caller sort it out.
2950   */
2951  if ((opcode_flags & Instruction::kContinue) != 0) {
2952    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2953    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
2954  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2955    /* we're still okay if branch_target is zero */
2956    *start_guess = work_insn_idx_ + branch_target;
2957  }
2958
2959  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2960  DCHECK(insn_flags_[*start_guess].IsOpcode());
2961
2962  return true;
2963}  // NOLINT(readability/fn_size)
2964
2965const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2966  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2967  const RegType& referrer = GetDeclaringClass();
2968  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
2969  const RegType& result = klass != nullptr ?
2970      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
2971      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2972  if (result.IsConflict()) {
2973    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2974        << "' in " << referrer;
2975    return result;
2976  }
2977  if (klass == nullptr && !result.IsUnresolvedTypes()) {
2978    dex_cache_->SetResolvedType(class_idx, result.GetClass());
2979  }
2980  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2981  // check at runtime if access is allowed and so pass here. If result is
2982  // primitive, skip the access check.
2983  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2984      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2985    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2986                                    << referrer << "' -> '" << result << "'";
2987  }
2988  return result;
2989}
2990
2991const RegType& MethodVerifier::GetCaughtExceptionType() {
2992  const RegType* common_super = nullptr;
2993  if (code_item_->tries_size_ != 0) {
2994    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2995    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2996    for (uint32_t i = 0; i < handlers_size; i++) {
2997      CatchHandlerIterator iterator(handlers_ptr);
2998      for (; iterator.HasNext(); iterator.Next()) {
2999        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3000          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3001            common_super = &reg_types_.JavaLangThrowable(false);
3002          } else {
3003            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3004            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3005              if (exception.IsUnresolvedTypes()) {
3006                // We don't know enough about the type. Fail here and let runtime handle it.
3007                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3008                return exception;
3009              } else {
3010                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3011                return reg_types_.Conflict();
3012              }
3013            } else if (common_super == nullptr) {
3014              common_super = &exception;
3015            } else if (common_super->Equals(exception)) {
3016              // odd case, but nothing to do
3017            } else {
3018              common_super = &common_super->Merge(exception, &reg_types_);
3019              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
3020            }
3021          }
3022        }
3023      }
3024      handlers_ptr = iterator.EndDataPointer();
3025    }
3026  }
3027  if (common_super == nullptr) {
3028    /* no catch blocks, or no catches with classes we can find */
3029    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3030    return reg_types_.Conflict();
3031  }
3032  return *common_super;
3033}
3034
3035mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3036                                                               MethodType method_type) {
3037  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3038  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3039  if (klass_type.IsConflict()) {
3040    std::string append(" in attempt to access method ");
3041    append += dex_file_->GetMethodName(method_id);
3042    AppendToLastFailMessage(append);
3043    return nullptr;
3044  }
3045  if (klass_type.IsUnresolvedTypes()) {
3046    return nullptr;  // Can't resolve Class so no more to do here
3047  }
3048  mirror::Class* klass = klass_type.GetClass();
3049  const RegType& referrer = GetDeclaringClass();
3050  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3051  if (res_method == nullptr) {
3052    const char* name = dex_file_->GetMethodName(method_id);
3053    const Signature signature = dex_file_->GetMethodSignature(method_id);
3054
3055    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3056      res_method = klass->FindDirectMethod(name, signature);
3057    } else if (method_type == METHOD_INTERFACE) {
3058      res_method = klass->FindInterfaceMethod(name, signature);
3059    } else {
3060      res_method = klass->FindVirtualMethod(name, signature);
3061    }
3062    if (res_method != nullptr) {
3063      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
3064    } else {
3065      // If a virtual or interface method wasn't found with the expected type, look in
3066      // the direct methods. This can happen when the wrong invoke type is used or when
3067      // a class has changed, and will be flagged as an error in later checks.
3068      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3069        res_method = klass->FindDirectMethod(name, signature);
3070      }
3071      if (res_method == nullptr) {
3072        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3073                                     << PrettyDescriptor(klass) << "." << name
3074                                     << " " << signature;
3075        return nullptr;
3076      }
3077    }
3078  }
3079  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3080  // enforce them here.
3081  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3082    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3083                                      << PrettyMethod(res_method);
3084    return nullptr;
3085  }
3086  // Disallow any calls to class initializers.
3087  if (res_method->IsClassInitializer()) {
3088    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3089                                      << PrettyMethod(res_method);
3090    return nullptr;
3091  }
3092  // Check if access is allowed.
3093  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3094    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3095                                     << " from " << referrer << ")";
3096    return res_method;
3097  }
3098  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3099  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3100    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3101                                      << PrettyMethod(res_method);
3102    return nullptr;
3103  }
3104  // Check that interface methods match interface classes.
3105  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3106    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3107                                    << " is in an interface class " << PrettyClass(klass);
3108    return nullptr;
3109  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3110    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3111                                    << " is in a non-interface class " << PrettyClass(klass);
3112    return nullptr;
3113  }
3114  // See if the method type implied by the invoke instruction matches the access flags for the
3115  // target method.
3116  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3117      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3118      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3119      ) {
3120    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3121                                       " type of " << PrettyMethod(res_method);
3122    return nullptr;
3123  }
3124  return res_method;
3125}
3126
3127template <class T>
3128mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3129                                                                    MethodType method_type,
3130                                                                    bool is_range,
3131                                                                    mirror::ArtMethod* res_method) {
3132  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3133  // match the call to the signature. Also, we might be calling through an abstract method
3134  // definition (which doesn't have register count values).
3135  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3136  /* caught by static verifier */
3137  DCHECK(is_range || expected_args <= 5);
3138  if (expected_args > code_item_->outs_size_) {
3139    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3140        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3141    return nullptr;
3142  }
3143
3144  uint32_t arg[5];
3145  if (!is_range) {
3146    inst->GetVarArgs(arg);
3147  }
3148  uint32_t sig_registers = 0;
3149
3150  /*
3151   * Check the "this" argument, which must be an instance of the class that declared the method.
3152   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3153   * rigorous check here (which is okay since we have to do it at runtime).
3154   */
3155  if (method_type != METHOD_STATIC) {
3156    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3157    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3158      CHECK(have_pending_hard_failure_);
3159      return nullptr;
3160    }
3161    if (actual_arg_type.IsUninitializedReference()) {
3162      if (res_method) {
3163        if (!res_method->IsConstructor()) {
3164          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3165          return nullptr;
3166        }
3167      } else {
3168        // Check whether the name of the called method is "<init>"
3169        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3170        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3171          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3172          return nullptr;
3173        }
3174      }
3175    }
3176    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3177      const RegType* res_method_class;
3178      if (res_method != nullptr) {
3179        mirror::Class* klass = res_method->GetDeclaringClass();
3180        std::string temp;
3181        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3182                                                 klass->CannotBeAssignedFromOtherTypes());
3183      } else {
3184        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3185        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3186        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3187                                                      dex_file_->StringByTypeIdx(class_idx),
3188                                                      false);
3189      }
3190      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3191        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3192            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3193                << "' not instance of '" << *res_method_class << "'";
3194        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3195        // the compiler.
3196        if (have_pending_hard_failure_) {
3197          return nullptr;
3198        }
3199      }
3200    }
3201    sig_registers = 1;
3202  }
3203
3204  for ( ; it->HasNext(); it->Next()) {
3205    if (sig_registers >= expected_args) {
3206      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3207          " arguments, found " << sig_registers << " or more.";
3208      return nullptr;
3209    }
3210
3211    const char* param_descriptor = it->GetDescriptor();
3212
3213    if (param_descriptor == nullptr) {
3214      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3215          "component";
3216      return nullptr;
3217    }
3218
3219    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3220    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3221        arg[sig_registers];
3222    if (reg_type.IsIntegralTypes()) {
3223      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3224      if (!src_type.IsIntegralTypes()) {
3225        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3226            << " but expected " << reg_type;
3227        return res_method;
3228      }
3229    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3230      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3231      // compiler.
3232      if (have_pending_hard_failure_) {
3233        return res_method;
3234      }
3235    }
3236    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3237  }
3238  if (expected_args != sig_registers) {
3239    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3240        " arguments, found " << sig_registers;
3241    return nullptr;
3242  }
3243  return res_method;
3244}
3245
3246void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3247                                                          MethodType method_type,
3248                                                          bool is_range) {
3249  // As the method may not have been resolved, make this static check against what we expect.
3250  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3251  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3252  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3253  DexFileParameterIterator it(*dex_file_,
3254                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3255  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3256                                                             nullptr);
3257}
3258
3259class MethodParamListDescriptorIterator {
3260 public:
3261  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3262      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3263      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3264  }
3265
3266  bool HasNext() {
3267    return pos_ < params_size_;
3268  }
3269
3270  void Next() {
3271    ++pos_;
3272  }
3273
3274  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3275    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3276  }
3277
3278 private:
3279  mirror::ArtMethod* res_method_;
3280  size_t pos_;
3281  const DexFile::TypeList* params_;
3282  const size_t params_size_;
3283};
3284
3285mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3286                                                             MethodType method_type,
3287                                                             bool is_range,
3288                                                             bool is_super) {
3289  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3290  // we're making.
3291  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3292
3293  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3294  if (res_method == nullptr) {  // error or class is unresolved
3295    // Check what we can statically.
3296    if (!have_pending_hard_failure_) {
3297      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3298    }
3299    return nullptr;
3300  }
3301
3302  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3303  // has a vtable entry for the target method.
3304  if (is_super) {
3305    DCHECK(method_type == METHOD_VIRTUAL);
3306    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3307    if (super.IsUnresolvedTypes()) {
3308      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3309                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3310                                   << " to super " << PrettyMethod(res_method);
3311      return nullptr;
3312    }
3313    mirror::Class* super_klass = super.GetClass();
3314    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3315      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3316                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3317                                   << " to super " << super
3318                                   << "." << res_method->GetName()
3319                                   << res_method->GetSignature();
3320      return nullptr;
3321    }
3322  }
3323
3324  // Process the target method's signature. This signature may or may not
3325  MethodParamListDescriptorIterator it(res_method);
3326  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3327                                                                             is_range, res_method);
3328}
3329
3330mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3331                                                         RegisterLine* reg_line, bool is_range) {
3332  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3333         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3334  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range);
3335  if (!actual_arg_type.HasClass()) {
3336    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3337    return nullptr;
3338  }
3339  mirror::Class* klass = actual_arg_type.GetClass();
3340  mirror::Class* dispatch_class;
3341  if (klass->IsInterface()) {
3342    // Derive Object.class from Class.class.getSuperclass().
3343    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3344    CHECK(object_klass->IsObjectClass());
3345    dispatch_class = object_klass;
3346  } else {
3347    dispatch_class = klass;
3348  }
3349  CHECK(dispatch_class->HasVTable()) << PrettyDescriptor(dispatch_class);
3350  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3351  CHECK_LT(static_cast<int32_t>(vtable_index), dispatch_class->GetVTableLength())
3352      << PrettyDescriptor(klass);
3353  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3354  CHECK(!self_->IsExceptionPending());
3355  return res_method;
3356}
3357
3358mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3359                                                                bool is_range) {
3360  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3361  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3362                                                             is_range);
3363  if (res_method == nullptr) {
3364    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3365    return nullptr;
3366  }
3367  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3368
3369  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3370  // match the call to the signature. Also, we might be calling through an abstract method
3371  // definition (which doesn't have register count values).
3372  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3373  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3374    return nullptr;
3375  }
3376  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3377  /* caught by static verifier */
3378  DCHECK(is_range || expected_args <= 5);
3379  if (expected_args > code_item_->outs_size_) {
3380    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3381        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3382    return nullptr;
3383  }
3384
3385  /*
3386   * Check the "this" argument, which must be an instance of the class that declared the method.
3387   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3388   * rigorous check here (which is okay since we have to do it at runtime).
3389   */
3390  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3391    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3392    return nullptr;
3393  }
3394  if (!actual_arg_type.IsZero()) {
3395    mirror::Class* klass = res_method->GetDeclaringClass();
3396    std::string temp;
3397    const RegType& res_method_class =
3398        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3399                             klass->CannotBeAssignedFromOtherTypes());
3400    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3401      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3402          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3403          << "' not instance of '" << res_method_class << "'";
3404      return nullptr;
3405    }
3406  }
3407  /*
3408   * Process the target method's signature. This signature may or may not
3409   * have been verified, so we can't assume it's properly formed.
3410   */
3411  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3412  size_t params_size = params == nullptr ? 0 : params->Size();
3413  uint32_t arg[5];
3414  if (!is_range) {
3415    inst->GetVarArgs(arg);
3416  }
3417  size_t actual_args = 1;
3418  for (size_t param_index = 0; param_index < params_size; param_index++) {
3419    if (actual_args >= expected_args) {
3420      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3421                                        << "'. Expected " << expected_args
3422                                         << " arguments, processing argument " << actual_args
3423                                        << " (where longs/doubles count twice).";
3424      return nullptr;
3425    }
3426    const char* descriptor =
3427        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3428    if (descriptor == nullptr) {
3429      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3430                                        << " missing signature component";
3431      return nullptr;
3432    }
3433    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3434    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3435    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3436      return res_method;
3437    }
3438    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3439  }
3440  if (actual_args != expected_args) {
3441    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3442              << " expected " << expected_args << " arguments, found " << actual_args;
3443    return nullptr;
3444  } else {
3445    return res_method;
3446  }
3447}
3448
3449void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3450  uint32_t type_idx;
3451  if (!is_filled) {
3452    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3453    type_idx = inst->VRegC_22c();
3454  } else if (!is_range) {
3455    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3456    type_idx = inst->VRegB_35c();
3457  } else {
3458    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3459    type_idx = inst->VRegB_3rc();
3460  }
3461  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3462  if (res_type.IsConflict()) {  // bad class
3463    DCHECK_NE(failures_.size(), 0U);
3464  } else {
3465    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3466    if (!res_type.IsArrayTypes()) {
3467      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3468    } else if (!is_filled) {
3469      /* make sure "size" register is valid type */
3470      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3471      /* set register type to array class */
3472      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3473      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3474    } else {
3475      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3476      // the list and fail. It's legal, if silly, for arg_count to be zero.
3477      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3478      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3479      uint32_t arg[5];
3480      if (!is_range) {
3481        inst->GetVarArgs(arg);
3482      }
3483      for (size_t ui = 0; ui < arg_count; ui++) {
3484        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3485        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3486          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3487          return;
3488        }
3489      }
3490      // filled-array result goes into "result" register
3491      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3492      work_line_->SetResultRegisterType(this, precise_type);
3493    }
3494  }
3495}
3496
3497void MethodVerifier::VerifyAGet(const Instruction* inst,
3498                                const RegType& insn_type, bool is_primitive) {
3499  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3500  if (!index_type.IsArrayIndexTypes()) {
3501    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3502  } else {
3503    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3504    if (array_type.IsZero()) {
3505      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3506      // instruction type. TODO: have a proper notion of bottom here.
3507      if (!is_primitive || insn_type.IsCategory1Types()) {
3508        // Reference or category 1
3509        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3510      } else {
3511        // Category 2
3512        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3513                                        reg_types_.FromCat2ConstLo(0, false),
3514                                        reg_types_.FromCat2ConstHi(0, false));
3515      }
3516    } else if (!array_type.IsArrayTypes()) {
3517      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3518    } else {
3519      /* verify the class */
3520      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3521      if (!component_type.IsReferenceTypes() && !is_primitive) {
3522        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3523            << " source for aget-object";
3524      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3525        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3526            << " source for category 1 aget";
3527      } else if (is_primitive && !insn_type.Equals(component_type) &&
3528                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3529                 (insn_type.IsLong() && component_type.IsDouble()))) {
3530        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3531            << " incompatible with aget of type " << insn_type;
3532      } else {
3533        // Use knowledge of the field type which is stronger than the type inferred from the
3534        // instruction, which can't differentiate object types and ints from floats, longs from
3535        // doubles.
3536        if (!component_type.IsLowHalf()) {
3537          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3538        } else {
3539          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3540                                          component_type.HighHalf(&reg_types_));
3541        }
3542      }
3543    }
3544  }
3545}
3546
3547void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3548                                        const uint32_t vregA) {
3549  // Primitive assignability rules are weaker than regular assignability rules.
3550  bool instruction_compatible;
3551  bool value_compatible;
3552  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3553  if (target_type.IsIntegralTypes()) {
3554    instruction_compatible = target_type.Equals(insn_type);
3555    value_compatible = value_type.IsIntegralTypes();
3556  } else if (target_type.IsFloat()) {
3557    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3558    value_compatible = value_type.IsFloatTypes();
3559  } else if (target_type.IsLong()) {
3560    instruction_compatible = insn_type.IsLong();
3561    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3562    // as target_type depends on the resolved type of the field.
3563    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3564      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3565      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3566    } else {
3567      value_compatible = false;
3568    }
3569  } else if (target_type.IsDouble()) {
3570    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3571    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3572    // as target_type depends on the resolved type of the field.
3573    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3574      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3575      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3576    } else {
3577      value_compatible = false;
3578    }
3579  } else {
3580    instruction_compatible = false;  // reference with primitive store
3581    value_compatible = false;  // unused
3582  }
3583  if (!instruction_compatible) {
3584    // This is a global failure rather than a class change failure as the instructions and
3585    // the descriptors for the type should have been consistent within the same file at
3586    // compile time.
3587    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3588        << "' but expected type '" << target_type << "'";
3589    return;
3590  }
3591  if (!value_compatible) {
3592    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3593        << " of type " << value_type << " but expected " << target_type << " for put";
3594    return;
3595  }
3596}
3597
3598void MethodVerifier::VerifyAPut(const Instruction* inst,
3599                                const RegType& insn_type, bool is_primitive) {
3600  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3601  if (!index_type.IsArrayIndexTypes()) {
3602    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3603  } else {
3604    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3605    if (array_type.IsZero()) {
3606      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3607      // instruction type.
3608    } else if (!array_type.IsArrayTypes()) {
3609      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3610    } else {
3611      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3612      const uint32_t vregA = inst->VRegA_23x();
3613      if (is_primitive) {
3614        VerifyPrimitivePut(component_type, insn_type, vregA);
3615      } else {
3616        if (!component_type.IsReferenceTypes()) {
3617          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3618              << " source for aput-object";
3619        } else {
3620          // The instruction agrees with the type of array, confirm the value to be stored does too
3621          // Note: we use the instruction type (rather than the component type) for aput-object as
3622          // incompatible classes will be caught at runtime as an array store exception
3623          work_line_->VerifyRegisterType(this, vregA, insn_type);
3624        }
3625      }
3626    }
3627  }
3628}
3629
3630mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3631  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3632  // Check access to class
3633  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3634  if (klass_type.IsConflict()) {  // bad class
3635    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3636                                         field_idx, dex_file_->GetFieldName(field_id),
3637                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3638    return nullptr;
3639  }
3640  if (klass_type.IsUnresolvedTypes()) {
3641    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3642  }
3643  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3644  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3645                                                          class_loader_);
3646  if (field == nullptr) {
3647    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3648              << dex_file_->GetFieldName(field_id) << ") in "
3649              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3650    DCHECK(self_->IsExceptionPending());
3651    self_->ClearException();
3652    return nullptr;
3653  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3654                                                  field->GetAccessFlags())) {
3655    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3656                                    << " from " << GetDeclaringClass();
3657    return nullptr;
3658  } else if (!field->IsStatic()) {
3659    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3660    return nullptr;
3661  }
3662  return field;
3663}
3664
3665mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3666  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3667  // Check access to class
3668  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3669  if (klass_type.IsConflict()) {
3670    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3671                                         field_idx, dex_file_->GetFieldName(field_id),
3672                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3673    return nullptr;
3674  }
3675  if (klass_type.IsUnresolvedTypes()) {
3676    return nullptr;  // Can't resolve Class so no more to do here
3677  }
3678  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3679  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3680                                                          class_loader_);
3681  if (field == nullptr) {
3682    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3683              << dex_file_->GetFieldName(field_id) << ") in "
3684              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3685    DCHECK(self_->IsExceptionPending());
3686    self_->ClearException();
3687    return nullptr;
3688  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3689                                                  field->GetAccessFlags())) {
3690    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3691                                    << " from " << GetDeclaringClass();
3692    return nullptr;
3693  } else if (field->IsStatic()) {
3694    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3695                                    << " to not be static";
3696    return nullptr;
3697  } else if (obj_type.IsZero()) {
3698    // Cannot infer and check type, however, access will cause null pointer exception
3699    return field;
3700  } else if (!obj_type.IsReferenceTypes()) {
3701    // Trying to read a field from something that isn't a reference
3702    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3703                                      << "non-reference type " << obj_type;
3704    return nullptr;
3705  } else {
3706    mirror::Class* klass = field->GetDeclaringClass();
3707    const RegType& field_klass =
3708        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3709                             klass, klass->CannotBeAssignedFromOtherTypes());
3710    if (obj_type.IsUninitializedTypes() &&
3711        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3712            !field_klass.Equals(GetDeclaringClass()))) {
3713      // Field accesses through uninitialized references are only allowable for constructors where
3714      // the field is declared in this class
3715      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3716                                        << " of a not fully initialized object within the context"
3717                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3718      return nullptr;
3719    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3720      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3721      // of C1. For resolution to occur the declared class of the field must be compatible with
3722      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3723      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3724                                  << " from object of type " << obj_type;
3725      return nullptr;
3726    } else {
3727      return field;
3728    }
3729  }
3730}
3731
3732void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3733                                 bool is_primitive, bool is_static) {
3734  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3735  mirror::ArtField* field;
3736  if (is_static) {
3737    field = GetStaticField(field_idx);
3738  } else {
3739    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3740    field = GetInstanceField(object_type, field_idx);
3741  }
3742  const RegType* field_type = nullptr;
3743  if (field != nullptr) {
3744    mirror::Class* field_type_class;
3745    {
3746      StackHandleScope<1> hs(self_);
3747      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3748      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3749    }
3750    if (field_type_class != nullptr) {
3751      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3752                                         field_type_class->CannotBeAssignedFromOtherTypes());
3753    } else {
3754      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3755      self_->ClearException();
3756    }
3757  }
3758  if (field_type == nullptr) {
3759    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3760    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3761    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3762  }
3763  DCHECK(field_type != nullptr);
3764  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3765  if (is_primitive) {
3766    if (field_type->Equals(insn_type) ||
3767        (field_type->IsFloat() && insn_type.IsInteger()) ||
3768        (field_type->IsDouble() && insn_type.IsLong())) {
3769      // expected that read is of the correct primitive type or that int reads are reading
3770      // floats or long reads are reading doubles
3771    } else {
3772      // This is a global failure rather than a class change failure as the instructions and
3773      // the descriptors for the type should have been consistent within the same file at
3774      // compile time
3775      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3776                                        << " to be of type '" << insn_type
3777                                        << "' but found type '" << *field_type << "' in get";
3778      return;
3779    }
3780  } else {
3781    if (!insn_type.IsAssignableFrom(*field_type)) {
3782      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3783                                        << " to be compatible with type '" << insn_type
3784                                        << "' but found type '" << *field_type
3785                                        << "' in Get-object";
3786      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3787      return;
3788    }
3789  }
3790  if (!field_type->IsLowHalf()) {
3791    work_line_->SetRegisterType(this, vregA, *field_type);
3792  } else {
3793    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3794  }
3795}
3796
3797void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3798                                 bool is_primitive, bool is_static) {
3799  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3800  mirror::ArtField* field;
3801  if (is_static) {
3802    field = GetStaticField(field_idx);
3803  } else {
3804    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3805    field = GetInstanceField(object_type, field_idx);
3806  }
3807  const RegType* field_type = nullptr;
3808  if (field != nullptr) {
3809    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3810      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3811                                      << " from other class " << GetDeclaringClass();
3812      return;
3813    }
3814    mirror::Class* field_type_class;
3815    {
3816      StackHandleScope<1> hs(self_);
3817      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3818      FieldHelper fh(h_field);
3819      field_type_class = fh.GetType(can_load_classes_);
3820    }
3821    if (field_type_class != nullptr) {
3822      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3823                                         field_type_class->CannotBeAssignedFromOtherTypes());
3824    } else {
3825      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3826      self_->ClearException();
3827    }
3828  }
3829  if (field_type == nullptr) {
3830    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3831    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3832    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3833  }
3834  DCHECK(field_type != nullptr);
3835  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3836  if (is_primitive) {
3837    VerifyPrimitivePut(*field_type, insn_type, vregA);
3838  } else {
3839    if (!insn_type.IsAssignableFrom(*field_type)) {
3840      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3841                                        << " to be compatible with type '" << insn_type
3842                                        << "' but found type '" << *field_type
3843                                        << "' in put-object";
3844      return;
3845    }
3846    work_line_->VerifyRegisterType(this, vregA, *field_type);
3847  }
3848}
3849
3850mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3851                                                      RegisterLine* reg_line) {
3852  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3853         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3854         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3855         inst->Opcode() == Instruction::IPUT_QUICK ||
3856         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3857         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK ||
3858         inst->Opcode() == Instruction::IPUT_BOOLEAN_QUICK ||
3859         inst->Opcode() == Instruction::IPUT_BYTE_QUICK ||
3860         inst->Opcode() == Instruction::IPUT_CHAR_QUICK ||
3861         inst->Opcode() == Instruction::IPUT_SHORT_QUICK);
3862  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
3863  if (!object_type.HasClass()) {
3864    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3865    return nullptr;
3866  }
3867  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3868  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3869                                                                      field_offset);
3870  if (f == nullptr) {
3871    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3872                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3873  }
3874  return f;
3875}
3876
3877void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3878                                     bool is_primitive) {
3879  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3880  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3881  if (field == nullptr) {
3882    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3883    return;
3884  }
3885  mirror::Class* field_type_class;
3886  {
3887    StackHandleScope<1> hs(self_);
3888    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3889    FieldHelper fh(h_field);
3890    field_type_class = fh.GetType(can_load_classes_);
3891  }
3892  const RegType* field_type;
3893  if (field_type_class != nullptr) {
3894    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3895                                       field_type_class->CannotBeAssignedFromOtherTypes());
3896  } else {
3897    DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3898    self_->ClearException();
3899    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3900                                            field->GetTypeDescriptor(), false);
3901  }
3902  DCHECK(field_type != nullptr);
3903  const uint32_t vregA = inst->VRegA_22c();
3904  if (is_primitive) {
3905    if (field_type->Equals(insn_type) ||
3906        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3907        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3908      // expected that read is of the correct primitive type or that int reads are reading
3909      // floats or long reads are reading doubles
3910    } else {
3911      // This is a global failure rather than a class change failure as the instructions and
3912      // the descriptors for the type should have been consistent within the same file at
3913      // compile time
3914      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3915                                        << " to be of type '" << insn_type
3916                                        << "' but found type '" << *field_type << "' in Get";
3917      return;
3918    }
3919  } else {
3920    if (!insn_type.IsAssignableFrom(*field_type)) {
3921      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3922                                        << " to be compatible with type '" << insn_type
3923                                        << "' but found type '" << *field_type
3924                                        << "' in get-object";
3925      work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3926      return;
3927    }
3928  }
3929  if (!field_type->IsLowHalf()) {
3930    work_line_->SetRegisterType(this, vregA, *field_type);
3931  } else {
3932    work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3933  }
3934}
3935
3936void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3937                                     bool is_primitive) {
3938  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3939  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3940  if (field == nullptr) {
3941    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3942    return;
3943  }
3944  const char* descriptor = field->GetTypeDescriptor();
3945  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3946  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3947  if (field != nullptr) {
3948    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3949      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3950                                      << " from other class " << GetDeclaringClass();
3951      return;
3952    }
3953  }
3954  const uint32_t vregA = inst->VRegA_22c();
3955  if (is_primitive) {
3956    // Primitive field assignability rules are weaker than regular assignability rules
3957    bool instruction_compatible;
3958    bool value_compatible;
3959    const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3960    if (field_type.IsIntegralTypes()) {
3961      instruction_compatible = insn_type.IsIntegralTypes();
3962      value_compatible = value_type.IsIntegralTypes();
3963    } else if (field_type.IsFloat()) {
3964      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3965      value_compatible = value_type.IsFloatTypes();
3966    } else if (field_type.IsLong()) {
3967      instruction_compatible = insn_type.IsLong();
3968      value_compatible = value_type.IsLongTypes();
3969    } else if (field_type.IsDouble()) {
3970      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3971      value_compatible = value_type.IsDoubleTypes();
3972    } else {
3973      instruction_compatible = false;  // reference field with primitive store
3974      value_compatible = false;  // unused
3975    }
3976    if (!instruction_compatible) {
3977      // This is a global failure rather than a class change failure as the instructions and
3978      // the descriptors for the type should have been consistent within the same file at
3979      // compile time
3980      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3981                                        << " to be of type '" << insn_type
3982                                        << "' but found type '" << field_type
3983                                        << "' in put";
3984      return;
3985    }
3986    if (!value_compatible) {
3987      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3988          << " of type " << value_type
3989          << " but expected " << field_type
3990          << " for store to " << PrettyField(field) << " in put";
3991      return;
3992    }
3993  } else {
3994    if (!insn_type.IsAssignableFrom(field_type)) {
3995      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3996                                        << " to be compatible with type '" << insn_type
3997                                        << "' but found type '" << field_type
3998                                        << "' in put-object";
3999      return;
4000    }
4001    work_line_->VerifyRegisterType(this, vregA, field_type);
4002  }
4003}
4004
4005bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4006  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4007    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4008    return false;
4009  }
4010  return true;
4011}
4012
4013bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4014  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4015      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4016    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4017    return false;
4018  }
4019  return true;
4020}
4021
4022bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4023  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4024}
4025
4026bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4027                                     bool update_merge_line) {
4028  bool changed = true;
4029  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4030  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4031    /*
4032     * We haven't processed this instruction before, and we haven't touched the registers here, so
4033     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4034     * only way a register can transition out of "unknown", so this is not just an optimization.)
4035     */
4036    if (!insn_flags_[next_insn].IsReturn()) {
4037      target_line->CopyFromLine(merge_line);
4038    } else {
4039      // Verify that the monitor stack is empty on return.
4040      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4041        return false;
4042      }
4043      // For returns we only care about the operand to the return, all other registers are dead.
4044      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4045      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4046      Instruction::Code opcode = ret_inst->Opcode();
4047      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4048        target_line->MarkAllRegistersAsConflicts(this);
4049      } else {
4050        target_line->CopyFromLine(merge_line);
4051        if (opcode == Instruction::RETURN_WIDE) {
4052          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4053        } else {
4054          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4055        }
4056      }
4057    }
4058  } else {
4059    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4060                                 RegisterLine::Create(target_line->NumRegs(), this) :
4061                                 nullptr);
4062    if (gDebugVerify) {
4063      copy->CopyFromLine(target_line);
4064    }
4065    changed = target_line->MergeRegisters(this, merge_line);
4066    if (have_pending_hard_failure_) {
4067      return false;
4068    }
4069    if (gDebugVerify && changed) {
4070      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4071                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4072                      << copy->Dump(this) << "  MERGE\n"
4073                      << merge_line->Dump(this) << "  ==\n"
4074                      << target_line->Dump(this) << "\n";
4075    }
4076    if (update_merge_line && changed) {
4077      merge_line->CopyFromLine(target_line);
4078    }
4079  }
4080  if (changed) {
4081    insn_flags_[next_insn].SetChanged();
4082  }
4083  return true;
4084}
4085
4086InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4087  return &insn_flags_[work_insn_idx_];
4088}
4089
4090const RegType& MethodVerifier::GetMethodReturnType() {
4091  if (return_type_ == nullptr) {
4092    if (mirror_method_.Get() != nullptr) {
4093      StackHandleScope<1> hs(self_);
4094      mirror::Class* return_type_class =
4095          MethodHelper(hs.NewHandle(mirror_method_.Get())).GetReturnType(can_load_classes_);
4096      if (return_type_class != nullptr) {
4097        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4098                                             return_type_class,
4099                                             return_type_class->CannotBeAssignedFromOtherTypes());
4100      } else {
4101        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4102        self_->ClearException();
4103      }
4104    }
4105    if (return_type_ == nullptr) {
4106      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4107      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4108      uint16_t return_type_idx = proto_id.return_type_idx_;
4109      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4110      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4111    }
4112  }
4113  return *return_type_;
4114}
4115
4116const RegType& MethodVerifier::GetDeclaringClass() {
4117  if (declaring_class_ == nullptr) {
4118    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4119    const char* descriptor
4120        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4121    if (mirror_method_.Get() != nullptr) {
4122      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4123      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4124                                               klass->CannotBeAssignedFromOtherTypes());
4125    } else {
4126      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4127    }
4128  }
4129  return *declaring_class_;
4130}
4131
4132std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4133  RegisterLine* line = reg_table_.GetLine(dex_pc);
4134  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4135  std::vector<int32_t> result;
4136  for (size_t i = 0; i < line->NumRegs(); ++i) {
4137    const RegType& type = line->GetRegisterType(this, i);
4138    if (type.IsConstant()) {
4139      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4140      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4141      result.push_back(const_val->ConstantValue());
4142    } else if (type.IsConstantLo()) {
4143      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4144      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4145      result.push_back(const_val->ConstantValueLo());
4146    } else if (type.IsConstantHi()) {
4147      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4148      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4149      result.push_back(const_val->ConstantValueHi());
4150    } else if (type.IsIntegralTypes()) {
4151      result.push_back(kIntVReg);
4152      result.push_back(0);
4153    } else if (type.IsFloat()) {
4154      result.push_back(kFloatVReg);
4155      result.push_back(0);
4156    } else if (type.IsLong()) {
4157      result.push_back(kLongLoVReg);
4158      result.push_back(0);
4159      result.push_back(kLongHiVReg);
4160      result.push_back(0);
4161      ++i;
4162    } else if (type.IsDouble()) {
4163      result.push_back(kDoubleLoVReg);
4164      result.push_back(0);
4165      result.push_back(kDoubleHiVReg);
4166      result.push_back(0);
4167      ++i;
4168    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4169      result.push_back(kUndefined);
4170      result.push_back(0);
4171    } else {
4172      CHECK(type.IsNonZeroReferenceTypes());
4173      result.push_back(kReferenceVReg);
4174      result.push_back(0);
4175    }
4176  }
4177  return result;
4178}
4179
4180const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4181  if (precise) {
4182    // Precise constant type.
4183    return reg_types_.FromCat1Const(value, true);
4184  } else {
4185    // Imprecise constant type.
4186    if (value < -32768) {
4187      return reg_types_.IntConstant();
4188    } else if (value < -128) {
4189      return reg_types_.ShortConstant();
4190    } else if (value < 0) {
4191      return reg_types_.ByteConstant();
4192    } else if (value == 0) {
4193      return reg_types_.Zero();
4194    } else if (value == 1) {
4195      return reg_types_.One();
4196    } else if (value < 128) {
4197      return reg_types_.PosByteConstant();
4198    } else if (value < 32768) {
4199      return reg_types_.PosShortConstant();
4200    } else if (value < 65536) {
4201      return reg_types_.CharConstant();
4202    } else {
4203      return reg_types_.IntConstant();
4204    }
4205  }
4206}
4207
4208void MethodVerifier::Init() {
4209  art::verifier::RegTypeCache::Init();
4210}
4211
4212void MethodVerifier::Shutdown() {
4213  verifier::RegTypeCache::ShutDown();
4214}
4215
4216void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4217  RegTypeCache::VisitStaticRoots(callback, arg);
4218}
4219
4220void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4221  reg_types_.VisitRoots(callback, arg);
4222}
4223
4224}  // namespace verifier
4225}  // namespace art
4226