method_verifier.cc revision a9a8254c920ce8e22210abfc16c9842ce0aea28f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "base/stringpiece.h"
24#include "class_linker.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "verifier/dex_gc_map.h"
43
44namespace art {
45namespace verifier {
46
47static const bool gDebugVerify = false;
48// TODO: Add a constant to method_verifier to turn on verbose logging?
49
50void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
51                                 uint32_t insns_size, uint16_t registers_size,
52                                 MethodVerifier* verifier) {
53  DCHECK_GT(insns_size, 0U);
54  register_lines_.reset(new RegisterLine*[insns_size]());
55  size_ = insns_size;
56  for (uint32_t i = 0; i < insns_size; i++) {
57    bool interesting = false;
58    switch (mode) {
59      case kTrackRegsAll:
60        interesting = flags[i].IsOpcode();
61        break;
62      case kTrackCompilerInterestPoints:
63        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
64        break;
65      case kTrackRegsBranches:
66        interesting = flags[i].IsBranchTarget();
67        break;
68      default:
69        break;
70    }
71    if (interesting) {
72      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
73    }
74  }
75}
76
77PcToRegisterLineTable::~PcToRegisterLineTable() {
78  for (size_t i = 0; i < size_; i++) {
79    delete register_lines_[i];
80    if (kIsDebugBuild) {
81      register_lines_[i] = nullptr;
82    }
83  }
84}
85
86MethodVerifier::FailureKind MethodVerifier::VerifyClass(const mirror::Class* klass,
87                                                        bool allow_soft_failures,
88                                                        std::string* error) {
89  if (klass->IsVerified()) {
90    return kNoFailure;
91  }
92  mirror::Class* super = klass->GetSuperClass();
93  if (super == NULL && ClassHelper(klass).GetDescriptorAsStringPiece() != "Ljava/lang/Object;") {
94    *error = "Verifier rejected class ";
95    *error += PrettyDescriptor(klass);
96    *error += " that has no super class";
97    return kHardFailure;
98  }
99  if (super != NULL && super->IsFinal()) {
100    *error = "Verifier rejected class ";
101    *error += PrettyDescriptor(klass);
102    *error += " that attempts to sub-class final class ";
103    *error += PrettyDescriptor(super);
104    return kHardFailure;
105  }
106  ClassHelper kh(klass);
107  const DexFile& dex_file = kh.GetDexFile();
108  const DexFile::ClassDef* class_def = kh.GetClassDef();
109  if (class_def == NULL) {
110    *error = "Verifier rejected class ";
111    *error += PrettyDescriptor(klass);
112    *error += " that isn't present in dex file ";
113    *error += dex_file.GetLocation();
114    return kHardFailure;
115  }
116  return VerifyClass(&dex_file,
117                     kh.GetDexCache(),
118                     klass->GetClassLoader(),
119                     class_def,
120                     allow_soft_failures,
121                     error);
122}
123
124MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
125                                                        mirror::DexCache* dex_cache,
126                                                        mirror::ClassLoader* class_loader,
127                                                        const DexFile::ClassDef* class_def,
128                                                        bool allow_soft_failures,
129                                                        std::string* error) {
130  DCHECK(class_def != nullptr);
131  const byte* class_data = dex_file->GetClassData(*class_def);
132  if (class_data == NULL) {
133    // empty class, probably a marker interface
134    return kNoFailure;
135  }
136  ClassDataItemIterator it(*dex_file, class_data);
137  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
138    it.Next();
139  }
140  size_t error_count = 0;
141  bool hard_fail = false;
142  ClassLinker* linker = Runtime::Current()->GetClassLinker();
143  int64_t previous_direct_method_idx = -1;
144  while (it.HasNextDirectMethod()) {
145    uint32_t method_idx = it.GetMemberIndex();
146    if (method_idx == previous_direct_method_idx) {
147      // smali can create dex files with two encoded_methods sharing the same method_idx
148      // http://code.google.com/p/smali/issues/detail?id=119
149      it.Next();
150      continue;
151    }
152    previous_direct_method_idx = method_idx;
153    InvokeType type = it.GetMethodInvokeType(*class_def);
154    mirror::ArtMethod* method =
155        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
156    if (method == NULL) {
157      DCHECK(Thread::Current()->IsExceptionPending());
158      // We couldn't resolve the method, but continue regardless.
159      Thread::Current()->ClearException();
160    }
161    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
162                                                      dex_file,
163                                                      dex_cache,
164                                                      class_loader,
165                                                      class_def,
166                                                      it.GetMethodCodeItem(),
167                                                      method,
168                                                      it.GetMemberAccessFlags(),
169                                                      allow_soft_failures);
170    if (result != kNoFailure) {
171      if (result == kHardFailure) {
172        hard_fail = true;
173        if (error_count > 0) {
174          *error += "\n";
175        }
176        *error = "Verifier rejected class ";
177        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
178        *error += " due to bad method ";
179        *error += PrettyMethod(method_idx, *dex_file);
180      }
181      ++error_count;
182    }
183    it.Next();
184  }
185  int64_t previous_virtual_method_idx = -1;
186  while (it.HasNextVirtualMethod()) {
187    uint32_t method_idx = it.GetMemberIndex();
188    if (method_idx == previous_virtual_method_idx) {
189      // smali can create dex files with two encoded_methods sharing the same method_idx
190      // http://code.google.com/p/smali/issues/detail?id=119
191      it.Next();
192      continue;
193    }
194    previous_virtual_method_idx = method_idx;
195    InvokeType type = it.GetMethodInvokeType(*class_def);
196    mirror::ArtMethod* method =
197        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
198    if (method == NULL) {
199      DCHECK(Thread::Current()->IsExceptionPending());
200      // We couldn't resolve the method, but continue regardless.
201      Thread::Current()->ClearException();
202    }
203    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
204                                                      dex_file,
205                                                      dex_cache,
206                                                      class_loader,
207                                                      class_def,
208                                                      it.GetMethodCodeItem(),
209                                                      method,
210                                                      it.GetMemberAccessFlags(),
211                                                      allow_soft_failures);
212    if (result != kNoFailure) {
213      if (result == kHardFailure) {
214        hard_fail = true;
215        if (error_count > 0) {
216          *error += "\n";
217        }
218        *error = "Verifier rejected class ";
219        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
220        *error += " due to bad method ";
221        *error += PrettyMethod(method_idx, *dex_file);
222      }
223      ++error_count;
224    }
225    it.Next();
226  }
227  if (error_count == 0) {
228    return kNoFailure;
229  } else {
230    return hard_fail ? kHardFailure : kSoftFailure;
231  }
232}
233
234MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
235                                                         const DexFile* dex_file,
236                                                         mirror::DexCache* dex_cache,
237                                                         mirror::ClassLoader* class_loader,
238                                                         const DexFile::ClassDef* class_def,
239                                                         const DexFile::CodeItem* code_item,
240                                                         mirror::ArtMethod* method,
241                                                         uint32_t method_access_flags,
242                                                         bool allow_soft_failures) {
243  MethodVerifier::FailureKind result = kNoFailure;
244  uint64_t start_ns = NanoTime();
245
246  MethodVerifier verifier_(dex_file, dex_cache, class_loader, class_def, code_item, method_idx,
247                           method, method_access_flags, true, allow_soft_failures);
248  if (verifier_.Verify()) {
249    // Verification completed, however failures may be pending that didn't cause the verification
250    // to hard fail.
251    CHECK(!verifier_.have_pending_hard_failure_);
252    if (verifier_.failures_.size() != 0) {
253      if (VLOG_IS_ON(verifier)) {
254          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
255                                << PrettyMethod(method_idx, *dex_file) << "\n");
256      }
257      result = kSoftFailure;
258    }
259  } else {
260    // Bad method data.
261    CHECK_NE(verifier_.failures_.size(), 0U);
262    CHECK(verifier_.have_pending_hard_failure_);
263    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
264                                    << PrettyMethod(method_idx, *dex_file) << "\n");
265    if (gDebugVerify) {
266      std::cout << "\n" << verifier_.info_messages_.str();
267      verifier_.Dump(std::cout);
268    }
269    result = kHardFailure;
270  }
271  uint64_t duration_ns = NanoTime() - start_ns;
272  if (duration_ns > MsToNs(100)) {
273    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
274                 << " took " << PrettyDuration(duration_ns);
275  }
276  return result;
277}
278
279void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
280                                         const DexFile* dex_file, mirror::DexCache* dex_cache,
281                                         mirror::ClassLoader* class_loader,
282                                         const DexFile::ClassDef* class_def,
283                                         const DexFile::CodeItem* code_item,
284                                         mirror::ArtMethod* method,
285                                         uint32_t method_access_flags) {
286  MethodVerifier verifier(dex_file, dex_cache, class_loader, class_def, code_item,
287                          dex_method_idx, method, method_access_flags, true, true);
288  verifier.Verify();
289  verifier.DumpFailures(os);
290  os << verifier.info_messages_.str();
291  verifier.Dump(os);
292}
293
294MethodVerifier::MethodVerifier(const DexFile* dex_file, mirror::DexCache* dex_cache,
295                               mirror::ClassLoader* class_loader,
296                               const DexFile::ClassDef* class_def,
297                               const DexFile::CodeItem* code_item,
298                               uint32_t dex_method_idx, mirror::ArtMethod* method,
299                               uint32_t method_access_flags, bool can_load_classes,
300                               bool allow_soft_failures)
301    : reg_types_(can_load_classes),
302      work_insn_idx_(-1),
303      dex_method_idx_(dex_method_idx),
304      mirror_method_(method),
305      method_access_flags_(method_access_flags),
306      return_type_(nullptr),
307      dex_file_(dex_file),
308      dex_cache_(dex_cache),
309      class_loader_(class_loader),
310      class_def_(class_def),
311      code_item_(code_item),
312      declaring_class_(NULL),
313      interesting_dex_pc_(-1),
314      monitor_enter_dex_pcs_(nullptr),
315      have_pending_hard_failure_(false),
316      have_pending_runtime_throw_failure_(false),
317      new_instance_count_(0),
318      monitor_enter_count_(0),
319      can_load_classes_(can_load_classes),
320      allow_soft_failures_(allow_soft_failures),
321      has_check_casts_(false),
322      has_virtual_or_interface_invokes_(false) {
323  DCHECK(class_def != nullptr);
324}
325
326void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
327                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
328  MethodHelper mh(m);
329  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
330                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
331                          m, m->GetAccessFlags(), false, true);
332  verifier.interesting_dex_pc_ = dex_pc;
333  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
334  verifier.FindLocksAtDexPc();
335}
336
337void MethodVerifier::FindLocksAtDexPc() {
338  CHECK(monitor_enter_dex_pcs_ != NULL);
339  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
340
341  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
342  // verification. In practice, the phase we want relies on data structures set up by all the
343  // earlier passes, so we just run the full method verification and bail out early when we've
344  // got what we wanted.
345  Verify();
346}
347
348mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
349                                                        uint32_t dex_pc) {
350  MethodHelper mh(m);
351  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
352                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
353                          m, m->GetAccessFlags(), false, true);
354  return verifier.FindAccessedFieldAtDexPc(dex_pc);
355}
356
357mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
358  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
359
360  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
361  // verification. In practice, the phase we want relies on data structures set up by all the
362  // earlier passes, so we just run the full method verification and bail out early when we've
363  // got what we wanted.
364  bool success = Verify();
365  if (!success) {
366    return NULL;
367  }
368  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
369  if (register_line == NULL) {
370    return NULL;
371  }
372  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
373  return GetQuickFieldAccess(inst, register_line);
374}
375
376mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
377                                                                 uint32_t dex_pc) {
378  MethodHelper mh(m);
379  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
380                          &mh.GetClassDef(), mh.GetCodeItem(), m->GetDexMethodIndex(),
381                          m, m->GetAccessFlags(), false, true);
382  return verifier.FindInvokedMethodAtDexPc(dex_pc);
383}
384
385mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
386  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
387
388  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
389  // verification. In practice, the phase we want relies on data structures set up by all the
390  // earlier passes, so we just run the full method verification and bail out early when we've
391  // got what we wanted.
392  bool success = Verify();
393  if (!success) {
394    return NULL;
395  }
396  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
397  if (register_line == NULL) {
398    return NULL;
399  }
400  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
401  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
402  return GetQuickInvokedMethod(inst, register_line, is_range);
403}
404
405bool MethodVerifier::Verify() {
406  // If there aren't any instructions, make sure that's expected, then exit successfully.
407  if (code_item_ == NULL) {
408    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
409      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
410      return false;
411    } else {
412      return true;
413    }
414  }
415  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
416  if (code_item_->ins_size_ > code_item_->registers_size_) {
417    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
418                                      << " regs=" << code_item_->registers_size_;
419    return false;
420  }
421  // Allocate and initialize an array to hold instruction data.
422  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
423  // Run through the instructions and see if the width checks out.
424  bool result = ComputeWidthsAndCountOps();
425  // Flag instructions guarded by a "try" block and check exception handlers.
426  result = result && ScanTryCatchBlocks();
427  // Perform static instruction verification.
428  result = result && VerifyInstructions();
429  // Perform code-flow analysis and return.
430  return result && VerifyCodeFlow();
431}
432
433std::ostream& MethodVerifier::Fail(VerifyError error) {
434  switch (error) {
435    case VERIFY_ERROR_NO_CLASS:
436    case VERIFY_ERROR_NO_FIELD:
437    case VERIFY_ERROR_NO_METHOD:
438    case VERIFY_ERROR_ACCESS_CLASS:
439    case VERIFY_ERROR_ACCESS_FIELD:
440    case VERIFY_ERROR_ACCESS_METHOD:
441    case VERIFY_ERROR_INSTANTIATION:
442    case VERIFY_ERROR_CLASS_CHANGE:
443      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
444        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
445        // class change and instantiation errors into soft verification errors so that we re-verify
446        // at runtime. We may fail to find or to agree on access because of not yet available class
447        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
448        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
449        // paths" that dynamically perform the verification and cause the behavior to be that akin
450        // to an interpreter.
451        error = VERIFY_ERROR_BAD_CLASS_SOFT;
452      } else {
453        // If we fail again at runtime, mark that this instruction would throw and force this
454        // method to be executed using the interpreter with checks.
455        have_pending_runtime_throw_failure_ = true;
456      }
457      break;
458      // Indication that verification should be retried at runtime.
459    case VERIFY_ERROR_BAD_CLASS_SOFT:
460      if (!allow_soft_failures_) {
461        have_pending_hard_failure_ = true;
462      }
463      break;
464      // Hard verification failures at compile time will still fail at runtime, so the class is
465      // marked as rejected to prevent it from being compiled.
466    case VERIFY_ERROR_BAD_CLASS_HARD: {
467      if (Runtime::Current()->IsCompiler()) {
468        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
469        AddRejectedClass(ref);
470      }
471      have_pending_hard_failure_ = true;
472      break;
473    }
474  }
475  failures_.push_back(error);
476  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
477                                    work_insn_idx_));
478  std::ostringstream* failure_message = new std::ostringstream(location);
479  failure_messages_.push_back(failure_message);
480  return *failure_message;
481}
482
483void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
484  size_t failure_num = failure_messages_.size();
485  DCHECK_NE(failure_num, 0U);
486  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
487  prepend += last_fail_message->str();
488  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
489  delete last_fail_message;
490}
491
492void MethodVerifier::AppendToLastFailMessage(std::string append) {
493  size_t failure_num = failure_messages_.size();
494  DCHECK_NE(failure_num, 0U);
495  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
496  (*last_fail_message) << append;
497}
498
499bool MethodVerifier::ComputeWidthsAndCountOps() {
500  const uint16_t* insns = code_item_->insns_;
501  size_t insns_size = code_item_->insns_size_in_code_units_;
502  const Instruction* inst = Instruction::At(insns);
503  size_t new_instance_count = 0;
504  size_t monitor_enter_count = 0;
505  size_t dex_pc = 0;
506
507  while (dex_pc < insns_size) {
508    Instruction::Code opcode = inst->Opcode();
509    switch (opcode) {
510      case Instruction::APUT_OBJECT:
511      case Instruction::CHECK_CAST:
512        has_check_casts_ = true;
513        break;
514      case Instruction::INVOKE_VIRTUAL:
515      case Instruction::INVOKE_VIRTUAL_RANGE:
516      case Instruction::INVOKE_INTERFACE:
517      case Instruction::INVOKE_INTERFACE_RANGE:
518        has_virtual_or_interface_invokes_ = true;
519        break;
520      case Instruction::MONITOR_ENTER:
521        monitor_enter_count++;
522        break;
523      case Instruction::NEW_INSTANCE:
524        new_instance_count++;
525        break;
526      default:
527        break;
528    }
529    size_t inst_size = inst->SizeInCodeUnits();
530    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
531    dex_pc += inst_size;
532    inst = inst->Next();
533  }
534
535  if (dex_pc != insns_size) {
536    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
537                                      << dex_pc << " vs. " << insns_size << ")";
538    return false;
539  }
540
541  new_instance_count_ = new_instance_count;
542  monitor_enter_count_ = monitor_enter_count;
543  return true;
544}
545
546bool MethodVerifier::ScanTryCatchBlocks() {
547  uint32_t tries_size = code_item_->tries_size_;
548  if (tries_size == 0) {
549    return true;
550  }
551  uint32_t insns_size = code_item_->insns_size_in_code_units_;
552  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
553
554  for (uint32_t idx = 0; idx < tries_size; idx++) {
555    const DexFile::TryItem* try_item = &tries[idx];
556    uint32_t start = try_item->start_addr_;
557    uint32_t end = start + try_item->insn_count_;
558    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
559      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
560                                        << " endAddr=" << end << " (size=" << insns_size << ")";
561      return false;
562    }
563    if (!insn_flags_[start].IsOpcode()) {
564      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
565          << "'try' block starts inside an instruction (" << start << ")";
566      return false;
567    }
568    for (uint32_t dex_pc = start; dex_pc < end;
569        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
570      insn_flags_[dex_pc].SetInTry();
571    }
572  }
573  // Iterate over each of the handlers to verify target addresses.
574  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
575  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
576  ClassLinker* linker = Runtime::Current()->GetClassLinker();
577  for (uint32_t idx = 0; idx < handlers_size; idx++) {
578    CatchHandlerIterator iterator(handlers_ptr);
579    for (; iterator.HasNext(); iterator.Next()) {
580      uint32_t dex_pc= iterator.GetHandlerAddress();
581      if (!insn_flags_[dex_pc].IsOpcode()) {
582        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
583            << "exception handler starts at bad address (" << dex_pc << ")";
584        return false;
585      }
586      insn_flags_[dex_pc].SetBranchTarget();
587      // Ensure exception types are resolved so that they don't need resolution to be delivered,
588      // unresolved exception types will be ignored by exception delivery
589      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
590        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
591                                                            iterator.GetHandlerTypeIndex(),
592                                                            dex_cache_, class_loader_);
593        if (exception_type == NULL) {
594          DCHECK(Thread::Current()->IsExceptionPending());
595          Thread::Current()->ClearException();
596        }
597      }
598    }
599    handlers_ptr = iterator.EndDataPointer();
600  }
601  return true;
602}
603
604bool MethodVerifier::VerifyInstructions() {
605  const Instruction* inst = Instruction::At(code_item_->insns_);
606
607  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
608  insn_flags_[0].SetBranchTarget();
609  insn_flags_[0].SetCompileTimeInfoPoint();
610
611  uint32_t insns_size = code_item_->insns_size_in_code_units_;
612  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
613    if (!VerifyInstruction(inst, dex_pc)) {
614      DCHECK_NE(failures_.size(), 0U);
615      return false;
616    }
617    /* Flag instructions that are garbage collection points */
618    // All invoke points are marked as "Throw" points already.
619    // We are relying on this to also count all the invokes as interesting.
620    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
621      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
622    } else if (inst->IsReturn()) {
623      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
624    }
625    dex_pc += inst->SizeInCodeUnits();
626    inst = inst->Next();
627  }
628  return true;
629}
630
631bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
632  DecodedInstruction dec_insn(inst);
633  bool result = true;
634  switch (inst->GetVerifyTypeArgumentA()) {
635    case Instruction::kVerifyRegA:
636      result = result && CheckRegisterIndex(dec_insn.vA);
637      break;
638    case Instruction::kVerifyRegAWide:
639      result = result && CheckWideRegisterIndex(dec_insn.vA);
640      break;
641  }
642  switch (inst->GetVerifyTypeArgumentB()) {
643    case Instruction::kVerifyRegB:
644      result = result && CheckRegisterIndex(dec_insn.vB);
645      break;
646    case Instruction::kVerifyRegBField:
647      result = result && CheckFieldIndex(dec_insn.vB);
648      break;
649    case Instruction::kVerifyRegBMethod:
650      result = result && CheckMethodIndex(dec_insn.vB);
651      break;
652    case Instruction::kVerifyRegBNewInstance:
653      result = result && CheckNewInstance(dec_insn.vB);
654      break;
655    case Instruction::kVerifyRegBString:
656      result = result && CheckStringIndex(dec_insn.vB);
657      break;
658    case Instruction::kVerifyRegBType:
659      result = result && CheckTypeIndex(dec_insn.vB);
660      break;
661    case Instruction::kVerifyRegBWide:
662      result = result && CheckWideRegisterIndex(dec_insn.vB);
663      break;
664  }
665  switch (inst->GetVerifyTypeArgumentC()) {
666    case Instruction::kVerifyRegC:
667      result = result && CheckRegisterIndex(dec_insn.vC);
668      break;
669    case Instruction::kVerifyRegCField:
670      result = result && CheckFieldIndex(dec_insn.vC);
671      break;
672    case Instruction::kVerifyRegCNewArray:
673      result = result && CheckNewArray(dec_insn.vC);
674      break;
675    case Instruction::kVerifyRegCType:
676      result = result && CheckTypeIndex(dec_insn.vC);
677      break;
678    case Instruction::kVerifyRegCWide:
679      result = result && CheckWideRegisterIndex(dec_insn.vC);
680      break;
681  }
682  switch (inst->GetVerifyExtraFlags()) {
683    case Instruction::kVerifyArrayData:
684      result = result && CheckArrayData(code_offset);
685      break;
686    case Instruction::kVerifyBranchTarget:
687      result = result && CheckBranchTarget(code_offset);
688      break;
689    case Instruction::kVerifySwitchTargets:
690      result = result && CheckSwitchTargets(code_offset);
691      break;
692    case Instruction::kVerifyVarArg:
693      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
694      break;
695    case Instruction::kVerifyVarArgRange:
696      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
697      break;
698    case Instruction::kVerifyError:
699      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
700      result = false;
701      break;
702  }
703  return result;
704}
705
706bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
707  if (idx >= code_item_->registers_size_) {
708    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
709                                      << code_item_->registers_size_ << ")";
710    return false;
711  }
712  return true;
713}
714
715bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
716  if (idx + 1 >= code_item_->registers_size_) {
717    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
718                                      << "+1 >= " << code_item_->registers_size_ << ")";
719    return false;
720  }
721  return true;
722}
723
724bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
725  if (idx >= dex_file_->GetHeader().field_ids_size_) {
726    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
727                                      << dex_file_->GetHeader().field_ids_size_ << ")";
728    return false;
729  }
730  return true;
731}
732
733bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
734  if (idx >= dex_file_->GetHeader().method_ids_size_) {
735    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
736                                      << dex_file_->GetHeader().method_ids_size_ << ")";
737    return false;
738  }
739  return true;
740}
741
742bool MethodVerifier::CheckNewInstance(uint32_t idx) {
743  if (idx >= dex_file_->GetHeader().type_ids_size_) {
744    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
745                                      << dex_file_->GetHeader().type_ids_size_ << ")";
746    return false;
747  }
748  // We don't need the actual class, just a pointer to the class name.
749  const char* descriptor = dex_file_->StringByTypeIdx(idx);
750  if (descriptor[0] != 'L') {
751    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
752    return false;
753  }
754  return true;
755}
756
757bool MethodVerifier::CheckStringIndex(uint32_t idx) {
758  if (idx >= dex_file_->GetHeader().string_ids_size_) {
759    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
760                                      << dex_file_->GetHeader().string_ids_size_ << ")";
761    return false;
762  }
763  return true;
764}
765
766bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
767  if (idx >= dex_file_->GetHeader().type_ids_size_) {
768    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
769                                      << dex_file_->GetHeader().type_ids_size_ << ")";
770    return false;
771  }
772  return true;
773}
774
775bool MethodVerifier::CheckNewArray(uint32_t idx) {
776  if (idx >= dex_file_->GetHeader().type_ids_size_) {
777    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
778                                      << dex_file_->GetHeader().type_ids_size_ << ")";
779    return false;
780  }
781  int bracket_count = 0;
782  const char* descriptor = dex_file_->StringByTypeIdx(idx);
783  const char* cp = descriptor;
784  while (*cp++ == '[') {
785    bracket_count++;
786  }
787  if (bracket_count == 0) {
788    /* The given class must be an array type. */
789    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
790        << "can't new-array class '" << descriptor << "' (not an array)";
791    return false;
792  } else if (bracket_count > 255) {
793    /* It is illegal to create an array of more than 255 dimensions. */
794    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
795        << "can't new-array class '" << descriptor << "' (exceeds limit)";
796    return false;
797  }
798  return true;
799}
800
801bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
802  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
803  const uint16_t* insns = code_item_->insns_ + cur_offset;
804  const uint16_t* array_data;
805  int32_t array_data_offset;
806
807  DCHECK_LT(cur_offset, insn_count);
808  /* make sure the start of the array data table is in range */
809  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
810  if ((int32_t) cur_offset + array_data_offset < 0 ||
811      cur_offset + array_data_offset + 2 >= insn_count) {
812    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
813                                      << ", data offset " << array_data_offset
814                                      << ", count " << insn_count;
815    return false;
816  }
817  /* offset to array data table is a relative branch-style offset */
818  array_data = insns + array_data_offset;
819  /* make sure the table is 32-bit aligned */
820  if ((((uint32_t) array_data) & 0x03) != 0) {
821    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
822                                      << ", data offset " << array_data_offset;
823    return false;
824  }
825  uint32_t value_width = array_data[1];
826  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
827  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
828  /* make sure the end of the switch is in range */
829  if (cur_offset + array_data_offset + table_size > insn_count) {
830    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
831                                      << ", data offset " << array_data_offset << ", end "
832                                      << cur_offset + array_data_offset + table_size
833                                      << ", count " << insn_count;
834    return false;
835  }
836  return true;
837}
838
839bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
840  int32_t offset;
841  bool isConditional, selfOkay;
842  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
843    return false;
844  }
845  if (!selfOkay && offset == 0) {
846    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
847                                      << reinterpret_cast<void*>(cur_offset);
848    return false;
849  }
850  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
851  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
852  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
853    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
854                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
855    return false;
856  }
857  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
858  int32_t abs_offset = cur_offset + offset;
859  if (abs_offset < 0 ||
860      (uint32_t) abs_offset >= insn_count ||
861      !insn_flags_[abs_offset].IsOpcode()) {
862    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
863                                      << reinterpret_cast<void*>(abs_offset) << ") at "
864                                      << reinterpret_cast<void*>(cur_offset);
865    return false;
866  }
867  insn_flags_[abs_offset].SetBranchTarget();
868  return true;
869}
870
871bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
872                                  bool* selfOkay) {
873  const uint16_t* insns = code_item_->insns_ + cur_offset;
874  *pConditional = false;
875  *selfOkay = false;
876  switch (*insns & 0xff) {
877    case Instruction::GOTO:
878      *pOffset = ((int16_t) *insns) >> 8;
879      break;
880    case Instruction::GOTO_32:
881      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
882      *selfOkay = true;
883      break;
884    case Instruction::GOTO_16:
885      *pOffset = (int16_t) insns[1];
886      break;
887    case Instruction::IF_EQ:
888    case Instruction::IF_NE:
889    case Instruction::IF_LT:
890    case Instruction::IF_GE:
891    case Instruction::IF_GT:
892    case Instruction::IF_LE:
893    case Instruction::IF_EQZ:
894    case Instruction::IF_NEZ:
895    case Instruction::IF_LTZ:
896    case Instruction::IF_GEZ:
897    case Instruction::IF_GTZ:
898    case Instruction::IF_LEZ:
899      *pOffset = (int16_t) insns[1];
900      *pConditional = true;
901      break;
902    default:
903      return false;
904      break;
905  }
906  return true;
907}
908
909bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
910  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
911  DCHECK_LT(cur_offset, insn_count);
912  const uint16_t* insns = code_item_->insns_ + cur_offset;
913  /* make sure the start of the switch is in range */
914  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
915  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
916    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
917                                      << ", switch offset " << switch_offset
918                                      << ", count " << insn_count;
919    return false;
920  }
921  /* offset to switch table is a relative branch-style offset */
922  const uint16_t* switch_insns = insns + switch_offset;
923  /* make sure the table is 32-bit aligned */
924  if ((((uint32_t) switch_insns) & 0x03) != 0) {
925    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
926                                      << ", switch offset " << switch_offset;
927    return false;
928  }
929  uint32_t switch_count = switch_insns[1];
930  int32_t keys_offset, targets_offset;
931  uint16_t expected_signature;
932  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
933    /* 0=sig, 1=count, 2/3=firstKey */
934    targets_offset = 4;
935    keys_offset = -1;
936    expected_signature = Instruction::kPackedSwitchSignature;
937  } else {
938    /* 0=sig, 1=count, 2..count*2 = keys */
939    keys_offset = 2;
940    targets_offset = 2 + 2 * switch_count;
941    expected_signature = Instruction::kSparseSwitchSignature;
942  }
943  uint32_t table_size = targets_offset + switch_count * 2;
944  if (switch_insns[0] != expected_signature) {
945    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
946        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
947                        switch_insns[0], expected_signature);
948    return false;
949  }
950  /* make sure the end of the switch is in range */
951  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
952    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
953                                      << ", switch offset " << switch_offset
954                                      << ", end " << (cur_offset + switch_offset + table_size)
955                                      << ", count " << insn_count;
956    return false;
957  }
958  /* for a sparse switch, verify the keys are in ascending order */
959  if (keys_offset > 0 && switch_count > 1) {
960    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
961    for (uint32_t targ = 1; targ < switch_count; targ++) {
962      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
963                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
964      if (key <= last_key) {
965        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
966                                          << ", this=" << key;
967        return false;
968      }
969      last_key = key;
970    }
971  }
972  /* verify each switch target */
973  for (uint32_t targ = 0; targ < switch_count; targ++) {
974    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
975                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
976    int32_t abs_offset = cur_offset + offset;
977    if (abs_offset < 0 ||
978        abs_offset >= (int32_t) insn_count ||
979        !insn_flags_[abs_offset].IsOpcode()) {
980      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
981                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
982                                        << reinterpret_cast<void*>(cur_offset)
983                                        << "[" << targ << "]";
984      return false;
985    }
986    insn_flags_[abs_offset].SetBranchTarget();
987  }
988  return true;
989}
990
991bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
992  if (vA > 5) {
993    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
994    return false;
995  }
996  uint16_t registers_size = code_item_->registers_size_;
997  for (uint32_t idx = 0; idx < vA; idx++) {
998    if (arg[idx] >= registers_size) {
999      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1000                                        << ") in non-range invoke (>= " << registers_size << ")";
1001      return false;
1002    }
1003  }
1004
1005  return true;
1006}
1007
1008bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1009  uint16_t registers_size = code_item_->registers_size_;
1010  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1011  // integer overflow when adding them here.
1012  if (vA + vC > registers_size) {
1013    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1014                                      << " in range invoke (> " << registers_size << ")";
1015    return false;
1016  }
1017  return true;
1018}
1019
1020static const std::vector<uint8_t>* CreateLengthPrefixedDexGcMap(
1021    const std::vector<uint8_t>& gc_map) {
1022  std::vector<uint8_t>* length_prefixed_gc_map = new std::vector<uint8_t>;
1023  length_prefixed_gc_map->reserve(gc_map.size() + 4);
1024  length_prefixed_gc_map->push_back((gc_map.size() & 0xff000000) >> 24);
1025  length_prefixed_gc_map->push_back((gc_map.size() & 0x00ff0000) >> 16);
1026  length_prefixed_gc_map->push_back((gc_map.size() & 0x0000ff00) >> 8);
1027  length_prefixed_gc_map->push_back((gc_map.size() & 0x000000ff) >> 0);
1028  length_prefixed_gc_map->insert(length_prefixed_gc_map->end(),
1029                                 gc_map.begin(),
1030                                 gc_map.end());
1031  DCHECK_EQ(gc_map.size() + 4, length_prefixed_gc_map->size());
1032  DCHECK_EQ(gc_map.size(),
1033            static_cast<size_t>((length_prefixed_gc_map->at(0) << 24) |
1034                                (length_prefixed_gc_map->at(1) << 16) |
1035                                (length_prefixed_gc_map->at(2) << 8) |
1036                                (length_prefixed_gc_map->at(3) << 0)));
1037  return length_prefixed_gc_map;
1038}
1039
1040bool MethodVerifier::VerifyCodeFlow() {
1041  uint16_t registers_size = code_item_->registers_size_;
1042  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1043
1044  if (registers_size * insns_size > 4*1024*1024) {
1045    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1046                 << " insns_size=" << insns_size << ")";
1047  }
1048  /* Create and initialize table holding register status */
1049  reg_table_.Init(kTrackCompilerInterestPoints,
1050                  insn_flags_.get(),
1051                  insns_size,
1052                  registers_size,
1053                  this);
1054
1055
1056  work_line_.reset(RegisterLine::Create(registers_size, this));
1057  saved_line_.reset(RegisterLine::Create(registers_size, this));
1058
1059  /* Initialize register types of method arguments. */
1060  if (!SetTypesFromSignature()) {
1061    DCHECK_NE(failures_.size(), 0U);
1062    std::string prepend("Bad signature in ");
1063    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1064    PrependToLastFailMessage(prepend);
1065    return false;
1066  }
1067  /* Perform code flow verification. */
1068  if (!CodeFlowVerifyMethod()) {
1069    DCHECK_NE(failures_.size(), 0U);
1070    return false;
1071  }
1072
1073  // Compute information for compiler.
1074  if (Runtime::Current()->IsCompiler()) {
1075    MethodReference ref(dex_file_, dex_method_idx_);
1076    bool compile = IsCandidateForCompilation(ref, method_access_flags_);
1077    if (compile) {
1078      /* Generate a register map and add it to the method. */
1079      UniquePtr<const std::vector<uint8_t> > map(GenerateGcMap());
1080      if (map.get() == NULL) {
1081        DCHECK_NE(failures_.size(), 0U);
1082        return false;  // Not a real failure, but a failure to encode
1083      }
1084      if (kIsDebugBuild) {
1085        VerifyGcMap(*map);
1086      }
1087      const std::vector<uint8_t>* dex_gc_map = CreateLengthPrefixedDexGcMap(*(map.get()));
1088      verifier::MethodVerifier::SetDexGcMap(ref, *dex_gc_map);
1089    }
1090
1091    if (has_check_casts_) {
1092      MethodVerifier::MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet();
1093      if (method_to_safe_casts != NULL) {
1094        SetSafeCastMap(ref, method_to_safe_casts);
1095      }
1096    }
1097
1098    if (has_virtual_or_interface_invokes_) {
1099      MethodVerifier::PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap();
1100      if (pc_to_concrete_method != NULL) {
1101        SetDevirtMap(ref, pc_to_concrete_method);
1102      }
1103    }
1104  }
1105  return true;
1106}
1107
1108std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1109  DCHECK_EQ(failures_.size(), failure_messages_.size());
1110  if (VLOG_IS_ON(verifier)) {
1111      for (size_t i = 0; i < failures_.size(); ++i) {
1112          os << failure_messages_[i]->str() << "\n";
1113      }
1114  }
1115  return os;
1116}
1117
1118extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1119    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1120  v->Dump(std::cerr);
1121}
1122
1123void MethodVerifier::Dump(std::ostream& os) {
1124  if (code_item_ == NULL) {
1125    os << "Native method\n";
1126    return;
1127  }
1128  {
1129    os << "Register Types:\n";
1130    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1131    std::ostream indent_os(&indent_filter);
1132    reg_types_.Dump(indent_os);
1133  }
1134  os << "Dumping instructions and register lines:\n";
1135  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1136  std::ostream indent_os(&indent_filter);
1137  const Instruction* inst = Instruction::At(code_item_->insns_);
1138  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1139      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1140    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1141    if (reg_line != NULL) {
1142      indent_os << reg_line->Dump() << "\n";
1143    }
1144    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1145    const bool kDumpHexOfInstruction = false;
1146    if (kDumpHexOfInstruction) {
1147      indent_os << inst->DumpHex(5) << " ";
1148    }
1149    indent_os << inst->DumpString(dex_file_) << "\n";
1150    inst = inst->Next();
1151  }
1152}
1153
1154static bool IsPrimitiveDescriptor(char descriptor) {
1155  switch (descriptor) {
1156    case 'I':
1157    case 'C':
1158    case 'S':
1159    case 'B':
1160    case 'Z':
1161    case 'F':
1162    case 'D':
1163    case 'J':
1164      return true;
1165    default:
1166      return false;
1167  }
1168}
1169
1170bool MethodVerifier::SetTypesFromSignature() {
1171  RegisterLine* reg_line = reg_table_.GetLine(0);
1172  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1173  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1174
1175  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1176  // Include the "this" pointer.
1177  size_t cur_arg = 0;
1178  if (!IsStatic()) {
1179    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1180    // argument as uninitialized. This restricts field access until the superclass constructor is
1181    // called.
1182    const RegType& declaring_class = GetDeclaringClass();
1183    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1184      reg_line->SetRegisterType(arg_start + cur_arg,
1185                                reg_types_.UninitializedThisArgument(declaring_class));
1186    } else {
1187      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1188    }
1189    cur_arg++;
1190  }
1191
1192  const DexFile::ProtoId& proto_id =
1193      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1194  DexFileParameterIterator iterator(*dex_file_, proto_id);
1195
1196  for (; iterator.HasNext(); iterator.Next()) {
1197    const char* descriptor = iterator.GetDescriptor();
1198    if (descriptor == NULL) {
1199      LOG(FATAL) << "Null descriptor";
1200    }
1201    if (cur_arg >= expected_args) {
1202      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1203                                        << " args, found more (" << descriptor << ")";
1204      return false;
1205    }
1206    switch (descriptor[0]) {
1207      case 'L':
1208      case '[':
1209        // We assume that reference arguments are initialized. The only way it could be otherwise
1210        // (assuming the caller was verified) is if the current method is <init>, but in that case
1211        // it's effectively considered initialized the instant we reach here (in the sense that we
1212        // can return without doing anything or call virtual methods).
1213        {
1214          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
1215          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1216        }
1217        break;
1218      case 'Z':
1219        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1220        break;
1221      case 'C':
1222        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1223        break;
1224      case 'B':
1225        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1226        break;
1227      case 'I':
1228        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1229        break;
1230      case 'S':
1231        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1232        break;
1233      case 'F':
1234        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1235        break;
1236      case 'J':
1237      case 'D': {
1238        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1239        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1240        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1241        cur_arg++;
1242        break;
1243      }
1244      default:
1245        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1246                                          << descriptor << "'";
1247        return false;
1248    }
1249    cur_arg++;
1250  }
1251  if (cur_arg != expected_args) {
1252    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1253                                      << " arguments, found " << cur_arg;
1254    return false;
1255  }
1256  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1257  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1258  // format. Only major difference from the method argument format is that 'V' is supported.
1259  bool result;
1260  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1261    result = descriptor[1] == '\0';
1262  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1263    size_t i = 0;
1264    do {
1265      i++;
1266    } while (descriptor[i] == '[');  // process leading [
1267    if (descriptor[i] == 'L') {  // object array
1268      do {
1269        i++;  // find closing ;
1270      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1271      result = descriptor[i] == ';';
1272    } else {  // primitive array
1273      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1274    }
1275  } else if (descriptor[0] == 'L') {
1276    // could be more thorough here, but shouldn't be required
1277    size_t i = 0;
1278    do {
1279      i++;
1280    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1281    result = descriptor[i] == ';';
1282  } else {
1283    result = false;
1284  }
1285  if (!result) {
1286    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1287                                      << descriptor << "'";
1288  }
1289  return result;
1290}
1291
1292bool MethodVerifier::CodeFlowVerifyMethod() {
1293  const uint16_t* insns = code_item_->insns_;
1294  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1295
1296  /* Begin by marking the first instruction as "changed". */
1297  insn_flags_[0].SetChanged();
1298  uint32_t start_guess = 0;
1299
1300  /* Continue until no instructions are marked "changed". */
1301  while (true) {
1302    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1303    uint32_t insn_idx = start_guess;
1304    for (; insn_idx < insns_size; insn_idx++) {
1305      if (insn_flags_[insn_idx].IsChanged())
1306        break;
1307    }
1308    if (insn_idx == insns_size) {
1309      if (start_guess != 0) {
1310        /* try again, starting from the top */
1311        start_guess = 0;
1312        continue;
1313      } else {
1314        /* all flags are clear */
1315        break;
1316      }
1317    }
1318    // We carry the working set of registers from instruction to instruction. If this address can
1319    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1320    // "changed" flags, we need to load the set of registers from the table.
1321    // Because we always prefer to continue on to the next instruction, we should never have a
1322    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1323    // target.
1324    work_insn_idx_ = insn_idx;
1325    if (insn_flags_[insn_idx].IsBranchTarget()) {
1326      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1327    } else {
1328#ifndef NDEBUG
1329      /*
1330       * Sanity check: retrieve the stored register line (assuming
1331       * a full table) and make sure it actually matches.
1332       */
1333      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1334      if (register_line != NULL) {
1335        if (work_line_->CompareLine(register_line) != 0) {
1336          Dump(std::cout);
1337          std::cout << info_messages_.str();
1338          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1339                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1340                     << " work_line=" << *work_line_ << "\n"
1341                     << "  expected=" << *register_line;
1342        }
1343      }
1344#endif
1345    }
1346    if (!CodeFlowVerifyInstruction(&start_guess)) {
1347      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1348      prepend += " failed to verify: ";
1349      PrependToLastFailMessage(prepend);
1350      return false;
1351    }
1352    /* Clear "changed" and mark as visited. */
1353    insn_flags_[insn_idx].SetVisited();
1354    insn_flags_[insn_idx].ClearChanged();
1355  }
1356
1357  if (gDebugVerify) {
1358    /*
1359     * Scan for dead code. There's nothing "evil" about dead code
1360     * (besides the wasted space), but it indicates a flaw somewhere
1361     * down the line, possibly in the verifier.
1362     *
1363     * If we've substituted "always throw" instructions into the stream,
1364     * we are almost certainly going to have some dead code.
1365     */
1366    int dead_start = -1;
1367    uint32_t insn_idx = 0;
1368    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1369      /*
1370       * Switch-statement data doesn't get "visited" by scanner. It
1371       * may or may not be preceded by a padding NOP (for alignment).
1372       */
1373      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1374          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1375          insns[insn_idx] == Instruction::kArrayDataSignature ||
1376          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1377           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1378            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1379            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1380        insn_flags_[insn_idx].SetVisited();
1381      }
1382
1383      if (!insn_flags_[insn_idx].IsVisited()) {
1384        if (dead_start < 0)
1385          dead_start = insn_idx;
1386      } else if (dead_start >= 0) {
1387        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1388                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1389        dead_start = -1;
1390      }
1391    }
1392    if (dead_start >= 0) {
1393      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1394                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1395    }
1396    // To dump the state of the verify after a method, do something like:
1397    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1398    //     "boolean java.lang.String.equals(java.lang.Object)") {
1399    //   LOG(INFO) << info_messages_.str();
1400    // }
1401  }
1402  return true;
1403}
1404
1405bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1406  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1407  // We want the state _before_ the instruction, for the case where the dex pc we're
1408  // interested in is itself a monitor-enter instruction (which is a likely place
1409  // for a thread to be suspended).
1410  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1411    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1412    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1413      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1414    }
1415  }
1416
1417  /*
1418   * Once we finish decoding the instruction, we need to figure out where
1419   * we can go from here. There are three possible ways to transfer
1420   * control to another statement:
1421   *
1422   * (1) Continue to the next instruction. Applies to all but
1423   *     unconditional branches, method returns, and exception throws.
1424   * (2) Branch to one or more possible locations. Applies to branches
1425   *     and switch statements.
1426   * (3) Exception handlers. Applies to any instruction that can
1427   *     throw an exception that is handled by an encompassing "try"
1428   *     block.
1429   *
1430   * We can also return, in which case there is no successor instruction
1431   * from this point.
1432   *
1433   * The behavior can be determined from the opcode flags.
1434   */
1435  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1436  const Instruction* inst = Instruction::At(insns);
1437  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1438
1439  int32_t branch_target = 0;
1440  bool just_set_result = false;
1441  if (gDebugVerify) {
1442    // Generate processing back trace to debug verifier
1443    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1444                    << *work_line_.get() << "\n";
1445  }
1446
1447  /*
1448   * Make a copy of the previous register state. If the instruction
1449   * can throw an exception, we will copy/merge this into the "catch"
1450   * address rather than work_line, because we don't want the result
1451   * from the "successful" code path (e.g. a check-cast that "improves"
1452   * a type) to be visible to the exception handler.
1453   */
1454  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1455    saved_line_->CopyFromLine(work_line_.get());
1456  } else {
1457#ifndef NDEBUG
1458    saved_line_->FillWithGarbage();
1459#endif
1460  }
1461
1462
1463  // We need to ensure the work line is consistent while performing validation. When we spot a
1464  // peephole pattern we compute a new line for either the fallthrough instruction or the
1465  // branch target.
1466  UniquePtr<RegisterLine> branch_line;
1467  UniquePtr<RegisterLine> fallthrough_line;
1468
1469  switch (inst->Opcode()) {
1470    case Instruction::NOP:
1471      /*
1472       * A "pure" NOP has no effect on anything. Data tables start with
1473       * a signature that looks like a NOP; if we see one of these in
1474       * the course of executing code then we have a problem.
1475       */
1476      if (inst->VRegA_10x() != 0) {
1477        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1478      }
1479      break;
1480
1481    case Instruction::MOVE:
1482      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1483      break;
1484    case Instruction::MOVE_FROM16:
1485      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1486      break;
1487    case Instruction::MOVE_16:
1488      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1489      break;
1490    case Instruction::MOVE_WIDE:
1491      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1492      break;
1493    case Instruction::MOVE_WIDE_FROM16:
1494      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1495      break;
1496    case Instruction::MOVE_WIDE_16:
1497      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1498      break;
1499    case Instruction::MOVE_OBJECT:
1500      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1501      break;
1502    case Instruction::MOVE_OBJECT_FROM16:
1503      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1504      break;
1505    case Instruction::MOVE_OBJECT_16:
1506      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1507      break;
1508
1509    /*
1510     * The move-result instructions copy data out of a "pseudo-register"
1511     * with the results from the last method invocation. In practice we
1512     * might want to hold the result in an actual CPU register, so the
1513     * Dalvik spec requires that these only appear immediately after an
1514     * invoke or filled-new-array.
1515     *
1516     * These calls invalidate the "result" register. (This is now
1517     * redundant with the reset done below, but it can make the debug info
1518     * easier to read in some cases.)
1519     */
1520    case Instruction::MOVE_RESULT:
1521      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1522      break;
1523    case Instruction::MOVE_RESULT_WIDE:
1524      work_line_->CopyResultRegister2(inst->VRegA_11x());
1525      break;
1526    case Instruction::MOVE_RESULT_OBJECT:
1527      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1528      break;
1529
1530    case Instruction::MOVE_EXCEPTION: {
1531      /*
1532       * This statement can only appear as the first instruction in an exception handler. We verify
1533       * that as part of extracting the exception type from the catch block list.
1534       */
1535      const RegType& res_type = GetCaughtExceptionType();
1536      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1537      break;
1538    }
1539    case Instruction::RETURN_VOID:
1540      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1541        if (!GetMethodReturnType().IsConflict()) {
1542          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1543        }
1544      }
1545      break;
1546    case Instruction::RETURN:
1547      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1548        /* check the method signature */
1549        const RegType& return_type = GetMethodReturnType();
1550        if (!return_type.IsCategory1Types()) {
1551          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1552                                            << return_type;
1553        } else {
1554          // Compilers may generate synthetic functions that write byte values into boolean fields.
1555          // Also, it may use integer values for boolean, byte, short, and character return types.
1556          const uint32_t vregA = inst->VRegA_11x();
1557          const RegType& src_type = work_line_->GetRegisterType(vregA);
1558          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1559                          ((return_type.IsBoolean() || return_type.IsByte() ||
1560                           return_type.IsShort() || return_type.IsChar()) &&
1561                           src_type.IsInteger()));
1562          /* check the register contents */
1563          bool success =
1564              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1565          if (!success) {
1566            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1567          }
1568        }
1569      }
1570      break;
1571    case Instruction::RETURN_WIDE:
1572      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1573        /* check the method signature */
1574        const RegType& return_type = GetMethodReturnType();
1575        if (!return_type.IsCategory2Types()) {
1576          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1577        } else {
1578          /* check the register contents */
1579          const uint32_t vregA = inst->VRegA_11x();
1580          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1581          if (!success) {
1582            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1583          }
1584        }
1585      }
1586      break;
1587    case Instruction::RETURN_OBJECT:
1588      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1589        const RegType& return_type = GetMethodReturnType();
1590        if (!return_type.IsReferenceTypes()) {
1591          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1592        } else {
1593          /* return_type is the *expected* return type, not register value */
1594          DCHECK(!return_type.IsZero());
1595          DCHECK(!return_type.IsUninitializedReference());
1596          const uint32_t vregA = inst->VRegA_11x();
1597          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1598          // Disallow returning uninitialized values and verify that the reference in vAA is an
1599          // instance of the "return_type"
1600          if (reg_type.IsUninitializedTypes()) {
1601            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1602                                              << reg_type << "'";
1603          } else if (!return_type.IsAssignableFrom(reg_type)) {
1604            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1605              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1606                  << "' or '" << reg_type << "'";
1607            } else {
1608              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1609                  << "', but expected from declaration '" << return_type << "'";
1610            }
1611          }
1612        }
1613      }
1614      break;
1615
1616      /* could be boolean, int, float, or a null reference */
1617    case Instruction::CONST_4: {
1618      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1619      work_line_->SetRegisterType(inst->VRegA_11n(), reg_types_.FromCat1Const(val, true));
1620      break;
1621    }
1622    case Instruction::CONST_16: {
1623      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1624      work_line_->SetRegisterType(inst->VRegA_21s(), reg_types_.FromCat1Const(val, true));
1625      break;
1626    }
1627    case Instruction::CONST:
1628      work_line_->SetRegisterType(inst->VRegA_31i(),
1629                                  reg_types_.FromCat1Const(inst->VRegB_31i(), true));
1630      break;
1631    case Instruction::CONST_HIGH16:
1632      work_line_->SetRegisterType(inst->VRegA_21h(),
1633                                  reg_types_.FromCat1Const(inst->VRegB_21h() << 16, true));
1634      break;
1635      /* could be long or double; resolved upon use */
1636    case Instruction::CONST_WIDE_16: {
1637      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1638      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1639      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1640      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1641      break;
1642    }
1643    case Instruction::CONST_WIDE_32: {
1644      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1645      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1646      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1647      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1648      break;
1649    }
1650    case Instruction::CONST_WIDE: {
1651      int64_t val = inst->VRegB_51l();
1652      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1653      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1654      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1655      break;
1656    }
1657    case Instruction::CONST_WIDE_HIGH16: {
1658      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1659      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1660      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1661      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1662      break;
1663    }
1664    case Instruction::CONST_STRING:
1665      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1666      break;
1667    case Instruction::CONST_STRING_JUMBO:
1668      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1669      break;
1670    case Instruction::CONST_CLASS: {
1671      // Get type from instruction if unresolved then we need an access check
1672      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1673      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1674      // Register holds class, ie its type is class, on error it will hold Conflict.
1675      work_line_->SetRegisterType(inst->VRegA_21c(),
1676                                  res_type.IsConflict() ? res_type
1677                                                        : reg_types_.JavaLangClass(true));
1678      break;
1679    }
1680    case Instruction::MONITOR_ENTER:
1681      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1682      break;
1683    case Instruction::MONITOR_EXIT:
1684      /*
1685       * monitor-exit instructions are odd. They can throw exceptions,
1686       * but when they do they act as if they succeeded and the PC is
1687       * pointing to the following instruction. (This behavior goes back
1688       * to the need to handle asynchronous exceptions, a now-deprecated
1689       * feature that Dalvik doesn't support.)
1690       *
1691       * In practice we don't need to worry about this. The only
1692       * exceptions that can be thrown from monitor-exit are for a
1693       * null reference and -exit without a matching -enter. If the
1694       * structured locking checks are working, the former would have
1695       * failed on the -enter instruction, and the latter is impossible.
1696       *
1697       * This is fortunate, because issue 3221411 prevents us from
1698       * chasing the "can throw" path when monitor verification is
1699       * enabled. If we can fully verify the locking we can ignore
1700       * some catch blocks (which will show up as "dead" code when
1701       * we skip them here); if we can't, then the code path could be
1702       * "live" so we still need to check it.
1703       */
1704      opcode_flags &= ~Instruction::kThrow;
1705      work_line_->PopMonitor(inst->VRegA_11x());
1706      break;
1707
1708    case Instruction::CHECK_CAST:
1709    case Instruction::INSTANCE_OF: {
1710      /*
1711       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1712       * could be a "upcast" -- not expected, so we don't try to address it.)
1713       *
1714       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1715       * dec_insn.vA when branching to a handler.
1716       */
1717      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1718      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1719      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1720      if (res_type.IsConflict()) {
1721        DCHECK_NE(failures_.size(), 0U);
1722        if (!is_checkcast) {
1723          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1724        }
1725        break;  // bad class
1726      }
1727      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1728      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1729      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1730      if (!res_type.IsNonZeroReferenceTypes()) {
1731        if (is_checkcast) {
1732          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1733        } else {
1734          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1735        }
1736      } else if (!orig_type.IsReferenceTypes()) {
1737        if (is_checkcast) {
1738          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1739        } else {
1740          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1741        }
1742      } else {
1743        if (is_checkcast) {
1744          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1745        } else {
1746          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1747        }
1748      }
1749      break;
1750    }
1751    case Instruction::ARRAY_LENGTH: {
1752      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1753      if (res_type.IsReferenceTypes()) {
1754        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1755          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1756        } else {
1757          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1758        }
1759      }
1760      break;
1761    }
1762    case Instruction::NEW_INSTANCE: {
1763      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1764      if (res_type.IsConflict()) {
1765        DCHECK_NE(failures_.size(), 0U);
1766        break;  // bad class
1767      }
1768      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1769      // can't create an instance of an interface or abstract class */
1770      if (!res_type.IsInstantiableTypes()) {
1771        Fail(VERIFY_ERROR_INSTANTIATION)
1772            << "new-instance on primitive, interface or abstract class" << res_type;
1773        // Soft failure so carry on to set register type.
1774      }
1775      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1776      // Any registers holding previous allocations from this address that have not yet been
1777      // initialized must be marked invalid.
1778      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1779      // add the new uninitialized reference to the register state
1780      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1781      break;
1782    }
1783    case Instruction::NEW_ARRAY:
1784      VerifyNewArray(inst, false, false);
1785      break;
1786    case Instruction::FILLED_NEW_ARRAY:
1787      VerifyNewArray(inst, true, false);
1788      just_set_result = true;  // Filled new array sets result register
1789      break;
1790    case Instruction::FILLED_NEW_ARRAY_RANGE:
1791      VerifyNewArray(inst, true, true);
1792      just_set_result = true;  // Filled new array range sets result register
1793      break;
1794    case Instruction::CMPL_FLOAT:
1795    case Instruction::CMPG_FLOAT:
1796      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1797        break;
1798      }
1799      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1800        break;
1801      }
1802      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1803      break;
1804    case Instruction::CMPL_DOUBLE:
1805    case Instruction::CMPG_DOUBLE:
1806      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1807                                              reg_types_.DoubleHi())) {
1808        break;
1809      }
1810      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1811                                              reg_types_.DoubleHi())) {
1812        break;
1813      }
1814      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1815      break;
1816    case Instruction::CMP_LONG:
1817      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1818                                              reg_types_.LongHi())) {
1819        break;
1820      }
1821      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1822                                              reg_types_.LongHi())) {
1823        break;
1824      }
1825      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1826      break;
1827    case Instruction::THROW: {
1828      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1829      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1830        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1831            << "thrown class " << res_type << " not instanceof Throwable";
1832      }
1833      break;
1834    }
1835    case Instruction::GOTO:
1836    case Instruction::GOTO_16:
1837    case Instruction::GOTO_32:
1838      /* no effect on or use of registers */
1839      break;
1840
1841    case Instruction::PACKED_SWITCH:
1842    case Instruction::SPARSE_SWITCH:
1843      /* verify that vAA is an integer, or can be converted to one */
1844      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1845      break;
1846
1847    case Instruction::FILL_ARRAY_DATA: {
1848      /* Similar to the verification done for APUT */
1849      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1850      /* array_type can be null if the reg type is Zero */
1851      if (!array_type.IsZero()) {
1852        if (!array_type.IsArrayTypes()) {
1853          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1854                                            << array_type;
1855        } else {
1856          const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
1857          DCHECK(!component_type.IsConflict());
1858          if (component_type.IsNonZeroReferenceTypes()) {
1859            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1860                                              << component_type;
1861          } else {
1862            // Now verify if the element width in the table matches the element width declared in
1863            // the array
1864            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1865            if (array_data[0] != Instruction::kArrayDataSignature) {
1866              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1867            } else {
1868              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1869              // Since we don't compress the data in Dex, expect to see equal width of data stored
1870              // in the table and expected from the array class.
1871              if (array_data[1] != elem_width) {
1872                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1873                                                  << " vs " << elem_width << ")";
1874              }
1875            }
1876          }
1877        }
1878      }
1879      break;
1880    }
1881    case Instruction::IF_EQ:
1882    case Instruction::IF_NE: {
1883      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1884      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1885      bool mismatch = false;
1886      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1887        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1888      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1889        mismatch = !reg_type2.IsReferenceTypes();
1890      } else {  // both integral?
1891        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1892      }
1893      if (mismatch) {
1894        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1895                                          << reg_type2 << ") must both be references or integral";
1896      }
1897      break;
1898    }
1899    case Instruction::IF_LT:
1900    case Instruction::IF_GE:
1901    case Instruction::IF_GT:
1902    case Instruction::IF_LE: {
1903      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1904      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1905      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1906        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1907                                          << reg_type2 << ") must be integral";
1908      }
1909      break;
1910    }
1911    case Instruction::IF_EQZ:
1912    case Instruction::IF_NEZ: {
1913      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1914      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1915        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1916                                          << " unexpected as arg to if-eqz/if-nez";
1917      }
1918
1919      // Find previous instruction - its existence is a precondition to peephole optimization.
1920      uint32_t instance_of_idx = 0;
1921      if (0 != work_insn_idx_) {
1922        instance_of_idx = work_insn_idx_ - 1;
1923        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1924          instance_of_idx--;
1925        }
1926        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1927      } else {
1928        break;
1929      }
1930
1931      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1932
1933      /* Check for peep-hole pattern of:
1934       *    ...;
1935       *    instance-of vX, vY, T;
1936       *    ifXXX vX, label ;
1937       *    ...;
1938       * label:
1939       *    ...;
1940       * and sharpen the type of vY to be type T.
1941       * Note, this pattern can't be if:
1942       *  - if there are other branches to this branch,
1943       *  - when vX == vY.
1944       */
1945      if (!CurrentInsnFlags()->IsBranchTarget() &&
1946          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1947          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1948          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1949        // Check that the we are not attempting conversion to interface types,
1950        // which is not done because of the multiple inheritance implications.
1951        // Also don't change the type if it would result in an upcast.
1952        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1953        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1954
1955        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1956            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1957          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1958          if (inst->Opcode() == Instruction::IF_EQZ) {
1959            fallthrough_line.reset(update_line);
1960          } else {
1961            branch_line.reset(update_line);
1962          }
1963          update_line->CopyFromLine(work_line_.get());
1964          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1965          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1966            // See if instance-of was preceded by a move-object operation, common due to the small
1967            // register encoding space of instance-of, and propagate type information to the source
1968            // of the move-object.
1969            uint32_t move_idx = instance_of_idx - 1;
1970            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1971              move_idx--;
1972            }
1973            CHECK(insn_flags_[move_idx].IsOpcode());
1974            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1975            switch (move_inst->Opcode()) {
1976              case Instruction::MOVE_OBJECT:
1977                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1978                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1979                }
1980                break;
1981              case Instruction::MOVE_OBJECT_FROM16:
1982                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1983                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1984                }
1985                break;
1986              case Instruction::MOVE_OBJECT_16:
1987                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1988                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1989                }
1990                break;
1991              default:
1992                break;
1993            }
1994          }
1995        }
1996      }
1997
1998      break;
1999    }
2000    case Instruction::IF_LTZ:
2001    case Instruction::IF_GEZ:
2002    case Instruction::IF_GTZ:
2003    case Instruction::IF_LEZ: {
2004      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2005      if (!reg_type.IsIntegralTypes()) {
2006        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2007                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2008      }
2009      break;
2010    }
2011    case Instruction::AGET_BOOLEAN:
2012      VerifyAGet(inst, reg_types_.Boolean(), true);
2013      break;
2014    case Instruction::AGET_BYTE:
2015      VerifyAGet(inst, reg_types_.Byte(), true);
2016      break;
2017    case Instruction::AGET_CHAR:
2018      VerifyAGet(inst, reg_types_.Char(), true);
2019      break;
2020    case Instruction::AGET_SHORT:
2021      VerifyAGet(inst, reg_types_.Short(), true);
2022      break;
2023    case Instruction::AGET:
2024      VerifyAGet(inst, reg_types_.Integer(), true);
2025      break;
2026    case Instruction::AGET_WIDE:
2027      VerifyAGet(inst, reg_types_.LongLo(), true);
2028      break;
2029    case Instruction::AGET_OBJECT:
2030      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2031      break;
2032
2033    case Instruction::APUT_BOOLEAN:
2034      VerifyAPut(inst, reg_types_.Boolean(), true);
2035      break;
2036    case Instruction::APUT_BYTE:
2037      VerifyAPut(inst, reg_types_.Byte(), true);
2038      break;
2039    case Instruction::APUT_CHAR:
2040      VerifyAPut(inst, reg_types_.Char(), true);
2041      break;
2042    case Instruction::APUT_SHORT:
2043      VerifyAPut(inst, reg_types_.Short(), true);
2044      break;
2045    case Instruction::APUT:
2046      VerifyAPut(inst, reg_types_.Integer(), true);
2047      break;
2048    case Instruction::APUT_WIDE:
2049      VerifyAPut(inst, reg_types_.LongLo(), true);
2050      break;
2051    case Instruction::APUT_OBJECT:
2052      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2053      break;
2054
2055    case Instruction::IGET_BOOLEAN:
2056      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2057      break;
2058    case Instruction::IGET_BYTE:
2059      VerifyISGet(inst, reg_types_.Byte(), true, false);
2060      break;
2061    case Instruction::IGET_CHAR:
2062      VerifyISGet(inst, reg_types_.Char(), true, false);
2063      break;
2064    case Instruction::IGET_SHORT:
2065      VerifyISGet(inst, reg_types_.Short(), true, false);
2066      break;
2067    case Instruction::IGET:
2068      VerifyISGet(inst, reg_types_.Integer(), true, false);
2069      break;
2070    case Instruction::IGET_WIDE:
2071      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2072      break;
2073    case Instruction::IGET_OBJECT:
2074      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2075      break;
2076
2077    case Instruction::IPUT_BOOLEAN:
2078      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2079      break;
2080    case Instruction::IPUT_BYTE:
2081      VerifyISPut(inst, reg_types_.Byte(), true, false);
2082      break;
2083    case Instruction::IPUT_CHAR:
2084      VerifyISPut(inst, reg_types_.Char(), true, false);
2085      break;
2086    case Instruction::IPUT_SHORT:
2087      VerifyISPut(inst, reg_types_.Short(), true, false);
2088      break;
2089    case Instruction::IPUT:
2090      VerifyISPut(inst, reg_types_.Integer(), true, false);
2091      break;
2092    case Instruction::IPUT_WIDE:
2093      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2094      break;
2095    case Instruction::IPUT_OBJECT:
2096      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2097      break;
2098
2099    case Instruction::SGET_BOOLEAN:
2100      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2101      break;
2102    case Instruction::SGET_BYTE:
2103      VerifyISGet(inst, reg_types_.Byte(), true, true);
2104      break;
2105    case Instruction::SGET_CHAR:
2106      VerifyISGet(inst, reg_types_.Char(), true, true);
2107      break;
2108    case Instruction::SGET_SHORT:
2109      VerifyISGet(inst, reg_types_.Short(), true, true);
2110      break;
2111    case Instruction::SGET:
2112      VerifyISGet(inst, reg_types_.Integer(), true, true);
2113      break;
2114    case Instruction::SGET_WIDE:
2115      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2116      break;
2117    case Instruction::SGET_OBJECT:
2118      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2119      break;
2120
2121    case Instruction::SPUT_BOOLEAN:
2122      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2123      break;
2124    case Instruction::SPUT_BYTE:
2125      VerifyISPut(inst, reg_types_.Byte(), true, true);
2126      break;
2127    case Instruction::SPUT_CHAR:
2128      VerifyISPut(inst, reg_types_.Char(), true, true);
2129      break;
2130    case Instruction::SPUT_SHORT:
2131      VerifyISPut(inst, reg_types_.Short(), true, true);
2132      break;
2133    case Instruction::SPUT:
2134      VerifyISPut(inst, reg_types_.Integer(), true, true);
2135      break;
2136    case Instruction::SPUT_WIDE:
2137      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2138      break;
2139    case Instruction::SPUT_OBJECT:
2140      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2141      break;
2142
2143    case Instruction::INVOKE_VIRTUAL:
2144    case Instruction::INVOKE_VIRTUAL_RANGE:
2145    case Instruction::INVOKE_SUPER:
2146    case Instruction::INVOKE_SUPER_RANGE: {
2147      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2148                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2149      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2150                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2151      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2152                                                                   is_range, is_super);
2153      const RegType* return_type = nullptr;
2154      if (called_method != nullptr) {
2155        MethodHelper mh(called_method);
2156        mirror::Class* return_type_class = mh.GetReturnType();
2157        if (return_type_class != nullptr) {
2158          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2159                                              return_type_class->CannotBeAssignedFromOtherTypes());
2160        } else {
2161          Thread* self = Thread::Current();
2162          DCHECK(self->IsExceptionPending());
2163          self->ClearException();
2164        }
2165      }
2166      if (return_type == nullptr) {
2167        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2168        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2169        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2170        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2171        return_type = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
2172      }
2173      if (!return_type->IsLowHalf()) {
2174        work_line_->SetResultRegisterType(*return_type);
2175      } else {
2176        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2177      }
2178      just_set_result = true;
2179      break;
2180    }
2181    case Instruction::INVOKE_DIRECT:
2182    case Instruction::INVOKE_DIRECT_RANGE: {
2183      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2184      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2185                                                                   is_range, false);
2186      const char* return_type_descriptor;
2187      bool is_constructor;
2188      if (called_method == NULL) {
2189        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2190        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2191        is_constructor = dex_file_->StringDataAsStringPieceByIdx(method_id.name_idx_) == "<init>";
2192        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2193        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2194      } else {
2195        is_constructor = called_method->IsConstructor();
2196        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2197      }
2198      if (is_constructor) {
2199        /*
2200         * Some additional checks when calling a constructor. We know from the invocation arg check
2201         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2202         * that to require that called_method->klass is the same as this->klass or this->super,
2203         * allowing the latter only if the "this" argument is the same as the "this" argument to
2204         * this method (which implies that we're in a constructor ourselves).
2205         */
2206        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2207        if (this_type.IsConflict())  // failure.
2208          break;
2209
2210        /* no null refs allowed (?) */
2211        if (this_type.IsZero()) {
2212          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2213          break;
2214        }
2215
2216        /* must be in same class or in superclass */
2217        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2218        // TODO: re-enable constructor type verification
2219        // if (this_super_klass.IsConflict()) {
2220          // Unknown super class, fail so we re-check at runtime.
2221          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2222          // break;
2223        // }
2224
2225        /* arg must be an uninitialized reference */
2226        if (!this_type.IsUninitializedTypes()) {
2227          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2228              << this_type;
2229          break;
2230        }
2231
2232        /*
2233         * Replace the uninitialized reference with an initialized one. We need to do this for all
2234         * registers that have the same object instance in them, not just the "this" register.
2235         */
2236        work_line_->MarkRefsAsInitialized(this_type);
2237      }
2238      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, return_type_descriptor,
2239                                                             false);
2240      if (!return_type.IsLowHalf()) {
2241        work_line_->SetResultRegisterType(return_type);
2242      } else {
2243        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2244      }
2245      just_set_result = true;
2246      break;
2247    }
2248    case Instruction::INVOKE_STATIC:
2249    case Instruction::INVOKE_STATIC_RANGE: {
2250        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2251        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2252                                                                     METHOD_STATIC,
2253                                                                     is_range,
2254                                                                     false);
2255        const char* descriptor;
2256        if (called_method == NULL) {
2257          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2258          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2259          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2260          descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2261        } else {
2262          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2263        }
2264        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_, descriptor, false);
2265        if (!return_type.IsLowHalf()) {
2266          work_line_->SetResultRegisterType(return_type);
2267        } else {
2268          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2269        }
2270        just_set_result = true;
2271      }
2272      break;
2273    case Instruction::INVOKE_INTERFACE:
2274    case Instruction::INVOKE_INTERFACE_RANGE: {
2275      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2276      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2277                                                                METHOD_INTERFACE,
2278                                                                is_range,
2279                                                                false);
2280      if (abs_method != NULL) {
2281        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2282        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2283          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2284              << PrettyMethod(abs_method) << "'";
2285          break;
2286        }
2287      }
2288      /* Get the type of the "this" arg, which should either be a sub-interface of called
2289       * interface or Object (see comments in RegType::JoinClass).
2290       */
2291      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2292      if (this_type.IsZero()) {
2293        /* null pointer always passes (and always fails at runtime) */
2294      } else {
2295        if (this_type.IsUninitializedTypes()) {
2296          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2297              << this_type;
2298          break;
2299        }
2300        // In the past we have tried to assert that "called_interface" is assignable
2301        // from "this_type.GetClass()", however, as we do an imprecise Join
2302        // (RegType::JoinClass) we don't have full information on what interfaces are
2303        // implemented by "this_type". For example, two classes may implement the same
2304        // interfaces and have a common parent that doesn't implement the interface. The
2305        // join will set "this_type" to the parent class and a test that this implements
2306        // the interface will incorrectly fail.
2307      }
2308      /*
2309       * We don't have an object instance, so we can't find the concrete method. However, all of
2310       * the type information is in the abstract method, so we're good.
2311       */
2312      const char* descriptor;
2313      if (abs_method == NULL) {
2314        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2315        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2316        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2317        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2318      } else {
2319        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2320      }
2321      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2322      if (!return_type.IsLowHalf()) {
2323        work_line_->SetResultRegisterType(return_type);
2324      } else {
2325        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2326      }
2327      just_set_result = true;
2328      break;
2329    }
2330    case Instruction::NEG_INT:
2331    case Instruction::NOT_INT:
2332      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2333      break;
2334    case Instruction::NEG_LONG:
2335    case Instruction::NOT_LONG:
2336      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2337                                   reg_types_.LongLo(), reg_types_.LongHi());
2338      break;
2339    case Instruction::NEG_FLOAT:
2340      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2341      break;
2342    case Instruction::NEG_DOUBLE:
2343      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2344                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2345      break;
2346    case Instruction::INT_TO_LONG:
2347      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2348                                     reg_types_.Integer());
2349      break;
2350    case Instruction::INT_TO_FLOAT:
2351      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2352      break;
2353    case Instruction::INT_TO_DOUBLE:
2354      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2355                                     reg_types_.Integer());
2356      break;
2357    case Instruction::LONG_TO_INT:
2358      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2359                                       reg_types_.LongLo(), reg_types_.LongHi());
2360      break;
2361    case Instruction::LONG_TO_FLOAT:
2362      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2363                                       reg_types_.LongLo(), reg_types_.LongHi());
2364      break;
2365    case Instruction::LONG_TO_DOUBLE:
2366      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2367                                   reg_types_.LongLo(), reg_types_.LongHi());
2368      break;
2369    case Instruction::FLOAT_TO_INT:
2370      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2371      break;
2372    case Instruction::FLOAT_TO_LONG:
2373      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2374                                     reg_types_.Float());
2375      break;
2376    case Instruction::FLOAT_TO_DOUBLE:
2377      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2378                                     reg_types_.Float());
2379      break;
2380    case Instruction::DOUBLE_TO_INT:
2381      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2382                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2383      break;
2384    case Instruction::DOUBLE_TO_LONG:
2385      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2386                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2387      break;
2388    case Instruction::DOUBLE_TO_FLOAT:
2389      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2390                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2391      break;
2392    case Instruction::INT_TO_BYTE:
2393      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2394      break;
2395    case Instruction::INT_TO_CHAR:
2396      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2397      break;
2398    case Instruction::INT_TO_SHORT:
2399      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2400      break;
2401
2402    case Instruction::ADD_INT:
2403    case Instruction::SUB_INT:
2404    case Instruction::MUL_INT:
2405    case Instruction::REM_INT:
2406    case Instruction::DIV_INT:
2407    case Instruction::SHL_INT:
2408    case Instruction::SHR_INT:
2409    case Instruction::USHR_INT:
2410      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2411                                reg_types_.Integer(), false);
2412      break;
2413    case Instruction::AND_INT:
2414    case Instruction::OR_INT:
2415    case Instruction::XOR_INT:
2416      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2417                                reg_types_.Integer(), true);
2418      break;
2419    case Instruction::ADD_LONG:
2420    case Instruction::SUB_LONG:
2421    case Instruction::MUL_LONG:
2422    case Instruction::DIV_LONG:
2423    case Instruction::REM_LONG:
2424    case Instruction::AND_LONG:
2425    case Instruction::OR_LONG:
2426    case Instruction::XOR_LONG:
2427      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2428                                    reg_types_.LongLo(), reg_types_.LongHi(),
2429                                    reg_types_.LongLo(), reg_types_.LongHi());
2430      break;
2431    case Instruction::SHL_LONG:
2432    case Instruction::SHR_LONG:
2433    case Instruction::USHR_LONG:
2434      /* shift distance is Int, making these different from other binary operations */
2435      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2436                                         reg_types_.Integer());
2437      break;
2438    case Instruction::ADD_FLOAT:
2439    case Instruction::SUB_FLOAT:
2440    case Instruction::MUL_FLOAT:
2441    case Instruction::DIV_FLOAT:
2442    case Instruction::REM_FLOAT:
2443      work_line_->CheckBinaryOp(inst,
2444                                reg_types_.Float(),
2445                                reg_types_.Float(),
2446                                reg_types_.Float(),
2447                                false);
2448      break;
2449    case Instruction::ADD_DOUBLE:
2450    case Instruction::SUB_DOUBLE:
2451    case Instruction::MUL_DOUBLE:
2452    case Instruction::DIV_DOUBLE:
2453    case Instruction::REM_DOUBLE:
2454      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2455                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2456                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2457      break;
2458    case Instruction::ADD_INT_2ADDR:
2459    case Instruction::SUB_INT_2ADDR:
2460    case Instruction::MUL_INT_2ADDR:
2461    case Instruction::REM_INT_2ADDR:
2462    case Instruction::SHL_INT_2ADDR:
2463    case Instruction::SHR_INT_2ADDR:
2464    case Instruction::USHR_INT_2ADDR:
2465      work_line_->CheckBinaryOp2addr(inst,
2466                                     reg_types_.Integer(),
2467                                     reg_types_.Integer(),
2468                                     reg_types_.Integer(),
2469                                     false);
2470      break;
2471    case Instruction::AND_INT_2ADDR:
2472    case Instruction::OR_INT_2ADDR:
2473    case Instruction::XOR_INT_2ADDR:
2474      work_line_->CheckBinaryOp2addr(inst,
2475                                     reg_types_.Integer(),
2476                                     reg_types_.Integer(),
2477                                     reg_types_.Integer(),
2478                                     true);
2479      break;
2480    case Instruction::DIV_INT_2ADDR:
2481      work_line_->CheckBinaryOp2addr(inst,
2482                                     reg_types_.Integer(),
2483                                     reg_types_.Integer(),
2484                                     reg_types_.Integer(),
2485                                     false);
2486      break;
2487    case Instruction::ADD_LONG_2ADDR:
2488    case Instruction::SUB_LONG_2ADDR:
2489    case Instruction::MUL_LONG_2ADDR:
2490    case Instruction::DIV_LONG_2ADDR:
2491    case Instruction::REM_LONG_2ADDR:
2492    case Instruction::AND_LONG_2ADDR:
2493    case Instruction::OR_LONG_2ADDR:
2494    case Instruction::XOR_LONG_2ADDR:
2495      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2496                                         reg_types_.LongLo(), reg_types_.LongHi(),
2497                                         reg_types_.LongLo(), reg_types_.LongHi());
2498      break;
2499    case Instruction::SHL_LONG_2ADDR:
2500    case Instruction::SHR_LONG_2ADDR:
2501    case Instruction::USHR_LONG_2ADDR:
2502      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2503                                              reg_types_.Integer());
2504      break;
2505    case Instruction::ADD_FLOAT_2ADDR:
2506    case Instruction::SUB_FLOAT_2ADDR:
2507    case Instruction::MUL_FLOAT_2ADDR:
2508    case Instruction::DIV_FLOAT_2ADDR:
2509    case Instruction::REM_FLOAT_2ADDR:
2510      work_line_->CheckBinaryOp2addr(inst,
2511                                     reg_types_.Float(),
2512                                     reg_types_.Float(),
2513                                     reg_types_.Float(),
2514                                     false);
2515      break;
2516    case Instruction::ADD_DOUBLE_2ADDR:
2517    case Instruction::SUB_DOUBLE_2ADDR:
2518    case Instruction::MUL_DOUBLE_2ADDR:
2519    case Instruction::DIV_DOUBLE_2ADDR:
2520    case Instruction::REM_DOUBLE_2ADDR:
2521      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2522                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2523                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2524      break;
2525    case Instruction::ADD_INT_LIT16:
2526    case Instruction::RSUB_INT:
2527    case Instruction::MUL_INT_LIT16:
2528    case Instruction::DIV_INT_LIT16:
2529    case Instruction::REM_INT_LIT16:
2530      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2531      break;
2532    case Instruction::AND_INT_LIT16:
2533    case Instruction::OR_INT_LIT16:
2534    case Instruction::XOR_INT_LIT16:
2535      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2536      break;
2537    case Instruction::ADD_INT_LIT8:
2538    case Instruction::RSUB_INT_LIT8:
2539    case Instruction::MUL_INT_LIT8:
2540    case Instruction::DIV_INT_LIT8:
2541    case Instruction::REM_INT_LIT8:
2542    case Instruction::SHL_INT_LIT8:
2543    case Instruction::SHR_INT_LIT8:
2544    case Instruction::USHR_INT_LIT8:
2545      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2546      break;
2547    case Instruction::AND_INT_LIT8:
2548    case Instruction::OR_INT_LIT8:
2549    case Instruction::XOR_INT_LIT8:
2550      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2551      break;
2552
2553    // Special instructions.
2554    case Instruction::RETURN_VOID_BARRIER:
2555      DCHECK(Runtime::Current()->IsStarted()) << PrettyMethod(dex_method_idx_, *dex_file_);
2556      if (!IsConstructor() || IsStatic()) {
2557          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2558      }
2559      break;
2560    // Note: the following instructions encode offsets derived from class linking.
2561    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2562    // meaning if the class linking and resolution were successful.
2563    case Instruction::IGET_QUICK:
2564      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2565      break;
2566    case Instruction::IGET_WIDE_QUICK:
2567      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2568      break;
2569    case Instruction::IGET_OBJECT_QUICK:
2570      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2571      break;
2572    case Instruction::IPUT_QUICK:
2573      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2574      break;
2575    case Instruction::IPUT_WIDE_QUICK:
2576      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2577      break;
2578    case Instruction::IPUT_OBJECT_QUICK:
2579      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2580      break;
2581    case Instruction::INVOKE_VIRTUAL_QUICK:
2582    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2583      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2584      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2585      if (called_method != NULL) {
2586        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2587        const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2588        if (!return_type.IsLowHalf()) {
2589          work_line_->SetResultRegisterType(return_type);
2590        } else {
2591          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2592        }
2593        just_set_result = true;
2594      }
2595      break;
2596    }
2597
2598    /* These should never appear during verification. */
2599    case Instruction::UNUSED_3E:
2600    case Instruction::UNUSED_3F:
2601    case Instruction::UNUSED_40:
2602    case Instruction::UNUSED_41:
2603    case Instruction::UNUSED_42:
2604    case Instruction::UNUSED_43:
2605    case Instruction::UNUSED_79:
2606    case Instruction::UNUSED_7A:
2607    case Instruction::UNUSED_EB:
2608    case Instruction::UNUSED_EC:
2609    case Instruction::UNUSED_ED:
2610    case Instruction::UNUSED_EE:
2611    case Instruction::UNUSED_EF:
2612    case Instruction::UNUSED_F0:
2613    case Instruction::UNUSED_F1:
2614    case Instruction::UNUSED_F2:
2615    case Instruction::UNUSED_F3:
2616    case Instruction::UNUSED_F4:
2617    case Instruction::UNUSED_F5:
2618    case Instruction::UNUSED_F6:
2619    case Instruction::UNUSED_F7:
2620    case Instruction::UNUSED_F8:
2621    case Instruction::UNUSED_F9:
2622    case Instruction::UNUSED_FA:
2623    case Instruction::UNUSED_FB:
2624    case Instruction::UNUSED_FC:
2625    case Instruction::UNUSED_FD:
2626    case Instruction::UNUSED_FE:
2627    case Instruction::UNUSED_FF:
2628      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2629      break;
2630
2631    /*
2632     * DO NOT add a "default" clause here. Without it the compiler will
2633     * complain if an instruction is missing (which is desirable).
2634     */
2635  }  // end - switch (dec_insn.opcode)
2636
2637  if (have_pending_hard_failure_) {
2638    if (Runtime::Current()->IsCompiler()) {
2639      /* When compiling, check that the last failure is a hard failure */
2640      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2641    }
2642    /* immediate failure, reject class */
2643    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2644    return false;
2645  } else if (have_pending_runtime_throw_failure_) {
2646    /* checking interpreter will throw, mark following code as unreachable */
2647    opcode_flags = Instruction::kThrow;
2648  }
2649  /*
2650   * If we didn't just set the result register, clear it out. This ensures that you can only use
2651   * "move-result" immediately after the result is set. (We could check this statically, but it's
2652   * not expensive and it makes our debugging output cleaner.)
2653   */
2654  if (!just_set_result) {
2655    work_line_->SetResultTypeToUnknown();
2656  }
2657
2658
2659
2660  /*
2661   * Handle "branch". Tag the branch target.
2662   *
2663   * NOTE: instructions like Instruction::EQZ provide information about the
2664   * state of the register when the branch is taken or not taken. For example,
2665   * somebody could get a reference field, check it for zero, and if the
2666   * branch is taken immediately store that register in a boolean field
2667   * since the value is known to be zero. We do not currently account for
2668   * that, and will reject the code.
2669   *
2670   * TODO: avoid re-fetching the branch target
2671   */
2672  if ((opcode_flags & Instruction::kBranch) != 0) {
2673    bool isConditional, selfOkay;
2674    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2675      /* should never happen after static verification */
2676      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2677      return false;
2678    }
2679    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2680    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2681      return false;
2682    }
2683    /* update branch target, set "changed" if appropriate */
2684    if (NULL != branch_line.get()) {
2685      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2686        return false;
2687      }
2688    } else {
2689      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2690        return false;
2691      }
2692    }
2693  }
2694
2695  /*
2696   * Handle "switch". Tag all possible branch targets.
2697   *
2698   * We've already verified that the table is structurally sound, so we
2699   * just need to walk through and tag the targets.
2700   */
2701  if ((opcode_flags & Instruction::kSwitch) != 0) {
2702    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2703    const uint16_t* switch_insns = insns + offset_to_switch;
2704    int switch_count = switch_insns[1];
2705    int offset_to_targets, targ;
2706
2707    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2708      /* 0 = sig, 1 = count, 2/3 = first key */
2709      offset_to_targets = 4;
2710    } else {
2711      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2712      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2713      offset_to_targets = 2 + 2 * switch_count;
2714    }
2715
2716    /* verify each switch target */
2717    for (targ = 0; targ < switch_count; targ++) {
2718      int offset;
2719      uint32_t abs_offset;
2720
2721      /* offsets are 32-bit, and only partly endian-swapped */
2722      offset = switch_insns[offset_to_targets + targ * 2] |
2723         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2724      abs_offset = work_insn_idx_ + offset;
2725      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2726      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2727        return false;
2728      }
2729      if (!UpdateRegisters(abs_offset, work_line_.get()))
2730        return false;
2731    }
2732  }
2733
2734  /*
2735   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2736   * "try" block when they throw, control transfers out of the method.)
2737   */
2738  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2739    bool within_catch_all = false;
2740    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2741
2742    for (; iterator.HasNext(); iterator.Next()) {
2743      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2744        within_catch_all = true;
2745      }
2746      /*
2747       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2748       * "work_regs", because at runtime the exception will be thrown before the instruction
2749       * modifies any registers.
2750       */
2751      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2752        return false;
2753      }
2754    }
2755
2756    /*
2757     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2758     * instruction. This does apply to monitor-exit because of async exception handling.
2759     */
2760    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2761      /*
2762       * The state in work_line reflects the post-execution state. If the current instruction is a
2763       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2764       * it will do so before grabbing the lock).
2765       */
2766      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2767        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2768            << "expected to be within a catch-all for an instruction where a monitor is held";
2769        return false;
2770      }
2771    }
2772  }
2773
2774  /* Handle "continue". Tag the next consecutive instruction.
2775   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2776   *        because it changes work_line_ when performing peephole optimization
2777   *        and this change should not be used in those cases.
2778   */
2779  if ((opcode_flags & Instruction::kContinue) != 0) {
2780    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2781    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2782      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2783      return false;
2784    }
2785    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2786    // next instruction isn't one.
2787    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2788      return false;
2789    }
2790    if (NULL != fallthrough_line.get()) {
2791      // Make workline consistent with fallthrough computed from peephole optimization.
2792      work_line_->CopyFromLine(fallthrough_line.get());
2793    }
2794    if (insn_flags_[next_insn_idx].IsReturn()) {
2795      // For returns we only care about the operand to the return, all other registers are dead.
2796      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2797      Instruction::Code opcode = ret_inst->Opcode();
2798      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2799        work_line_->MarkAllRegistersAsConflicts();
2800      } else {
2801        if (opcode == Instruction::RETURN_WIDE) {
2802          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2803        } else {
2804          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2805        }
2806      }
2807    }
2808    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2809    if (next_line != NULL) {
2810      // Merge registers into what we have for the next instruction,
2811      // and set the "changed" flag if needed.
2812      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2813        return false;
2814      }
2815    } else {
2816      /*
2817       * We're not recording register data for the next instruction, so we don't know what the
2818       * prior state was. We have to assume that something has changed and re-evaluate it.
2819       */
2820      insn_flags_[next_insn_idx].SetChanged();
2821    }
2822  }
2823
2824  /* If we're returning from the method, make sure monitor stack is empty. */
2825  if ((opcode_flags & Instruction::kReturn) != 0) {
2826    if (!work_line_->VerifyMonitorStackEmpty()) {
2827      return false;
2828    }
2829  }
2830
2831  /*
2832   * Update start_guess. Advance to the next instruction of that's
2833   * possible, otherwise use the branch target if one was found. If
2834   * neither of those exists we're in a return or throw; leave start_guess
2835   * alone and let the caller sort it out.
2836   */
2837  if ((opcode_flags & Instruction::kContinue) != 0) {
2838    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2839  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2840    /* we're still okay if branch_target is zero */
2841    *start_guess = work_insn_idx_ + branch_target;
2842  }
2843
2844  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2845  DCHECK(insn_flags_[*start_guess].IsOpcode());
2846
2847  return true;
2848}  // NOLINT(readability/fn_size)
2849
2850const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2851  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2852  const RegType& referrer = GetDeclaringClass();
2853  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
2854  const RegType& result =
2855      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2856                                           klass->CannotBeAssignedFromOtherTypes())
2857                    : reg_types_.FromDescriptor(class_loader_, descriptor, false);
2858  if (result.IsConflict()) {
2859    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2860        << "' in " << referrer;
2861    return result;
2862  }
2863  if (klass == NULL && !result.IsUnresolvedTypes()) {
2864    dex_cache_->SetResolvedType(class_idx, result.GetClass());
2865  }
2866  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2867  // check at runtime if access is allowed and so pass here. If result is
2868  // primitive, skip the access check.
2869  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2870      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2871    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2872                                    << referrer << "' -> '" << result << "'";
2873  }
2874  return result;
2875}
2876
2877const RegType& MethodVerifier::GetCaughtExceptionType() {
2878  const RegType* common_super = NULL;
2879  if (code_item_->tries_size_ != 0) {
2880    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2881    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2882    for (uint32_t i = 0; i < handlers_size; i++) {
2883      CatchHandlerIterator iterator(handlers_ptr);
2884      for (; iterator.HasNext(); iterator.Next()) {
2885        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2886          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2887            common_super = &reg_types_.JavaLangThrowable(false);
2888          } else {
2889            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2890            if (common_super == NULL) {
2891              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2892              // as that is caught at runtime
2893              common_super = &exception;
2894            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2895              // We don't know enough about the type and the common path merge will result in
2896              // Conflict. Fail here knowing the correct thing can be done at runtime.
2897              Fail(exception.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
2898                  VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2899              return reg_types_.Conflict();
2900            } else if (common_super->Equals(exception)) {
2901              // odd case, but nothing to do
2902            } else {
2903              common_super = &common_super->Merge(exception, &reg_types_);
2904              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2905            }
2906          }
2907        }
2908      }
2909      handlers_ptr = iterator.EndDataPointer();
2910    }
2911  }
2912  if (common_super == NULL) {
2913    /* no catch blocks, or no catches with classes we can find */
2914    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2915    return reg_types_.Conflict();
2916  }
2917  return *common_super;
2918}
2919
2920mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2921                                                               MethodType method_type) {
2922  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2923  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2924  if (klass_type.IsConflict()) {
2925    std::string append(" in attempt to access method ");
2926    append += dex_file_->GetMethodName(method_id);
2927    AppendToLastFailMessage(append);
2928    return NULL;
2929  }
2930  if (klass_type.IsUnresolvedTypes()) {
2931    return NULL;  // Can't resolve Class so no more to do here
2932  }
2933  mirror::Class* klass = klass_type.GetClass();
2934  const RegType& referrer = GetDeclaringClass();
2935  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
2936  if (res_method == NULL) {
2937    const char* name = dex_file_->GetMethodName(method_id);
2938    const Signature signature = dex_file_->GetMethodSignature(method_id);
2939
2940    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2941      res_method = klass->FindDirectMethod(name, signature);
2942    } else if (method_type == METHOD_INTERFACE) {
2943      res_method = klass->FindInterfaceMethod(name, signature);
2944    } else {
2945      res_method = klass->FindVirtualMethod(name, signature);
2946    }
2947    if (res_method != NULL) {
2948      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
2949    } else {
2950      // If a virtual or interface method wasn't found with the expected type, look in
2951      // the direct methods. This can happen when the wrong invoke type is used or when
2952      // a class has changed, and will be flagged as an error in later checks.
2953      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2954        res_method = klass->FindDirectMethod(name, signature);
2955      }
2956      if (res_method == NULL) {
2957        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2958                                     << PrettyDescriptor(klass) << "." << name
2959                                     << " " << signature;
2960        return NULL;
2961      }
2962    }
2963  }
2964  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2965  // enforce them here.
2966  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2967    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2968                                      << PrettyMethod(res_method);
2969    return NULL;
2970  }
2971  // Disallow any calls to class initializers.
2972  if (MethodHelper(res_method).IsClassInitializer()) {
2973    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2974                                      << PrettyMethod(res_method);
2975    return NULL;
2976  }
2977  // Check if access is allowed.
2978  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2979    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2980                                     << " from " << referrer << ")";
2981    return res_method;
2982  }
2983  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2984  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2985    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2986                                      << PrettyMethod(res_method);
2987    return NULL;
2988  }
2989  // Check that interface methods match interface classes.
2990  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2991    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2992                                    << " is in an interface class " << PrettyClass(klass);
2993    return NULL;
2994  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2995    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2996                                    << " is in a non-interface class " << PrettyClass(klass);
2997    return NULL;
2998  }
2999  // See if the method type implied by the invoke instruction matches the access flags for the
3000  // target method.
3001  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3002      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3003      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3004      ) {
3005    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3006                                       " type of " << PrettyMethod(res_method);
3007    return NULL;
3008  }
3009  return res_method;
3010}
3011
3012mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3013                                                             MethodType method_type,
3014                                                             bool is_range,
3015                                                             bool is_super) {
3016  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3017  // we're making.
3018  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3019  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3020  if (res_method == NULL) {  // error or class is unresolved
3021    return NULL;
3022  }
3023
3024  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3025  // has a vtable entry for the target method.
3026  if (is_super) {
3027    DCHECK(method_type == METHOD_VIRTUAL);
3028    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3029    if (super.IsUnresolvedTypes()) {
3030      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3031                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3032                                   << " to super " << PrettyMethod(res_method);
3033      return NULL;
3034    }
3035    mirror::Class* super_klass = super.GetClass();
3036    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3037      MethodHelper mh(res_method);
3038      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3039                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3040                                   << " to super " << super
3041                                   << "." << mh.GetName()
3042                                   << mh.GetSignature();
3043      return NULL;
3044    }
3045  }
3046  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3047  // match the call to the signature. Also, we might be calling through an abstract method
3048  // definition (which doesn't have register count values).
3049  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3050  /* caught by static verifier */
3051  DCHECK(is_range || expected_args <= 5);
3052  if (expected_args > code_item_->outs_size_) {
3053    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3054        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3055    return NULL;
3056  }
3057
3058  /*
3059   * Check the "this" argument, which must be an instance of the class that declared the method.
3060   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3061   * rigorous check here (which is okay since we have to do it at runtime).
3062   */
3063  size_t actual_args = 0;
3064  if (!res_method->IsStatic()) {
3065    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3066    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3067      return NULL;
3068    }
3069    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3070      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3071      return NULL;
3072    }
3073    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3074      mirror::Class* klass = res_method->GetDeclaringClass();
3075      const RegType& res_method_class =
3076          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3077                               klass->CannotBeAssignedFromOtherTypes());
3078      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3079        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3080            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3081            << "' not instance of '" << res_method_class << "'";
3082        return NULL;
3083      }
3084    }
3085    actual_args++;
3086  }
3087  /*
3088   * Process the target method's signature. This signature may or may not
3089   * have been verified, so we can't assume it's properly formed.
3090   */
3091  MethodHelper mh(res_method);
3092  const DexFile::TypeList* params = mh.GetParameterTypeList();
3093  size_t params_size = params == NULL ? 0 : params->Size();
3094  uint32_t arg[5];
3095  if (!is_range) {
3096    inst->GetArgs(arg);
3097  }
3098  for (size_t param_index = 0; param_index < params_size; param_index++) {
3099    if (actual_args >= expected_args) {
3100      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3101          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3102          << " (where longs/doubles count twice).";
3103      return NULL;
3104    }
3105    const char* descriptor =
3106        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3107    if (descriptor == NULL) {
3108      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3109          << " missing signature component";
3110      return NULL;
3111    }
3112    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3113    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3114    if (reg_type.IsIntegralTypes()) {
3115      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3116      if (!src_type.IsIntegralTypes()) {
3117        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3118                                          << " but expected " << reg_type;
3119        return res_method;
3120      }
3121    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3122      return res_method;
3123    }
3124    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3125  }
3126  if (actual_args != expected_args) {
3127    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3128        << " expected " << expected_args << " arguments, found " << actual_args;
3129    return NULL;
3130  } else {
3131    return res_method;
3132  }
3133}
3134
3135mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3136                                                              RegisterLine* reg_line,
3137                                                              bool is_range) {
3138  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3139         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3140  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3141  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3142    return NULL;
3143  }
3144  mirror::Class* this_class = NULL;
3145  if (!actual_arg_type.IsUnresolvedTypes()) {
3146    this_class = actual_arg_type.GetClass();
3147  } else {
3148    const std::string& descriptor(actual_arg_type.GetDescriptor());
3149    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3150    this_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3151    if (this_class == NULL) {
3152      Thread::Current()->ClearException();
3153      // Look for a system class
3154      this_class = class_linker->FindClass(descriptor.c_str(), NULL);
3155    }
3156  }
3157  if (this_class == NULL) {
3158    return NULL;
3159  }
3160  mirror::ObjectArray<mirror::ArtMethod>* vtable = this_class->GetVTable();
3161  CHECK(vtable != NULL);
3162  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3163  CHECK(vtable_index < vtable->GetLength());
3164  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3165  CHECK(!Thread::Current()->IsExceptionPending());
3166  return res_method;
3167}
3168
3169mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3170                                                                     bool is_range) {
3171  DCHECK(Runtime::Current()->IsStarted());
3172  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3173                                                             is_range);
3174  if (res_method == NULL) {
3175    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3176    return NULL;
3177  }
3178  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3179
3180  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3181  // match the call to the signature. Also, we might be calling through an abstract method
3182  // definition (which doesn't have register count values).
3183  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3184  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3185    return NULL;
3186  }
3187  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3188  /* caught by static verifier */
3189  DCHECK(is_range || expected_args <= 5);
3190  if (expected_args > code_item_->outs_size_) {
3191    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3192        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3193    return NULL;
3194  }
3195
3196  /*
3197   * Check the "this" argument, which must be an instance of the class that declared the method.
3198   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3199   * rigorous check here (which is okay since we have to do it at runtime).
3200   */
3201  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3202    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3203    return NULL;
3204  }
3205  if (!actual_arg_type.IsZero()) {
3206    mirror::Class* klass = res_method->GetDeclaringClass();
3207    const RegType& res_method_class =
3208        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3209                             klass->CannotBeAssignedFromOtherTypes());
3210    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3211      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3212          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3213          << "' not instance of '" << res_method_class << "'";
3214      return NULL;
3215    }
3216  }
3217  /*
3218   * Process the target method's signature. This signature may or may not
3219   * have been verified, so we can't assume it's properly formed.
3220   */
3221  MethodHelper mh(res_method);
3222  const DexFile::TypeList* params = mh.GetParameterTypeList();
3223  size_t params_size = params == NULL ? 0 : params->Size();
3224  uint32_t arg[5];
3225  if (!is_range) {
3226    inst->GetArgs(arg);
3227  }
3228  size_t actual_args = 1;
3229  for (size_t param_index = 0; param_index < params_size; param_index++) {
3230    if (actual_args >= expected_args) {
3231      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3232                                        << "'. Expected " << expected_args
3233                                         << " arguments, processing argument " << actual_args
3234                                        << " (where longs/doubles count twice).";
3235      return NULL;
3236    }
3237    const char* descriptor =
3238        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3239    if (descriptor == NULL) {
3240      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3241                                        << " missing signature component";
3242      return NULL;
3243    }
3244    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3245    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3246    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3247      return res_method;
3248    }
3249    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3250  }
3251  if (actual_args != expected_args) {
3252    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3253              << " expected " << expected_args << " arguments, found " << actual_args;
3254    return NULL;
3255  } else {
3256    return res_method;
3257  }
3258}
3259
3260void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3261  uint32_t type_idx;
3262  if (!is_filled) {
3263    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3264    type_idx = inst->VRegC_22c();
3265  } else if (!is_range) {
3266    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3267    type_idx = inst->VRegB_35c();
3268  } else {
3269    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3270    type_idx = inst->VRegB_3rc();
3271  }
3272  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3273  if (res_type.IsConflict()) {  // bad class
3274    DCHECK_NE(failures_.size(), 0U);
3275  } else {
3276    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3277    if (!res_type.IsArrayTypes()) {
3278      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3279    } else if (!is_filled) {
3280      /* make sure "size" register is valid type */
3281      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3282      /* set register type to array class */
3283      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3284      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3285    } else {
3286      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3287      // the list and fail. It's legal, if silly, for arg_count to be zero.
3288      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_);
3289      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3290      uint32_t arg[5];
3291      if (!is_range) {
3292        inst->GetArgs(arg);
3293      }
3294      for (size_t ui = 0; ui < arg_count; ui++) {
3295        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3296        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3297          work_line_->SetResultRegisterType(reg_types_.Conflict());
3298          return;
3299        }
3300      }
3301      // filled-array result goes into "result" register
3302      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3303      work_line_->SetResultRegisterType(precise_type);
3304    }
3305  }
3306}
3307
3308void MethodVerifier::VerifyAGet(const Instruction* inst,
3309                                const RegType& insn_type, bool is_primitive) {
3310  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3311  if (!index_type.IsArrayIndexTypes()) {
3312    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3313  } else {
3314    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3315    if (array_type.IsZero()) {
3316      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3317      // instruction type. TODO: have a proper notion of bottom here.
3318      if (!is_primitive || insn_type.IsCategory1Types()) {
3319        // Reference or category 1
3320        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3321      } else {
3322        // Category 2
3323        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3324                                        reg_types_.FromCat2ConstHi(0, false));
3325      }
3326    } else if (!array_type.IsArrayTypes()) {
3327      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3328    } else {
3329      /* verify the class */
3330      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3331      if (!component_type.IsReferenceTypes() && !is_primitive) {
3332        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3333            << " source for aget-object";
3334      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3335        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3336            << " source for category 1 aget";
3337      } else if (is_primitive && !insn_type.Equals(component_type) &&
3338                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3339                 (insn_type.IsLong() && component_type.IsDouble()))) {
3340        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3341            << " incompatible with aget of type " << insn_type;
3342      } else {
3343        // Use knowledge of the field type which is stronger than the type inferred from the
3344        // instruction, which can't differentiate object types and ints from floats, longs from
3345        // doubles.
3346        if (!component_type.IsLowHalf()) {
3347          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3348        } else {
3349          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3350                                          component_type.HighHalf(&reg_types_));
3351        }
3352      }
3353    }
3354  }
3355}
3356
3357void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3358                                        const uint32_t vregA) {
3359  // Primitive assignability rules are weaker than regular assignability rules.
3360  bool instruction_compatible;
3361  bool value_compatible;
3362  const RegType& value_type = work_line_->GetRegisterType(vregA);
3363  if (target_type.IsIntegralTypes()) {
3364    instruction_compatible = target_type.Equals(insn_type);
3365    value_compatible = value_type.IsIntegralTypes();
3366  } else if (target_type.IsFloat()) {
3367    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3368    value_compatible = value_type.IsFloatTypes();
3369  } else if (target_type.IsLong()) {
3370    instruction_compatible = insn_type.IsLong();
3371    value_compatible = value_type.IsLongTypes();
3372  } else if (target_type.IsDouble()) {
3373    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3374    value_compatible = value_type.IsDoubleTypes();
3375  } else {
3376    instruction_compatible = false;  // reference with primitive store
3377    value_compatible = false;  // unused
3378  }
3379  if (!instruction_compatible) {
3380    // This is a global failure rather than a class change failure as the instructions and
3381    // the descriptors for the type should have been consistent within the same file at
3382    // compile time.
3383    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3384        << "' but expected type '" << target_type << "'";
3385    return;
3386  }
3387  if (!value_compatible) {
3388    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3389        << " of type " << value_type << " but expected " << target_type << " for put";
3390    return;
3391  }
3392}
3393
3394void MethodVerifier::VerifyAPut(const Instruction* inst,
3395                             const RegType& insn_type, bool is_primitive) {
3396  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3397  if (!index_type.IsArrayIndexTypes()) {
3398    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3399  } else {
3400    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3401    if (array_type.IsZero()) {
3402      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3403      // instruction type.
3404    } else if (!array_type.IsArrayTypes()) {
3405      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3406    } else {
3407      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3408      const uint32_t vregA = inst->VRegA_23x();
3409      if (is_primitive) {
3410        VerifyPrimitivePut(component_type, insn_type, vregA);
3411      } else {
3412        if (!component_type.IsReferenceTypes()) {
3413          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3414              << " source for aput-object";
3415        } else {
3416          // The instruction agrees with the type of array, confirm the value to be stored does too
3417          // Note: we use the instruction type (rather than the component type) for aput-object as
3418          // incompatible classes will be caught at runtime as an array store exception
3419          work_line_->VerifyRegisterType(vregA, insn_type);
3420        }
3421      }
3422    }
3423  }
3424}
3425
3426mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3427  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3428  // Check access to class
3429  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3430  if (klass_type.IsConflict()) {  // bad class
3431    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3432                                         field_idx, dex_file_->GetFieldName(field_id),
3433                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3434    return NULL;
3435  }
3436  if (klass_type.IsUnresolvedTypes()) {
3437    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3438  }
3439  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3440                                                                               field_idx,
3441                                                                               dex_cache_,
3442                                                                               class_loader_);
3443  if (field == NULL) {
3444    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3445              << dex_file_->GetFieldName(field_id) << ") in "
3446              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3447    DCHECK(Thread::Current()->IsExceptionPending());
3448    Thread::Current()->ClearException();
3449    return NULL;
3450  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3451                                                  field->GetAccessFlags())) {
3452    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3453                                    << " from " << GetDeclaringClass();
3454    return NULL;
3455  } else if (!field->IsStatic()) {
3456    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3457    return NULL;
3458  } else {
3459    return field;
3460  }
3461}
3462
3463mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3464  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3465  // Check access to class
3466  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3467  if (klass_type.IsConflict()) {
3468    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3469                                         field_idx, dex_file_->GetFieldName(field_id),
3470                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3471    return NULL;
3472  }
3473  if (klass_type.IsUnresolvedTypes()) {
3474    return NULL;  // Can't resolve Class so no more to do here
3475  }
3476  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3477                                                                               field_idx,
3478                                                                               dex_cache_,
3479                                                                               class_loader_);
3480  if (field == NULL) {
3481    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3482              << dex_file_->GetFieldName(field_id) << ") in "
3483              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3484    DCHECK(Thread::Current()->IsExceptionPending());
3485    Thread::Current()->ClearException();
3486    return NULL;
3487  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3488                                                  field->GetAccessFlags())) {
3489    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3490                                    << " from " << GetDeclaringClass();
3491    return NULL;
3492  } else if (field->IsStatic()) {
3493    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3494                                    << " to not be static";
3495    return NULL;
3496  } else if (obj_type.IsZero()) {
3497    // Cannot infer and check type, however, access will cause null pointer exception
3498    return field;
3499  } else {
3500    mirror::Class* klass = field->GetDeclaringClass();
3501    const RegType& field_klass =
3502        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3503                             klass, klass->CannotBeAssignedFromOtherTypes());
3504    if (obj_type.IsUninitializedTypes() &&
3505        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3506            !field_klass.Equals(GetDeclaringClass()))) {
3507      // Field accesses through uninitialized references are only allowable for constructors where
3508      // the field is declared in this class
3509      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3510                                        << " of a not fully initialized object within the context"
3511                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3512      return NULL;
3513    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3514      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3515      // of C1. For resolution to occur the declared class of the field must be compatible with
3516      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3517      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3518                                  << " from object of type " << obj_type;
3519      return NULL;
3520    } else {
3521      return field;
3522    }
3523  }
3524}
3525
3526void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3527                                 bool is_primitive, bool is_static) {
3528  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3529  mirror::ArtField* field;
3530  if (is_static) {
3531    field = GetStaticField(field_idx);
3532  } else {
3533    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3534    field = GetInstanceField(object_type, field_idx);
3535  }
3536  const RegType* field_type = nullptr;
3537  if (field != NULL) {
3538    FieldHelper fh(field);
3539    mirror::Class* field_type_class = fh.GetType(false);
3540    if (field_type_class != nullptr) {
3541      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3542                                         field_type_class->CannotBeAssignedFromOtherTypes());
3543    }
3544  }
3545  if (field_type == nullptr) {
3546    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3547    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3548    mirror::ClassLoader* loader = class_loader_;
3549    field_type = &reg_types_.FromDescriptor(loader, descriptor, false);
3550  }
3551  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3552  if (is_primitive) {
3553    if (field_type->Equals(insn_type) ||
3554        (field_type->IsFloat() && insn_type.IsInteger()) ||
3555        (field_type->IsDouble() && insn_type.IsLong())) {
3556      // expected that read is of the correct primitive type or that int reads are reading
3557      // floats or long reads are reading doubles
3558    } else {
3559      // This is a global failure rather than a class change failure as the instructions and
3560      // the descriptors for the type should have been consistent within the same file at
3561      // compile time
3562      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3563                                        << " to be of type '" << insn_type
3564                                        << "' but found type '" << field_type << "' in get";
3565      return;
3566    }
3567  } else {
3568    if (!insn_type.IsAssignableFrom(*field_type)) {
3569      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3570                                        << " to be compatible with type '" << insn_type
3571                                        << "' but found type '" << field_type
3572                                        << "' in get-object";
3573      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3574      return;
3575    }
3576  }
3577  if (!field_type->IsLowHalf()) {
3578    work_line_->SetRegisterType(vregA, *field_type);
3579  } else {
3580    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3581  }
3582}
3583
3584void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3585                                 bool is_primitive, bool is_static) {
3586  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3587  mirror::ArtField* field;
3588  if (is_static) {
3589    field = GetStaticField(field_idx);
3590  } else {
3591    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3592    field = GetInstanceField(object_type, field_idx);
3593  }
3594  const RegType* field_type = nullptr;
3595  if (field != NULL) {
3596    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3597      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3598                                      << " from other class " << GetDeclaringClass();
3599      return;
3600    }
3601    FieldHelper fh(field);
3602    mirror::Class* field_type_class = fh.GetType(false);
3603    if (field_type_class != nullptr) {
3604      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3605                                         field_type_class->CannotBeAssignedFromOtherTypes());
3606    }
3607  }
3608  if (field_type == nullptr) {
3609    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3610    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3611    mirror::ClassLoader* loader = class_loader_;
3612    field_type = &reg_types_.FromDescriptor(loader, descriptor, false);
3613  }
3614  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3615  if (is_primitive) {
3616    VerifyPrimitivePut(*field_type, insn_type, vregA);
3617  } else {
3618    if (!insn_type.IsAssignableFrom(*field_type)) {
3619      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3620                                        << " to be compatible with type '" << insn_type
3621                                        << "' but found type '" << field_type
3622                                        << "' in put-object";
3623      return;
3624    }
3625    work_line_->VerifyRegisterType(vregA, *field_type);
3626  }
3627}
3628
3629// Look for an instance field with this offset.
3630// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3631static mirror::ArtField* FindInstanceFieldWithOffset(const mirror::Class* klass,
3632                                                  uint32_t field_offset)
3633    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3634  const mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3635  if (instance_fields != NULL) {
3636    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3637      mirror::ArtField* field = instance_fields->Get(i);
3638      if (field->GetOffset().Uint32Value() == field_offset) {
3639        return field;
3640      }
3641    }
3642  }
3643  // We did not find field in class: look into superclass.
3644  if (klass->GetSuperClass() != NULL) {
3645    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3646  } else {
3647    return NULL;
3648  }
3649}
3650
3651// Returns the access field of a quick field access (iget/iput-quick) or NULL
3652// if it cannot be found.
3653mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3654                                                   RegisterLine* reg_line) {
3655  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3656         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3657         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3658         inst->Opcode() == Instruction::IPUT_QUICK ||
3659         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3660         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3661  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3662  mirror::Class* object_class = NULL;
3663  if (!object_type.IsUnresolvedTypes()) {
3664    object_class = object_type.GetClass();
3665  } else {
3666    // We need to resolve the class from its descriptor.
3667    const std::string& descriptor(object_type.GetDescriptor());
3668    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3669    object_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3670    if (object_class == NULL) {
3671      Thread::Current()->ClearException();
3672      // Look for a system class
3673      object_class = class_linker->FindClass(descriptor.c_str(), NULL);
3674    }
3675  }
3676  if (object_class == NULL) {
3677    // Failed to get the Class* from reg type.
3678    LOG(WARNING) << "Failed to get Class* from " << object_type;
3679    return NULL;
3680  }
3681  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3682  return FindInstanceFieldWithOffset(object_class, field_offset);
3683}
3684
3685void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3686                                     bool is_primitive) {
3687  DCHECK(Runtime::Current()->IsStarted());
3688  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3689  if (field == NULL) {
3690    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3691    return;
3692  }
3693  FieldHelper fh(field);
3694  mirror::Class* field_type_class = fh.GetType(false);
3695  const RegType* field_type;
3696  if (field_type_class != nullptr) {
3697    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3698                                       field_type_class->CannotBeAssignedFromOtherTypes());
3699  } else {
3700    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3701                                            fh.GetTypeDescriptor(), false);
3702  }
3703  const uint32_t vregA = inst->VRegA_22c();
3704  if (is_primitive) {
3705    if (field_type->Equals(insn_type) ||
3706        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3707        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3708      // expected that read is of the correct primitive type or that int reads are reading
3709      // floats or long reads are reading doubles
3710    } else {
3711      // This is a global failure rather than a class change failure as the instructions and
3712      // the descriptors for the type should have been consistent within the same file at
3713      // compile time
3714      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3715                                        << " to be of type '" << insn_type
3716                                        << "' but found type '" << field_type << "' in get";
3717      return;
3718    }
3719  } else {
3720    if (!insn_type.IsAssignableFrom(*field_type)) {
3721      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3722                                        << " to be compatible with type '" << insn_type
3723                                        << "' but found type '" << field_type
3724                                        << "' in get-object";
3725      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3726      return;
3727    }
3728  }
3729  if (!field_type->IsLowHalf()) {
3730    work_line_->SetRegisterType(vregA, *field_type);
3731  } else {
3732    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3733  }
3734}
3735
3736void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3737                                     bool is_primitive) {
3738  DCHECK(Runtime::Current()->IsStarted());
3739  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3740  if (field == NULL) {
3741    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3742    return;
3743  }
3744  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3745  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3746  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3747  if (field != NULL) {
3748    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3749      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3750                                      << " from other class " << GetDeclaringClass();
3751      return;
3752    }
3753  }
3754  const uint32_t vregA = inst->VRegA_22c();
3755  if (is_primitive) {
3756    // Primitive field assignability rules are weaker than regular assignability rules
3757    bool instruction_compatible;
3758    bool value_compatible;
3759    const RegType& value_type = work_line_->GetRegisterType(vregA);
3760    if (field_type.IsIntegralTypes()) {
3761      instruction_compatible = insn_type.IsIntegralTypes();
3762      value_compatible = value_type.IsIntegralTypes();
3763    } else if (field_type.IsFloat()) {
3764      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3765      value_compatible = value_type.IsFloatTypes();
3766    } else if (field_type.IsLong()) {
3767      instruction_compatible = insn_type.IsLong();
3768      value_compatible = value_type.IsLongTypes();
3769    } else if (field_type.IsDouble()) {
3770      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3771      value_compatible = value_type.IsDoubleTypes();
3772    } else {
3773      instruction_compatible = false;  // reference field with primitive store
3774      value_compatible = false;  // unused
3775    }
3776    if (!instruction_compatible) {
3777      // This is a global failure rather than a class change failure as the instructions and
3778      // the descriptors for the type should have been consistent within the same file at
3779      // compile time
3780      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3781                                        << " to be of type '" << insn_type
3782                                        << "' but found type '" << field_type
3783                                        << "' in put";
3784      return;
3785    }
3786    if (!value_compatible) {
3787      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3788          << " of type " << value_type
3789          << " but expected " << field_type
3790          << " for store to " << PrettyField(field) << " in put";
3791      return;
3792    }
3793  } else {
3794    if (!insn_type.IsAssignableFrom(field_type)) {
3795      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3796                                        << " to be compatible with type '" << insn_type
3797                                        << "' but found type '" << field_type
3798                                        << "' in put-object";
3799      return;
3800    }
3801    work_line_->VerifyRegisterType(vregA, field_type);
3802  }
3803}
3804
3805bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3806  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3807    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3808    return false;
3809  }
3810  return true;
3811}
3812
3813bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3814  bool changed = true;
3815  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3816  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3817    /*
3818     * We haven't processed this instruction before, and we haven't touched the registers here, so
3819     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3820     * only way a register can transition out of "unknown", so this is not just an optimization.)
3821     */
3822    if (!insn_flags_[next_insn].IsReturn()) {
3823      target_line->CopyFromLine(merge_line);
3824    } else {
3825      // Verify that the monitor stack is empty on return.
3826      if (!merge_line->VerifyMonitorStackEmpty()) {
3827        return false;
3828      }
3829      // For returns we only care about the operand to the return, all other registers are dead.
3830      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3831      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3832      Instruction::Code opcode = ret_inst->Opcode();
3833      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3834        target_line->MarkAllRegistersAsConflicts();
3835      } else {
3836        target_line->CopyFromLine(merge_line);
3837        if (opcode == Instruction::RETURN_WIDE) {
3838          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3839        } else {
3840          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3841        }
3842      }
3843    }
3844  } else {
3845    UniquePtr<RegisterLine> copy(gDebugVerify ?
3846                                 RegisterLine::Create(target_line->NumRegs(), this) :
3847                                 NULL);
3848    if (gDebugVerify) {
3849      copy->CopyFromLine(target_line);
3850    }
3851    changed = target_line->MergeRegisters(merge_line);
3852    if (have_pending_hard_failure_) {
3853      return false;
3854    }
3855    if (gDebugVerify && changed) {
3856      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3857                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3858                      << *copy.get() << "  MERGE\n"
3859                      << *merge_line << "  ==\n"
3860                      << *target_line << "\n";
3861    }
3862  }
3863  if (changed) {
3864    insn_flags_[next_insn].SetChanged();
3865  }
3866  return true;
3867}
3868
3869InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3870  return &insn_flags_[work_insn_idx_];
3871}
3872
3873const RegType& MethodVerifier::GetMethodReturnType() {
3874  if (return_type_ == nullptr) {
3875    if (mirror_method_ != NULL) {
3876      MethodHelper mh(mirror_method_);
3877      mirror::Class* return_type_class = mh.GetReturnType();
3878      if (return_type_class != nullptr) {
3879        return_type_ =&reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3880                                            return_type_class->CannotBeAssignedFromOtherTypes());
3881      } else {
3882        Thread* self = Thread::Current();
3883        DCHECK(self->IsExceptionPending());
3884        self->ClearException();
3885      }
3886    }
3887    if (return_type_ == nullptr) {
3888      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3889      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3890      uint16_t return_type_idx = proto_id.return_type_idx_;
3891      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3892      return_type_ = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
3893    }
3894  }
3895  return *return_type_;
3896}
3897
3898const RegType& MethodVerifier::GetDeclaringClass() {
3899  if (declaring_class_ == NULL) {
3900    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3901    const char* descriptor
3902        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3903    if (mirror_method_ != NULL) {
3904      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3905      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3906                                               klass->CannotBeAssignedFromOtherTypes());
3907    } else {
3908      declaring_class_ = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
3909    }
3910  }
3911  return *declaring_class_;
3912}
3913
3914void MethodVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits,
3915                                       size_t* log2_max_gc_pc) {
3916  size_t local_gc_points = 0;
3917  size_t max_insn = 0;
3918  size_t max_ref_reg = -1;
3919  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3920    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3921      local_gc_points++;
3922      max_insn = i;
3923      RegisterLine* line = reg_table_.GetLine(i);
3924      max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg);
3925    }
3926  }
3927  *gc_points = local_gc_points;
3928  *ref_bitmap_bits = max_ref_reg + 1;  // if max register is 0 we need 1 bit to encode (ie +1)
3929  size_t i = 0;
3930  while ((1U << i) <= max_insn) {
3931    i++;
3932  }
3933  *log2_max_gc_pc = i;
3934}
3935
3936MethodVerifier::MethodSafeCastSet* MethodVerifier::GenerateSafeCastSet() {
3937  /*
3938   * Walks over the method code and adds any cast instructions in which
3939   * the type cast is implicit to a set, which is used in the code generation
3940   * to elide these casts.
3941   */
3942  if (!failure_messages_.empty()) {
3943    return NULL;
3944  }
3945  UniquePtr<MethodSafeCastSet> mscs;
3946  const Instruction* inst = Instruction::At(code_item_->insns_);
3947  const Instruction* end = Instruction::At(code_item_->insns_ +
3948                                           code_item_->insns_size_in_code_units_);
3949
3950  for (; inst < end; inst = inst->Next()) {
3951    Instruction::Code code = inst->Opcode();
3952    if ((code == Instruction::CHECK_CAST) || (code == Instruction::APUT_OBJECT)) {
3953      uint32_t dex_pc = inst->GetDexPc(code_item_->insns_);
3954      RegisterLine* line = reg_table_.GetLine(dex_pc);
3955      bool is_safe_cast = false;
3956      if (code == Instruction::CHECK_CAST) {
3957        const RegType& reg_type(line->GetRegisterType(inst->VRegA_21c()));
3958        const RegType& cast_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
3959        is_safe_cast = cast_type.IsStrictlyAssignableFrom(reg_type);
3960      } else {
3961        const RegType& array_type(line->GetRegisterType(inst->VRegB_23x()));
3962        // We only know its safe to assign to an array if the array type is precise. For example,
3963        // an Object[] can have any type of object stored in it, but it may also be assigned a
3964        // String[] in which case the stores need to be of Strings.
3965        if (array_type.IsPreciseReference()) {
3966          const RegType& value_type(line->GetRegisterType(inst->VRegA_23x()));
3967          const RegType& component_type(reg_types_.GetComponentType(array_type, class_loader_));
3968          is_safe_cast = component_type.IsStrictlyAssignableFrom(value_type);
3969        }
3970      }
3971      if (is_safe_cast) {
3972        if (mscs.get() == NULL) {
3973          mscs.reset(new MethodSafeCastSet());
3974        }
3975        mscs->insert(dex_pc);
3976      }
3977    }
3978  }
3979  return mscs.release();
3980}
3981
3982MethodVerifier::PcToConcreteMethodMap* MethodVerifier::GenerateDevirtMap() {
3983  // It is risky to rely on reg_types for sharpening in cases of soft
3984  // verification, we might end up sharpening to a wrong implementation. Just abort.
3985  if (!failure_messages_.empty()) {
3986    return NULL;
3987  }
3988
3989  UniquePtr<PcToConcreteMethodMap> pc_to_concrete_method_map;
3990  const uint16_t* insns = code_item_->insns_;
3991  const Instruction* inst = Instruction::At(insns);
3992  const Instruction* end = Instruction::At(insns + code_item_->insns_size_in_code_units_);
3993
3994  for (; inst < end; inst = inst->Next()) {
3995    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
3996        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
3997    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
3998        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3999
4000    if (!is_interface && !is_virtual) {
4001      continue;
4002    }
4003    // Get reg type for register holding the reference to the object that will be dispatched upon.
4004    uint32_t dex_pc = inst->GetDexPc(insns);
4005    RegisterLine* line = reg_table_.GetLine(dex_pc);
4006    bool is_range = (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
4007        (inst->Opcode() ==  Instruction::INVOKE_INTERFACE_RANGE);
4008    const RegType&
4009        reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c()));
4010
4011    if (!reg_type.HasClass()) {
4012      // We will compute devirtualization information only when we know the Class of the reg type.
4013      continue;
4014    }
4015    mirror::Class* reg_class = reg_type.GetClass();
4016    if (reg_class->IsInterface()) {
4017      // We can't devirtualize when the known type of the register is an interface.
4018      continue;
4019    }
4020    if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) {
4021      // We can't devirtualize abstract classes except on arrays of abstract classes.
4022      continue;
4023    }
4024    mirror::ArtMethod* abstract_method =
4025        dex_cache_->GetResolvedMethod(is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
4026    if (abstract_method == NULL) {
4027      // If the method is not found in the cache this means that it was never found
4028      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
4029      continue;
4030    }
4031    // Find the concrete method.
4032    mirror::ArtMethod* concrete_method = NULL;
4033    if (is_interface) {
4034      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
4035    }
4036    if (is_virtual) {
4037      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
4038    }
4039    if (concrete_method == NULL || concrete_method->IsAbstract()) {
4040      // In cases where concrete_method is not found, or is abstract, continue to the next invoke.
4041      continue;
4042    }
4043    if (reg_type.IsPreciseReference() || concrete_method->IsFinal() ||
4044        concrete_method->GetDeclaringClass()->IsFinal()) {
4045      // If we knew exactly the class being dispatched upon, or if the target method cannot be
4046      // overridden record the target to be used in the compiler driver.
4047      if (pc_to_concrete_method_map.get() == NULL) {
4048        pc_to_concrete_method_map.reset(new PcToConcreteMethodMap());
4049      }
4050      MethodReference concrete_ref(
4051          concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
4052          concrete_method->GetDexMethodIndex());
4053      pc_to_concrete_method_map->Put(dex_pc, concrete_ref);
4054    }
4055  }
4056  return pc_to_concrete_method_map.release();
4057}
4058
4059const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
4060  size_t num_entries, ref_bitmap_bits, pc_bits;
4061  ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
4062  // There's a single byte to encode the size of each bitmap
4063  if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) {
4064    // TODO: either a better GC map format or per method failures
4065    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4066       << ref_bitmap_bits << " registers";
4067    return NULL;
4068  }
4069  size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8;
4070  // There are 2 bytes to encode the number of entries
4071  if (num_entries >= 65536) {
4072    // TODO: either a better GC map format or per method failures
4073    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4074       << num_entries << " entries";
4075    return NULL;
4076  }
4077  size_t pc_bytes;
4078  RegisterMapFormat format;
4079  if (pc_bits <= 8) {
4080    format = kRegMapFormatCompact8;
4081    pc_bytes = 1;
4082  } else if (pc_bits <= 16) {
4083    format = kRegMapFormatCompact16;
4084    pc_bytes = 2;
4085  } else {
4086    // TODO: either a better GC map format or per method failures
4087    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
4088       << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)";
4089    return NULL;
4090  }
4091  size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4;
4092  std::vector<uint8_t>* table = new std::vector<uint8_t>;
4093  if (table == NULL) {
4094    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")";
4095    return NULL;
4096  }
4097  table->reserve(table_size);
4098  // Write table header
4099  table->push_back(format | ((ref_bitmap_bytes >> DexPcToReferenceMap::kRegMapFormatShift) &
4100                             ~DexPcToReferenceMap::kRegMapFormatMask));
4101  table->push_back(ref_bitmap_bytes & 0xFF);
4102  table->push_back(num_entries & 0xFF);
4103  table->push_back((num_entries >> 8) & 0xFF);
4104  // Write table data
4105  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4106    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4107      table->push_back(i & 0xFF);
4108      if (pc_bytes == 2) {
4109        table->push_back((i >> 8) & 0xFF);
4110      }
4111      RegisterLine* line = reg_table_.GetLine(i);
4112      line->WriteReferenceBitMap(*table, ref_bitmap_bytes);
4113    }
4114  }
4115  DCHECK_EQ(table->size(), table_size);
4116  return table;
4117}
4118
4119void MethodVerifier::VerifyGcMap(const std::vector<uint8_t>& data) {
4120  // Check that for every GC point there is a map entry, there aren't entries for non-GC points,
4121  // that the table data is well formed and all references are marked (or not) in the bitmap
4122  DexPcToReferenceMap map(&data[0], data.size());
4123  size_t map_index = 0;
4124  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4125    const uint8_t* reg_bitmap = map.FindBitMap(i, false);
4126    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4127      CHECK_LT(map_index, map.NumEntries());
4128      CHECK_EQ(map.GetDexPc(map_index), i);
4129      CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
4130      map_index++;
4131      RegisterLine* line = reg_table_.GetLine(i);
4132      for (size_t j = 0; j < code_item_->registers_size_; j++) {
4133        if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) {
4134          CHECK_LT(j / 8, map.RegWidth());
4135          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1);
4136        } else if ((j / 8) < map.RegWidth()) {
4137          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0);
4138        } else {
4139          // If a register doesn't contain a reference then the bitmap may be shorter than the line
4140        }
4141      }
4142    } else {
4143      CHECK(reg_bitmap == NULL);
4144    }
4145  }
4146}
4147
4148void MethodVerifier::SetDexGcMap(MethodReference ref, const std::vector<uint8_t>& gc_map) {
4149  DCHECK(Runtime::Current()->IsCompiler());
4150  {
4151    WriterMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4152    DexGcMapTable::iterator it = dex_gc_maps_->find(ref);
4153    if (it != dex_gc_maps_->end()) {
4154      delete it->second;
4155      dex_gc_maps_->erase(it);
4156    }
4157    dex_gc_maps_->Put(ref, &gc_map);
4158  }
4159  DCHECK(GetDexGcMap(ref) != NULL);
4160}
4161
4162
4163void  MethodVerifier::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) {
4164  DCHECK(Runtime::Current()->IsCompiler());
4165  WriterMutexLock mu(Thread::Current(), *safecast_map_lock_);
4166  SafeCastMap::iterator it = safecast_map_->find(ref);
4167  if (it != safecast_map_->end()) {
4168    delete it->second;
4169    safecast_map_->erase(it);
4170  }
4171  safecast_map_->Put(ref, cast_set);
4172  DCHECK(safecast_map_->find(ref) != safecast_map_->end());
4173}
4174
4175bool MethodVerifier::IsSafeCast(MethodReference ref, uint32_t pc) {
4176  DCHECK(Runtime::Current()->IsCompiler());
4177  ReaderMutexLock mu(Thread::Current(), *safecast_map_lock_);
4178  SafeCastMap::const_iterator it = safecast_map_->find(ref);
4179  if (it == safecast_map_->end()) {
4180    return false;
4181  }
4182
4183  // Look up the cast address in the set of safe casts
4184  MethodVerifier::MethodSafeCastSet::const_iterator cast_it = it->second->find(pc);
4185  return cast_it != it->second->end();
4186}
4187
4188const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(MethodReference ref) {
4189  DCHECK(Runtime::Current()->IsCompiler());
4190  ReaderMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4191  DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
4192  CHECK(it != dex_gc_maps_->end())
4193    << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file);
4194  CHECK(it->second != NULL);
4195  return it->second;
4196}
4197
4198void  MethodVerifier::SetDevirtMap(MethodReference ref,
4199                                   const PcToConcreteMethodMap* devirt_map) {
4200  DCHECK(Runtime::Current()->IsCompiler());
4201  WriterMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4202  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
4203  if (it != devirt_maps_->end()) {
4204    delete it->second;
4205    devirt_maps_->erase(it);
4206  }
4207
4208  devirt_maps_->Put(ref, devirt_map);
4209  DCHECK(devirt_maps_->find(ref) != devirt_maps_->end());
4210}
4211
4212const MethodReference* MethodVerifier::GetDevirtMap(const MethodReference& ref,
4213                                                                    uint32_t dex_pc) {
4214  DCHECK(Runtime::Current()->IsCompiler());
4215  ReaderMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4216  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
4217  if (it == devirt_maps_->end()) {
4218    return NULL;
4219  }
4220
4221  // Look up the PC in the map, get the concrete method to execute and return its reference.
4222  MethodVerifier::PcToConcreteMethodMap::const_iterator pc_to_concrete_method
4223      = it->second->find(dex_pc);
4224  if (pc_to_concrete_method != it->second->end()) {
4225    return &(pc_to_concrete_method->second);
4226  } else {
4227    return NULL;
4228  }
4229}
4230
4231std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4232  RegisterLine* line = reg_table_.GetLine(dex_pc);
4233  std::vector<int32_t> result;
4234  for (size_t i = 0; i < line->NumRegs(); ++i) {
4235    const RegType& type = line->GetRegisterType(i);
4236    if (type.IsConstant()) {
4237      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4238      result.push_back(type.ConstantValue());
4239    } else if (type.IsConstantLo()) {
4240      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4241      result.push_back(type.ConstantValueLo());
4242    } else if (type.IsConstantHi()) {
4243      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4244      result.push_back(type.ConstantValueHi());
4245    } else if (type.IsIntegralTypes()) {
4246      result.push_back(kIntVReg);
4247      result.push_back(0);
4248    } else if (type.IsFloat()) {
4249      result.push_back(kFloatVReg);
4250      result.push_back(0);
4251    } else if (type.IsLong()) {
4252      result.push_back(kLongLoVReg);
4253      result.push_back(0);
4254      result.push_back(kLongHiVReg);
4255      result.push_back(0);
4256      ++i;
4257    } else if (type.IsDouble()) {
4258      result.push_back(kDoubleLoVReg);
4259      result.push_back(0);
4260      result.push_back(kDoubleHiVReg);
4261      result.push_back(0);
4262      ++i;
4263    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4264      result.push_back(kUndefined);
4265      result.push_back(0);
4266    } else {
4267      CHECK(type.IsNonZeroReferenceTypes());
4268      result.push_back(kReferenceVReg);
4269      result.push_back(0);
4270    }
4271  }
4272  return result;
4273}
4274
4275bool MethodVerifier::IsCandidateForCompilation(MethodReference& method_ref,
4276                                               const uint32_t access_flags) {
4277#ifdef ART_SEA_IR_MODE
4278    bool use_sea = Runtime::Current()->IsSeaIRMode();
4279    use_sea = use_sea && (std::string::npos != PrettyMethod(
4280                          method_ref.dex_method_index, *(method_ref.dex_file)).find("fibonacci"));
4281    if (use_sea) return true;
4282#endif
4283  // Don't compile class initializers, ever.
4284  if (((access_flags & kAccConstructor) != 0) && ((access_flags & kAccStatic) != 0)) {
4285    return false;
4286  }
4287  return (Runtime::Current()->GetCompilerFilter() != Runtime::kInterpretOnly);
4288}
4289
4290ReaderWriterMutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
4291MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
4292
4293ReaderWriterMutex* MethodVerifier::safecast_map_lock_ = NULL;
4294MethodVerifier::SafeCastMap* MethodVerifier::safecast_map_ = NULL;
4295
4296ReaderWriterMutex* MethodVerifier::devirt_maps_lock_ = NULL;
4297MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
4298
4299ReaderWriterMutex* MethodVerifier::rejected_classes_lock_ = NULL;
4300MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
4301
4302void MethodVerifier::Init() {
4303  if (Runtime::Current()->IsCompiler()) {
4304    dex_gc_maps_lock_ = new ReaderWriterMutex("verifier GC maps lock");
4305    Thread* self = Thread::Current();
4306    {
4307      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4308      dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
4309    }
4310
4311    safecast_map_lock_ = new ReaderWriterMutex("verifier Cast Elision lock");
4312    {
4313      WriterMutexLock mu(self, *safecast_map_lock_);
4314      safecast_map_ = new MethodVerifier::SafeCastMap();
4315    }
4316
4317    devirt_maps_lock_ = new ReaderWriterMutex("verifier Devirtualization lock");
4318
4319    {
4320      WriterMutexLock mu(self, *devirt_maps_lock_);
4321      devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
4322    }
4323
4324    rejected_classes_lock_ = new ReaderWriterMutex("verifier rejected classes lock");
4325    {
4326      WriterMutexLock mu(self, *rejected_classes_lock_);
4327      rejected_classes_ = new MethodVerifier::RejectedClassesTable;
4328    }
4329  }
4330  art::verifier::RegTypeCache::Init();
4331}
4332
4333void MethodVerifier::Shutdown() {
4334  if (Runtime::Current()->IsCompiler()) {
4335    Thread* self = Thread::Current();
4336    {
4337      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4338      STLDeleteValues(dex_gc_maps_);
4339      delete dex_gc_maps_;
4340      dex_gc_maps_ = NULL;
4341    }
4342    delete dex_gc_maps_lock_;
4343    dex_gc_maps_lock_ = NULL;
4344
4345    {
4346      WriterMutexLock mu(self, *safecast_map_lock_);
4347      STLDeleteValues(safecast_map_);
4348      delete safecast_map_;
4349      safecast_map_ = NULL;
4350    }
4351    delete safecast_map_lock_;
4352    safecast_map_lock_ = NULL;
4353
4354    {
4355      WriterMutexLock mu(self, *devirt_maps_lock_);
4356      STLDeleteValues(devirt_maps_);
4357      delete devirt_maps_;
4358      devirt_maps_ = NULL;
4359    }
4360    delete devirt_maps_lock_;
4361    devirt_maps_lock_ = NULL;
4362
4363    {
4364      WriterMutexLock mu(self, *rejected_classes_lock_);
4365      delete rejected_classes_;
4366      rejected_classes_ = NULL;
4367    }
4368    delete rejected_classes_lock_;
4369    rejected_classes_lock_ = NULL;
4370  }
4371  verifier::RegTypeCache::ShutDown();
4372}
4373
4374void MethodVerifier::AddRejectedClass(ClassReference ref) {
4375  DCHECK(Runtime::Current()->IsCompiler());
4376  {
4377    WriterMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4378    rejected_classes_->insert(ref);
4379  }
4380  CHECK(IsClassRejected(ref));
4381}
4382
4383bool MethodVerifier::IsClassRejected(ClassReference ref) {
4384  DCHECK(Runtime::Current()->IsCompiler());
4385  ReaderMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4386  return (rejected_classes_->find(ref) != rejected_classes_->end());
4387}
4388
4389}  // namespace verifier
4390}  // namespace art
4391