method_verifier.cc revision c642ec8987746a2a44b990bd5354306242d709da
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "base/stringpiece.h"
24#include "class_linker.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "verifier/dex_gc_map.h"
43
44namespace art {
45namespace verifier {
46
47static const bool gDebugVerify = false;
48// TODO: Add a constant to method_verifier to turn on verbose logging?
49
50void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
51                                 uint32_t insns_size, uint16_t registers_size,
52                                 MethodVerifier* verifier) {
53  DCHECK_GT(insns_size, 0U);
54
55  for (uint32_t i = 0; i < insns_size; i++) {
56    bool interesting = false;
57    switch (mode) {
58      case kTrackRegsAll:
59        interesting = flags[i].IsOpcode();
60        break;
61      case kTrackCompilerInterestPoints:
62        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
63        break;
64      case kTrackRegsBranches:
65        interesting = flags[i].IsBranchTarget();
66        break;
67      default:
68        break;
69    }
70    if (interesting) {
71      pc_to_register_line_.Put(i, new RegisterLine(registers_size, verifier));
72    }
73  }
74}
75
76MethodVerifier::FailureKind MethodVerifier::VerifyClass(const mirror::Class* klass,
77                                                        std::string& error,
78                                                        bool allow_soft_failures) {
79  if (klass->IsVerified()) {
80    return kNoFailure;
81  }
82  mirror::Class* super = klass->GetSuperClass();
83  if (super == NULL && StringPiece(ClassHelper(klass).GetDescriptor()) != "Ljava/lang/Object;") {
84    error = "Verifier rejected class ";
85    error += PrettyDescriptor(klass);
86    error += " that has no super class";
87    return kHardFailure;
88  }
89  if (super != NULL && super->IsFinal()) {
90    error = "Verifier rejected class ";
91    error += PrettyDescriptor(klass);
92    error += " that attempts to sub-class final class ";
93    error += PrettyDescriptor(super);
94    return kHardFailure;
95  }
96  ClassHelper kh(klass);
97  const DexFile& dex_file = kh.GetDexFile();
98  uint32_t class_def_idx;
99  if (!dex_file.FindClassDefIndex(kh.GetDescriptor(), class_def_idx)) {
100    error = "Verifier rejected class ";
101    error += PrettyDescriptor(klass);
102    error += " that isn't present in dex file ";
103    error += dex_file.GetLocation();
104    return kHardFailure;
105  }
106  return VerifyClass(&dex_file,
107                     kh.GetDexCache(),
108                     klass->GetClassLoader(),
109                     class_def_idx, error,
110                     allow_soft_failures);
111}
112
113MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
114                                                        mirror::DexCache* dex_cache,
115                                                        mirror::ClassLoader* class_loader,
116                                                        uint32_t class_def_idx,
117                                                        std::string& error,
118                                                        bool allow_soft_failures) {
119  const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
120  const byte* class_data = dex_file->GetClassData(class_def);
121  if (class_data == NULL) {
122    // empty class, probably a marker interface
123    return kNoFailure;
124  }
125  ClassDataItemIterator it(*dex_file, class_data);
126  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
127    it.Next();
128  }
129  size_t error_count = 0;
130  bool hard_fail = false;
131  ClassLinker* linker = Runtime::Current()->GetClassLinker();
132  int64_t previous_direct_method_idx = -1;
133  while (it.HasNextDirectMethod()) {
134    uint32_t method_idx = it.GetMemberIndex();
135    if (method_idx == previous_direct_method_idx) {
136      // smali can create dex files with two encoded_methods sharing the same method_idx
137      // http://code.google.com/p/smali/issues/detail?id=119
138      it.Next();
139      continue;
140    }
141    previous_direct_method_idx = method_idx;
142    InvokeType type = it.GetMethodInvokeType(class_def);
143    mirror::ArtMethod* method =
144        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
145    if (method == NULL) {
146      DCHECK(Thread::Current()->IsExceptionPending());
147      // We couldn't resolve the method, but continue regardless.
148      Thread::Current()->ClearException();
149    }
150    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
151                                                      dex_file,
152                                                      dex_cache,
153                                                      class_loader,
154                                                      class_def_idx,
155                                                      it.GetMethodCodeItem(),
156                                                      method,
157                                                      it.GetMemberAccessFlags(),
158                                                      allow_soft_failures);
159    if (result != kNoFailure) {
160      if (result == kHardFailure) {
161        hard_fail = true;
162        if (error_count > 0) {
163          error += "\n";
164        }
165        error = "Verifier rejected class ";
166        error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
167        error += " due to bad method ";
168        error += PrettyMethod(method_idx, *dex_file);
169      }
170      ++error_count;
171    }
172    it.Next();
173  }
174  int64_t previous_virtual_method_idx = -1;
175  while (it.HasNextVirtualMethod()) {
176    uint32_t method_idx = it.GetMemberIndex();
177    if (method_idx == previous_virtual_method_idx) {
178      // smali can create dex files with two encoded_methods sharing the same method_idx
179      // http://code.google.com/p/smali/issues/detail?id=119
180      it.Next();
181      continue;
182    }
183    previous_virtual_method_idx = method_idx;
184    InvokeType type = it.GetMethodInvokeType(class_def);
185    mirror::ArtMethod* method =
186        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
187    if (method == NULL) {
188      DCHECK(Thread::Current()->IsExceptionPending());
189      // We couldn't resolve the method, but continue regardless.
190      Thread::Current()->ClearException();
191    }
192    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
193                                                      dex_file,
194                                                      dex_cache,
195                                                      class_loader,
196                                                      class_def_idx,
197                                                      it.GetMethodCodeItem(),
198                                                      method,
199                                                      it.GetMemberAccessFlags(),
200                                                      allow_soft_failures);
201    if (result != kNoFailure) {
202      if (result == kHardFailure) {
203        hard_fail = true;
204        if (error_count > 0) {
205          error += "\n";
206        }
207        error = "Verifier rejected class ";
208        error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def));
209        error += " due to bad method ";
210        error += PrettyMethod(method_idx, *dex_file);
211      }
212      ++error_count;
213    }
214    it.Next();
215  }
216  if (error_count == 0) {
217    return kNoFailure;
218  } else {
219    return hard_fail ? kHardFailure : kSoftFailure;
220  }
221}
222
223MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
224                                                         const DexFile* dex_file,
225                                                         mirror::DexCache* dex_cache,
226                                                         mirror::ClassLoader* class_loader,
227                                                         uint32_t class_def_idx,
228                                                         const DexFile::CodeItem* code_item,
229                                                         mirror::ArtMethod* method,
230                                                         uint32_t method_access_flags,
231                                                         bool allow_soft_failures) {
232  MethodVerifier::FailureKind result = kNoFailure;
233  uint64_t start_ns = NanoTime();
234
235  MethodVerifier verifier_(dex_file, dex_cache, class_loader, class_def_idx, code_item, method_idx,
236                           method, method_access_flags, true, allow_soft_failures);
237  if (verifier_.Verify()) {
238    // Verification completed, however failures may be pending that didn't cause the verification
239    // to hard fail.
240    CHECK(!verifier_.have_pending_hard_failure_);
241    if (verifier_.failures_.size() != 0) {
242      if (VLOG_IS_ON(verifier)) {
243          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
244                                << PrettyMethod(method_idx, *dex_file) << "\n");
245      }
246      result = kSoftFailure;
247    }
248  } else {
249    // Bad method data.
250    CHECK_NE(verifier_.failures_.size(), 0U);
251    CHECK(verifier_.have_pending_hard_failure_);
252    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
253                                    << PrettyMethod(method_idx, *dex_file) << "\n");
254    if (gDebugVerify) {
255      std::cout << "\n" << verifier_.info_messages_.str();
256      verifier_.Dump(std::cout);
257    }
258    result = kHardFailure;
259  }
260  uint64_t duration_ns = NanoTime() - start_ns;
261  if (duration_ns > MsToNs(100)) {
262    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
263                 << " took " << PrettyDuration(duration_ns);
264  }
265  return result;
266}
267
268void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
269                                         const DexFile* dex_file, mirror::DexCache* dex_cache,
270                                         mirror::ClassLoader* class_loader, uint32_t class_def_idx,
271                                         const DexFile::CodeItem* code_item,
272                                         mirror::ArtMethod* method,
273                                         uint32_t method_access_flags) {
274  MethodVerifier verifier(dex_file, dex_cache, class_loader, class_def_idx, code_item,
275                          dex_method_idx, method, method_access_flags, true, true);
276  verifier.Verify();
277  verifier.DumpFailures(os);
278  os << verifier.info_messages_.str();
279  verifier.Dump(os);
280}
281
282MethodVerifier::MethodVerifier(const DexFile* dex_file, mirror::DexCache* dex_cache,
283                               mirror::ClassLoader* class_loader, uint32_t class_def_idx,
284                               const DexFile::CodeItem* code_item,
285                               uint32_t dex_method_idx, mirror::ArtMethod* method,
286                               uint32_t method_access_flags, bool can_load_classes,
287                               bool allow_soft_failures)
288    : reg_types_(can_load_classes),
289      work_insn_idx_(-1),
290      dex_method_idx_(dex_method_idx),
291      mirror_method_(method),
292      method_access_flags_(method_access_flags),
293      dex_file_(dex_file),
294      dex_cache_(dex_cache),
295      class_loader_(class_loader),
296      class_def_idx_(class_def_idx),
297      code_item_(code_item),
298      declaring_class_(NULL),
299      interesting_dex_pc_(-1),
300      monitor_enter_dex_pcs_(NULL),
301      have_pending_hard_failure_(false),
302      have_pending_runtime_throw_failure_(false),
303      new_instance_count_(0),
304      monitor_enter_count_(0),
305      can_load_classes_(can_load_classes),
306      allow_soft_failures_(allow_soft_failures),
307      has_check_casts_(false),
308      has_virtual_or_interface_invokes_(false) {
309}
310
311void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
312                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
313  MethodHelper mh(m);
314  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
315                          mh.GetClassDefIndex(), mh.GetCodeItem(), m->GetDexMethodIndex(),
316                          m, m->GetAccessFlags(), false, true);
317  verifier.interesting_dex_pc_ = dex_pc;
318  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
319  verifier.FindLocksAtDexPc();
320}
321
322void MethodVerifier::FindLocksAtDexPc() {
323  CHECK(monitor_enter_dex_pcs_ != NULL);
324  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
325
326  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
327  // verification. In practice, the phase we want relies on data structures set up by all the
328  // earlier passes, so we just run the full method verification and bail out early when we've
329  // got what we wanted.
330  Verify();
331}
332
333mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
334                                                        uint32_t dex_pc) {
335  MethodHelper mh(m);
336  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
337                          mh.GetClassDefIndex(), mh.GetCodeItem(), m->GetDexMethodIndex(),
338                          m, m->GetAccessFlags(), false, true);
339  return verifier.FindAccessedFieldAtDexPc(dex_pc);
340}
341
342mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
343  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
344
345  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
346  // verification. In practice, the phase we want relies on data structures set up by all the
347  // earlier passes, so we just run the full method verification and bail out early when we've
348  // got what we wanted.
349  bool success = Verify();
350  if (!success) {
351    return NULL;
352  }
353  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
354  if (register_line == NULL) {
355    return NULL;
356  }
357  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
358  return GetQuickFieldAccess(inst, register_line);
359}
360
361mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
362                                                                 uint32_t dex_pc) {
363  MethodHelper mh(m);
364  MethodVerifier verifier(&mh.GetDexFile(), mh.GetDexCache(), mh.GetClassLoader(),
365                          mh.GetClassDefIndex(), mh.GetCodeItem(), m->GetDexMethodIndex(),
366                          m, m->GetAccessFlags(), false, true);
367  return verifier.FindInvokedMethodAtDexPc(dex_pc);
368}
369
370mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
371  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
372
373  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
374  // verification. In practice, the phase we want relies on data structures set up by all the
375  // earlier passes, so we just run the full method verification and bail out early when we've
376  // got what we wanted.
377  bool success = Verify();
378  if (!success) {
379    return NULL;
380  }
381  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
382  if (register_line == NULL) {
383    return NULL;
384  }
385  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
386  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
387  return GetQuickInvokedMethod(inst, register_line, is_range);
388}
389
390bool MethodVerifier::Verify() {
391  // If there aren't any instructions, make sure that's expected, then exit successfully.
392  if (code_item_ == NULL) {
393    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
394      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
395      return false;
396    } else {
397      return true;
398    }
399  }
400  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
401  if (code_item_->ins_size_ > code_item_->registers_size_) {
402    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
403                                      << " regs=" << code_item_->registers_size_;
404    return false;
405  }
406  // Allocate and initialize an array to hold instruction data.
407  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
408  // Run through the instructions and see if the width checks out.
409  bool result = ComputeWidthsAndCountOps();
410  // Flag instructions guarded by a "try" block and check exception handlers.
411  result = result && ScanTryCatchBlocks();
412  // Perform static instruction verification.
413  result = result && VerifyInstructions();
414  // Perform code-flow analysis and return.
415  return result && VerifyCodeFlow();
416}
417
418std::ostream& MethodVerifier::Fail(VerifyError error) {
419  switch (error) {
420    case VERIFY_ERROR_NO_CLASS:
421    case VERIFY_ERROR_NO_FIELD:
422    case VERIFY_ERROR_NO_METHOD:
423    case VERIFY_ERROR_ACCESS_CLASS:
424    case VERIFY_ERROR_ACCESS_FIELD:
425    case VERIFY_ERROR_ACCESS_METHOD:
426    case VERIFY_ERROR_INSTANTIATION:
427    case VERIFY_ERROR_CLASS_CHANGE:
428      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
429        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
430        // class change and instantiation errors into soft verification errors so that we re-verify
431        // at runtime. We may fail to find or to agree on access because of not yet available class
432        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
433        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
434        // paths" that dynamically perform the verification and cause the behavior to be that akin
435        // to an interpreter.
436        error = VERIFY_ERROR_BAD_CLASS_SOFT;
437      } else {
438        have_pending_runtime_throw_failure_ = true;
439      }
440      break;
441      // Indication that verification should be retried at runtime.
442    case VERIFY_ERROR_BAD_CLASS_SOFT:
443      if (!allow_soft_failures_) {
444        have_pending_hard_failure_ = true;
445      }
446      break;
447      // Hard verification failures at compile time will still fail at runtime, so the class is
448      // marked as rejected to prevent it from being compiled.
449    case VERIFY_ERROR_BAD_CLASS_HARD: {
450      if (Runtime::Current()->IsCompiler()) {
451        ClassReference ref(dex_file_, class_def_idx_);
452        AddRejectedClass(ref);
453      }
454      have_pending_hard_failure_ = true;
455      break;
456    }
457  }
458  failures_.push_back(error);
459  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
460                                    work_insn_idx_));
461  std::ostringstream* failure_message = new std::ostringstream(location);
462  failure_messages_.push_back(failure_message);
463  return *failure_message;
464}
465
466void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
467  size_t failure_num = failure_messages_.size();
468  DCHECK_NE(failure_num, 0U);
469  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
470  prepend += last_fail_message->str();
471  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
472  delete last_fail_message;
473}
474
475void MethodVerifier::AppendToLastFailMessage(std::string append) {
476  size_t failure_num = failure_messages_.size();
477  DCHECK_NE(failure_num, 0U);
478  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
479  (*last_fail_message) << append;
480}
481
482bool MethodVerifier::ComputeWidthsAndCountOps() {
483  const uint16_t* insns = code_item_->insns_;
484  size_t insns_size = code_item_->insns_size_in_code_units_;
485  const Instruction* inst = Instruction::At(insns);
486  size_t new_instance_count = 0;
487  size_t monitor_enter_count = 0;
488  size_t dex_pc = 0;
489
490  while (dex_pc < insns_size) {
491    Instruction::Code opcode = inst->Opcode();
492    if (opcode == Instruction::NEW_INSTANCE) {
493      new_instance_count++;
494    } else if (opcode == Instruction::MONITOR_ENTER) {
495      monitor_enter_count++;
496    } else if (opcode == Instruction::CHECK_CAST) {
497      has_check_casts_ = true;
498    } else if ((inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
499              (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
500              (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
501              (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE)) {
502      has_virtual_or_interface_invokes_ = true;
503    }
504    size_t inst_size = inst->SizeInCodeUnits();
505    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
506    dex_pc += inst_size;
507    inst = inst->Next();
508  }
509
510  if (dex_pc != insns_size) {
511    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
512                                      << dex_pc << " vs. " << insns_size << ")";
513    return false;
514  }
515
516  new_instance_count_ = new_instance_count;
517  monitor_enter_count_ = monitor_enter_count;
518  return true;
519}
520
521bool MethodVerifier::ScanTryCatchBlocks() {
522  uint32_t tries_size = code_item_->tries_size_;
523  if (tries_size == 0) {
524    return true;
525  }
526  uint32_t insns_size = code_item_->insns_size_in_code_units_;
527  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
528
529  for (uint32_t idx = 0; idx < tries_size; idx++) {
530    const DexFile::TryItem* try_item = &tries[idx];
531    uint32_t start = try_item->start_addr_;
532    uint32_t end = start + try_item->insn_count_;
533    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
534      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
535                                        << " endAddr=" << end << " (size=" << insns_size << ")";
536      return false;
537    }
538    if (!insn_flags_[start].IsOpcode()) {
539      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
540          << "'try' block starts inside an instruction (" << start << ")";
541      return false;
542    }
543    for (uint32_t dex_pc = start; dex_pc < end;
544        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
545      insn_flags_[dex_pc].SetInTry();
546    }
547  }
548  // Iterate over each of the handlers to verify target addresses.
549  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
550  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
551  ClassLinker* linker = Runtime::Current()->GetClassLinker();
552  for (uint32_t idx = 0; idx < handlers_size; idx++) {
553    CatchHandlerIterator iterator(handlers_ptr);
554    for (; iterator.HasNext(); iterator.Next()) {
555      uint32_t dex_pc= iterator.GetHandlerAddress();
556      if (!insn_flags_[dex_pc].IsOpcode()) {
557        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
558            << "exception handler starts at bad address (" << dex_pc << ")";
559        return false;
560      }
561      insn_flags_[dex_pc].SetBranchTarget();
562      // Ensure exception types are resolved so that they don't need resolution to be delivered,
563      // unresolved exception types will be ignored by exception delivery
564      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
565        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
566                                                            iterator.GetHandlerTypeIndex(),
567                                                            dex_cache_, class_loader_);
568        if (exception_type == NULL) {
569          DCHECK(Thread::Current()->IsExceptionPending());
570          Thread::Current()->ClearException();
571        }
572      }
573    }
574    handlers_ptr = iterator.EndDataPointer();
575  }
576  return true;
577}
578
579bool MethodVerifier::VerifyInstructions() {
580  const Instruction* inst = Instruction::At(code_item_->insns_);
581
582  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
583  insn_flags_[0].SetBranchTarget();
584  insn_flags_[0].SetCompileTimeInfoPoint();
585
586  uint32_t insns_size = code_item_->insns_size_in_code_units_;
587  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
588    if (!VerifyInstruction(inst, dex_pc)) {
589      DCHECK_NE(failures_.size(), 0U);
590      return false;
591    }
592    /* Flag instructions that are garbage collection points */
593    // All invoke points are marked as "Throw" points already.
594    // We are relying on this to also count all the invokes as interesting.
595    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
596      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
597    } else if (inst->IsReturn()) {
598      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
599    }
600    dex_pc += inst->SizeInCodeUnits();
601    inst = inst->Next();
602  }
603  return true;
604}
605
606bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
607  DecodedInstruction dec_insn(inst);
608  bool result = true;
609  switch (inst->GetVerifyTypeArgumentA()) {
610    case Instruction::kVerifyRegA:
611      result = result && CheckRegisterIndex(dec_insn.vA);
612      break;
613    case Instruction::kVerifyRegAWide:
614      result = result && CheckWideRegisterIndex(dec_insn.vA);
615      break;
616  }
617  switch (inst->GetVerifyTypeArgumentB()) {
618    case Instruction::kVerifyRegB:
619      result = result && CheckRegisterIndex(dec_insn.vB);
620      break;
621    case Instruction::kVerifyRegBField:
622      result = result && CheckFieldIndex(dec_insn.vB);
623      break;
624    case Instruction::kVerifyRegBMethod:
625      result = result && CheckMethodIndex(dec_insn.vB);
626      break;
627    case Instruction::kVerifyRegBNewInstance:
628      result = result && CheckNewInstance(dec_insn.vB);
629      break;
630    case Instruction::kVerifyRegBString:
631      result = result && CheckStringIndex(dec_insn.vB);
632      break;
633    case Instruction::kVerifyRegBType:
634      result = result && CheckTypeIndex(dec_insn.vB);
635      break;
636    case Instruction::kVerifyRegBWide:
637      result = result && CheckWideRegisterIndex(dec_insn.vB);
638      break;
639  }
640  switch (inst->GetVerifyTypeArgumentC()) {
641    case Instruction::kVerifyRegC:
642      result = result && CheckRegisterIndex(dec_insn.vC);
643      break;
644    case Instruction::kVerifyRegCField:
645      result = result && CheckFieldIndex(dec_insn.vC);
646      break;
647    case Instruction::kVerifyRegCNewArray:
648      result = result && CheckNewArray(dec_insn.vC);
649      break;
650    case Instruction::kVerifyRegCType:
651      result = result && CheckTypeIndex(dec_insn.vC);
652      break;
653    case Instruction::kVerifyRegCWide:
654      result = result && CheckWideRegisterIndex(dec_insn.vC);
655      break;
656  }
657  switch (inst->GetVerifyExtraFlags()) {
658    case Instruction::kVerifyArrayData:
659      result = result && CheckArrayData(code_offset);
660      break;
661    case Instruction::kVerifyBranchTarget:
662      result = result && CheckBranchTarget(code_offset);
663      break;
664    case Instruction::kVerifySwitchTargets:
665      result = result && CheckSwitchTargets(code_offset);
666      break;
667    case Instruction::kVerifyVarArg:
668      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
669      break;
670    case Instruction::kVerifyVarArgRange:
671      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
672      break;
673    case Instruction::kVerifyError:
674      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
675      result = false;
676      break;
677  }
678  return result;
679}
680
681bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
682  if (idx >= code_item_->registers_size_) {
683    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
684                                      << code_item_->registers_size_ << ")";
685    return false;
686  }
687  return true;
688}
689
690bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
691  if (idx + 1 >= code_item_->registers_size_) {
692    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
693                                      << "+1 >= " << code_item_->registers_size_ << ")";
694    return false;
695  }
696  return true;
697}
698
699bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
700  if (idx >= dex_file_->GetHeader().field_ids_size_) {
701    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
702                                      << dex_file_->GetHeader().field_ids_size_ << ")";
703    return false;
704  }
705  return true;
706}
707
708bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
709  if (idx >= dex_file_->GetHeader().method_ids_size_) {
710    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
711                                      << dex_file_->GetHeader().method_ids_size_ << ")";
712    return false;
713  }
714  return true;
715}
716
717bool MethodVerifier::CheckNewInstance(uint32_t idx) {
718  if (idx >= dex_file_->GetHeader().type_ids_size_) {
719    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
720                                      << dex_file_->GetHeader().type_ids_size_ << ")";
721    return false;
722  }
723  // We don't need the actual class, just a pointer to the class name.
724  const char* descriptor = dex_file_->StringByTypeIdx(idx);
725  if (descriptor[0] != 'L') {
726    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
727    return false;
728  }
729  return true;
730}
731
732bool MethodVerifier::CheckStringIndex(uint32_t idx) {
733  if (idx >= dex_file_->GetHeader().string_ids_size_) {
734    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
735                                      << dex_file_->GetHeader().string_ids_size_ << ")";
736    return false;
737  }
738  return true;
739}
740
741bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
742  if (idx >= dex_file_->GetHeader().type_ids_size_) {
743    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
744                                      << dex_file_->GetHeader().type_ids_size_ << ")";
745    return false;
746  }
747  return true;
748}
749
750bool MethodVerifier::CheckNewArray(uint32_t idx) {
751  if (idx >= dex_file_->GetHeader().type_ids_size_) {
752    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
753                                      << dex_file_->GetHeader().type_ids_size_ << ")";
754    return false;
755  }
756  int bracket_count = 0;
757  const char* descriptor = dex_file_->StringByTypeIdx(idx);
758  const char* cp = descriptor;
759  while (*cp++ == '[') {
760    bracket_count++;
761  }
762  if (bracket_count == 0) {
763    /* The given class must be an array type. */
764    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
765        << "can't new-array class '" << descriptor << "' (not an array)";
766    return false;
767  } else if (bracket_count > 255) {
768    /* It is illegal to create an array of more than 255 dimensions. */
769    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
770        << "can't new-array class '" << descriptor << "' (exceeds limit)";
771    return false;
772  }
773  return true;
774}
775
776bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
777  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
778  const uint16_t* insns = code_item_->insns_ + cur_offset;
779  const uint16_t* array_data;
780  int32_t array_data_offset;
781
782  DCHECK_LT(cur_offset, insn_count);
783  /* make sure the start of the array data table is in range */
784  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
785  if ((int32_t) cur_offset + array_data_offset < 0 ||
786      cur_offset + array_data_offset + 2 >= insn_count) {
787    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
788                                      << ", data offset " << array_data_offset
789                                      << ", count " << insn_count;
790    return false;
791  }
792  /* offset to array data table is a relative branch-style offset */
793  array_data = insns + array_data_offset;
794  /* make sure the table is 32-bit aligned */
795  if ((((uint32_t) array_data) & 0x03) != 0) {
796    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
797                                      << ", data offset " << array_data_offset;
798    return false;
799  }
800  uint32_t value_width = array_data[1];
801  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
802  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
803  /* make sure the end of the switch is in range */
804  if (cur_offset + array_data_offset + table_size > insn_count) {
805    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
806                                      << ", data offset " << array_data_offset << ", end "
807                                      << cur_offset + array_data_offset + table_size
808                                      << ", count " << insn_count;
809    return false;
810  }
811  return true;
812}
813
814bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
815  int32_t offset;
816  bool isConditional, selfOkay;
817  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
818    return false;
819  }
820  if (!selfOkay && offset == 0) {
821    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
822                                      << reinterpret_cast<void*>(cur_offset);
823    return false;
824  }
825  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
826  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
827  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
828    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
829                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
830    return false;
831  }
832  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
833  int32_t abs_offset = cur_offset + offset;
834  if (abs_offset < 0 ||
835      (uint32_t) abs_offset >= insn_count ||
836      !insn_flags_[abs_offset].IsOpcode()) {
837    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
838                                      << reinterpret_cast<void*>(abs_offset) << ") at "
839                                      << reinterpret_cast<void*>(cur_offset);
840    return false;
841  }
842  insn_flags_[abs_offset].SetBranchTarget();
843  return true;
844}
845
846bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
847                                  bool* selfOkay) {
848  const uint16_t* insns = code_item_->insns_ + cur_offset;
849  *pConditional = false;
850  *selfOkay = false;
851  switch (*insns & 0xff) {
852    case Instruction::GOTO:
853      *pOffset = ((int16_t) *insns) >> 8;
854      break;
855    case Instruction::GOTO_32:
856      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
857      *selfOkay = true;
858      break;
859    case Instruction::GOTO_16:
860      *pOffset = (int16_t) insns[1];
861      break;
862    case Instruction::IF_EQ:
863    case Instruction::IF_NE:
864    case Instruction::IF_LT:
865    case Instruction::IF_GE:
866    case Instruction::IF_GT:
867    case Instruction::IF_LE:
868    case Instruction::IF_EQZ:
869    case Instruction::IF_NEZ:
870    case Instruction::IF_LTZ:
871    case Instruction::IF_GEZ:
872    case Instruction::IF_GTZ:
873    case Instruction::IF_LEZ:
874      *pOffset = (int16_t) insns[1];
875      *pConditional = true;
876      break;
877    default:
878      return false;
879      break;
880  }
881  return true;
882}
883
884bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
885  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
886  DCHECK_LT(cur_offset, insn_count);
887  const uint16_t* insns = code_item_->insns_ + cur_offset;
888  /* make sure the start of the switch is in range */
889  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
890  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
891    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
892                                      << ", switch offset " << switch_offset
893                                      << ", count " << insn_count;
894    return false;
895  }
896  /* offset to switch table is a relative branch-style offset */
897  const uint16_t* switch_insns = insns + switch_offset;
898  /* make sure the table is 32-bit aligned */
899  if ((((uint32_t) switch_insns) & 0x03) != 0) {
900    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
901                                      << ", switch offset " << switch_offset;
902    return false;
903  }
904  uint32_t switch_count = switch_insns[1];
905  int32_t keys_offset, targets_offset;
906  uint16_t expected_signature;
907  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
908    /* 0=sig, 1=count, 2/3=firstKey */
909    targets_offset = 4;
910    keys_offset = -1;
911    expected_signature = Instruction::kPackedSwitchSignature;
912  } else {
913    /* 0=sig, 1=count, 2..count*2 = keys */
914    keys_offset = 2;
915    targets_offset = 2 + 2 * switch_count;
916    expected_signature = Instruction::kSparseSwitchSignature;
917  }
918  uint32_t table_size = targets_offset + switch_count * 2;
919  if (switch_insns[0] != expected_signature) {
920    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
921        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
922                        switch_insns[0], expected_signature);
923    return false;
924  }
925  /* make sure the end of the switch is in range */
926  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
927    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
928                                      << ", switch offset " << switch_offset
929                                      << ", end " << (cur_offset + switch_offset + table_size)
930                                      << ", count " << insn_count;
931    return false;
932  }
933  /* for a sparse switch, verify the keys are in ascending order */
934  if (keys_offset > 0 && switch_count > 1) {
935    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
936    for (uint32_t targ = 1; targ < switch_count; targ++) {
937      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
938                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
939      if (key <= last_key) {
940        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
941                                          << ", this=" << key;
942        return false;
943      }
944      last_key = key;
945    }
946  }
947  /* verify each switch target */
948  for (uint32_t targ = 0; targ < switch_count; targ++) {
949    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
950                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
951    int32_t abs_offset = cur_offset + offset;
952    if (abs_offset < 0 ||
953        abs_offset >= (int32_t) insn_count ||
954        !insn_flags_[abs_offset].IsOpcode()) {
955      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
956                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
957                                        << reinterpret_cast<void*>(cur_offset)
958                                        << "[" << targ << "]";
959      return false;
960    }
961    insn_flags_[abs_offset].SetBranchTarget();
962  }
963  return true;
964}
965
966bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
967  if (vA > 5) {
968    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
969    return false;
970  }
971  uint16_t registers_size = code_item_->registers_size_;
972  for (uint32_t idx = 0; idx < vA; idx++) {
973    if (arg[idx] >= registers_size) {
974      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
975                                        << ") in non-range invoke (>= " << registers_size << ")";
976      return false;
977    }
978  }
979
980  return true;
981}
982
983bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
984  uint16_t registers_size = code_item_->registers_size_;
985  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
986  // integer overflow when adding them here.
987  if (vA + vC > registers_size) {
988    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
989                                      << " in range invoke (> " << registers_size << ")";
990    return false;
991  }
992  return true;
993}
994
995static const std::vector<uint8_t>* CreateLengthPrefixedDexGcMap(
996    const std::vector<uint8_t>& gc_map) {
997  std::vector<uint8_t>* length_prefixed_gc_map = new std::vector<uint8_t>;
998  length_prefixed_gc_map->reserve(gc_map.size() + 4);
999  length_prefixed_gc_map->push_back((gc_map.size() & 0xff000000) >> 24);
1000  length_prefixed_gc_map->push_back((gc_map.size() & 0x00ff0000) >> 16);
1001  length_prefixed_gc_map->push_back((gc_map.size() & 0x0000ff00) >> 8);
1002  length_prefixed_gc_map->push_back((gc_map.size() & 0x000000ff) >> 0);
1003  length_prefixed_gc_map->insert(length_prefixed_gc_map->end(),
1004                                 gc_map.begin(),
1005                                 gc_map.end());
1006  DCHECK_EQ(gc_map.size() + 4, length_prefixed_gc_map->size());
1007  DCHECK_EQ(gc_map.size(),
1008            static_cast<size_t>((length_prefixed_gc_map->at(0) << 24) |
1009                                (length_prefixed_gc_map->at(1) << 16) |
1010                                (length_prefixed_gc_map->at(2) << 8) |
1011                                (length_prefixed_gc_map->at(3) << 0)));
1012  return length_prefixed_gc_map;
1013}
1014
1015bool MethodVerifier::VerifyCodeFlow() {
1016  uint16_t registers_size = code_item_->registers_size_;
1017  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1018
1019  if (registers_size * insns_size > 4*1024*1024) {
1020    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1021                 << " insns_size=" << insns_size << ")";
1022  }
1023  /* Create and initialize table holding register status */
1024  reg_table_.Init(kTrackCompilerInterestPoints,
1025                  insn_flags_.get(),
1026                  insns_size,
1027                  registers_size,
1028                  this);
1029
1030
1031  work_line_.reset(new RegisterLine(registers_size, this));
1032  saved_line_.reset(new RegisterLine(registers_size, this));
1033
1034  /* Initialize register types of method arguments. */
1035  if (!SetTypesFromSignature()) {
1036    DCHECK_NE(failures_.size(), 0U);
1037    std::string prepend("Bad signature in ");
1038    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1039    PrependToLastFailMessage(prepend);
1040    return false;
1041  }
1042  /* Perform code flow verification. */
1043  if (!CodeFlowVerifyMethod()) {
1044    DCHECK_NE(failures_.size(), 0U);
1045    return false;
1046  }
1047
1048  // Compute information for compiler.
1049  if (Runtime::Current()->IsCompiler()) {
1050    MethodReference ref(dex_file_, dex_method_idx_);
1051    bool compile = IsCandidateForCompilation(ref, method_access_flags_);
1052    if (compile) {
1053      /* Generate a register map and add it to the method. */
1054      UniquePtr<const std::vector<uint8_t> > map(GenerateGcMap());
1055      if (map.get() == NULL) {
1056        DCHECK_NE(failures_.size(), 0U);
1057        return false;  // Not a real failure, but a failure to encode
1058      }
1059      if (kIsDebugBuild) {
1060        VerifyGcMap(*map);
1061      }
1062      const std::vector<uint8_t>* dex_gc_map = CreateLengthPrefixedDexGcMap(*(map.get()));
1063      verifier::MethodVerifier::SetDexGcMap(ref, *dex_gc_map);
1064    }
1065
1066    if (has_check_casts_) {
1067      MethodVerifier::MethodSafeCastSet* method_to_safe_casts = GenerateSafeCastSet();
1068      if (method_to_safe_casts != NULL) {
1069        SetSafeCastMap(ref, method_to_safe_casts);
1070      }
1071    }
1072
1073    if (has_virtual_or_interface_invokes_) {
1074      MethodVerifier::PcToConcreteMethodMap* pc_to_concrete_method = GenerateDevirtMap();
1075      if (pc_to_concrete_method != NULL) {
1076        SetDevirtMap(ref, pc_to_concrete_method);
1077      }
1078    }
1079  }
1080  return true;
1081}
1082
1083std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1084  DCHECK_EQ(failures_.size(), failure_messages_.size());
1085  if (VLOG_IS_ON(verifier)) {
1086      for (size_t i = 0; i < failures_.size(); ++i) {
1087          os << failure_messages_[i]->str() << "\n";
1088      }
1089  }
1090  return os;
1091}
1092
1093extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1094    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1095  v->Dump(std::cerr);
1096}
1097
1098void MethodVerifier::Dump(std::ostream& os) {
1099  if (code_item_ == NULL) {
1100    os << "Native method\n";
1101    return;
1102  }
1103  {
1104    os << "Register Types:\n";
1105    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1106    std::ostream indent_os(&indent_filter);
1107    reg_types_.Dump(indent_os);
1108  }
1109  os << "Dumping instructions and register lines:\n";
1110  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1111  std::ostream indent_os(&indent_filter);
1112  const Instruction* inst = Instruction::At(code_item_->insns_);
1113  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1114      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1115    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1116    if (reg_line != NULL) {
1117      indent_os << reg_line->Dump() << "\n";
1118    }
1119    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1120    const bool kDumpHexOfInstruction = false;
1121    if (kDumpHexOfInstruction) {
1122      indent_os << inst->DumpHex(5) << " ";
1123    }
1124    indent_os << inst->DumpString(dex_file_) << "\n";
1125    inst = inst->Next();
1126  }
1127}
1128
1129static bool IsPrimitiveDescriptor(char descriptor) {
1130  switch (descriptor) {
1131    case 'I':
1132    case 'C':
1133    case 'S':
1134    case 'B':
1135    case 'Z':
1136    case 'F':
1137    case 'D':
1138    case 'J':
1139      return true;
1140    default:
1141      return false;
1142  }
1143}
1144
1145bool MethodVerifier::SetTypesFromSignature() {
1146  RegisterLine* reg_line = reg_table_.GetLine(0);
1147  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1148  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1149
1150  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1151  // Include the "this" pointer.
1152  size_t cur_arg = 0;
1153  if (!IsStatic()) {
1154    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1155    // argument as uninitialized. This restricts field access until the superclass constructor is
1156    // called.
1157    const RegType& declaring_class = GetDeclaringClass();
1158    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1159      reg_line->SetRegisterType(arg_start + cur_arg,
1160                                reg_types_.UninitializedThisArgument(declaring_class));
1161    } else {
1162      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1163    }
1164    cur_arg++;
1165  }
1166
1167  const DexFile::ProtoId& proto_id =
1168      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1169  DexFileParameterIterator iterator(*dex_file_, proto_id);
1170
1171  for (; iterator.HasNext(); iterator.Next()) {
1172    const char* descriptor = iterator.GetDescriptor();
1173    if (descriptor == NULL) {
1174      LOG(FATAL) << "Null descriptor";
1175    }
1176    if (cur_arg >= expected_args) {
1177      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1178                                        << " args, found more (" << descriptor << ")";
1179      return false;
1180    }
1181    switch (descriptor[0]) {
1182      case 'L':
1183      case '[':
1184        // We assume that reference arguments are initialized. The only way it could be otherwise
1185        // (assuming the caller was verified) is if the current method is <init>, but in that case
1186        // it's effectively considered initialized the instant we reach here (in the sense that we
1187        // can return without doing anything or call virtual methods).
1188        {
1189          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
1190          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1191        }
1192        break;
1193      case 'Z':
1194        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1195        break;
1196      case 'C':
1197        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1198        break;
1199      case 'B':
1200        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1201        break;
1202      case 'I':
1203        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1204        break;
1205      case 'S':
1206        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1207        break;
1208      case 'F':
1209        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1210        break;
1211      case 'J':
1212      case 'D': {
1213        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1214        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1215        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1216        cur_arg++;
1217        break;
1218      }
1219      default:
1220        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1221                                          << descriptor << "'";
1222        return false;
1223    }
1224    cur_arg++;
1225  }
1226  if (cur_arg != expected_args) {
1227    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1228                                      << " arguments, found " << cur_arg;
1229    return false;
1230  }
1231  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1232  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1233  // format. Only major difference from the method argument format is that 'V' is supported.
1234  bool result;
1235  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1236    result = descriptor[1] == '\0';
1237  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1238    size_t i = 0;
1239    do {
1240      i++;
1241    } while (descriptor[i] == '[');  // process leading [
1242    if (descriptor[i] == 'L') {  // object array
1243      do {
1244        i++;  // find closing ;
1245      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1246      result = descriptor[i] == ';';
1247    } else {  // primitive array
1248      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1249    }
1250  } else if (descriptor[0] == 'L') {
1251    // could be more thorough here, but shouldn't be required
1252    size_t i = 0;
1253    do {
1254      i++;
1255    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1256    result = descriptor[i] == ';';
1257  } else {
1258    result = false;
1259  }
1260  if (!result) {
1261    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1262                                      << descriptor << "'";
1263  }
1264  return result;
1265}
1266
1267bool MethodVerifier::CodeFlowVerifyMethod() {
1268  const uint16_t* insns = code_item_->insns_;
1269  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1270
1271  /* Begin by marking the first instruction as "changed". */
1272  insn_flags_[0].SetChanged();
1273  uint32_t start_guess = 0;
1274
1275  /* Continue until no instructions are marked "changed". */
1276  while (true) {
1277    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1278    uint32_t insn_idx = start_guess;
1279    for (; insn_idx < insns_size; insn_idx++) {
1280      if (insn_flags_[insn_idx].IsChanged())
1281        break;
1282    }
1283    if (insn_idx == insns_size) {
1284      if (start_guess != 0) {
1285        /* try again, starting from the top */
1286        start_guess = 0;
1287        continue;
1288      } else {
1289        /* all flags are clear */
1290        break;
1291      }
1292    }
1293    // We carry the working set of registers from instruction to instruction. If this address can
1294    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1295    // "changed" flags, we need to load the set of registers from the table.
1296    // Because we always prefer to continue on to the next instruction, we should never have a
1297    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1298    // target.
1299    work_insn_idx_ = insn_idx;
1300    if (insn_flags_[insn_idx].IsBranchTarget()) {
1301      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1302    } else {
1303#ifndef NDEBUG
1304      /*
1305       * Sanity check: retrieve the stored register line (assuming
1306       * a full table) and make sure it actually matches.
1307       */
1308      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1309      if (register_line != NULL) {
1310        if (work_line_->CompareLine(register_line) != 0) {
1311          Dump(std::cout);
1312          std::cout << info_messages_.str();
1313          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1314                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1315                     << " work_line=" << *work_line_ << "\n"
1316                     << "  expected=" << *register_line;
1317        }
1318      }
1319#endif
1320    }
1321    if (!CodeFlowVerifyInstruction(&start_guess)) {
1322      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1323      prepend += " failed to verify: ";
1324      PrependToLastFailMessage(prepend);
1325      return false;
1326    }
1327    /* Clear "changed" and mark as visited. */
1328    insn_flags_[insn_idx].SetVisited();
1329    insn_flags_[insn_idx].ClearChanged();
1330  }
1331
1332  if (gDebugVerify) {
1333    /*
1334     * Scan for dead code. There's nothing "evil" about dead code
1335     * (besides the wasted space), but it indicates a flaw somewhere
1336     * down the line, possibly in the verifier.
1337     *
1338     * If we've substituted "always throw" instructions into the stream,
1339     * we are almost certainly going to have some dead code.
1340     */
1341    int dead_start = -1;
1342    uint32_t insn_idx = 0;
1343    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1344      /*
1345       * Switch-statement data doesn't get "visited" by scanner. It
1346       * may or may not be preceded by a padding NOP (for alignment).
1347       */
1348      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1349          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1350          insns[insn_idx] == Instruction::kArrayDataSignature ||
1351          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1352           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1353            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1354            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1355        insn_flags_[insn_idx].SetVisited();
1356      }
1357
1358      if (!insn_flags_[insn_idx].IsVisited()) {
1359        if (dead_start < 0)
1360          dead_start = insn_idx;
1361      } else if (dead_start >= 0) {
1362        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1363                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1364        dead_start = -1;
1365      }
1366    }
1367    if (dead_start >= 0) {
1368      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1369                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1370    }
1371    // To dump the state of the verify after a method, do something like:
1372    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1373    //     "boolean java.lang.String.equals(java.lang.Object)") {
1374    //   LOG(INFO) << info_messages_.str();
1375    // }
1376  }
1377  return true;
1378}
1379
1380bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1381  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1382  // We want the state _before_ the instruction, for the case where the dex pc we're
1383  // interested in is itself a monitor-enter instruction (which is a likely place
1384  // for a thread to be suspended).
1385  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1386    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1387    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1388      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1389    }
1390  }
1391
1392  /*
1393   * Once we finish decoding the instruction, we need to figure out where
1394   * we can go from here. There are three possible ways to transfer
1395   * control to another statement:
1396   *
1397   * (1) Continue to the next instruction. Applies to all but
1398   *     unconditional branches, method returns, and exception throws.
1399   * (2) Branch to one or more possible locations. Applies to branches
1400   *     and switch statements.
1401   * (3) Exception handlers. Applies to any instruction that can
1402   *     throw an exception that is handled by an encompassing "try"
1403   *     block.
1404   *
1405   * We can also return, in which case there is no successor instruction
1406   * from this point.
1407   *
1408   * The behavior can be determined from the opcode flags.
1409   */
1410  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1411  const Instruction* inst = Instruction::At(insns);
1412  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1413
1414  int32_t branch_target = 0;
1415  bool just_set_result = false;
1416  if (gDebugVerify) {
1417    // Generate processing back trace to debug verifier
1418    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1419                    << *work_line_.get() << "\n";
1420  }
1421
1422  /*
1423   * Make a copy of the previous register state. If the instruction
1424   * can throw an exception, we will copy/merge this into the "catch"
1425   * address rather than work_line, because we don't want the result
1426   * from the "successful" code path (e.g. a check-cast that "improves"
1427   * a type) to be visible to the exception handler.
1428   */
1429  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1430    saved_line_->CopyFromLine(work_line_.get());
1431  } else {
1432#ifndef NDEBUG
1433    saved_line_->FillWithGarbage();
1434#endif
1435  }
1436
1437
1438  // We need to ensure the work line is consistent while performing validation. When we spot a
1439  // peephole pattern we compute a new line for either the fallthrough instruction or the
1440  // branch target.
1441  UniquePtr<RegisterLine> branch_line;
1442  UniquePtr<RegisterLine> fallthrough_line;
1443
1444  switch (inst->Opcode()) {
1445    case Instruction::NOP:
1446      /*
1447       * A "pure" NOP has no effect on anything. Data tables start with
1448       * a signature that looks like a NOP; if we see one of these in
1449       * the course of executing code then we have a problem.
1450       */
1451      if (inst->VRegA_10x() != 0) {
1452        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1453      }
1454      break;
1455
1456    case Instruction::MOVE:
1457      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1458      break;
1459    case Instruction::MOVE_FROM16:
1460      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1461      break;
1462    case Instruction::MOVE_16:
1463      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1464      break;
1465    case Instruction::MOVE_WIDE:
1466      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1467      break;
1468    case Instruction::MOVE_WIDE_FROM16:
1469      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1470      break;
1471    case Instruction::MOVE_WIDE_16:
1472      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1473      break;
1474    case Instruction::MOVE_OBJECT:
1475      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1476      break;
1477    case Instruction::MOVE_OBJECT_FROM16:
1478      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1479      break;
1480    case Instruction::MOVE_OBJECT_16:
1481      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1482      break;
1483
1484    /*
1485     * The move-result instructions copy data out of a "pseudo-register"
1486     * with the results from the last method invocation. In practice we
1487     * might want to hold the result in an actual CPU register, so the
1488     * Dalvik spec requires that these only appear immediately after an
1489     * invoke or filled-new-array.
1490     *
1491     * These calls invalidate the "result" register. (This is now
1492     * redundant with the reset done below, but it can make the debug info
1493     * easier to read in some cases.)
1494     */
1495    case Instruction::MOVE_RESULT:
1496      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1497      break;
1498    case Instruction::MOVE_RESULT_WIDE:
1499      work_line_->CopyResultRegister2(inst->VRegA_11x());
1500      break;
1501    case Instruction::MOVE_RESULT_OBJECT:
1502      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1503      break;
1504
1505    case Instruction::MOVE_EXCEPTION: {
1506      /*
1507       * This statement can only appear as the first instruction in an exception handler. We verify
1508       * that as part of extracting the exception type from the catch block list.
1509       */
1510      const RegType& res_type = GetCaughtExceptionType();
1511      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1512      break;
1513    }
1514    case Instruction::RETURN_VOID:
1515      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1516        if (!GetMethodReturnType().IsConflict()) {
1517          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1518        }
1519      }
1520      break;
1521    case Instruction::RETURN:
1522      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1523        /* check the method signature */
1524        const RegType& return_type = GetMethodReturnType();
1525        if (!return_type.IsCategory1Types()) {
1526          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1527                                            << return_type;
1528        } else {
1529          // Compilers may generate synthetic functions that write byte values into boolean fields.
1530          // Also, it may use integer values for boolean, byte, short, and character return types.
1531          const uint32_t vregA = inst->VRegA_11x();
1532          const RegType& src_type = work_line_->GetRegisterType(vregA);
1533          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1534                          ((return_type.IsBoolean() || return_type.IsByte() ||
1535                           return_type.IsShort() || return_type.IsChar()) &&
1536                           src_type.IsInteger()));
1537          /* check the register contents */
1538          bool success =
1539              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1540          if (!success) {
1541            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1542          }
1543        }
1544      }
1545      break;
1546    case Instruction::RETURN_WIDE:
1547      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1548        /* check the method signature */
1549        const RegType& return_type = GetMethodReturnType();
1550        if (!return_type.IsCategory2Types()) {
1551          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1552        } else {
1553          /* check the register contents */
1554          const uint32_t vregA = inst->VRegA_11x();
1555          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1556          if (!success) {
1557            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1558          }
1559        }
1560      }
1561      break;
1562    case Instruction::RETURN_OBJECT:
1563      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1564        const RegType& return_type = GetMethodReturnType();
1565        if (!return_type.IsReferenceTypes()) {
1566          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1567        } else {
1568          /* return_type is the *expected* return type, not register value */
1569          DCHECK(!return_type.IsZero());
1570          DCHECK(!return_type.IsUninitializedReference());
1571          const uint32_t vregA = inst->VRegA_11x();
1572          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1573          // Disallow returning uninitialized values and verify that the reference in vAA is an
1574          // instance of the "return_type"
1575          if (reg_type.IsUninitializedTypes()) {
1576            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1577                                              << reg_type << "'";
1578          } else if (!return_type.IsAssignableFrom(reg_type)) {
1579            Fail(reg_type.IsUnresolvedTypes() ?
1580                 VERIFY_ERROR_BAD_CLASS_SOFT :
1581                 VERIFY_ERROR_BAD_CLASS_HARD)
1582                    << "returning '" << reg_type << "', but expected from declaration '"
1583                    << return_type << "'";
1584          }
1585        }
1586      }
1587      break;
1588
1589      /* could be boolean, int, float, or a null reference */
1590    case Instruction::CONST_4: {
1591      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1592      work_line_->SetRegisterType(inst->VRegA_11n(), reg_types_.FromCat1Const(val, true));
1593      break;
1594    }
1595    case Instruction::CONST_16: {
1596      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1597      work_line_->SetRegisterType(inst->VRegA_21s(), reg_types_.FromCat1Const(val, true));
1598      break;
1599    }
1600    case Instruction::CONST:
1601      work_line_->SetRegisterType(inst->VRegA_31i(),
1602                                  reg_types_.FromCat1Const(inst->VRegB_31i(), true));
1603      break;
1604    case Instruction::CONST_HIGH16:
1605      work_line_->SetRegisterType(inst->VRegA_21h(),
1606                                  reg_types_.FromCat1Const(inst->VRegB_21h() << 16, true));
1607      break;
1608      /* could be long or double; resolved upon use */
1609    case Instruction::CONST_WIDE_16: {
1610      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1611      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1612      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1613      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1614      break;
1615    }
1616    case Instruction::CONST_WIDE_32: {
1617      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1618      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1619      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1620      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1621      break;
1622    }
1623    case Instruction::CONST_WIDE: {
1624      int64_t val = inst->VRegB_51l();
1625      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1626      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1627      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1628      break;
1629    }
1630    case Instruction::CONST_WIDE_HIGH16: {
1631      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1632      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1633      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1634      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1635      break;
1636    }
1637    case Instruction::CONST_STRING:
1638      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1639      break;
1640    case Instruction::CONST_STRING_JUMBO:
1641      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1642      break;
1643    case Instruction::CONST_CLASS: {
1644      // Get type from instruction if unresolved then we need an access check
1645      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1646      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1647      // Register holds class, ie its type is class, on error it will hold Conflict.
1648      work_line_->SetRegisterType(inst->VRegA_21c(),
1649                                  res_type.IsConflict() ? res_type
1650                                                        : reg_types_.JavaLangClass(true));
1651      break;
1652    }
1653    case Instruction::MONITOR_ENTER:
1654      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1655      break;
1656    case Instruction::MONITOR_EXIT:
1657      /*
1658       * monitor-exit instructions are odd. They can throw exceptions,
1659       * but when they do they act as if they succeeded and the PC is
1660       * pointing to the following instruction. (This behavior goes back
1661       * to the need to handle asynchronous exceptions, a now-deprecated
1662       * feature that Dalvik doesn't support.)
1663       *
1664       * In practice we don't need to worry about this. The only
1665       * exceptions that can be thrown from monitor-exit are for a
1666       * null reference and -exit without a matching -enter. If the
1667       * structured locking checks are working, the former would have
1668       * failed on the -enter instruction, and the latter is impossible.
1669       *
1670       * This is fortunate, because issue 3221411 prevents us from
1671       * chasing the "can throw" path when monitor verification is
1672       * enabled. If we can fully verify the locking we can ignore
1673       * some catch blocks (which will show up as "dead" code when
1674       * we skip them here); if we can't, then the code path could be
1675       * "live" so we still need to check it.
1676       */
1677      opcode_flags &= ~Instruction::kThrow;
1678      work_line_->PopMonitor(inst->VRegA_11x());
1679      break;
1680
1681    case Instruction::CHECK_CAST:
1682    case Instruction::INSTANCE_OF: {
1683      /*
1684       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1685       * could be a "upcast" -- not expected, so we don't try to address it.)
1686       *
1687       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1688       * dec_insn.vA when branching to a handler.
1689       */
1690      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1691      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1692      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1693      if (res_type.IsConflict()) {
1694        DCHECK_NE(failures_.size(), 0U);
1695        if (!is_checkcast) {
1696          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1697        }
1698        break;  // bad class
1699      }
1700      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1701      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1702      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1703      if (!res_type.IsNonZeroReferenceTypes()) {
1704        if (is_checkcast) {
1705          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1706        } else {
1707          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1708        }
1709      } else if (!orig_type.IsReferenceTypes()) {
1710        if (is_checkcast) {
1711          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1712        } else {
1713          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1714        }
1715      } else {
1716        if (is_checkcast) {
1717          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1718        } else {
1719          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1720        }
1721      }
1722      break;
1723    }
1724    case Instruction::ARRAY_LENGTH: {
1725      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1726      if (res_type.IsReferenceTypes()) {
1727        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1728          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1729        } else {
1730          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1731        }
1732      }
1733      break;
1734    }
1735    case Instruction::NEW_INSTANCE: {
1736      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1737      if (res_type.IsConflict()) {
1738        DCHECK_NE(failures_.size(), 0U);
1739        break;  // bad class
1740      }
1741      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1742      // can't create an instance of an interface or abstract class */
1743      if (!res_type.IsInstantiableTypes()) {
1744        Fail(VERIFY_ERROR_INSTANTIATION)
1745            << "new-instance on primitive, interface or abstract class" << res_type;
1746        // Soft failure so carry on to set register type.
1747      }
1748      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1749      // Any registers holding previous allocations from this address that have not yet been
1750      // initialized must be marked invalid.
1751      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1752      // add the new uninitialized reference to the register state
1753      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1754      break;
1755    }
1756    case Instruction::NEW_ARRAY:
1757      VerifyNewArray(inst, false, false);
1758      break;
1759    case Instruction::FILLED_NEW_ARRAY:
1760      VerifyNewArray(inst, true, false);
1761      just_set_result = true;  // Filled new array sets result register
1762      break;
1763    case Instruction::FILLED_NEW_ARRAY_RANGE:
1764      VerifyNewArray(inst, true, true);
1765      just_set_result = true;  // Filled new array range sets result register
1766      break;
1767    case Instruction::CMPL_FLOAT:
1768    case Instruction::CMPG_FLOAT:
1769      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1770        break;
1771      }
1772      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1773        break;
1774      }
1775      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1776      break;
1777    case Instruction::CMPL_DOUBLE:
1778    case Instruction::CMPG_DOUBLE:
1779      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1780                                              reg_types_.DoubleHi())) {
1781        break;
1782      }
1783      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1784                                              reg_types_.DoubleHi())) {
1785        break;
1786      }
1787      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1788      break;
1789    case Instruction::CMP_LONG:
1790      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1791                                              reg_types_.LongHi())) {
1792        break;
1793      }
1794      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1795                                              reg_types_.LongHi())) {
1796        break;
1797      }
1798      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1799      break;
1800    case Instruction::THROW: {
1801      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1802      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1803        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "thrown class " << res_type
1804                                          << " not instanceof Throwable";
1805      }
1806      break;
1807    }
1808    case Instruction::GOTO:
1809    case Instruction::GOTO_16:
1810    case Instruction::GOTO_32:
1811      /* no effect on or use of registers */
1812      break;
1813
1814    case Instruction::PACKED_SWITCH:
1815    case Instruction::SPARSE_SWITCH:
1816      /* verify that vAA is an integer, or can be converted to one */
1817      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1818      break;
1819
1820    case Instruction::FILL_ARRAY_DATA: {
1821      /* Similar to the verification done for APUT */
1822      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1823      /* array_type can be null if the reg type is Zero */
1824      if (!array_type.IsZero()) {
1825        if (!array_type.IsArrayTypes()) {
1826          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1827                                            << array_type;
1828        } else {
1829          const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
1830          DCHECK(!component_type.IsConflict());
1831          if (component_type.IsNonZeroReferenceTypes()) {
1832            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1833                                              << component_type;
1834          } else {
1835            // Now verify if the element width in the table matches the element width declared in
1836            // the array
1837            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1838            if (array_data[0] != Instruction::kArrayDataSignature) {
1839              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1840            } else {
1841              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1842              // Since we don't compress the data in Dex, expect to see equal width of data stored
1843              // in the table and expected from the array class.
1844              if (array_data[1] != elem_width) {
1845                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1846                                                  << " vs " << elem_width << ")";
1847              }
1848            }
1849          }
1850        }
1851      }
1852      break;
1853    }
1854    case Instruction::IF_EQ:
1855    case Instruction::IF_NE: {
1856      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1857      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1858      bool mismatch = false;
1859      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1860        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1861      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1862        mismatch = !reg_type2.IsReferenceTypes();
1863      } else {  // both integral?
1864        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1865      }
1866      if (mismatch) {
1867        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1868                                          << reg_type2 << ") must both be references or integral";
1869      }
1870      break;
1871    }
1872    case Instruction::IF_LT:
1873    case Instruction::IF_GE:
1874    case Instruction::IF_GT:
1875    case Instruction::IF_LE: {
1876      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1877      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1878      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1879        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1880                                          << reg_type2 << ") must be integral";
1881      }
1882      break;
1883    }
1884    case Instruction::IF_EQZ:
1885    case Instruction::IF_NEZ: {
1886      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1887      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1888        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1889                                          << " unexpected as arg to if-eqz/if-nez";
1890      }
1891
1892      // Find previous instruction - its existence is a precondition to peephole optimization.
1893      uint32_t instance_of_idx = 0;
1894      if (0 != work_insn_idx_) {
1895        instance_of_idx = work_insn_idx_ - 1;
1896        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1897          instance_of_idx--;
1898        }
1899        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1900      } else {
1901        break;
1902      }
1903
1904      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1905
1906      /* Check for peep-hole pattern of:
1907       *    ...;
1908       *    instance-of vX, vY, T;
1909       *    ifXXX vX, label ;
1910       *    ...;
1911       * label:
1912       *    ...;
1913       * and sharpen the type of vY to be type T.
1914       * Note, this pattern can't be if:
1915       *  - if there are other branches to this branch,
1916       *  - when vX == vY.
1917       */
1918      if (!CurrentInsnFlags()->IsBranchTarget() &&
1919          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1920          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1921          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1922        // Check that the we are not attempting conversion to interface types,
1923        // which is not done because of the multiple inheritance implications.
1924        // Also don't change the type if it would result in an upcast.
1925        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1926        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1927
1928        if (!cast_type.IsUnresolvedTypes() && !cast_type.GetClass()->IsInterface() &&
1929            !cast_type.IsAssignableFrom(orig_type)) {
1930          RegisterLine* update_line = new RegisterLine(code_item_->registers_size_, this);
1931          if (inst->Opcode() == Instruction::IF_EQZ) {
1932            fallthrough_line.reset(update_line);
1933          } else {
1934            branch_line.reset(update_line);
1935          }
1936          update_line->CopyFromLine(work_line_.get());
1937          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1938          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1939            // See if instance-of was preceded by a move-object operation, common due to the small
1940            // register encoding space of instance-of, and propagate type information to the source
1941            // of the move-object.
1942            uint32_t move_idx = instance_of_idx - 1;
1943            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1944              move_idx--;
1945            }
1946            CHECK(insn_flags_[move_idx].IsOpcode());
1947            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1948            switch (move_inst->Opcode()) {
1949              case Instruction::MOVE_OBJECT:
1950                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1951                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1952                }
1953                break;
1954              case Instruction::MOVE_OBJECT_FROM16:
1955                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1956                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1957                }
1958                break;
1959              case Instruction::MOVE_OBJECT_16:
1960                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1961                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1962                }
1963                break;
1964              default:
1965                break;
1966            }
1967          }
1968        }
1969      }
1970
1971      break;
1972    }
1973    case Instruction::IF_LTZ:
1974    case Instruction::IF_GEZ:
1975    case Instruction::IF_GTZ:
1976    case Instruction::IF_LEZ: {
1977      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1978      if (!reg_type.IsIntegralTypes()) {
1979        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1980                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1981      }
1982      break;
1983    }
1984    case Instruction::AGET_BOOLEAN:
1985      VerifyAGet(inst, reg_types_.Boolean(), true);
1986      break;
1987    case Instruction::AGET_BYTE:
1988      VerifyAGet(inst, reg_types_.Byte(), true);
1989      break;
1990    case Instruction::AGET_CHAR:
1991      VerifyAGet(inst, reg_types_.Char(), true);
1992      break;
1993    case Instruction::AGET_SHORT:
1994      VerifyAGet(inst, reg_types_.Short(), true);
1995      break;
1996    case Instruction::AGET:
1997      VerifyAGet(inst, reg_types_.Integer(), true);
1998      break;
1999    case Instruction::AGET_WIDE:
2000      VerifyAGet(inst, reg_types_.LongLo(), true);
2001      break;
2002    case Instruction::AGET_OBJECT:
2003      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2004      break;
2005
2006    case Instruction::APUT_BOOLEAN:
2007      VerifyAPut(inst, reg_types_.Boolean(), true);
2008      break;
2009    case Instruction::APUT_BYTE:
2010      VerifyAPut(inst, reg_types_.Byte(), true);
2011      break;
2012    case Instruction::APUT_CHAR:
2013      VerifyAPut(inst, reg_types_.Char(), true);
2014      break;
2015    case Instruction::APUT_SHORT:
2016      VerifyAPut(inst, reg_types_.Short(), true);
2017      break;
2018    case Instruction::APUT:
2019      VerifyAPut(inst, reg_types_.Integer(), true);
2020      break;
2021    case Instruction::APUT_WIDE:
2022      VerifyAPut(inst, reg_types_.LongLo(), true);
2023      break;
2024    case Instruction::APUT_OBJECT:
2025      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2026      break;
2027
2028    case Instruction::IGET_BOOLEAN:
2029      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2030      break;
2031    case Instruction::IGET_BYTE:
2032      VerifyISGet(inst, reg_types_.Byte(), true, false);
2033      break;
2034    case Instruction::IGET_CHAR:
2035      VerifyISGet(inst, reg_types_.Char(), true, false);
2036      break;
2037    case Instruction::IGET_SHORT:
2038      VerifyISGet(inst, reg_types_.Short(), true, false);
2039      break;
2040    case Instruction::IGET:
2041      VerifyISGet(inst, reg_types_.Integer(), true, false);
2042      break;
2043    case Instruction::IGET_WIDE:
2044      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2045      break;
2046    case Instruction::IGET_OBJECT:
2047      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2048      break;
2049
2050    case Instruction::IPUT_BOOLEAN:
2051      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2052      break;
2053    case Instruction::IPUT_BYTE:
2054      VerifyISPut(inst, reg_types_.Byte(), true, false);
2055      break;
2056    case Instruction::IPUT_CHAR:
2057      VerifyISPut(inst, reg_types_.Char(), true, false);
2058      break;
2059    case Instruction::IPUT_SHORT:
2060      VerifyISPut(inst, reg_types_.Short(), true, false);
2061      break;
2062    case Instruction::IPUT:
2063      VerifyISPut(inst, reg_types_.Integer(), true, false);
2064      break;
2065    case Instruction::IPUT_WIDE:
2066      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2067      break;
2068    case Instruction::IPUT_OBJECT:
2069      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2070      break;
2071
2072    case Instruction::SGET_BOOLEAN:
2073      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2074      break;
2075    case Instruction::SGET_BYTE:
2076      VerifyISGet(inst, reg_types_.Byte(), true, true);
2077      break;
2078    case Instruction::SGET_CHAR:
2079      VerifyISGet(inst, reg_types_.Char(), true, true);
2080      break;
2081    case Instruction::SGET_SHORT:
2082      VerifyISGet(inst, reg_types_.Short(), true, true);
2083      break;
2084    case Instruction::SGET:
2085      VerifyISGet(inst, reg_types_.Integer(), true, true);
2086      break;
2087    case Instruction::SGET_WIDE:
2088      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2089      break;
2090    case Instruction::SGET_OBJECT:
2091      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2092      break;
2093
2094    case Instruction::SPUT_BOOLEAN:
2095      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2096      break;
2097    case Instruction::SPUT_BYTE:
2098      VerifyISPut(inst, reg_types_.Byte(), true, true);
2099      break;
2100    case Instruction::SPUT_CHAR:
2101      VerifyISPut(inst, reg_types_.Char(), true, true);
2102      break;
2103    case Instruction::SPUT_SHORT:
2104      VerifyISPut(inst, reg_types_.Short(), true, true);
2105      break;
2106    case Instruction::SPUT:
2107      VerifyISPut(inst, reg_types_.Integer(), true, true);
2108      break;
2109    case Instruction::SPUT_WIDE:
2110      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2111      break;
2112    case Instruction::SPUT_OBJECT:
2113      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2114      break;
2115
2116    case Instruction::INVOKE_VIRTUAL:
2117    case Instruction::INVOKE_VIRTUAL_RANGE:
2118    case Instruction::INVOKE_SUPER:
2119    case Instruction::INVOKE_SUPER_RANGE: {
2120      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2121                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2122      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2123                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2124      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2125                                                                   is_range, is_super);
2126      const char* descriptor;
2127      if (called_method == NULL) {
2128        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2129        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2130        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2131        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2132      } else {
2133        descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2134      }
2135      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2136      if (!return_type.IsLowHalf()) {
2137        work_line_->SetResultRegisterType(return_type);
2138      } else {
2139        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2140      }
2141      just_set_result = true;
2142      break;
2143    }
2144    case Instruction::INVOKE_DIRECT:
2145    case Instruction::INVOKE_DIRECT_RANGE: {
2146      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2147      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2148                                                                   is_range, false);
2149      const char* return_type_descriptor;
2150      bool is_constructor;
2151      if (called_method == NULL) {
2152        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2153        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2154        is_constructor = StringPiece(dex_file_->GetMethodName(method_id)) == "<init>";
2155        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2156        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2157      } else {
2158        is_constructor = called_method->IsConstructor();
2159        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2160      }
2161      if (is_constructor) {
2162        /*
2163         * Some additional checks when calling a constructor. We know from the invocation arg check
2164         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2165         * that to require that called_method->klass is the same as this->klass or this->super,
2166         * allowing the latter only if the "this" argument is the same as the "this" argument to
2167         * this method (which implies that we're in a constructor ourselves).
2168         */
2169        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2170        if (this_type.IsConflict())  // failure.
2171          break;
2172
2173        /* no null refs allowed (?) */
2174        if (this_type.IsZero()) {
2175          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2176          break;
2177        }
2178
2179        /* must be in same class or in superclass */
2180        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2181        // TODO: re-enable constructor type verification
2182        // if (this_super_klass.IsConflict()) {
2183          // Unknown super class, fail so we re-check at runtime.
2184          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2185          // break;
2186        // }
2187
2188        /* arg must be an uninitialized reference */
2189        if (!this_type.IsUninitializedTypes()) {
2190          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2191              << this_type;
2192          break;
2193        }
2194
2195        /*
2196         * Replace the uninitialized reference with an initialized one. We need to do this for all
2197         * registers that have the same object instance in them, not just the "this" register.
2198         */
2199        work_line_->MarkRefsAsInitialized(this_type);
2200      }
2201      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, return_type_descriptor,
2202                                                             false);
2203      if (!return_type.IsLowHalf()) {
2204        work_line_->SetResultRegisterType(return_type);
2205      } else {
2206        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2207      }
2208      just_set_result = true;
2209      break;
2210    }
2211    case Instruction::INVOKE_STATIC:
2212    case Instruction::INVOKE_STATIC_RANGE: {
2213        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2214        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2215                                                                     METHOD_STATIC,
2216                                                                     is_range,
2217                                                                     false);
2218        const char* descriptor;
2219        if (called_method == NULL) {
2220          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2221          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2222          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2223          descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2224        } else {
2225          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2226        }
2227        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_, descriptor, false);
2228        if (!return_type.IsLowHalf()) {
2229          work_line_->SetResultRegisterType(return_type);
2230        } else {
2231          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2232        }
2233        just_set_result = true;
2234      }
2235      break;
2236    case Instruction::INVOKE_INTERFACE:
2237    case Instruction::INVOKE_INTERFACE_RANGE: {
2238      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2239      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2240                                                                METHOD_INTERFACE,
2241                                                                is_range,
2242                                                                false);
2243      if (abs_method != NULL) {
2244        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2245        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2246          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2247              << PrettyMethod(abs_method) << "'";
2248          break;
2249        }
2250      }
2251      /* Get the type of the "this" arg, which should either be a sub-interface of called
2252       * interface or Object (see comments in RegType::JoinClass).
2253       */
2254      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2255      if (this_type.IsZero()) {
2256        /* null pointer always passes (and always fails at runtime) */
2257      } else {
2258        if (this_type.IsUninitializedTypes()) {
2259          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2260              << this_type;
2261          break;
2262        }
2263        // In the past we have tried to assert that "called_interface" is assignable
2264        // from "this_type.GetClass()", however, as we do an imprecise Join
2265        // (RegType::JoinClass) we don't have full information on what interfaces are
2266        // implemented by "this_type". For example, two classes may implement the same
2267        // interfaces and have a common parent that doesn't implement the interface. The
2268        // join will set "this_type" to the parent class and a test that this implements
2269        // the interface will incorrectly fail.
2270      }
2271      /*
2272       * We don't have an object instance, so we can't find the concrete method. However, all of
2273       * the type information is in the abstract method, so we're good.
2274       */
2275      const char* descriptor;
2276      if (abs_method == NULL) {
2277        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2278        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2279        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2280        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2281      } else {
2282        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2283      }
2284      const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2285      if (!return_type.IsLowHalf()) {
2286        work_line_->SetResultRegisterType(return_type);
2287      } else {
2288        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2289      }
2290      just_set_result = true;
2291      break;
2292    }
2293    case Instruction::NEG_INT:
2294    case Instruction::NOT_INT:
2295      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2296      break;
2297    case Instruction::NEG_LONG:
2298    case Instruction::NOT_LONG:
2299      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2300                                   reg_types_.LongLo(), reg_types_.LongHi());
2301      break;
2302    case Instruction::NEG_FLOAT:
2303      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2304      break;
2305    case Instruction::NEG_DOUBLE:
2306      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2307                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2308      break;
2309    case Instruction::INT_TO_LONG:
2310      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2311                                     reg_types_.Integer());
2312      break;
2313    case Instruction::INT_TO_FLOAT:
2314      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2315      break;
2316    case Instruction::INT_TO_DOUBLE:
2317      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2318                                     reg_types_.Integer());
2319      break;
2320    case Instruction::LONG_TO_INT:
2321      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2322                                       reg_types_.LongLo(), reg_types_.LongHi());
2323      break;
2324    case Instruction::LONG_TO_FLOAT:
2325      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2326                                       reg_types_.LongLo(), reg_types_.LongHi());
2327      break;
2328    case Instruction::LONG_TO_DOUBLE:
2329      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2330                                   reg_types_.LongLo(), reg_types_.LongHi());
2331      break;
2332    case Instruction::FLOAT_TO_INT:
2333      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2334      break;
2335    case Instruction::FLOAT_TO_LONG:
2336      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2337                                     reg_types_.Float());
2338      break;
2339    case Instruction::FLOAT_TO_DOUBLE:
2340      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2341                                     reg_types_.Float());
2342      break;
2343    case Instruction::DOUBLE_TO_INT:
2344      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2345                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2346      break;
2347    case Instruction::DOUBLE_TO_LONG:
2348      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2349                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2350      break;
2351    case Instruction::DOUBLE_TO_FLOAT:
2352      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2353                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2354      break;
2355    case Instruction::INT_TO_BYTE:
2356      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2357      break;
2358    case Instruction::INT_TO_CHAR:
2359      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2360      break;
2361    case Instruction::INT_TO_SHORT:
2362      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2363      break;
2364
2365    case Instruction::ADD_INT:
2366    case Instruction::SUB_INT:
2367    case Instruction::MUL_INT:
2368    case Instruction::REM_INT:
2369    case Instruction::DIV_INT:
2370    case Instruction::SHL_INT:
2371    case Instruction::SHR_INT:
2372    case Instruction::USHR_INT:
2373      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2374                                reg_types_.Integer(), false);
2375      break;
2376    case Instruction::AND_INT:
2377    case Instruction::OR_INT:
2378    case Instruction::XOR_INT:
2379      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2380                                reg_types_.Integer(), true);
2381      break;
2382    case Instruction::ADD_LONG:
2383    case Instruction::SUB_LONG:
2384    case Instruction::MUL_LONG:
2385    case Instruction::DIV_LONG:
2386    case Instruction::REM_LONG:
2387    case Instruction::AND_LONG:
2388    case Instruction::OR_LONG:
2389    case Instruction::XOR_LONG:
2390      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2391                                    reg_types_.LongLo(), reg_types_.LongHi(),
2392                                    reg_types_.LongLo(), reg_types_.LongHi());
2393      break;
2394    case Instruction::SHL_LONG:
2395    case Instruction::SHR_LONG:
2396    case Instruction::USHR_LONG:
2397      /* shift distance is Int, making these different from other binary operations */
2398      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2399                                         reg_types_.Integer());
2400      break;
2401    case Instruction::ADD_FLOAT:
2402    case Instruction::SUB_FLOAT:
2403    case Instruction::MUL_FLOAT:
2404    case Instruction::DIV_FLOAT:
2405    case Instruction::REM_FLOAT:
2406      work_line_->CheckBinaryOp(inst,
2407                                reg_types_.Float(),
2408                                reg_types_.Float(),
2409                                reg_types_.Float(),
2410                                false);
2411      break;
2412    case Instruction::ADD_DOUBLE:
2413    case Instruction::SUB_DOUBLE:
2414    case Instruction::MUL_DOUBLE:
2415    case Instruction::DIV_DOUBLE:
2416    case Instruction::REM_DOUBLE:
2417      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2418                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2419                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2420      break;
2421    case Instruction::ADD_INT_2ADDR:
2422    case Instruction::SUB_INT_2ADDR:
2423    case Instruction::MUL_INT_2ADDR:
2424    case Instruction::REM_INT_2ADDR:
2425    case Instruction::SHL_INT_2ADDR:
2426    case Instruction::SHR_INT_2ADDR:
2427    case Instruction::USHR_INT_2ADDR:
2428      work_line_->CheckBinaryOp2addr(inst,
2429                                     reg_types_.Integer(),
2430                                     reg_types_.Integer(),
2431                                     reg_types_.Integer(),
2432                                     false);
2433      break;
2434    case Instruction::AND_INT_2ADDR:
2435    case Instruction::OR_INT_2ADDR:
2436    case Instruction::XOR_INT_2ADDR:
2437      work_line_->CheckBinaryOp2addr(inst,
2438                                     reg_types_.Integer(),
2439                                     reg_types_.Integer(),
2440                                     reg_types_.Integer(),
2441                                     true);
2442      break;
2443    case Instruction::DIV_INT_2ADDR:
2444      work_line_->CheckBinaryOp2addr(inst,
2445                                     reg_types_.Integer(),
2446                                     reg_types_.Integer(),
2447                                     reg_types_.Integer(),
2448                                     false);
2449      break;
2450    case Instruction::ADD_LONG_2ADDR:
2451    case Instruction::SUB_LONG_2ADDR:
2452    case Instruction::MUL_LONG_2ADDR:
2453    case Instruction::DIV_LONG_2ADDR:
2454    case Instruction::REM_LONG_2ADDR:
2455    case Instruction::AND_LONG_2ADDR:
2456    case Instruction::OR_LONG_2ADDR:
2457    case Instruction::XOR_LONG_2ADDR:
2458      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2459                                         reg_types_.LongLo(), reg_types_.LongHi(),
2460                                         reg_types_.LongLo(), reg_types_.LongHi());
2461      break;
2462    case Instruction::SHL_LONG_2ADDR:
2463    case Instruction::SHR_LONG_2ADDR:
2464    case Instruction::USHR_LONG_2ADDR:
2465      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2466                                              reg_types_.Integer());
2467      break;
2468    case Instruction::ADD_FLOAT_2ADDR:
2469    case Instruction::SUB_FLOAT_2ADDR:
2470    case Instruction::MUL_FLOAT_2ADDR:
2471    case Instruction::DIV_FLOAT_2ADDR:
2472    case Instruction::REM_FLOAT_2ADDR:
2473      work_line_->CheckBinaryOp2addr(inst,
2474                                     reg_types_.Float(),
2475                                     reg_types_.Float(),
2476                                     reg_types_.Float(),
2477                                     false);
2478      break;
2479    case Instruction::ADD_DOUBLE_2ADDR:
2480    case Instruction::SUB_DOUBLE_2ADDR:
2481    case Instruction::MUL_DOUBLE_2ADDR:
2482    case Instruction::DIV_DOUBLE_2ADDR:
2483    case Instruction::REM_DOUBLE_2ADDR:
2484      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2485                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2486                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2487      break;
2488    case Instruction::ADD_INT_LIT16:
2489    case Instruction::RSUB_INT:
2490    case Instruction::MUL_INT_LIT16:
2491    case Instruction::DIV_INT_LIT16:
2492    case Instruction::REM_INT_LIT16:
2493      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2494      break;
2495    case Instruction::AND_INT_LIT16:
2496    case Instruction::OR_INT_LIT16:
2497    case Instruction::XOR_INT_LIT16:
2498      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2499      break;
2500    case Instruction::ADD_INT_LIT8:
2501    case Instruction::RSUB_INT_LIT8:
2502    case Instruction::MUL_INT_LIT8:
2503    case Instruction::DIV_INT_LIT8:
2504    case Instruction::REM_INT_LIT8:
2505    case Instruction::SHL_INT_LIT8:
2506    case Instruction::SHR_INT_LIT8:
2507    case Instruction::USHR_INT_LIT8:
2508      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2509      break;
2510    case Instruction::AND_INT_LIT8:
2511    case Instruction::OR_INT_LIT8:
2512    case Instruction::XOR_INT_LIT8:
2513      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2514      break;
2515
2516    // Special instructions.
2517    case Instruction::RETURN_VOID_BARRIER:
2518      DCHECK(Runtime::Current()->IsStarted()) << PrettyMethod(dex_method_idx_, *dex_file_);
2519      if (!IsConstructor() || IsStatic()) {
2520          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2521      }
2522      break;
2523    // Note: the following instructions encode offsets derived from class linking.
2524    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2525    // meaning if the class linking and resolution were successful.
2526    case Instruction::IGET_QUICK:
2527      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2528      break;
2529    case Instruction::IGET_WIDE_QUICK:
2530      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2531      break;
2532    case Instruction::IGET_OBJECT_QUICK:
2533      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2534      break;
2535    case Instruction::IPUT_QUICK:
2536      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2537      break;
2538    case Instruction::IPUT_WIDE_QUICK:
2539      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2540      break;
2541    case Instruction::IPUT_OBJECT_QUICK:
2542      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2543      break;
2544    case Instruction::INVOKE_VIRTUAL_QUICK:
2545    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2546      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2547      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2548      if (called_method != NULL) {
2549        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2550        const RegType& return_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
2551        if (!return_type.IsLowHalf()) {
2552          work_line_->SetResultRegisterType(return_type);
2553        } else {
2554          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2555        }
2556        just_set_result = true;
2557      }
2558      break;
2559    }
2560
2561    /* These should never appear during verification. */
2562    case Instruction::UNUSED_3E:
2563    case Instruction::UNUSED_3F:
2564    case Instruction::UNUSED_40:
2565    case Instruction::UNUSED_41:
2566    case Instruction::UNUSED_42:
2567    case Instruction::UNUSED_43:
2568    case Instruction::UNUSED_79:
2569    case Instruction::UNUSED_7A:
2570    case Instruction::UNUSED_EB:
2571    case Instruction::UNUSED_EC:
2572    case Instruction::UNUSED_ED:
2573    case Instruction::UNUSED_EE:
2574    case Instruction::UNUSED_EF:
2575    case Instruction::UNUSED_F0:
2576    case Instruction::UNUSED_F1:
2577    case Instruction::UNUSED_F2:
2578    case Instruction::UNUSED_F3:
2579    case Instruction::UNUSED_F4:
2580    case Instruction::UNUSED_F5:
2581    case Instruction::UNUSED_F6:
2582    case Instruction::UNUSED_F7:
2583    case Instruction::UNUSED_F8:
2584    case Instruction::UNUSED_F9:
2585    case Instruction::UNUSED_FA:
2586    case Instruction::UNUSED_FB:
2587    case Instruction::UNUSED_FC:
2588    case Instruction::UNUSED_FD:
2589    case Instruction::UNUSED_FE:
2590    case Instruction::UNUSED_FF:
2591      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2592      break;
2593
2594    /*
2595     * DO NOT add a "default" clause here. Without it the compiler will
2596     * complain if an instruction is missing (which is desirable).
2597     */
2598  }  // end - switch (dec_insn.opcode)
2599
2600  if (have_pending_hard_failure_) {
2601    if (Runtime::Current()->IsCompiler()) {
2602      /* When compiling, check that the last failure is a hard failure */
2603      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2604    }
2605    /* immediate failure, reject class */
2606    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2607    return false;
2608  } else if (have_pending_runtime_throw_failure_) {
2609    /* slow path will throw, mark following code as unreachable */
2610    opcode_flags = Instruction::kThrow;
2611  }
2612  /*
2613   * If we didn't just set the result register, clear it out. This ensures that you can only use
2614   * "move-result" immediately after the result is set. (We could check this statically, but it's
2615   * not expensive and it makes our debugging output cleaner.)
2616   */
2617  if (!just_set_result) {
2618    work_line_->SetResultTypeToUnknown();
2619  }
2620
2621
2622
2623  /*
2624   * Handle "branch". Tag the branch target.
2625   *
2626   * NOTE: instructions like Instruction::EQZ provide information about the
2627   * state of the register when the branch is taken or not taken. For example,
2628   * somebody could get a reference field, check it for zero, and if the
2629   * branch is taken immediately store that register in a boolean field
2630   * since the value is known to be zero. We do not currently account for
2631   * that, and will reject the code.
2632   *
2633   * TODO: avoid re-fetching the branch target
2634   */
2635  if ((opcode_flags & Instruction::kBranch) != 0) {
2636    bool isConditional, selfOkay;
2637    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2638      /* should never happen after static verification */
2639      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2640      return false;
2641    }
2642    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2643    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2644      return false;
2645    }
2646    /* update branch target, set "changed" if appropriate */
2647    if (NULL != branch_line.get()) {
2648      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2649        return false;
2650      }
2651    } else {
2652      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2653        return false;
2654      }
2655    }
2656  }
2657
2658  /*
2659   * Handle "switch". Tag all possible branch targets.
2660   *
2661   * We've already verified that the table is structurally sound, so we
2662   * just need to walk through and tag the targets.
2663   */
2664  if ((opcode_flags & Instruction::kSwitch) != 0) {
2665    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2666    const uint16_t* switch_insns = insns + offset_to_switch;
2667    int switch_count = switch_insns[1];
2668    int offset_to_targets, targ;
2669
2670    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2671      /* 0 = sig, 1 = count, 2/3 = first key */
2672      offset_to_targets = 4;
2673    } else {
2674      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2675      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2676      offset_to_targets = 2 + 2 * switch_count;
2677    }
2678
2679    /* verify each switch target */
2680    for (targ = 0; targ < switch_count; targ++) {
2681      int offset;
2682      uint32_t abs_offset;
2683
2684      /* offsets are 32-bit, and only partly endian-swapped */
2685      offset = switch_insns[offset_to_targets + targ * 2] |
2686         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2687      abs_offset = work_insn_idx_ + offset;
2688      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2689      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2690        return false;
2691      }
2692      if (!UpdateRegisters(abs_offset, work_line_.get()))
2693        return false;
2694    }
2695  }
2696
2697  /*
2698   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2699   * "try" block when they throw, control transfers out of the method.)
2700   */
2701  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2702    bool within_catch_all = false;
2703    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2704
2705    for (; iterator.HasNext(); iterator.Next()) {
2706      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2707        within_catch_all = true;
2708      }
2709      /*
2710       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2711       * "work_regs", because at runtime the exception will be thrown before the instruction
2712       * modifies any registers.
2713       */
2714      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2715        return false;
2716      }
2717    }
2718
2719    /*
2720     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2721     * instruction. This does apply to monitor-exit because of async exception handling.
2722     */
2723    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2724      /*
2725       * The state in work_line reflects the post-execution state. If the current instruction is a
2726       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2727       * it will do so before grabbing the lock).
2728       */
2729      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2730        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2731            << "expected to be within a catch-all for an instruction where a monitor is held";
2732        return false;
2733      }
2734    }
2735  }
2736
2737  /* Handle "continue". Tag the next consecutive instruction.
2738   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2739   *        because it changes work_line_ when performing peephole optimization
2740   *        and this change should not be used in those cases.
2741   */
2742  if ((opcode_flags & Instruction::kContinue) != 0) {
2743    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2744    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2745      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2746      return false;
2747    }
2748    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2749    // next instruction isn't one.
2750    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2751      return false;
2752    }
2753    if (NULL != fallthrough_line.get()) {
2754      // Make workline consistent with fallthrough computed from peephole optimization.
2755      work_line_->CopyFromLine(fallthrough_line.get());
2756    }
2757    if (insn_flags_[next_insn_idx].IsReturn()) {
2758      // For returns we only care about the operand to the return, all other registers are dead.
2759      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2760      Instruction::Code opcode = ret_inst->Opcode();
2761      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2762        work_line_->MarkAllRegistersAsConflicts();
2763      } else {
2764        if (opcode == Instruction::RETURN_WIDE) {
2765          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2766        } else {
2767          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2768        }
2769      }
2770    }
2771    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2772    if (next_line != NULL) {
2773      // Merge registers into what we have for the next instruction,
2774      // and set the "changed" flag if needed.
2775      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2776        return false;
2777      }
2778    } else {
2779      /*
2780       * We're not recording register data for the next instruction, so we don't know what the
2781       * prior state was. We have to assume that something has changed and re-evaluate it.
2782       */
2783      insn_flags_[next_insn_idx].SetChanged();
2784    }
2785  }
2786
2787  /* If we're returning from the method, make sure monitor stack is empty. */
2788  if ((opcode_flags & Instruction::kReturn) != 0) {
2789    if (!work_line_->VerifyMonitorStackEmpty()) {
2790      return false;
2791    }
2792  }
2793
2794  /*
2795   * Update start_guess. Advance to the next instruction of that's
2796   * possible, otherwise use the branch target if one was found. If
2797   * neither of those exists we're in a return or throw; leave start_guess
2798   * alone and let the caller sort it out.
2799   */
2800  if ((opcode_flags & Instruction::kContinue) != 0) {
2801    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2802  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2803    /* we're still okay if branch_target is zero */
2804    *start_guess = work_insn_idx_ + branch_target;
2805  }
2806
2807  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2808  DCHECK(insn_flags_[*start_guess].IsOpcode());
2809
2810  return true;
2811}  // NOLINT(readability/fn_size)
2812
2813const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2814  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2815  const RegType& referrer = GetDeclaringClass();
2816  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
2817  const RegType& result =
2818      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2819                                           klass->CannotBeAssignedFromOtherTypes())
2820                    : reg_types_.FromDescriptor(class_loader_, descriptor, false);
2821  if (result.IsConflict()) {
2822    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2823        << "' in " << referrer;
2824    return result;
2825  }
2826  if (klass == NULL && !result.IsUnresolvedTypes()) {
2827    dex_cache_->SetResolvedType(class_idx, result.GetClass());
2828  }
2829  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2830  // check at runtime if access is allowed and so pass here. If result is
2831  // primitive, skip the access check.
2832  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2833      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2834    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2835                                    << referrer << "' -> '" << result << "'";
2836  }
2837  return result;
2838}
2839
2840const RegType& MethodVerifier::GetCaughtExceptionType() {
2841  const RegType* common_super = NULL;
2842  if (code_item_->tries_size_ != 0) {
2843    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2844    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2845    for (uint32_t i = 0; i < handlers_size; i++) {
2846      CatchHandlerIterator iterator(handlers_ptr);
2847      for (; iterator.HasNext(); iterator.Next()) {
2848        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2849          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2850            common_super = &reg_types_.JavaLangThrowable(false);
2851          } else {
2852            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2853            if (common_super == NULL) {
2854              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2855              // as that is caught at runtime
2856              common_super = &exception;
2857            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2858              // We don't know enough about the type and the common path merge will result in
2859              // Conflict. Fail here knowing the correct thing can be done at runtime.
2860              Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2861              return reg_types_.Conflict();
2862            } else if (common_super->Equals(exception)) {
2863              // odd case, but nothing to do
2864            } else {
2865              common_super = &common_super->Merge(exception, &reg_types_);
2866              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2867            }
2868          }
2869        }
2870      }
2871      handlers_ptr = iterator.EndDataPointer();
2872    }
2873  }
2874  if (common_super == NULL) {
2875    /* no catch blocks, or no catches with classes we can find */
2876    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2877    return reg_types_.Conflict();
2878  }
2879  return *common_super;
2880}
2881
2882mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2883                                                                    MethodType method_type) {
2884  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2885  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2886  if (klass_type.IsConflict()) {
2887    std::string append(" in attempt to access method ");
2888    append += dex_file_->GetMethodName(method_id);
2889    AppendToLastFailMessage(append);
2890    return NULL;
2891  }
2892  if (klass_type.IsUnresolvedTypes()) {
2893    return NULL;  // Can't resolve Class so no more to do here
2894  }
2895  mirror::Class* klass = klass_type.GetClass();
2896  const RegType& referrer = GetDeclaringClass();
2897  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
2898  if (res_method == NULL) {
2899    const char* name = dex_file_->GetMethodName(method_id);
2900    std::string signature(dex_file_->CreateMethodSignature(method_id.proto_idx_, NULL));
2901
2902    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2903      res_method = klass->FindDirectMethod(name, signature);
2904    } else if (method_type == METHOD_INTERFACE) {
2905      res_method = klass->FindInterfaceMethod(name, signature);
2906    } else {
2907      res_method = klass->FindVirtualMethod(name, signature);
2908    }
2909    if (res_method != NULL) {
2910      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
2911    } else {
2912      // If a virtual or interface method wasn't found with the expected type, look in
2913      // the direct methods. This can happen when the wrong invoke type is used or when
2914      // a class has changed, and will be flagged as an error in later checks.
2915      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2916        res_method = klass->FindDirectMethod(name, signature);
2917      }
2918      if (res_method == NULL) {
2919        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2920                                     << PrettyDescriptor(klass) << "." << name
2921                                     << " " << signature;
2922        return NULL;
2923      }
2924    }
2925  }
2926  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2927  // enforce them here.
2928  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2929    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2930                                      << PrettyMethod(res_method);
2931    return NULL;
2932  }
2933  // Disallow any calls to class initializers.
2934  if (MethodHelper(res_method).IsClassInitializer()) {
2935    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2936                                      << PrettyMethod(res_method);
2937    return NULL;
2938  }
2939  // Check if access is allowed.
2940  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2941    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2942                                     << " from " << referrer << ")";
2943    return res_method;
2944  }
2945  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2946  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2947    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2948                                      << PrettyMethod(res_method);
2949    return NULL;
2950  }
2951  // Check that interface methods match interface classes.
2952  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2953    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2954                                    << " is in an interface class " << PrettyClass(klass);
2955    return NULL;
2956  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2957    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2958                                    << " is in a non-interface class " << PrettyClass(klass);
2959    return NULL;
2960  }
2961  // See if the method type implied by the invoke instruction matches the access flags for the
2962  // target method.
2963  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2964      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2965      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2966      ) {
2967    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2968                                       " type of " << PrettyMethod(res_method);
2969    return NULL;
2970  }
2971  return res_method;
2972}
2973
2974mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2975                                                             MethodType method_type,
2976                                                             bool is_range,
2977                                                             bool is_super) {
2978  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
2979  // we're making.
2980  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2981  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
2982  if (res_method == NULL) {  // error or class is unresolved
2983    return NULL;
2984  }
2985
2986  // If we're using invoke-super(method), make sure that the executing method's class' superclass
2987  // has a vtable entry for the target method.
2988  if (is_super) {
2989    DCHECK(method_type == METHOD_VIRTUAL);
2990    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
2991    if (super.IsUnresolvedTypes()) {
2992      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
2993                                   << PrettyMethod(dex_method_idx_, *dex_file_)
2994                                   << " to super " << PrettyMethod(res_method);
2995      return NULL;
2996    }
2997    mirror::Class* super_klass = super.GetClass();
2998    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
2999      MethodHelper mh(res_method);
3000      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3001                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3002                                   << " to super " << super
3003                                   << "." << mh.GetName()
3004                                   << mh.GetSignature();
3005      return NULL;
3006    }
3007  }
3008  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3009  // match the call to the signature. Also, we might be calling through an abstract method
3010  // definition (which doesn't have register count values).
3011  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3012  /* caught by static verifier */
3013  DCHECK(is_range || expected_args <= 5);
3014  if (expected_args > code_item_->outs_size_) {
3015    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3016        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3017    return NULL;
3018  }
3019
3020  /*
3021   * Check the "this" argument, which must be an instance of the class that declared the method.
3022   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3023   * rigorous check here (which is okay since we have to do it at runtime).
3024   */
3025  size_t actual_args = 0;
3026  if (!res_method->IsStatic()) {
3027    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3028    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3029      return NULL;
3030    }
3031    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3032      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3033      return NULL;
3034    }
3035    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3036      mirror::Class* klass = res_method->GetDeclaringClass();
3037      const RegType& res_method_class =
3038          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3039                               klass->CannotBeAssignedFromOtherTypes());
3040      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3041        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3042            << "' not instance of '" << res_method_class << "'";
3043        return NULL;
3044      }
3045    }
3046    actual_args++;
3047  }
3048  /*
3049   * Process the target method's signature. This signature may or may not
3050   * have been verified, so we can't assume it's properly formed.
3051   */
3052  MethodHelper mh(res_method);
3053  const DexFile::TypeList* params = mh.GetParameterTypeList();
3054  size_t params_size = params == NULL ? 0 : params->Size();
3055  uint32_t arg[5];
3056  if (!is_range) {
3057    inst->GetArgs(arg);
3058  }
3059  for (size_t param_index = 0; param_index < params_size; param_index++) {
3060    if (actual_args >= expected_args) {
3061      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3062          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3063          << " (where longs/doubles count twice).";
3064      return NULL;
3065    }
3066    const char* descriptor =
3067        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3068    if (descriptor == NULL) {
3069      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3070          << " missing signature component";
3071      return NULL;
3072    }
3073    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3074    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3075    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3076      return res_method;
3077    }
3078    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3079  }
3080  if (actual_args != expected_args) {
3081    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3082        << " expected " << expected_args << " arguments, found " << actual_args;
3083    return NULL;
3084  } else {
3085    return res_method;
3086  }
3087}
3088
3089mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3090                                                              RegisterLine* reg_line,
3091                                                              bool is_range) {
3092  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3093         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3094  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3095  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3096    return NULL;
3097  }
3098  mirror::Class* this_class = NULL;
3099  if (!actual_arg_type.IsUnresolvedTypes()) {
3100    this_class = actual_arg_type.GetClass();
3101  } else {
3102    const std::string& descriptor(actual_arg_type.GetDescriptor());
3103    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3104    this_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3105    if (this_class == NULL) {
3106      Thread::Current()->ClearException();
3107      // Look for a system class
3108      this_class = class_linker->FindClass(descriptor.c_str(), NULL);
3109    }
3110  }
3111  if (this_class == NULL) {
3112    return NULL;
3113  }
3114  mirror::ObjectArray<mirror::ArtMethod>* vtable = this_class->GetVTable();
3115  CHECK(vtable != NULL);
3116  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3117  CHECK(vtable_index < vtable->GetLength());
3118  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3119  CHECK(!Thread::Current()->IsExceptionPending());
3120  return res_method;
3121}
3122
3123mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3124                                                                     bool is_range) {
3125  DCHECK(Runtime::Current()->IsStarted());
3126  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3127                                                             is_range);
3128  if (res_method == NULL) {
3129    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3130    return NULL;
3131  }
3132  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3133
3134  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3135  // match the call to the signature. Also, we might be calling through an abstract method
3136  // definition (which doesn't have register count values).
3137  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3138  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3139    return NULL;
3140  }
3141  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3142  /* caught by static verifier */
3143  DCHECK(is_range || expected_args <= 5);
3144  if (expected_args > code_item_->outs_size_) {
3145    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3146        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3147    return NULL;
3148  }
3149
3150  /*
3151   * Check the "this" argument, which must be an instance of the class that declared the method.
3152   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3153   * rigorous check here (which is okay since we have to do it at runtime).
3154   */
3155  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3156    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3157    return NULL;
3158  }
3159  if (!actual_arg_type.IsZero()) {
3160    mirror::Class* klass = res_method->GetDeclaringClass();
3161    const RegType& res_method_class =
3162        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3163                             klass->CannotBeAssignedFromOtherTypes());
3164    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3165      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3166          << "' not instance of '" << res_method_class << "'";
3167      return NULL;
3168    }
3169  }
3170  /*
3171   * Process the target method's signature. This signature may or may not
3172   * have been verified, so we can't assume it's properly formed.
3173   */
3174  MethodHelper mh(res_method);
3175  const DexFile::TypeList* params = mh.GetParameterTypeList();
3176  size_t params_size = params == NULL ? 0 : params->Size();
3177  uint32_t arg[5];
3178  if (!is_range) {
3179    inst->GetArgs(arg);
3180  }
3181  size_t actual_args = 1;
3182  for (size_t param_index = 0; param_index < params_size; param_index++) {
3183    if (actual_args >= expected_args) {
3184      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3185                                        << "'. Expected " << expected_args
3186                                         << " arguments, processing argument " << actual_args
3187                                        << " (where longs/doubles count twice).";
3188      return NULL;
3189    }
3190    const char* descriptor =
3191        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3192    if (descriptor == NULL) {
3193      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3194                                        << " missing signature component";
3195      return NULL;
3196    }
3197    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_, descriptor, false);
3198    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3199    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3200      return res_method;
3201    }
3202    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3203  }
3204  if (actual_args != expected_args) {
3205    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3206              << " expected " << expected_args << " arguments, found " << actual_args;
3207    return NULL;
3208  } else {
3209    return res_method;
3210  }
3211}
3212
3213void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3214  uint32_t type_idx;
3215  if (!is_filled) {
3216    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3217    type_idx = inst->VRegC_22c();
3218  } else if (!is_range) {
3219    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3220    type_idx = inst->VRegB_35c();
3221  } else {
3222    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3223    type_idx = inst->VRegB_3rc();
3224  }
3225  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3226  if (res_type.IsConflict()) {  // bad class
3227    DCHECK_NE(failures_.size(), 0U);
3228  } else {
3229    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3230    if (!res_type.IsArrayTypes()) {
3231      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3232    } else if (!is_filled) {
3233      /* make sure "size" register is valid type */
3234      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3235      /* set register type to array class */
3236      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3237      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3238    } else {
3239      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3240      // the list and fail. It's legal, if silly, for arg_count to be zero.
3241      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_);
3242      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3243      uint32_t arg[5];
3244      if (!is_range) {
3245        inst->GetArgs(arg);
3246      }
3247      for (size_t ui = 0; ui < arg_count; ui++) {
3248        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3249        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3250          work_line_->SetResultRegisterType(reg_types_.Conflict());
3251          return;
3252        }
3253      }
3254      // filled-array result goes into "result" register
3255      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3256      work_line_->SetResultRegisterType(precise_type);
3257    }
3258  }
3259}
3260
3261void MethodVerifier::VerifyAGet(const Instruction* inst,
3262                                const RegType& insn_type, bool is_primitive) {
3263  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3264  if (!index_type.IsArrayIndexTypes()) {
3265    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3266  } else {
3267    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3268    if (array_type.IsZero()) {
3269      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3270      // instruction type. TODO: have a proper notion of bottom here.
3271      if (!is_primitive || insn_type.IsCategory1Types()) {
3272        // Reference or category 1
3273        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3274      } else {
3275        // Category 2
3276        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3277                                        reg_types_.FromCat2ConstHi(0, false));
3278      }
3279    } else if (!array_type.IsArrayTypes()) {
3280      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3281    } else {
3282      /* verify the class */
3283      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3284      if (!component_type.IsReferenceTypes() && !is_primitive) {
3285        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3286            << " source for aget-object";
3287      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3288        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3289            << " source for category 1 aget";
3290      } else if (is_primitive && !insn_type.Equals(component_type) &&
3291                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3292                 (insn_type.IsLong() && component_type.IsDouble()))) {
3293        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3294            << " incompatible with aget of type " << insn_type;
3295      } else {
3296        // Use knowledge of the field type which is stronger than the type inferred from the
3297        // instruction, which can't differentiate object types and ints from floats, longs from
3298        // doubles.
3299        if (!component_type.IsLowHalf()) {
3300          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3301        } else {
3302          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3303                                          component_type.HighHalf(&reg_types_));
3304        }
3305      }
3306    }
3307  }
3308}
3309
3310void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3311                                        const uint32_t vregA) {
3312  // Primitive assignability rules are weaker than regular assignability rules.
3313  bool instruction_compatible;
3314  bool value_compatible;
3315  const RegType& value_type = work_line_->GetRegisterType(vregA);
3316  if (target_type.IsIntegralTypes()) {
3317    instruction_compatible = target_type.Equals(insn_type);
3318    value_compatible = value_type.IsIntegralTypes();
3319  } else if (target_type.IsFloat()) {
3320    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3321    value_compatible = value_type.IsFloatTypes();
3322  } else if (target_type.IsLong()) {
3323    instruction_compatible = insn_type.IsLong();
3324    value_compatible = value_type.IsLongTypes();
3325  } else if (target_type.IsDouble()) {
3326    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3327    value_compatible = value_type.IsDoubleTypes();
3328  } else {
3329    instruction_compatible = false;  // reference with primitive store
3330    value_compatible = false;  // unused
3331  }
3332  if (!instruction_compatible) {
3333    // This is a global failure rather than a class change failure as the instructions and
3334    // the descriptors for the type should have been consistent within the same file at
3335    // compile time.
3336    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3337        << "' but expected type '" << target_type << "'";
3338    return;
3339  }
3340  if (!value_compatible) {
3341    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3342        << " of type " << value_type << " but expected " << target_type << " for put";
3343    return;
3344  }
3345}
3346
3347void MethodVerifier::VerifyAPut(const Instruction* inst,
3348                             const RegType& insn_type, bool is_primitive) {
3349  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3350  if (!index_type.IsArrayIndexTypes()) {
3351    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3352  } else {
3353    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3354    if (array_type.IsZero()) {
3355      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3356      // instruction type.
3357    } else if (!array_type.IsArrayTypes()) {
3358      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3359    } else {
3360      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_);
3361      const uint32_t vregA = inst->VRegA_23x();
3362      if (is_primitive) {
3363        VerifyPrimitivePut(component_type, insn_type, vregA);
3364      } else {
3365        if (!component_type.IsReferenceTypes()) {
3366          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3367              << " source for aput-object";
3368        } else {
3369          // The instruction agrees with the type of array, confirm the value to be stored does too
3370          // Note: we use the instruction type (rather than the component type) for aput-object as
3371          // incompatible classes will be caught at runtime as an array store exception
3372          work_line_->VerifyRegisterType(vregA, insn_type);
3373        }
3374      }
3375    }
3376  }
3377}
3378
3379mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3380  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3381  // Check access to class
3382  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3383  if (klass_type.IsConflict()) {  // bad class
3384    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3385                                         field_idx, dex_file_->GetFieldName(field_id),
3386                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3387    return NULL;
3388  }
3389  if (klass_type.IsUnresolvedTypes()) {
3390    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3391  }
3392  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3393                                                                               field_idx,
3394                                                                               dex_cache_,
3395                                                                               class_loader_);
3396  if (field == NULL) {
3397    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3398              << dex_file_->GetFieldName(field_id) << ") in "
3399              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3400    DCHECK(Thread::Current()->IsExceptionPending());
3401    Thread::Current()->ClearException();
3402    return NULL;
3403  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3404                                                  field->GetAccessFlags())) {
3405    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3406                                    << " from " << GetDeclaringClass();
3407    return NULL;
3408  } else if (!field->IsStatic()) {
3409    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3410    return NULL;
3411  } else {
3412    return field;
3413  }
3414}
3415
3416mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3417  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3418  // Check access to class
3419  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3420  if (klass_type.IsConflict()) {
3421    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3422                                         field_idx, dex_file_->GetFieldName(field_id),
3423                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3424    return NULL;
3425  }
3426  if (klass_type.IsUnresolvedTypes()) {
3427    return NULL;  // Can't resolve Class so no more to do here
3428  }
3429  mirror::ArtField* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(*dex_file_,
3430                                                                               field_idx,
3431                                                                               dex_cache_,
3432                                                                               class_loader_);
3433  if (field == NULL) {
3434    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3435              << dex_file_->GetFieldName(field_id) << ") in "
3436              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3437    DCHECK(Thread::Current()->IsExceptionPending());
3438    Thread::Current()->ClearException();
3439    return NULL;
3440  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3441                                                  field->GetAccessFlags())) {
3442    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3443                                    << " from " << GetDeclaringClass();
3444    return NULL;
3445  } else if (field->IsStatic()) {
3446    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3447                                    << " to not be static";
3448    return NULL;
3449  } else if (obj_type.IsZero()) {
3450    // Cannot infer and check type, however, access will cause null pointer exception
3451    return field;
3452  } else {
3453    mirror::Class* klass = field->GetDeclaringClass();
3454    const RegType& field_klass =
3455        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3456                             klass, klass->CannotBeAssignedFromOtherTypes());
3457    if (obj_type.IsUninitializedTypes() &&
3458        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3459            !field_klass.Equals(GetDeclaringClass()))) {
3460      // Field accesses through uninitialized references are only allowable for constructors where
3461      // the field is declared in this class
3462      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3463                                        << " of a not fully initialized object within the context"
3464                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3465      return NULL;
3466    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3467      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3468      // of C1. For resolution to occur the declared class of the field must be compatible with
3469      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3470      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3471                                  << " from object of type " << obj_type;
3472      return NULL;
3473    } else {
3474      return field;
3475    }
3476  }
3477}
3478
3479void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3480                                 bool is_primitive, bool is_static) {
3481  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3482  mirror::ArtField* field;
3483  if (is_static) {
3484    field = GetStaticField(field_idx);
3485  } else {
3486    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3487    field = GetInstanceField(object_type, field_idx);
3488  }
3489  const char* descriptor;
3490  mirror::ClassLoader* loader;
3491  if (field != NULL) {
3492    descriptor = FieldHelper(field).GetTypeDescriptor();
3493    loader = field->GetDeclaringClass()->GetClassLoader();
3494  } else {
3495    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3496    descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3497    loader = class_loader_;
3498  }
3499  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3500  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3501  if (is_primitive) {
3502    if (field_type.Equals(insn_type) ||
3503        (field_type.IsFloat() && insn_type.IsInteger()) ||
3504        (field_type.IsDouble() && insn_type.IsLong())) {
3505      // expected that read is of the correct primitive type or that int reads are reading
3506      // floats or long reads are reading doubles
3507    } else {
3508      // This is a global failure rather than a class change failure as the instructions and
3509      // the descriptors for the type should have been consistent within the same file at
3510      // compile time
3511      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3512                                        << " to be of type '" << insn_type
3513                                        << "' but found type '" << field_type << "' in get";
3514      return;
3515    }
3516  } else {
3517    if (!insn_type.IsAssignableFrom(field_type)) {
3518      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3519                                        << " to be compatible with type '" << insn_type
3520                                        << "' but found type '" << field_type
3521                                        << "' in get-object";
3522      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3523      return;
3524    }
3525  }
3526  if (!field_type.IsLowHalf()) {
3527    work_line_->SetRegisterType(vregA, field_type);
3528  } else {
3529    work_line_->SetRegisterTypeWide(vregA, field_type, field_type.HighHalf(&reg_types_));
3530  }
3531}
3532
3533void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3534                                 bool is_primitive, bool is_static) {
3535  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3536  mirror::ArtField* field;
3537  if (is_static) {
3538    field = GetStaticField(field_idx);
3539  } else {
3540    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3541    field = GetInstanceField(object_type, field_idx);
3542  }
3543  const char* descriptor;
3544  mirror::ClassLoader* loader;
3545  if (field != NULL) {
3546    descriptor = FieldHelper(field).GetTypeDescriptor();
3547    loader = field->GetDeclaringClass()->GetClassLoader();
3548  } else {
3549    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3550    descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3551    loader = class_loader_;
3552  }
3553  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3554  if (field != NULL) {
3555    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3556      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3557                                      << " from other class " << GetDeclaringClass();
3558      return;
3559    }
3560  }
3561  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3562  if (is_primitive) {
3563    VerifyPrimitivePut(field_type, insn_type, vregA);
3564  } else {
3565    if (!insn_type.IsAssignableFrom(field_type)) {
3566      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3567                                        << " to be compatible with type '" << insn_type
3568                                        << "' but found type '" << field_type
3569                                        << "' in put-object";
3570      return;
3571    }
3572    work_line_->VerifyRegisterType(vregA, field_type);
3573  }
3574}
3575
3576// Look for an instance field with this offset.
3577// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3578static mirror::ArtField* FindInstanceFieldWithOffset(const mirror::Class* klass,
3579                                                  uint32_t field_offset)
3580    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3581  const mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3582  if (instance_fields != NULL) {
3583    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3584      mirror::ArtField* field = instance_fields->Get(i);
3585      if (field->GetOffset().Uint32Value() == field_offset) {
3586        return field;
3587      }
3588    }
3589  }
3590  // We did not find field in class: look into superclass.
3591  if (klass->GetSuperClass() != NULL) {
3592    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3593  } else {
3594    return NULL;
3595  }
3596}
3597
3598// Returns the access field of a quick field access (iget/iput-quick) or NULL
3599// if it cannot be found.
3600mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3601                                                   RegisterLine* reg_line) {
3602  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3603         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3604         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3605         inst->Opcode() == Instruction::IPUT_QUICK ||
3606         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3607         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3608  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3609  mirror::Class* object_class = NULL;
3610  if (!object_type.IsUnresolvedTypes()) {
3611    object_class = object_type.GetClass();
3612  } else {
3613    // We need to resolve the class from its descriptor.
3614    const std::string& descriptor(object_type.GetDescriptor());
3615    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3616    object_class = class_linker->FindClass(descriptor.c_str(), class_loader_);
3617    if (object_class == NULL) {
3618      Thread::Current()->ClearException();
3619      // Look for a system class
3620      object_class = class_linker->FindClass(descriptor.c_str(), NULL);
3621    }
3622  }
3623  if (object_class == NULL) {
3624    // Failed to get the Class* from reg type.
3625    LOG(WARNING) << "Failed to get Class* from " << object_type;
3626    return NULL;
3627  }
3628  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3629  return FindInstanceFieldWithOffset(object_class, field_offset);
3630}
3631
3632void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3633                                     bool is_primitive) {
3634  DCHECK(Runtime::Current()->IsStarted());
3635  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3636  if (field == NULL) {
3637    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3638    return;
3639  }
3640  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3641  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3642  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3643  const uint32_t vregA = inst->VRegA_22c();
3644  if (is_primitive) {
3645    if (field_type.Equals(insn_type) ||
3646        (field_type.IsFloat() && insn_type.IsIntegralTypes()) ||
3647        (field_type.IsDouble() && insn_type.IsLongTypes())) {
3648      // expected that read is of the correct primitive type or that int reads are reading
3649      // floats or long reads are reading doubles
3650    } else {
3651      // This is a global failure rather than a class change failure as the instructions and
3652      // the descriptors for the type should have been consistent within the same file at
3653      // compile time
3654      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3655                                        << " to be of type '" << insn_type
3656                                        << "' but found type '" << field_type << "' in get";
3657      return;
3658    }
3659  } else {
3660    if (!insn_type.IsAssignableFrom(field_type)) {
3661      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3662                                        << " to be compatible with type '" << insn_type
3663                                        << "' but found type '" << field_type
3664                                        << "' in get-object";
3665      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3666      return;
3667    }
3668  }
3669  if (!field_type.IsLowHalf()) {
3670    work_line_->SetRegisterType(vregA, field_type);
3671  } else {
3672    work_line_->SetRegisterTypeWide(vregA, field_type, field_type.HighHalf(&reg_types_));
3673  }
3674}
3675
3676void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3677                                     bool is_primitive) {
3678  DCHECK(Runtime::Current()->IsStarted());
3679  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3680  if (field == NULL) {
3681    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3682    return;
3683  }
3684  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3685  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3686  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3687  if (field != NULL) {
3688    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3689      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3690                                      << " from other class " << GetDeclaringClass();
3691      return;
3692    }
3693  }
3694  const uint32_t vregA = inst->VRegA_22c();
3695  if (is_primitive) {
3696    // Primitive field assignability rules are weaker than regular assignability rules
3697    bool instruction_compatible;
3698    bool value_compatible;
3699    const RegType& value_type = work_line_->GetRegisterType(vregA);
3700    if (field_type.IsIntegralTypes()) {
3701      instruction_compatible = insn_type.IsIntegralTypes();
3702      value_compatible = value_type.IsIntegralTypes();
3703    } else if (field_type.IsFloat()) {
3704      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3705      value_compatible = value_type.IsFloatTypes();
3706    } else if (field_type.IsLong()) {
3707      instruction_compatible = insn_type.IsLong();
3708      value_compatible = value_type.IsLongTypes();
3709    } else if (field_type.IsDouble()) {
3710      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3711      value_compatible = value_type.IsDoubleTypes();
3712    } else {
3713      instruction_compatible = false;  // reference field with primitive store
3714      value_compatible = false;  // unused
3715    }
3716    if (!instruction_compatible) {
3717      // This is a global failure rather than a class change failure as the instructions and
3718      // the descriptors for the type should have been consistent within the same file at
3719      // compile time
3720      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3721                                        << " to be of type '" << insn_type
3722                                        << "' but found type '" << field_type
3723                                        << "' in put";
3724      return;
3725    }
3726    if (!value_compatible) {
3727      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3728          << " of type " << value_type
3729          << " but expected " << field_type
3730          << " for store to " << PrettyField(field) << " in put";
3731      return;
3732    }
3733  } else {
3734    if (!insn_type.IsAssignableFrom(field_type)) {
3735      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3736                                        << " to be compatible with type '" << insn_type
3737                                        << "' but found type '" << field_type
3738                                        << "' in put-object";
3739      return;
3740    }
3741    work_line_->VerifyRegisterType(vregA, field_type);
3742  }
3743}
3744
3745bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3746  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3747    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3748    return false;
3749  }
3750  return true;
3751}
3752
3753bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3754  bool changed = true;
3755  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3756  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3757    /*
3758     * We haven't processed this instruction before, and we haven't touched the registers here, so
3759     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3760     * only way a register can transition out of "unknown", so this is not just an optimization.)
3761     */
3762    if (!insn_flags_[next_insn].IsReturn()) {
3763      target_line->CopyFromLine(merge_line);
3764    } else {
3765      // Verify that the monitor stack is empty on return.
3766      if (!merge_line->VerifyMonitorStackEmpty()) {
3767        return false;
3768      }
3769      // For returns we only care about the operand to the return, all other registers are dead.
3770      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3771      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3772      Instruction::Code opcode = ret_inst->Opcode();
3773      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3774        target_line->MarkAllRegistersAsConflicts();
3775      } else {
3776        target_line->CopyFromLine(merge_line);
3777        if (opcode == Instruction::RETURN_WIDE) {
3778          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3779        } else {
3780          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3781        }
3782      }
3783    }
3784  } else {
3785    UniquePtr<RegisterLine> copy(gDebugVerify ?
3786                                 new RegisterLine(target_line->NumRegs(), this) :
3787                                 NULL);
3788    if (gDebugVerify) {
3789      copy->CopyFromLine(target_line);
3790    }
3791    changed = target_line->MergeRegisters(merge_line);
3792    if (have_pending_hard_failure_) {
3793      return false;
3794    }
3795    if (gDebugVerify && changed) {
3796      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3797                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3798                      << *copy.get() << "  MERGE\n"
3799                      << *merge_line << "  ==\n"
3800                      << *target_line << "\n";
3801    }
3802  }
3803  if (changed) {
3804    insn_flags_[next_insn].SetChanged();
3805  }
3806  return true;
3807}
3808
3809InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3810  return &insn_flags_[work_insn_idx_];
3811}
3812
3813const RegType& MethodVerifier::GetMethodReturnType() {
3814  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3815  const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3816  uint16_t return_type_idx = proto_id.return_type_idx_;
3817  const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3818  return reg_types_.FromDescriptor(class_loader_, descriptor, false);
3819}
3820
3821const RegType& MethodVerifier::GetDeclaringClass() {
3822  if (declaring_class_ == NULL) {
3823    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3824    const char* descriptor
3825        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3826    if (mirror_method_ != NULL) {
3827      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3828      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3829                                               klass->CannotBeAssignedFromOtherTypes());
3830    } else {
3831      declaring_class_ = &reg_types_.FromDescriptor(class_loader_, descriptor, false);
3832    }
3833  }
3834  return *declaring_class_;
3835}
3836
3837void MethodVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits,
3838                                       size_t* log2_max_gc_pc) {
3839  size_t local_gc_points = 0;
3840  size_t max_insn = 0;
3841  size_t max_ref_reg = -1;
3842  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
3843    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
3844      local_gc_points++;
3845      max_insn = i;
3846      RegisterLine* line = reg_table_.GetLine(i);
3847      max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg);
3848    }
3849  }
3850  *gc_points = local_gc_points;
3851  *ref_bitmap_bits = max_ref_reg + 1;  // if max register is 0 we need 1 bit to encode (ie +1)
3852  size_t i = 0;
3853  while ((1U << i) <= max_insn) {
3854    i++;
3855  }
3856  *log2_max_gc_pc = i;
3857}
3858
3859MethodVerifier::MethodSafeCastSet* MethodVerifier::GenerateSafeCastSet() {
3860  /*
3861   * Walks over the method code and adds any cast instructions in which
3862   * the type cast is implicit to a set, which is used in the code generation
3863   * to elide these casts.
3864   */
3865  if (!failure_messages_.empty()) {
3866    return NULL;
3867  }
3868  UniquePtr<MethodSafeCastSet> mscs;
3869  const Instruction* inst = Instruction::At(code_item_->insns_);
3870  const Instruction* end = Instruction::At(code_item_->insns_ +
3871                                           code_item_->insns_size_in_code_units_);
3872
3873  for (; inst < end; inst = inst->Next()) {
3874    if (Instruction::CHECK_CAST != inst->Opcode()) {
3875      continue;
3876    }
3877    uint32_t dex_pc = inst->GetDexPc(code_item_->insns_);
3878    RegisterLine* line = reg_table_.GetLine(dex_pc);
3879    const RegType& reg_type(line->GetRegisterType(inst->VRegA_21c()));
3880    const RegType& cast_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
3881    if (cast_type.IsStrictlyAssignableFrom(reg_type)) {
3882      if (mscs.get() == NULL) {
3883        mscs.reset(new MethodSafeCastSet());
3884      }
3885      mscs->insert(dex_pc);
3886    }
3887  }
3888  return mscs.release();
3889}
3890
3891MethodVerifier::PcToConcreteMethodMap* MethodVerifier::GenerateDevirtMap() {
3892  // It is risky to rely on reg_types for sharpening in cases of soft
3893  // verification, we might end up sharpening to a wrong implementation. Just abort.
3894  if (!failure_messages_.empty()) {
3895    return NULL;
3896  }
3897
3898  UniquePtr<PcToConcreteMethodMap> pc_to_concrete_method_map;
3899  const uint16_t* insns = code_item_->insns_;
3900  const Instruction* inst = Instruction::At(insns);
3901  const Instruction* end = Instruction::At(insns + code_item_->insns_size_in_code_units_);
3902
3903  for (; inst < end; inst = inst->Next()) {
3904    bool is_virtual   = (inst->Opcode() == Instruction::INVOKE_VIRTUAL) ||
3905        (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE);
3906    bool is_interface = (inst->Opcode() == Instruction::INVOKE_INTERFACE) ||
3907        (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
3908
3909    if (!is_interface && !is_virtual) {
3910      continue;
3911    }
3912    // Get reg type for register holding the reference to the object that will be dispatched upon.
3913    uint32_t dex_pc = inst->GetDexPc(insns);
3914    RegisterLine* line = reg_table_.GetLine(dex_pc);
3915    bool is_range = (inst->Opcode() ==  Instruction::INVOKE_VIRTUAL_RANGE) ||
3916        (inst->Opcode() ==  Instruction::INVOKE_INTERFACE_RANGE);
3917    const RegType&
3918        reg_type(line->GetRegisterType(is_range ? inst->VRegC_3rc() : inst->VRegC_35c()));
3919
3920    if (!reg_type.HasClass()) {
3921      // We will compute devirtualization information only when we know the Class of the reg type.
3922      continue;
3923    }
3924    mirror::Class* reg_class = reg_type.GetClass();
3925    if (reg_class->IsInterface()) {
3926      // We can't devirtualize when the known type of the register is an interface.
3927      continue;
3928    }
3929    if (reg_class->IsAbstract() && !reg_class->IsArrayClass()) {
3930      // We can't devirtualize abstract classes except on arrays of abstract classes.
3931      continue;
3932    }
3933    mirror::ArtMethod* abstract_method =
3934        dex_cache_->GetResolvedMethod(is_range ? inst->VRegB_3rc() : inst->VRegB_35c());
3935    if (abstract_method == NULL) {
3936      // If the method is not found in the cache this means that it was never found
3937      // by ResolveMethodAndCheckAccess() called when verifying invoke_*.
3938      continue;
3939    }
3940    // Find the concrete method.
3941    mirror::ArtMethod* concrete_method = NULL;
3942    if (is_interface) {
3943      concrete_method = reg_type.GetClass()->FindVirtualMethodForInterface(abstract_method);
3944    }
3945    if (is_virtual) {
3946      concrete_method = reg_type.GetClass()->FindVirtualMethodForVirtual(abstract_method);
3947    }
3948    if (concrete_method == NULL || concrete_method->IsAbstract()) {
3949      // In cases where concrete_method is not found, or is abstract, continue to the next invoke.
3950      continue;
3951    }
3952    if (reg_type.IsPreciseReference() || concrete_method->IsFinal() ||
3953        concrete_method->GetDeclaringClass()->IsFinal()) {
3954      // If we knew exactly the class being dispatched upon, or if the target method cannot be
3955      // overridden record the target to be used in the compiler driver.
3956      if (pc_to_concrete_method_map.get() == NULL) {
3957        pc_to_concrete_method_map.reset(new PcToConcreteMethodMap());
3958      }
3959      MethodReference concrete_ref(
3960          concrete_method->GetDeclaringClass()->GetDexCache()->GetDexFile(),
3961          concrete_method->GetDexMethodIndex());
3962      pc_to_concrete_method_map->Put(dex_pc, concrete_ref);
3963    }
3964  }
3965  return pc_to_concrete_method_map.release();
3966}
3967
3968const std::vector<uint8_t>* MethodVerifier::GenerateGcMap() {
3969  size_t num_entries, ref_bitmap_bits, pc_bits;
3970  ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits);
3971  // There's a single byte to encode the size of each bitmap
3972  if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) {
3973    // TODO: either a better GC map format or per method failures
3974    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3975       << ref_bitmap_bits << " registers";
3976    return NULL;
3977  }
3978  size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8;
3979  // There are 2 bytes to encode the number of entries
3980  if (num_entries >= 65536) {
3981    // TODO: either a better GC map format or per method failures
3982    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3983       << num_entries << " entries";
3984    return NULL;
3985  }
3986  size_t pc_bytes;
3987  RegisterMapFormat format;
3988  if (pc_bits <= 8) {
3989    format = kRegMapFormatCompact8;
3990    pc_bytes = 1;
3991  } else if (pc_bits <= 16) {
3992    format = kRegMapFormatCompact16;
3993    pc_bytes = 2;
3994  } else {
3995    // TODO: either a better GC map format or per method failures
3996    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with "
3997       << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)";
3998    return NULL;
3999  }
4000  size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4;
4001  std::vector<uint8_t>* table = new std::vector<uint8_t>;
4002  if (table == NULL) {
4003    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")";
4004    return NULL;
4005  }
4006  table->reserve(table_size);
4007  // Write table header
4008  table->push_back(format | ((ref_bitmap_bytes >> DexPcToReferenceMap::kRegMapFormatShift) &
4009                             ~DexPcToReferenceMap::kRegMapFormatMask));
4010  table->push_back(ref_bitmap_bytes & 0xFF);
4011  table->push_back(num_entries & 0xFF);
4012  table->push_back((num_entries >> 8) & 0xFF);
4013  // Write table data
4014  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4015    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4016      table->push_back(i & 0xFF);
4017      if (pc_bytes == 2) {
4018        table->push_back((i >> 8) & 0xFF);
4019      }
4020      RegisterLine* line = reg_table_.GetLine(i);
4021      line->WriteReferenceBitMap(*table, ref_bitmap_bytes);
4022    }
4023  }
4024  DCHECK_EQ(table->size(), table_size);
4025  return table;
4026}
4027
4028void MethodVerifier::VerifyGcMap(const std::vector<uint8_t>& data) {
4029  // Check that for every GC point there is a map entry, there aren't entries for non-GC points,
4030  // that the table data is well formed and all references are marked (or not) in the bitmap
4031  DexPcToReferenceMap map(&data[0], data.size());
4032  size_t map_index = 0;
4033  for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) {
4034    const uint8_t* reg_bitmap = map.FindBitMap(i, false);
4035    if (insn_flags_[i].IsCompileTimeInfoPoint()) {
4036      CHECK_LT(map_index, map.NumEntries());
4037      CHECK_EQ(map.GetDexPc(map_index), i);
4038      CHECK_EQ(map.GetBitMap(map_index), reg_bitmap);
4039      map_index++;
4040      RegisterLine* line = reg_table_.GetLine(i);
4041      for (size_t j = 0; j < code_item_->registers_size_; j++) {
4042        if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) {
4043          CHECK_LT(j / 8, map.RegWidth());
4044          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1);
4045        } else if ((j / 8) < map.RegWidth()) {
4046          CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0);
4047        } else {
4048          // If a register doesn't contain a reference then the bitmap may be shorter than the line
4049        }
4050      }
4051    } else {
4052      CHECK(reg_bitmap == NULL);
4053    }
4054  }
4055}
4056
4057void MethodVerifier::SetDexGcMap(MethodReference ref, const std::vector<uint8_t>& gc_map) {
4058  DCHECK(Runtime::Current()->IsCompiler());
4059  {
4060    WriterMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4061    DexGcMapTable::iterator it = dex_gc_maps_->find(ref);
4062    if (it != dex_gc_maps_->end()) {
4063      delete it->second;
4064      dex_gc_maps_->erase(it);
4065    }
4066    dex_gc_maps_->Put(ref, &gc_map);
4067  }
4068  DCHECK(GetDexGcMap(ref) != NULL);
4069}
4070
4071
4072void  MethodVerifier::SetSafeCastMap(MethodReference ref, const MethodSafeCastSet* cast_set) {
4073  DCHECK(Runtime::Current()->IsCompiler());
4074  WriterMutexLock mu(Thread::Current(), *safecast_map_lock_);
4075  SafeCastMap::iterator it = safecast_map_->find(ref);
4076  if (it != safecast_map_->end()) {
4077    delete it->second;
4078    safecast_map_->erase(it);
4079  }
4080  safecast_map_->Put(ref, cast_set);
4081  DCHECK(safecast_map_->find(ref) != safecast_map_->end());
4082}
4083
4084bool MethodVerifier::IsSafeCast(MethodReference ref, uint32_t pc) {
4085  DCHECK(Runtime::Current()->IsCompiler());
4086  ReaderMutexLock mu(Thread::Current(), *safecast_map_lock_);
4087  SafeCastMap::const_iterator it = safecast_map_->find(ref);
4088  if (it == safecast_map_->end()) {
4089    return false;
4090  }
4091
4092  // Look up the cast address in the set of safe casts
4093  MethodVerifier::MethodSafeCastSet::const_iterator cast_it = it->second->find(pc);
4094  return cast_it != it->second->end();
4095}
4096
4097const std::vector<uint8_t>* MethodVerifier::GetDexGcMap(MethodReference ref) {
4098  DCHECK(Runtime::Current()->IsCompiler());
4099  ReaderMutexLock mu(Thread::Current(), *dex_gc_maps_lock_);
4100  DexGcMapTable::const_iterator it = dex_gc_maps_->find(ref);
4101  CHECK(it != dex_gc_maps_->end())
4102    << "Didn't find GC map for: " << PrettyMethod(ref.dex_method_index, *ref.dex_file);
4103  CHECK(it->second != NULL);
4104  return it->second;
4105}
4106
4107void  MethodVerifier::SetDevirtMap(MethodReference ref,
4108                                   const PcToConcreteMethodMap* devirt_map) {
4109  DCHECK(Runtime::Current()->IsCompiler());
4110  WriterMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4111  DevirtualizationMapTable::iterator it = devirt_maps_->find(ref);
4112  if (it != devirt_maps_->end()) {
4113    delete it->second;
4114    devirt_maps_->erase(it);
4115  }
4116
4117  devirt_maps_->Put(ref, devirt_map);
4118  DCHECK(devirt_maps_->find(ref) != devirt_maps_->end());
4119}
4120
4121const MethodReference* MethodVerifier::GetDevirtMap(const MethodReference& ref,
4122                                                                    uint32_t dex_pc) {
4123  DCHECK(Runtime::Current()->IsCompiler());
4124  ReaderMutexLock mu(Thread::Current(), *devirt_maps_lock_);
4125  DevirtualizationMapTable::const_iterator it = devirt_maps_->find(ref);
4126  if (it == devirt_maps_->end()) {
4127    return NULL;
4128  }
4129
4130  // Look up the PC in the map, get the concrete method to execute and return its reference.
4131  MethodVerifier::PcToConcreteMethodMap::const_iterator pc_to_concrete_method
4132      = it->second->find(dex_pc);
4133  if (pc_to_concrete_method != it->second->end()) {
4134    return &(pc_to_concrete_method->second);
4135  } else {
4136    return NULL;
4137  }
4138}
4139
4140std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4141  RegisterLine* line = reg_table_.GetLine(dex_pc);
4142  std::vector<int32_t> result;
4143  for (size_t i = 0; i < line->NumRegs(); ++i) {
4144    const RegType& type = line->GetRegisterType(i);
4145    if (type.IsConstant()) {
4146      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4147      result.push_back(type.ConstantValue());
4148    } else if (type.IsConstantLo()) {
4149      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4150      result.push_back(type.ConstantValueLo());
4151    } else if (type.IsConstantHi()) {
4152      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4153      result.push_back(type.ConstantValueHi());
4154    } else if (type.IsIntegralTypes()) {
4155      result.push_back(kIntVReg);
4156      result.push_back(0);
4157    } else if (type.IsFloat()) {
4158      result.push_back(kFloatVReg);
4159      result.push_back(0);
4160    } else if (type.IsLong()) {
4161      result.push_back(kLongLoVReg);
4162      result.push_back(0);
4163      result.push_back(kLongHiVReg);
4164      result.push_back(0);
4165      ++i;
4166    } else if (type.IsDouble()) {
4167      result.push_back(kDoubleLoVReg);
4168      result.push_back(0);
4169      result.push_back(kDoubleHiVReg);
4170      result.push_back(0);
4171      ++i;
4172    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4173      result.push_back(kUndefined);
4174      result.push_back(0);
4175    } else {
4176      CHECK(type.IsNonZeroReferenceTypes());
4177      result.push_back(kReferenceVReg);
4178      result.push_back(0);
4179    }
4180  }
4181  return result;
4182}
4183
4184bool MethodVerifier::IsCandidateForCompilation(MethodReference& method_ref,
4185                                               const uint32_t access_flags) {
4186#ifdef ART_SEA_IR_MODE
4187    bool use_sea = Runtime::Current()->IsSeaIRMode();
4188    use_sea = use_sea && (std::string::npos != PrettyMethod(
4189                          method_ref.dex_method_index, *(method_ref.dex_file)).find("fibonacci"));
4190    if (use_sea) return true;
4191#endif
4192  // Don't compile class initializers, ever.
4193  if (((access_flags & kAccConstructor) != 0) && ((access_flags & kAccStatic) != 0)) {
4194    return false;
4195  }
4196  return (Runtime::Current()->GetCompilerFilter() != Runtime::kInterpretOnly);
4197}
4198
4199ReaderWriterMutex* MethodVerifier::dex_gc_maps_lock_ = NULL;
4200MethodVerifier::DexGcMapTable* MethodVerifier::dex_gc_maps_ = NULL;
4201
4202ReaderWriterMutex* MethodVerifier::safecast_map_lock_ = NULL;
4203MethodVerifier::SafeCastMap* MethodVerifier::safecast_map_ = NULL;
4204
4205ReaderWriterMutex* MethodVerifier::devirt_maps_lock_ = NULL;
4206MethodVerifier::DevirtualizationMapTable* MethodVerifier::devirt_maps_ = NULL;
4207
4208ReaderWriterMutex* MethodVerifier::rejected_classes_lock_ = NULL;
4209MethodVerifier::RejectedClassesTable* MethodVerifier::rejected_classes_ = NULL;
4210
4211void MethodVerifier::Init() {
4212  if (Runtime::Current()->IsCompiler()) {
4213    dex_gc_maps_lock_ = new ReaderWriterMutex("verifier GC maps lock");
4214    Thread* self = Thread::Current();
4215    {
4216      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4217      dex_gc_maps_ = new MethodVerifier::DexGcMapTable;
4218    }
4219
4220    safecast_map_lock_ = new ReaderWriterMutex("verifier Cast Elision lock");
4221    {
4222      WriterMutexLock mu(self, *safecast_map_lock_);
4223      safecast_map_ = new MethodVerifier::SafeCastMap();
4224    }
4225
4226    devirt_maps_lock_ = new ReaderWriterMutex("verifier Devirtualization lock");
4227
4228    {
4229      WriterMutexLock mu(self, *devirt_maps_lock_);
4230      devirt_maps_ = new MethodVerifier::DevirtualizationMapTable();
4231    }
4232
4233    rejected_classes_lock_ = new ReaderWriterMutex("verifier rejected classes lock");
4234    {
4235      WriterMutexLock mu(self, *rejected_classes_lock_);
4236      rejected_classes_ = new MethodVerifier::RejectedClassesTable;
4237    }
4238  }
4239  art::verifier::RegTypeCache::Init();
4240}
4241
4242void MethodVerifier::Shutdown() {
4243  if (Runtime::Current()->IsCompiler()) {
4244    Thread* self = Thread::Current();
4245    {
4246      WriterMutexLock mu(self, *dex_gc_maps_lock_);
4247      STLDeleteValues(dex_gc_maps_);
4248      delete dex_gc_maps_;
4249      dex_gc_maps_ = NULL;
4250    }
4251    delete dex_gc_maps_lock_;
4252    dex_gc_maps_lock_ = NULL;
4253
4254    {
4255      WriterMutexLock mu(self, *safecast_map_lock_);
4256      STLDeleteValues(safecast_map_);
4257      delete safecast_map_;
4258      safecast_map_ = NULL;
4259    }
4260    delete safecast_map_lock_;
4261    safecast_map_lock_ = NULL;
4262
4263    {
4264      WriterMutexLock mu(self, *devirt_maps_lock_);
4265      STLDeleteValues(devirt_maps_);
4266      delete devirt_maps_;
4267      devirt_maps_ = NULL;
4268    }
4269    delete devirt_maps_lock_;
4270    devirt_maps_lock_ = NULL;
4271
4272    {
4273      WriterMutexLock mu(self, *rejected_classes_lock_);
4274      delete rejected_classes_;
4275      rejected_classes_ = NULL;
4276    }
4277    delete rejected_classes_lock_;
4278    rejected_classes_lock_ = NULL;
4279  }
4280  verifier::RegTypeCache::ShutDown();
4281}
4282
4283void MethodVerifier::AddRejectedClass(ClassReference ref) {
4284  DCHECK(Runtime::Current()->IsCompiler());
4285  {
4286    WriterMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4287    rejected_classes_->insert(ref);
4288  }
4289  CHECK(IsClassRejected(ref));
4290}
4291
4292bool MethodVerifier::IsClassRejected(ClassReference ref) {
4293  DCHECK(Runtime::Current()->IsCompiler());
4294  ReaderMutexLock mu(Thread::Current(), *rejected_classes_lock_);
4295  return (rejected_classes_->find(ref) != rejected_classes_->end());
4296}
4297
4298}  // namespace verifier
4299}  // namespace art
4300