method_verifier.cc revision 6c9678f64d022a76aa43c4eba5e30d9759e2a77e
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "sirt_ref-inl.h"
44#include "verifier/dex_gc_map.h"
45
46namespace art {
47namespace verifier {
48
49static const bool gDebugVerify = false;
50// TODO: Add a constant to method_verifier to turn on verbose logging?
51
52void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
53                                 uint32_t insns_size, uint16_t registers_size,
54                                 MethodVerifier* verifier) {
55  DCHECK_GT(insns_size, 0U);
56  register_lines_.reset(new RegisterLine*[insns_size]());
57  size_ = insns_size;
58  for (uint32_t i = 0; i < insns_size; i++) {
59    bool interesting = false;
60    switch (mode) {
61      case kTrackRegsAll:
62        interesting = flags[i].IsOpcode();
63        break;
64      case kTrackCompilerInterestPoints:
65        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
66        break;
67      case kTrackRegsBranches:
68        interesting = flags[i].IsBranchTarget();
69        break;
70      default:
71        break;
72    }
73    if (interesting) {
74      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
75    }
76  }
77}
78
79PcToRegisterLineTable::~PcToRegisterLineTable() {
80  for (size_t i = 0; i < size_; i++) {
81    delete register_lines_[i];
82    if (kIsDebugBuild) {
83      register_lines_[i] = nullptr;
84    }
85  }
86}
87
88MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
89                                                        bool allow_soft_failures,
90                                                        std::string* error) {
91  if (klass->IsVerified()) {
92    return kNoFailure;
93  }
94  bool early_failure = false;
95  std::string failure_message;
96  ClassHelper kh(klass);
97  const DexFile& dex_file = kh.GetDexFile();
98  const DexFile::ClassDef* class_def = kh.GetClassDef();
99  mirror::Class* super = klass->GetSuperClass();
100  if (super == NULL && strcmp("Ljava/lang/Object;", kh.GetDescriptor()) != 0) {
101    early_failure = true;
102    failure_message = " that has no super class";
103  } else if (super != NULL && super->IsFinal()) {
104    early_failure = true;
105    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
106  } else if (class_def == NULL) {
107    early_failure = true;
108    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
109  }
110  if (early_failure) {
111    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
112    if (Runtime::Current()->IsCompiler()) {
113      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
114      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
115    }
116    return kHardFailure;
117  }
118  Thread* self = Thread::Current();
119  SirtRef<mirror::DexCache> dex_cache(self, kh.GetDexCache());
120  SirtRef<mirror::ClassLoader> class_loader(self, klass->GetClassLoader());
121  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
122}
123
124MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
125                                                        SirtRef<mirror::DexCache>& dex_cache,
126                                                        SirtRef<mirror::ClassLoader>& class_loader,
127                                                        const DexFile::ClassDef* class_def,
128                                                        bool allow_soft_failures,
129                                                        std::string* error) {
130  DCHECK(class_def != nullptr);
131  const byte* class_data = dex_file->GetClassData(*class_def);
132  if (class_data == NULL) {
133    // empty class, probably a marker interface
134    return kNoFailure;
135  }
136  ClassDataItemIterator it(*dex_file, class_data);
137  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
138    it.Next();
139  }
140  size_t error_count = 0;
141  bool hard_fail = false;
142  ClassLinker* linker = Runtime::Current()->GetClassLinker();
143  int64_t previous_direct_method_idx = -1;
144  while (it.HasNextDirectMethod()) {
145    uint32_t method_idx = it.GetMemberIndex();
146    if (method_idx == previous_direct_method_idx) {
147      // smali can create dex files with two encoded_methods sharing the same method_idx
148      // http://code.google.com/p/smali/issues/detail?id=119
149      it.Next();
150      continue;
151    }
152    previous_direct_method_idx = method_idx;
153    InvokeType type = it.GetMethodInvokeType(*class_def);
154    mirror::ArtMethod* method =
155        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
156    if (method == NULL) {
157      DCHECK(Thread::Current()->IsExceptionPending());
158      // We couldn't resolve the method, but continue regardless.
159      Thread::Current()->ClearException();
160    }
161    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
162                                                      dex_file,
163                                                      dex_cache,
164                                                      class_loader,
165                                                      class_def,
166                                                      it.GetMethodCodeItem(),
167                                                      method,
168                                                      it.GetMemberAccessFlags(),
169                                                      allow_soft_failures);
170    if (result != kNoFailure) {
171      if (result == kHardFailure) {
172        hard_fail = true;
173        if (error_count > 0) {
174          *error += "\n";
175        }
176        *error = "Verifier rejected class ";
177        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
178        *error += " due to bad method ";
179        *error += PrettyMethod(method_idx, *dex_file);
180      }
181      ++error_count;
182    }
183    it.Next();
184  }
185  int64_t previous_virtual_method_idx = -1;
186  while (it.HasNextVirtualMethod()) {
187    uint32_t method_idx = it.GetMemberIndex();
188    if (method_idx == previous_virtual_method_idx) {
189      // smali can create dex files with two encoded_methods sharing the same method_idx
190      // http://code.google.com/p/smali/issues/detail?id=119
191      it.Next();
192      continue;
193    }
194    previous_virtual_method_idx = method_idx;
195    InvokeType type = it.GetMethodInvokeType(*class_def);
196    mirror::ArtMethod* method =
197        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
198    if (method == NULL) {
199      DCHECK(Thread::Current()->IsExceptionPending());
200      // We couldn't resolve the method, but continue regardless.
201      Thread::Current()->ClearException();
202    }
203    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
204                                                      dex_file,
205                                                      dex_cache,
206                                                      class_loader,
207                                                      class_def,
208                                                      it.GetMethodCodeItem(),
209                                                      method,
210                                                      it.GetMemberAccessFlags(),
211                                                      allow_soft_failures);
212    if (result != kNoFailure) {
213      if (result == kHardFailure) {
214        hard_fail = true;
215        if (error_count > 0) {
216          *error += "\n";
217        }
218        *error = "Verifier rejected class ";
219        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
220        *error += " due to bad method ";
221        *error += PrettyMethod(method_idx, *dex_file);
222      }
223      ++error_count;
224    }
225    it.Next();
226  }
227  if (error_count == 0) {
228    return kNoFailure;
229  } else {
230    return hard_fail ? kHardFailure : kSoftFailure;
231  }
232}
233
234MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
235                                                         const DexFile* dex_file,
236                                                         SirtRef<mirror::DexCache>& dex_cache,
237                                                         SirtRef<mirror::ClassLoader>& class_loader,
238                                                         const DexFile::ClassDef* class_def,
239                                                         const DexFile::CodeItem* code_item,
240                                                         mirror::ArtMethod* method,
241                                                         uint32_t method_access_flags,
242                                                         bool allow_soft_failures) {
243  MethodVerifier::FailureKind result = kNoFailure;
244  uint64_t start_ns = NanoTime();
245
246  MethodVerifier verifier_(dex_file, &dex_cache, &class_loader, class_def, code_item,
247                           method_idx, method, method_access_flags, true, allow_soft_failures);
248  if (verifier_.Verify()) {
249    // Verification completed, however failures may be pending that didn't cause the verification
250    // to hard fail.
251    CHECK(!verifier_.have_pending_hard_failure_);
252    if (verifier_.failures_.size() != 0) {
253      if (VLOG_IS_ON(verifier)) {
254          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
255                                << PrettyMethod(method_idx, *dex_file) << "\n");
256      }
257      result = kSoftFailure;
258    }
259  } else {
260    // Bad method data.
261    CHECK_NE(verifier_.failures_.size(), 0U);
262    CHECK(verifier_.have_pending_hard_failure_);
263    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
264                                    << PrettyMethod(method_idx, *dex_file) << "\n");
265    if (gDebugVerify) {
266      std::cout << "\n" << verifier_.info_messages_.str();
267      verifier_.Dump(std::cout);
268    }
269    result = kHardFailure;
270  }
271  uint64_t duration_ns = NanoTime() - start_ns;
272  if (duration_ns > MsToNs(100)) {
273    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
274                 << " took " << PrettyDuration(duration_ns);
275  }
276  return result;
277}
278
279void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
280                                         const DexFile* dex_file,
281                                         SirtRef<mirror::DexCache>& dex_cache,
282                                         SirtRef<mirror::ClassLoader>& class_loader,
283                                         const DexFile::ClassDef* class_def,
284                                         const DexFile::CodeItem* code_item,
285                                         mirror::ArtMethod* method,
286                                         uint32_t method_access_flags) {
287  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
288                          dex_method_idx, method, method_access_flags, true, true);
289  verifier.Verify();
290  verifier.DumpFailures(os);
291  os << verifier.info_messages_.str();
292  verifier.Dump(os);
293}
294
295MethodVerifier::MethodVerifier(const DexFile* dex_file, SirtRef<mirror::DexCache>* dex_cache,
296                               SirtRef<mirror::ClassLoader>* class_loader,
297                               const DexFile::ClassDef* class_def,
298                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
299                               mirror::ArtMethod* method, uint32_t method_access_flags,
300                               bool can_load_classes, bool allow_soft_failures)
301    : reg_types_(can_load_classes),
302      work_insn_idx_(-1),
303      dex_method_idx_(dex_method_idx),
304      mirror_method_(method),
305      method_access_flags_(method_access_flags),
306      return_type_(nullptr),
307      dex_file_(dex_file),
308      dex_cache_(dex_cache),
309      class_loader_(class_loader),
310      class_def_(class_def),
311      code_item_(code_item),
312      declaring_class_(NULL),
313      interesting_dex_pc_(-1),
314      monitor_enter_dex_pcs_(nullptr),
315      have_pending_hard_failure_(false),
316      have_pending_runtime_throw_failure_(false),
317      new_instance_count_(0),
318      monitor_enter_count_(0),
319      can_load_classes_(can_load_classes),
320      allow_soft_failures_(allow_soft_failures),
321      has_check_casts_(false),
322      has_virtual_or_interface_invokes_(false) {
323  Runtime::Current()->AddMethodVerifier(this);
324  DCHECK(class_def != nullptr);
325}
326
327MethodVerifier::~MethodVerifier() {
328  Runtime::Current()->RemoveMethodVerifier(this);
329  STLDeleteElements(&failure_messages_);
330}
331
332void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
333                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
334  MethodHelper mh(m);
335  Thread* self = Thread::Current();
336  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
337  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
338  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
339                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
340                          true);
341  verifier.interesting_dex_pc_ = dex_pc;
342  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
343  verifier.FindLocksAtDexPc();
344}
345
346void MethodVerifier::FindLocksAtDexPc() {
347  CHECK(monitor_enter_dex_pcs_ != NULL);
348  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
349
350  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
351  // verification. In practice, the phase we want relies on data structures set up by all the
352  // earlier passes, so we just run the full method verification and bail out early when we've
353  // got what we wanted.
354  Verify();
355}
356
357mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
358                                                        uint32_t dex_pc) {
359  MethodHelper mh(m);
360  Thread* self = Thread::Current();
361  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
362  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
363  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
364                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
365                          true);
366  return verifier.FindAccessedFieldAtDexPc(dex_pc);
367}
368
369mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
370  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
371
372  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
373  // verification. In practice, the phase we want relies on data structures set up by all the
374  // earlier passes, so we just run the full method verification and bail out early when we've
375  // got what we wanted.
376  bool success = Verify();
377  if (!success) {
378    return nullptr;
379  }
380  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
381  if (register_line == NULL) {
382    return nullptr;
383  }
384  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
385  return GetQuickFieldAccess(inst, register_line);
386}
387
388mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
389                                                            uint32_t dex_pc) {
390  MethodHelper mh(m);
391  Thread* self = Thread::Current();
392  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
393  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
394  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
395                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
396                          true);
397  return verifier.FindInvokedMethodAtDexPc(dex_pc);
398}
399
400mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
401  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
402
403  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
404  // verification. In practice, the phase we want relies on data structures set up by all the
405  // earlier passes, so we just run the full method verification and bail out early when we've
406  // got what we wanted.
407  bool success = Verify();
408  if (!success) {
409    return NULL;
410  }
411  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
412  if (register_line == NULL) {
413    return NULL;
414  }
415  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
416  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
417  return GetQuickInvokedMethod(inst, register_line, is_range);
418}
419
420bool MethodVerifier::Verify() {
421  // If there aren't any instructions, make sure that's expected, then exit successfully.
422  if (code_item_ == NULL) {
423    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
424      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
425      return false;
426    } else {
427      return true;
428    }
429  }
430  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
431  if (code_item_->ins_size_ > code_item_->registers_size_) {
432    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
433                                      << " regs=" << code_item_->registers_size_;
434    return false;
435  }
436  // Allocate and initialize an array to hold instruction data.
437  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
438  // Run through the instructions and see if the width checks out.
439  bool result = ComputeWidthsAndCountOps();
440  // Flag instructions guarded by a "try" block and check exception handlers.
441  result = result && ScanTryCatchBlocks();
442  // Perform static instruction verification.
443  result = result && VerifyInstructions();
444  // Perform code-flow analysis and return.
445  result = result && VerifyCodeFlow();
446  // Compute information for compiler.
447  if (result && Runtime::Current()->IsCompiler()) {
448    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
449  }
450  return result;
451}
452
453std::ostream& MethodVerifier::Fail(VerifyError error) {
454  switch (error) {
455    case VERIFY_ERROR_NO_CLASS:
456    case VERIFY_ERROR_NO_FIELD:
457    case VERIFY_ERROR_NO_METHOD:
458    case VERIFY_ERROR_ACCESS_CLASS:
459    case VERIFY_ERROR_ACCESS_FIELD:
460    case VERIFY_ERROR_ACCESS_METHOD:
461    case VERIFY_ERROR_INSTANTIATION:
462    case VERIFY_ERROR_CLASS_CHANGE:
463      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
464        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
465        // class change and instantiation errors into soft verification errors so that we re-verify
466        // at runtime. We may fail to find or to agree on access because of not yet available class
467        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
468        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
469        // paths" that dynamically perform the verification and cause the behavior to be that akin
470        // to an interpreter.
471        error = VERIFY_ERROR_BAD_CLASS_SOFT;
472      } else {
473        // If we fail again at runtime, mark that this instruction would throw and force this
474        // method to be executed using the interpreter with checks.
475        have_pending_runtime_throw_failure_ = true;
476      }
477      break;
478      // Indication that verification should be retried at runtime.
479    case VERIFY_ERROR_BAD_CLASS_SOFT:
480      if (!allow_soft_failures_) {
481        have_pending_hard_failure_ = true;
482      }
483      break;
484      // Hard verification failures at compile time will still fail at runtime, so the class is
485      // marked as rejected to prevent it from being compiled.
486    case VERIFY_ERROR_BAD_CLASS_HARD: {
487      if (Runtime::Current()->IsCompiler()) {
488        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
489        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
490      }
491      have_pending_hard_failure_ = true;
492      break;
493    }
494  }
495  failures_.push_back(error);
496  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
497                                    work_insn_idx_));
498  std::ostringstream* failure_message = new std::ostringstream(location);
499  failure_messages_.push_back(failure_message);
500  return *failure_message;
501}
502
503void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
504  size_t failure_num = failure_messages_.size();
505  DCHECK_NE(failure_num, 0U);
506  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
507  prepend += last_fail_message->str();
508  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
509  delete last_fail_message;
510}
511
512void MethodVerifier::AppendToLastFailMessage(std::string append) {
513  size_t failure_num = failure_messages_.size();
514  DCHECK_NE(failure_num, 0U);
515  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
516  (*last_fail_message) << append;
517}
518
519bool MethodVerifier::ComputeWidthsAndCountOps() {
520  const uint16_t* insns = code_item_->insns_;
521  size_t insns_size = code_item_->insns_size_in_code_units_;
522  const Instruction* inst = Instruction::At(insns);
523  size_t new_instance_count = 0;
524  size_t monitor_enter_count = 0;
525  size_t dex_pc = 0;
526
527  while (dex_pc < insns_size) {
528    Instruction::Code opcode = inst->Opcode();
529    switch (opcode) {
530      case Instruction::APUT_OBJECT:
531      case Instruction::CHECK_CAST:
532        has_check_casts_ = true;
533        break;
534      case Instruction::INVOKE_VIRTUAL:
535      case Instruction::INVOKE_VIRTUAL_RANGE:
536      case Instruction::INVOKE_INTERFACE:
537      case Instruction::INVOKE_INTERFACE_RANGE:
538        has_virtual_or_interface_invokes_ = true;
539        break;
540      case Instruction::MONITOR_ENTER:
541        monitor_enter_count++;
542        break;
543      case Instruction::NEW_INSTANCE:
544        new_instance_count++;
545        break;
546      default:
547        break;
548    }
549    size_t inst_size = inst->SizeInCodeUnits();
550    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
551    dex_pc += inst_size;
552    inst = inst->Next();
553  }
554
555  if (dex_pc != insns_size) {
556    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
557                                      << dex_pc << " vs. " << insns_size << ")";
558    return false;
559  }
560
561  new_instance_count_ = new_instance_count;
562  monitor_enter_count_ = monitor_enter_count;
563  return true;
564}
565
566bool MethodVerifier::ScanTryCatchBlocks() {
567  uint32_t tries_size = code_item_->tries_size_;
568  if (tries_size == 0) {
569    return true;
570  }
571  uint32_t insns_size = code_item_->insns_size_in_code_units_;
572  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
573
574  for (uint32_t idx = 0; idx < tries_size; idx++) {
575    const DexFile::TryItem* try_item = &tries[idx];
576    uint32_t start = try_item->start_addr_;
577    uint32_t end = start + try_item->insn_count_;
578    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
579      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
580                                        << " endAddr=" << end << " (size=" << insns_size << ")";
581      return false;
582    }
583    if (!insn_flags_[start].IsOpcode()) {
584      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
585          << "'try' block starts inside an instruction (" << start << ")";
586      return false;
587    }
588    for (uint32_t dex_pc = start; dex_pc < end;
589        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
590      insn_flags_[dex_pc].SetInTry();
591    }
592  }
593  // Iterate over each of the handlers to verify target addresses.
594  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
595  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
596  ClassLinker* linker = Runtime::Current()->GetClassLinker();
597  for (uint32_t idx = 0; idx < handlers_size; idx++) {
598    CatchHandlerIterator iterator(handlers_ptr);
599    for (; iterator.HasNext(); iterator.Next()) {
600      uint32_t dex_pc= iterator.GetHandlerAddress();
601      if (!insn_flags_[dex_pc].IsOpcode()) {
602        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
603            << "exception handler starts at bad address (" << dex_pc << ")";
604        return false;
605      }
606      insn_flags_[dex_pc].SetBranchTarget();
607      // Ensure exception types are resolved so that they don't need resolution to be delivered,
608      // unresolved exception types will be ignored by exception delivery
609      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
610        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
611                                                            iterator.GetHandlerTypeIndex(),
612                                                            *dex_cache_, *class_loader_);
613        if (exception_type == NULL) {
614          DCHECK(Thread::Current()->IsExceptionPending());
615          Thread::Current()->ClearException();
616        }
617      }
618    }
619    handlers_ptr = iterator.EndDataPointer();
620  }
621  return true;
622}
623
624bool MethodVerifier::VerifyInstructions() {
625  const Instruction* inst = Instruction::At(code_item_->insns_);
626
627  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
628  insn_flags_[0].SetBranchTarget();
629  insn_flags_[0].SetCompileTimeInfoPoint();
630
631  uint32_t insns_size = code_item_->insns_size_in_code_units_;
632  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
633    if (!VerifyInstruction(inst, dex_pc)) {
634      DCHECK_NE(failures_.size(), 0U);
635      return false;
636    }
637    /* Flag instructions that are garbage collection points */
638    // All invoke points are marked as "Throw" points already.
639    // We are relying on this to also count all the invokes as interesting.
640    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
641      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
642    } else if (inst->IsReturn()) {
643      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
644    }
645    dex_pc += inst->SizeInCodeUnits();
646    inst = inst->Next();
647  }
648  return true;
649}
650
651bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
652  bool result = true;
653  switch (inst->GetVerifyTypeArgumentA()) {
654    case Instruction::kVerifyRegA:
655      result = result && CheckRegisterIndex(inst->VRegA());
656      break;
657    case Instruction::kVerifyRegAWide:
658      result = result && CheckWideRegisterIndex(inst->VRegA());
659      break;
660  }
661  switch (inst->GetVerifyTypeArgumentB()) {
662    case Instruction::kVerifyRegB:
663      result = result && CheckRegisterIndex(inst->VRegB());
664      break;
665    case Instruction::kVerifyRegBField:
666      result = result && CheckFieldIndex(inst->VRegB());
667      break;
668    case Instruction::kVerifyRegBMethod:
669      result = result && CheckMethodIndex(inst->VRegB());
670      break;
671    case Instruction::kVerifyRegBNewInstance:
672      result = result && CheckNewInstance(inst->VRegB());
673      break;
674    case Instruction::kVerifyRegBString:
675      result = result && CheckStringIndex(inst->VRegB());
676      break;
677    case Instruction::kVerifyRegBType:
678      result = result && CheckTypeIndex(inst->VRegB());
679      break;
680    case Instruction::kVerifyRegBWide:
681      result = result && CheckWideRegisterIndex(inst->VRegB());
682      break;
683  }
684  switch (inst->GetVerifyTypeArgumentC()) {
685    case Instruction::kVerifyRegC:
686      result = result && CheckRegisterIndex(inst->VRegC());
687      break;
688    case Instruction::kVerifyRegCField:
689      result = result && CheckFieldIndex(inst->VRegC());
690      break;
691    case Instruction::kVerifyRegCNewArray:
692      result = result && CheckNewArray(inst->VRegC());
693      break;
694    case Instruction::kVerifyRegCType:
695      result = result && CheckTypeIndex(inst->VRegC());
696      break;
697    case Instruction::kVerifyRegCWide:
698      result = result && CheckWideRegisterIndex(inst->VRegC());
699      break;
700  }
701  switch (inst->GetVerifyExtraFlags()) {
702    case Instruction::kVerifyArrayData:
703      result = result && CheckArrayData(code_offset);
704      break;
705    case Instruction::kVerifyBranchTarget:
706      result = result && CheckBranchTarget(code_offset);
707      break;
708    case Instruction::kVerifySwitchTargets:
709      result = result && CheckSwitchTargets(code_offset);
710      break;
711    case Instruction::kVerifyVarArg: {
712      uint32_t args[Instruction::kMaxVarArgRegs];
713      inst->GetVarArgs(args);
714      result = result && CheckVarArgRegs(inst->VRegA(), args);
715      break;
716    }
717    case Instruction::kVerifyVarArgRange:
718      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
719      break;
720    case Instruction::kVerifyError:
721      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
722      result = false;
723      break;
724  }
725  return result;
726}
727
728bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
729  if (idx >= code_item_->registers_size_) {
730    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
731                                      << code_item_->registers_size_ << ")";
732    return false;
733  }
734  return true;
735}
736
737bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
738  if (idx + 1 >= code_item_->registers_size_) {
739    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
740                                      << "+1 >= " << code_item_->registers_size_ << ")";
741    return false;
742  }
743  return true;
744}
745
746bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
747  if (idx >= dex_file_->GetHeader().field_ids_size_) {
748    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
749                                      << dex_file_->GetHeader().field_ids_size_ << ")";
750    return false;
751  }
752  return true;
753}
754
755bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
756  if (idx >= dex_file_->GetHeader().method_ids_size_) {
757    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
758                                      << dex_file_->GetHeader().method_ids_size_ << ")";
759    return false;
760  }
761  return true;
762}
763
764bool MethodVerifier::CheckNewInstance(uint32_t idx) {
765  if (idx >= dex_file_->GetHeader().type_ids_size_) {
766    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
767                                      << dex_file_->GetHeader().type_ids_size_ << ")";
768    return false;
769  }
770  // We don't need the actual class, just a pointer to the class name.
771  const char* descriptor = dex_file_->StringByTypeIdx(idx);
772  if (descriptor[0] != 'L') {
773    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
774    return false;
775  }
776  return true;
777}
778
779bool MethodVerifier::CheckStringIndex(uint32_t idx) {
780  if (idx >= dex_file_->GetHeader().string_ids_size_) {
781    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
782                                      << dex_file_->GetHeader().string_ids_size_ << ")";
783    return false;
784  }
785  return true;
786}
787
788bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
789  if (idx >= dex_file_->GetHeader().type_ids_size_) {
790    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
791                                      << dex_file_->GetHeader().type_ids_size_ << ")";
792    return false;
793  }
794  return true;
795}
796
797bool MethodVerifier::CheckNewArray(uint32_t idx) {
798  if (idx >= dex_file_->GetHeader().type_ids_size_) {
799    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
800                                      << dex_file_->GetHeader().type_ids_size_ << ")";
801    return false;
802  }
803  int bracket_count = 0;
804  const char* descriptor = dex_file_->StringByTypeIdx(idx);
805  const char* cp = descriptor;
806  while (*cp++ == '[') {
807    bracket_count++;
808  }
809  if (bracket_count == 0) {
810    /* The given class must be an array type. */
811    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
812        << "can't new-array class '" << descriptor << "' (not an array)";
813    return false;
814  } else if (bracket_count > 255) {
815    /* It is illegal to create an array of more than 255 dimensions. */
816    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
817        << "can't new-array class '" << descriptor << "' (exceeds limit)";
818    return false;
819  }
820  return true;
821}
822
823bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
824  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
825  const uint16_t* insns = code_item_->insns_ + cur_offset;
826  const uint16_t* array_data;
827  int32_t array_data_offset;
828
829  DCHECK_LT(cur_offset, insn_count);
830  /* make sure the start of the array data table is in range */
831  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
832  if ((int32_t) cur_offset + array_data_offset < 0 ||
833      cur_offset + array_data_offset + 2 >= insn_count) {
834    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
835                                      << ", data offset " << array_data_offset
836                                      << ", count " << insn_count;
837    return false;
838  }
839  /* offset to array data table is a relative branch-style offset */
840  array_data = insns + array_data_offset;
841  /* make sure the table is 32-bit aligned */
842  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
843    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
844                                      << ", data offset " << array_data_offset;
845    return false;
846  }
847  uint32_t value_width = array_data[1];
848  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
849  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
850  /* make sure the end of the switch is in range */
851  if (cur_offset + array_data_offset + table_size > insn_count) {
852    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
853                                      << ", data offset " << array_data_offset << ", end "
854                                      << cur_offset + array_data_offset + table_size
855                                      << ", count " << insn_count;
856    return false;
857  }
858  return true;
859}
860
861bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
862  int32_t offset;
863  bool isConditional, selfOkay;
864  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
865    return false;
866  }
867  if (!selfOkay && offset == 0) {
868    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
869                                      << reinterpret_cast<void*>(cur_offset);
870    return false;
871  }
872  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
873  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
874  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
875    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
876                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
877    return false;
878  }
879  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
880  int32_t abs_offset = cur_offset + offset;
881  if (abs_offset < 0 ||
882      (uint32_t) abs_offset >= insn_count ||
883      !insn_flags_[abs_offset].IsOpcode()) {
884    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
885                                      << reinterpret_cast<void*>(abs_offset) << ") at "
886                                      << reinterpret_cast<void*>(cur_offset);
887    return false;
888  }
889  insn_flags_[abs_offset].SetBranchTarget();
890  return true;
891}
892
893bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
894                                  bool* selfOkay) {
895  const uint16_t* insns = code_item_->insns_ + cur_offset;
896  *pConditional = false;
897  *selfOkay = false;
898  switch (*insns & 0xff) {
899    case Instruction::GOTO:
900      *pOffset = ((int16_t) *insns) >> 8;
901      break;
902    case Instruction::GOTO_32:
903      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
904      *selfOkay = true;
905      break;
906    case Instruction::GOTO_16:
907      *pOffset = (int16_t) insns[1];
908      break;
909    case Instruction::IF_EQ:
910    case Instruction::IF_NE:
911    case Instruction::IF_LT:
912    case Instruction::IF_GE:
913    case Instruction::IF_GT:
914    case Instruction::IF_LE:
915    case Instruction::IF_EQZ:
916    case Instruction::IF_NEZ:
917    case Instruction::IF_LTZ:
918    case Instruction::IF_GEZ:
919    case Instruction::IF_GTZ:
920    case Instruction::IF_LEZ:
921      *pOffset = (int16_t) insns[1];
922      *pConditional = true;
923      break;
924    default:
925      return false;
926      break;
927  }
928  return true;
929}
930
931bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
932  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
933  DCHECK_LT(cur_offset, insn_count);
934  const uint16_t* insns = code_item_->insns_ + cur_offset;
935  /* make sure the start of the switch is in range */
936  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
937  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
938    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
939                                      << ", switch offset " << switch_offset
940                                      << ", count " << insn_count;
941    return false;
942  }
943  /* offset to switch table is a relative branch-style offset */
944  const uint16_t* switch_insns = insns + switch_offset;
945  /* make sure the table is 32-bit aligned */
946  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
947    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
948                                      << ", switch offset " << switch_offset;
949    return false;
950  }
951  uint32_t switch_count = switch_insns[1];
952  int32_t keys_offset, targets_offset;
953  uint16_t expected_signature;
954  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
955    /* 0=sig, 1=count, 2/3=firstKey */
956    targets_offset = 4;
957    keys_offset = -1;
958    expected_signature = Instruction::kPackedSwitchSignature;
959  } else {
960    /* 0=sig, 1=count, 2..count*2 = keys */
961    keys_offset = 2;
962    targets_offset = 2 + 2 * switch_count;
963    expected_signature = Instruction::kSparseSwitchSignature;
964  }
965  uint32_t table_size = targets_offset + switch_count * 2;
966  if (switch_insns[0] != expected_signature) {
967    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
968        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
969                        switch_insns[0], expected_signature);
970    return false;
971  }
972  /* make sure the end of the switch is in range */
973  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
974    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
975                                      << ", switch offset " << switch_offset
976                                      << ", end " << (cur_offset + switch_offset + table_size)
977                                      << ", count " << insn_count;
978    return false;
979  }
980  /* for a sparse switch, verify the keys are in ascending order */
981  if (keys_offset > 0 && switch_count > 1) {
982    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
983    for (uint32_t targ = 1; targ < switch_count; targ++) {
984      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
985                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
986      if (key <= last_key) {
987        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
988                                          << ", this=" << key;
989        return false;
990      }
991      last_key = key;
992    }
993  }
994  /* verify each switch target */
995  for (uint32_t targ = 0; targ < switch_count; targ++) {
996    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
997                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
998    int32_t abs_offset = cur_offset + offset;
999    if (abs_offset < 0 ||
1000        abs_offset >= (int32_t) insn_count ||
1001        !insn_flags_[abs_offset].IsOpcode()) {
1002      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1003                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1004                                        << reinterpret_cast<void*>(cur_offset)
1005                                        << "[" << targ << "]";
1006      return false;
1007    }
1008    insn_flags_[abs_offset].SetBranchTarget();
1009  }
1010  return true;
1011}
1012
1013bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1014  if (vA > Instruction::kMaxVarArgRegs) {
1015    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1016    return false;
1017  }
1018  uint16_t registers_size = code_item_->registers_size_;
1019  for (uint32_t idx = 0; idx < vA; idx++) {
1020    if (arg[idx] >= registers_size) {
1021      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1022                                        << ") in non-range invoke (>= " << registers_size << ")";
1023      return false;
1024    }
1025  }
1026
1027  return true;
1028}
1029
1030bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1031  uint16_t registers_size = code_item_->registers_size_;
1032  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1033  // integer overflow when adding them here.
1034  if (vA + vC > registers_size) {
1035    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1036                                      << " in range invoke (> " << registers_size << ")";
1037    return false;
1038  }
1039  return true;
1040}
1041
1042bool MethodVerifier::VerifyCodeFlow() {
1043  uint16_t registers_size = code_item_->registers_size_;
1044  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1045
1046  if (registers_size * insns_size > 4*1024*1024) {
1047    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1048                 << " insns_size=" << insns_size << ")";
1049  }
1050  /* Create and initialize table holding register status */
1051  reg_table_.Init(kTrackCompilerInterestPoints,
1052                  insn_flags_.get(),
1053                  insns_size,
1054                  registers_size,
1055                  this);
1056
1057
1058  work_line_.reset(RegisterLine::Create(registers_size, this));
1059  saved_line_.reset(RegisterLine::Create(registers_size, this));
1060
1061  /* Initialize register types of method arguments. */
1062  if (!SetTypesFromSignature()) {
1063    DCHECK_NE(failures_.size(), 0U);
1064    std::string prepend("Bad signature in ");
1065    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1066    PrependToLastFailMessage(prepend);
1067    return false;
1068  }
1069  /* Perform code flow verification. */
1070  if (!CodeFlowVerifyMethod()) {
1071    DCHECK_NE(failures_.size(), 0U);
1072    return false;
1073  }
1074  return true;
1075}
1076
1077std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1078  DCHECK_EQ(failures_.size(), failure_messages_.size());
1079  for (size_t i = 0; i < failures_.size(); ++i) {
1080      os << failure_messages_[i]->str() << "\n";
1081  }
1082  return os;
1083}
1084
1085extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1086    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1087  v->Dump(std::cerr);
1088}
1089
1090void MethodVerifier::Dump(std::ostream& os) {
1091  if (code_item_ == NULL) {
1092    os << "Native method\n";
1093    return;
1094  }
1095  {
1096    os << "Register Types:\n";
1097    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1098    std::ostream indent_os(&indent_filter);
1099    reg_types_.Dump(indent_os);
1100  }
1101  os << "Dumping instructions and register lines:\n";
1102  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1103  std::ostream indent_os(&indent_filter);
1104  const Instruction* inst = Instruction::At(code_item_->insns_);
1105  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1106      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1107    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1108    if (reg_line != NULL) {
1109      indent_os << reg_line->Dump() << "\n";
1110    }
1111    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1112    const bool kDumpHexOfInstruction = false;
1113    if (kDumpHexOfInstruction) {
1114      indent_os << inst->DumpHex(5) << " ";
1115    }
1116    indent_os << inst->DumpString(dex_file_) << "\n";
1117    inst = inst->Next();
1118  }
1119}
1120
1121static bool IsPrimitiveDescriptor(char descriptor) {
1122  switch (descriptor) {
1123    case 'I':
1124    case 'C':
1125    case 'S':
1126    case 'B':
1127    case 'Z':
1128    case 'F':
1129    case 'D':
1130    case 'J':
1131      return true;
1132    default:
1133      return false;
1134  }
1135}
1136
1137bool MethodVerifier::SetTypesFromSignature() {
1138  RegisterLine* reg_line = reg_table_.GetLine(0);
1139  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1140  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1141
1142  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1143  // Include the "this" pointer.
1144  size_t cur_arg = 0;
1145  if (!IsStatic()) {
1146    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1147    // argument as uninitialized. This restricts field access until the superclass constructor is
1148    // called.
1149    const RegType& declaring_class = GetDeclaringClass();
1150    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1151      reg_line->SetRegisterType(arg_start + cur_arg,
1152                                reg_types_.UninitializedThisArgument(declaring_class));
1153    } else {
1154      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1155    }
1156    cur_arg++;
1157  }
1158
1159  const DexFile::ProtoId& proto_id =
1160      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1161  DexFileParameterIterator iterator(*dex_file_, proto_id);
1162
1163  for (; iterator.HasNext(); iterator.Next()) {
1164    const char* descriptor = iterator.GetDescriptor();
1165    if (descriptor == NULL) {
1166      LOG(FATAL) << "Null descriptor";
1167    }
1168    if (cur_arg >= expected_args) {
1169      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1170                                        << " args, found more (" << descriptor << ")";
1171      return false;
1172    }
1173    switch (descriptor[0]) {
1174      case 'L':
1175      case '[':
1176        // We assume that reference arguments are initialized. The only way it could be otherwise
1177        // (assuming the caller was verified) is if the current method is <init>, but in that case
1178        // it's effectively considered initialized the instant we reach here (in the sense that we
1179        // can return without doing anything or call virtual methods).
1180        {
1181          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1182          if (!reg_type.IsNonZeroReferenceTypes()) {
1183            DCHECK(HasFailures());
1184            return false;
1185          }
1186          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1187        }
1188        break;
1189      case 'Z':
1190        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1191        break;
1192      case 'C':
1193        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1194        break;
1195      case 'B':
1196        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1197        break;
1198      case 'I':
1199        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1200        break;
1201      case 'S':
1202        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1203        break;
1204      case 'F':
1205        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1206        break;
1207      case 'J':
1208      case 'D': {
1209        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1210        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1211        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1212        cur_arg++;
1213        break;
1214      }
1215      default:
1216        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1217                                          << descriptor << "'";
1218        return false;
1219    }
1220    cur_arg++;
1221  }
1222  if (cur_arg != expected_args) {
1223    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1224                                      << " arguments, found " << cur_arg;
1225    return false;
1226  }
1227  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1228  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1229  // format. Only major difference from the method argument format is that 'V' is supported.
1230  bool result;
1231  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1232    result = descriptor[1] == '\0';
1233  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1234    size_t i = 0;
1235    do {
1236      i++;
1237    } while (descriptor[i] == '[');  // process leading [
1238    if (descriptor[i] == 'L') {  // object array
1239      do {
1240        i++;  // find closing ;
1241      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1242      result = descriptor[i] == ';';
1243    } else {  // primitive array
1244      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1245    }
1246  } else if (descriptor[0] == 'L') {
1247    // could be more thorough here, but shouldn't be required
1248    size_t i = 0;
1249    do {
1250      i++;
1251    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1252    result = descriptor[i] == ';';
1253  } else {
1254    result = false;
1255  }
1256  if (!result) {
1257    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1258                                      << descriptor << "'";
1259  }
1260  return result;
1261}
1262
1263bool MethodVerifier::CodeFlowVerifyMethod() {
1264  const uint16_t* insns = code_item_->insns_;
1265  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1266
1267  /* Begin by marking the first instruction as "changed". */
1268  insn_flags_[0].SetChanged();
1269  uint32_t start_guess = 0;
1270
1271  /* Continue until no instructions are marked "changed". */
1272  while (true) {
1273    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1274    uint32_t insn_idx = start_guess;
1275    for (; insn_idx < insns_size; insn_idx++) {
1276      if (insn_flags_[insn_idx].IsChanged())
1277        break;
1278    }
1279    if (insn_idx == insns_size) {
1280      if (start_guess != 0) {
1281        /* try again, starting from the top */
1282        start_guess = 0;
1283        continue;
1284      } else {
1285        /* all flags are clear */
1286        break;
1287      }
1288    }
1289    // We carry the working set of registers from instruction to instruction. If this address can
1290    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1291    // "changed" flags, we need to load the set of registers from the table.
1292    // Because we always prefer to continue on to the next instruction, we should never have a
1293    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1294    // target.
1295    work_insn_idx_ = insn_idx;
1296    if (insn_flags_[insn_idx].IsBranchTarget()) {
1297      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1298    } else {
1299#ifndef NDEBUG
1300      /*
1301       * Sanity check: retrieve the stored register line (assuming
1302       * a full table) and make sure it actually matches.
1303       */
1304      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1305      if (register_line != NULL) {
1306        if (work_line_->CompareLine(register_line) != 0) {
1307          Dump(std::cout);
1308          std::cout << info_messages_.str();
1309          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1310                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1311                     << " work_line=" << *work_line_ << "\n"
1312                     << "  expected=" << *register_line;
1313        }
1314      }
1315#endif
1316    }
1317    if (!CodeFlowVerifyInstruction(&start_guess)) {
1318      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1319      prepend += " failed to verify: ";
1320      PrependToLastFailMessage(prepend);
1321      return false;
1322    }
1323    /* Clear "changed" and mark as visited. */
1324    insn_flags_[insn_idx].SetVisited();
1325    insn_flags_[insn_idx].ClearChanged();
1326  }
1327
1328  if (gDebugVerify) {
1329    /*
1330     * Scan for dead code. There's nothing "evil" about dead code
1331     * (besides the wasted space), but it indicates a flaw somewhere
1332     * down the line, possibly in the verifier.
1333     *
1334     * If we've substituted "always throw" instructions into the stream,
1335     * we are almost certainly going to have some dead code.
1336     */
1337    int dead_start = -1;
1338    uint32_t insn_idx = 0;
1339    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1340      /*
1341       * Switch-statement data doesn't get "visited" by scanner. It
1342       * may or may not be preceded by a padding NOP (for alignment).
1343       */
1344      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1345          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1346          insns[insn_idx] == Instruction::kArrayDataSignature ||
1347          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1348           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1349            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1350            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1351        insn_flags_[insn_idx].SetVisited();
1352      }
1353
1354      if (!insn_flags_[insn_idx].IsVisited()) {
1355        if (dead_start < 0)
1356          dead_start = insn_idx;
1357      } else if (dead_start >= 0) {
1358        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1359                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1360        dead_start = -1;
1361      }
1362    }
1363    if (dead_start >= 0) {
1364      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1365                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1366    }
1367    // To dump the state of the verify after a method, do something like:
1368    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1369    //     "boolean java.lang.String.equals(java.lang.Object)") {
1370    //   LOG(INFO) << info_messages_.str();
1371    // }
1372  }
1373  return true;
1374}
1375
1376bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1377  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1378  // We want the state _before_ the instruction, for the case where the dex pc we're
1379  // interested in is itself a monitor-enter instruction (which is a likely place
1380  // for a thread to be suspended).
1381  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1382    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1383    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1384      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1385    }
1386  }
1387
1388  /*
1389   * Once we finish decoding the instruction, we need to figure out where
1390   * we can go from here. There are three possible ways to transfer
1391   * control to another statement:
1392   *
1393   * (1) Continue to the next instruction. Applies to all but
1394   *     unconditional branches, method returns, and exception throws.
1395   * (2) Branch to one or more possible locations. Applies to branches
1396   *     and switch statements.
1397   * (3) Exception handlers. Applies to any instruction that can
1398   *     throw an exception that is handled by an encompassing "try"
1399   *     block.
1400   *
1401   * We can also return, in which case there is no successor instruction
1402   * from this point.
1403   *
1404   * The behavior can be determined from the opcode flags.
1405   */
1406  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1407  const Instruction* inst = Instruction::At(insns);
1408  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1409
1410  int32_t branch_target = 0;
1411  bool just_set_result = false;
1412  if (gDebugVerify) {
1413    // Generate processing back trace to debug verifier
1414    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1415                    << *work_line_.get() << "\n";
1416  }
1417
1418  /*
1419   * Make a copy of the previous register state. If the instruction
1420   * can throw an exception, we will copy/merge this into the "catch"
1421   * address rather than work_line, because we don't want the result
1422   * from the "successful" code path (e.g. a check-cast that "improves"
1423   * a type) to be visible to the exception handler.
1424   */
1425  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1426    saved_line_->CopyFromLine(work_line_.get());
1427  } else {
1428#ifndef NDEBUG
1429    saved_line_->FillWithGarbage();
1430#endif
1431  }
1432
1433
1434  // We need to ensure the work line is consistent while performing validation. When we spot a
1435  // peephole pattern we compute a new line for either the fallthrough instruction or the
1436  // branch target.
1437  UniquePtr<RegisterLine> branch_line;
1438  UniquePtr<RegisterLine> fallthrough_line;
1439
1440  // We need precise constant types only for deoptimization which happens at runtime.
1441  const bool need_precise_constant = !Runtime::Current()->IsCompiler();
1442
1443  switch (inst->Opcode()) {
1444    case Instruction::NOP:
1445      /*
1446       * A "pure" NOP has no effect on anything. Data tables start with
1447       * a signature that looks like a NOP; if we see one of these in
1448       * the course of executing code then we have a problem.
1449       */
1450      if (inst->VRegA_10x() != 0) {
1451        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1452      }
1453      break;
1454
1455    case Instruction::MOVE:
1456      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1457      break;
1458    case Instruction::MOVE_FROM16:
1459      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1460      break;
1461    case Instruction::MOVE_16:
1462      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1463      break;
1464    case Instruction::MOVE_WIDE:
1465      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1466      break;
1467    case Instruction::MOVE_WIDE_FROM16:
1468      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1469      break;
1470    case Instruction::MOVE_WIDE_16:
1471      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1472      break;
1473    case Instruction::MOVE_OBJECT:
1474      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1475      break;
1476    case Instruction::MOVE_OBJECT_FROM16:
1477      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1478      break;
1479    case Instruction::MOVE_OBJECT_16:
1480      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1481      break;
1482
1483    /*
1484     * The move-result instructions copy data out of a "pseudo-register"
1485     * with the results from the last method invocation. In practice we
1486     * might want to hold the result in an actual CPU register, so the
1487     * Dalvik spec requires that these only appear immediately after an
1488     * invoke or filled-new-array.
1489     *
1490     * These calls invalidate the "result" register. (This is now
1491     * redundant with the reset done below, but it can make the debug info
1492     * easier to read in some cases.)
1493     */
1494    case Instruction::MOVE_RESULT:
1495      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1496      break;
1497    case Instruction::MOVE_RESULT_WIDE:
1498      work_line_->CopyResultRegister2(inst->VRegA_11x());
1499      break;
1500    case Instruction::MOVE_RESULT_OBJECT:
1501      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1502      break;
1503
1504    case Instruction::MOVE_EXCEPTION: {
1505      /*
1506       * This statement can only appear as the first instruction in an exception handler. We verify
1507       * that as part of extracting the exception type from the catch block list.
1508       */
1509      const RegType& res_type = GetCaughtExceptionType();
1510      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1511      break;
1512    }
1513    case Instruction::RETURN_VOID:
1514      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1515        if (!GetMethodReturnType().IsConflict()) {
1516          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1517        }
1518      }
1519      break;
1520    case Instruction::RETURN:
1521      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1522        /* check the method signature */
1523        const RegType& return_type = GetMethodReturnType();
1524        if (!return_type.IsCategory1Types()) {
1525          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1526                                            << return_type;
1527        } else {
1528          // Compilers may generate synthetic functions that write byte values into boolean fields.
1529          // Also, it may use integer values for boolean, byte, short, and character return types.
1530          const uint32_t vregA = inst->VRegA_11x();
1531          const RegType& src_type = work_line_->GetRegisterType(vregA);
1532          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1533                          ((return_type.IsBoolean() || return_type.IsByte() ||
1534                           return_type.IsShort() || return_type.IsChar()) &&
1535                           src_type.IsInteger()));
1536          /* check the register contents */
1537          bool success =
1538              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1539          if (!success) {
1540            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1541          }
1542        }
1543      }
1544      break;
1545    case Instruction::RETURN_WIDE:
1546      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1547        /* check the method signature */
1548        const RegType& return_type = GetMethodReturnType();
1549        if (!return_type.IsCategory2Types()) {
1550          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1551        } else {
1552          /* check the register contents */
1553          const uint32_t vregA = inst->VRegA_11x();
1554          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1555          if (!success) {
1556            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1557          }
1558        }
1559      }
1560      break;
1561    case Instruction::RETURN_OBJECT:
1562      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1563        const RegType& return_type = GetMethodReturnType();
1564        if (!return_type.IsReferenceTypes()) {
1565          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1566        } else {
1567          /* return_type is the *expected* return type, not register value */
1568          DCHECK(!return_type.IsZero());
1569          DCHECK(!return_type.IsUninitializedReference());
1570          const uint32_t vregA = inst->VRegA_11x();
1571          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1572          // Disallow returning uninitialized values and verify that the reference in vAA is an
1573          // instance of the "return_type"
1574          if (reg_type.IsUninitializedTypes()) {
1575            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1576                                              << reg_type << "'";
1577          } else if (!return_type.IsAssignableFrom(reg_type)) {
1578            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1579              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1580                  << "' or '" << reg_type << "'";
1581            } else {
1582              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1583                  << "', but expected from declaration '" << return_type << "'";
1584            }
1585          }
1586        }
1587      }
1588      break;
1589
1590      /* could be boolean, int, float, or a null reference */
1591    case Instruction::CONST_4: {
1592      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1593      work_line_->SetRegisterType(inst->VRegA_11n(),
1594                                  DetermineCat1Constant(val, need_precise_constant));
1595      break;
1596    }
1597    case Instruction::CONST_16: {
1598      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1599      work_line_->SetRegisterType(inst->VRegA_21s(),
1600                                  DetermineCat1Constant(val, need_precise_constant));
1601      break;
1602    }
1603    case Instruction::CONST: {
1604      int32_t val = inst->VRegB_31i();
1605      work_line_->SetRegisterType(inst->VRegA_31i(),
1606                                  DetermineCat1Constant(val, need_precise_constant));
1607      break;
1608    }
1609    case Instruction::CONST_HIGH16: {
1610      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1611      work_line_->SetRegisterType(inst->VRegA_21h(),
1612                                  DetermineCat1Constant(val, need_precise_constant));
1613      break;
1614    }
1615      /* could be long or double; resolved upon use */
1616    case Instruction::CONST_WIDE_16: {
1617      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1618      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1619      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1620      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1621      break;
1622    }
1623    case Instruction::CONST_WIDE_32: {
1624      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1625      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1626      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1627      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1628      break;
1629    }
1630    case Instruction::CONST_WIDE: {
1631      int64_t val = inst->VRegB_51l();
1632      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1633      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1634      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1635      break;
1636    }
1637    case Instruction::CONST_WIDE_HIGH16: {
1638      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1639      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1640      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1641      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1642      break;
1643    }
1644    case Instruction::CONST_STRING:
1645      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1646      break;
1647    case Instruction::CONST_STRING_JUMBO:
1648      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1649      break;
1650    case Instruction::CONST_CLASS: {
1651      // Get type from instruction if unresolved then we need an access check
1652      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1653      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1654      // Register holds class, ie its type is class, on error it will hold Conflict.
1655      work_line_->SetRegisterType(inst->VRegA_21c(),
1656                                  res_type.IsConflict() ? res_type
1657                                                        : reg_types_.JavaLangClass(true));
1658      break;
1659    }
1660    case Instruction::MONITOR_ENTER:
1661      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1662      break;
1663    case Instruction::MONITOR_EXIT:
1664      /*
1665       * monitor-exit instructions are odd. They can throw exceptions,
1666       * but when they do they act as if they succeeded and the PC is
1667       * pointing to the following instruction. (This behavior goes back
1668       * to the need to handle asynchronous exceptions, a now-deprecated
1669       * feature that Dalvik doesn't support.)
1670       *
1671       * In practice we don't need to worry about this. The only
1672       * exceptions that can be thrown from monitor-exit are for a
1673       * null reference and -exit without a matching -enter. If the
1674       * structured locking checks are working, the former would have
1675       * failed on the -enter instruction, and the latter is impossible.
1676       *
1677       * This is fortunate, because issue 3221411 prevents us from
1678       * chasing the "can throw" path when monitor verification is
1679       * enabled. If we can fully verify the locking we can ignore
1680       * some catch blocks (which will show up as "dead" code when
1681       * we skip them here); if we can't, then the code path could be
1682       * "live" so we still need to check it.
1683       */
1684      opcode_flags &= ~Instruction::kThrow;
1685      work_line_->PopMonitor(inst->VRegA_11x());
1686      break;
1687
1688    case Instruction::CHECK_CAST:
1689    case Instruction::INSTANCE_OF: {
1690      /*
1691       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1692       * could be a "upcast" -- not expected, so we don't try to address it.)
1693       *
1694       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1695       * dec_insn.vA when branching to a handler.
1696       */
1697      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1698      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1699      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1700      if (res_type.IsConflict()) {
1701        DCHECK_NE(failures_.size(), 0U);
1702        if (!is_checkcast) {
1703          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1704        }
1705        break;  // bad class
1706      }
1707      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1708      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1709      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1710      if (!res_type.IsNonZeroReferenceTypes()) {
1711        if (is_checkcast) {
1712          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1713        } else {
1714          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1715        }
1716      } else if (!orig_type.IsReferenceTypes()) {
1717        if (is_checkcast) {
1718          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1719        } else {
1720          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1721        }
1722      } else {
1723        if (is_checkcast) {
1724          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1725        } else {
1726          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1727        }
1728      }
1729      break;
1730    }
1731    case Instruction::ARRAY_LENGTH: {
1732      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1733      if (res_type.IsReferenceTypes()) {
1734        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1735          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1736        } else {
1737          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1738        }
1739      }
1740      break;
1741    }
1742    case Instruction::NEW_INSTANCE: {
1743      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1744      if (res_type.IsConflict()) {
1745        DCHECK_NE(failures_.size(), 0U);
1746        break;  // bad class
1747      }
1748      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1749      // can't create an instance of an interface or abstract class */
1750      if (!res_type.IsInstantiableTypes()) {
1751        Fail(VERIFY_ERROR_INSTANTIATION)
1752            << "new-instance on primitive, interface or abstract class" << res_type;
1753        // Soft failure so carry on to set register type.
1754      }
1755      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1756      // Any registers holding previous allocations from this address that have not yet been
1757      // initialized must be marked invalid.
1758      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1759      // add the new uninitialized reference to the register state
1760      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1761      break;
1762    }
1763    case Instruction::NEW_ARRAY:
1764      VerifyNewArray(inst, false, false);
1765      break;
1766    case Instruction::FILLED_NEW_ARRAY:
1767      VerifyNewArray(inst, true, false);
1768      just_set_result = true;  // Filled new array sets result register
1769      break;
1770    case Instruction::FILLED_NEW_ARRAY_RANGE:
1771      VerifyNewArray(inst, true, true);
1772      just_set_result = true;  // Filled new array range sets result register
1773      break;
1774    case Instruction::CMPL_FLOAT:
1775    case Instruction::CMPG_FLOAT:
1776      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1777        break;
1778      }
1779      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1780        break;
1781      }
1782      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1783      break;
1784    case Instruction::CMPL_DOUBLE:
1785    case Instruction::CMPG_DOUBLE:
1786      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1787                                              reg_types_.DoubleHi())) {
1788        break;
1789      }
1790      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1791                                              reg_types_.DoubleHi())) {
1792        break;
1793      }
1794      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1795      break;
1796    case Instruction::CMP_LONG:
1797      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1798                                              reg_types_.LongHi())) {
1799        break;
1800      }
1801      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1802                                              reg_types_.LongHi())) {
1803        break;
1804      }
1805      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1806      break;
1807    case Instruction::THROW: {
1808      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1809      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1810        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1811            << "thrown class " << res_type << " not instanceof Throwable";
1812      }
1813      break;
1814    }
1815    case Instruction::GOTO:
1816    case Instruction::GOTO_16:
1817    case Instruction::GOTO_32:
1818      /* no effect on or use of registers */
1819      break;
1820
1821    case Instruction::PACKED_SWITCH:
1822    case Instruction::SPARSE_SWITCH:
1823      /* verify that vAA is an integer, or can be converted to one */
1824      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1825      break;
1826
1827    case Instruction::FILL_ARRAY_DATA: {
1828      /* Similar to the verification done for APUT */
1829      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1830      /* array_type can be null if the reg type is Zero */
1831      if (!array_type.IsZero()) {
1832        if (!array_type.IsArrayTypes()) {
1833          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1834                                            << array_type;
1835        } else {
1836          const RegType& component_type = reg_types_.GetComponentType(array_type,
1837                                                                      class_loader_->get());
1838          DCHECK(!component_type.IsConflict());
1839          if (component_type.IsNonZeroReferenceTypes()) {
1840            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1841                                              << component_type;
1842          } else {
1843            // Now verify if the element width in the table matches the element width declared in
1844            // the array
1845            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1846            if (array_data[0] != Instruction::kArrayDataSignature) {
1847              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1848            } else {
1849              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1850              // Since we don't compress the data in Dex, expect to see equal width of data stored
1851              // in the table and expected from the array class.
1852              if (array_data[1] != elem_width) {
1853                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1854                                                  << " vs " << elem_width << ")";
1855              }
1856            }
1857          }
1858        }
1859      }
1860      break;
1861    }
1862    case Instruction::IF_EQ:
1863    case Instruction::IF_NE: {
1864      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1865      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1866      bool mismatch = false;
1867      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1868        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1869      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1870        mismatch = !reg_type2.IsReferenceTypes();
1871      } else {  // both integral?
1872        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1873      }
1874      if (mismatch) {
1875        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1876                                          << reg_type2 << ") must both be references or integral";
1877      }
1878      break;
1879    }
1880    case Instruction::IF_LT:
1881    case Instruction::IF_GE:
1882    case Instruction::IF_GT:
1883    case Instruction::IF_LE: {
1884      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1885      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1886      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1887        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1888                                          << reg_type2 << ") must be integral";
1889      }
1890      break;
1891    }
1892    case Instruction::IF_EQZ:
1893    case Instruction::IF_NEZ: {
1894      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1895      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1896        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1897                                          << " unexpected as arg to if-eqz/if-nez";
1898      }
1899
1900      // Find previous instruction - its existence is a precondition to peephole optimization.
1901      uint32_t instance_of_idx = 0;
1902      if (0 != work_insn_idx_) {
1903        instance_of_idx = work_insn_idx_ - 1;
1904        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1905          instance_of_idx--;
1906        }
1907        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1908      } else {
1909        break;
1910      }
1911
1912      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1913
1914      /* Check for peep-hole pattern of:
1915       *    ...;
1916       *    instance-of vX, vY, T;
1917       *    ifXXX vX, label ;
1918       *    ...;
1919       * label:
1920       *    ...;
1921       * and sharpen the type of vY to be type T.
1922       * Note, this pattern can't be if:
1923       *  - if there are other branches to this branch,
1924       *  - when vX == vY.
1925       */
1926      if (!CurrentInsnFlags()->IsBranchTarget() &&
1927          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1928          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1929          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1930        // Check that the we are not attempting conversion to interface types,
1931        // which is not done because of the multiple inheritance implications.
1932        // Also don't change the type if it would result in an upcast.
1933        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1934        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1935
1936        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1937            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1938          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1939          if (inst->Opcode() == Instruction::IF_EQZ) {
1940            fallthrough_line.reset(update_line);
1941          } else {
1942            branch_line.reset(update_line);
1943          }
1944          update_line->CopyFromLine(work_line_.get());
1945          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1946          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1947            // See if instance-of was preceded by a move-object operation, common due to the small
1948            // register encoding space of instance-of, and propagate type information to the source
1949            // of the move-object.
1950            uint32_t move_idx = instance_of_idx - 1;
1951            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1952              move_idx--;
1953            }
1954            CHECK(insn_flags_[move_idx].IsOpcode());
1955            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1956            switch (move_inst->Opcode()) {
1957              case Instruction::MOVE_OBJECT:
1958                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1959                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1960                }
1961                break;
1962              case Instruction::MOVE_OBJECT_FROM16:
1963                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1964                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1965                }
1966                break;
1967              case Instruction::MOVE_OBJECT_16:
1968                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1969                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1970                }
1971                break;
1972              default:
1973                break;
1974            }
1975          }
1976        }
1977      }
1978
1979      break;
1980    }
1981    case Instruction::IF_LTZ:
1982    case Instruction::IF_GEZ:
1983    case Instruction::IF_GTZ:
1984    case Instruction::IF_LEZ: {
1985      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1986      if (!reg_type.IsIntegralTypes()) {
1987        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1988                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1989      }
1990      break;
1991    }
1992    case Instruction::AGET_BOOLEAN:
1993      VerifyAGet(inst, reg_types_.Boolean(), true);
1994      break;
1995    case Instruction::AGET_BYTE:
1996      VerifyAGet(inst, reg_types_.Byte(), true);
1997      break;
1998    case Instruction::AGET_CHAR:
1999      VerifyAGet(inst, reg_types_.Char(), true);
2000      break;
2001    case Instruction::AGET_SHORT:
2002      VerifyAGet(inst, reg_types_.Short(), true);
2003      break;
2004    case Instruction::AGET:
2005      VerifyAGet(inst, reg_types_.Integer(), true);
2006      break;
2007    case Instruction::AGET_WIDE:
2008      VerifyAGet(inst, reg_types_.LongLo(), true);
2009      break;
2010    case Instruction::AGET_OBJECT:
2011      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2012      break;
2013
2014    case Instruction::APUT_BOOLEAN:
2015      VerifyAPut(inst, reg_types_.Boolean(), true);
2016      break;
2017    case Instruction::APUT_BYTE:
2018      VerifyAPut(inst, reg_types_.Byte(), true);
2019      break;
2020    case Instruction::APUT_CHAR:
2021      VerifyAPut(inst, reg_types_.Char(), true);
2022      break;
2023    case Instruction::APUT_SHORT:
2024      VerifyAPut(inst, reg_types_.Short(), true);
2025      break;
2026    case Instruction::APUT:
2027      VerifyAPut(inst, reg_types_.Integer(), true);
2028      break;
2029    case Instruction::APUT_WIDE:
2030      VerifyAPut(inst, reg_types_.LongLo(), true);
2031      break;
2032    case Instruction::APUT_OBJECT:
2033      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2034      break;
2035
2036    case Instruction::IGET_BOOLEAN:
2037      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2038      break;
2039    case Instruction::IGET_BYTE:
2040      VerifyISGet(inst, reg_types_.Byte(), true, false);
2041      break;
2042    case Instruction::IGET_CHAR:
2043      VerifyISGet(inst, reg_types_.Char(), true, false);
2044      break;
2045    case Instruction::IGET_SHORT:
2046      VerifyISGet(inst, reg_types_.Short(), true, false);
2047      break;
2048    case Instruction::IGET:
2049      VerifyISGet(inst, reg_types_.Integer(), true, false);
2050      break;
2051    case Instruction::IGET_WIDE:
2052      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2053      break;
2054    case Instruction::IGET_OBJECT:
2055      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2056      break;
2057
2058    case Instruction::IPUT_BOOLEAN:
2059      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2060      break;
2061    case Instruction::IPUT_BYTE:
2062      VerifyISPut(inst, reg_types_.Byte(), true, false);
2063      break;
2064    case Instruction::IPUT_CHAR:
2065      VerifyISPut(inst, reg_types_.Char(), true, false);
2066      break;
2067    case Instruction::IPUT_SHORT:
2068      VerifyISPut(inst, reg_types_.Short(), true, false);
2069      break;
2070    case Instruction::IPUT:
2071      VerifyISPut(inst, reg_types_.Integer(), true, false);
2072      break;
2073    case Instruction::IPUT_WIDE:
2074      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2075      break;
2076    case Instruction::IPUT_OBJECT:
2077      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2078      break;
2079
2080    case Instruction::SGET_BOOLEAN:
2081      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2082      break;
2083    case Instruction::SGET_BYTE:
2084      VerifyISGet(inst, reg_types_.Byte(), true, true);
2085      break;
2086    case Instruction::SGET_CHAR:
2087      VerifyISGet(inst, reg_types_.Char(), true, true);
2088      break;
2089    case Instruction::SGET_SHORT:
2090      VerifyISGet(inst, reg_types_.Short(), true, true);
2091      break;
2092    case Instruction::SGET:
2093      VerifyISGet(inst, reg_types_.Integer(), true, true);
2094      break;
2095    case Instruction::SGET_WIDE:
2096      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2097      break;
2098    case Instruction::SGET_OBJECT:
2099      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2100      break;
2101
2102    case Instruction::SPUT_BOOLEAN:
2103      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2104      break;
2105    case Instruction::SPUT_BYTE:
2106      VerifyISPut(inst, reg_types_.Byte(), true, true);
2107      break;
2108    case Instruction::SPUT_CHAR:
2109      VerifyISPut(inst, reg_types_.Char(), true, true);
2110      break;
2111    case Instruction::SPUT_SHORT:
2112      VerifyISPut(inst, reg_types_.Short(), true, true);
2113      break;
2114    case Instruction::SPUT:
2115      VerifyISPut(inst, reg_types_.Integer(), true, true);
2116      break;
2117    case Instruction::SPUT_WIDE:
2118      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2119      break;
2120    case Instruction::SPUT_OBJECT:
2121      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2122      break;
2123
2124    case Instruction::INVOKE_VIRTUAL:
2125    case Instruction::INVOKE_VIRTUAL_RANGE:
2126    case Instruction::INVOKE_SUPER:
2127    case Instruction::INVOKE_SUPER_RANGE: {
2128      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2129                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2130      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2131                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2132      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2133                                                                   is_range, is_super);
2134      const RegType* return_type = nullptr;
2135      if (called_method != nullptr) {
2136        MethodHelper mh(called_method);
2137        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2138        if (return_type_class != nullptr) {
2139          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2140                                              return_type_class->CannotBeAssignedFromOtherTypes());
2141        } else {
2142          Thread* self = Thread::Current();
2143          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2144          self->ClearException();
2145        }
2146      }
2147      if (return_type == nullptr) {
2148        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2149        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2150        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2151        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2152        return_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2153      }
2154      if (!return_type->IsLowHalf()) {
2155        work_line_->SetResultRegisterType(*return_type);
2156      } else {
2157        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2158      }
2159      just_set_result = true;
2160      break;
2161    }
2162    case Instruction::INVOKE_DIRECT:
2163    case Instruction::INVOKE_DIRECT_RANGE: {
2164      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2165      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2166                                                                   is_range, false);
2167      const char* return_type_descriptor;
2168      bool is_constructor;
2169      if (called_method == NULL) {
2170        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2171        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2172        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2173        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2174        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2175      } else {
2176        is_constructor = called_method->IsConstructor();
2177        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2178      }
2179      if (is_constructor) {
2180        /*
2181         * Some additional checks when calling a constructor. We know from the invocation arg check
2182         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2183         * that to require that called_method->klass is the same as this->klass or this->super,
2184         * allowing the latter only if the "this" argument is the same as the "this" argument to
2185         * this method (which implies that we're in a constructor ourselves).
2186         */
2187        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2188        if (this_type.IsConflict())  // failure.
2189          break;
2190
2191        /* no null refs allowed (?) */
2192        if (this_type.IsZero()) {
2193          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2194          break;
2195        }
2196
2197        /* must be in same class or in superclass */
2198        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2199        // TODO: re-enable constructor type verification
2200        // if (this_super_klass.IsConflict()) {
2201          // Unknown super class, fail so we re-check at runtime.
2202          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2203          // break;
2204        // }
2205
2206        /* arg must be an uninitialized reference */
2207        if (!this_type.IsUninitializedTypes()) {
2208          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2209              << this_type;
2210          break;
2211        }
2212
2213        /*
2214         * Replace the uninitialized reference with an initialized one. We need to do this for all
2215         * registers that have the same object instance in them, not just the "this" register.
2216         */
2217        work_line_->MarkRefsAsInitialized(this_type);
2218      }
2219      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(),
2220                                                             return_type_descriptor, false);
2221      if (!return_type.IsLowHalf()) {
2222        work_line_->SetResultRegisterType(return_type);
2223      } else {
2224        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2225      }
2226      just_set_result = true;
2227      break;
2228    }
2229    case Instruction::INVOKE_STATIC:
2230    case Instruction::INVOKE_STATIC_RANGE: {
2231        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2232        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2233                                                                     METHOD_STATIC,
2234                                                                     is_range,
2235                                                                     false);
2236        const char* descriptor;
2237        if (called_method == NULL) {
2238          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2239          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2240          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2241          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2242        } else {
2243          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2244        }
2245        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2246                                                                false);
2247        if (!return_type.IsLowHalf()) {
2248          work_line_->SetResultRegisterType(return_type);
2249        } else {
2250          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2251        }
2252        just_set_result = true;
2253      }
2254      break;
2255    case Instruction::INVOKE_INTERFACE:
2256    case Instruction::INVOKE_INTERFACE_RANGE: {
2257      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2258      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2259                                                                METHOD_INTERFACE,
2260                                                                is_range,
2261                                                                false);
2262      if (abs_method != NULL) {
2263        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2264        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2265          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2266              << PrettyMethod(abs_method) << "'";
2267          break;
2268        }
2269      }
2270      /* Get the type of the "this" arg, which should either be a sub-interface of called
2271       * interface or Object (see comments in RegType::JoinClass).
2272       */
2273      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2274      if (this_type.IsZero()) {
2275        /* null pointer always passes (and always fails at runtime) */
2276      } else {
2277        if (this_type.IsUninitializedTypes()) {
2278          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2279              << this_type;
2280          break;
2281        }
2282        // In the past we have tried to assert that "called_interface" is assignable
2283        // from "this_type.GetClass()", however, as we do an imprecise Join
2284        // (RegType::JoinClass) we don't have full information on what interfaces are
2285        // implemented by "this_type". For example, two classes may implement the same
2286        // interfaces and have a common parent that doesn't implement the interface. The
2287        // join will set "this_type" to the parent class and a test that this implements
2288        // the interface will incorrectly fail.
2289      }
2290      /*
2291       * We don't have an object instance, so we can't find the concrete method. However, all of
2292       * the type information is in the abstract method, so we're good.
2293       */
2294      const char* descriptor;
2295      if (abs_method == NULL) {
2296        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2297        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2298        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2299        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2300      } else {
2301        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2302      }
2303      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2304                                                             false);
2305      if (!return_type.IsLowHalf()) {
2306        work_line_->SetResultRegisterType(return_type);
2307      } else {
2308        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2309      }
2310      just_set_result = true;
2311      break;
2312    }
2313    case Instruction::NEG_INT:
2314    case Instruction::NOT_INT:
2315      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2316      break;
2317    case Instruction::NEG_LONG:
2318    case Instruction::NOT_LONG:
2319      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2320                                   reg_types_.LongLo(), reg_types_.LongHi());
2321      break;
2322    case Instruction::NEG_FLOAT:
2323      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2324      break;
2325    case Instruction::NEG_DOUBLE:
2326      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2327                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2328      break;
2329    case Instruction::INT_TO_LONG:
2330      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2331                                     reg_types_.Integer());
2332      break;
2333    case Instruction::INT_TO_FLOAT:
2334      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2335      break;
2336    case Instruction::INT_TO_DOUBLE:
2337      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2338                                     reg_types_.Integer());
2339      break;
2340    case Instruction::LONG_TO_INT:
2341      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2342                                       reg_types_.LongLo(), reg_types_.LongHi());
2343      break;
2344    case Instruction::LONG_TO_FLOAT:
2345      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2346                                       reg_types_.LongLo(), reg_types_.LongHi());
2347      break;
2348    case Instruction::LONG_TO_DOUBLE:
2349      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2350                                   reg_types_.LongLo(), reg_types_.LongHi());
2351      break;
2352    case Instruction::FLOAT_TO_INT:
2353      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2354      break;
2355    case Instruction::FLOAT_TO_LONG:
2356      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2357                                     reg_types_.Float());
2358      break;
2359    case Instruction::FLOAT_TO_DOUBLE:
2360      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2361                                     reg_types_.Float());
2362      break;
2363    case Instruction::DOUBLE_TO_INT:
2364      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2365                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2366      break;
2367    case Instruction::DOUBLE_TO_LONG:
2368      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2369                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2370      break;
2371    case Instruction::DOUBLE_TO_FLOAT:
2372      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2373                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2374      break;
2375    case Instruction::INT_TO_BYTE:
2376      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2377      break;
2378    case Instruction::INT_TO_CHAR:
2379      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2380      break;
2381    case Instruction::INT_TO_SHORT:
2382      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2383      break;
2384
2385    case Instruction::ADD_INT:
2386    case Instruction::SUB_INT:
2387    case Instruction::MUL_INT:
2388    case Instruction::REM_INT:
2389    case Instruction::DIV_INT:
2390    case Instruction::SHL_INT:
2391    case Instruction::SHR_INT:
2392    case Instruction::USHR_INT:
2393      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2394                                reg_types_.Integer(), false);
2395      break;
2396    case Instruction::AND_INT:
2397    case Instruction::OR_INT:
2398    case Instruction::XOR_INT:
2399      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2400                                reg_types_.Integer(), true);
2401      break;
2402    case Instruction::ADD_LONG:
2403    case Instruction::SUB_LONG:
2404    case Instruction::MUL_LONG:
2405    case Instruction::DIV_LONG:
2406    case Instruction::REM_LONG:
2407    case Instruction::AND_LONG:
2408    case Instruction::OR_LONG:
2409    case Instruction::XOR_LONG:
2410      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2411                                    reg_types_.LongLo(), reg_types_.LongHi(),
2412                                    reg_types_.LongLo(), reg_types_.LongHi());
2413      break;
2414    case Instruction::SHL_LONG:
2415    case Instruction::SHR_LONG:
2416    case Instruction::USHR_LONG:
2417      /* shift distance is Int, making these different from other binary operations */
2418      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2419                                         reg_types_.Integer());
2420      break;
2421    case Instruction::ADD_FLOAT:
2422    case Instruction::SUB_FLOAT:
2423    case Instruction::MUL_FLOAT:
2424    case Instruction::DIV_FLOAT:
2425    case Instruction::REM_FLOAT:
2426      work_line_->CheckBinaryOp(inst,
2427                                reg_types_.Float(),
2428                                reg_types_.Float(),
2429                                reg_types_.Float(),
2430                                false);
2431      break;
2432    case Instruction::ADD_DOUBLE:
2433    case Instruction::SUB_DOUBLE:
2434    case Instruction::MUL_DOUBLE:
2435    case Instruction::DIV_DOUBLE:
2436    case Instruction::REM_DOUBLE:
2437      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2438                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2439                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2440      break;
2441    case Instruction::ADD_INT_2ADDR:
2442    case Instruction::SUB_INT_2ADDR:
2443    case Instruction::MUL_INT_2ADDR:
2444    case Instruction::REM_INT_2ADDR:
2445    case Instruction::SHL_INT_2ADDR:
2446    case Instruction::SHR_INT_2ADDR:
2447    case Instruction::USHR_INT_2ADDR:
2448      work_line_->CheckBinaryOp2addr(inst,
2449                                     reg_types_.Integer(),
2450                                     reg_types_.Integer(),
2451                                     reg_types_.Integer(),
2452                                     false);
2453      break;
2454    case Instruction::AND_INT_2ADDR:
2455    case Instruction::OR_INT_2ADDR:
2456    case Instruction::XOR_INT_2ADDR:
2457      work_line_->CheckBinaryOp2addr(inst,
2458                                     reg_types_.Integer(),
2459                                     reg_types_.Integer(),
2460                                     reg_types_.Integer(),
2461                                     true);
2462      break;
2463    case Instruction::DIV_INT_2ADDR:
2464      work_line_->CheckBinaryOp2addr(inst,
2465                                     reg_types_.Integer(),
2466                                     reg_types_.Integer(),
2467                                     reg_types_.Integer(),
2468                                     false);
2469      break;
2470    case Instruction::ADD_LONG_2ADDR:
2471    case Instruction::SUB_LONG_2ADDR:
2472    case Instruction::MUL_LONG_2ADDR:
2473    case Instruction::DIV_LONG_2ADDR:
2474    case Instruction::REM_LONG_2ADDR:
2475    case Instruction::AND_LONG_2ADDR:
2476    case Instruction::OR_LONG_2ADDR:
2477    case Instruction::XOR_LONG_2ADDR:
2478      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2479                                         reg_types_.LongLo(), reg_types_.LongHi(),
2480                                         reg_types_.LongLo(), reg_types_.LongHi());
2481      break;
2482    case Instruction::SHL_LONG_2ADDR:
2483    case Instruction::SHR_LONG_2ADDR:
2484    case Instruction::USHR_LONG_2ADDR:
2485      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2486                                              reg_types_.Integer());
2487      break;
2488    case Instruction::ADD_FLOAT_2ADDR:
2489    case Instruction::SUB_FLOAT_2ADDR:
2490    case Instruction::MUL_FLOAT_2ADDR:
2491    case Instruction::DIV_FLOAT_2ADDR:
2492    case Instruction::REM_FLOAT_2ADDR:
2493      work_line_->CheckBinaryOp2addr(inst,
2494                                     reg_types_.Float(),
2495                                     reg_types_.Float(),
2496                                     reg_types_.Float(),
2497                                     false);
2498      break;
2499    case Instruction::ADD_DOUBLE_2ADDR:
2500    case Instruction::SUB_DOUBLE_2ADDR:
2501    case Instruction::MUL_DOUBLE_2ADDR:
2502    case Instruction::DIV_DOUBLE_2ADDR:
2503    case Instruction::REM_DOUBLE_2ADDR:
2504      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2505                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2506                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2507      break;
2508    case Instruction::ADD_INT_LIT16:
2509    case Instruction::RSUB_INT:
2510    case Instruction::MUL_INT_LIT16:
2511    case Instruction::DIV_INT_LIT16:
2512    case Instruction::REM_INT_LIT16:
2513      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2514      break;
2515    case Instruction::AND_INT_LIT16:
2516    case Instruction::OR_INT_LIT16:
2517    case Instruction::XOR_INT_LIT16:
2518      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2519      break;
2520    case Instruction::ADD_INT_LIT8:
2521    case Instruction::RSUB_INT_LIT8:
2522    case Instruction::MUL_INT_LIT8:
2523    case Instruction::DIV_INT_LIT8:
2524    case Instruction::REM_INT_LIT8:
2525    case Instruction::SHL_INT_LIT8:
2526    case Instruction::SHR_INT_LIT8:
2527    case Instruction::USHR_INT_LIT8:
2528      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2529      break;
2530    case Instruction::AND_INT_LIT8:
2531    case Instruction::OR_INT_LIT8:
2532    case Instruction::XOR_INT_LIT8:
2533      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2534      break;
2535
2536    // Special instructions.
2537    case Instruction::RETURN_VOID_BARRIER:
2538      if (!IsConstructor() || IsStatic()) {
2539          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2540      }
2541      break;
2542    // Note: the following instructions encode offsets derived from class linking.
2543    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2544    // meaning if the class linking and resolution were successful.
2545    case Instruction::IGET_QUICK:
2546      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2547      break;
2548    case Instruction::IGET_WIDE_QUICK:
2549      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2550      break;
2551    case Instruction::IGET_OBJECT_QUICK:
2552      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2553      break;
2554    case Instruction::IPUT_QUICK:
2555      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2556      break;
2557    case Instruction::IPUT_WIDE_QUICK:
2558      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2559      break;
2560    case Instruction::IPUT_OBJECT_QUICK:
2561      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2562      break;
2563    case Instruction::INVOKE_VIRTUAL_QUICK:
2564    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2565      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2566      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2567      if (called_method != NULL) {
2568        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2569        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2570                                                               false);
2571        if (!return_type.IsLowHalf()) {
2572          work_line_->SetResultRegisterType(return_type);
2573        } else {
2574          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2575        }
2576        just_set_result = true;
2577      }
2578      break;
2579    }
2580
2581    /* These should never appear during verification. */
2582    case Instruction::UNUSED_3E:
2583    case Instruction::UNUSED_3F:
2584    case Instruction::UNUSED_40:
2585    case Instruction::UNUSED_41:
2586    case Instruction::UNUSED_42:
2587    case Instruction::UNUSED_43:
2588    case Instruction::UNUSED_79:
2589    case Instruction::UNUSED_7A:
2590    case Instruction::UNUSED_EB:
2591    case Instruction::UNUSED_EC:
2592    case Instruction::UNUSED_ED:
2593    case Instruction::UNUSED_EE:
2594    case Instruction::UNUSED_EF:
2595    case Instruction::UNUSED_F0:
2596    case Instruction::UNUSED_F1:
2597    case Instruction::UNUSED_F2:
2598    case Instruction::UNUSED_F3:
2599    case Instruction::UNUSED_F4:
2600    case Instruction::UNUSED_F5:
2601    case Instruction::UNUSED_F6:
2602    case Instruction::UNUSED_F7:
2603    case Instruction::UNUSED_F8:
2604    case Instruction::UNUSED_F9:
2605    case Instruction::UNUSED_FA:
2606    case Instruction::UNUSED_FB:
2607    case Instruction::UNUSED_FC:
2608    case Instruction::UNUSED_FD:
2609    case Instruction::UNUSED_FE:
2610    case Instruction::UNUSED_FF:
2611      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2612      break;
2613
2614    /*
2615     * DO NOT add a "default" clause here. Without it the compiler will
2616     * complain if an instruction is missing (which is desirable).
2617     */
2618  }  // end - switch (dec_insn.opcode)
2619
2620  if (have_pending_hard_failure_) {
2621    if (Runtime::Current()->IsCompiler()) {
2622      /* When compiling, check that the last failure is a hard failure */
2623      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2624    }
2625    /* immediate failure, reject class */
2626    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2627    return false;
2628  } else if (have_pending_runtime_throw_failure_) {
2629    /* checking interpreter will throw, mark following code as unreachable */
2630    opcode_flags = Instruction::kThrow;
2631  }
2632  /*
2633   * If we didn't just set the result register, clear it out. This ensures that you can only use
2634   * "move-result" immediately after the result is set. (We could check this statically, but it's
2635   * not expensive and it makes our debugging output cleaner.)
2636   */
2637  if (!just_set_result) {
2638    work_line_->SetResultTypeToUnknown();
2639  }
2640
2641
2642
2643  /*
2644   * Handle "branch". Tag the branch target.
2645   *
2646   * NOTE: instructions like Instruction::EQZ provide information about the
2647   * state of the register when the branch is taken or not taken. For example,
2648   * somebody could get a reference field, check it for zero, and if the
2649   * branch is taken immediately store that register in a boolean field
2650   * since the value is known to be zero. We do not currently account for
2651   * that, and will reject the code.
2652   *
2653   * TODO: avoid re-fetching the branch target
2654   */
2655  if ((opcode_flags & Instruction::kBranch) != 0) {
2656    bool isConditional, selfOkay;
2657    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2658      /* should never happen after static verification */
2659      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2660      return false;
2661    }
2662    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2663    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2664      return false;
2665    }
2666    /* update branch target, set "changed" if appropriate */
2667    if (NULL != branch_line.get()) {
2668      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2669        return false;
2670      }
2671    } else {
2672      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2673        return false;
2674      }
2675    }
2676  }
2677
2678  /*
2679   * Handle "switch". Tag all possible branch targets.
2680   *
2681   * We've already verified that the table is structurally sound, so we
2682   * just need to walk through and tag the targets.
2683   */
2684  if ((opcode_flags & Instruction::kSwitch) != 0) {
2685    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2686    const uint16_t* switch_insns = insns + offset_to_switch;
2687    int switch_count = switch_insns[1];
2688    int offset_to_targets, targ;
2689
2690    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2691      /* 0 = sig, 1 = count, 2/3 = first key */
2692      offset_to_targets = 4;
2693    } else {
2694      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2695      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2696      offset_to_targets = 2 + 2 * switch_count;
2697    }
2698
2699    /* verify each switch target */
2700    for (targ = 0; targ < switch_count; targ++) {
2701      int offset;
2702      uint32_t abs_offset;
2703
2704      /* offsets are 32-bit, and only partly endian-swapped */
2705      offset = switch_insns[offset_to_targets + targ * 2] |
2706         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2707      abs_offset = work_insn_idx_ + offset;
2708      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2709      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2710        return false;
2711      }
2712      if (!UpdateRegisters(abs_offset, work_line_.get()))
2713        return false;
2714    }
2715  }
2716
2717  /*
2718   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2719   * "try" block when they throw, control transfers out of the method.)
2720   */
2721  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2722    bool within_catch_all = false;
2723    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2724
2725    for (; iterator.HasNext(); iterator.Next()) {
2726      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2727        within_catch_all = true;
2728      }
2729      /*
2730       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2731       * "work_regs", because at runtime the exception will be thrown before the instruction
2732       * modifies any registers.
2733       */
2734      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2735        return false;
2736      }
2737    }
2738
2739    /*
2740     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2741     * instruction. This does apply to monitor-exit because of async exception handling.
2742     */
2743    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2744      /*
2745       * The state in work_line reflects the post-execution state. If the current instruction is a
2746       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2747       * it will do so before grabbing the lock).
2748       */
2749      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2750        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2751            << "expected to be within a catch-all for an instruction where a monitor is held";
2752        return false;
2753      }
2754    }
2755  }
2756
2757  /* Handle "continue". Tag the next consecutive instruction.
2758   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2759   *        because it changes work_line_ when performing peephole optimization
2760   *        and this change should not be used in those cases.
2761   */
2762  if ((opcode_flags & Instruction::kContinue) != 0) {
2763    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2764    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2765      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2766      return false;
2767    }
2768    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2769    // next instruction isn't one.
2770    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2771      return false;
2772    }
2773    if (NULL != fallthrough_line.get()) {
2774      // Make workline consistent with fallthrough computed from peephole optimization.
2775      work_line_->CopyFromLine(fallthrough_line.get());
2776    }
2777    if (insn_flags_[next_insn_idx].IsReturn()) {
2778      // For returns we only care about the operand to the return, all other registers are dead.
2779      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2780      Instruction::Code opcode = ret_inst->Opcode();
2781      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2782        work_line_->MarkAllRegistersAsConflicts();
2783      } else {
2784        if (opcode == Instruction::RETURN_WIDE) {
2785          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2786        } else {
2787          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2788        }
2789      }
2790    }
2791    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2792    if (next_line != NULL) {
2793      // Merge registers into what we have for the next instruction,
2794      // and set the "changed" flag if needed.
2795      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2796        return false;
2797      }
2798    } else {
2799      /*
2800       * We're not recording register data for the next instruction, so we don't know what the
2801       * prior state was. We have to assume that something has changed and re-evaluate it.
2802       */
2803      insn_flags_[next_insn_idx].SetChanged();
2804    }
2805  }
2806
2807  /* If we're returning from the method, make sure monitor stack is empty. */
2808  if ((opcode_flags & Instruction::kReturn) != 0) {
2809    if (!work_line_->VerifyMonitorStackEmpty()) {
2810      return false;
2811    }
2812  }
2813
2814  /*
2815   * Update start_guess. Advance to the next instruction of that's
2816   * possible, otherwise use the branch target if one was found. If
2817   * neither of those exists we're in a return or throw; leave start_guess
2818   * alone and let the caller sort it out.
2819   */
2820  if ((opcode_flags & Instruction::kContinue) != 0) {
2821    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2822  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2823    /* we're still okay if branch_target is zero */
2824    *start_guess = work_insn_idx_ + branch_target;
2825  }
2826
2827  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2828  DCHECK(insn_flags_[*start_guess].IsOpcode());
2829
2830  return true;
2831}  // NOLINT(readability/fn_size)
2832
2833const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2834  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2835  const RegType& referrer = GetDeclaringClass();
2836  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2837  const RegType& result =
2838      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2839                                           klass->CannotBeAssignedFromOtherTypes())
2840                    : reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2841  if (result.IsConflict()) {
2842    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2843        << "' in " << referrer;
2844    return result;
2845  }
2846  if (klass == NULL && !result.IsUnresolvedTypes()) {
2847    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2848  }
2849  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2850  // check at runtime if access is allowed and so pass here. If result is
2851  // primitive, skip the access check.
2852  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2853      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2854    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2855                                    << referrer << "' -> '" << result << "'";
2856  }
2857  return result;
2858}
2859
2860const RegType& MethodVerifier::GetCaughtExceptionType() {
2861  const RegType* common_super = NULL;
2862  if (code_item_->tries_size_ != 0) {
2863    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2864    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2865    for (uint32_t i = 0; i < handlers_size; i++) {
2866      CatchHandlerIterator iterator(handlers_ptr);
2867      for (; iterator.HasNext(); iterator.Next()) {
2868        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2869          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2870            common_super = &reg_types_.JavaLangThrowable(false);
2871          } else {
2872            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2873            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2874              if (exception.IsUnresolvedTypes()) {
2875                // We don't know enough about the type. Fail here and let runtime handle it.
2876                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2877                return exception;
2878              } else {
2879                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2880                return reg_types_.Conflict();
2881              }
2882            } else if (common_super == nullptr) {
2883              common_super = &exception;
2884            } else if (common_super->Equals(exception)) {
2885              // odd case, but nothing to do
2886            } else {
2887              common_super = &common_super->Merge(exception, &reg_types_);
2888              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2889            }
2890          }
2891        }
2892      }
2893      handlers_ptr = iterator.EndDataPointer();
2894    }
2895  }
2896  if (common_super == NULL) {
2897    /* no catch blocks, or no catches with classes we can find */
2898    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2899    return reg_types_.Conflict();
2900  }
2901  return *common_super;
2902}
2903
2904mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2905                                                               MethodType method_type) {
2906  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2907  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2908  if (klass_type.IsConflict()) {
2909    std::string append(" in attempt to access method ");
2910    append += dex_file_->GetMethodName(method_id);
2911    AppendToLastFailMessage(append);
2912    return NULL;
2913  }
2914  if (klass_type.IsUnresolvedTypes()) {
2915    return NULL;  // Can't resolve Class so no more to do here
2916  }
2917  mirror::Class* klass = klass_type.GetClass();
2918  const RegType& referrer = GetDeclaringClass();
2919  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2920  if (res_method == NULL) {
2921    const char* name = dex_file_->GetMethodName(method_id);
2922    const Signature signature = dex_file_->GetMethodSignature(method_id);
2923
2924    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2925      res_method = klass->FindDirectMethod(name, signature);
2926    } else if (method_type == METHOD_INTERFACE) {
2927      res_method = klass->FindInterfaceMethod(name, signature);
2928    } else {
2929      res_method = klass->FindVirtualMethod(name, signature);
2930    }
2931    if (res_method != NULL) {
2932      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2933    } else {
2934      // If a virtual or interface method wasn't found with the expected type, look in
2935      // the direct methods. This can happen when the wrong invoke type is used or when
2936      // a class has changed, and will be flagged as an error in later checks.
2937      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2938        res_method = klass->FindDirectMethod(name, signature);
2939      }
2940      if (res_method == NULL) {
2941        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2942                                     << PrettyDescriptor(klass) << "." << name
2943                                     << " " << signature;
2944        return NULL;
2945      }
2946    }
2947  }
2948  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2949  // enforce them here.
2950  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2951    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2952                                      << PrettyMethod(res_method);
2953    return NULL;
2954  }
2955  // Disallow any calls to class initializers.
2956  if (MethodHelper(res_method).IsClassInitializer()) {
2957    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2958                                      << PrettyMethod(res_method);
2959    return NULL;
2960  }
2961  // Check if access is allowed.
2962  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2963    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2964                                     << " from " << referrer << ")";
2965    return res_method;
2966  }
2967  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2968  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2969    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2970                                      << PrettyMethod(res_method);
2971    return NULL;
2972  }
2973  // Check that interface methods match interface classes.
2974  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2975    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2976                                    << " is in an interface class " << PrettyClass(klass);
2977    return NULL;
2978  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2979    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2980                                    << " is in a non-interface class " << PrettyClass(klass);
2981    return NULL;
2982  }
2983  // See if the method type implied by the invoke instruction matches the access flags for the
2984  // target method.
2985  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2986      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2987      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2988      ) {
2989    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2990                                       " type of " << PrettyMethod(res_method);
2991    return NULL;
2992  }
2993  return res_method;
2994}
2995
2996mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2997                                                             MethodType method_type,
2998                                                             bool is_range,
2999                                                             bool is_super) {
3000  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3001  // we're making.
3002  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3003  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3004  if (res_method == NULL) {  // error or class is unresolved
3005    return NULL;
3006  }
3007
3008  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3009  // has a vtable entry for the target method.
3010  if (is_super) {
3011    DCHECK(method_type == METHOD_VIRTUAL);
3012    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3013    if (super.IsUnresolvedTypes()) {
3014      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3015                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3016                                   << " to super " << PrettyMethod(res_method);
3017      return NULL;
3018    }
3019    mirror::Class* super_klass = super.GetClass();
3020    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3021      MethodHelper mh(res_method);
3022      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3023                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3024                                   << " to super " << super
3025                                   << "." << mh.GetName()
3026                                   << mh.GetSignature();
3027      return NULL;
3028    }
3029  }
3030  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3031  // match the call to the signature. Also, we might be calling through an abstract method
3032  // definition (which doesn't have register count values).
3033  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3034  /* caught by static verifier */
3035  DCHECK(is_range || expected_args <= 5);
3036  if (expected_args > code_item_->outs_size_) {
3037    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3038        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3039    return NULL;
3040  }
3041
3042  /*
3043   * Check the "this" argument, which must be an instance of the class that declared the method.
3044   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3045   * rigorous check here (which is okay since we have to do it at runtime).
3046   */
3047  size_t actual_args = 0;
3048  if (!res_method->IsStatic()) {
3049    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3050    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3051      return NULL;
3052    }
3053    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3054      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3055      return NULL;
3056    }
3057    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3058      mirror::Class* klass = res_method->GetDeclaringClass();
3059      const RegType& res_method_class =
3060          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3061                               klass->CannotBeAssignedFromOtherTypes());
3062      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3063        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3064            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3065            << "' not instance of '" << res_method_class << "'";
3066        return NULL;
3067      }
3068    }
3069    actual_args++;
3070  }
3071  /*
3072   * Process the target method's signature. This signature may or may not
3073   * have been verified, so we can't assume it's properly formed.
3074   */
3075  MethodHelper mh(res_method);
3076  const DexFile::TypeList* params = mh.GetParameterTypeList();
3077  size_t params_size = params == NULL ? 0 : params->Size();
3078  uint32_t arg[5];
3079  if (!is_range) {
3080    inst->GetVarArgs(arg);
3081  }
3082  for (size_t param_index = 0; param_index < params_size; param_index++) {
3083    if (actual_args >= expected_args) {
3084      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3085          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3086          << " (where longs/doubles count twice).";
3087      return NULL;
3088    }
3089    const char* descriptor =
3090        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3091    if (descriptor == NULL) {
3092      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3093          << " missing signature component";
3094      return NULL;
3095    }
3096    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3097    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3098    if (reg_type.IsIntegralTypes()) {
3099      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3100      if (!src_type.IsIntegralTypes()) {
3101        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3102                                          << " but expected " << reg_type;
3103        return res_method;
3104      }
3105    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3106      return res_method;
3107    }
3108    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3109  }
3110  if (actual_args != expected_args) {
3111    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3112        << " expected " << expected_args << " arguments, found " << actual_args;
3113    return NULL;
3114  } else {
3115    return res_method;
3116  }
3117}
3118
3119mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3120                                                         RegisterLine* reg_line, bool is_range) {
3121  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3122         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3123  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3124  if (!actual_arg_type.HasClass()) {
3125    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3126    return nullptr;
3127  }
3128  mirror::ObjectArray<mirror::ArtMethod>* vtable = nullptr;
3129  mirror::Class* klass = actual_arg_type.GetClass();
3130  if (klass->IsInterface()) {
3131    // Derive Object.class from Class.class.getSuperclass().
3132    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3133    CHECK(object_klass->IsObjectClass());
3134    vtable = object_klass->GetVTable();
3135  } else {
3136    vtable = klass->GetVTable();
3137  }
3138  CHECK(vtable != nullptr) << PrettyDescriptor(klass);
3139  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3140  CHECK_LT(static_cast<int32_t>(vtable_index), vtable->GetLength()) << PrettyDescriptor(klass);
3141  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3142  CHECK(!Thread::Current()->IsExceptionPending());
3143  return res_method;
3144}
3145
3146mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3147                                                                     bool is_range) {
3148  DCHECK(Runtime::Current()->IsStarted());
3149  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3150                                                             is_range);
3151  if (res_method == NULL) {
3152    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3153    return NULL;
3154  }
3155  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3156
3157  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3158  // match the call to the signature. Also, we might be calling through an abstract method
3159  // definition (which doesn't have register count values).
3160  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3161  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3162    return NULL;
3163  }
3164  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3165  /* caught by static verifier */
3166  DCHECK(is_range || expected_args <= 5);
3167  if (expected_args > code_item_->outs_size_) {
3168    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3169        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3170    return NULL;
3171  }
3172
3173  /*
3174   * Check the "this" argument, which must be an instance of the class that declared the method.
3175   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3176   * rigorous check here (which is okay since we have to do it at runtime).
3177   */
3178  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3179    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3180    return NULL;
3181  }
3182  if (!actual_arg_type.IsZero()) {
3183    mirror::Class* klass = res_method->GetDeclaringClass();
3184    const RegType& res_method_class =
3185        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3186                             klass->CannotBeAssignedFromOtherTypes());
3187    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3188      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3189          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3190          << "' not instance of '" << res_method_class << "'";
3191      return NULL;
3192    }
3193  }
3194  /*
3195   * Process the target method's signature. This signature may or may not
3196   * have been verified, so we can't assume it's properly formed.
3197   */
3198  MethodHelper mh(res_method);
3199  const DexFile::TypeList* params = mh.GetParameterTypeList();
3200  size_t params_size = params == NULL ? 0 : params->Size();
3201  uint32_t arg[5];
3202  if (!is_range) {
3203    inst->GetVarArgs(arg);
3204  }
3205  size_t actual_args = 1;
3206  for (size_t param_index = 0; param_index < params_size; param_index++) {
3207    if (actual_args >= expected_args) {
3208      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3209                                        << "'. Expected " << expected_args
3210                                         << " arguments, processing argument " << actual_args
3211                                        << " (where longs/doubles count twice).";
3212      return NULL;
3213    }
3214    const char* descriptor =
3215        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3216    if (descriptor == NULL) {
3217      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3218                                        << " missing signature component";
3219      return NULL;
3220    }
3221    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3222    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3223    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3224      return res_method;
3225    }
3226    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3227  }
3228  if (actual_args != expected_args) {
3229    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3230              << " expected " << expected_args << " arguments, found " << actual_args;
3231    return NULL;
3232  } else {
3233    return res_method;
3234  }
3235}
3236
3237void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3238  uint32_t type_idx;
3239  if (!is_filled) {
3240    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3241    type_idx = inst->VRegC_22c();
3242  } else if (!is_range) {
3243    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3244    type_idx = inst->VRegB_35c();
3245  } else {
3246    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3247    type_idx = inst->VRegB_3rc();
3248  }
3249  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3250  if (res_type.IsConflict()) {  // bad class
3251    DCHECK_NE(failures_.size(), 0U);
3252  } else {
3253    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3254    if (!res_type.IsArrayTypes()) {
3255      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3256    } else if (!is_filled) {
3257      /* make sure "size" register is valid type */
3258      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3259      /* set register type to array class */
3260      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3261      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3262    } else {
3263      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3264      // the list and fail. It's legal, if silly, for arg_count to be zero.
3265      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->get());
3266      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3267      uint32_t arg[5];
3268      if (!is_range) {
3269        inst->GetVarArgs(arg);
3270      }
3271      for (size_t ui = 0; ui < arg_count; ui++) {
3272        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3273        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3274          work_line_->SetResultRegisterType(reg_types_.Conflict());
3275          return;
3276        }
3277      }
3278      // filled-array result goes into "result" register
3279      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3280      work_line_->SetResultRegisterType(precise_type);
3281    }
3282  }
3283}
3284
3285void MethodVerifier::VerifyAGet(const Instruction* inst,
3286                                const RegType& insn_type, bool is_primitive) {
3287  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3288  if (!index_type.IsArrayIndexTypes()) {
3289    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3290  } else {
3291    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3292    if (array_type.IsZero()) {
3293      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3294      // instruction type. TODO: have a proper notion of bottom here.
3295      if (!is_primitive || insn_type.IsCategory1Types()) {
3296        // Reference or category 1
3297        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3298      } else {
3299        // Category 2
3300        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3301                                        reg_types_.FromCat2ConstHi(0, false));
3302      }
3303    } else if (!array_type.IsArrayTypes()) {
3304      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3305    } else {
3306      /* verify the class */
3307      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3308      if (!component_type.IsReferenceTypes() && !is_primitive) {
3309        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3310            << " source for aget-object";
3311      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3312        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3313            << " source for category 1 aget";
3314      } else if (is_primitive && !insn_type.Equals(component_type) &&
3315                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3316                 (insn_type.IsLong() && component_type.IsDouble()))) {
3317        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3318            << " incompatible with aget of type " << insn_type;
3319      } else {
3320        // Use knowledge of the field type which is stronger than the type inferred from the
3321        // instruction, which can't differentiate object types and ints from floats, longs from
3322        // doubles.
3323        if (!component_type.IsLowHalf()) {
3324          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3325        } else {
3326          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3327                                          component_type.HighHalf(&reg_types_));
3328        }
3329      }
3330    }
3331  }
3332}
3333
3334void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3335                                        const uint32_t vregA) {
3336  // Primitive assignability rules are weaker than regular assignability rules.
3337  bool instruction_compatible;
3338  bool value_compatible;
3339  const RegType& value_type = work_line_->GetRegisterType(vregA);
3340  if (target_type.IsIntegralTypes()) {
3341    instruction_compatible = target_type.Equals(insn_type);
3342    value_compatible = value_type.IsIntegralTypes();
3343  } else if (target_type.IsFloat()) {
3344    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3345    value_compatible = value_type.IsFloatTypes();
3346  } else if (target_type.IsLong()) {
3347    instruction_compatible = insn_type.IsLong();
3348    value_compatible = value_type.IsLongTypes();
3349  } else if (target_type.IsDouble()) {
3350    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3351    value_compatible = value_type.IsDoubleTypes();
3352  } else {
3353    instruction_compatible = false;  // reference with primitive store
3354    value_compatible = false;  // unused
3355  }
3356  if (!instruction_compatible) {
3357    // This is a global failure rather than a class change failure as the instructions and
3358    // the descriptors for the type should have been consistent within the same file at
3359    // compile time.
3360    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3361        << "' but expected type '" << target_type << "'";
3362    return;
3363  }
3364  if (!value_compatible) {
3365    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3366        << " of type " << value_type << " but expected " << target_type << " for put";
3367    return;
3368  }
3369}
3370
3371void MethodVerifier::VerifyAPut(const Instruction* inst,
3372                                const RegType& insn_type, bool is_primitive) {
3373  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3374  if (!index_type.IsArrayIndexTypes()) {
3375    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3376  } else {
3377    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3378    if (array_type.IsZero()) {
3379      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3380      // instruction type.
3381    } else if (!array_type.IsArrayTypes()) {
3382      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3383    } else {
3384      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3385      const uint32_t vregA = inst->VRegA_23x();
3386      if (is_primitive) {
3387        VerifyPrimitivePut(component_type, insn_type, vregA);
3388      } else {
3389        if (!component_type.IsReferenceTypes()) {
3390          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3391              << " source for aput-object";
3392        } else {
3393          // The instruction agrees with the type of array, confirm the value to be stored does too
3394          // Note: we use the instruction type (rather than the component type) for aput-object as
3395          // incompatible classes will be caught at runtime as an array store exception
3396          work_line_->VerifyRegisterType(vregA, insn_type);
3397        }
3398      }
3399    }
3400  }
3401}
3402
3403mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3404  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3405  // Check access to class
3406  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3407  if (klass_type.IsConflict()) {  // bad class
3408    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3409                                         field_idx, dex_file_->GetFieldName(field_id),
3410                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3411    return NULL;
3412  }
3413  if (klass_type.IsUnresolvedTypes()) {
3414    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3415  }
3416  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3417  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3418                                                          *class_loader_);
3419  if (field == NULL) {
3420    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3421              << dex_file_->GetFieldName(field_id) << ") in "
3422              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3423    DCHECK(Thread::Current()->IsExceptionPending());
3424    Thread::Current()->ClearException();
3425    return NULL;
3426  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3427                                                  field->GetAccessFlags())) {
3428    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3429                                    << " from " << GetDeclaringClass();
3430    return NULL;
3431  } else if (!field->IsStatic()) {
3432    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3433    return NULL;
3434  }
3435  return field;
3436}
3437
3438mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3439  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3440  // Check access to class
3441  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3442  if (klass_type.IsConflict()) {
3443    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3444                                         field_idx, dex_file_->GetFieldName(field_id),
3445                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3446    return NULL;
3447  }
3448  if (klass_type.IsUnresolvedTypes()) {
3449    return NULL;  // Can't resolve Class so no more to do here
3450  }
3451  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3452  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3453                                                          *class_loader_);
3454  if (field == NULL) {
3455    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3456              << dex_file_->GetFieldName(field_id) << ") in "
3457              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3458    DCHECK(Thread::Current()->IsExceptionPending());
3459    Thread::Current()->ClearException();
3460    return NULL;
3461  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3462                                                  field->GetAccessFlags())) {
3463    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3464                                    << " from " << GetDeclaringClass();
3465    return NULL;
3466  } else if (field->IsStatic()) {
3467    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3468                                    << " to not be static";
3469    return NULL;
3470  } else if (obj_type.IsZero()) {
3471    // Cannot infer and check type, however, access will cause null pointer exception
3472    return field;
3473  } else {
3474    mirror::Class* klass = field->GetDeclaringClass();
3475    const RegType& field_klass =
3476        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3477                             klass, klass->CannotBeAssignedFromOtherTypes());
3478    if (obj_type.IsUninitializedTypes() &&
3479        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3480            !field_klass.Equals(GetDeclaringClass()))) {
3481      // Field accesses through uninitialized references are only allowable for constructors where
3482      // the field is declared in this class
3483      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3484                                        << " of a not fully initialized object within the context"
3485                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3486      return NULL;
3487    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3488      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3489      // of C1. For resolution to occur the declared class of the field must be compatible with
3490      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3491      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3492                                  << " from object of type " << obj_type;
3493      return NULL;
3494    } else {
3495      return field;
3496    }
3497  }
3498}
3499
3500void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3501                                 bool is_primitive, bool is_static) {
3502  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3503  mirror::ArtField* field;
3504  if (is_static) {
3505    field = GetStaticField(field_idx);
3506  } else {
3507    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3508    field = GetInstanceField(object_type, field_idx);
3509  }
3510  const RegType* field_type = nullptr;
3511  if (field != NULL) {
3512    FieldHelper fh(field);
3513    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3514    if (field_type_class != nullptr) {
3515      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3516                                         field_type_class->CannotBeAssignedFromOtherTypes());
3517    } else {
3518      Thread* self = Thread::Current();
3519      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3520      self->ClearException();
3521    }
3522  }
3523  if (field_type == nullptr) {
3524    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3525    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3526    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3527  }
3528  DCHECK(field_type != nullptr);
3529  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3530  if (is_primitive) {
3531    if (field_type->Equals(insn_type) ||
3532        (field_type->IsFloat() && insn_type.IsInteger()) ||
3533        (field_type->IsDouble() && insn_type.IsLong())) {
3534      // expected that read is of the correct primitive type or that int reads are reading
3535      // floats or long reads are reading doubles
3536    } else {
3537      // This is a global failure rather than a class change failure as the instructions and
3538      // the descriptors for the type should have been consistent within the same file at
3539      // compile time
3540      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3541                                        << " to be of type '" << insn_type
3542                                        << "' but found type '" << *field_type << "' in get";
3543      return;
3544    }
3545  } else {
3546    if (!insn_type.IsAssignableFrom(*field_type)) {
3547      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3548                                        << " to be compatible with type '" << insn_type
3549                                        << "' but found type '" << *field_type
3550                                        << "' in get-object";
3551      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3552      return;
3553    }
3554  }
3555  if (!field_type->IsLowHalf()) {
3556    work_line_->SetRegisterType(vregA, *field_type);
3557  } else {
3558    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3559  }
3560}
3561
3562void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3563                                 bool is_primitive, bool is_static) {
3564  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3565  mirror::ArtField* field;
3566  if (is_static) {
3567    field = GetStaticField(field_idx);
3568  } else {
3569    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3570    field = GetInstanceField(object_type, field_idx);
3571  }
3572  const RegType* field_type = nullptr;
3573  if (field != NULL) {
3574    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3575      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3576                                      << " from other class " << GetDeclaringClass();
3577      return;
3578    }
3579    FieldHelper fh(field);
3580    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3581    if (field_type_class != nullptr) {
3582      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3583                                         field_type_class->CannotBeAssignedFromOtherTypes());
3584    } else {
3585      Thread* self = Thread::Current();
3586      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3587      self->ClearException();
3588    }
3589  }
3590  if (field_type == nullptr) {
3591    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3592    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3593    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3594  }
3595  DCHECK(field_type != nullptr);
3596  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3597  if (is_primitive) {
3598    VerifyPrimitivePut(*field_type, insn_type, vregA);
3599  } else {
3600    if (!insn_type.IsAssignableFrom(*field_type)) {
3601      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3602                                        << " to be compatible with type '" << insn_type
3603                                        << "' but found type '" << *field_type
3604                                        << "' in put-object";
3605      return;
3606    }
3607    work_line_->VerifyRegisterType(vregA, *field_type);
3608  }
3609}
3610
3611mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3612                                                      RegisterLine* reg_line) {
3613  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3614         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3615         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3616         inst->Opcode() == Instruction::IPUT_QUICK ||
3617         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3618         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3619  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3620  if (!object_type.HasClass()) {
3621    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3622    return nullptr;
3623  }
3624  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3625  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3626                                                                      field_offset);
3627  if (f == nullptr) {
3628    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3629                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3630  }
3631  return f;
3632}
3633
3634void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3635                                     bool is_primitive) {
3636  DCHECK(Runtime::Current()->IsStarted());
3637  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3638  if (field == NULL) {
3639    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3640    return;
3641  }
3642  FieldHelper fh(field);
3643  mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3644  const RegType* field_type;
3645  if (field_type_class != nullptr) {
3646    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3647                                       field_type_class->CannotBeAssignedFromOtherTypes());
3648  } else {
3649    Thread* self = Thread::Current();
3650    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3651    self->ClearException();
3652    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3653                                            fh.GetTypeDescriptor(), false);
3654  }
3655  DCHECK(field_type != nullptr);
3656  const uint32_t vregA = inst->VRegA_22c();
3657  if (is_primitive) {
3658    if (field_type->Equals(insn_type) ||
3659        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3660        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3661      // expected that read is of the correct primitive type or that int reads are reading
3662      // floats or long reads are reading doubles
3663    } else {
3664      // This is a global failure rather than a class change failure as the instructions and
3665      // the descriptors for the type should have been consistent within the same file at
3666      // compile time
3667      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3668                                        << " to be of type '" << insn_type
3669                                        << "' but found type '" << *field_type << "' in get";
3670      return;
3671    }
3672  } else {
3673    if (!insn_type.IsAssignableFrom(*field_type)) {
3674      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3675                                        << " to be compatible with type '" << insn_type
3676                                        << "' but found type '" << *field_type
3677                                        << "' in get-object";
3678      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3679      return;
3680    }
3681  }
3682  if (!field_type->IsLowHalf()) {
3683    work_line_->SetRegisterType(vregA, *field_type);
3684  } else {
3685    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3686  }
3687}
3688
3689void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3690                                     bool is_primitive) {
3691  DCHECK(Runtime::Current()->IsStarted());
3692  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3693  if (field == NULL) {
3694    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3695    return;
3696  }
3697  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3698  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3699  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3700  if (field != NULL) {
3701    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3702      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3703                                      << " from other class " << GetDeclaringClass();
3704      return;
3705    }
3706  }
3707  const uint32_t vregA = inst->VRegA_22c();
3708  if (is_primitive) {
3709    // Primitive field assignability rules are weaker than regular assignability rules
3710    bool instruction_compatible;
3711    bool value_compatible;
3712    const RegType& value_type = work_line_->GetRegisterType(vregA);
3713    if (field_type.IsIntegralTypes()) {
3714      instruction_compatible = insn_type.IsIntegralTypes();
3715      value_compatible = value_type.IsIntegralTypes();
3716    } else if (field_type.IsFloat()) {
3717      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3718      value_compatible = value_type.IsFloatTypes();
3719    } else if (field_type.IsLong()) {
3720      instruction_compatible = insn_type.IsLong();
3721      value_compatible = value_type.IsLongTypes();
3722    } else if (field_type.IsDouble()) {
3723      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3724      value_compatible = value_type.IsDoubleTypes();
3725    } else {
3726      instruction_compatible = false;  // reference field with primitive store
3727      value_compatible = false;  // unused
3728    }
3729    if (!instruction_compatible) {
3730      // This is a global failure rather than a class change failure as the instructions and
3731      // the descriptors for the type should have been consistent within the same file at
3732      // compile time
3733      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3734                                        << " to be of type '" << insn_type
3735                                        << "' but found type '" << field_type
3736                                        << "' in put";
3737      return;
3738    }
3739    if (!value_compatible) {
3740      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3741          << " of type " << value_type
3742          << " but expected " << field_type
3743          << " for store to " << PrettyField(field) << " in put";
3744      return;
3745    }
3746  } else {
3747    if (!insn_type.IsAssignableFrom(field_type)) {
3748      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3749                                        << " to be compatible with type '" << insn_type
3750                                        << "' but found type '" << field_type
3751                                        << "' in put-object";
3752      return;
3753    }
3754    work_line_->VerifyRegisterType(vregA, field_type);
3755  }
3756}
3757
3758bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3759  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3760    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3761    return false;
3762  }
3763  return true;
3764}
3765
3766bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3767  bool changed = true;
3768  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3769  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3770    /*
3771     * We haven't processed this instruction before, and we haven't touched the registers here, so
3772     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3773     * only way a register can transition out of "unknown", so this is not just an optimization.)
3774     */
3775    if (!insn_flags_[next_insn].IsReturn()) {
3776      target_line->CopyFromLine(merge_line);
3777    } else {
3778      // Verify that the monitor stack is empty on return.
3779      if (!merge_line->VerifyMonitorStackEmpty()) {
3780        return false;
3781      }
3782      // For returns we only care about the operand to the return, all other registers are dead.
3783      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3784      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3785      Instruction::Code opcode = ret_inst->Opcode();
3786      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3787        target_line->MarkAllRegistersAsConflicts();
3788      } else {
3789        target_line->CopyFromLine(merge_line);
3790        if (opcode == Instruction::RETURN_WIDE) {
3791          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3792        } else {
3793          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3794        }
3795      }
3796    }
3797  } else {
3798    UniquePtr<RegisterLine> copy(gDebugVerify ?
3799                                 RegisterLine::Create(target_line->NumRegs(), this) :
3800                                 NULL);
3801    if (gDebugVerify) {
3802      copy->CopyFromLine(target_line);
3803    }
3804    changed = target_line->MergeRegisters(merge_line);
3805    if (have_pending_hard_failure_) {
3806      return false;
3807    }
3808    if (gDebugVerify && changed) {
3809      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3810                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3811                      << *copy.get() << "  MERGE\n"
3812                      << *merge_line << "  ==\n"
3813                      << *target_line << "\n";
3814    }
3815  }
3816  if (changed) {
3817    insn_flags_[next_insn].SetChanged();
3818  }
3819  return true;
3820}
3821
3822InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3823  return &insn_flags_[work_insn_idx_];
3824}
3825
3826const RegType& MethodVerifier::GetMethodReturnType() {
3827  if (return_type_ == nullptr) {
3828    if (mirror_method_ != NULL) {
3829      MethodHelper mh(mirror_method_);
3830      mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
3831      if (return_type_class != nullptr) {
3832        return_type_ = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3833                                             return_type_class->CannotBeAssignedFromOtherTypes());
3834      } else {
3835        Thread* self = Thread::Current();
3836        DCHECK(!can_load_classes_ || self->IsExceptionPending());
3837        self->ClearException();
3838      }
3839    }
3840    if (return_type_ == nullptr) {
3841      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3842      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3843      uint16_t return_type_idx = proto_id.return_type_idx_;
3844      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3845      return_type_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3846    }
3847  }
3848  return *return_type_;
3849}
3850
3851const RegType& MethodVerifier::GetDeclaringClass() {
3852  if (declaring_class_ == NULL) {
3853    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3854    const char* descriptor
3855        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3856    if (mirror_method_ != NULL) {
3857      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3858      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3859                                               klass->CannotBeAssignedFromOtherTypes());
3860    } else {
3861      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3862    }
3863  }
3864  return *declaring_class_;
3865}
3866
3867std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3868  RegisterLine* line = reg_table_.GetLine(dex_pc);
3869  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
3870  std::vector<int32_t> result;
3871  for (size_t i = 0; i < line->NumRegs(); ++i) {
3872    const RegType& type = line->GetRegisterType(i);
3873    if (type.IsConstant()) {
3874      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
3875      result.push_back(type.ConstantValue());
3876    } else if (type.IsConstantLo()) {
3877      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
3878      result.push_back(type.ConstantValueLo());
3879    } else if (type.IsConstantHi()) {
3880      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
3881      result.push_back(type.ConstantValueHi());
3882    } else if (type.IsIntegralTypes()) {
3883      result.push_back(kIntVReg);
3884      result.push_back(0);
3885    } else if (type.IsFloat()) {
3886      result.push_back(kFloatVReg);
3887      result.push_back(0);
3888    } else if (type.IsLong()) {
3889      result.push_back(kLongLoVReg);
3890      result.push_back(0);
3891      result.push_back(kLongHiVReg);
3892      result.push_back(0);
3893      ++i;
3894    } else if (type.IsDouble()) {
3895      result.push_back(kDoubleLoVReg);
3896      result.push_back(0);
3897      result.push_back(kDoubleHiVReg);
3898      result.push_back(0);
3899      ++i;
3900    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
3901      result.push_back(kUndefined);
3902      result.push_back(0);
3903    } else {
3904      CHECK(type.IsNonZeroReferenceTypes());
3905      result.push_back(kReferenceVReg);
3906      result.push_back(0);
3907    }
3908  }
3909  return result;
3910}
3911
3912const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
3913  if (precise) {
3914    // Precise constant type.
3915    return reg_types_.FromCat1Const(value, true);
3916  } else {
3917    // Imprecise constant type.
3918    if (value < -32768) {
3919      return reg_types_.IntConstant();
3920    } else if (value < -128) {
3921      return reg_types_.ShortConstant();
3922    } else if (value < 0) {
3923      return reg_types_.ByteConstant();
3924    } else if (value == 0) {
3925      return reg_types_.Zero();
3926    } else if (value == 1) {
3927      return reg_types_.One();
3928    } else if (value < 128) {
3929      return reg_types_.PosByteConstant();
3930    } else if (value < 32768) {
3931      return reg_types_.PosShortConstant();
3932    } else if (value < 65536) {
3933      return reg_types_.CharConstant();
3934    } else {
3935      return reg_types_.IntConstant();
3936    }
3937  }
3938}
3939
3940void MethodVerifier::Init() {
3941  art::verifier::RegTypeCache::Init();
3942}
3943
3944void MethodVerifier::Shutdown() {
3945  verifier::RegTypeCache::ShutDown();
3946}
3947
3948void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
3949  reg_types_.VisitRoots(callback, arg);
3950}
3951
3952}  // namespace verifier
3953}  // namespace art
3954