method_verifier.cc revision 77cd4d677c682c194b8325b209cb76720be4046a
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "handle_scope-inl.h"
44#include "verifier/dex_gc_map.h"
45
46namespace art {
47namespace verifier {
48
49static const bool gDebugVerify = false;
50// TODO: Add a constant to method_verifier to turn on verbose logging?
51
52void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
53                                 uint32_t insns_size, uint16_t registers_size,
54                                 MethodVerifier* verifier) {
55  DCHECK_GT(insns_size, 0U);
56  register_lines_.reset(new RegisterLine*[insns_size]());
57  size_ = insns_size;
58  for (uint32_t i = 0; i < insns_size; i++) {
59    bool interesting = false;
60    switch (mode) {
61      case kTrackRegsAll:
62        interesting = flags[i].IsOpcode();
63        break;
64      case kTrackCompilerInterestPoints:
65        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
66        break;
67      case kTrackRegsBranches:
68        interesting = flags[i].IsBranchTarget();
69        break;
70      default:
71        break;
72    }
73    if (interesting) {
74      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
75    }
76  }
77}
78
79PcToRegisterLineTable::~PcToRegisterLineTable() {
80  for (size_t i = 0; i < size_; i++) {
81    delete register_lines_[i];
82    if (kIsDebugBuild) {
83      register_lines_[i] = nullptr;
84    }
85  }
86}
87
88MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
89                                                        bool allow_soft_failures,
90                                                        std::string* error) {
91  if (klass->IsVerified()) {
92    return kNoFailure;
93  }
94  bool early_failure = false;
95  std::string failure_message;
96  const DexFile& dex_file = klass->GetDexFile();
97  const DexFile::ClassDef* class_def = klass->GetClassDef();
98  mirror::Class* super = klass->GetSuperClass();
99  if (super == NULL && "Ljava/lang/Object;" != klass->GetDescriptor()) {
100    early_failure = true;
101    failure_message = " that has no super class";
102  } else if (super != NULL && super->IsFinal()) {
103    early_failure = true;
104    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
105  } else if (class_def == NULL) {
106    early_failure = true;
107    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
108  }
109  if (early_failure) {
110    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
111    if (Runtime::Current()->IsCompiler()) {
112      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
113      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
114    }
115    return kHardFailure;
116  }
117  StackHandleScope<2> hs(Thread::Current());
118  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
119  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
120  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
121}
122
123MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
124                                                        Handle<mirror::DexCache> dex_cache,
125                                                        Handle<mirror::ClassLoader> class_loader,
126                                                        const DexFile::ClassDef* class_def,
127                                                        bool allow_soft_failures,
128                                                        std::string* error) {
129  DCHECK(class_def != nullptr);
130  const byte* class_data = dex_file->GetClassData(*class_def);
131  if (class_data == NULL) {
132    // empty class, probably a marker interface
133    return kNoFailure;
134  }
135  ClassDataItemIterator it(*dex_file, class_data);
136  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
137    it.Next();
138  }
139  size_t error_count = 0;
140  bool hard_fail = false;
141  ClassLinker* linker = Runtime::Current()->GetClassLinker();
142  int64_t previous_direct_method_idx = -1;
143  while (it.HasNextDirectMethod()) {
144    uint32_t method_idx = it.GetMemberIndex();
145    if (method_idx == previous_direct_method_idx) {
146      // smali can create dex files with two encoded_methods sharing the same method_idx
147      // http://code.google.com/p/smali/issues/detail?id=119
148      it.Next();
149      continue;
150    }
151    previous_direct_method_idx = method_idx;
152    InvokeType type = it.GetMethodInvokeType(*class_def);
153    mirror::ArtMethod* method =
154        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
155                              NullHandle<mirror::ArtMethod>(), type);
156    if (method == NULL) {
157      DCHECK(Thread::Current()->IsExceptionPending());
158      // We couldn't resolve the method, but continue regardless.
159      Thread::Current()->ClearException();
160    }
161    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
162                                                      dex_file,
163                                                      dex_cache,
164                                                      class_loader,
165                                                      class_def,
166                                                      it.GetMethodCodeItem(),
167                                                      method,
168                                                      it.GetMemberAccessFlags(),
169                                                      allow_soft_failures,
170                                                      false);
171    if (result != kNoFailure) {
172      if (result == kHardFailure) {
173        hard_fail = true;
174        if (error_count > 0) {
175          *error += "\n";
176        }
177        *error = "Verifier rejected class ";
178        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
179        *error += " due to bad method ";
180        *error += PrettyMethod(method_idx, *dex_file);
181      }
182      ++error_count;
183    }
184    it.Next();
185  }
186  int64_t previous_virtual_method_idx = -1;
187  while (it.HasNextVirtualMethod()) {
188    uint32_t method_idx = it.GetMemberIndex();
189    if (method_idx == previous_virtual_method_idx) {
190      // smali can create dex files with two encoded_methods sharing the same method_idx
191      // http://code.google.com/p/smali/issues/detail?id=119
192      it.Next();
193      continue;
194    }
195    previous_virtual_method_idx = method_idx;
196    InvokeType type = it.GetMethodInvokeType(*class_def);
197    mirror::ArtMethod* method =
198        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
199                              NullHandle<mirror::ArtMethod>(), type);
200    if (method == NULL) {
201      DCHECK(Thread::Current()->IsExceptionPending());
202      // We couldn't resolve the method, but continue regardless.
203      Thread::Current()->ClearException();
204    }
205    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
206                                                      dex_file,
207                                                      dex_cache,
208                                                      class_loader,
209                                                      class_def,
210                                                      it.GetMethodCodeItem(),
211                                                      method,
212                                                      it.GetMemberAccessFlags(),
213                                                      allow_soft_failures,
214                                                      false);
215    if (result != kNoFailure) {
216      if (result == kHardFailure) {
217        hard_fail = true;
218        if (error_count > 0) {
219          *error += "\n";
220        }
221        *error = "Verifier rejected class ";
222        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
223        *error += " due to bad method ";
224        *error += PrettyMethod(method_idx, *dex_file);
225      }
226      ++error_count;
227    }
228    it.Next();
229  }
230  if (error_count == 0) {
231    return kNoFailure;
232  } else {
233    return hard_fail ? kHardFailure : kSoftFailure;
234  }
235}
236
237MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
238                                                         const DexFile* dex_file,
239                                                         Handle<mirror::DexCache> dex_cache,
240                                                         Handle<mirror::ClassLoader> class_loader,
241                                                         const DexFile::ClassDef* class_def,
242                                                         const DexFile::CodeItem* code_item,
243                                                         mirror::ArtMethod* method,
244                                                         uint32_t method_access_flags,
245                                                         bool allow_soft_failures,
246                                                         bool need_precise_constants) {
247  MethodVerifier::FailureKind result = kNoFailure;
248  uint64_t start_ns = NanoTime();
249
250  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
251                           method_idx, method, method_access_flags, true, allow_soft_failures,
252                           need_precise_constants);
253  if (verifier.Verify()) {
254    // Verification completed, however failures may be pending that didn't cause the verification
255    // to hard fail.
256    CHECK(!verifier.have_pending_hard_failure_);
257    if (verifier.failures_.size() != 0) {
258      if (VLOG_IS_ON(verifier)) {
259          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
260                                << PrettyMethod(method_idx, *dex_file) << "\n");
261      }
262      result = kSoftFailure;
263    }
264  } else {
265    // Bad method data.
266    CHECK_NE(verifier.failures_.size(), 0U);
267    CHECK(verifier.have_pending_hard_failure_);
268    verifier.DumpFailures(LOG(INFO) << "Verification error in "
269                                    << PrettyMethod(method_idx, *dex_file) << "\n");
270    if (gDebugVerify) {
271      std::cout << "\n" << verifier.info_messages_.str();
272      verifier.Dump(std::cout);
273    }
274    result = kHardFailure;
275  }
276  uint64_t duration_ns = NanoTime() - start_ns;
277  if (duration_ns > MsToNs(100) && !kIsDebugBuild) {
278    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
279                 << " took " << PrettyDuration(duration_ns);
280  }
281  return result;
282}
283
284void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
285                                         const DexFile* dex_file,
286                                         Handle<mirror::DexCache> dex_cache,
287                                         Handle<mirror::ClassLoader> class_loader,
288                                         const DexFile::ClassDef* class_def,
289                                         const DexFile::CodeItem* code_item,
290                                         mirror::ArtMethod* method,
291                                         uint32_t method_access_flags) {
292  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
293                          dex_method_idx, method, method_access_flags, true, true, true);
294  verifier.Verify();
295  verifier.DumpFailures(os);
296  os << verifier.info_messages_.str();
297  verifier.Dump(os);
298}
299
300MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
301                               Handle<mirror::ClassLoader>* class_loader,
302                               const DexFile::ClassDef* class_def,
303                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
304                               mirror::ArtMethod* method, uint32_t method_access_flags,
305                               bool can_load_classes, bool allow_soft_failures,
306                               bool need_precise_constants)
307    : reg_types_(can_load_classes),
308      work_insn_idx_(-1),
309      dex_method_idx_(dex_method_idx),
310      mirror_method_(method),
311      method_access_flags_(method_access_flags),
312      return_type_(nullptr),
313      dex_file_(dex_file),
314      dex_cache_(dex_cache),
315      class_loader_(class_loader),
316      class_def_(class_def),
317      code_item_(code_item),
318      declaring_class_(NULL),
319      interesting_dex_pc_(-1),
320      monitor_enter_dex_pcs_(nullptr),
321      have_pending_hard_failure_(false),
322      have_pending_runtime_throw_failure_(false),
323      new_instance_count_(0),
324      monitor_enter_count_(0),
325      can_load_classes_(can_load_classes),
326      allow_soft_failures_(allow_soft_failures),
327      need_precise_constants_(need_precise_constants),
328      has_check_casts_(false),
329      has_virtual_or_interface_invokes_(false) {
330  Runtime::Current()->AddMethodVerifier(this);
331  DCHECK(class_def != nullptr);
332}
333
334MethodVerifier::~MethodVerifier() {
335  Runtime::Current()->RemoveMethodVerifier(this);
336  STLDeleteElements(&failure_messages_);
337}
338
339void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
340                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
341  StackHandleScope<2> hs(Thread::Current());
342  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
343  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
344  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
345                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
346                          true, false);
347  verifier.interesting_dex_pc_ = dex_pc;
348  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
349  verifier.FindLocksAtDexPc();
350}
351
352void MethodVerifier::FindLocksAtDexPc() {
353  CHECK(monitor_enter_dex_pcs_ != NULL);
354  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
355
356  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
357  // verification. In practice, the phase we want relies on data structures set up by all the
358  // earlier passes, so we just run the full method verification and bail out early when we've
359  // got what we wanted.
360  Verify();
361}
362
363mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
364                                                           uint32_t dex_pc) {
365  StackHandleScope<2> hs(Thread::Current());
366  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
367  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
368  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
369                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
370                          true, false);
371  return verifier.FindAccessedFieldAtDexPc(dex_pc);
372}
373
374mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
375  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
376
377  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
378  // verification. In practice, the phase we want relies on data structures set up by all the
379  // earlier passes, so we just run the full method verification and bail out early when we've
380  // got what we wanted.
381  bool success = Verify();
382  if (!success) {
383    return nullptr;
384  }
385  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
386  if (register_line == NULL) {
387    return nullptr;
388  }
389  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
390  return GetQuickFieldAccess(inst, register_line);
391}
392
393mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
394                                                            uint32_t dex_pc) {
395  StackHandleScope<2> hs(Thread::Current());
396  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
397  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
398  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
399                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
400                          true, false);
401  return verifier.FindInvokedMethodAtDexPc(dex_pc);
402}
403
404mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
405  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
406
407  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
408  // verification. In practice, the phase we want relies on data structures set up by all the
409  // earlier passes, so we just run the full method verification and bail out early when we've
410  // got what we wanted.
411  bool success = Verify();
412  if (!success) {
413    return NULL;
414  }
415  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
416  if (register_line == NULL) {
417    return NULL;
418  }
419  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
420  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
421  return GetQuickInvokedMethod(inst, register_line, is_range);
422}
423
424bool MethodVerifier::Verify() {
425  // If there aren't any instructions, make sure that's expected, then exit successfully.
426  if (code_item_ == NULL) {
427    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
428      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
429      return false;
430    } else {
431      return true;
432    }
433  }
434  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
435  if (code_item_->ins_size_ > code_item_->registers_size_) {
436    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
437                                      << " regs=" << code_item_->registers_size_;
438    return false;
439  }
440  // Allocate and initialize an array to hold instruction data.
441  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
442  // Run through the instructions and see if the width checks out.
443  bool result = ComputeWidthsAndCountOps();
444  // Flag instructions guarded by a "try" block and check exception handlers.
445  result = result && ScanTryCatchBlocks();
446  // Perform static instruction verification.
447  result = result && VerifyInstructions();
448  // Perform code-flow analysis and return.
449  result = result && VerifyCodeFlow();
450  // Compute information for compiler.
451  if (result && Runtime::Current()->IsCompiler()) {
452    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
453  }
454  return result;
455}
456
457std::ostream& MethodVerifier::Fail(VerifyError error) {
458  switch (error) {
459    case VERIFY_ERROR_NO_CLASS:
460    case VERIFY_ERROR_NO_FIELD:
461    case VERIFY_ERROR_NO_METHOD:
462    case VERIFY_ERROR_ACCESS_CLASS:
463    case VERIFY_ERROR_ACCESS_FIELD:
464    case VERIFY_ERROR_ACCESS_METHOD:
465    case VERIFY_ERROR_INSTANTIATION:
466    case VERIFY_ERROR_CLASS_CHANGE:
467      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
468        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
469        // class change and instantiation errors into soft verification errors so that we re-verify
470        // at runtime. We may fail to find or to agree on access because of not yet available class
471        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
472        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
473        // paths" that dynamically perform the verification and cause the behavior to be that akin
474        // to an interpreter.
475        error = VERIFY_ERROR_BAD_CLASS_SOFT;
476      } else {
477        // If we fail again at runtime, mark that this instruction would throw and force this
478        // method to be executed using the interpreter with checks.
479        have_pending_runtime_throw_failure_ = true;
480      }
481      break;
482      // Indication that verification should be retried at runtime.
483    case VERIFY_ERROR_BAD_CLASS_SOFT:
484      if (!allow_soft_failures_) {
485        have_pending_hard_failure_ = true;
486      }
487      break;
488      // Hard verification failures at compile time will still fail at runtime, so the class is
489      // marked as rejected to prevent it from being compiled.
490    case VERIFY_ERROR_BAD_CLASS_HARD: {
491      if (Runtime::Current()->IsCompiler()) {
492        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
493        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
494      }
495      have_pending_hard_failure_ = true;
496      break;
497    }
498  }
499  failures_.push_back(error);
500  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
501                                    work_insn_idx_));
502  std::ostringstream* failure_message = new std::ostringstream(location);
503  failure_messages_.push_back(failure_message);
504  return *failure_message;
505}
506
507std::ostream& MethodVerifier::LogVerifyInfo() {
508  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
509                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
510}
511
512void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
513  size_t failure_num = failure_messages_.size();
514  DCHECK_NE(failure_num, 0U);
515  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
516  prepend += last_fail_message->str();
517  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
518  delete last_fail_message;
519}
520
521void MethodVerifier::AppendToLastFailMessage(std::string append) {
522  size_t failure_num = failure_messages_.size();
523  DCHECK_NE(failure_num, 0U);
524  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
525  (*last_fail_message) << append;
526}
527
528bool MethodVerifier::ComputeWidthsAndCountOps() {
529  const uint16_t* insns = code_item_->insns_;
530  size_t insns_size = code_item_->insns_size_in_code_units_;
531  const Instruction* inst = Instruction::At(insns);
532  size_t new_instance_count = 0;
533  size_t monitor_enter_count = 0;
534  size_t dex_pc = 0;
535
536  while (dex_pc < insns_size) {
537    Instruction::Code opcode = inst->Opcode();
538    switch (opcode) {
539      case Instruction::APUT_OBJECT:
540      case Instruction::CHECK_CAST:
541        has_check_casts_ = true;
542        break;
543      case Instruction::INVOKE_VIRTUAL:
544      case Instruction::INVOKE_VIRTUAL_RANGE:
545      case Instruction::INVOKE_INTERFACE:
546      case Instruction::INVOKE_INTERFACE_RANGE:
547        has_virtual_or_interface_invokes_ = true;
548        break;
549      case Instruction::MONITOR_ENTER:
550        monitor_enter_count++;
551        break;
552      case Instruction::NEW_INSTANCE:
553        new_instance_count++;
554        break;
555      default:
556        break;
557    }
558    size_t inst_size = inst->SizeInCodeUnits();
559    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
560    dex_pc += inst_size;
561    inst = inst->Next();
562  }
563
564  if (dex_pc != insns_size) {
565    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
566                                      << dex_pc << " vs. " << insns_size << ")";
567    return false;
568  }
569
570  new_instance_count_ = new_instance_count;
571  monitor_enter_count_ = monitor_enter_count;
572  return true;
573}
574
575bool MethodVerifier::ScanTryCatchBlocks() {
576  uint32_t tries_size = code_item_->tries_size_;
577  if (tries_size == 0) {
578    return true;
579  }
580  uint32_t insns_size = code_item_->insns_size_in_code_units_;
581  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
582
583  for (uint32_t idx = 0; idx < tries_size; idx++) {
584    const DexFile::TryItem* try_item = &tries[idx];
585    uint32_t start = try_item->start_addr_;
586    uint32_t end = start + try_item->insn_count_;
587    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
588      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
589                                        << " endAddr=" << end << " (size=" << insns_size << ")";
590      return false;
591    }
592    if (!insn_flags_[start].IsOpcode()) {
593      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
594          << "'try' block starts inside an instruction (" << start << ")";
595      return false;
596    }
597    for (uint32_t dex_pc = start; dex_pc < end;
598        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
599      insn_flags_[dex_pc].SetInTry();
600    }
601  }
602  // Iterate over each of the handlers to verify target addresses.
603  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
604  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
605  ClassLinker* linker = Runtime::Current()->GetClassLinker();
606  for (uint32_t idx = 0; idx < handlers_size; idx++) {
607    CatchHandlerIterator iterator(handlers_ptr);
608    for (; iterator.HasNext(); iterator.Next()) {
609      uint32_t dex_pc= iterator.GetHandlerAddress();
610      if (!insn_flags_[dex_pc].IsOpcode()) {
611        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
612            << "exception handler starts at bad address (" << dex_pc << ")";
613        return false;
614      }
615      insn_flags_[dex_pc].SetBranchTarget();
616      // Ensure exception types are resolved so that they don't need resolution to be delivered,
617      // unresolved exception types will be ignored by exception delivery
618      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
619        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
620                                                            iterator.GetHandlerTypeIndex(),
621                                                            *dex_cache_, *class_loader_);
622        if (exception_type == NULL) {
623          DCHECK(Thread::Current()->IsExceptionPending());
624          Thread::Current()->ClearException();
625        }
626      }
627    }
628    handlers_ptr = iterator.EndDataPointer();
629  }
630  return true;
631}
632
633bool MethodVerifier::VerifyInstructions() {
634  const Instruction* inst = Instruction::At(code_item_->insns_);
635
636  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
637  insn_flags_[0].SetBranchTarget();
638  insn_flags_[0].SetCompileTimeInfoPoint();
639
640  uint32_t insns_size = code_item_->insns_size_in_code_units_;
641  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
642    if (!VerifyInstruction(inst, dex_pc)) {
643      DCHECK_NE(failures_.size(), 0U);
644      return false;
645    }
646    /* Flag instructions that are garbage collection points */
647    // All invoke points are marked as "Throw" points already.
648    // We are relying on this to also count all the invokes as interesting.
649    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
650      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
651    } else if (inst->IsReturn()) {
652      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
653    }
654    dex_pc += inst->SizeInCodeUnits();
655    inst = inst->Next();
656  }
657  return true;
658}
659
660bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
661  bool result = true;
662  switch (inst->GetVerifyTypeArgumentA()) {
663    case Instruction::kVerifyRegA:
664      result = result && CheckRegisterIndex(inst->VRegA());
665      break;
666    case Instruction::kVerifyRegAWide:
667      result = result && CheckWideRegisterIndex(inst->VRegA());
668      break;
669  }
670  switch (inst->GetVerifyTypeArgumentB()) {
671    case Instruction::kVerifyRegB:
672      result = result && CheckRegisterIndex(inst->VRegB());
673      break;
674    case Instruction::kVerifyRegBField:
675      result = result && CheckFieldIndex(inst->VRegB());
676      break;
677    case Instruction::kVerifyRegBMethod:
678      result = result && CheckMethodIndex(inst->VRegB());
679      break;
680    case Instruction::kVerifyRegBNewInstance:
681      result = result && CheckNewInstance(inst->VRegB());
682      break;
683    case Instruction::kVerifyRegBString:
684      result = result && CheckStringIndex(inst->VRegB());
685      break;
686    case Instruction::kVerifyRegBType:
687      result = result && CheckTypeIndex(inst->VRegB());
688      break;
689    case Instruction::kVerifyRegBWide:
690      result = result && CheckWideRegisterIndex(inst->VRegB());
691      break;
692  }
693  switch (inst->GetVerifyTypeArgumentC()) {
694    case Instruction::kVerifyRegC:
695      result = result && CheckRegisterIndex(inst->VRegC());
696      break;
697    case Instruction::kVerifyRegCField:
698      result = result && CheckFieldIndex(inst->VRegC());
699      break;
700    case Instruction::kVerifyRegCNewArray:
701      result = result && CheckNewArray(inst->VRegC());
702      break;
703    case Instruction::kVerifyRegCType:
704      result = result && CheckTypeIndex(inst->VRegC());
705      break;
706    case Instruction::kVerifyRegCWide:
707      result = result && CheckWideRegisterIndex(inst->VRegC());
708      break;
709  }
710  switch (inst->GetVerifyExtraFlags()) {
711    case Instruction::kVerifyArrayData:
712      result = result && CheckArrayData(code_offset);
713      break;
714    case Instruction::kVerifyBranchTarget:
715      result = result && CheckBranchTarget(code_offset);
716      break;
717    case Instruction::kVerifySwitchTargets:
718      result = result && CheckSwitchTargets(code_offset);
719      break;
720    case Instruction::kVerifyVarArg: {
721      uint32_t args[Instruction::kMaxVarArgRegs];
722      inst->GetVarArgs(args);
723      result = result && CheckVarArgRegs(inst->VRegA(), args);
724      break;
725    }
726    case Instruction::kVerifyVarArgRange:
727      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
728      break;
729    case Instruction::kVerifyError:
730      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
731      result = false;
732      break;
733  }
734  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler()) {
735    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
736    result = false;
737  }
738  return result;
739}
740
741bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
742  if (idx >= code_item_->registers_size_) {
743    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
744                                      << code_item_->registers_size_ << ")";
745    return false;
746  }
747  return true;
748}
749
750bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
751  if (idx + 1 >= code_item_->registers_size_) {
752    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
753                                      << "+1 >= " << code_item_->registers_size_ << ")";
754    return false;
755  }
756  return true;
757}
758
759bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
760  if (idx >= dex_file_->GetHeader().field_ids_size_) {
761    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
762                                      << dex_file_->GetHeader().field_ids_size_ << ")";
763    return false;
764  }
765  return true;
766}
767
768bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
769  if (idx >= dex_file_->GetHeader().method_ids_size_) {
770    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
771                                      << dex_file_->GetHeader().method_ids_size_ << ")";
772    return false;
773  }
774  return true;
775}
776
777bool MethodVerifier::CheckNewInstance(uint32_t idx) {
778  if (idx >= dex_file_->GetHeader().type_ids_size_) {
779    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
780                                      << dex_file_->GetHeader().type_ids_size_ << ")";
781    return false;
782  }
783  // We don't need the actual class, just a pointer to the class name.
784  const char* descriptor = dex_file_->StringByTypeIdx(idx);
785  if (descriptor[0] != 'L') {
786    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
787    return false;
788  }
789  return true;
790}
791
792bool MethodVerifier::CheckStringIndex(uint32_t idx) {
793  if (idx >= dex_file_->GetHeader().string_ids_size_) {
794    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
795                                      << dex_file_->GetHeader().string_ids_size_ << ")";
796    return false;
797  }
798  return true;
799}
800
801bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
802  if (idx >= dex_file_->GetHeader().type_ids_size_) {
803    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
804                                      << dex_file_->GetHeader().type_ids_size_ << ")";
805    return false;
806  }
807  return true;
808}
809
810bool MethodVerifier::CheckNewArray(uint32_t idx) {
811  if (idx >= dex_file_->GetHeader().type_ids_size_) {
812    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
813                                      << dex_file_->GetHeader().type_ids_size_ << ")";
814    return false;
815  }
816  int bracket_count = 0;
817  const char* descriptor = dex_file_->StringByTypeIdx(idx);
818  const char* cp = descriptor;
819  while (*cp++ == '[') {
820    bracket_count++;
821  }
822  if (bracket_count == 0) {
823    /* The given class must be an array type. */
824    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
825        << "can't new-array class '" << descriptor << "' (not an array)";
826    return false;
827  } else if (bracket_count > 255) {
828    /* It is illegal to create an array of more than 255 dimensions. */
829    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
830        << "can't new-array class '" << descriptor << "' (exceeds limit)";
831    return false;
832  }
833  return true;
834}
835
836bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
837  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
838  const uint16_t* insns = code_item_->insns_ + cur_offset;
839  const uint16_t* array_data;
840  int32_t array_data_offset;
841
842  DCHECK_LT(cur_offset, insn_count);
843  /* make sure the start of the array data table is in range */
844  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
845  if ((int32_t) cur_offset + array_data_offset < 0 ||
846      cur_offset + array_data_offset + 2 >= insn_count) {
847    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
848                                      << ", data offset " << array_data_offset
849                                      << ", count " << insn_count;
850    return false;
851  }
852  /* offset to array data table is a relative branch-style offset */
853  array_data = insns + array_data_offset;
854  /* make sure the table is 32-bit aligned */
855  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
856    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
857                                      << ", data offset " << array_data_offset;
858    return false;
859  }
860  uint32_t value_width = array_data[1];
861  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
862  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
863  /* make sure the end of the switch is in range */
864  if (cur_offset + array_data_offset + table_size > insn_count) {
865    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
866                                      << ", data offset " << array_data_offset << ", end "
867                                      << cur_offset + array_data_offset + table_size
868                                      << ", count " << insn_count;
869    return false;
870  }
871  return true;
872}
873
874bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
875  int32_t offset;
876  bool isConditional, selfOkay;
877  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
878    return false;
879  }
880  if (!selfOkay && offset == 0) {
881    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
882                                      << reinterpret_cast<void*>(cur_offset);
883    return false;
884  }
885  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
886  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
887  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
888    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
889                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
890    return false;
891  }
892  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
893  int32_t abs_offset = cur_offset + offset;
894  if (abs_offset < 0 ||
895      (uint32_t) abs_offset >= insn_count ||
896      !insn_flags_[abs_offset].IsOpcode()) {
897    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
898                                      << reinterpret_cast<void*>(abs_offset) << ") at "
899                                      << reinterpret_cast<void*>(cur_offset);
900    return false;
901  }
902  insn_flags_[abs_offset].SetBranchTarget();
903  return true;
904}
905
906bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
907                                  bool* selfOkay) {
908  const uint16_t* insns = code_item_->insns_ + cur_offset;
909  *pConditional = false;
910  *selfOkay = false;
911  switch (*insns & 0xff) {
912    case Instruction::GOTO:
913      *pOffset = ((int16_t) *insns) >> 8;
914      break;
915    case Instruction::GOTO_32:
916      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
917      *selfOkay = true;
918      break;
919    case Instruction::GOTO_16:
920      *pOffset = (int16_t) insns[1];
921      break;
922    case Instruction::IF_EQ:
923    case Instruction::IF_NE:
924    case Instruction::IF_LT:
925    case Instruction::IF_GE:
926    case Instruction::IF_GT:
927    case Instruction::IF_LE:
928    case Instruction::IF_EQZ:
929    case Instruction::IF_NEZ:
930    case Instruction::IF_LTZ:
931    case Instruction::IF_GEZ:
932    case Instruction::IF_GTZ:
933    case Instruction::IF_LEZ:
934      *pOffset = (int16_t) insns[1];
935      *pConditional = true;
936      break;
937    default:
938      return false;
939      break;
940  }
941  return true;
942}
943
944bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
945  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
946  DCHECK_LT(cur_offset, insn_count);
947  const uint16_t* insns = code_item_->insns_ + cur_offset;
948  /* make sure the start of the switch is in range */
949  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
950  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
951    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
952                                      << ", switch offset " << switch_offset
953                                      << ", count " << insn_count;
954    return false;
955  }
956  /* offset to switch table is a relative branch-style offset */
957  const uint16_t* switch_insns = insns + switch_offset;
958  /* make sure the table is 32-bit aligned */
959  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
960    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
961                                      << ", switch offset " << switch_offset;
962    return false;
963  }
964  uint32_t switch_count = switch_insns[1];
965  int32_t keys_offset, targets_offset;
966  uint16_t expected_signature;
967  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
968    /* 0=sig, 1=count, 2/3=firstKey */
969    targets_offset = 4;
970    keys_offset = -1;
971    expected_signature = Instruction::kPackedSwitchSignature;
972  } else {
973    /* 0=sig, 1=count, 2..count*2 = keys */
974    keys_offset = 2;
975    targets_offset = 2 + 2 * switch_count;
976    expected_signature = Instruction::kSparseSwitchSignature;
977  }
978  uint32_t table_size = targets_offset + switch_count * 2;
979  if (switch_insns[0] != expected_signature) {
980    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
981        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
982                        switch_insns[0], expected_signature);
983    return false;
984  }
985  /* make sure the end of the switch is in range */
986  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
987    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
988                                      << ", switch offset " << switch_offset
989                                      << ", end " << (cur_offset + switch_offset + table_size)
990                                      << ", count " << insn_count;
991    return false;
992  }
993  /* for a sparse switch, verify the keys are in ascending order */
994  if (keys_offset > 0 && switch_count > 1) {
995    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
996    for (uint32_t targ = 1; targ < switch_count; targ++) {
997      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
998                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
999      if (key <= last_key) {
1000        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1001                                          << ", this=" << key;
1002        return false;
1003      }
1004      last_key = key;
1005    }
1006  }
1007  /* verify each switch target */
1008  for (uint32_t targ = 0; targ < switch_count; targ++) {
1009    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1010                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1011    int32_t abs_offset = cur_offset + offset;
1012    if (abs_offset < 0 ||
1013        abs_offset >= (int32_t) insn_count ||
1014        !insn_flags_[abs_offset].IsOpcode()) {
1015      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1016                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1017                                        << reinterpret_cast<void*>(cur_offset)
1018                                        << "[" << targ << "]";
1019      return false;
1020    }
1021    insn_flags_[abs_offset].SetBranchTarget();
1022  }
1023  return true;
1024}
1025
1026bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1027  if (vA > Instruction::kMaxVarArgRegs) {
1028    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1029    return false;
1030  }
1031  uint16_t registers_size = code_item_->registers_size_;
1032  for (uint32_t idx = 0; idx < vA; idx++) {
1033    if (arg[idx] >= registers_size) {
1034      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1035                                        << ") in non-range invoke (>= " << registers_size << ")";
1036      return false;
1037    }
1038  }
1039
1040  return true;
1041}
1042
1043bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1044  uint16_t registers_size = code_item_->registers_size_;
1045  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1046  // integer overflow when adding them here.
1047  if (vA + vC > registers_size) {
1048    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1049                                      << " in range invoke (> " << registers_size << ")";
1050    return false;
1051  }
1052  return true;
1053}
1054
1055bool MethodVerifier::VerifyCodeFlow() {
1056  uint16_t registers_size = code_item_->registers_size_;
1057  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1058
1059  if (registers_size * insns_size > 4*1024*1024) {
1060    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1061                 << " insns_size=" << insns_size << ")";
1062  }
1063  /* Create and initialize table holding register status */
1064  reg_table_.Init(kTrackCompilerInterestPoints,
1065                  insn_flags_.get(),
1066                  insns_size,
1067                  registers_size,
1068                  this);
1069
1070
1071  work_line_.reset(RegisterLine::Create(registers_size, this));
1072  saved_line_.reset(RegisterLine::Create(registers_size, this));
1073
1074  /* Initialize register types of method arguments. */
1075  if (!SetTypesFromSignature()) {
1076    DCHECK_NE(failures_.size(), 0U);
1077    std::string prepend("Bad signature in ");
1078    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1079    PrependToLastFailMessage(prepend);
1080    return false;
1081  }
1082  /* Perform code flow verification. */
1083  if (!CodeFlowVerifyMethod()) {
1084    DCHECK_NE(failures_.size(), 0U);
1085    return false;
1086  }
1087  return true;
1088}
1089
1090std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1091  DCHECK_EQ(failures_.size(), failure_messages_.size());
1092  for (size_t i = 0; i < failures_.size(); ++i) {
1093      os << failure_messages_[i]->str() << "\n";
1094  }
1095  return os;
1096}
1097
1098extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1099    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1100  v->Dump(std::cerr);
1101}
1102
1103void MethodVerifier::Dump(std::ostream& os) {
1104  if (code_item_ == NULL) {
1105    os << "Native method\n";
1106    return;
1107  }
1108  {
1109    os << "Register Types:\n";
1110    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1111    std::ostream indent_os(&indent_filter);
1112    reg_types_.Dump(indent_os);
1113  }
1114  os << "Dumping instructions and register lines:\n";
1115  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1116  std::ostream indent_os(&indent_filter);
1117  const Instruction* inst = Instruction::At(code_item_->insns_);
1118  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1119      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1120    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1121    if (reg_line != NULL) {
1122      indent_os << reg_line->Dump() << "\n";
1123    }
1124    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1125    const bool kDumpHexOfInstruction = false;
1126    if (kDumpHexOfInstruction) {
1127      indent_os << inst->DumpHex(5) << " ";
1128    }
1129    indent_os << inst->DumpString(dex_file_) << "\n";
1130    inst = inst->Next();
1131  }
1132}
1133
1134static bool IsPrimitiveDescriptor(char descriptor) {
1135  switch (descriptor) {
1136    case 'I':
1137    case 'C':
1138    case 'S':
1139    case 'B':
1140    case 'Z':
1141    case 'F':
1142    case 'D':
1143    case 'J':
1144      return true;
1145    default:
1146      return false;
1147  }
1148}
1149
1150bool MethodVerifier::SetTypesFromSignature() {
1151  RegisterLine* reg_line = reg_table_.GetLine(0);
1152  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1153  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1154
1155  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1156  // Include the "this" pointer.
1157  size_t cur_arg = 0;
1158  if (!IsStatic()) {
1159    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1160    // argument as uninitialized. This restricts field access until the superclass constructor is
1161    // called.
1162    const RegType& declaring_class = GetDeclaringClass();
1163    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1164      reg_line->SetRegisterType(arg_start + cur_arg,
1165                                reg_types_.UninitializedThisArgument(declaring_class));
1166    } else {
1167      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1168    }
1169    cur_arg++;
1170  }
1171
1172  const DexFile::ProtoId& proto_id =
1173      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1174  DexFileParameterIterator iterator(*dex_file_, proto_id);
1175
1176  for (; iterator.HasNext(); iterator.Next()) {
1177    const char* descriptor = iterator.GetDescriptor();
1178    if (descriptor == NULL) {
1179      LOG(FATAL) << "Null descriptor";
1180    }
1181    if (cur_arg >= expected_args) {
1182      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1183                                        << " args, found more (" << descriptor << ")";
1184      return false;
1185    }
1186    switch (descriptor[0]) {
1187      case 'L':
1188      case '[':
1189        // We assume that reference arguments are initialized. The only way it could be otherwise
1190        // (assuming the caller was verified) is if the current method is <init>, but in that case
1191        // it's effectively considered initialized the instant we reach here (in the sense that we
1192        // can return without doing anything or call virtual methods).
1193        {
1194          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1195          if (!reg_type.IsNonZeroReferenceTypes()) {
1196            DCHECK(HasFailures());
1197            return false;
1198          }
1199          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1200        }
1201        break;
1202      case 'Z':
1203        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1204        break;
1205      case 'C':
1206        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1207        break;
1208      case 'B':
1209        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1210        break;
1211      case 'I':
1212        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1213        break;
1214      case 'S':
1215        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1216        break;
1217      case 'F':
1218        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1219        break;
1220      case 'J':
1221      case 'D': {
1222        if (cur_arg + 1 >= expected_args) {
1223          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1224              << " args, found more (" << descriptor << ")";
1225          return false;
1226        }
1227
1228        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1229        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1230        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1231        cur_arg++;
1232        break;
1233      }
1234      default:
1235        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1236                                          << descriptor << "'";
1237        return false;
1238    }
1239    cur_arg++;
1240  }
1241  if (cur_arg != expected_args) {
1242    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1243                                      << " arguments, found " << cur_arg;
1244    return false;
1245  }
1246  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1247  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1248  // format. Only major difference from the method argument format is that 'V' is supported.
1249  bool result;
1250  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1251    result = descriptor[1] == '\0';
1252  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1253    size_t i = 0;
1254    do {
1255      i++;
1256    } while (descriptor[i] == '[');  // process leading [
1257    if (descriptor[i] == 'L') {  // object array
1258      do {
1259        i++;  // find closing ;
1260      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1261      result = descriptor[i] == ';';
1262    } else {  // primitive array
1263      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1264    }
1265  } else if (descriptor[0] == 'L') {
1266    // could be more thorough here, but shouldn't be required
1267    size_t i = 0;
1268    do {
1269      i++;
1270    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1271    result = descriptor[i] == ';';
1272  } else {
1273    result = false;
1274  }
1275  if (!result) {
1276    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1277                                      << descriptor << "'";
1278  }
1279  return result;
1280}
1281
1282bool MethodVerifier::CodeFlowVerifyMethod() {
1283  const uint16_t* insns = code_item_->insns_;
1284  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1285
1286  /* Begin by marking the first instruction as "changed". */
1287  insn_flags_[0].SetChanged();
1288  uint32_t start_guess = 0;
1289
1290  /* Continue until no instructions are marked "changed". */
1291  while (true) {
1292    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1293    uint32_t insn_idx = start_guess;
1294    for (; insn_idx < insns_size; insn_idx++) {
1295      if (insn_flags_[insn_idx].IsChanged())
1296        break;
1297    }
1298    if (insn_idx == insns_size) {
1299      if (start_guess != 0) {
1300        /* try again, starting from the top */
1301        start_guess = 0;
1302        continue;
1303      } else {
1304        /* all flags are clear */
1305        break;
1306      }
1307    }
1308    // We carry the working set of registers from instruction to instruction. If this address can
1309    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1310    // "changed" flags, we need to load the set of registers from the table.
1311    // Because we always prefer to continue on to the next instruction, we should never have a
1312    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1313    // target.
1314    work_insn_idx_ = insn_idx;
1315    if (insn_flags_[insn_idx].IsBranchTarget()) {
1316      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1317    } else {
1318#ifndef NDEBUG
1319      /*
1320       * Sanity check: retrieve the stored register line (assuming
1321       * a full table) and make sure it actually matches.
1322       */
1323      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1324      if (register_line != NULL) {
1325        if (work_line_->CompareLine(register_line) != 0) {
1326          Dump(std::cout);
1327          std::cout << info_messages_.str();
1328          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1329                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1330                     << " work_line=" << *work_line_ << "\n"
1331                     << "  expected=" << *register_line;
1332        }
1333      }
1334#endif
1335    }
1336    if (!CodeFlowVerifyInstruction(&start_guess)) {
1337      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1338      prepend += " failed to verify: ";
1339      PrependToLastFailMessage(prepend);
1340      return false;
1341    }
1342    /* Clear "changed" and mark as visited. */
1343    insn_flags_[insn_idx].SetVisited();
1344    insn_flags_[insn_idx].ClearChanged();
1345  }
1346
1347  if (gDebugVerify) {
1348    /*
1349     * Scan for dead code. There's nothing "evil" about dead code
1350     * (besides the wasted space), but it indicates a flaw somewhere
1351     * down the line, possibly in the verifier.
1352     *
1353     * If we've substituted "always throw" instructions into the stream,
1354     * we are almost certainly going to have some dead code.
1355     */
1356    int dead_start = -1;
1357    uint32_t insn_idx = 0;
1358    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1359      /*
1360       * Switch-statement data doesn't get "visited" by scanner. It
1361       * may or may not be preceded by a padding NOP (for alignment).
1362       */
1363      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1364          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1365          insns[insn_idx] == Instruction::kArrayDataSignature ||
1366          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1367           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1368            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1369            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1370        insn_flags_[insn_idx].SetVisited();
1371      }
1372
1373      if (!insn_flags_[insn_idx].IsVisited()) {
1374        if (dead_start < 0)
1375          dead_start = insn_idx;
1376      } else if (dead_start >= 0) {
1377        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1378                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1379        dead_start = -1;
1380      }
1381    }
1382    if (dead_start >= 0) {
1383      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1384                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1385    }
1386    // To dump the state of the verify after a method, do something like:
1387    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1388    //     "boolean java.lang.String.equals(java.lang.Object)") {
1389    //   LOG(INFO) << info_messages_.str();
1390    // }
1391  }
1392  return true;
1393}
1394
1395bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1396  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1397  // We want the state _before_ the instruction, for the case where the dex pc we're
1398  // interested in is itself a monitor-enter instruction (which is a likely place
1399  // for a thread to be suspended).
1400  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1401    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1402    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1403      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1404    }
1405  }
1406
1407  /*
1408   * Once we finish decoding the instruction, we need to figure out where
1409   * we can go from here. There are three possible ways to transfer
1410   * control to another statement:
1411   *
1412   * (1) Continue to the next instruction. Applies to all but
1413   *     unconditional branches, method returns, and exception throws.
1414   * (2) Branch to one or more possible locations. Applies to branches
1415   *     and switch statements.
1416   * (3) Exception handlers. Applies to any instruction that can
1417   *     throw an exception that is handled by an encompassing "try"
1418   *     block.
1419   *
1420   * We can also return, in which case there is no successor instruction
1421   * from this point.
1422   *
1423   * The behavior can be determined from the opcode flags.
1424   */
1425  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1426  const Instruction* inst = Instruction::At(insns);
1427  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1428
1429  int32_t branch_target = 0;
1430  bool just_set_result = false;
1431  if (gDebugVerify) {
1432    // Generate processing back trace to debug verifier
1433    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1434                    << *work_line_.get() << "\n";
1435  }
1436
1437  /*
1438   * Make a copy of the previous register state. If the instruction
1439   * can throw an exception, we will copy/merge this into the "catch"
1440   * address rather than work_line, because we don't want the result
1441   * from the "successful" code path (e.g. a check-cast that "improves"
1442   * a type) to be visible to the exception handler.
1443   */
1444  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1445    saved_line_->CopyFromLine(work_line_.get());
1446  } else {
1447#ifndef NDEBUG
1448    saved_line_->FillWithGarbage();
1449#endif
1450  }
1451
1452
1453  // We need to ensure the work line is consistent while performing validation. When we spot a
1454  // peephole pattern we compute a new line for either the fallthrough instruction or the
1455  // branch target.
1456  std::unique_ptr<RegisterLine> branch_line;
1457  std::unique_ptr<RegisterLine> fallthrough_line;
1458
1459  switch (inst->Opcode()) {
1460    case Instruction::NOP:
1461      /*
1462       * A "pure" NOP has no effect on anything. Data tables start with
1463       * a signature that looks like a NOP; if we see one of these in
1464       * the course of executing code then we have a problem.
1465       */
1466      if (inst->VRegA_10x() != 0) {
1467        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1468      }
1469      break;
1470
1471    case Instruction::MOVE:
1472      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1473      break;
1474    case Instruction::MOVE_FROM16:
1475      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1476      break;
1477    case Instruction::MOVE_16:
1478      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1479      break;
1480    case Instruction::MOVE_WIDE:
1481      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1482      break;
1483    case Instruction::MOVE_WIDE_FROM16:
1484      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1485      break;
1486    case Instruction::MOVE_WIDE_16:
1487      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1488      break;
1489    case Instruction::MOVE_OBJECT:
1490      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1491      break;
1492    case Instruction::MOVE_OBJECT_FROM16:
1493      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1494      break;
1495    case Instruction::MOVE_OBJECT_16:
1496      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1497      break;
1498
1499    /*
1500     * The move-result instructions copy data out of a "pseudo-register"
1501     * with the results from the last method invocation. In practice we
1502     * might want to hold the result in an actual CPU register, so the
1503     * Dalvik spec requires that these only appear immediately after an
1504     * invoke or filled-new-array.
1505     *
1506     * These calls invalidate the "result" register. (This is now
1507     * redundant with the reset done below, but it can make the debug info
1508     * easier to read in some cases.)
1509     */
1510    case Instruction::MOVE_RESULT:
1511      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1512      break;
1513    case Instruction::MOVE_RESULT_WIDE:
1514      work_line_->CopyResultRegister2(inst->VRegA_11x());
1515      break;
1516    case Instruction::MOVE_RESULT_OBJECT:
1517      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1518      break;
1519
1520    case Instruction::MOVE_EXCEPTION: {
1521      /*
1522       * This statement can only appear as the first instruction in an exception handler. We verify
1523       * that as part of extracting the exception type from the catch block list.
1524       */
1525      const RegType& res_type = GetCaughtExceptionType();
1526      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1527      break;
1528    }
1529    case Instruction::RETURN_VOID:
1530      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1531        if (!GetMethodReturnType().IsConflict()) {
1532          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1533        }
1534      }
1535      break;
1536    case Instruction::RETURN:
1537      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1538        /* check the method signature */
1539        const RegType& return_type = GetMethodReturnType();
1540        if (!return_type.IsCategory1Types()) {
1541          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1542                                            << return_type;
1543        } else {
1544          // Compilers may generate synthetic functions that write byte values into boolean fields.
1545          // Also, it may use integer values for boolean, byte, short, and character return types.
1546          const uint32_t vregA = inst->VRegA_11x();
1547          const RegType& src_type = work_line_->GetRegisterType(vregA);
1548          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1549                          ((return_type.IsBoolean() || return_type.IsByte() ||
1550                           return_type.IsShort() || return_type.IsChar()) &&
1551                           src_type.IsInteger()));
1552          /* check the register contents */
1553          bool success =
1554              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1555          if (!success) {
1556            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1557          }
1558        }
1559      }
1560      break;
1561    case Instruction::RETURN_WIDE:
1562      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1563        /* check the method signature */
1564        const RegType& return_type = GetMethodReturnType();
1565        if (!return_type.IsCategory2Types()) {
1566          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1567        } else {
1568          /* check the register contents */
1569          const uint32_t vregA = inst->VRegA_11x();
1570          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1571          if (!success) {
1572            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1573          }
1574        }
1575      }
1576      break;
1577    case Instruction::RETURN_OBJECT:
1578      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1579        const RegType& return_type = GetMethodReturnType();
1580        if (!return_type.IsReferenceTypes()) {
1581          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1582        } else {
1583          /* return_type is the *expected* return type, not register value */
1584          DCHECK(!return_type.IsZero());
1585          DCHECK(!return_type.IsUninitializedReference());
1586          const uint32_t vregA = inst->VRegA_11x();
1587          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1588          // Disallow returning uninitialized values and verify that the reference in vAA is an
1589          // instance of the "return_type"
1590          if (reg_type.IsUninitializedTypes()) {
1591            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1592                                              << reg_type << "'";
1593          } else if (!return_type.IsAssignableFrom(reg_type)) {
1594            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1595              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1596                  << "' or '" << reg_type << "'";
1597            } else {
1598              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1599                  << "', but expected from declaration '" << return_type << "'";
1600            }
1601          }
1602        }
1603      }
1604      break;
1605
1606      /* could be boolean, int, float, or a null reference */
1607    case Instruction::CONST_4: {
1608      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1609      work_line_->SetRegisterType(inst->VRegA_11n(),
1610                                  DetermineCat1Constant(val, need_precise_constants_));
1611      break;
1612    }
1613    case Instruction::CONST_16: {
1614      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1615      work_line_->SetRegisterType(inst->VRegA_21s(),
1616                                  DetermineCat1Constant(val, need_precise_constants_));
1617      break;
1618    }
1619    case Instruction::CONST: {
1620      int32_t val = inst->VRegB_31i();
1621      work_line_->SetRegisterType(inst->VRegA_31i(),
1622                                  DetermineCat1Constant(val, need_precise_constants_));
1623      break;
1624    }
1625    case Instruction::CONST_HIGH16: {
1626      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1627      work_line_->SetRegisterType(inst->VRegA_21h(),
1628                                  DetermineCat1Constant(val, need_precise_constants_));
1629      break;
1630    }
1631      /* could be long or double; resolved upon use */
1632    case Instruction::CONST_WIDE_16: {
1633      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1634      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1635      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1636      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1637      break;
1638    }
1639    case Instruction::CONST_WIDE_32: {
1640      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1641      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1642      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1643      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1644      break;
1645    }
1646    case Instruction::CONST_WIDE: {
1647      int64_t val = inst->VRegB_51l();
1648      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1649      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1650      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1651      break;
1652    }
1653    case Instruction::CONST_WIDE_HIGH16: {
1654      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1655      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1656      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1657      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1658      break;
1659    }
1660    case Instruction::CONST_STRING:
1661      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1662      break;
1663    case Instruction::CONST_STRING_JUMBO:
1664      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1665      break;
1666    case Instruction::CONST_CLASS: {
1667      // Get type from instruction if unresolved then we need an access check
1668      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1669      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1670      // Register holds class, ie its type is class, on error it will hold Conflict.
1671      work_line_->SetRegisterType(inst->VRegA_21c(),
1672                                  res_type.IsConflict() ? res_type
1673                                                        : reg_types_.JavaLangClass(true));
1674      break;
1675    }
1676    case Instruction::MONITOR_ENTER:
1677      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1678      break;
1679    case Instruction::MONITOR_EXIT:
1680      /*
1681       * monitor-exit instructions are odd. They can throw exceptions,
1682       * but when they do they act as if they succeeded and the PC is
1683       * pointing to the following instruction. (This behavior goes back
1684       * to the need to handle asynchronous exceptions, a now-deprecated
1685       * feature that Dalvik doesn't support.)
1686       *
1687       * In practice we don't need to worry about this. The only
1688       * exceptions that can be thrown from monitor-exit are for a
1689       * null reference and -exit without a matching -enter. If the
1690       * structured locking checks are working, the former would have
1691       * failed on the -enter instruction, and the latter is impossible.
1692       *
1693       * This is fortunate, because issue 3221411 prevents us from
1694       * chasing the "can throw" path when monitor verification is
1695       * enabled. If we can fully verify the locking we can ignore
1696       * some catch blocks (which will show up as "dead" code when
1697       * we skip them here); if we can't, then the code path could be
1698       * "live" so we still need to check it.
1699       */
1700      opcode_flags &= ~Instruction::kThrow;
1701      work_line_->PopMonitor(inst->VRegA_11x());
1702      break;
1703
1704    case Instruction::CHECK_CAST:
1705    case Instruction::INSTANCE_OF: {
1706      /*
1707       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1708       * could be a "upcast" -- not expected, so we don't try to address it.)
1709       *
1710       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1711       * dec_insn.vA when branching to a handler.
1712       */
1713      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1714      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1715      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1716      if (res_type.IsConflict()) {
1717        DCHECK_NE(failures_.size(), 0U);
1718        if (!is_checkcast) {
1719          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1720        }
1721        break;  // bad class
1722      }
1723      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1724      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1725      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1726      if (!res_type.IsNonZeroReferenceTypes()) {
1727        if (is_checkcast) {
1728          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1729        } else {
1730          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1731        }
1732      } else if (!orig_type.IsReferenceTypes()) {
1733        if (is_checkcast) {
1734          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1735        } else {
1736          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1737        }
1738      } else {
1739        if (is_checkcast) {
1740          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1741        } else {
1742          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1743        }
1744      }
1745      break;
1746    }
1747    case Instruction::ARRAY_LENGTH: {
1748      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1749      if (res_type.IsReferenceTypes()) {
1750        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1751          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1752        } else {
1753          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1754        }
1755      }
1756      break;
1757    }
1758    case Instruction::NEW_INSTANCE: {
1759      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1760      if (res_type.IsConflict()) {
1761        DCHECK_NE(failures_.size(), 0U);
1762        break;  // bad class
1763      }
1764      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1765      // can't create an instance of an interface or abstract class */
1766      if (!res_type.IsInstantiableTypes()) {
1767        Fail(VERIFY_ERROR_INSTANTIATION)
1768            << "new-instance on primitive, interface or abstract class" << res_type;
1769        // Soft failure so carry on to set register type.
1770      }
1771      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1772      // Any registers holding previous allocations from this address that have not yet been
1773      // initialized must be marked invalid.
1774      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1775      // add the new uninitialized reference to the register state
1776      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1777      break;
1778    }
1779    case Instruction::NEW_ARRAY:
1780      VerifyNewArray(inst, false, false);
1781      break;
1782    case Instruction::FILLED_NEW_ARRAY:
1783      VerifyNewArray(inst, true, false);
1784      just_set_result = true;  // Filled new array sets result register
1785      break;
1786    case Instruction::FILLED_NEW_ARRAY_RANGE:
1787      VerifyNewArray(inst, true, true);
1788      just_set_result = true;  // Filled new array range sets result register
1789      break;
1790    case Instruction::CMPL_FLOAT:
1791    case Instruction::CMPG_FLOAT:
1792      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1793        break;
1794      }
1795      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1796        break;
1797      }
1798      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1799      break;
1800    case Instruction::CMPL_DOUBLE:
1801    case Instruction::CMPG_DOUBLE:
1802      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1803                                              reg_types_.DoubleHi())) {
1804        break;
1805      }
1806      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1807                                              reg_types_.DoubleHi())) {
1808        break;
1809      }
1810      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1811      break;
1812    case Instruction::CMP_LONG:
1813      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1814                                              reg_types_.LongHi())) {
1815        break;
1816      }
1817      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1818                                              reg_types_.LongHi())) {
1819        break;
1820      }
1821      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1822      break;
1823    case Instruction::THROW: {
1824      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1825      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1826        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1827            << "thrown class " << res_type << " not instanceof Throwable";
1828      }
1829      break;
1830    }
1831    case Instruction::GOTO:
1832    case Instruction::GOTO_16:
1833    case Instruction::GOTO_32:
1834      /* no effect on or use of registers */
1835      break;
1836
1837    case Instruction::PACKED_SWITCH:
1838    case Instruction::SPARSE_SWITCH:
1839      /* verify that vAA is an integer, or can be converted to one */
1840      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1841      break;
1842
1843    case Instruction::FILL_ARRAY_DATA: {
1844      /* Similar to the verification done for APUT */
1845      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1846      /* array_type can be null if the reg type is Zero */
1847      if (!array_type.IsZero()) {
1848        if (!array_type.IsArrayTypes()) {
1849          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1850                                            << array_type;
1851        } else {
1852          const RegType& component_type = reg_types_.GetComponentType(array_type,
1853                                                                      class_loader_->Get());
1854          DCHECK(!component_type.IsConflict());
1855          if (component_type.IsNonZeroReferenceTypes()) {
1856            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1857                                              << component_type;
1858          } else {
1859            // Now verify if the element width in the table matches the element width declared in
1860            // the array
1861            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1862            if (array_data[0] != Instruction::kArrayDataSignature) {
1863              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1864            } else {
1865              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1866              // Since we don't compress the data in Dex, expect to see equal width of data stored
1867              // in the table and expected from the array class.
1868              if (array_data[1] != elem_width) {
1869                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1870                                                  << " vs " << elem_width << ")";
1871              }
1872            }
1873          }
1874        }
1875      }
1876      break;
1877    }
1878    case Instruction::IF_EQ:
1879    case Instruction::IF_NE: {
1880      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1881      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1882      bool mismatch = false;
1883      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1884        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1885      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1886        mismatch = !reg_type2.IsReferenceTypes();
1887      } else {  // both integral?
1888        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1889      }
1890      if (mismatch) {
1891        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1892                                          << reg_type2 << ") must both be references or integral";
1893      }
1894      break;
1895    }
1896    case Instruction::IF_LT:
1897    case Instruction::IF_GE:
1898    case Instruction::IF_GT:
1899    case Instruction::IF_LE: {
1900      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1901      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1902      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1903        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1904                                          << reg_type2 << ") must be integral";
1905      }
1906      break;
1907    }
1908    case Instruction::IF_EQZ:
1909    case Instruction::IF_NEZ: {
1910      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1911      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1912        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1913                                          << " unexpected as arg to if-eqz/if-nez";
1914      }
1915
1916      // Find previous instruction - its existence is a precondition to peephole optimization.
1917      uint32_t instance_of_idx = 0;
1918      if (0 != work_insn_idx_) {
1919        instance_of_idx = work_insn_idx_ - 1;
1920        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1921          instance_of_idx--;
1922        }
1923        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1924      } else {
1925        break;
1926      }
1927
1928      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1929
1930      /* Check for peep-hole pattern of:
1931       *    ...;
1932       *    instance-of vX, vY, T;
1933       *    ifXXX vX, label ;
1934       *    ...;
1935       * label:
1936       *    ...;
1937       * and sharpen the type of vY to be type T.
1938       * Note, this pattern can't be if:
1939       *  - if there are other branches to this branch,
1940       *  - when vX == vY.
1941       */
1942      if (!CurrentInsnFlags()->IsBranchTarget() &&
1943          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1944          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1945          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1946        // Check that the we are not attempting conversion to interface types,
1947        // which is not done because of the multiple inheritance implications.
1948        // Also don't change the type if it would result in an upcast.
1949        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1950        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1951
1952        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1953            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1954          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1955          if (inst->Opcode() == Instruction::IF_EQZ) {
1956            fallthrough_line.reset(update_line);
1957          } else {
1958            branch_line.reset(update_line);
1959          }
1960          update_line->CopyFromLine(work_line_.get());
1961          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1962          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1963            // See if instance-of was preceded by a move-object operation, common due to the small
1964            // register encoding space of instance-of, and propagate type information to the source
1965            // of the move-object.
1966            uint32_t move_idx = instance_of_idx - 1;
1967            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1968              move_idx--;
1969            }
1970            CHECK(insn_flags_[move_idx].IsOpcode());
1971            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1972            switch (move_inst->Opcode()) {
1973              case Instruction::MOVE_OBJECT:
1974                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1975                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1976                }
1977                break;
1978              case Instruction::MOVE_OBJECT_FROM16:
1979                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1980                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1981                }
1982                break;
1983              case Instruction::MOVE_OBJECT_16:
1984                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1985                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1986                }
1987                break;
1988              default:
1989                break;
1990            }
1991          }
1992        }
1993      }
1994
1995      break;
1996    }
1997    case Instruction::IF_LTZ:
1998    case Instruction::IF_GEZ:
1999    case Instruction::IF_GTZ:
2000    case Instruction::IF_LEZ: {
2001      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2002      if (!reg_type.IsIntegralTypes()) {
2003        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2004                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2005      }
2006      break;
2007    }
2008    case Instruction::AGET_BOOLEAN:
2009      VerifyAGet(inst, reg_types_.Boolean(), true);
2010      break;
2011    case Instruction::AGET_BYTE:
2012      VerifyAGet(inst, reg_types_.Byte(), true);
2013      break;
2014    case Instruction::AGET_CHAR:
2015      VerifyAGet(inst, reg_types_.Char(), true);
2016      break;
2017    case Instruction::AGET_SHORT:
2018      VerifyAGet(inst, reg_types_.Short(), true);
2019      break;
2020    case Instruction::AGET:
2021      VerifyAGet(inst, reg_types_.Integer(), true);
2022      break;
2023    case Instruction::AGET_WIDE:
2024      VerifyAGet(inst, reg_types_.LongLo(), true);
2025      break;
2026    case Instruction::AGET_OBJECT:
2027      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2028      break;
2029
2030    case Instruction::APUT_BOOLEAN:
2031      VerifyAPut(inst, reg_types_.Boolean(), true);
2032      break;
2033    case Instruction::APUT_BYTE:
2034      VerifyAPut(inst, reg_types_.Byte(), true);
2035      break;
2036    case Instruction::APUT_CHAR:
2037      VerifyAPut(inst, reg_types_.Char(), true);
2038      break;
2039    case Instruction::APUT_SHORT:
2040      VerifyAPut(inst, reg_types_.Short(), true);
2041      break;
2042    case Instruction::APUT:
2043      VerifyAPut(inst, reg_types_.Integer(), true);
2044      break;
2045    case Instruction::APUT_WIDE:
2046      VerifyAPut(inst, reg_types_.LongLo(), true);
2047      break;
2048    case Instruction::APUT_OBJECT:
2049      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2050      break;
2051
2052    case Instruction::IGET_BOOLEAN:
2053      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2054      break;
2055    case Instruction::IGET_BYTE:
2056      VerifyISGet(inst, reg_types_.Byte(), true, false);
2057      break;
2058    case Instruction::IGET_CHAR:
2059      VerifyISGet(inst, reg_types_.Char(), true, false);
2060      break;
2061    case Instruction::IGET_SHORT:
2062      VerifyISGet(inst, reg_types_.Short(), true, false);
2063      break;
2064    case Instruction::IGET:
2065      VerifyISGet(inst, reg_types_.Integer(), true, false);
2066      break;
2067    case Instruction::IGET_WIDE:
2068      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2069      break;
2070    case Instruction::IGET_OBJECT:
2071      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2072      break;
2073
2074    case Instruction::IPUT_BOOLEAN:
2075      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2076      break;
2077    case Instruction::IPUT_BYTE:
2078      VerifyISPut(inst, reg_types_.Byte(), true, false);
2079      break;
2080    case Instruction::IPUT_CHAR:
2081      VerifyISPut(inst, reg_types_.Char(), true, false);
2082      break;
2083    case Instruction::IPUT_SHORT:
2084      VerifyISPut(inst, reg_types_.Short(), true, false);
2085      break;
2086    case Instruction::IPUT:
2087      VerifyISPut(inst, reg_types_.Integer(), true, false);
2088      break;
2089    case Instruction::IPUT_WIDE:
2090      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2091      break;
2092    case Instruction::IPUT_OBJECT:
2093      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2094      break;
2095
2096    case Instruction::SGET_BOOLEAN:
2097      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2098      break;
2099    case Instruction::SGET_BYTE:
2100      VerifyISGet(inst, reg_types_.Byte(), true, true);
2101      break;
2102    case Instruction::SGET_CHAR:
2103      VerifyISGet(inst, reg_types_.Char(), true, true);
2104      break;
2105    case Instruction::SGET_SHORT:
2106      VerifyISGet(inst, reg_types_.Short(), true, true);
2107      break;
2108    case Instruction::SGET:
2109      VerifyISGet(inst, reg_types_.Integer(), true, true);
2110      break;
2111    case Instruction::SGET_WIDE:
2112      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2113      break;
2114    case Instruction::SGET_OBJECT:
2115      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2116      break;
2117
2118    case Instruction::SPUT_BOOLEAN:
2119      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2120      break;
2121    case Instruction::SPUT_BYTE:
2122      VerifyISPut(inst, reg_types_.Byte(), true, true);
2123      break;
2124    case Instruction::SPUT_CHAR:
2125      VerifyISPut(inst, reg_types_.Char(), true, true);
2126      break;
2127    case Instruction::SPUT_SHORT:
2128      VerifyISPut(inst, reg_types_.Short(), true, true);
2129      break;
2130    case Instruction::SPUT:
2131      VerifyISPut(inst, reg_types_.Integer(), true, true);
2132      break;
2133    case Instruction::SPUT_WIDE:
2134      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2135      break;
2136    case Instruction::SPUT_OBJECT:
2137      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2138      break;
2139
2140    case Instruction::INVOKE_VIRTUAL:
2141    case Instruction::INVOKE_VIRTUAL_RANGE:
2142    case Instruction::INVOKE_SUPER:
2143    case Instruction::INVOKE_SUPER_RANGE: {
2144      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2145                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2146      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2147                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2148      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2149                                                              is_super);
2150      const RegType* return_type = nullptr;
2151      if (called_method != nullptr) {
2152        Thread* self = Thread::Current();
2153        StackHandleScope<1> hs(self);
2154        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2155        MethodHelper mh(h_called_method);
2156        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2157        if (return_type_class != nullptr) {
2158          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2159                                              return_type_class,
2160                                              return_type_class->CannotBeAssignedFromOtherTypes());
2161        } else {
2162          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2163          self->ClearException();
2164        }
2165      }
2166      if (return_type == nullptr) {
2167        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2168        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2169        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2170        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2171        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2172      }
2173      if (!return_type->IsLowHalf()) {
2174        work_line_->SetResultRegisterType(*return_type);
2175      } else {
2176        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2177      }
2178      just_set_result = true;
2179      break;
2180    }
2181    case Instruction::INVOKE_DIRECT:
2182    case Instruction::INVOKE_DIRECT_RANGE: {
2183      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2184      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2185                                                                   is_range, false);
2186      const char* return_type_descriptor;
2187      bool is_constructor;
2188      if (called_method == NULL) {
2189        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2190        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2191        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2192        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2193        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2194      } else {
2195        is_constructor = called_method->IsConstructor();
2196        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2197      }
2198      if (is_constructor) {
2199        /*
2200         * Some additional checks when calling a constructor. We know from the invocation arg check
2201         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2202         * that to require that called_method->klass is the same as this->klass or this->super,
2203         * allowing the latter only if the "this" argument is the same as the "this" argument to
2204         * this method (which implies that we're in a constructor ourselves).
2205         */
2206        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2207        if (this_type.IsConflict())  // failure.
2208          break;
2209
2210        /* no null refs allowed (?) */
2211        if (this_type.IsZero()) {
2212          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2213          break;
2214        }
2215
2216        /* must be in same class or in superclass */
2217        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2218        // TODO: re-enable constructor type verification
2219        // if (this_super_klass.IsConflict()) {
2220          // Unknown super class, fail so we re-check at runtime.
2221          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2222          // break;
2223        // }
2224
2225        /* arg must be an uninitialized reference */
2226        if (!this_type.IsUninitializedTypes()) {
2227          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2228              << this_type;
2229          break;
2230        }
2231
2232        /*
2233         * Replace the uninitialized reference with an initialized one. We need to do this for all
2234         * registers that have the same object instance in them, not just the "this" register.
2235         */
2236        work_line_->MarkRefsAsInitialized(this_type);
2237      }
2238      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(),
2239                                                             return_type_descriptor, false);
2240      if (!return_type.IsLowHalf()) {
2241        work_line_->SetResultRegisterType(return_type);
2242      } else {
2243        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2244      }
2245      just_set_result = true;
2246      break;
2247    }
2248    case Instruction::INVOKE_STATIC:
2249    case Instruction::INVOKE_STATIC_RANGE: {
2250        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2251        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2252                                                                     METHOD_STATIC,
2253                                                                     is_range,
2254                                                                     false);
2255        const char* descriptor;
2256        if (called_method == NULL) {
2257          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2258          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2259          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2260          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2261        } else {
2262          descriptor = called_method->GetReturnTypeDescriptor();
2263        }
2264        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2265                                                               false);
2266        if (!return_type.IsLowHalf()) {
2267          work_line_->SetResultRegisterType(return_type);
2268        } else {
2269          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2270        }
2271        just_set_result = true;
2272      }
2273      break;
2274    case Instruction::INVOKE_INTERFACE:
2275    case Instruction::INVOKE_INTERFACE_RANGE: {
2276      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2277      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2278                                                                METHOD_INTERFACE,
2279                                                                is_range,
2280                                                                false);
2281      if (abs_method != NULL) {
2282        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2283        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2284          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2285              << PrettyMethod(abs_method) << "'";
2286          break;
2287        }
2288      }
2289      /* Get the type of the "this" arg, which should either be a sub-interface of called
2290       * interface or Object (see comments in RegType::JoinClass).
2291       */
2292      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2293      if (this_type.IsZero()) {
2294        /* null pointer always passes (and always fails at runtime) */
2295      } else {
2296        if (this_type.IsUninitializedTypes()) {
2297          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2298              << this_type;
2299          break;
2300        }
2301        // In the past we have tried to assert that "called_interface" is assignable
2302        // from "this_type.GetClass()", however, as we do an imprecise Join
2303        // (RegType::JoinClass) we don't have full information on what interfaces are
2304        // implemented by "this_type". For example, two classes may implement the same
2305        // interfaces and have a common parent that doesn't implement the interface. The
2306        // join will set "this_type" to the parent class and a test that this implements
2307        // the interface will incorrectly fail.
2308      }
2309      /*
2310       * We don't have an object instance, so we can't find the concrete method. However, all of
2311       * the type information is in the abstract method, so we're good.
2312       */
2313      const char* descriptor;
2314      if (abs_method == NULL) {
2315        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2316        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2317        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2318        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2319      } else {
2320        descriptor = abs_method->GetReturnTypeDescriptor();
2321      }
2322      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2323                                                             false);
2324      if (!return_type.IsLowHalf()) {
2325        work_line_->SetResultRegisterType(return_type);
2326      } else {
2327        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2328      }
2329      just_set_result = true;
2330      break;
2331    }
2332    case Instruction::NEG_INT:
2333    case Instruction::NOT_INT:
2334      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2335      break;
2336    case Instruction::NEG_LONG:
2337    case Instruction::NOT_LONG:
2338      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2339                                   reg_types_.LongLo(), reg_types_.LongHi());
2340      break;
2341    case Instruction::NEG_FLOAT:
2342      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2343      break;
2344    case Instruction::NEG_DOUBLE:
2345      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2346                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2347      break;
2348    case Instruction::INT_TO_LONG:
2349      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2350                                     reg_types_.Integer());
2351      break;
2352    case Instruction::INT_TO_FLOAT:
2353      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2354      break;
2355    case Instruction::INT_TO_DOUBLE:
2356      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2357                                     reg_types_.Integer());
2358      break;
2359    case Instruction::LONG_TO_INT:
2360      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2361                                       reg_types_.LongLo(), reg_types_.LongHi());
2362      break;
2363    case Instruction::LONG_TO_FLOAT:
2364      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2365                                       reg_types_.LongLo(), reg_types_.LongHi());
2366      break;
2367    case Instruction::LONG_TO_DOUBLE:
2368      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2369                                   reg_types_.LongLo(), reg_types_.LongHi());
2370      break;
2371    case Instruction::FLOAT_TO_INT:
2372      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2373      break;
2374    case Instruction::FLOAT_TO_LONG:
2375      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2376                                     reg_types_.Float());
2377      break;
2378    case Instruction::FLOAT_TO_DOUBLE:
2379      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2380                                     reg_types_.Float());
2381      break;
2382    case Instruction::DOUBLE_TO_INT:
2383      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2384                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2385      break;
2386    case Instruction::DOUBLE_TO_LONG:
2387      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2388                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2389      break;
2390    case Instruction::DOUBLE_TO_FLOAT:
2391      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2392                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2393      break;
2394    case Instruction::INT_TO_BYTE:
2395      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2396      break;
2397    case Instruction::INT_TO_CHAR:
2398      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2399      break;
2400    case Instruction::INT_TO_SHORT:
2401      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2402      break;
2403
2404    case Instruction::ADD_INT:
2405    case Instruction::SUB_INT:
2406    case Instruction::MUL_INT:
2407    case Instruction::REM_INT:
2408    case Instruction::DIV_INT:
2409    case Instruction::SHL_INT:
2410    case Instruction::SHR_INT:
2411    case Instruction::USHR_INT:
2412      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2413                                reg_types_.Integer(), false);
2414      break;
2415    case Instruction::AND_INT:
2416    case Instruction::OR_INT:
2417    case Instruction::XOR_INT:
2418      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2419                                reg_types_.Integer(), true);
2420      break;
2421    case Instruction::ADD_LONG:
2422    case Instruction::SUB_LONG:
2423    case Instruction::MUL_LONG:
2424    case Instruction::DIV_LONG:
2425    case Instruction::REM_LONG:
2426    case Instruction::AND_LONG:
2427    case Instruction::OR_LONG:
2428    case Instruction::XOR_LONG:
2429      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2430                                    reg_types_.LongLo(), reg_types_.LongHi(),
2431                                    reg_types_.LongLo(), reg_types_.LongHi());
2432      break;
2433    case Instruction::SHL_LONG:
2434    case Instruction::SHR_LONG:
2435    case Instruction::USHR_LONG:
2436      /* shift distance is Int, making these different from other binary operations */
2437      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2438                                         reg_types_.Integer());
2439      break;
2440    case Instruction::ADD_FLOAT:
2441    case Instruction::SUB_FLOAT:
2442    case Instruction::MUL_FLOAT:
2443    case Instruction::DIV_FLOAT:
2444    case Instruction::REM_FLOAT:
2445      work_line_->CheckBinaryOp(inst,
2446                                reg_types_.Float(),
2447                                reg_types_.Float(),
2448                                reg_types_.Float(),
2449                                false);
2450      break;
2451    case Instruction::ADD_DOUBLE:
2452    case Instruction::SUB_DOUBLE:
2453    case Instruction::MUL_DOUBLE:
2454    case Instruction::DIV_DOUBLE:
2455    case Instruction::REM_DOUBLE:
2456      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2457                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2458                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2459      break;
2460    case Instruction::ADD_INT_2ADDR:
2461    case Instruction::SUB_INT_2ADDR:
2462    case Instruction::MUL_INT_2ADDR:
2463    case Instruction::REM_INT_2ADDR:
2464    case Instruction::SHL_INT_2ADDR:
2465    case Instruction::SHR_INT_2ADDR:
2466    case Instruction::USHR_INT_2ADDR:
2467      work_line_->CheckBinaryOp2addr(inst,
2468                                     reg_types_.Integer(),
2469                                     reg_types_.Integer(),
2470                                     reg_types_.Integer(),
2471                                     false);
2472      break;
2473    case Instruction::AND_INT_2ADDR:
2474    case Instruction::OR_INT_2ADDR:
2475    case Instruction::XOR_INT_2ADDR:
2476      work_line_->CheckBinaryOp2addr(inst,
2477                                     reg_types_.Integer(),
2478                                     reg_types_.Integer(),
2479                                     reg_types_.Integer(),
2480                                     true);
2481      break;
2482    case Instruction::DIV_INT_2ADDR:
2483      work_line_->CheckBinaryOp2addr(inst,
2484                                     reg_types_.Integer(),
2485                                     reg_types_.Integer(),
2486                                     reg_types_.Integer(),
2487                                     false);
2488      break;
2489    case Instruction::ADD_LONG_2ADDR:
2490    case Instruction::SUB_LONG_2ADDR:
2491    case Instruction::MUL_LONG_2ADDR:
2492    case Instruction::DIV_LONG_2ADDR:
2493    case Instruction::REM_LONG_2ADDR:
2494    case Instruction::AND_LONG_2ADDR:
2495    case Instruction::OR_LONG_2ADDR:
2496    case Instruction::XOR_LONG_2ADDR:
2497      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2498                                         reg_types_.LongLo(), reg_types_.LongHi(),
2499                                         reg_types_.LongLo(), reg_types_.LongHi());
2500      break;
2501    case Instruction::SHL_LONG_2ADDR:
2502    case Instruction::SHR_LONG_2ADDR:
2503    case Instruction::USHR_LONG_2ADDR:
2504      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2505                                              reg_types_.Integer());
2506      break;
2507    case Instruction::ADD_FLOAT_2ADDR:
2508    case Instruction::SUB_FLOAT_2ADDR:
2509    case Instruction::MUL_FLOAT_2ADDR:
2510    case Instruction::DIV_FLOAT_2ADDR:
2511    case Instruction::REM_FLOAT_2ADDR:
2512      work_line_->CheckBinaryOp2addr(inst,
2513                                     reg_types_.Float(),
2514                                     reg_types_.Float(),
2515                                     reg_types_.Float(),
2516                                     false);
2517      break;
2518    case Instruction::ADD_DOUBLE_2ADDR:
2519    case Instruction::SUB_DOUBLE_2ADDR:
2520    case Instruction::MUL_DOUBLE_2ADDR:
2521    case Instruction::DIV_DOUBLE_2ADDR:
2522    case Instruction::REM_DOUBLE_2ADDR:
2523      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2524                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2525                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2526      break;
2527    case Instruction::ADD_INT_LIT16:
2528    case Instruction::RSUB_INT:
2529    case Instruction::MUL_INT_LIT16:
2530    case Instruction::DIV_INT_LIT16:
2531    case Instruction::REM_INT_LIT16:
2532      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2533      break;
2534    case Instruction::AND_INT_LIT16:
2535    case Instruction::OR_INT_LIT16:
2536    case Instruction::XOR_INT_LIT16:
2537      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2538      break;
2539    case Instruction::ADD_INT_LIT8:
2540    case Instruction::RSUB_INT_LIT8:
2541    case Instruction::MUL_INT_LIT8:
2542    case Instruction::DIV_INT_LIT8:
2543    case Instruction::REM_INT_LIT8:
2544    case Instruction::SHL_INT_LIT8:
2545    case Instruction::SHR_INT_LIT8:
2546    case Instruction::USHR_INT_LIT8:
2547      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2548      break;
2549    case Instruction::AND_INT_LIT8:
2550    case Instruction::OR_INT_LIT8:
2551    case Instruction::XOR_INT_LIT8:
2552      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2553      break;
2554
2555    // Special instructions.
2556    case Instruction::RETURN_VOID_BARRIER:
2557      if (!IsConstructor() || IsStatic()) {
2558          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2559      }
2560      break;
2561    // Note: the following instructions encode offsets derived from class linking.
2562    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2563    // meaning if the class linking and resolution were successful.
2564    case Instruction::IGET_QUICK:
2565      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2566      break;
2567    case Instruction::IGET_WIDE_QUICK:
2568      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2569      break;
2570    case Instruction::IGET_OBJECT_QUICK:
2571      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2572      break;
2573    case Instruction::IPUT_QUICK:
2574      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2575      break;
2576    case Instruction::IPUT_WIDE_QUICK:
2577      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2578      break;
2579    case Instruction::IPUT_OBJECT_QUICK:
2580      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2581      break;
2582    case Instruction::INVOKE_VIRTUAL_QUICK:
2583    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2584      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2585      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2586      if (called_method != NULL) {
2587        const char* descriptor = called_method->GetReturnTypeDescriptor();
2588        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2589                                                               false);
2590        if (!return_type.IsLowHalf()) {
2591          work_line_->SetResultRegisterType(return_type);
2592        } else {
2593          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2594        }
2595        just_set_result = true;
2596      }
2597      break;
2598    }
2599
2600    /* These should never appear during verification. */
2601    case Instruction::UNUSED_3E:
2602    case Instruction::UNUSED_3F:
2603    case Instruction::UNUSED_40:
2604    case Instruction::UNUSED_41:
2605    case Instruction::UNUSED_42:
2606    case Instruction::UNUSED_43:
2607    case Instruction::UNUSED_79:
2608    case Instruction::UNUSED_7A:
2609    case Instruction::UNUSED_EB:
2610    case Instruction::UNUSED_EC:
2611    case Instruction::UNUSED_ED:
2612    case Instruction::UNUSED_EE:
2613    case Instruction::UNUSED_EF:
2614    case Instruction::UNUSED_F0:
2615    case Instruction::UNUSED_F1:
2616    case Instruction::UNUSED_F2:
2617    case Instruction::UNUSED_F3:
2618    case Instruction::UNUSED_F4:
2619    case Instruction::UNUSED_F5:
2620    case Instruction::UNUSED_F6:
2621    case Instruction::UNUSED_F7:
2622    case Instruction::UNUSED_F8:
2623    case Instruction::UNUSED_F9:
2624    case Instruction::UNUSED_FA:
2625    case Instruction::UNUSED_FB:
2626    case Instruction::UNUSED_FC:
2627    case Instruction::UNUSED_FD:
2628    case Instruction::UNUSED_FE:
2629    case Instruction::UNUSED_FF:
2630      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2631      break;
2632
2633    /*
2634     * DO NOT add a "default" clause here. Without it the compiler will
2635     * complain if an instruction is missing (which is desirable).
2636     */
2637  }  // end - switch (dec_insn.opcode)
2638
2639  if (have_pending_hard_failure_) {
2640    if (Runtime::Current()->IsCompiler()) {
2641      /* When compiling, check that the last failure is a hard failure */
2642      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2643    }
2644    /* immediate failure, reject class */
2645    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2646    return false;
2647  } else if (have_pending_runtime_throw_failure_) {
2648    /* checking interpreter will throw, mark following code as unreachable */
2649    opcode_flags = Instruction::kThrow;
2650  }
2651  /*
2652   * If we didn't just set the result register, clear it out. This ensures that you can only use
2653   * "move-result" immediately after the result is set. (We could check this statically, but it's
2654   * not expensive and it makes our debugging output cleaner.)
2655   */
2656  if (!just_set_result) {
2657    work_line_->SetResultTypeToUnknown();
2658  }
2659
2660
2661
2662  /*
2663   * Handle "branch". Tag the branch target.
2664   *
2665   * NOTE: instructions like Instruction::EQZ provide information about the
2666   * state of the register when the branch is taken or not taken. For example,
2667   * somebody could get a reference field, check it for zero, and if the
2668   * branch is taken immediately store that register in a boolean field
2669   * since the value is known to be zero. We do not currently account for
2670   * that, and will reject the code.
2671   *
2672   * TODO: avoid re-fetching the branch target
2673   */
2674  if ((opcode_flags & Instruction::kBranch) != 0) {
2675    bool isConditional, selfOkay;
2676    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2677      /* should never happen after static verification */
2678      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2679      return false;
2680    }
2681    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2682    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2683      return false;
2684    }
2685    /* update branch target, set "changed" if appropriate */
2686    if (NULL != branch_line.get()) {
2687      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2688        return false;
2689      }
2690    } else {
2691      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2692        return false;
2693      }
2694    }
2695  }
2696
2697  /*
2698   * Handle "switch". Tag all possible branch targets.
2699   *
2700   * We've already verified that the table is structurally sound, so we
2701   * just need to walk through and tag the targets.
2702   */
2703  if ((opcode_flags & Instruction::kSwitch) != 0) {
2704    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2705    const uint16_t* switch_insns = insns + offset_to_switch;
2706    int switch_count = switch_insns[1];
2707    int offset_to_targets, targ;
2708
2709    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2710      /* 0 = sig, 1 = count, 2/3 = first key */
2711      offset_to_targets = 4;
2712    } else {
2713      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2714      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2715      offset_to_targets = 2 + 2 * switch_count;
2716    }
2717
2718    /* verify each switch target */
2719    for (targ = 0; targ < switch_count; targ++) {
2720      int offset;
2721      uint32_t abs_offset;
2722
2723      /* offsets are 32-bit, and only partly endian-swapped */
2724      offset = switch_insns[offset_to_targets + targ * 2] |
2725         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2726      abs_offset = work_insn_idx_ + offset;
2727      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2728      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2729        return false;
2730      }
2731      if (!UpdateRegisters(abs_offset, work_line_.get()))
2732        return false;
2733    }
2734  }
2735
2736  /*
2737   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2738   * "try" block when they throw, control transfers out of the method.)
2739   */
2740  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2741    bool within_catch_all = false;
2742    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2743
2744    for (; iterator.HasNext(); iterator.Next()) {
2745      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2746        within_catch_all = true;
2747      }
2748      /*
2749       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2750       * "work_regs", because at runtime the exception will be thrown before the instruction
2751       * modifies any registers.
2752       */
2753      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2754        return false;
2755      }
2756    }
2757
2758    /*
2759     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2760     * instruction. This does apply to monitor-exit because of async exception handling.
2761     */
2762    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2763      /*
2764       * The state in work_line reflects the post-execution state. If the current instruction is a
2765       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2766       * it will do so before grabbing the lock).
2767       */
2768      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2769        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2770            << "expected to be within a catch-all for an instruction where a monitor is held";
2771        return false;
2772      }
2773    }
2774  }
2775
2776  /* Handle "continue". Tag the next consecutive instruction.
2777   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2778   *        because it changes work_line_ when performing peephole optimization
2779   *        and this change should not be used in those cases.
2780   */
2781  if ((opcode_flags & Instruction::kContinue) != 0) {
2782    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2783    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2784      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2785      return false;
2786    }
2787    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2788    // next instruction isn't one.
2789    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2790      return false;
2791    }
2792    if (NULL != fallthrough_line.get()) {
2793      // Make workline consistent with fallthrough computed from peephole optimization.
2794      work_line_->CopyFromLine(fallthrough_line.get());
2795    }
2796    if (insn_flags_[next_insn_idx].IsReturn()) {
2797      // For returns we only care about the operand to the return, all other registers are dead.
2798      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2799      Instruction::Code opcode = ret_inst->Opcode();
2800      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2801        work_line_->MarkAllRegistersAsConflicts();
2802      } else {
2803        if (opcode == Instruction::RETURN_WIDE) {
2804          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2805        } else {
2806          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2807        }
2808      }
2809    }
2810    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2811    if (next_line != NULL) {
2812      // Merge registers into what we have for the next instruction,
2813      // and set the "changed" flag if needed.
2814      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2815        return false;
2816      }
2817    } else {
2818      /*
2819       * We're not recording register data for the next instruction, so we don't know what the
2820       * prior state was. We have to assume that something has changed and re-evaluate it.
2821       */
2822      insn_flags_[next_insn_idx].SetChanged();
2823    }
2824  }
2825
2826  /* If we're returning from the method, make sure monitor stack is empty. */
2827  if ((opcode_flags & Instruction::kReturn) != 0) {
2828    if (!work_line_->VerifyMonitorStackEmpty()) {
2829      return false;
2830    }
2831  }
2832
2833  /*
2834   * Update start_guess. Advance to the next instruction of that's
2835   * possible, otherwise use the branch target if one was found. If
2836   * neither of those exists we're in a return or throw; leave start_guess
2837   * alone and let the caller sort it out.
2838   */
2839  if ((opcode_flags & Instruction::kContinue) != 0) {
2840    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2841  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2842    /* we're still okay if branch_target is zero */
2843    *start_guess = work_insn_idx_ + branch_target;
2844  }
2845
2846  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2847  DCHECK(insn_flags_[*start_guess].IsOpcode());
2848
2849  return true;
2850}  // NOLINT(readability/fn_size)
2851
2852const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2853  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2854  const RegType& referrer = GetDeclaringClass();
2855  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2856  const RegType& result =
2857      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2858                                           klass->CannotBeAssignedFromOtherTypes())
2859                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2860  if (result.IsConflict()) {
2861    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2862        << "' in " << referrer;
2863    return result;
2864  }
2865  if (klass == NULL && !result.IsUnresolvedTypes()) {
2866    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2867  }
2868  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2869  // check at runtime if access is allowed and so pass here. If result is
2870  // primitive, skip the access check.
2871  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2872      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2873    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2874                                    << referrer << "' -> '" << result << "'";
2875  }
2876  return result;
2877}
2878
2879const RegType& MethodVerifier::GetCaughtExceptionType() {
2880  const RegType* common_super = NULL;
2881  if (code_item_->tries_size_ != 0) {
2882    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2883    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2884    for (uint32_t i = 0; i < handlers_size; i++) {
2885      CatchHandlerIterator iterator(handlers_ptr);
2886      for (; iterator.HasNext(); iterator.Next()) {
2887        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2888          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2889            common_super = &reg_types_.JavaLangThrowable(false);
2890          } else {
2891            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2892            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2893              if (exception.IsUnresolvedTypes()) {
2894                // We don't know enough about the type. Fail here and let runtime handle it.
2895                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2896                return exception;
2897              } else {
2898                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2899                return reg_types_.Conflict();
2900              }
2901            } else if (common_super == nullptr) {
2902              common_super = &exception;
2903            } else if (common_super->Equals(exception)) {
2904              // odd case, but nothing to do
2905            } else {
2906              common_super = &common_super->Merge(exception, &reg_types_);
2907              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2908            }
2909          }
2910        }
2911      }
2912      handlers_ptr = iterator.EndDataPointer();
2913    }
2914  }
2915  if (common_super == NULL) {
2916    /* no catch blocks, or no catches with classes we can find */
2917    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2918    return reg_types_.Conflict();
2919  }
2920  return *common_super;
2921}
2922
2923mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2924                                                               MethodType method_type) {
2925  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2926  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2927  if (klass_type.IsConflict()) {
2928    std::string append(" in attempt to access method ");
2929    append += dex_file_->GetMethodName(method_id);
2930    AppendToLastFailMessage(append);
2931    return NULL;
2932  }
2933  if (klass_type.IsUnresolvedTypes()) {
2934    return NULL;  // Can't resolve Class so no more to do here
2935  }
2936  mirror::Class* klass = klass_type.GetClass();
2937  const RegType& referrer = GetDeclaringClass();
2938  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2939  if (res_method == NULL) {
2940    const char* name = dex_file_->GetMethodName(method_id);
2941    const Signature signature = dex_file_->GetMethodSignature(method_id);
2942
2943    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2944      res_method = klass->FindDirectMethod(name, signature);
2945    } else if (method_type == METHOD_INTERFACE) {
2946      res_method = klass->FindInterfaceMethod(name, signature);
2947    } else {
2948      res_method = klass->FindVirtualMethod(name, signature);
2949    }
2950    if (res_method != NULL) {
2951      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2952    } else {
2953      // If a virtual or interface method wasn't found with the expected type, look in
2954      // the direct methods. This can happen when the wrong invoke type is used or when
2955      // a class has changed, and will be flagged as an error in later checks.
2956      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2957        res_method = klass->FindDirectMethod(name, signature);
2958      }
2959      if (res_method == NULL) {
2960        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2961                                     << PrettyDescriptor(klass) << "." << name
2962                                     << " " << signature;
2963        return NULL;
2964      }
2965    }
2966  }
2967  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2968  // enforce them here.
2969  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2970    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2971                                      << PrettyMethod(res_method);
2972    return NULL;
2973  }
2974  // Disallow any calls to class initializers.
2975  if (res_method->IsClassInitializer()) {
2976    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2977                                      << PrettyMethod(res_method);
2978    return NULL;
2979  }
2980  // Check if access is allowed.
2981  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2982    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2983                                     << " from " << referrer << ")";
2984    return res_method;
2985  }
2986  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2987  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2988    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2989                                      << PrettyMethod(res_method);
2990    return NULL;
2991  }
2992  // Check that interface methods match interface classes.
2993  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2994    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2995                                    << " is in an interface class " << PrettyClass(klass);
2996    return NULL;
2997  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2998    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2999                                    << " is in a non-interface class " << PrettyClass(klass);
3000    return NULL;
3001  }
3002  // See if the method type implied by the invoke instruction matches the access flags for the
3003  // target method.
3004  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3005      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3006      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3007      ) {
3008    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3009                                       " type of " << PrettyMethod(res_method);
3010    return NULL;
3011  }
3012  return res_method;
3013}
3014
3015template <class T>
3016mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3017                                                                    MethodType method_type,
3018                                                                    bool is_range,
3019                                                                    mirror::ArtMethod* res_method) {
3020  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3021  // match the call to the signature. Also, we might be calling through an abstract method
3022  // definition (which doesn't have register count values).
3023  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3024  /* caught by static verifier */
3025  DCHECK(is_range || expected_args <= 5);
3026  if (expected_args > code_item_->outs_size_) {
3027    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3028        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3029    return nullptr;
3030  }
3031
3032  uint32_t arg[5];
3033  if (!is_range) {
3034    inst->GetVarArgs(arg);
3035  }
3036  uint32_t sig_registers = 0;
3037
3038  /*
3039   * Check the "this" argument, which must be an instance of the class that declared the method.
3040   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3041   * rigorous check here (which is okay since we have to do it at runtime).
3042   */
3043  if (method_type != METHOD_STATIC) {
3044    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3045    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3046      CHECK(have_pending_hard_failure_);
3047      return nullptr;
3048    }
3049    if (actual_arg_type.IsUninitializedReference()) {
3050      if (res_method) {
3051        if (!res_method->IsConstructor()) {
3052          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3053          return nullptr;
3054        }
3055      } else {
3056        // Check whether the name of the called method is "<init>"
3057        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3058        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "init") != 0) {
3059          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3060          return nullptr;
3061        }
3062      }
3063    }
3064    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3065      const RegType* res_method_class;
3066      if (res_method != nullptr) {
3067        mirror::Class* klass = res_method->GetDeclaringClass();
3068        res_method_class = &reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3069                                                 klass->CannotBeAssignedFromOtherTypes());
3070      } else {
3071        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3072        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3073        res_method_class = &reg_types_.FromDescriptor(class_loader_->Get(),
3074                                                      dex_file_->StringByTypeIdx(class_idx),
3075                                                      false);
3076      }
3077      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3078        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3079            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3080                << "' not instance of '" << *res_method_class << "'";
3081        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3082        // the compiler.
3083        if (have_pending_hard_failure_) {
3084          return nullptr;
3085        }
3086      }
3087    }
3088    sig_registers = 1;
3089  }
3090
3091  for ( ; it->HasNext(); it->Next()) {
3092    if (sig_registers >= expected_args) {
3093      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3094          " arguments, found " << sig_registers << " or more.";
3095      return nullptr;
3096    }
3097
3098    const char* param_descriptor = it->GetDescriptor();
3099
3100    if (param_descriptor == nullptr) {
3101      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3102          "component";
3103      return nullptr;
3104    }
3105
3106    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor,
3107                                                        false);
3108    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3109        arg[sig_registers];
3110    if (reg_type.IsIntegralTypes()) {
3111      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3112      if (!src_type.IsIntegralTypes()) {
3113        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3114            << " but expected " << reg_type;
3115        return res_method;
3116      }
3117    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3118      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3119      // compiler.
3120      if (have_pending_hard_failure_) {
3121        return res_method;
3122      }
3123    }
3124    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3125  }
3126  if (expected_args != sig_registers) {
3127    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3128        " arguments, found " << sig_registers;
3129    return nullptr;
3130  }
3131  return res_method;
3132}
3133
3134void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3135                                                          MethodType method_type,
3136                                                          bool is_range) {
3137  // As the method may not have been resolved, make this static check against what we expect.
3138  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3139  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3140  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3141  DexFileParameterIterator it(*dex_file_,
3142                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3143  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3144                                                             nullptr);
3145}
3146
3147class MethodParamListDescriptorIterator {
3148 public:
3149  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3150      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3151      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3152  }
3153
3154  bool HasNext() {
3155    return pos_ < params_size_;
3156  }
3157
3158  void Next() {
3159    ++pos_;
3160  }
3161
3162  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3163    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3164  }
3165
3166 private:
3167  mirror::ArtMethod* res_method_;
3168  size_t pos_;
3169  const DexFile::TypeList* params_;
3170  const size_t params_size_;
3171};
3172
3173mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3174                                                             MethodType method_type,
3175                                                             bool is_range,
3176                                                             bool is_super) {
3177  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3178  // we're making.
3179  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3180
3181  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3182  if (res_method == NULL) {  // error or class is unresolved
3183    // Check what we can statically.
3184    if (!have_pending_hard_failure_) {
3185      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3186    }
3187    return nullptr;
3188  }
3189
3190  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3191  // has a vtable entry for the target method.
3192  if (is_super) {
3193    DCHECK(method_type == METHOD_VIRTUAL);
3194    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3195    if (super.IsUnresolvedTypes()) {
3196      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3197                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3198                                   << " to super " << PrettyMethod(res_method);
3199      return nullptr;
3200    }
3201    mirror::Class* super_klass = super.GetClass();
3202    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3203      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3204                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3205                                   << " to super " << super
3206                                   << "." << res_method->GetName()
3207                                   << res_method->GetSignature();
3208      return nullptr;
3209    }
3210  }
3211
3212  // Process the target method's signature. This signature may or may not
3213  MethodParamListDescriptorIterator it(res_method);
3214  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3215                                                                             is_range, res_method);
3216}
3217
3218mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3219                                                         RegisterLine* reg_line, bool is_range) {
3220  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3221         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3222  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3223  if (!actual_arg_type.HasClass()) {
3224    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3225    return nullptr;
3226  }
3227  mirror::ObjectArray<mirror::ArtMethod>* vtable = nullptr;
3228  mirror::Class* klass = actual_arg_type.GetClass();
3229  if (klass->IsInterface()) {
3230    // Derive Object.class from Class.class.getSuperclass().
3231    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3232    CHECK(object_klass->IsObjectClass());
3233    vtable = object_klass->GetVTable();
3234  } else {
3235    vtable = klass->GetVTable();
3236  }
3237  CHECK(vtable != nullptr) << PrettyDescriptor(klass);
3238  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3239  CHECK_LT(static_cast<int32_t>(vtable_index), vtable->GetLength()) << PrettyDescriptor(klass);
3240  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3241  CHECK(!Thread::Current()->IsExceptionPending());
3242  return res_method;
3243}
3244
3245mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3246                                                                     bool is_range) {
3247  DCHECK(Runtime::Current()->IsStarted());
3248  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3249                                                             is_range);
3250  if (res_method == NULL) {
3251    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3252    return NULL;
3253  }
3254  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3255
3256  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3257  // match the call to the signature. Also, we might be calling through an abstract method
3258  // definition (which doesn't have register count values).
3259  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3260  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3261    return NULL;
3262  }
3263  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3264  /* caught by static verifier */
3265  DCHECK(is_range || expected_args <= 5);
3266  if (expected_args > code_item_->outs_size_) {
3267    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3268        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3269    return NULL;
3270  }
3271
3272  /*
3273   * Check the "this" argument, which must be an instance of the class that declared the method.
3274   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3275   * rigorous check here (which is okay since we have to do it at runtime).
3276   */
3277  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3278    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3279    return NULL;
3280  }
3281  if (!actual_arg_type.IsZero()) {
3282    mirror::Class* klass = res_method->GetDeclaringClass();
3283    const RegType& res_method_class =
3284        reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3285                             klass->CannotBeAssignedFromOtherTypes());
3286    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3287      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3288          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3289          << "' not instance of '" << res_method_class << "'";
3290      return NULL;
3291    }
3292  }
3293  /*
3294   * Process the target method's signature. This signature may or may not
3295   * have been verified, so we can't assume it's properly formed.
3296   */
3297  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3298  size_t params_size = params == NULL ? 0 : params->Size();
3299  uint32_t arg[5];
3300  if (!is_range) {
3301    inst->GetVarArgs(arg);
3302  }
3303  size_t actual_args = 1;
3304  for (size_t param_index = 0; param_index < params_size; param_index++) {
3305    if (actual_args >= expected_args) {
3306      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3307                                        << "'. Expected " << expected_args
3308                                         << " arguments, processing argument " << actual_args
3309                                        << " (where longs/doubles count twice).";
3310      return NULL;
3311    }
3312    const char* descriptor =
3313        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3314    if (descriptor == NULL) {
3315      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3316                                        << " missing signature component";
3317      return NULL;
3318    }
3319    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3320    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3321    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3322      return res_method;
3323    }
3324    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3325  }
3326  if (actual_args != expected_args) {
3327    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3328              << " expected " << expected_args << " arguments, found " << actual_args;
3329    return NULL;
3330  } else {
3331    return res_method;
3332  }
3333}
3334
3335void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3336  uint32_t type_idx;
3337  if (!is_filled) {
3338    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3339    type_idx = inst->VRegC_22c();
3340  } else if (!is_range) {
3341    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3342    type_idx = inst->VRegB_35c();
3343  } else {
3344    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3345    type_idx = inst->VRegB_3rc();
3346  }
3347  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3348  if (res_type.IsConflict()) {  // bad class
3349    DCHECK_NE(failures_.size(), 0U);
3350  } else {
3351    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3352    if (!res_type.IsArrayTypes()) {
3353      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3354    } else if (!is_filled) {
3355      /* make sure "size" register is valid type */
3356      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3357      /* set register type to array class */
3358      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3359      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3360    } else {
3361      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3362      // the list and fail. It's legal, if silly, for arg_count to be zero.
3363      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3364      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3365      uint32_t arg[5];
3366      if (!is_range) {
3367        inst->GetVarArgs(arg);
3368      }
3369      for (size_t ui = 0; ui < arg_count; ui++) {
3370        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3371        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3372          work_line_->SetResultRegisterType(reg_types_.Conflict());
3373          return;
3374        }
3375      }
3376      // filled-array result goes into "result" register
3377      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3378      work_line_->SetResultRegisterType(precise_type);
3379    }
3380  }
3381}
3382
3383void MethodVerifier::VerifyAGet(const Instruction* inst,
3384                                const RegType& insn_type, bool is_primitive) {
3385  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3386  if (!index_type.IsArrayIndexTypes()) {
3387    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3388  } else {
3389    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3390    if (array_type.IsZero()) {
3391      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3392      // instruction type. TODO: have a proper notion of bottom here.
3393      if (!is_primitive || insn_type.IsCategory1Types()) {
3394        // Reference or category 1
3395        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3396      } else {
3397        // Category 2
3398        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3399                                        reg_types_.FromCat2ConstHi(0, false));
3400      }
3401    } else if (!array_type.IsArrayTypes()) {
3402      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3403    } else {
3404      /* verify the class */
3405      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3406      if (!component_type.IsReferenceTypes() && !is_primitive) {
3407        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3408            << " source for aget-object";
3409      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3410        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3411            << " source for category 1 aget";
3412      } else if (is_primitive && !insn_type.Equals(component_type) &&
3413                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3414                 (insn_type.IsLong() && component_type.IsDouble()))) {
3415        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3416            << " incompatible with aget of type " << insn_type;
3417      } else {
3418        // Use knowledge of the field type which is stronger than the type inferred from the
3419        // instruction, which can't differentiate object types and ints from floats, longs from
3420        // doubles.
3421        if (!component_type.IsLowHalf()) {
3422          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3423        } else {
3424          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3425                                          component_type.HighHalf(&reg_types_));
3426        }
3427      }
3428    }
3429  }
3430}
3431
3432void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3433                                        const uint32_t vregA) {
3434  // Primitive assignability rules are weaker than regular assignability rules.
3435  bool instruction_compatible;
3436  bool value_compatible;
3437  const RegType& value_type = work_line_->GetRegisterType(vregA);
3438  if (target_type.IsIntegralTypes()) {
3439    instruction_compatible = target_type.Equals(insn_type);
3440    value_compatible = value_type.IsIntegralTypes();
3441  } else if (target_type.IsFloat()) {
3442    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3443    value_compatible = value_type.IsFloatTypes();
3444  } else if (target_type.IsLong()) {
3445    instruction_compatible = insn_type.IsLong();
3446    value_compatible = value_type.IsLongTypes();
3447  } else if (target_type.IsDouble()) {
3448    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3449    value_compatible = value_type.IsDoubleTypes();
3450  } else {
3451    instruction_compatible = false;  // reference with primitive store
3452    value_compatible = false;  // unused
3453  }
3454  if (!instruction_compatible) {
3455    // This is a global failure rather than a class change failure as the instructions and
3456    // the descriptors for the type should have been consistent within the same file at
3457    // compile time.
3458    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3459        << "' but expected type '" << target_type << "'";
3460    return;
3461  }
3462  if (!value_compatible) {
3463    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3464        << " of type " << value_type << " but expected " << target_type << " for put";
3465    return;
3466  }
3467}
3468
3469void MethodVerifier::VerifyAPut(const Instruction* inst,
3470                                const RegType& insn_type, bool is_primitive) {
3471  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3472  if (!index_type.IsArrayIndexTypes()) {
3473    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3474  } else {
3475    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3476    if (array_type.IsZero()) {
3477      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3478      // instruction type.
3479    } else if (!array_type.IsArrayTypes()) {
3480      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3481    } else {
3482      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3483      const uint32_t vregA = inst->VRegA_23x();
3484      if (is_primitive) {
3485        VerifyPrimitivePut(component_type, insn_type, vregA);
3486      } else {
3487        if (!component_type.IsReferenceTypes()) {
3488          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3489              << " source for aput-object";
3490        } else {
3491          // The instruction agrees with the type of array, confirm the value to be stored does too
3492          // Note: we use the instruction type (rather than the component type) for aput-object as
3493          // incompatible classes will be caught at runtime as an array store exception
3494          work_line_->VerifyRegisterType(vregA, insn_type);
3495        }
3496      }
3497    }
3498  }
3499}
3500
3501mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3502  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3503  // Check access to class
3504  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3505  if (klass_type.IsConflict()) {  // bad class
3506    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3507                                         field_idx, dex_file_->GetFieldName(field_id),
3508                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3509    return NULL;
3510  }
3511  if (klass_type.IsUnresolvedTypes()) {
3512    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3513  }
3514  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3515  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3516                                                          *class_loader_);
3517  if (field == NULL) {
3518    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3519              << dex_file_->GetFieldName(field_id) << ") in "
3520              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3521    DCHECK(Thread::Current()->IsExceptionPending());
3522    Thread::Current()->ClearException();
3523    return NULL;
3524  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3525                                                  field->GetAccessFlags())) {
3526    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3527                                    << " from " << GetDeclaringClass();
3528    return NULL;
3529  } else if (!field->IsStatic()) {
3530    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3531    return NULL;
3532  }
3533  return field;
3534}
3535
3536mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3537  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3538  // Check access to class
3539  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3540  if (klass_type.IsConflict()) {
3541    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3542                                         field_idx, dex_file_->GetFieldName(field_id),
3543                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3544    return NULL;
3545  }
3546  if (klass_type.IsUnresolvedTypes()) {
3547    return NULL;  // Can't resolve Class so no more to do here
3548  }
3549  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3550  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3551                                                          *class_loader_);
3552  if (field == NULL) {
3553    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3554              << dex_file_->GetFieldName(field_id) << ") in "
3555              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3556    DCHECK(Thread::Current()->IsExceptionPending());
3557    Thread::Current()->ClearException();
3558    return NULL;
3559  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3560                                                  field->GetAccessFlags())) {
3561    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3562                                    << " from " << GetDeclaringClass();
3563    return NULL;
3564  } else if (field->IsStatic()) {
3565    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3566                                    << " to not be static";
3567    return NULL;
3568  } else if (obj_type.IsZero()) {
3569    // Cannot infer and check type, however, access will cause null pointer exception
3570    return field;
3571  } else {
3572    mirror::Class* klass = field->GetDeclaringClass();
3573    const RegType& field_klass =
3574        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3575                             klass, klass->CannotBeAssignedFromOtherTypes());
3576    if (obj_type.IsUninitializedTypes() &&
3577        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3578            !field_klass.Equals(GetDeclaringClass()))) {
3579      // Field accesses through uninitialized references are only allowable for constructors where
3580      // the field is declared in this class
3581      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3582                                        << " of a not fully initialized object within the context"
3583                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3584      return NULL;
3585    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3586      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3587      // of C1. For resolution to occur the declared class of the field must be compatible with
3588      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3589      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3590                                  << " from object of type " << obj_type;
3591      return NULL;
3592    } else {
3593      return field;
3594    }
3595  }
3596}
3597
3598void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3599                                 bool is_primitive, bool is_static) {
3600  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3601  mirror::ArtField* field;
3602  if (is_static) {
3603    field = GetStaticField(field_idx);
3604  } else {
3605    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3606    field = GetInstanceField(object_type, field_idx);
3607  }
3608  const RegType* field_type = nullptr;
3609  if (field != NULL) {
3610    Thread* self = Thread::Current();
3611    mirror::Class* field_type_class;
3612    {
3613      StackHandleScope<1> hs(self);
3614      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3615      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3616    }
3617    if (field_type_class != nullptr) {
3618      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3619                                         field_type_class->CannotBeAssignedFromOtherTypes());
3620    } else {
3621      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3622      self->ClearException();
3623    }
3624  }
3625  if (field_type == nullptr) {
3626    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3627    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3628    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3629  }
3630  DCHECK(field_type != nullptr);
3631  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3632  if (is_primitive) {
3633    if (field_type->Equals(insn_type) ||
3634        (field_type->IsFloat() && insn_type.IsInteger()) ||
3635        (field_type->IsDouble() && insn_type.IsLong())) {
3636      // expected that read is of the correct primitive type or that int reads are reading
3637      // floats or long reads are reading doubles
3638    } else {
3639      // This is a global failure rather than a class change failure as the instructions and
3640      // the descriptors for the type should have been consistent within the same file at
3641      // compile time
3642      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3643                                        << " to be of type '" << insn_type
3644                                        << "' but found type '" << *field_type << "' in get";
3645      return;
3646    }
3647  } else {
3648    if (!insn_type.IsAssignableFrom(*field_type)) {
3649      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3650                                        << " to be compatible with type '" << insn_type
3651                                        << "' but found type '" << *field_type
3652                                        << "' in Get-object";
3653      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3654      return;
3655    }
3656  }
3657  if (!field_type->IsLowHalf()) {
3658    work_line_->SetRegisterType(vregA, *field_type);
3659  } else {
3660    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3661  }
3662}
3663
3664void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3665                                 bool is_primitive, bool is_static) {
3666  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3667  mirror::ArtField* field;
3668  if (is_static) {
3669    field = GetStaticField(field_idx);
3670  } else {
3671    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3672    field = GetInstanceField(object_type, field_idx);
3673  }
3674  const RegType* field_type = nullptr;
3675  if (field != NULL) {
3676    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3677      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3678                                      << " from other class " << GetDeclaringClass();
3679      return;
3680    }
3681    mirror::Class* field_type_class;
3682    {
3683      StackHandleScope<1> hs(Thread::Current());
3684      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3685      FieldHelper fh(h_field);
3686      field_type_class = fh.GetType(can_load_classes_);
3687    }
3688    if (field_type_class != nullptr) {
3689      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3690                                         field_type_class->CannotBeAssignedFromOtherTypes());
3691    } else {
3692      Thread* self = Thread::Current();
3693      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3694      self->ClearException();
3695    }
3696  }
3697  if (field_type == nullptr) {
3698    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3699    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3700    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3701  }
3702  DCHECK(field_type != nullptr);
3703  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3704  if (is_primitive) {
3705    VerifyPrimitivePut(*field_type, insn_type, vregA);
3706  } else {
3707    if (!insn_type.IsAssignableFrom(*field_type)) {
3708      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3709                                        << " to be compatible with type '" << insn_type
3710                                        << "' but found type '" << *field_type
3711                                        << "' in put-object";
3712      return;
3713    }
3714    work_line_->VerifyRegisterType(vregA, *field_type);
3715  }
3716}
3717
3718mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3719                                                      RegisterLine* reg_line) {
3720  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3721         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3722         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3723         inst->Opcode() == Instruction::IPUT_QUICK ||
3724         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3725         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3726  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3727  if (!object_type.HasClass()) {
3728    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3729    return nullptr;
3730  }
3731  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3732  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3733                                                                      field_offset);
3734  if (f == nullptr) {
3735    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3736                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3737  }
3738  return f;
3739}
3740
3741void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3742                                     bool is_primitive) {
3743  DCHECK(Runtime::Current()->IsStarted());
3744  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3745  if (field == NULL) {
3746    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3747    return;
3748  }
3749  mirror::Class* field_type_class;
3750  {
3751    StackHandleScope<1> hs(Thread::Current());
3752    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3753    FieldHelper fh(h_field);
3754    field_type_class = fh.GetType(can_load_classes_);
3755  }
3756  const RegType* field_type;
3757  if (field_type_class != nullptr) {
3758    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3759                                       field_type_class->CannotBeAssignedFromOtherTypes());
3760  } else {
3761    Thread* self = Thread::Current();
3762    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3763    self->ClearException();
3764    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3765                                            field->GetTypeDescriptor(), false);
3766  }
3767  DCHECK(field_type != nullptr);
3768  const uint32_t vregA = inst->VRegA_22c();
3769  if (is_primitive) {
3770    if (field_type->Equals(insn_type) ||
3771        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3772        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3773      // expected that read is of the correct primitive type or that int reads are reading
3774      // floats or long reads are reading doubles
3775    } else {
3776      // This is a global failure rather than a class change failure as the instructions and
3777      // the descriptors for the type should have been consistent within the same file at
3778      // compile time
3779      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3780                                        << " to be of type '" << insn_type
3781                                        << "' but found type '" << *field_type << "' in Get";
3782      return;
3783    }
3784  } else {
3785    if (!insn_type.IsAssignableFrom(*field_type)) {
3786      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3787                                        << " to be compatible with type '" << insn_type
3788                                        << "' but found type '" << *field_type
3789                                        << "' in get-object";
3790      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3791      return;
3792    }
3793  }
3794  if (!field_type->IsLowHalf()) {
3795    work_line_->SetRegisterType(vregA, *field_type);
3796  } else {
3797    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3798  }
3799}
3800
3801void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3802                                     bool is_primitive) {
3803  DCHECK(Runtime::Current()->IsStarted());
3804  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3805  if (field == NULL) {
3806    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3807    return;
3808  }
3809  const char* descriptor = field->GetTypeDescriptor();
3810  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3811  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3812  if (field != NULL) {
3813    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3814      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3815                                      << " from other class " << GetDeclaringClass();
3816      return;
3817    }
3818  }
3819  const uint32_t vregA = inst->VRegA_22c();
3820  if (is_primitive) {
3821    // Primitive field assignability rules are weaker than regular assignability rules
3822    bool instruction_compatible;
3823    bool value_compatible;
3824    const RegType& value_type = work_line_->GetRegisterType(vregA);
3825    if (field_type.IsIntegralTypes()) {
3826      instruction_compatible = insn_type.IsIntegralTypes();
3827      value_compatible = value_type.IsIntegralTypes();
3828    } else if (field_type.IsFloat()) {
3829      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3830      value_compatible = value_type.IsFloatTypes();
3831    } else if (field_type.IsLong()) {
3832      instruction_compatible = insn_type.IsLong();
3833      value_compatible = value_type.IsLongTypes();
3834    } else if (field_type.IsDouble()) {
3835      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3836      value_compatible = value_type.IsDoubleTypes();
3837    } else {
3838      instruction_compatible = false;  // reference field with primitive store
3839      value_compatible = false;  // unused
3840    }
3841    if (!instruction_compatible) {
3842      // This is a global failure rather than a class change failure as the instructions and
3843      // the descriptors for the type should have been consistent within the same file at
3844      // compile time
3845      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3846                                        << " to be of type '" << insn_type
3847                                        << "' but found type '" << field_type
3848                                        << "' in put";
3849      return;
3850    }
3851    if (!value_compatible) {
3852      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3853          << " of type " << value_type
3854          << " but expected " << field_type
3855          << " for store to " << PrettyField(field) << " in put";
3856      return;
3857    }
3858  } else {
3859    if (!insn_type.IsAssignableFrom(field_type)) {
3860      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3861                                        << " to be compatible with type '" << insn_type
3862                                        << "' but found type '" << field_type
3863                                        << "' in put-object";
3864      return;
3865    }
3866    work_line_->VerifyRegisterType(vregA, field_type);
3867  }
3868}
3869
3870bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3871  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3872    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3873    return false;
3874  }
3875  return true;
3876}
3877
3878bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3879  bool changed = true;
3880  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3881  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3882    /*
3883     * We haven't processed this instruction before, and we haven't touched the registers here, so
3884     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3885     * only way a register can transition out of "unknown", so this is not just an optimization.)
3886     */
3887    if (!insn_flags_[next_insn].IsReturn()) {
3888      target_line->CopyFromLine(merge_line);
3889    } else {
3890      // Verify that the monitor stack is empty on return.
3891      if (!merge_line->VerifyMonitorStackEmpty()) {
3892        return false;
3893      }
3894      // For returns we only care about the operand to the return, all other registers are dead.
3895      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3896      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3897      Instruction::Code opcode = ret_inst->Opcode();
3898      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3899        target_line->MarkAllRegistersAsConflicts();
3900      } else {
3901        target_line->CopyFromLine(merge_line);
3902        if (opcode == Instruction::RETURN_WIDE) {
3903          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3904        } else {
3905          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3906        }
3907      }
3908    }
3909  } else {
3910    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
3911                                 RegisterLine::Create(target_line->NumRegs(), this) :
3912                                 NULL);
3913    if (gDebugVerify) {
3914      copy->CopyFromLine(target_line);
3915    }
3916    changed = target_line->MergeRegisters(merge_line);
3917    if (have_pending_hard_failure_) {
3918      return false;
3919    }
3920    if (gDebugVerify && changed) {
3921      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3922                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3923                      << *copy.get() << "  MERGE\n"
3924                      << *merge_line << "  ==\n"
3925                      << *target_line << "\n";
3926    }
3927  }
3928  if (changed) {
3929    insn_flags_[next_insn].SetChanged();
3930  }
3931  return true;
3932}
3933
3934InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3935  return &insn_flags_[work_insn_idx_];
3936}
3937
3938const RegType& MethodVerifier::GetMethodReturnType() {
3939  if (return_type_ == nullptr) {
3940    if (mirror_method_ != NULL) {
3941      Thread* self = Thread::Current();
3942      StackHandleScope<1> hs(self);
3943      mirror::Class* return_type_class;
3944      {
3945        HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_));
3946        return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_);
3947      }
3948      if (return_type_class != nullptr) {
3949        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
3950                                             return_type_class,
3951                                             return_type_class->CannotBeAssignedFromOtherTypes());
3952      } else {
3953        DCHECK(!can_load_classes_ || self->IsExceptionPending());
3954        self->ClearException();
3955      }
3956    }
3957    if (return_type_ == nullptr) {
3958      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3959      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3960      uint16_t return_type_idx = proto_id.return_type_idx_;
3961      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3962      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3963    }
3964  }
3965  return *return_type_;
3966}
3967
3968const RegType& MethodVerifier::GetDeclaringClass() {
3969  if (declaring_class_ == NULL) {
3970    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3971    const char* descriptor
3972        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3973    if (mirror_method_ != NULL) {
3974      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3975      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3976                                               klass->CannotBeAssignedFromOtherTypes());
3977    } else {
3978      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3979    }
3980  }
3981  return *declaring_class_;
3982}
3983
3984std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3985  RegisterLine* line = reg_table_.GetLine(dex_pc);
3986  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
3987  std::vector<int32_t> result;
3988  for (size_t i = 0; i < line->NumRegs(); ++i) {
3989    const RegType& type = line->GetRegisterType(i);
3990    if (type.IsConstant()) {
3991      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
3992      result.push_back(type.ConstantValue());
3993    } else if (type.IsConstantLo()) {
3994      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
3995      result.push_back(type.ConstantValueLo());
3996    } else if (type.IsConstantHi()) {
3997      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
3998      result.push_back(type.ConstantValueHi());
3999    } else if (type.IsIntegralTypes()) {
4000      result.push_back(kIntVReg);
4001      result.push_back(0);
4002    } else if (type.IsFloat()) {
4003      result.push_back(kFloatVReg);
4004      result.push_back(0);
4005    } else if (type.IsLong()) {
4006      result.push_back(kLongLoVReg);
4007      result.push_back(0);
4008      result.push_back(kLongHiVReg);
4009      result.push_back(0);
4010      ++i;
4011    } else if (type.IsDouble()) {
4012      result.push_back(kDoubleLoVReg);
4013      result.push_back(0);
4014      result.push_back(kDoubleHiVReg);
4015      result.push_back(0);
4016      ++i;
4017    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4018      result.push_back(kUndefined);
4019      result.push_back(0);
4020    } else {
4021      CHECK(type.IsNonZeroReferenceTypes());
4022      result.push_back(kReferenceVReg);
4023      result.push_back(0);
4024    }
4025  }
4026  return result;
4027}
4028
4029const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4030  if (precise) {
4031    // Precise constant type.
4032    return reg_types_.FromCat1Const(value, true);
4033  } else {
4034    // Imprecise constant type.
4035    if (value < -32768) {
4036      return reg_types_.IntConstant();
4037    } else if (value < -128) {
4038      return reg_types_.ShortConstant();
4039    } else if (value < 0) {
4040      return reg_types_.ByteConstant();
4041    } else if (value == 0) {
4042      return reg_types_.Zero();
4043    } else if (value == 1) {
4044      return reg_types_.One();
4045    } else if (value < 128) {
4046      return reg_types_.PosByteConstant();
4047    } else if (value < 32768) {
4048      return reg_types_.PosShortConstant();
4049    } else if (value < 65536) {
4050      return reg_types_.CharConstant();
4051    } else {
4052      return reg_types_.IntConstant();
4053    }
4054  }
4055}
4056
4057void MethodVerifier::Init() {
4058  art::verifier::RegTypeCache::Init();
4059}
4060
4061void MethodVerifier::Shutdown() {
4062  verifier::RegTypeCache::ShutDown();
4063}
4064
4065void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4066  reg_types_.VisitRoots(callback, arg);
4067}
4068
4069}  // namespace verifier
4070}  // namespace art
4071