method_verifier.cc revision d7cbf8a6629942e7bd315ffae7e1c77b082f3e11
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_utils.h"
28#include "dex_instruction_visitor.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "mirror/art_field-inl.h"
34#include "mirror/art_method-inl.h"
35#include "mirror/class.h"
36#include "mirror/class-inl.h"
37#include "mirror/dex_cache-inl.h"
38#include "mirror/object-inl.h"
39#include "mirror/object_array-inl.h"
40#include "reg_type-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
51static constexpr bool gDebugVerify = false;
52// TODO: Add a constant to method_verifier to turn on verbose logging?
53
54void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
55                                 uint32_t insns_size, uint16_t registers_size,
56                                 MethodVerifier* verifier) {
57  DCHECK_GT(insns_size, 0U);
58  register_lines_.reset(new RegisterLine*[insns_size]());
59  size_ = insns_size;
60  for (uint32_t i = 0; i < insns_size; i++) {
61    bool interesting = false;
62    switch (mode) {
63      case kTrackRegsAll:
64        interesting = flags[i].IsOpcode();
65        break;
66      case kTrackCompilerInterestPoints:
67        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
68        break;
69      case kTrackRegsBranches:
70        interesting = flags[i].IsBranchTarget();
71        break;
72      default:
73        break;
74    }
75    if (interesting) {
76      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
77    }
78  }
79}
80
81PcToRegisterLineTable::~PcToRegisterLineTable() {
82  for (size_t i = 0; i < size_; i++) {
83    delete register_lines_[i];
84    if (kIsDebugBuild) {
85      register_lines_[i] = nullptr;
86    }
87  }
88}
89
90// Note: returns true on failure.
91ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
92                                             const char* error_msg, uint32_t work_insn_idx) {
93  if (kIsDebugBuild) {
94    // In a debug build, abort if the error condition is wrong.
95    DCHECK(condition) << error_msg << work_insn_idx;
96  } else {
97    // In a non-debug build, just fail the class.
98    if (!condition) {
99      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
100      return true;
101    }
102  }
103
104  return false;
105}
106
107static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
108  if (verifier->IsConstructor()) {
109    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
110    reg_line->CheckConstructorReturn(verifier);
111  }
112  reg_line->MarkAllRegistersAsConflicts(verifier);
113}
114
115MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
116    mirror::ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
117  Thread* self = Thread::Current();
118  StackHandleScope<3> hs(self);
119  mirror::Class* klass = method->GetDeclaringClass();
120  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
121  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
122  auto h_method = hs.NewHandle(method);
123  return VerifyMethod(self, method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), h_method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
164}
165
166MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
167                                                        const DexFile* dex_file,
168                                                        Handle<mirror::DexCache> dex_cache,
169                                                        Handle<mirror::ClassLoader> class_loader,
170                                                        const DexFile::ClassDef* class_def,
171                                                        bool allow_soft_failures,
172                                                        std::string* error) {
173  DCHECK(class_def != nullptr);
174  const uint8_t* class_data = dex_file->GetClassData(*class_def);
175  if (class_data == nullptr) {
176    // empty class, probably a marker interface
177    return kNoFailure;
178  }
179  ClassDataItemIterator it(*dex_file, class_data);
180  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
181    it.Next();
182  }
183  size_t error_count = 0;
184  bool hard_fail = false;
185  ClassLinker* linker = Runtime::Current()->GetClassLinker();
186  int64_t previous_direct_method_idx = -1;
187  while (it.HasNextDirectMethod()) {
188    self->AllowThreadSuspension();
189    uint32_t method_idx = it.GetMemberIndex();
190    if (method_idx == previous_direct_method_idx) {
191      // smali can create dex files with two encoded_methods sharing the same method_idx
192      // http://code.google.com/p/smali/issues/detail?id=119
193      it.Next();
194      continue;
195    }
196    previous_direct_method_idx = method_idx;
197    InvokeType type = it.GetMethodInvokeType(*class_def);
198    mirror::ArtMethod* method =
199        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
200                              NullHandle<mirror::ArtMethod>(), type);
201    if (method == nullptr) {
202      DCHECK(self->IsExceptionPending());
203      // We couldn't resolve the method, but continue regardless.
204      self->ClearException();
205    }
206    StackHandleScope<1> hs(self);
207    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
208    MethodVerifier::FailureKind result = VerifyMethod(self,
209                                                      method_idx,
210                                                      dex_file,
211                                                      dex_cache,
212                                                      class_loader,
213                                                      class_def,
214                                                      it.GetMethodCodeItem(),
215                                                      h_method,
216                                                      it.GetMethodAccessFlags(),
217                                                      allow_soft_failures,
218                                                      false);
219    if (result != kNoFailure) {
220      if (result == kHardFailure) {
221        hard_fail = true;
222        if (error_count > 0) {
223          *error += "\n";
224        }
225        *error = "Verifier rejected class ";
226        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
227        *error += " due to bad method ";
228        *error += PrettyMethod(method_idx, *dex_file);
229      }
230      ++error_count;
231    }
232    it.Next();
233  }
234  int64_t previous_virtual_method_idx = -1;
235  while (it.HasNextVirtualMethod()) {
236    self->AllowThreadSuspension();
237    uint32_t method_idx = it.GetMemberIndex();
238    if (method_idx == previous_virtual_method_idx) {
239      // smali can create dex files with two encoded_methods sharing the same method_idx
240      // http://code.google.com/p/smali/issues/detail?id=119
241      it.Next();
242      continue;
243    }
244    previous_virtual_method_idx = method_idx;
245    InvokeType type = it.GetMethodInvokeType(*class_def);
246    mirror::ArtMethod* method =
247        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
248                              NullHandle<mirror::ArtMethod>(), type);
249    if (method == nullptr) {
250      DCHECK(self->IsExceptionPending());
251      // We couldn't resolve the method, but continue regardless.
252      self->ClearException();
253    }
254    StackHandleScope<1> hs(self);
255    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
256    MethodVerifier::FailureKind result = VerifyMethod(self,
257                                                      method_idx,
258                                                      dex_file,
259                                                      dex_cache,
260                                                      class_loader,
261                                                      class_def,
262                                                      it.GetMethodCodeItem(),
263                                                      h_method,
264                                                      it.GetMethodAccessFlags(),
265                                                      allow_soft_failures,
266                                                      false);
267    if (result != kNoFailure) {
268      if (result == kHardFailure) {
269        hard_fail = true;
270        if (error_count > 0) {
271          *error += "\n";
272        }
273        *error = "Verifier rejected class ";
274        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
275        *error += " due to bad method ";
276        *error += PrettyMethod(method_idx, *dex_file);
277      }
278      ++error_count;
279    }
280    it.Next();
281  }
282  if (error_count == 0) {
283    return kNoFailure;
284  } else {
285    return hard_fail ? kHardFailure : kSoftFailure;
286  }
287}
288
289MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
290                                                         const DexFile* dex_file,
291                                                         Handle<mirror::DexCache> dex_cache,
292                                                         Handle<mirror::ClassLoader> class_loader,
293                                                         const DexFile::ClassDef* class_def,
294                                                         const DexFile::CodeItem* code_item,
295                                                         Handle<mirror::ArtMethod> method,
296                                                         uint32_t method_access_flags,
297                                                         bool allow_soft_failures,
298                                                         bool need_precise_constants) {
299  MethodVerifier::FailureKind result = kNoFailure;
300  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
301
302  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
303                          method_idx, method, method_access_flags, true, allow_soft_failures,
304                          need_precise_constants, true);
305  if (verifier.Verify()) {
306    // Verification completed, however failures may be pending that didn't cause the verification
307    // to hard fail.
308    CHECK(!verifier.have_pending_hard_failure_);
309    if (verifier.failures_.size() != 0) {
310      if (VLOG_IS_ON(verifier)) {
311          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
312                                << PrettyMethod(method_idx, *dex_file) << "\n");
313      }
314      result = kSoftFailure;
315    }
316  } else {
317    // Bad method data.
318    CHECK_NE(verifier.failures_.size(), 0U);
319    CHECK(verifier.have_pending_hard_failure_);
320    verifier.DumpFailures(LOG(INFO) << "Verification error in "
321                                    << PrettyMethod(method_idx, *dex_file) << "\n");
322    if (gDebugVerify) {
323      std::cout << "\n" << verifier.info_messages_.str();
324      verifier.Dump(std::cout);
325    }
326    result = kHardFailure;
327  }
328  if (kTimeVerifyMethod) {
329    uint64_t duration_ns = NanoTime() - start_ns;
330    if (duration_ns > MsToNs(100)) {
331      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
332                   << " took " << PrettyDuration(duration_ns);
333    }
334  }
335  return result;
336}
337
338MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
339                                         const DexFile* dex_file,
340                                         Handle<mirror::DexCache> dex_cache,
341                                         Handle<mirror::ClassLoader> class_loader,
342                                         const DexFile::ClassDef* class_def,
343                                         const DexFile::CodeItem* code_item,
344                                         Handle<mirror::ArtMethod> method,
345                                         uint32_t method_access_flags) {
346  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
347                                                class_def, code_item, dex_method_idx, method,
348                                                method_access_flags, true, true, true, true);
349  verifier->Verify();
350  verifier->DumpFailures(os);
351  os << verifier->info_messages_.str();
352  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
353  // and querying any info is dangerous/can abort.
354  if (verifier->have_pending_hard_failure_) {
355    delete verifier;
356    return nullptr;
357  } else {
358    verifier->Dump(os);
359    return verifier;
360  }
361}
362
363MethodVerifier::MethodVerifier(Thread* self,
364                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
365                               Handle<mirror::ClassLoader> class_loader,
366                               const DexFile::ClassDef* class_def,
367                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
368                               Handle<mirror::ArtMethod> method, uint32_t method_access_flags,
369                               bool can_load_classes, bool allow_soft_failures,
370                               bool need_precise_constants, bool verify_to_dump,
371                               bool allow_thread_suspension)
372    : self_(self),
373      reg_types_(can_load_classes),
374      work_insn_idx_(-1),
375      dex_method_idx_(dex_method_idx),
376      mirror_method_(method),
377      method_access_flags_(method_access_flags),
378      return_type_(nullptr),
379      dex_file_(dex_file),
380      dex_cache_(dex_cache),
381      class_loader_(class_loader),
382      class_def_(class_def),
383      code_item_(code_item),
384      declaring_class_(nullptr),
385      interesting_dex_pc_(-1),
386      monitor_enter_dex_pcs_(nullptr),
387      have_pending_hard_failure_(false),
388      have_pending_runtime_throw_failure_(false),
389      new_instance_count_(0),
390      monitor_enter_count_(0),
391      can_load_classes_(can_load_classes),
392      allow_soft_failures_(allow_soft_failures),
393      need_precise_constants_(need_precise_constants),
394      has_check_casts_(false),
395      has_virtual_or_interface_invokes_(false),
396      verify_to_dump_(verify_to_dump),
397      allow_thread_suspension_(allow_thread_suspension) {
398  self->SetVerifier(this);
399  DCHECK(class_def != nullptr);
400}
401
402MethodVerifier::~MethodVerifier() {
403  Thread::Current()->ClearVerifier(this);
404  STLDeleteElements(&failure_messages_);
405}
406
407void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
408                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
409  Thread* self = Thread::Current();
410  StackHandleScope<3> hs(self);
411  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
412  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
413  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
414  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
415                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
416                          false, true, false, false);
417  verifier.interesting_dex_pc_ = dex_pc;
418  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
419  verifier.FindLocksAtDexPc();
420}
421
422static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
423  const Instruction* inst = Instruction::At(code_item->insns_);
424
425  uint32_t insns_size = code_item->insns_size_in_code_units_;
426  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
427    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
428      return true;
429    }
430
431    dex_pc += inst->SizeInCodeUnits();
432    inst = inst->Next();
433  }
434
435  return false;
436}
437
438void MethodVerifier::FindLocksAtDexPc() {
439  CHECK(monitor_enter_dex_pcs_ != nullptr);
440  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
441
442  // Quick check whether there are any monitor_enter instructions at all.
443  if (!HasMonitorEnterInstructions(code_item_)) {
444    return;
445  }
446
447  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
448  // verification. In practice, the phase we want relies on data structures set up by all the
449  // earlier passes, so we just run the full method verification and bail out early when we've
450  // got what we wanted.
451  Verify();
452}
453
454mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
455                                                           uint32_t dex_pc) {
456  Thread* self = Thread::Current();
457  StackHandleScope<3> hs(self);
458  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
459  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
460  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
461  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
462                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
463                          true, true, false, true);
464  return verifier.FindAccessedFieldAtDexPc(dex_pc);
465}
466
467mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
468  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
469
470  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
471  // verification. In practice, the phase we want relies on data structures set up by all the
472  // earlier passes, so we just run the full method verification and bail out early when we've
473  // got what we wanted.
474  bool success = Verify();
475  if (!success) {
476    return nullptr;
477  }
478  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
479  if (register_line == nullptr) {
480    return nullptr;
481  }
482  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
483  return GetQuickFieldAccess(inst, register_line);
484}
485
486mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
487                                                            uint32_t dex_pc) {
488  Thread* self = Thread::Current();
489  StackHandleScope<3> hs(self);
490  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
491  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
492  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
493  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
494                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
495                          true, true, false, true);
496  return verifier.FindInvokedMethodAtDexPc(dex_pc);
497}
498
499mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
500  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
501
502  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
503  // verification. In practice, the phase we want relies on data structures set up by all the
504  // earlier passes, so we just run the full method verification and bail out early when we've
505  // got what we wanted.
506  bool success = Verify();
507  if (!success) {
508    return nullptr;
509  }
510  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
511  if (register_line == nullptr) {
512    return nullptr;
513  }
514  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
515  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
516  return GetQuickInvokedMethod(inst, register_line, is_range, false);
517}
518
519bool MethodVerifier::Verify() {
520  // If there aren't any instructions, make sure that's expected, then exit successfully.
521  if (code_item_ == nullptr) {
522    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
523      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
524      return false;
525    } else {
526      return true;
527    }
528  }
529  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
530  if (code_item_->ins_size_ > code_item_->registers_size_) {
531    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
532                                      << " regs=" << code_item_->registers_size_;
533    return false;
534  }
535  // Allocate and initialize an array to hold instruction data.
536  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
537  // Run through the instructions and see if the width checks out.
538  bool result = ComputeWidthsAndCountOps();
539  // Flag instructions guarded by a "try" block and check exception handlers.
540  result = result && ScanTryCatchBlocks();
541  // Perform static instruction verification.
542  result = result && VerifyInstructions();
543  // Perform code-flow analysis and return.
544  result = result && VerifyCodeFlow();
545  // Compute information for compiler.
546  if (result && Runtime::Current()->IsCompiler()) {
547    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
548  }
549  return result;
550}
551
552std::ostream& MethodVerifier::Fail(VerifyError error) {
553  switch (error) {
554    case VERIFY_ERROR_NO_CLASS:
555    case VERIFY_ERROR_NO_FIELD:
556    case VERIFY_ERROR_NO_METHOD:
557    case VERIFY_ERROR_ACCESS_CLASS:
558    case VERIFY_ERROR_ACCESS_FIELD:
559    case VERIFY_ERROR_ACCESS_METHOD:
560    case VERIFY_ERROR_INSTANTIATION:
561    case VERIFY_ERROR_CLASS_CHANGE:
562      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
563        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
564        // class change and instantiation errors into soft verification errors so that we re-verify
565        // at runtime. We may fail to find or to agree on access because of not yet available class
566        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
567        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
568        // paths" that dynamically perform the verification and cause the behavior to be that akin
569        // to an interpreter.
570        error = VERIFY_ERROR_BAD_CLASS_SOFT;
571      } else {
572        // If we fail again at runtime, mark that this instruction would throw and force this
573        // method to be executed using the interpreter with checks.
574        have_pending_runtime_throw_failure_ = true;
575
576        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
577        // try to merge garbage.
578        // Note: this assumes that Fail is called before we do any work_line modifications.
579        const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
580        const Instruction* inst = Instruction::At(insns);
581        int opcode_flags = Instruction::FlagsOf(inst->Opcode());
582
583        if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
584          saved_line_->CopyFromLine(work_line_.get());
585        }
586      }
587      break;
588      // Indication that verification should be retried at runtime.
589    case VERIFY_ERROR_BAD_CLASS_SOFT:
590      if (!allow_soft_failures_) {
591        have_pending_hard_failure_ = true;
592      }
593      break;
594      // Hard verification failures at compile time will still fail at runtime, so the class is
595      // marked as rejected to prevent it from being compiled.
596    case VERIFY_ERROR_BAD_CLASS_HARD: {
597      if (Runtime::Current()->IsAotCompiler()) {
598        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
599        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
600      }
601      have_pending_hard_failure_ = true;
602      break;
603    }
604  }
605  failures_.push_back(error);
606  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
607                                    work_insn_idx_));
608  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
609  failure_messages_.push_back(failure_message);
610  return *failure_message;
611}
612
613std::ostream& MethodVerifier::LogVerifyInfo() {
614  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
615                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
616}
617
618void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
619  size_t failure_num = failure_messages_.size();
620  DCHECK_NE(failure_num, 0U);
621  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
622  prepend += last_fail_message->str();
623  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
624  delete last_fail_message;
625}
626
627void MethodVerifier::AppendToLastFailMessage(std::string append) {
628  size_t failure_num = failure_messages_.size();
629  DCHECK_NE(failure_num, 0U);
630  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
631  (*last_fail_message) << append;
632}
633
634bool MethodVerifier::ComputeWidthsAndCountOps() {
635  const uint16_t* insns = code_item_->insns_;
636  size_t insns_size = code_item_->insns_size_in_code_units_;
637  const Instruction* inst = Instruction::At(insns);
638  size_t new_instance_count = 0;
639  size_t monitor_enter_count = 0;
640  size_t dex_pc = 0;
641
642  while (dex_pc < insns_size) {
643    Instruction::Code opcode = inst->Opcode();
644    switch (opcode) {
645      case Instruction::APUT_OBJECT:
646      case Instruction::CHECK_CAST:
647        has_check_casts_ = true;
648        break;
649      case Instruction::INVOKE_VIRTUAL:
650      case Instruction::INVOKE_VIRTUAL_RANGE:
651      case Instruction::INVOKE_INTERFACE:
652      case Instruction::INVOKE_INTERFACE_RANGE:
653        has_virtual_or_interface_invokes_ = true;
654        break;
655      case Instruction::MONITOR_ENTER:
656        monitor_enter_count++;
657        break;
658      case Instruction::NEW_INSTANCE:
659        new_instance_count++;
660        break;
661      default:
662        break;
663    }
664    size_t inst_size = inst->SizeInCodeUnits();
665    insn_flags_[dex_pc].SetIsOpcode();
666    dex_pc += inst_size;
667    inst = inst->RelativeAt(inst_size);
668  }
669
670  if (dex_pc != insns_size) {
671    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
672                                      << dex_pc << " vs. " << insns_size << ")";
673    return false;
674  }
675
676  new_instance_count_ = new_instance_count;
677  monitor_enter_count_ = monitor_enter_count;
678  return true;
679}
680
681bool MethodVerifier::ScanTryCatchBlocks() {
682  uint32_t tries_size = code_item_->tries_size_;
683  if (tries_size == 0) {
684    return true;
685  }
686  uint32_t insns_size = code_item_->insns_size_in_code_units_;
687  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
688
689  for (uint32_t idx = 0; idx < tries_size; idx++) {
690    const DexFile::TryItem* try_item = &tries[idx];
691    uint32_t start = try_item->start_addr_;
692    uint32_t end = start + try_item->insn_count_;
693    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
694      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
695                                        << " endAddr=" << end << " (size=" << insns_size << ")";
696      return false;
697    }
698    if (!insn_flags_[start].IsOpcode()) {
699      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
700          << "'try' block starts inside an instruction (" << start << ")";
701      return false;
702    }
703    uint32_t dex_pc = start;
704    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
705    while (dex_pc < end) {
706      insn_flags_[dex_pc].SetInTry();
707      size_t insn_size = inst->SizeInCodeUnits();
708      dex_pc += insn_size;
709      inst = inst->RelativeAt(insn_size);
710    }
711  }
712  // Iterate over each of the handlers to verify target addresses.
713  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
714  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
715  ClassLinker* linker = Runtime::Current()->GetClassLinker();
716  for (uint32_t idx = 0; idx < handlers_size; idx++) {
717    CatchHandlerIterator iterator(handlers_ptr);
718    for (; iterator.HasNext(); iterator.Next()) {
719      uint32_t dex_pc= iterator.GetHandlerAddress();
720      if (!insn_flags_[dex_pc].IsOpcode()) {
721        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
722            << "exception handler starts at bad address (" << dex_pc << ")";
723        return false;
724      }
725      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
726        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
727            << "exception handler begins with move-result* (" << dex_pc << ")";
728        return false;
729      }
730      insn_flags_[dex_pc].SetBranchTarget();
731      // Ensure exception types are resolved so that they don't need resolution to be delivered,
732      // unresolved exception types will be ignored by exception delivery
733      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
734        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
735                                                            iterator.GetHandlerTypeIndex(),
736                                                            dex_cache_, class_loader_);
737        if (exception_type == nullptr) {
738          DCHECK(self_->IsExceptionPending());
739          self_->ClearException();
740        }
741      }
742    }
743    handlers_ptr = iterator.EndDataPointer();
744  }
745  return true;
746}
747
748bool MethodVerifier::VerifyInstructions() {
749  const Instruction* inst = Instruction::At(code_item_->insns_);
750
751  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
752  insn_flags_[0].SetBranchTarget();
753  insn_flags_[0].SetCompileTimeInfoPoint();
754
755  uint32_t insns_size = code_item_->insns_size_in_code_units_;
756  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
757    if (!VerifyInstruction(inst, dex_pc)) {
758      DCHECK_NE(failures_.size(), 0U);
759      return false;
760    }
761    /* Flag instructions that are garbage collection points */
762    // All invoke points are marked as "Throw" points already.
763    // We are relying on this to also count all the invokes as interesting.
764    if (inst->IsBranch()) {
765      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
766      // The compiler also needs safepoints for fall-through to loop heads.
767      // Such a loop head must be a target of a branch.
768      int32_t offset = 0;
769      bool cond, self_ok;
770      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
771      DCHECK(target_ok);
772      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
773    } else if (inst->IsSwitch() || inst->IsThrow()) {
774      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
775    } else if (inst->IsReturn()) {
776      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
777    }
778    dex_pc += inst->SizeInCodeUnits();
779    inst = inst->Next();
780  }
781  return true;
782}
783
784bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
785  bool result = true;
786  switch (inst->GetVerifyTypeArgumentA()) {
787    case Instruction::kVerifyRegA:
788      result = result && CheckRegisterIndex(inst->VRegA());
789      break;
790    case Instruction::kVerifyRegAWide:
791      result = result && CheckWideRegisterIndex(inst->VRegA());
792      break;
793  }
794  switch (inst->GetVerifyTypeArgumentB()) {
795    case Instruction::kVerifyRegB:
796      result = result && CheckRegisterIndex(inst->VRegB());
797      break;
798    case Instruction::kVerifyRegBField:
799      result = result && CheckFieldIndex(inst->VRegB());
800      break;
801    case Instruction::kVerifyRegBMethod:
802      result = result && CheckMethodIndex(inst->VRegB());
803      break;
804    case Instruction::kVerifyRegBNewInstance:
805      result = result && CheckNewInstance(inst->VRegB());
806      break;
807    case Instruction::kVerifyRegBString:
808      result = result && CheckStringIndex(inst->VRegB());
809      break;
810    case Instruction::kVerifyRegBType:
811      result = result && CheckTypeIndex(inst->VRegB());
812      break;
813    case Instruction::kVerifyRegBWide:
814      result = result && CheckWideRegisterIndex(inst->VRegB());
815      break;
816  }
817  switch (inst->GetVerifyTypeArgumentC()) {
818    case Instruction::kVerifyRegC:
819      result = result && CheckRegisterIndex(inst->VRegC());
820      break;
821    case Instruction::kVerifyRegCField:
822      result = result && CheckFieldIndex(inst->VRegC());
823      break;
824    case Instruction::kVerifyRegCNewArray:
825      result = result && CheckNewArray(inst->VRegC());
826      break;
827    case Instruction::kVerifyRegCType:
828      result = result && CheckTypeIndex(inst->VRegC());
829      break;
830    case Instruction::kVerifyRegCWide:
831      result = result && CheckWideRegisterIndex(inst->VRegC());
832      break;
833  }
834  switch (inst->GetVerifyExtraFlags()) {
835    case Instruction::kVerifyArrayData:
836      result = result && CheckArrayData(code_offset);
837      break;
838    case Instruction::kVerifyBranchTarget:
839      result = result && CheckBranchTarget(code_offset);
840      break;
841    case Instruction::kVerifySwitchTargets:
842      result = result && CheckSwitchTargets(code_offset);
843      break;
844    case Instruction::kVerifyVarArgNonZero:
845      // Fall-through.
846    case Instruction::kVerifyVarArg: {
847      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
848        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
849                                             "non-range invoke";
850        return false;
851      }
852      uint32_t args[Instruction::kMaxVarArgRegs];
853      inst->GetVarArgs(args);
854      result = result && CheckVarArgRegs(inst->VRegA(), args);
855      break;
856    }
857    case Instruction::kVerifyVarArgRangeNonZero:
858      // Fall-through.
859    case Instruction::kVerifyVarArgRange:
860      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
861          inst->VRegA() <= 0) {
862        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
863                                             "range invoke";
864        return false;
865      }
866      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
867      break;
868    case Instruction::kVerifyError:
869      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
870      result = false;
871      break;
872  }
873  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
874    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
875    result = false;
876  }
877  return result;
878}
879
880inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
881  if (idx >= code_item_->registers_size_) {
882    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
883                                      << code_item_->registers_size_ << ")";
884    return false;
885  }
886  return true;
887}
888
889inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
890  if (idx + 1 >= code_item_->registers_size_) {
891    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
892                                      << "+1 >= " << code_item_->registers_size_ << ")";
893    return false;
894  }
895  return true;
896}
897
898inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
899  if (idx >= dex_file_->GetHeader().field_ids_size_) {
900    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
901                                      << dex_file_->GetHeader().field_ids_size_ << ")";
902    return false;
903  }
904  return true;
905}
906
907inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
908  if (idx >= dex_file_->GetHeader().method_ids_size_) {
909    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
910                                      << dex_file_->GetHeader().method_ids_size_ << ")";
911    return false;
912  }
913  return true;
914}
915
916inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
917  if (idx >= dex_file_->GetHeader().type_ids_size_) {
918    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
919                                      << dex_file_->GetHeader().type_ids_size_ << ")";
920    return false;
921  }
922  // We don't need the actual class, just a pointer to the class name.
923  const char* descriptor = dex_file_->StringByTypeIdx(idx);
924  if (descriptor[0] != 'L') {
925    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
926    return false;
927  }
928  return true;
929}
930
931inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
932  if (idx >= dex_file_->GetHeader().string_ids_size_) {
933    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
934                                      << dex_file_->GetHeader().string_ids_size_ << ")";
935    return false;
936  }
937  return true;
938}
939
940inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
941  if (idx >= dex_file_->GetHeader().type_ids_size_) {
942    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
943                                      << dex_file_->GetHeader().type_ids_size_ << ")";
944    return false;
945  }
946  return true;
947}
948
949bool MethodVerifier::CheckNewArray(uint32_t idx) {
950  if (idx >= dex_file_->GetHeader().type_ids_size_) {
951    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
952                                      << dex_file_->GetHeader().type_ids_size_ << ")";
953    return false;
954  }
955  int bracket_count = 0;
956  const char* descriptor = dex_file_->StringByTypeIdx(idx);
957  const char* cp = descriptor;
958  while (*cp++ == '[') {
959    bracket_count++;
960  }
961  if (bracket_count == 0) {
962    /* The given class must be an array type. */
963    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
964        << "can't new-array class '" << descriptor << "' (not an array)";
965    return false;
966  } else if (bracket_count > 255) {
967    /* It is illegal to create an array of more than 255 dimensions. */
968    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
969        << "can't new-array class '" << descriptor << "' (exceeds limit)";
970    return false;
971  }
972  return true;
973}
974
975bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
976  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
977  const uint16_t* insns = code_item_->insns_ + cur_offset;
978  const uint16_t* array_data;
979  int32_t array_data_offset;
980
981  DCHECK_LT(cur_offset, insn_count);
982  /* make sure the start of the array data table is in range */
983  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
984  if ((int32_t) cur_offset + array_data_offset < 0 ||
985      cur_offset + array_data_offset + 2 >= insn_count) {
986    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
987                                      << ", data offset " << array_data_offset
988                                      << ", count " << insn_count;
989    return false;
990  }
991  /* offset to array data table is a relative branch-style offset */
992  array_data = insns + array_data_offset;
993  /* make sure the table is 32-bit aligned */
994  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
995    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
996                                      << ", data offset " << array_data_offset;
997    return false;
998  }
999  uint32_t value_width = array_data[1];
1000  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1001  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1002  /* make sure the end of the switch is in range */
1003  if (cur_offset + array_data_offset + table_size > insn_count) {
1004    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1005                                      << ", data offset " << array_data_offset << ", end "
1006                                      << cur_offset + array_data_offset + table_size
1007                                      << ", count " << insn_count;
1008    return false;
1009  }
1010  return true;
1011}
1012
1013bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1014  int32_t offset;
1015  bool isConditional, selfOkay;
1016  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1017    return false;
1018  }
1019  if (!selfOkay && offset == 0) {
1020    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1021                                      << reinterpret_cast<void*>(cur_offset);
1022    return false;
1023  }
1024  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1025  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1026  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1027    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1028                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1029    return false;
1030  }
1031  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1032  int32_t abs_offset = cur_offset + offset;
1033  if (abs_offset < 0 ||
1034      (uint32_t) abs_offset >= insn_count ||
1035      !insn_flags_[abs_offset].IsOpcode()) {
1036    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1037                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1038                                      << reinterpret_cast<void*>(cur_offset);
1039    return false;
1040  }
1041  insn_flags_[abs_offset].SetBranchTarget();
1042  return true;
1043}
1044
1045bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1046                                  bool* selfOkay) {
1047  const uint16_t* insns = code_item_->insns_ + cur_offset;
1048  *pConditional = false;
1049  *selfOkay = false;
1050  switch (*insns & 0xff) {
1051    case Instruction::GOTO:
1052      *pOffset = ((int16_t) *insns) >> 8;
1053      break;
1054    case Instruction::GOTO_32:
1055      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1056      *selfOkay = true;
1057      break;
1058    case Instruction::GOTO_16:
1059      *pOffset = (int16_t) insns[1];
1060      break;
1061    case Instruction::IF_EQ:
1062    case Instruction::IF_NE:
1063    case Instruction::IF_LT:
1064    case Instruction::IF_GE:
1065    case Instruction::IF_GT:
1066    case Instruction::IF_LE:
1067    case Instruction::IF_EQZ:
1068    case Instruction::IF_NEZ:
1069    case Instruction::IF_LTZ:
1070    case Instruction::IF_GEZ:
1071    case Instruction::IF_GTZ:
1072    case Instruction::IF_LEZ:
1073      *pOffset = (int16_t) insns[1];
1074      *pConditional = true;
1075      break;
1076    default:
1077      return false;
1078      break;
1079  }
1080  return true;
1081}
1082
1083bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1084  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1085  DCHECK_LT(cur_offset, insn_count);
1086  const uint16_t* insns = code_item_->insns_ + cur_offset;
1087  /* make sure the start of the switch is in range */
1088  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1089  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
1090    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1091                                      << ", switch offset " << switch_offset
1092                                      << ", count " << insn_count;
1093    return false;
1094  }
1095  /* offset to switch table is a relative branch-style offset */
1096  const uint16_t* switch_insns = insns + switch_offset;
1097  /* make sure the table is 32-bit aligned */
1098  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1099    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1100                                      << ", switch offset " << switch_offset;
1101    return false;
1102  }
1103  uint32_t switch_count = switch_insns[1];
1104  int32_t keys_offset, targets_offset;
1105  uint16_t expected_signature;
1106  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1107    /* 0=sig, 1=count, 2/3=firstKey */
1108    targets_offset = 4;
1109    keys_offset = -1;
1110    expected_signature = Instruction::kPackedSwitchSignature;
1111  } else {
1112    /* 0=sig, 1=count, 2..count*2 = keys */
1113    keys_offset = 2;
1114    targets_offset = 2 + 2 * switch_count;
1115    expected_signature = Instruction::kSparseSwitchSignature;
1116  }
1117  uint32_t table_size = targets_offset + switch_count * 2;
1118  if (switch_insns[0] != expected_signature) {
1119    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1120        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1121                        switch_insns[0], expected_signature);
1122    return false;
1123  }
1124  /* make sure the end of the switch is in range */
1125  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1126    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1127                                      << ", switch offset " << switch_offset
1128                                      << ", end " << (cur_offset + switch_offset + table_size)
1129                                      << ", count " << insn_count;
1130    return false;
1131  }
1132  /* for a sparse switch, verify the keys are in ascending order */
1133  if (keys_offset > 0 && switch_count > 1) {
1134    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1135    for (uint32_t targ = 1; targ < switch_count; targ++) {
1136      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1137                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1138      if (key <= last_key) {
1139        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1140                                          << ", this=" << key;
1141        return false;
1142      }
1143      last_key = key;
1144    }
1145  }
1146  /* verify each switch target */
1147  for (uint32_t targ = 0; targ < switch_count; targ++) {
1148    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1149                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1150    int32_t abs_offset = cur_offset + offset;
1151    if (abs_offset < 0 ||
1152        abs_offset >= (int32_t) insn_count ||
1153        !insn_flags_[abs_offset].IsOpcode()) {
1154      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1155                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1156                                        << reinterpret_cast<void*>(cur_offset)
1157                                        << "[" << targ << "]";
1158      return false;
1159    }
1160    insn_flags_[abs_offset].SetBranchTarget();
1161  }
1162  return true;
1163}
1164
1165bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1166  if (vA > Instruction::kMaxVarArgRegs) {
1167    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1168    return false;
1169  }
1170  uint16_t registers_size = code_item_->registers_size_;
1171  for (uint32_t idx = 0; idx < vA; idx++) {
1172    if (arg[idx] >= registers_size) {
1173      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1174                                        << ") in non-range invoke (>= " << registers_size << ")";
1175      return false;
1176    }
1177  }
1178
1179  return true;
1180}
1181
1182bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1183  uint16_t registers_size = code_item_->registers_size_;
1184  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1185  // integer overflow when adding them here.
1186  if (vA + vC > registers_size) {
1187    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1188                                      << " in range invoke (> " << registers_size << ")";
1189    return false;
1190  }
1191  return true;
1192}
1193
1194bool MethodVerifier::VerifyCodeFlow() {
1195  uint16_t registers_size = code_item_->registers_size_;
1196  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1197
1198  if (registers_size * insns_size > 4*1024*1024) {
1199    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1200                 << " insns_size=" << insns_size << ")";
1201  }
1202  /* Create and initialize table holding register status */
1203  reg_table_.Init(kTrackCompilerInterestPoints,
1204                  insn_flags_.get(),
1205                  insns_size,
1206                  registers_size,
1207                  this);
1208
1209
1210  work_line_.reset(RegisterLine::Create(registers_size, this));
1211  saved_line_.reset(RegisterLine::Create(registers_size, this));
1212
1213  /* Initialize register types of method arguments. */
1214  if (!SetTypesFromSignature()) {
1215    DCHECK_NE(failures_.size(), 0U);
1216    std::string prepend("Bad signature in ");
1217    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1218    PrependToLastFailMessage(prepend);
1219    return false;
1220  }
1221  /* Perform code flow verification. */
1222  if (!CodeFlowVerifyMethod()) {
1223    DCHECK_NE(failures_.size(), 0U);
1224    return false;
1225  }
1226  return true;
1227}
1228
1229std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1230  DCHECK_EQ(failures_.size(), failure_messages_.size());
1231  for (size_t i = 0; i < failures_.size(); ++i) {
1232      os << failure_messages_[i]->str() << "\n";
1233  }
1234  return os;
1235}
1236
1237void MethodVerifier::Dump(std::ostream& os) {
1238  if (code_item_ == nullptr) {
1239    os << "Native method\n";
1240    return;
1241  }
1242  {
1243    os << "Register Types:\n";
1244    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1245    std::ostream indent_os(&indent_filter);
1246    reg_types_.Dump(indent_os);
1247  }
1248  os << "Dumping instructions and register lines:\n";
1249  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1250  std::ostream indent_os(&indent_filter);
1251  const Instruction* inst = Instruction::At(code_item_->insns_);
1252  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1253      dex_pc += inst->SizeInCodeUnits()) {
1254    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1255    if (reg_line != nullptr) {
1256      indent_os << reg_line->Dump(this) << "\n";
1257    }
1258    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1259    const bool kDumpHexOfInstruction = false;
1260    if (kDumpHexOfInstruction) {
1261      indent_os << inst->DumpHex(5) << " ";
1262    }
1263    indent_os << inst->DumpString(dex_file_) << "\n";
1264    inst = inst->Next();
1265  }
1266}
1267
1268static bool IsPrimitiveDescriptor(char descriptor) {
1269  switch (descriptor) {
1270    case 'I':
1271    case 'C':
1272    case 'S':
1273    case 'B':
1274    case 'Z':
1275    case 'F':
1276    case 'D':
1277    case 'J':
1278      return true;
1279    default:
1280      return false;
1281  }
1282}
1283
1284bool MethodVerifier::SetTypesFromSignature() {
1285  RegisterLine* reg_line = reg_table_.GetLine(0);
1286  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1287  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1288
1289  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1290  // Include the "this" pointer.
1291  size_t cur_arg = 0;
1292  if (!IsStatic()) {
1293    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1294    // argument as uninitialized. This restricts field access until the superclass constructor is
1295    // called.
1296    const RegType& declaring_class = GetDeclaringClass();
1297    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1298      reg_line->SetRegisterType(this, arg_start + cur_arg,
1299                                reg_types_.UninitializedThisArgument(declaring_class));
1300    } else {
1301      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1302    }
1303    cur_arg++;
1304  }
1305
1306  const DexFile::ProtoId& proto_id =
1307      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1308  DexFileParameterIterator iterator(*dex_file_, proto_id);
1309
1310  for (; iterator.HasNext(); iterator.Next()) {
1311    const char* descriptor = iterator.GetDescriptor();
1312    if (descriptor == nullptr) {
1313      LOG(FATAL) << "Null descriptor";
1314    }
1315    if (cur_arg >= expected_args) {
1316      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1317                                        << " args, found more (" << descriptor << ")";
1318      return false;
1319    }
1320    switch (descriptor[0]) {
1321      case 'L':
1322      case '[':
1323        // We assume that reference arguments are initialized. The only way it could be otherwise
1324        // (assuming the caller was verified) is if the current method is <init>, but in that case
1325        // it's effectively considered initialized the instant we reach here (in the sense that we
1326        // can return without doing anything or call virtual methods).
1327        {
1328          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1329          if (!reg_type.IsNonZeroReferenceTypes()) {
1330            DCHECK(HasFailures());
1331            return false;
1332          }
1333          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1334        }
1335        break;
1336      case 'Z':
1337        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1338        break;
1339      case 'C':
1340        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1341        break;
1342      case 'B':
1343        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1344        break;
1345      case 'I':
1346        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1347        break;
1348      case 'S':
1349        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1350        break;
1351      case 'F':
1352        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1353        break;
1354      case 'J':
1355      case 'D': {
1356        if (cur_arg + 1 >= expected_args) {
1357          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1358              << " args, found more (" << descriptor << ")";
1359          return false;
1360        }
1361
1362        const RegType* lo_half;
1363        const RegType* hi_half;
1364        if (descriptor[0] == 'J') {
1365          lo_half = &reg_types_.LongLo();
1366          hi_half = &reg_types_.LongHi();
1367        } else {
1368          lo_half = &reg_types_.DoubleLo();
1369          hi_half = &reg_types_.DoubleHi();
1370        }
1371        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1372        cur_arg++;
1373        break;
1374      }
1375      default:
1376        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1377                                          << descriptor << "'";
1378        return false;
1379    }
1380    cur_arg++;
1381  }
1382  if (cur_arg != expected_args) {
1383    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1384                                      << " arguments, found " << cur_arg;
1385    return false;
1386  }
1387  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1388  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1389  // format. Only major difference from the method argument format is that 'V' is supported.
1390  bool result;
1391  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1392    result = descriptor[1] == '\0';
1393  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1394    size_t i = 0;
1395    do {
1396      i++;
1397    } while (descriptor[i] == '[');  // process leading [
1398    if (descriptor[i] == 'L') {  // object array
1399      do {
1400        i++;  // find closing ;
1401      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1402      result = descriptor[i] == ';';
1403    } else {  // primitive array
1404      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1405    }
1406  } else if (descriptor[0] == 'L') {
1407    // could be more thorough here, but shouldn't be required
1408    size_t i = 0;
1409    do {
1410      i++;
1411    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1412    result = descriptor[i] == ';';
1413  } else {
1414    result = false;
1415  }
1416  if (!result) {
1417    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1418                                      << descriptor << "'";
1419  }
1420  return result;
1421}
1422
1423bool MethodVerifier::CodeFlowVerifyMethod() {
1424  const uint16_t* insns = code_item_->insns_;
1425  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1426
1427  /* Begin by marking the first instruction as "changed". */
1428  insn_flags_[0].SetChanged();
1429  uint32_t start_guess = 0;
1430
1431  /* Continue until no instructions are marked "changed". */
1432  while (true) {
1433    if (allow_thread_suspension_) {
1434      self_->AllowThreadSuspension();
1435    }
1436    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1437    uint32_t insn_idx = start_guess;
1438    for (; insn_idx < insns_size; insn_idx++) {
1439      if (insn_flags_[insn_idx].IsChanged())
1440        break;
1441    }
1442    if (insn_idx == insns_size) {
1443      if (start_guess != 0) {
1444        /* try again, starting from the top */
1445        start_guess = 0;
1446        continue;
1447      } else {
1448        /* all flags are clear */
1449        break;
1450      }
1451    }
1452    // We carry the working set of registers from instruction to instruction. If this address can
1453    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1454    // "changed" flags, we need to load the set of registers from the table.
1455    // Because we always prefer to continue on to the next instruction, we should never have a
1456    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1457    // target.
1458    work_insn_idx_ = insn_idx;
1459    if (insn_flags_[insn_idx].IsBranchTarget()) {
1460      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1461    } else if (kIsDebugBuild) {
1462      /*
1463       * Sanity check: retrieve the stored register line (assuming
1464       * a full table) and make sure it actually matches.
1465       */
1466      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1467      if (register_line != nullptr) {
1468        if (work_line_->CompareLine(register_line) != 0) {
1469          Dump(std::cout);
1470          std::cout << info_messages_.str();
1471          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1472                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1473                     << " work_line=" << work_line_->Dump(this) << "\n"
1474                     << "  expected=" << register_line->Dump(this);
1475        }
1476      }
1477    }
1478    if (!CodeFlowVerifyInstruction(&start_guess)) {
1479      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1480      prepend += " failed to verify: ";
1481      PrependToLastFailMessage(prepend);
1482      return false;
1483    }
1484    /* Clear "changed" and mark as visited. */
1485    insn_flags_[insn_idx].SetVisited();
1486    insn_flags_[insn_idx].ClearChanged();
1487  }
1488
1489  if (gDebugVerify) {
1490    /*
1491     * Scan for dead code. There's nothing "evil" about dead code
1492     * (besides the wasted space), but it indicates a flaw somewhere
1493     * down the line, possibly in the verifier.
1494     *
1495     * If we've substituted "always throw" instructions into the stream,
1496     * we are almost certainly going to have some dead code.
1497     */
1498    int dead_start = -1;
1499    uint32_t insn_idx = 0;
1500    for (; insn_idx < insns_size;
1501         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1502      /*
1503       * Switch-statement data doesn't get "visited" by scanner. It
1504       * may or may not be preceded by a padding NOP (for alignment).
1505       */
1506      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1507          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1508          insns[insn_idx] == Instruction::kArrayDataSignature ||
1509          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1510           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1511            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1512            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1513        insn_flags_[insn_idx].SetVisited();
1514      }
1515
1516      if (!insn_flags_[insn_idx].IsVisited()) {
1517        if (dead_start < 0)
1518          dead_start = insn_idx;
1519      } else if (dead_start >= 0) {
1520        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1521                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1522        dead_start = -1;
1523      }
1524    }
1525    if (dead_start >= 0) {
1526      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1527                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1528    }
1529    // To dump the state of the verify after a method, do something like:
1530    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1531    //     "boolean java.lang.String.equals(java.lang.Object)") {
1532    //   LOG(INFO) << info_messages_.str();
1533    // }
1534  }
1535  return true;
1536}
1537
1538bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1539  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1540  // We want the state _before_ the instruction, for the case where the dex pc we're
1541  // interested in is itself a monitor-enter instruction (which is a likely place
1542  // for a thread to be suspended).
1543  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1544    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1545    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1546      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1547    }
1548  }
1549
1550  /*
1551   * Once we finish decoding the instruction, we need to figure out where
1552   * we can go from here. There are three possible ways to transfer
1553   * control to another statement:
1554   *
1555   * (1) Continue to the next instruction. Applies to all but
1556   *     unconditional branches, method returns, and exception throws.
1557   * (2) Branch to one or more possible locations. Applies to branches
1558   *     and switch statements.
1559   * (3) Exception handlers. Applies to any instruction that can
1560   *     throw an exception that is handled by an encompassing "try"
1561   *     block.
1562   *
1563   * We can also return, in which case there is no successor instruction
1564   * from this point.
1565   *
1566   * The behavior can be determined from the opcode flags.
1567   */
1568  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1569  const Instruction* inst = Instruction::At(insns);
1570  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1571
1572  int32_t branch_target = 0;
1573  bool just_set_result = false;
1574  if (gDebugVerify) {
1575    // Generate processing back trace to debug verifier
1576    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1577                    << work_line_->Dump(this) << "\n";
1578  }
1579
1580  /*
1581   * Make a copy of the previous register state. If the instruction
1582   * can throw an exception, we will copy/merge this into the "catch"
1583   * address rather than work_line, because we don't want the result
1584   * from the "successful" code path (e.g. a check-cast that "improves"
1585   * a type) to be visible to the exception handler.
1586   */
1587  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1588    saved_line_->CopyFromLine(work_line_.get());
1589  } else if (kIsDebugBuild) {
1590    saved_line_->FillWithGarbage();
1591  }
1592
1593
1594  // We need to ensure the work line is consistent while performing validation. When we spot a
1595  // peephole pattern we compute a new line for either the fallthrough instruction or the
1596  // branch target.
1597  std::unique_ptr<RegisterLine> branch_line;
1598  std::unique_ptr<RegisterLine> fallthrough_line;
1599
1600  /*
1601   * If we are in a constructor, and we currently have an UninitializedThis type
1602   * in a register somewhere, we need to make sure it isn't overwritten.
1603   */
1604  bool track_uninitialized_this = false;
1605  size_t uninitialized_this_loc = 0;
1606  if (IsConstructor()) {
1607    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
1608  }
1609
1610  switch (inst->Opcode()) {
1611    case Instruction::NOP:
1612      /*
1613       * A "pure" NOP has no effect on anything. Data tables start with
1614       * a signature that looks like a NOP; if we see one of these in
1615       * the course of executing code then we have a problem.
1616       */
1617      if (inst->VRegA_10x() != 0) {
1618        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1619      }
1620      break;
1621
1622    case Instruction::MOVE:
1623      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1624      break;
1625    case Instruction::MOVE_FROM16:
1626      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1627      break;
1628    case Instruction::MOVE_16:
1629      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1630      break;
1631    case Instruction::MOVE_WIDE:
1632      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1633      break;
1634    case Instruction::MOVE_WIDE_FROM16:
1635      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1636      break;
1637    case Instruction::MOVE_WIDE_16:
1638      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1639      break;
1640    case Instruction::MOVE_OBJECT:
1641      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1642      break;
1643    case Instruction::MOVE_OBJECT_FROM16:
1644      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1645      break;
1646    case Instruction::MOVE_OBJECT_16:
1647      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1648      break;
1649
1650    /*
1651     * The move-result instructions copy data out of a "pseudo-register"
1652     * with the results from the last method invocation. In practice we
1653     * might want to hold the result in an actual CPU register, so the
1654     * Dalvik spec requires that these only appear immediately after an
1655     * invoke or filled-new-array.
1656     *
1657     * These calls invalidate the "result" register. (This is now
1658     * redundant with the reset done below, but it can make the debug info
1659     * easier to read in some cases.)
1660     */
1661    case Instruction::MOVE_RESULT:
1662      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1663      break;
1664    case Instruction::MOVE_RESULT_WIDE:
1665      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1666      break;
1667    case Instruction::MOVE_RESULT_OBJECT:
1668      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1669      break;
1670
1671    case Instruction::MOVE_EXCEPTION: {
1672      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1673      // where one entrypoint to the catch block is not actually an exception path.
1674      if (work_insn_idx_ == 0) {
1675        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1676        break;
1677      }
1678      /*
1679       * This statement can only appear as the first instruction in an exception handler. We verify
1680       * that as part of extracting the exception type from the catch block list.
1681       */
1682      const RegType& res_type = GetCaughtExceptionType();
1683      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1684      break;
1685    }
1686    case Instruction::RETURN_VOID:
1687      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1688        if (!GetMethodReturnType().IsConflict()) {
1689          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1690        }
1691      }
1692      break;
1693    case Instruction::RETURN:
1694      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1695        /* check the method signature */
1696        const RegType& return_type = GetMethodReturnType();
1697        if (!return_type.IsCategory1Types()) {
1698          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1699                                            << return_type;
1700        } else {
1701          // Compilers may generate synthetic functions that write byte values into boolean fields.
1702          // Also, it may use integer values for boolean, byte, short, and character return types.
1703          const uint32_t vregA = inst->VRegA_11x();
1704          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1705          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1706                          ((return_type.IsBoolean() || return_type.IsByte() ||
1707                           return_type.IsShort() || return_type.IsChar()) &&
1708                           src_type.IsInteger()));
1709          /* check the register contents */
1710          bool success =
1711              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1712          if (!success) {
1713            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1714          }
1715        }
1716      }
1717      break;
1718    case Instruction::RETURN_WIDE:
1719      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1720        /* check the method signature */
1721        const RegType& return_type = GetMethodReturnType();
1722        if (!return_type.IsCategory2Types()) {
1723          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1724        } else {
1725          /* check the register contents */
1726          const uint32_t vregA = inst->VRegA_11x();
1727          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1728          if (!success) {
1729            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1730          }
1731        }
1732      }
1733      break;
1734    case Instruction::RETURN_OBJECT:
1735      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1736        const RegType& return_type = GetMethodReturnType();
1737        if (!return_type.IsReferenceTypes()) {
1738          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1739        } else {
1740          /* return_type is the *expected* return type, not register value */
1741          DCHECK(!return_type.IsZero());
1742          DCHECK(!return_type.IsUninitializedReference());
1743          const uint32_t vregA = inst->VRegA_11x();
1744          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1745          // Disallow returning uninitialized values and verify that the reference in vAA is an
1746          // instance of the "return_type"
1747          if (reg_type.IsUninitializedTypes()) {
1748            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1749                                              << reg_type << "'";
1750          } else if (!return_type.IsAssignableFrom(reg_type)) {
1751            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1752              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1753                  << "' or '" << reg_type << "'";
1754            } else {
1755              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1756                  << "', but expected from declaration '" << return_type << "'";
1757            }
1758          }
1759        }
1760      }
1761      break;
1762
1763      /* could be boolean, int, float, or a null reference */
1764    case Instruction::CONST_4: {
1765      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1766      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1767                                  DetermineCat1Constant(val, need_precise_constants_));
1768      break;
1769    }
1770    case Instruction::CONST_16: {
1771      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1772      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1773                                  DetermineCat1Constant(val, need_precise_constants_));
1774      break;
1775    }
1776    case Instruction::CONST: {
1777      int32_t val = inst->VRegB_31i();
1778      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1779                                  DetermineCat1Constant(val, need_precise_constants_));
1780      break;
1781    }
1782    case Instruction::CONST_HIGH16: {
1783      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1784      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1785                                  DetermineCat1Constant(val, need_precise_constants_));
1786      break;
1787    }
1788      /* could be long or double; resolved upon use */
1789    case Instruction::CONST_WIDE_16: {
1790      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1791      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1792      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1793      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1794      break;
1795    }
1796    case Instruction::CONST_WIDE_32: {
1797      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1798      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1799      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1800      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1801      break;
1802    }
1803    case Instruction::CONST_WIDE: {
1804      int64_t val = inst->VRegB_51l();
1805      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1806      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1807      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1808      break;
1809    }
1810    case Instruction::CONST_WIDE_HIGH16: {
1811      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1812      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1813      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1814      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1815      break;
1816    }
1817    case Instruction::CONST_STRING:
1818      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1819      break;
1820    case Instruction::CONST_STRING_JUMBO:
1821      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1822      break;
1823    case Instruction::CONST_CLASS: {
1824      // Get type from instruction if unresolved then we need an access check
1825      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1826      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1827      // Register holds class, ie its type is class, on error it will hold Conflict.
1828      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1829                                  res_type.IsConflict() ? res_type
1830                                                        : reg_types_.JavaLangClass());
1831      break;
1832    }
1833    case Instruction::MONITOR_ENTER:
1834      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1835      break;
1836    case Instruction::MONITOR_EXIT:
1837      /*
1838       * monitor-exit instructions are odd. They can throw exceptions,
1839       * but when they do they act as if they succeeded and the PC is
1840       * pointing to the following instruction. (This behavior goes back
1841       * to the need to handle asynchronous exceptions, a now-deprecated
1842       * feature that Dalvik doesn't support.)
1843       *
1844       * In practice we don't need to worry about this. The only
1845       * exceptions that can be thrown from monitor-exit are for a
1846       * null reference and -exit without a matching -enter. If the
1847       * structured locking checks are working, the former would have
1848       * failed on the -enter instruction, and the latter is impossible.
1849       *
1850       * This is fortunate, because issue 3221411 prevents us from
1851       * chasing the "can throw" path when monitor verification is
1852       * enabled. If we can fully verify the locking we can ignore
1853       * some catch blocks (which will show up as "dead" code when
1854       * we skip them here); if we can't, then the code path could be
1855       * "live" so we still need to check it.
1856       */
1857      opcode_flags &= ~Instruction::kThrow;
1858      work_line_->PopMonitor(this, inst->VRegA_11x());
1859      break;
1860
1861    case Instruction::CHECK_CAST:
1862    case Instruction::INSTANCE_OF: {
1863      /*
1864       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1865       * could be a "upcast" -- not expected, so we don't try to address it.)
1866       *
1867       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1868       * dec_insn.vA when branching to a handler.
1869       */
1870      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1871      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1872      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1873      if (res_type.IsConflict()) {
1874        // If this is a primitive type, fail HARD.
1875        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1876        if (klass != nullptr && klass->IsPrimitive()) {
1877          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1878              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1879              << GetDeclaringClass();
1880          break;
1881        }
1882
1883        DCHECK_NE(failures_.size(), 0U);
1884        if (!is_checkcast) {
1885          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1886        }
1887        break;  // bad class
1888      }
1889      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1890      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1891      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1892      if (!res_type.IsNonZeroReferenceTypes()) {
1893        if (is_checkcast) {
1894          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1895        } else {
1896          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1897        }
1898      } else if (!orig_type.IsReferenceTypes()) {
1899        if (is_checkcast) {
1900          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1901        } else {
1902          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1903        }
1904      } else {
1905        if (is_checkcast) {
1906          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1907        } else {
1908          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1909        }
1910      }
1911      break;
1912    }
1913    case Instruction::ARRAY_LENGTH: {
1914      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1915      if (res_type.IsReferenceTypes()) {
1916        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1917          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1918        } else {
1919          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1920        }
1921      } else {
1922        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1923      }
1924      break;
1925    }
1926    case Instruction::NEW_INSTANCE: {
1927      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1928      if (res_type.IsConflict()) {
1929        DCHECK_NE(failures_.size(), 0U);
1930        break;  // bad class
1931      }
1932      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1933      // can't create an instance of an interface or abstract class */
1934      if (!res_type.IsInstantiableTypes()) {
1935        Fail(VERIFY_ERROR_INSTANTIATION)
1936            << "new-instance on primitive, interface or abstract class" << res_type;
1937        // Soft failure so carry on to set register type.
1938      }
1939      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1940      // Any registers holding previous allocations from this address that have not yet been
1941      // initialized must be marked invalid.
1942      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1943      // add the new uninitialized reference to the register state
1944      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1945      break;
1946    }
1947    case Instruction::NEW_ARRAY:
1948      VerifyNewArray(inst, false, false);
1949      break;
1950    case Instruction::FILLED_NEW_ARRAY:
1951      VerifyNewArray(inst, true, false);
1952      just_set_result = true;  // Filled new array sets result register
1953      break;
1954    case Instruction::FILLED_NEW_ARRAY_RANGE:
1955      VerifyNewArray(inst, true, true);
1956      just_set_result = true;  // Filled new array range sets result register
1957      break;
1958    case Instruction::CMPL_FLOAT:
1959    case Instruction::CMPG_FLOAT:
1960      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1961        break;
1962      }
1963      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1964        break;
1965      }
1966      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1967      break;
1968    case Instruction::CMPL_DOUBLE:
1969    case Instruction::CMPG_DOUBLE:
1970      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
1971                                              reg_types_.DoubleHi())) {
1972        break;
1973      }
1974      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
1975                                              reg_types_.DoubleHi())) {
1976        break;
1977      }
1978      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1979      break;
1980    case Instruction::CMP_LONG:
1981      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
1982                                              reg_types_.LongHi())) {
1983        break;
1984      }
1985      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
1986                                              reg_types_.LongHi())) {
1987        break;
1988      }
1989      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1990      break;
1991    case Instruction::THROW: {
1992      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
1993      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1994        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1995            << "thrown class " << res_type << " not instanceof Throwable";
1996      }
1997      break;
1998    }
1999    case Instruction::GOTO:
2000    case Instruction::GOTO_16:
2001    case Instruction::GOTO_32:
2002      /* no effect on or use of registers */
2003      break;
2004
2005    case Instruction::PACKED_SWITCH:
2006    case Instruction::SPARSE_SWITCH:
2007      /* verify that vAA is an integer, or can be converted to one */
2008      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2009      break;
2010
2011    case Instruction::FILL_ARRAY_DATA: {
2012      /* Similar to the verification done for APUT */
2013      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2014      /* array_type can be null if the reg type is Zero */
2015      if (!array_type.IsZero()) {
2016        if (!array_type.IsArrayTypes()) {
2017          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2018                                            << array_type;
2019        } else {
2020          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2021          DCHECK(!component_type.IsConflict());
2022          if (component_type.IsNonZeroReferenceTypes()) {
2023            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2024                                              << component_type;
2025          } else {
2026            // Now verify if the element width in the table matches the element width declared in
2027            // the array
2028            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2029            if (array_data[0] != Instruction::kArrayDataSignature) {
2030              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2031            } else {
2032              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2033              // Since we don't compress the data in Dex, expect to see equal width of data stored
2034              // in the table and expected from the array class.
2035              if (array_data[1] != elem_width) {
2036                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2037                                                  << " vs " << elem_width << ")";
2038              }
2039            }
2040          }
2041        }
2042      }
2043      break;
2044    }
2045    case Instruction::IF_EQ:
2046    case Instruction::IF_NE: {
2047      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2048      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2049      bool mismatch = false;
2050      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2051        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2052      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2053        mismatch = !reg_type2.IsReferenceTypes();
2054      } else {  // both integral?
2055        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2056      }
2057      if (mismatch) {
2058        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2059                                          << reg_type2 << ") must both be references or integral";
2060      }
2061      break;
2062    }
2063    case Instruction::IF_LT:
2064    case Instruction::IF_GE:
2065    case Instruction::IF_GT:
2066    case Instruction::IF_LE: {
2067      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2068      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2069      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2070        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2071                                          << reg_type2 << ") must be integral";
2072      }
2073      break;
2074    }
2075    case Instruction::IF_EQZ:
2076    case Instruction::IF_NEZ: {
2077      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2078      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2079        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2080                                          << " unexpected as arg to if-eqz/if-nez";
2081      }
2082
2083      // Find previous instruction - its existence is a precondition to peephole optimization.
2084      uint32_t instance_of_idx = 0;
2085      if (0 != work_insn_idx_) {
2086        instance_of_idx = work_insn_idx_ - 1;
2087        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2088          instance_of_idx--;
2089        }
2090        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2091                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2092                        work_insn_idx_)) {
2093          break;
2094        }
2095      } else {
2096        break;
2097      }
2098
2099      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2100
2101      /* Check for peep-hole pattern of:
2102       *    ...;
2103       *    instance-of vX, vY, T;
2104       *    ifXXX vX, label ;
2105       *    ...;
2106       * label:
2107       *    ...;
2108       * and sharpen the type of vY to be type T.
2109       * Note, this pattern can't be if:
2110       *  - if there are other branches to this branch,
2111       *  - when vX == vY.
2112       */
2113      if (!CurrentInsnFlags()->IsBranchTarget() &&
2114          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2115          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2116          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2117        // Check the type of the instance-of is different than that of registers type, as if they
2118        // are the same there is no work to be done here. Check that the conversion is not to or
2119        // from an unresolved type as type information is imprecise. If the instance-of is to an
2120        // interface then ignore the type information as interfaces can only be treated as Objects
2121        // and we don't want to disallow field and other operations on the object. If the value
2122        // being instance-of checked against is known null (zero) then allow the optimization as
2123        // we didn't have type information. If the merge of the instance-of type with the original
2124        // type is assignable to the original then allow optimization. This check is performed to
2125        // ensure that subsequent merges don't lose type information - such as becoming an
2126        // interface from a class that would lose information relevant to field checks.
2127        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2128        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2129
2130        if (!orig_type.Equals(cast_type) &&
2131            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2132            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2133            !cast_type.GetClass()->IsInterface() &&
2134            (orig_type.IsZero() ||
2135                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2136          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2137          if (inst->Opcode() == Instruction::IF_EQZ) {
2138            fallthrough_line.reset(update_line);
2139          } else {
2140            branch_line.reset(update_line);
2141          }
2142          update_line->CopyFromLine(work_line_.get());
2143          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2144          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2145            // See if instance-of was preceded by a move-object operation, common due to the small
2146            // register encoding space of instance-of, and propagate type information to the source
2147            // of the move-object.
2148            uint32_t move_idx = instance_of_idx - 1;
2149            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2150              move_idx--;
2151            }
2152            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2153                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2154                            work_insn_idx_)) {
2155              break;
2156            }
2157            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2158            switch (move_inst->Opcode()) {
2159              case Instruction::MOVE_OBJECT:
2160                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2161                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2162                }
2163                break;
2164              case Instruction::MOVE_OBJECT_FROM16:
2165                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2166                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2167                }
2168                break;
2169              case Instruction::MOVE_OBJECT_16:
2170                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2171                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2172                }
2173                break;
2174              default:
2175                break;
2176            }
2177          }
2178        }
2179      }
2180
2181      break;
2182    }
2183    case Instruction::IF_LTZ:
2184    case Instruction::IF_GEZ:
2185    case Instruction::IF_GTZ:
2186    case Instruction::IF_LEZ: {
2187      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2188      if (!reg_type.IsIntegralTypes()) {
2189        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2190                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2191      }
2192      break;
2193    }
2194    case Instruction::AGET_BOOLEAN:
2195      VerifyAGet(inst, reg_types_.Boolean(), true);
2196      break;
2197    case Instruction::AGET_BYTE:
2198      VerifyAGet(inst, reg_types_.Byte(), true);
2199      break;
2200    case Instruction::AGET_CHAR:
2201      VerifyAGet(inst, reg_types_.Char(), true);
2202      break;
2203    case Instruction::AGET_SHORT:
2204      VerifyAGet(inst, reg_types_.Short(), true);
2205      break;
2206    case Instruction::AGET:
2207      VerifyAGet(inst, reg_types_.Integer(), true);
2208      break;
2209    case Instruction::AGET_WIDE:
2210      VerifyAGet(inst, reg_types_.LongLo(), true);
2211      break;
2212    case Instruction::AGET_OBJECT:
2213      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2214      break;
2215
2216    case Instruction::APUT_BOOLEAN:
2217      VerifyAPut(inst, reg_types_.Boolean(), true);
2218      break;
2219    case Instruction::APUT_BYTE:
2220      VerifyAPut(inst, reg_types_.Byte(), true);
2221      break;
2222    case Instruction::APUT_CHAR:
2223      VerifyAPut(inst, reg_types_.Char(), true);
2224      break;
2225    case Instruction::APUT_SHORT:
2226      VerifyAPut(inst, reg_types_.Short(), true);
2227      break;
2228    case Instruction::APUT:
2229      VerifyAPut(inst, reg_types_.Integer(), true);
2230      break;
2231    case Instruction::APUT_WIDE:
2232      VerifyAPut(inst, reg_types_.LongLo(), true);
2233      break;
2234    case Instruction::APUT_OBJECT:
2235      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2236      break;
2237
2238    case Instruction::IGET_BOOLEAN:
2239      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2240      break;
2241    case Instruction::IGET_BYTE:
2242      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2243      break;
2244    case Instruction::IGET_CHAR:
2245      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2246      break;
2247    case Instruction::IGET_SHORT:
2248      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2249      break;
2250    case Instruction::IGET:
2251      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2252      break;
2253    case Instruction::IGET_WIDE:
2254      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2255      break;
2256    case Instruction::IGET_OBJECT:
2257      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2258                                                    false);
2259      break;
2260
2261    case Instruction::IPUT_BOOLEAN:
2262      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2263      break;
2264    case Instruction::IPUT_BYTE:
2265      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2266      break;
2267    case Instruction::IPUT_CHAR:
2268      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2269      break;
2270    case Instruction::IPUT_SHORT:
2271      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2272      break;
2273    case Instruction::IPUT:
2274      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2275      break;
2276    case Instruction::IPUT_WIDE:
2277      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2278      break;
2279    case Instruction::IPUT_OBJECT:
2280      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2281                                                    false);
2282      break;
2283
2284    case Instruction::SGET_BOOLEAN:
2285      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2286      break;
2287    case Instruction::SGET_BYTE:
2288      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2289      break;
2290    case Instruction::SGET_CHAR:
2291      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2292      break;
2293    case Instruction::SGET_SHORT:
2294      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2295      break;
2296    case Instruction::SGET:
2297      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2298      break;
2299    case Instruction::SGET_WIDE:
2300      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2301      break;
2302    case Instruction::SGET_OBJECT:
2303      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2304                                                    true);
2305      break;
2306
2307    case Instruction::SPUT_BOOLEAN:
2308      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2309      break;
2310    case Instruction::SPUT_BYTE:
2311      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2312      break;
2313    case Instruction::SPUT_CHAR:
2314      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2315      break;
2316    case Instruction::SPUT_SHORT:
2317      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2318      break;
2319    case Instruction::SPUT:
2320      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2321      break;
2322    case Instruction::SPUT_WIDE:
2323      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2324      break;
2325    case Instruction::SPUT_OBJECT:
2326      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2327                                                    true);
2328      break;
2329
2330    case Instruction::INVOKE_VIRTUAL:
2331    case Instruction::INVOKE_VIRTUAL_RANGE:
2332    case Instruction::INVOKE_SUPER:
2333    case Instruction::INVOKE_SUPER_RANGE: {
2334      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2335                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2336      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2337                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2338      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2339                                                              is_super);
2340      const RegType* return_type = nullptr;
2341      if (called_method != nullptr) {
2342        StackHandleScope<1> hs(self_);
2343        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2344        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2345        if (return_type_class != nullptr) {
2346          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2347                                              return_type_class,
2348                                              return_type_class->CannotBeAssignedFromOtherTypes());
2349        } else {
2350          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2351          self_->ClearException();
2352        }
2353      }
2354      if (return_type == nullptr) {
2355        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2356        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2357        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2358        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2359        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2360      }
2361      if (!return_type->IsLowHalf()) {
2362        work_line_->SetResultRegisterType(this, *return_type);
2363      } else {
2364        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2365      }
2366      just_set_result = true;
2367      break;
2368    }
2369    case Instruction::INVOKE_DIRECT:
2370    case Instruction::INVOKE_DIRECT_RANGE: {
2371      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2372      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2373                                                                   is_range, false);
2374      const char* return_type_descriptor;
2375      bool is_constructor;
2376      const RegType* return_type = nullptr;
2377      if (called_method == nullptr) {
2378        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2379        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2380        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2381        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2382        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2383      } else {
2384        is_constructor = called_method->IsConstructor();
2385        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2386        StackHandleScope<1> hs(self_);
2387        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2388        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2389        if (return_type_class != nullptr) {
2390          return_type = &reg_types_.FromClass(return_type_descriptor,
2391                                              return_type_class,
2392                                              return_type_class->CannotBeAssignedFromOtherTypes());
2393        } else {
2394          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2395          self_->ClearException();
2396        }
2397      }
2398      if (is_constructor) {
2399        /*
2400         * Some additional checks when calling a constructor. We know from the invocation arg check
2401         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2402         * that to require that called_method->klass is the same as this->klass or this->super,
2403         * allowing the latter only if the "this" argument is the same as the "this" argument to
2404         * this method (which implies that we're in a constructor ourselves).
2405         */
2406        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2407        if (this_type.IsConflict())  // failure.
2408          break;
2409
2410        /* no null refs allowed (?) */
2411        if (this_type.IsZero()) {
2412          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2413          break;
2414        }
2415
2416        /* must be in same class or in superclass */
2417        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2418        // TODO: re-enable constructor type verification
2419        // if (this_super_klass.IsConflict()) {
2420          // Unknown super class, fail so we re-check at runtime.
2421          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2422          // break;
2423        // }
2424
2425        /* arg must be an uninitialized reference */
2426        if (!this_type.IsUninitializedTypes()) {
2427          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2428              << this_type;
2429          break;
2430        }
2431
2432        /*
2433         * Replace the uninitialized reference with an initialized one. We need to do this for all
2434         * registers that have the same object instance in them, not just the "this" register.
2435         */
2436        work_line_->MarkRefsAsInitialized(this, this_type);
2437      }
2438      if (return_type == nullptr) {
2439        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2440                                                 false);
2441      }
2442      if (!return_type->IsLowHalf()) {
2443        work_line_->SetResultRegisterType(this, *return_type);
2444      } else {
2445        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2446      }
2447      just_set_result = true;
2448      break;
2449    }
2450    case Instruction::INVOKE_STATIC:
2451    case Instruction::INVOKE_STATIC_RANGE: {
2452        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2453        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2454                                                                     METHOD_STATIC,
2455                                                                     is_range,
2456                                                                     false);
2457        const char* descriptor;
2458        if (called_method == nullptr) {
2459          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2460          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2461          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2462          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2463        } else {
2464          descriptor = called_method->GetReturnTypeDescriptor();
2465        }
2466        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2467        if (!return_type.IsLowHalf()) {
2468          work_line_->SetResultRegisterType(this, return_type);
2469        } else {
2470          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2471        }
2472        just_set_result = true;
2473      }
2474      break;
2475    case Instruction::INVOKE_INTERFACE:
2476    case Instruction::INVOKE_INTERFACE_RANGE: {
2477      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2478      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2479                                                                METHOD_INTERFACE,
2480                                                                is_range,
2481                                                                false);
2482      if (abs_method != nullptr) {
2483        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2484        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2485          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2486              << PrettyMethod(abs_method) << "'";
2487          break;
2488        }
2489      }
2490      /* Get the type of the "this" arg, which should either be a sub-interface of called
2491       * interface or Object (see comments in RegType::JoinClass).
2492       */
2493      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2494      if (this_type.IsZero()) {
2495        /* null pointer always passes (and always fails at runtime) */
2496      } else {
2497        if (this_type.IsUninitializedTypes()) {
2498          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2499              << this_type;
2500          break;
2501        }
2502        // In the past we have tried to assert that "called_interface" is assignable
2503        // from "this_type.GetClass()", however, as we do an imprecise Join
2504        // (RegType::JoinClass) we don't have full information on what interfaces are
2505        // implemented by "this_type". For example, two classes may implement the same
2506        // interfaces and have a common parent that doesn't implement the interface. The
2507        // join will set "this_type" to the parent class and a test that this implements
2508        // the interface will incorrectly fail.
2509      }
2510      /*
2511       * We don't have an object instance, so we can't find the concrete method. However, all of
2512       * the type information is in the abstract method, so we're good.
2513       */
2514      const char* descriptor;
2515      if (abs_method == nullptr) {
2516        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2517        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2518        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2519        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2520      } else {
2521        descriptor = abs_method->GetReturnTypeDescriptor();
2522      }
2523      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2524      if (!return_type.IsLowHalf()) {
2525        work_line_->SetResultRegisterType(this, return_type);
2526      } else {
2527        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2528      }
2529      just_set_result = true;
2530      break;
2531    }
2532    case Instruction::NEG_INT:
2533    case Instruction::NOT_INT:
2534      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2535      break;
2536    case Instruction::NEG_LONG:
2537    case Instruction::NOT_LONG:
2538      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2539                                   reg_types_.LongLo(), reg_types_.LongHi());
2540      break;
2541    case Instruction::NEG_FLOAT:
2542      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2543      break;
2544    case Instruction::NEG_DOUBLE:
2545      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2546                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2547      break;
2548    case Instruction::INT_TO_LONG:
2549      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2550                                     reg_types_.Integer());
2551      break;
2552    case Instruction::INT_TO_FLOAT:
2553      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2554      break;
2555    case Instruction::INT_TO_DOUBLE:
2556      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2557                                     reg_types_.Integer());
2558      break;
2559    case Instruction::LONG_TO_INT:
2560      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2561                                       reg_types_.LongLo(), reg_types_.LongHi());
2562      break;
2563    case Instruction::LONG_TO_FLOAT:
2564      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2565                                       reg_types_.LongLo(), reg_types_.LongHi());
2566      break;
2567    case Instruction::LONG_TO_DOUBLE:
2568      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2569                                   reg_types_.LongLo(), reg_types_.LongHi());
2570      break;
2571    case Instruction::FLOAT_TO_INT:
2572      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2573      break;
2574    case Instruction::FLOAT_TO_LONG:
2575      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2576                                     reg_types_.Float());
2577      break;
2578    case Instruction::FLOAT_TO_DOUBLE:
2579      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2580                                     reg_types_.Float());
2581      break;
2582    case Instruction::DOUBLE_TO_INT:
2583      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2584                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2585      break;
2586    case Instruction::DOUBLE_TO_LONG:
2587      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2588                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2589      break;
2590    case Instruction::DOUBLE_TO_FLOAT:
2591      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2592                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2593      break;
2594    case Instruction::INT_TO_BYTE:
2595      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2596      break;
2597    case Instruction::INT_TO_CHAR:
2598      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2599      break;
2600    case Instruction::INT_TO_SHORT:
2601      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2602      break;
2603
2604    case Instruction::ADD_INT:
2605    case Instruction::SUB_INT:
2606    case Instruction::MUL_INT:
2607    case Instruction::REM_INT:
2608    case Instruction::DIV_INT:
2609    case Instruction::SHL_INT:
2610    case Instruction::SHR_INT:
2611    case Instruction::USHR_INT:
2612      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2613                                reg_types_.Integer(), false);
2614      break;
2615    case Instruction::AND_INT:
2616    case Instruction::OR_INT:
2617    case Instruction::XOR_INT:
2618      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2619                                reg_types_.Integer(), true);
2620      break;
2621    case Instruction::ADD_LONG:
2622    case Instruction::SUB_LONG:
2623    case Instruction::MUL_LONG:
2624    case Instruction::DIV_LONG:
2625    case Instruction::REM_LONG:
2626    case Instruction::AND_LONG:
2627    case Instruction::OR_LONG:
2628    case Instruction::XOR_LONG:
2629      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2630                                    reg_types_.LongLo(), reg_types_.LongHi(),
2631                                    reg_types_.LongLo(), reg_types_.LongHi());
2632      break;
2633    case Instruction::SHL_LONG:
2634    case Instruction::SHR_LONG:
2635    case Instruction::USHR_LONG:
2636      /* shift distance is Int, making these different from other binary operations */
2637      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2638                                         reg_types_.Integer());
2639      break;
2640    case Instruction::ADD_FLOAT:
2641    case Instruction::SUB_FLOAT:
2642    case Instruction::MUL_FLOAT:
2643    case Instruction::DIV_FLOAT:
2644    case Instruction::REM_FLOAT:
2645      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2646                                reg_types_.Float(), false);
2647      break;
2648    case Instruction::ADD_DOUBLE:
2649    case Instruction::SUB_DOUBLE:
2650    case Instruction::MUL_DOUBLE:
2651    case Instruction::DIV_DOUBLE:
2652    case Instruction::REM_DOUBLE:
2653      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2654                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2655                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2656      break;
2657    case Instruction::ADD_INT_2ADDR:
2658    case Instruction::SUB_INT_2ADDR:
2659    case Instruction::MUL_INT_2ADDR:
2660    case Instruction::REM_INT_2ADDR:
2661    case Instruction::SHL_INT_2ADDR:
2662    case Instruction::SHR_INT_2ADDR:
2663    case Instruction::USHR_INT_2ADDR:
2664      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2665                                     reg_types_.Integer(), false);
2666      break;
2667    case Instruction::AND_INT_2ADDR:
2668    case Instruction::OR_INT_2ADDR:
2669    case Instruction::XOR_INT_2ADDR:
2670      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2671                                     reg_types_.Integer(), true);
2672      break;
2673    case Instruction::DIV_INT_2ADDR:
2674      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2675                                     reg_types_.Integer(), false);
2676      break;
2677    case Instruction::ADD_LONG_2ADDR:
2678    case Instruction::SUB_LONG_2ADDR:
2679    case Instruction::MUL_LONG_2ADDR:
2680    case Instruction::DIV_LONG_2ADDR:
2681    case Instruction::REM_LONG_2ADDR:
2682    case Instruction::AND_LONG_2ADDR:
2683    case Instruction::OR_LONG_2ADDR:
2684    case Instruction::XOR_LONG_2ADDR:
2685      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2686                                         reg_types_.LongLo(), reg_types_.LongHi(),
2687                                         reg_types_.LongLo(), reg_types_.LongHi());
2688      break;
2689    case Instruction::SHL_LONG_2ADDR:
2690    case Instruction::SHR_LONG_2ADDR:
2691    case Instruction::USHR_LONG_2ADDR:
2692      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2693                                              reg_types_.Integer());
2694      break;
2695    case Instruction::ADD_FLOAT_2ADDR:
2696    case Instruction::SUB_FLOAT_2ADDR:
2697    case Instruction::MUL_FLOAT_2ADDR:
2698    case Instruction::DIV_FLOAT_2ADDR:
2699    case Instruction::REM_FLOAT_2ADDR:
2700      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2701                                     reg_types_.Float(), false);
2702      break;
2703    case Instruction::ADD_DOUBLE_2ADDR:
2704    case Instruction::SUB_DOUBLE_2ADDR:
2705    case Instruction::MUL_DOUBLE_2ADDR:
2706    case Instruction::DIV_DOUBLE_2ADDR:
2707    case Instruction::REM_DOUBLE_2ADDR:
2708      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2709                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2710                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2711      break;
2712    case Instruction::ADD_INT_LIT16:
2713    case Instruction::RSUB_INT_LIT16:
2714    case Instruction::MUL_INT_LIT16:
2715    case Instruction::DIV_INT_LIT16:
2716    case Instruction::REM_INT_LIT16:
2717      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2718                                 true);
2719      break;
2720    case Instruction::AND_INT_LIT16:
2721    case Instruction::OR_INT_LIT16:
2722    case Instruction::XOR_INT_LIT16:
2723      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2724                                 true);
2725      break;
2726    case Instruction::ADD_INT_LIT8:
2727    case Instruction::RSUB_INT_LIT8:
2728    case Instruction::MUL_INT_LIT8:
2729    case Instruction::DIV_INT_LIT8:
2730    case Instruction::REM_INT_LIT8:
2731    case Instruction::SHL_INT_LIT8:
2732    case Instruction::SHR_INT_LIT8:
2733    case Instruction::USHR_INT_LIT8:
2734      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2735                                 false);
2736      break;
2737    case Instruction::AND_INT_LIT8:
2738    case Instruction::OR_INT_LIT8:
2739    case Instruction::XOR_INT_LIT8:
2740      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2741                                 false);
2742      break;
2743
2744    // Special instructions.
2745    case Instruction::RETURN_VOID_NO_BARRIER:
2746      if (IsConstructor() && !IsStatic()) {
2747        auto& declaring_class = GetDeclaringClass();
2748        auto* klass = declaring_class.GetClass();
2749        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
2750          if (klass->GetInstanceField(i)->IsFinal()) {
2751            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected";
2752            break;
2753          }
2754        }
2755      }
2756      break;
2757    // Note: the following instructions encode offsets derived from class linking.
2758    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2759    // meaning if the class linking and resolution were successful.
2760    case Instruction::IGET_QUICK:
2761      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2762      break;
2763    case Instruction::IGET_WIDE_QUICK:
2764      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2765      break;
2766    case Instruction::IGET_OBJECT_QUICK:
2767      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2768      break;
2769    case Instruction::IGET_BOOLEAN_QUICK:
2770      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2771      break;
2772    case Instruction::IGET_BYTE_QUICK:
2773      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2774      break;
2775    case Instruction::IGET_CHAR_QUICK:
2776      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2777      break;
2778    case Instruction::IGET_SHORT_QUICK:
2779      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2780      break;
2781    case Instruction::IPUT_QUICK:
2782      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2783      break;
2784    case Instruction::IPUT_BOOLEAN_QUICK:
2785      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2786      break;
2787    case Instruction::IPUT_BYTE_QUICK:
2788      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2789      break;
2790    case Instruction::IPUT_CHAR_QUICK:
2791      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2792      break;
2793    case Instruction::IPUT_SHORT_QUICK:
2794      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2795      break;
2796    case Instruction::IPUT_WIDE_QUICK:
2797      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2798      break;
2799    case Instruction::IPUT_OBJECT_QUICK:
2800      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2801      break;
2802    case Instruction::INVOKE_VIRTUAL_QUICK:
2803    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2804      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2805      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2806      if (called_method != nullptr) {
2807        const char* descriptor = called_method->GetReturnTypeDescriptor();
2808        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2809        if (!return_type.IsLowHalf()) {
2810          work_line_->SetResultRegisterType(this, return_type);
2811        } else {
2812          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2813        }
2814        just_set_result = true;
2815      }
2816      break;
2817    }
2818
2819    /* These should never appear during verification. */
2820    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2821    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2822    case Instruction::UNUSED_79:
2823    case Instruction::UNUSED_7A:
2824      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2825      break;
2826
2827    /*
2828     * DO NOT add a "default" clause here. Without it the compiler will
2829     * complain if an instruction is missing (which is desirable).
2830     */
2831  }  // end - switch (dec_insn.opcode)
2832
2833  /*
2834   * If we are in a constructor, and we had an UninitializedThis type
2835   * in a register somewhere, we need to make sure it wasn't overwritten.
2836   */
2837  if (track_uninitialized_this) {
2838    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
2839                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2840    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
2841                                                    was_invoke_direct)) {
2842      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2843          << "Constructor failed to initialize this object";
2844    }
2845  }
2846
2847  if (have_pending_hard_failure_) {
2848    if (Runtime::Current()->IsAotCompiler()) {
2849      /* When AOT compiling, check that the last failure is a hard failure */
2850      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2851    }
2852    /* immediate failure, reject class */
2853    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2854    return false;
2855  } else if (have_pending_runtime_throw_failure_) {
2856    /* checking interpreter will throw, mark following code as unreachable */
2857    opcode_flags = Instruction::kThrow;
2858  }
2859  /*
2860   * If we didn't just set the result register, clear it out. This ensures that you can only use
2861   * "move-result" immediately after the result is set. (We could check this statically, but it's
2862   * not expensive and it makes our debugging output cleaner.)
2863   */
2864  if (!just_set_result) {
2865    work_line_->SetResultTypeToUnknown(this);
2866  }
2867
2868
2869
2870  /*
2871   * Handle "branch". Tag the branch target.
2872   *
2873   * NOTE: instructions like Instruction::EQZ provide information about the
2874   * state of the register when the branch is taken or not taken. For example,
2875   * somebody could get a reference field, check it for zero, and if the
2876   * branch is taken immediately store that register in a boolean field
2877   * since the value is known to be zero. We do not currently account for
2878   * that, and will reject the code.
2879   *
2880   * TODO: avoid re-fetching the branch target
2881   */
2882  if ((opcode_flags & Instruction::kBranch) != 0) {
2883    bool isConditional, selfOkay;
2884    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2885      /* should never happen after static verification */
2886      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2887      return false;
2888    }
2889    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2890    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2891      return false;
2892    }
2893    /* update branch target, set "changed" if appropriate */
2894    if (nullptr != branch_line.get()) {
2895      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2896        return false;
2897      }
2898    } else {
2899      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2900        return false;
2901      }
2902    }
2903  }
2904
2905  /*
2906   * Handle "switch". Tag all possible branch targets.
2907   *
2908   * We've already verified that the table is structurally sound, so we
2909   * just need to walk through and tag the targets.
2910   */
2911  if ((opcode_flags & Instruction::kSwitch) != 0) {
2912    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2913    const uint16_t* switch_insns = insns + offset_to_switch;
2914    int switch_count = switch_insns[1];
2915    int offset_to_targets, targ;
2916
2917    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2918      /* 0 = sig, 1 = count, 2/3 = first key */
2919      offset_to_targets = 4;
2920    } else {
2921      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2922      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2923      offset_to_targets = 2 + 2 * switch_count;
2924    }
2925
2926    /* verify each switch target */
2927    for (targ = 0; targ < switch_count; targ++) {
2928      int offset;
2929      uint32_t abs_offset;
2930
2931      /* offsets are 32-bit, and only partly endian-swapped */
2932      offset = switch_insns[offset_to_targets + targ * 2] |
2933         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2934      abs_offset = work_insn_idx_ + offset;
2935      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2936      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
2937        return false;
2938      }
2939      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2940        return false;
2941      }
2942    }
2943  }
2944
2945  /*
2946   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2947   * "try" block when they throw, control transfers out of the method.)
2948   */
2949  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2950    bool has_catch_all_handler = false;
2951    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2952
2953    // Need the linker to try and resolve the handled class to check if it's Throwable.
2954    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2955
2956    for (; iterator.HasNext(); iterator.Next()) {
2957      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2958      if (handler_type_idx == DexFile::kDexNoIndex16) {
2959        has_catch_all_handler = true;
2960      } else {
2961        // It is also a catch-all if it is java.lang.Throwable.
2962        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2963                                                   class_loader_);
2964        if (klass != nullptr) {
2965          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2966            has_catch_all_handler = true;
2967          }
2968        } else {
2969          // Clear exception.
2970          DCHECK(self_->IsExceptionPending());
2971          self_->ClearException();
2972        }
2973      }
2974      /*
2975       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2976       * "work_regs", because at runtime the exception will be thrown before the instruction
2977       * modifies any registers.
2978       */
2979      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2980        return false;
2981      }
2982    }
2983
2984    /*
2985     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2986     * instruction. This does apply to monitor-exit because of async exception handling.
2987     */
2988    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2989      /*
2990       * The state in work_line reflects the post-execution state. If the current instruction is a
2991       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2992       * it will do so before grabbing the lock).
2993       */
2994      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2995        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2996            << "expected to be within a catch-all for an instruction where a monitor is held";
2997        return false;
2998      }
2999    }
3000  }
3001
3002  /* Handle "continue". Tag the next consecutive instruction.
3003   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3004   *        because it changes work_line_ when performing peephole optimization
3005   *        and this change should not be used in those cases.
3006   */
3007  if ((opcode_flags & Instruction::kContinue) != 0) {
3008    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3009    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3010    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3011      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3012      return false;
3013    }
3014    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3015    // next instruction isn't one.
3016    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3017      return false;
3018    }
3019    if (nullptr != fallthrough_line.get()) {
3020      // Make workline consistent with fallthrough computed from peephole optimization.
3021      work_line_->CopyFromLine(fallthrough_line.get());
3022    }
3023    if (insn_flags_[next_insn_idx].IsReturn()) {
3024      // For returns we only care about the operand to the return, all other registers are dead.
3025      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3026      Instruction::Code opcode = ret_inst->Opcode();
3027      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
3028        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3029      } else {
3030        if (opcode == Instruction::RETURN_WIDE) {
3031          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3032        } else {
3033          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3034        }
3035      }
3036    }
3037    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3038    if (next_line != nullptr) {
3039      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3040      // needed. If the merge changes the state of the registers then the work line will be
3041      // updated.
3042      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3043        return false;
3044      }
3045    } else {
3046      /*
3047       * We're not recording register data for the next instruction, so we don't know what the
3048       * prior state was. We have to assume that something has changed and re-evaluate it.
3049       */
3050      insn_flags_[next_insn_idx].SetChanged();
3051    }
3052  }
3053
3054  /* If we're returning from the method, make sure monitor stack is empty. */
3055  if ((opcode_flags & Instruction::kReturn) != 0) {
3056    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3057      return false;
3058    }
3059  }
3060
3061  /*
3062   * Update start_guess. Advance to the next instruction of that's
3063   * possible, otherwise use the branch target if one was found. If
3064   * neither of those exists we're in a return or throw; leave start_guess
3065   * alone and let the caller sort it out.
3066   */
3067  if ((opcode_flags & Instruction::kContinue) != 0) {
3068    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3069    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3070  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3071    /* we're still okay if branch_target is zero */
3072    *start_guess = work_insn_idx_ + branch_target;
3073  }
3074
3075  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3076  DCHECK(insn_flags_[*start_guess].IsOpcode());
3077
3078  return true;
3079}  // NOLINT(readability/fn_size)
3080
3081const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3082  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3083  const RegType& referrer = GetDeclaringClass();
3084  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3085  const RegType& result = klass != nullptr ?
3086      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3087      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3088  if (result.IsConflict()) {
3089    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3090        << "' in " << referrer;
3091    return result;
3092  }
3093  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3094    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3095  }
3096  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3097  // check at runtime if access is allowed and so pass here. If result is
3098  // primitive, skip the access check.
3099  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3100      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3101    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3102                                    << referrer << "' -> '" << result << "'";
3103  }
3104  return result;
3105}
3106
3107const RegType& MethodVerifier::GetCaughtExceptionType() {
3108  const RegType* common_super = nullptr;
3109  if (code_item_->tries_size_ != 0) {
3110    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3111    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3112    for (uint32_t i = 0; i < handlers_size; i++) {
3113      CatchHandlerIterator iterator(handlers_ptr);
3114      for (; iterator.HasNext(); iterator.Next()) {
3115        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3116          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3117            common_super = &reg_types_.JavaLangThrowable(false);
3118          } else {
3119            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3120            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3121              if (exception.IsUnresolvedTypes()) {
3122                // We don't know enough about the type. Fail here and let runtime handle it.
3123                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3124                return exception;
3125              } else {
3126                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3127                return reg_types_.Conflict();
3128              }
3129            } else if (common_super == nullptr) {
3130              common_super = &exception;
3131            } else if (common_super->Equals(exception)) {
3132              // odd case, but nothing to do
3133            } else {
3134              common_super = &common_super->Merge(exception, &reg_types_);
3135              if (FailOrAbort(this,
3136                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3137                              "java.lang.Throwable is not assignable-from common_super at ",
3138                              work_insn_idx_)) {
3139                break;
3140              }
3141            }
3142          }
3143        }
3144      }
3145      handlers_ptr = iterator.EndDataPointer();
3146    }
3147  }
3148  if (common_super == nullptr) {
3149    /* no catch blocks, or no catches with classes we can find */
3150    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3151    return reg_types_.Conflict();
3152  }
3153  return *common_super;
3154}
3155
3156mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3157                                                               MethodType method_type) {
3158  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3159  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3160  if (klass_type.IsConflict()) {
3161    std::string append(" in attempt to access method ");
3162    append += dex_file_->GetMethodName(method_id);
3163    AppendToLastFailMessage(append);
3164    return nullptr;
3165  }
3166  if (klass_type.IsUnresolvedTypes()) {
3167    return nullptr;  // Can't resolve Class so no more to do here
3168  }
3169  mirror::Class* klass = klass_type.GetClass();
3170  const RegType& referrer = GetDeclaringClass();
3171  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3172  if (res_method == nullptr) {
3173    const char* name = dex_file_->GetMethodName(method_id);
3174    const Signature signature = dex_file_->GetMethodSignature(method_id);
3175
3176    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3177      res_method = klass->FindDirectMethod(name, signature);
3178    } else if (method_type == METHOD_INTERFACE) {
3179      res_method = klass->FindInterfaceMethod(name, signature);
3180    } else {
3181      res_method = klass->FindVirtualMethod(name, signature);
3182    }
3183    if (res_method != nullptr) {
3184      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
3185    } else {
3186      // If a virtual or interface method wasn't found with the expected type, look in
3187      // the direct methods. This can happen when the wrong invoke type is used or when
3188      // a class has changed, and will be flagged as an error in later checks.
3189      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3190        res_method = klass->FindDirectMethod(name, signature);
3191      }
3192      if (res_method == nullptr) {
3193        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3194                                     << PrettyDescriptor(klass) << "." << name
3195                                     << " " << signature;
3196        return nullptr;
3197      }
3198    }
3199  }
3200  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3201  // enforce them here.
3202  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3203    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3204                                      << PrettyMethod(res_method);
3205    return nullptr;
3206  }
3207  // Disallow any calls to class initializers.
3208  if (res_method->IsClassInitializer()) {
3209    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3210                                      << PrettyMethod(res_method);
3211    return nullptr;
3212  }
3213  // Check if access is allowed.
3214  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3215    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3216                                     << " from " << referrer << ")";
3217    return res_method;
3218  }
3219  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3220  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3221    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3222                                      << PrettyMethod(res_method);
3223    return nullptr;
3224  }
3225  // Check that interface methods match interface classes.
3226  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3227    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3228                                    << " is in an interface class " << PrettyClass(klass);
3229    return nullptr;
3230  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3231    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3232                                    << " is in a non-interface class " << PrettyClass(klass);
3233    return nullptr;
3234  }
3235  // See if the method type implied by the invoke instruction matches the access flags for the
3236  // target method.
3237  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3238      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3239      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3240      ) {
3241    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3242                                       " type of " << PrettyMethod(res_method);
3243    return nullptr;
3244  }
3245  return res_method;
3246}
3247
3248template <class T>
3249mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3250                                                                    MethodType method_type,
3251                                                                    bool is_range,
3252                                                                    mirror::ArtMethod* res_method) {
3253  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3254  // match the call to the signature. Also, we might be calling through an abstract method
3255  // definition (which doesn't have register count values).
3256  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3257  /* caught by static verifier */
3258  DCHECK(is_range || expected_args <= 5);
3259  if (expected_args > code_item_->outs_size_) {
3260    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3261        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3262    return nullptr;
3263  }
3264
3265  uint32_t arg[5];
3266  if (!is_range) {
3267    inst->GetVarArgs(arg);
3268  }
3269  uint32_t sig_registers = 0;
3270
3271  /*
3272   * Check the "this" argument, which must be an instance of the class that declared the method.
3273   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3274   * rigorous check here (which is okay since we have to do it at runtime).
3275   */
3276  if (method_type != METHOD_STATIC) {
3277    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3278    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3279      CHECK(have_pending_hard_failure_);
3280      return nullptr;
3281    }
3282    if (actual_arg_type.IsUninitializedReference()) {
3283      if (res_method) {
3284        if (!res_method->IsConstructor()) {
3285          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3286          return nullptr;
3287        }
3288      } else {
3289        // Check whether the name of the called method is "<init>"
3290        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3291        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3292          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3293          return nullptr;
3294        }
3295      }
3296    }
3297    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3298      const RegType* res_method_class;
3299      if (res_method != nullptr) {
3300        mirror::Class* klass = res_method->GetDeclaringClass();
3301        std::string temp;
3302        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3303                                                 klass->CannotBeAssignedFromOtherTypes());
3304      } else {
3305        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3306        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3307        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3308                                                      dex_file_->StringByTypeIdx(class_idx),
3309                                                      false);
3310      }
3311      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3312        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3313            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3314                << "' not instance of '" << *res_method_class << "'";
3315        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3316        // the compiler.
3317        if (have_pending_hard_failure_) {
3318          return nullptr;
3319        }
3320      }
3321    }
3322    sig_registers = 1;
3323  }
3324
3325  for ( ; it->HasNext(); it->Next()) {
3326    if (sig_registers >= expected_args) {
3327      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3328          " arguments, found " << sig_registers << " or more.";
3329      return nullptr;
3330    }
3331
3332    const char* param_descriptor = it->GetDescriptor();
3333
3334    if (param_descriptor == nullptr) {
3335      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3336          "component";
3337      return nullptr;
3338    }
3339
3340    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3341    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3342        arg[sig_registers];
3343    if (reg_type.IsIntegralTypes()) {
3344      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3345      if (!src_type.IsIntegralTypes()) {
3346        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3347            << " but expected " << reg_type;
3348        return res_method;
3349      }
3350    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3351      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3352      // compiler.
3353      if (have_pending_hard_failure_) {
3354        return res_method;
3355      }
3356    }
3357    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3358  }
3359  if (expected_args != sig_registers) {
3360    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3361        " arguments, found " << sig_registers;
3362    return nullptr;
3363  }
3364  return res_method;
3365}
3366
3367void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3368                                                          MethodType method_type,
3369                                                          bool is_range) {
3370  // As the method may not have been resolved, make this static check against what we expect.
3371  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3372  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3373  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3374  DexFileParameterIterator it(*dex_file_,
3375                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3376  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3377                                                             nullptr);
3378}
3379
3380class MethodParamListDescriptorIterator {
3381 public:
3382  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3383      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3384      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3385  }
3386
3387  bool HasNext() {
3388    return pos_ < params_size_;
3389  }
3390
3391  void Next() {
3392    ++pos_;
3393  }
3394
3395  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3396    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3397  }
3398
3399 private:
3400  mirror::ArtMethod* res_method_;
3401  size_t pos_;
3402  const DexFile::TypeList* params_;
3403  const size_t params_size_;
3404};
3405
3406mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3407                                                             MethodType method_type,
3408                                                             bool is_range,
3409                                                             bool is_super) {
3410  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3411  // we're making.
3412  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3413
3414  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3415  if (res_method == nullptr) {  // error or class is unresolved
3416    // Check what we can statically.
3417    if (!have_pending_hard_failure_) {
3418      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3419    }
3420    return nullptr;
3421  }
3422
3423  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3424  // has a vtable entry for the target method.
3425  if (is_super) {
3426    DCHECK(method_type == METHOD_VIRTUAL);
3427    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3428    if (super.IsUnresolvedTypes()) {
3429      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3430                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3431                                   << " to super " << PrettyMethod(res_method);
3432      return nullptr;
3433    }
3434    mirror::Class* super_klass = super.GetClass();
3435    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3436      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3437                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3438                                   << " to super " << super
3439                                   << "." << res_method->GetName()
3440                                   << res_method->GetSignature();
3441      return nullptr;
3442    }
3443  }
3444
3445  // Process the target method's signature. This signature may or may not
3446  MethodParamListDescriptorIterator it(res_method);
3447  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3448                                                                             is_range, res_method);
3449}
3450
3451mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3452                                                         RegisterLine* reg_line, bool is_range,
3453                                                         bool allow_failure) {
3454  if (is_range) {
3455    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3456  } else {
3457    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
3458  }
3459  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
3460  if (!actual_arg_type.HasClass()) {
3461    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3462    return nullptr;
3463  }
3464  mirror::Class* klass = actual_arg_type.GetClass();
3465  mirror::Class* dispatch_class;
3466  if (klass->IsInterface()) {
3467    // Derive Object.class from Class.class.getSuperclass().
3468    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3469    if (FailOrAbort(this, object_klass->IsObjectClass(),
3470                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
3471      return nullptr;
3472    }
3473    dispatch_class = object_klass;
3474  } else {
3475    dispatch_class = klass;
3476  }
3477  if (!dispatch_class->HasVTable()) {
3478    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
3479                work_insn_idx_);
3480    return nullptr;
3481  }
3482  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3483  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
3484    FailOrAbort(this, allow_failure,
3485                "Receiver class has not enough vtable slots for quickened invoke at ",
3486                work_insn_idx_);
3487    return nullptr;
3488  }
3489  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3490  if (self_->IsExceptionPending()) {
3491    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
3492                work_insn_idx_);
3493    return nullptr;
3494  }
3495  return res_method;
3496}
3497
3498mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3499                                                                bool is_range) {
3500  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3501      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3502
3503  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
3504  if (res_method == nullptr) {
3505    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3506    return nullptr;
3507  }
3508  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3509                  work_insn_idx_)) {
3510    return nullptr;
3511  }
3512  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3513                  work_insn_idx_)) {
3514    return nullptr;
3515  }
3516
3517  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3518  // match the call to the signature. Also, we might be calling through an abstract method
3519  // definition (which doesn't have register count values).
3520  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3521  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3522    return nullptr;
3523  }
3524  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3525  /* caught by static verifier */
3526  DCHECK(is_range || expected_args <= 5);
3527  if (expected_args > code_item_->outs_size_) {
3528    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3529        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3530    return nullptr;
3531  }
3532
3533  /*
3534   * Check the "this" argument, which must be an instance of the class that declared the method.
3535   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3536   * rigorous check here (which is okay since we have to do it at runtime).
3537   */
3538  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3539    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3540    return nullptr;
3541  }
3542  if (!actual_arg_type.IsZero()) {
3543    mirror::Class* klass = res_method->GetDeclaringClass();
3544    std::string temp;
3545    const RegType& res_method_class =
3546        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3547                             klass->CannotBeAssignedFromOtherTypes());
3548    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3549      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3550          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3551          << "' not instance of '" << res_method_class << "'";
3552      return nullptr;
3553    }
3554  }
3555  /*
3556   * Process the target method's signature. This signature may or may not
3557   * have been verified, so we can't assume it's properly formed.
3558   */
3559  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3560  size_t params_size = params == nullptr ? 0 : params->Size();
3561  uint32_t arg[5];
3562  if (!is_range) {
3563    inst->GetVarArgs(arg);
3564  }
3565  size_t actual_args = 1;
3566  for (size_t param_index = 0; param_index < params_size; param_index++) {
3567    if (actual_args >= expected_args) {
3568      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3569                                        << "'. Expected " << expected_args
3570                                         << " arguments, processing argument " << actual_args
3571                                        << " (where longs/doubles count twice).";
3572      return nullptr;
3573    }
3574    const char* descriptor =
3575        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3576    if (descriptor == nullptr) {
3577      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3578                                        << " missing signature component";
3579      return nullptr;
3580    }
3581    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3582    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3583    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3584      return res_method;
3585    }
3586    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3587  }
3588  if (actual_args != expected_args) {
3589    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3590              << " expected " << expected_args << " arguments, found " << actual_args;
3591    return nullptr;
3592  } else {
3593    return res_method;
3594  }
3595}
3596
3597void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3598  uint32_t type_idx;
3599  if (!is_filled) {
3600    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3601    type_idx = inst->VRegC_22c();
3602  } else if (!is_range) {
3603    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3604    type_idx = inst->VRegB_35c();
3605  } else {
3606    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3607    type_idx = inst->VRegB_3rc();
3608  }
3609  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3610  if (res_type.IsConflict()) {  // bad class
3611    DCHECK_NE(failures_.size(), 0U);
3612  } else {
3613    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3614    if (!res_type.IsArrayTypes()) {
3615      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3616    } else if (!is_filled) {
3617      /* make sure "size" register is valid type */
3618      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3619      /* set register type to array class */
3620      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3621      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3622    } else {
3623      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3624      // the list and fail. It's legal, if silly, for arg_count to be zero.
3625      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3626      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3627      uint32_t arg[5];
3628      if (!is_range) {
3629        inst->GetVarArgs(arg);
3630      }
3631      for (size_t ui = 0; ui < arg_count; ui++) {
3632        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3633        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3634          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3635          return;
3636        }
3637      }
3638      // filled-array result goes into "result" register
3639      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3640      work_line_->SetResultRegisterType(this, precise_type);
3641    }
3642  }
3643}
3644
3645void MethodVerifier::VerifyAGet(const Instruction* inst,
3646                                const RegType& insn_type, bool is_primitive) {
3647  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3648  if (!index_type.IsArrayIndexTypes()) {
3649    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3650  } else {
3651    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3652    if (array_type.IsZero()) {
3653      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3654      // instruction type. TODO: have a proper notion of bottom here.
3655      if (!is_primitive || insn_type.IsCategory1Types()) {
3656        // Reference or category 1
3657        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3658      } else {
3659        // Category 2
3660        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3661                                        reg_types_.FromCat2ConstLo(0, false),
3662                                        reg_types_.FromCat2ConstHi(0, false));
3663      }
3664    } else if (!array_type.IsArrayTypes()) {
3665      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3666    } else {
3667      /* verify the class */
3668      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3669      if (!component_type.IsReferenceTypes() && !is_primitive) {
3670        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3671            << " source for aget-object";
3672      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3673        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3674            << " source for category 1 aget";
3675      } else if (is_primitive && !insn_type.Equals(component_type) &&
3676                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3677                 (insn_type.IsLong() && component_type.IsDouble()))) {
3678        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3679            << " incompatible with aget of type " << insn_type;
3680      } else {
3681        // Use knowledge of the field type which is stronger than the type inferred from the
3682        // instruction, which can't differentiate object types and ints from floats, longs from
3683        // doubles.
3684        if (!component_type.IsLowHalf()) {
3685          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3686        } else {
3687          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3688                                          component_type.HighHalf(&reg_types_));
3689        }
3690      }
3691    }
3692  }
3693}
3694
3695void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3696                                        const uint32_t vregA) {
3697  // Primitive assignability rules are weaker than regular assignability rules.
3698  bool instruction_compatible;
3699  bool value_compatible;
3700  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3701  if (target_type.IsIntegralTypes()) {
3702    instruction_compatible = target_type.Equals(insn_type);
3703    value_compatible = value_type.IsIntegralTypes();
3704  } else if (target_type.IsFloat()) {
3705    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3706    value_compatible = value_type.IsFloatTypes();
3707  } else if (target_type.IsLong()) {
3708    instruction_compatible = insn_type.IsLong();
3709    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3710    // as target_type depends on the resolved type of the field.
3711    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3712      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3713      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3714    } else {
3715      value_compatible = false;
3716    }
3717  } else if (target_type.IsDouble()) {
3718    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3719    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3720    // as target_type depends on the resolved type of the field.
3721    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3722      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3723      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3724    } else {
3725      value_compatible = false;
3726    }
3727  } else {
3728    instruction_compatible = false;  // reference with primitive store
3729    value_compatible = false;  // unused
3730  }
3731  if (!instruction_compatible) {
3732    // This is a global failure rather than a class change failure as the instructions and
3733    // the descriptors for the type should have been consistent within the same file at
3734    // compile time.
3735    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3736        << "' but expected type '" << target_type << "'";
3737    return;
3738  }
3739  if (!value_compatible) {
3740    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3741        << " of type " << value_type << " but expected " << target_type << " for put";
3742    return;
3743  }
3744}
3745
3746void MethodVerifier::VerifyAPut(const Instruction* inst,
3747                                const RegType& insn_type, bool is_primitive) {
3748  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3749  if (!index_type.IsArrayIndexTypes()) {
3750    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3751  } else {
3752    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3753    if (array_type.IsZero()) {
3754      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3755      // instruction type.
3756    } else if (!array_type.IsArrayTypes()) {
3757      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3758    } else {
3759      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3760      const uint32_t vregA = inst->VRegA_23x();
3761      if (is_primitive) {
3762        VerifyPrimitivePut(component_type, insn_type, vregA);
3763      } else {
3764        if (!component_type.IsReferenceTypes()) {
3765          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3766              << " source for aput-object";
3767        } else {
3768          // The instruction agrees with the type of array, confirm the value to be stored does too
3769          // Note: we use the instruction type (rather than the component type) for aput-object as
3770          // incompatible classes will be caught at runtime as an array store exception
3771          work_line_->VerifyRegisterType(this, vregA, insn_type);
3772        }
3773      }
3774    }
3775  }
3776}
3777
3778mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3779  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3780  // Check access to class
3781  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3782  if (klass_type.IsConflict()) {  // bad class
3783    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3784                                         field_idx, dex_file_->GetFieldName(field_id),
3785                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3786    return nullptr;
3787  }
3788  if (klass_type.IsUnresolvedTypes()) {
3789    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3790  }
3791  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3792  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3793                                                          class_loader_);
3794  if (field == nullptr) {
3795    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3796              << dex_file_->GetFieldName(field_id) << ") in "
3797              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3798    DCHECK(self_->IsExceptionPending());
3799    self_->ClearException();
3800    return nullptr;
3801  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3802                                                  field->GetAccessFlags())) {
3803    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3804                                    << " from " << GetDeclaringClass();
3805    return nullptr;
3806  } else if (!field->IsStatic()) {
3807    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3808    return nullptr;
3809  }
3810  return field;
3811}
3812
3813mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3814  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3815  // Check access to class
3816  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3817  if (klass_type.IsConflict()) {
3818    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3819                                         field_idx, dex_file_->GetFieldName(field_id),
3820                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3821    return nullptr;
3822  }
3823  if (klass_type.IsUnresolvedTypes()) {
3824    return nullptr;  // Can't resolve Class so no more to do here
3825  }
3826  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3827  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3828                                                          class_loader_);
3829  if (field == nullptr) {
3830    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3831              << dex_file_->GetFieldName(field_id) << ") in "
3832              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3833    DCHECK(self_->IsExceptionPending());
3834    self_->ClearException();
3835    return nullptr;
3836  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3837                                                  field->GetAccessFlags())) {
3838    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3839                                    << " from " << GetDeclaringClass();
3840    return nullptr;
3841  } else if (field->IsStatic()) {
3842    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3843                                    << " to not be static";
3844    return nullptr;
3845  } else if (obj_type.IsZero()) {
3846    // Cannot infer and check type, however, access will cause null pointer exception
3847    return field;
3848  } else if (!obj_type.IsReferenceTypes()) {
3849    // Trying to read a field from something that isn't a reference
3850    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3851                                      << "non-reference type " << obj_type;
3852    return nullptr;
3853  } else {
3854    mirror::Class* klass = field->GetDeclaringClass();
3855    const RegType& field_klass =
3856        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3857                             klass, klass->CannotBeAssignedFromOtherTypes());
3858    if (obj_type.IsUninitializedTypes() &&
3859        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3860            !field_klass.Equals(GetDeclaringClass()))) {
3861      // Field accesses through uninitialized references are only allowable for constructors where
3862      // the field is declared in this class
3863      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3864                                        << " of a not fully initialized object within the context"
3865                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3866      return nullptr;
3867    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3868      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3869      // of C1. For resolution to occur the declared class of the field must be compatible with
3870      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3871      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3872                                  << " from object of type " << obj_type;
3873      return nullptr;
3874    } else {
3875      return field;
3876    }
3877  }
3878}
3879
3880template <MethodVerifier::FieldAccessType kAccType>
3881void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3882                                         bool is_primitive, bool is_static) {
3883  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3884  mirror::ArtField* field;
3885  if (is_static) {
3886    field = GetStaticField(field_idx);
3887  } else {
3888    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3889    field = GetInstanceField(object_type, field_idx);
3890    if (UNLIKELY(have_pending_hard_failure_)) {
3891      return;
3892    }
3893  }
3894  const RegType* field_type = nullptr;
3895  if (field != nullptr) {
3896    if (kAccType == FieldAccessType::kAccPut) {
3897      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3898        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3899                                        << " from other class " << GetDeclaringClass();
3900        return;
3901      }
3902    }
3903
3904    mirror::Class* field_type_class;
3905    {
3906      StackHandleScope<1> hs(self_);
3907      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3908      field_type_class = h_field->GetType(can_load_classes_);
3909    }
3910    if (field_type_class != nullptr) {
3911      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3912                                         field_type_class->CannotBeAssignedFromOtherTypes());
3913    } else {
3914      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3915      self_->ClearException();
3916    }
3917  }
3918  if (field_type == nullptr) {
3919    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3920    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3921    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3922  }
3923  DCHECK(field_type != nullptr);
3924  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3925  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3926                "Unexpected third access type");
3927  if (kAccType == FieldAccessType::kAccPut) {
3928    // sput or iput.
3929    if (is_primitive) {
3930      VerifyPrimitivePut(*field_type, insn_type, vregA);
3931    } else {
3932      if (!insn_type.IsAssignableFrom(*field_type)) {
3933        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3934                                                << " to be compatible with type '" << insn_type
3935                                                << "' but found type '" << *field_type
3936                                                << "' in put-object";
3937        return;
3938      }
3939      work_line_->VerifyRegisterType(this, vregA, *field_type);
3940    }
3941  } else if (kAccType == FieldAccessType::kAccGet) {
3942    // sget or iget.
3943    if (is_primitive) {
3944      if (field_type->Equals(insn_type) ||
3945          (field_type->IsFloat() && insn_type.IsInteger()) ||
3946          (field_type->IsDouble() && insn_type.IsLong())) {
3947        // expected that read is of the correct primitive type or that int reads are reading
3948        // floats or long reads are reading doubles
3949      } else {
3950        // This is a global failure rather than a class change failure as the instructions and
3951        // the descriptors for the type should have been consistent within the same file at
3952        // compile time
3953        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3954                                          << " to be of type '" << insn_type
3955                                          << "' but found type '" << *field_type << "' in get";
3956        return;
3957      }
3958    } else {
3959      if (!insn_type.IsAssignableFrom(*field_type)) {
3960        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3961                                          << " to be compatible with type '" << insn_type
3962                                          << "' but found type '" << *field_type
3963                                          << "' in get-object";
3964        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3965        return;
3966      }
3967    }
3968    if (!field_type->IsLowHalf()) {
3969      work_line_->SetRegisterType(this, vregA, *field_type);
3970    } else {
3971      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3972    }
3973  } else {
3974    LOG(FATAL) << "Unexpected case.";
3975  }
3976}
3977
3978mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3979                                                      RegisterLine* reg_line) {
3980  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
3981  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
3982  if (!object_type.HasClass()) {
3983    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3984    return nullptr;
3985  }
3986  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3987  mirror::ArtField* const f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3988                                                                            field_offset);
3989  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
3990  if (f == nullptr) {
3991    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3992                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3993  }
3994  return f;
3995}
3996
3997template <MethodVerifier::FieldAccessType kAccType>
3998void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
3999                                            bool is_primitive) {
4000  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4001
4002  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4003  if (field == nullptr) {
4004    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4005    return;
4006  }
4007
4008  // For an IPUT_QUICK, we now test for final flag of the field.
4009  if (kAccType == FieldAccessType::kAccPut) {
4010    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4011      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4012                                      << " from other class " << GetDeclaringClass();
4013      return;
4014    }
4015  }
4016
4017  // Get the field type.
4018  const RegType* field_type;
4019  {
4020    mirror::Class* field_type_class;
4021    {
4022      StackHandleScope<1> hs(Thread::Current());
4023      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
4024      field_type_class = h_field->GetType(can_load_classes_);
4025    }
4026
4027    if (field_type_class != nullptr) {
4028      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
4029                                         field_type_class->CannotBeAssignedFromOtherTypes());
4030    } else {
4031      Thread* self = Thread::Current();
4032      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4033      self->ClearException();
4034      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4035                                              field->GetTypeDescriptor(), false);
4036    }
4037    if (field_type == nullptr) {
4038      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4039      return;
4040    }
4041  }
4042
4043  const uint32_t vregA = inst->VRegA_22c();
4044  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4045                "Unexpected third access type");
4046  if (kAccType == FieldAccessType::kAccPut) {
4047    if (is_primitive) {
4048      // Primitive field assignability rules are weaker than regular assignability rules
4049      bool instruction_compatible;
4050      bool value_compatible;
4051      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4052      if (field_type->IsIntegralTypes()) {
4053        instruction_compatible = insn_type.IsIntegralTypes();
4054        value_compatible = value_type.IsIntegralTypes();
4055      } else if (field_type->IsFloat()) {
4056        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4057        value_compatible = value_type.IsFloatTypes();
4058      } else if (field_type->IsLong()) {
4059        instruction_compatible = insn_type.IsLong();
4060        value_compatible = value_type.IsLongTypes();
4061      } else if (field_type->IsDouble()) {
4062        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4063        value_compatible = value_type.IsDoubleTypes();
4064      } else {
4065        instruction_compatible = false;  // reference field with primitive store
4066        value_compatible = false;  // unused
4067      }
4068      if (!instruction_compatible) {
4069        // This is a global failure rather than a class change failure as the instructions and
4070        // the descriptors for the type should have been consistent within the same file at
4071        // compile time
4072        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4073                                          << " to be of type '" << insn_type
4074                                          << "' but found type '" << *field_type
4075                                          << "' in put";
4076        return;
4077      }
4078      if (!value_compatible) {
4079        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4080            << " of type " << value_type
4081            << " but expected " << *field_type
4082            << " for store to " << PrettyField(field) << " in put";
4083        return;
4084      }
4085    } else {
4086      if (!insn_type.IsAssignableFrom(*field_type)) {
4087        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4088                                          << " to be compatible with type '" << insn_type
4089                                          << "' but found type '" << *field_type
4090                                          << "' in put-object";
4091        return;
4092      }
4093      work_line_->VerifyRegisterType(this, vregA, *field_type);
4094    }
4095  } else if (kAccType == FieldAccessType::kAccGet) {
4096    if (is_primitive) {
4097      if (field_type->Equals(insn_type) ||
4098          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4099          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4100        // expected that read is of the correct primitive type or that int reads are reading
4101        // floats or long reads are reading doubles
4102      } else {
4103        // This is a global failure rather than a class change failure as the instructions and
4104        // the descriptors for the type should have been consistent within the same file at
4105        // compile time
4106        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4107                                          << " to be of type '" << insn_type
4108                                          << "' but found type '" << *field_type << "' in Get";
4109        return;
4110      }
4111    } else {
4112      if (!insn_type.IsAssignableFrom(*field_type)) {
4113        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4114                                          << " to be compatible with type '" << insn_type
4115                                          << "' but found type '" << *field_type
4116                                          << "' in get-object";
4117        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4118        return;
4119      }
4120    }
4121    if (!field_type->IsLowHalf()) {
4122      work_line_->SetRegisterType(this, vregA, *field_type);
4123    } else {
4124      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4125    }
4126  } else {
4127    LOG(FATAL) << "Unexpected case.";
4128  }
4129}
4130
4131bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4132  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4133    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4134    return false;
4135  }
4136  return true;
4137}
4138
4139bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4140  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4141      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4142    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4143    return false;
4144  }
4145  return true;
4146}
4147
4148bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4149  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4150}
4151
4152bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4153                                     bool update_merge_line) {
4154  bool changed = true;
4155  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4156  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4157    /*
4158     * We haven't processed this instruction before, and we haven't touched the registers here, so
4159     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4160     * only way a register can transition out of "unknown", so this is not just an optimization.)
4161     */
4162    if (!insn_flags_[next_insn].IsReturn()) {
4163      target_line->CopyFromLine(merge_line);
4164    } else {
4165      // Verify that the monitor stack is empty on return.
4166      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4167        return false;
4168      }
4169      // For returns we only care about the operand to the return, all other registers are dead.
4170      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4171      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4172      Instruction::Code opcode = ret_inst->Opcode();
4173      if (opcode == Instruction::RETURN_VOID || opcode == Instruction::RETURN_VOID_NO_BARRIER) {
4174        SafelyMarkAllRegistersAsConflicts(this, target_line);
4175      } else {
4176        target_line->CopyFromLine(merge_line);
4177        if (opcode == Instruction::RETURN_WIDE) {
4178          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4179        } else {
4180          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4181        }
4182      }
4183    }
4184  } else {
4185    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4186                                 RegisterLine::Create(target_line->NumRegs(), this) :
4187                                 nullptr);
4188    if (gDebugVerify) {
4189      copy->CopyFromLine(target_line);
4190    }
4191    changed = target_line->MergeRegisters(this, merge_line);
4192    if (have_pending_hard_failure_) {
4193      return false;
4194    }
4195    if (gDebugVerify && changed) {
4196      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4197                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4198                      << copy->Dump(this) << "  MERGE\n"
4199                      << merge_line->Dump(this) << "  ==\n"
4200                      << target_line->Dump(this) << "\n";
4201    }
4202    if (update_merge_line && changed) {
4203      merge_line->CopyFromLine(target_line);
4204    }
4205  }
4206  if (changed) {
4207    insn_flags_[next_insn].SetChanged();
4208  }
4209  return true;
4210}
4211
4212InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4213  return &insn_flags_[work_insn_idx_];
4214}
4215
4216const RegType& MethodVerifier::GetMethodReturnType() {
4217  if (return_type_ == nullptr) {
4218    if (mirror_method_.Get() != nullptr) {
4219      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4220      if (return_type_class != nullptr) {
4221        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4222                                             return_type_class,
4223                                             return_type_class->CannotBeAssignedFromOtherTypes());
4224      } else {
4225        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4226        self_->ClearException();
4227      }
4228    }
4229    if (return_type_ == nullptr) {
4230      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4231      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4232      uint16_t return_type_idx = proto_id.return_type_idx_;
4233      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4234      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4235    }
4236  }
4237  return *return_type_;
4238}
4239
4240const RegType& MethodVerifier::GetDeclaringClass() {
4241  if (declaring_class_ == nullptr) {
4242    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4243    const char* descriptor
4244        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4245    if (mirror_method_.Get() != nullptr) {
4246      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4247      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4248                                               klass->CannotBeAssignedFromOtherTypes());
4249    } else {
4250      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4251    }
4252  }
4253  return *declaring_class_;
4254}
4255
4256std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4257  RegisterLine* line = reg_table_.GetLine(dex_pc);
4258  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4259  std::vector<int32_t> result;
4260  for (size_t i = 0; i < line->NumRegs(); ++i) {
4261    const RegType& type = line->GetRegisterType(this, i);
4262    if (type.IsConstant()) {
4263      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4264      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4265      result.push_back(const_val->ConstantValue());
4266    } else if (type.IsConstantLo()) {
4267      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4268      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4269      result.push_back(const_val->ConstantValueLo());
4270    } else if (type.IsConstantHi()) {
4271      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4272      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4273      result.push_back(const_val->ConstantValueHi());
4274    } else if (type.IsIntegralTypes()) {
4275      result.push_back(kIntVReg);
4276      result.push_back(0);
4277    } else if (type.IsFloat()) {
4278      result.push_back(kFloatVReg);
4279      result.push_back(0);
4280    } else if (type.IsLong()) {
4281      result.push_back(kLongLoVReg);
4282      result.push_back(0);
4283      result.push_back(kLongHiVReg);
4284      result.push_back(0);
4285      ++i;
4286    } else if (type.IsDouble()) {
4287      result.push_back(kDoubleLoVReg);
4288      result.push_back(0);
4289      result.push_back(kDoubleHiVReg);
4290      result.push_back(0);
4291      ++i;
4292    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4293      result.push_back(kUndefined);
4294      result.push_back(0);
4295    } else {
4296      CHECK(type.IsNonZeroReferenceTypes());
4297      result.push_back(kReferenceVReg);
4298      result.push_back(0);
4299    }
4300  }
4301  return result;
4302}
4303
4304const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4305  if (precise) {
4306    // Precise constant type.
4307    return reg_types_.FromCat1Const(value, true);
4308  } else {
4309    // Imprecise constant type.
4310    if (value < -32768) {
4311      return reg_types_.IntConstant();
4312    } else if (value < -128) {
4313      return reg_types_.ShortConstant();
4314    } else if (value < 0) {
4315      return reg_types_.ByteConstant();
4316    } else if (value == 0) {
4317      return reg_types_.Zero();
4318    } else if (value == 1) {
4319      return reg_types_.One();
4320    } else if (value < 128) {
4321      return reg_types_.PosByteConstant();
4322    } else if (value < 32768) {
4323      return reg_types_.PosShortConstant();
4324    } else if (value < 65536) {
4325      return reg_types_.CharConstant();
4326    } else {
4327      return reg_types_.IntConstant();
4328    }
4329  }
4330}
4331
4332void MethodVerifier::Init() {
4333  art::verifier::RegTypeCache::Init();
4334}
4335
4336void MethodVerifier::Shutdown() {
4337  verifier::RegTypeCache::ShutDown();
4338}
4339
4340void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4341  RegTypeCache::VisitStaticRoots(callback, arg);
4342}
4343
4344void MethodVerifier::VisitRoots(RootCallback* callback, void* arg, const RootInfo& root_info) {
4345  reg_types_.VisitRoots(callback, arg, root_info);
4346}
4347
4348}  // namespace verifier
4349}  // namespace art
4350